]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
5ba3f43e | 2 | * Copyright (c) 2000-2017 Apple Inc. All rights reserved. |
1c79356b | 3 | * |
2d21ac55 | 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
39236c6e | 5 | * |
2d21ac55 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
39236c6e | 14 | * |
2d21ac55 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
39236c6e | 17 | * |
2d21ac55 A |
18 | * The Original Code and all software distributed under the License are |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
39236c6e | 25 | * |
2d21ac55 | 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
1c79356b A |
27 | * |
28 | */ | |
55e303ae A |
29 | /*- |
30 | * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org> | |
31 | * All rights reserved. | |
32 | * | |
33 | * Redistribution and use in source and binary forms, with or without | |
34 | * modification, are permitted provided that the following conditions | |
35 | * are met: | |
36 | * 1. Redistributions of source code must retain the above copyright | |
37 | * notice, this list of conditions and the following disclaimer. | |
38 | * 2. Redistributions in binary form must reproduce the above copyright | |
39 | * notice, this list of conditions and the following disclaimer in the | |
40 | * documentation and/or other materials provided with the distribution. | |
41 | * | |
42 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND | |
43 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
44 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
45 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | |
46 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
47 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
48 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
49 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
50 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
51 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
52 | * SUCH DAMAGE. | |
53 | */ | |
1c79356b A |
54 | /* |
55 | * @(#)kern_event.c 1.0 (3/31/2000) | |
56 | */ | |
91447636 | 57 | #include <stdint.h> |
5ba3f43e | 58 | #include <stdatomic.h> |
1c79356b | 59 | |
55e303ae A |
60 | #include <sys/param.h> |
61 | #include <sys/systm.h> | |
62 | #include <sys/filedesc.h> | |
63 | #include <sys/kernel.h> | |
91447636 A |
64 | #include <sys/proc_internal.h> |
65 | #include <sys/kauth.h> | |
39236c6e | 66 | #include <sys/malloc.h> |
55e303ae | 67 | #include <sys/unistd.h> |
91447636 | 68 | #include <sys/file_internal.h> |
55e303ae A |
69 | #include <sys/fcntl.h> |
70 | #include <sys/select.h> | |
71 | #include <sys/queue.h> | |
72 | #include <sys/event.h> | |
73 | #include <sys/eventvar.h> | |
74 | #include <sys/protosw.h> | |
75 | #include <sys/socket.h> | |
76 | #include <sys/socketvar.h> | |
77 | #include <sys/stat.h> | |
78 | #include <sys/sysctl.h> | |
79 | #include <sys/uio.h> | |
91447636 A |
80 | #include <sys/sysproto.h> |
81 | #include <sys/user.h> | |
b0d623f7 | 82 | #include <sys/vnode_internal.h> |
91447636 | 83 | #include <string.h> |
0c530ab8 | 84 | #include <sys/proc_info.h> |
39236c6e | 85 | #include <sys/codesign.h> |
3e170ce0 | 86 | #include <sys/pthread_shims.h> |
5ba3f43e A |
87 | #include <sys/kdebug.h> |
88 | #include <sys/reason.h> | |
89 | #include <os/reason_private.h> | |
91447636 | 90 | |
fe8ab488 | 91 | #include <kern/locks.h> |
91447636 | 92 | #include <kern/clock.h> |
5ba3f43e | 93 | #include <kern/cpu_data.h> |
39037602 | 94 | #include <kern/policy_internal.h> |
91447636 A |
95 | #include <kern/thread_call.h> |
96 | #include <kern/sched_prim.h> | |
3e170ce0 | 97 | #include <kern/waitq.h> |
55e303ae | 98 | #include <kern/zalloc.h> |
3e170ce0 | 99 | #include <kern/kalloc.h> |
91447636 | 100 | #include <kern/assert.h> |
5ba3f43e A |
101 | #include <kern/ast.h> |
102 | #include <kern/thread.h> | |
103 | #include <kern/kcdata.h> | |
91447636 A |
104 | |
105 | #include <libkern/libkern.h> | |
5ba3f43e A |
106 | #include <libkern/OSAtomic.h> |
107 | ||
b0d623f7 | 108 | #include "net/net_str_id.h" |
55e303ae | 109 | |
6d2010ae | 110 | #include <mach/task.h> |
5ba3f43e | 111 | #include <libkern/section_keywords.h> |
316670eb | 112 | |
39236c6e A |
113 | #if CONFIG_MEMORYSTATUS |
114 | #include <sys/kern_memorystatus.h> | |
115 | #endif | |
116 | ||
5ba3f43e A |
117 | extern thread_t port_name_to_thread(mach_port_name_t port_name); /* osfmk/kern/ipc_tt.h */ |
118 | extern mach_port_name_t ipc_entry_name_mask(mach_port_name_t name); /* osfmk/ipc/ipc_entry.h */ | |
119 | ||
120 | #define KEV_EVTID(code) BSDDBG_CODE(DBG_BSD_KEVENT, (code)) | |
121 | ||
39037602 A |
122 | /* |
123 | * JMM - this typedef needs to be unified with pthread_priority_t | |
124 | * and mach_msg_priority_t. It also needs to be the same type | |
125 | * everywhere. | |
126 | */ | |
127 | typedef int32_t qos_t; | |
128 | ||
55e303ae A |
129 | MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system"); |
130 | ||
3e170ce0 | 131 | #define KQ_EVENT NO_EVENT64 |
b0d623f7 | 132 | |
5ba3f43e A |
133 | #define KNUSE_NONE 0x0 |
134 | #define KNUSE_STEAL_DROP 0x1 | |
135 | #define KNUSE_BOOST 0x2 | |
136 | static int kqlock2knoteuse(struct kqueue *kq, struct knote *kn, int flags); | |
39236c6e | 137 | static int kqlock2knotedrop(struct kqueue *kq, struct knote *kn); |
5ba3f43e A |
138 | static int kqlock2knotedetach(struct kqueue *kq, struct knote *kn, int flags); |
139 | static int knoteuse2kqlock(struct kqueue *kq, struct knote *kn, int flags); | |
39236c6e | 140 | |
39236c6e | 141 | static int kqueue_read(struct fileproc *fp, struct uio *uio, |
5ba3f43e | 142 | int flags, vfs_context_t ctx); |
39236c6e | 143 | static int kqueue_write(struct fileproc *fp, struct uio *uio, |
5ba3f43e | 144 | int flags, vfs_context_t ctx); |
39236c6e | 145 | static int kqueue_ioctl(struct fileproc *fp, u_long com, caddr_t data, |
5ba3f43e | 146 | vfs_context_t ctx); |
3e170ce0 | 147 | static int kqueue_select(struct fileproc *fp, int which, void *wq_link_id, |
5ba3f43e | 148 | vfs_context_t ctx); |
39236c6e A |
149 | static int kqueue_close(struct fileglob *fg, vfs_context_t ctx); |
150 | static int kqueue_kqfilter(struct fileproc *fp, struct knote *kn, | |
5ba3f43e | 151 | struct kevent_internal_s *kev, vfs_context_t ctx); |
39236c6e | 152 | static int kqueue_drain(struct fileproc *fp, vfs_context_t ctx); |
39236c6e A |
153 | |
154 | static const struct fileops kqueueops = { | |
155 | .fo_type = DTYPE_KQUEUE, | |
156 | .fo_read = kqueue_read, | |
157 | .fo_write = kqueue_write, | |
158 | .fo_ioctl = kqueue_ioctl, | |
159 | .fo_select = kqueue_select, | |
160 | .fo_close = kqueue_close, | |
161 | .fo_kqfilter = kqueue_kqfilter, | |
b0d623f7 | 162 | .fo_drain = kqueue_drain, |
55e303ae A |
163 | }; |
164 | ||
5ba3f43e A |
165 | static void kevent_put_kq(struct proc *p, kqueue_id_t id, struct fileproc *fp, struct kqueue *kq); |
166 | static int kevent_internal(struct proc *p, | |
167 | kqueue_id_t id, kqueue_id_t *id_out, | |
3e170ce0 A |
168 | user_addr_t changelist, int nchanges, |
169 | user_addr_t eventlist, int nevents, | |
39037602 | 170 | user_addr_t data_out, uint64_t data_available, |
3e170ce0 A |
171 | unsigned int flags, user_addr_t utimeout, |
172 | kqueue_continue_t continuation, | |
173 | int32_t *retval); | |
174 | static int kevent_copyin(user_addr_t *addrp, struct kevent_internal_s *kevp, | |
175 | struct proc *p, unsigned int flags); | |
176 | static int kevent_copyout(struct kevent_internal_s *kevp, user_addr_t *addrp, | |
177 | struct proc *p, unsigned int flags); | |
178 | char * kevent_description(struct kevent_internal_s *kevp, char *s, size_t n); | |
179 | ||
39037602 | 180 | static void kqueue_interrupt(struct kqueue *kq); |
3e170ce0 A |
181 | static int kevent_callback(struct kqueue *kq, struct kevent_internal_s *kevp, |
182 | void *data); | |
39236c6e A |
183 | static void kevent_continue(struct kqueue *kq, void *data, int error); |
184 | static void kqueue_scan_continue(void *contp, wait_result_t wait_result); | |
39037602 | 185 | static int kqueue_process(struct kqueue *kq, kevent_callback_t callback, void *callback_data, |
5ba3f43e | 186 | struct filt_process_s *process_data, int *countp, struct proc *p); |
39037602 A |
187 | static struct kqtailq *kqueue_get_base_queue(struct kqueue *kq, kq_index_t qos_index); |
188 | static struct kqtailq *kqueue_get_high_queue(struct kqueue *kq, kq_index_t qos_index); | |
189 | static int kqueue_queue_empty(struct kqueue *kq, kq_index_t qos_index); | |
190 | ||
191 | static struct kqtailq *kqueue_get_suppressed_queue(struct kqueue *kq, kq_index_t qos_index); | |
192 | ||
193 | static void kqworkq_request_thread(struct kqworkq *kqwq, kq_index_t qos_index); | |
5ba3f43e | 194 | static void kqworkq_request_help(struct kqworkq *kqwq, kq_index_t qos_index); |
39037602 | 195 | static void kqworkq_update_override(struct kqworkq *kqwq, kq_index_t qos_index, kq_index_t override_index); |
5ba3f43e | 196 | static void kqworkq_bind_thread_impl(struct kqworkq *kqwq, kq_index_t qos_index, thread_t thread, unsigned int flags); |
39037602 A |
197 | static void kqworkq_unbind_thread(struct kqworkq *kqwq, kq_index_t qos_index, thread_t thread, unsigned int flags); |
198 | static struct kqrequest *kqworkq_get_request(struct kqworkq *kqwq, kq_index_t qos_index); | |
199 | ||
5ba3f43e A |
200 | enum { |
201 | KQWL_UO_NONE = 0, | |
202 | KQWL_UO_OLD_OVERRIDE_IS_SYNC_UI = 0x1, | |
203 | KQWL_UO_NEW_OVERRIDE_IS_SYNC_UI = 0x2, | |
204 | KQWL_UO_UPDATE_SUPPRESS_SYNC_COUNTERS = 0x4, | |
205 | KQWL_UO_UPDATE_OVERRIDE_LAZY = 0x8 | |
206 | }; | |
207 | ||
208 | static void kqworkloop_update_override(struct kqworkloop *kqwl, kq_index_t qos_index, kq_index_t override_index, uint32_t flags); | |
209 | static void kqworkloop_bind_thread_impl(struct kqworkloop *kqwl, thread_t thread, unsigned int flags); | |
210 | static void kqworkloop_unbind_thread(struct kqworkloop *kqwl, thread_t thread, unsigned int flags); | |
211 | static inline kq_index_t kqworkloop_combined_qos(struct kqworkloop *kqwl, boolean_t *); | |
212 | static void kqworkloop_update_suppress_sync_count(struct kqrequest *kqr, uint32_t flags); | |
213 | enum { | |
214 | KQWL_UTQ_NONE, | |
215 | /* | |
216 | * The wakeup qos is the qos of QUEUED knotes. | |
217 | * | |
218 | * This QoS is accounted for with the events override in the | |
219 | * kqr_override_index field. It is raised each time a new knote is queued at | |
220 | * a given QoS. The kqr_wakeup_indexes field is a superset of the non empty | |
221 | * knote buckets and is recomputed after each event delivery. | |
222 | */ | |
223 | KQWL_UTQ_UPDATE_WAKEUP_QOS, | |
224 | KQWL_UTQ_UPDATE_STAYACTIVE_QOS, | |
225 | KQWL_UTQ_RECOMPUTE_WAKEUP_QOS, | |
226 | /* | |
227 | * The wakeup override is for suppressed knotes that have fired again at | |
228 | * a higher QoS than the one for which they are suppressed already. | |
229 | * This override is cleared when the knote suppressed list becomes empty. | |
230 | */ | |
231 | KQWL_UTQ_UPDATE_WAKEUP_OVERRIDE, | |
232 | KQWL_UTQ_RESET_WAKEUP_OVERRIDE, | |
233 | /* | |
234 | * The async QoS is the maximum QoS of an event enqueued on this workloop in | |
235 | * userland. It is copied from the only EVFILT_WORKLOOP knote with | |
236 | * a NOTE_WL_THREAD_REQUEST bit set allowed on this workloop. If there is no | |
237 | * such knote, this QoS is 0. | |
238 | */ | |
239 | KQWL_UTQ_SET_ASYNC_QOS, | |
240 | /* | |
241 | * The sync waiters QoS is the maximum QoS of any thread blocked on an | |
242 | * EVFILT_WORKLOOP knote marked with the NOTE_WL_SYNC_WAIT bit. | |
243 | * If there is no such knote, this QoS is 0. | |
244 | */ | |
245 | KQWL_UTQ_SET_SYNC_WAITERS_QOS, | |
246 | KQWL_UTQ_REDRIVE_EVENTS, | |
247 | }; | |
248 | static void kqworkloop_update_threads_qos(struct kqworkloop *kqwl, int op, kq_index_t qos); | |
249 | static void kqworkloop_request_help(struct kqworkloop *kqwl, kq_index_t qos_index); | |
39037602 A |
250 | |
251 | static int knote_process(struct knote *kn, kevent_callback_t callback, void *callback_data, | |
252 | struct filt_process_s *process_data, struct proc *p); | |
253 | #if 0 | |
39236c6e | 254 | static void knote_put(struct knote *kn); |
39037602 A |
255 | #endif |
256 | ||
5ba3f43e A |
257 | static int kq_add_knote(struct kqueue *kq, struct knote *kn, |
258 | struct kevent_internal_s *kev, struct proc *p, int *knoteuse_flags); | |
259 | static struct knote *kq_find_knote_and_kq_lock(struct kqueue *kq, struct kevent_internal_s *kev, bool is_fd, struct proc *p); | |
260 | static void kq_remove_knote(struct kqueue *kq, struct knote *kn, struct proc *p, kn_status_t *kn_status, uint16_t *kq_state); | |
39037602 | 261 | |
39236c6e | 262 | static void knote_drop(struct knote *kn, struct proc *p); |
39236c6e A |
263 | static struct knote *knote_alloc(void); |
264 | static void knote_free(struct knote *kn); | |
265 | ||
39037602 A |
266 | static void knote_activate(struct knote *kn); |
267 | static void knote_deactivate(struct knote *kn); | |
268 | ||
269 | static void knote_enable(struct knote *kn); | |
270 | static void knote_disable(struct knote *kn); | |
271 | ||
272 | static int knote_enqueue(struct knote *kn); | |
273 | static void knote_dequeue(struct knote *kn); | |
274 | ||
275 | static void knote_suppress(struct knote *kn); | |
276 | static void knote_unsuppress(struct knote *kn); | |
277 | static void knote_wakeup(struct knote *kn); | |
278 | ||
279 | static kq_index_t knote_get_queue_index(struct knote *kn); | |
280 | static struct kqtailq *knote_get_queue(struct knote *kn); | |
39037602 A |
281 | static kq_index_t knote_get_req_index(struct knote *kn); |
282 | static kq_index_t knote_get_qos_index(struct knote *kn); | |
283 | static void knote_set_qos_index(struct knote *kn, kq_index_t qos_index); | |
284 | static kq_index_t knote_get_qos_override_index(struct knote *kn); | |
5ba3f43e A |
285 | static kq_index_t knote_get_sync_qos_override_index(struct knote *kn); |
286 | static void knote_set_qos_override_index(struct knote *kn, kq_index_t qos_index, boolean_t override_is_sync); | |
287 | static void knote_set_qos_overcommit(struct knote *kn); | |
39037602 | 288 | |
5ba3f43e A |
289 | static int filt_fileattach(struct knote *kn, struct kevent_internal_s *kev); |
290 | SECURITY_READ_ONLY_EARLY(static struct filterops) file_filtops = { | |
39236c6e A |
291 | .f_isfd = 1, |
292 | .f_attach = filt_fileattach, | |
b0d623f7 | 293 | }; |
55e303ae | 294 | |
39236c6e A |
295 | static void filt_kqdetach(struct knote *kn); |
296 | static int filt_kqueue(struct knote *kn, long hint); | |
39037602 A |
297 | static int filt_kqtouch(struct knote *kn, struct kevent_internal_s *kev); |
298 | static int filt_kqprocess(struct knote *kn, struct filt_process_s *data, struct kevent_internal_s *kev); | |
5ba3f43e | 299 | SECURITY_READ_ONLY_EARLY(static struct filterops) kqread_filtops = { |
39236c6e A |
300 | .f_isfd = 1, |
301 | .f_detach = filt_kqdetach, | |
302 | .f_event = filt_kqueue, | |
39037602 A |
303 | .f_touch = filt_kqtouch, |
304 | .f_process = filt_kqprocess, | |
b0d623f7 | 305 | }; |
55e303ae | 306 | |
39236c6e | 307 | /* placeholder for not-yet-implemented filters */ |
5ba3f43e A |
308 | static int filt_badattach(struct knote *kn, struct kevent_internal_s *kev); |
309 | SECURITY_READ_ONLY_EARLY(static struct filterops) bad_filtops = { | |
39236c6e | 310 | .f_attach = filt_badattach, |
b0d623f7 | 311 | }; |
55e303ae | 312 | |
5ba3f43e | 313 | static int filt_procattach(struct knote *kn, struct kevent_internal_s *kev); |
39236c6e A |
314 | static void filt_procdetach(struct knote *kn); |
315 | static int filt_proc(struct knote *kn, long hint); | |
39037602 A |
316 | static int filt_proctouch(struct knote *kn, struct kevent_internal_s *kev); |
317 | static int filt_procprocess(struct knote *kn, struct filt_process_s *data, struct kevent_internal_s *kev); | |
5ba3f43e | 318 | SECURITY_READ_ONLY_EARLY(static struct filterops) proc_filtops = { |
39236c6e A |
319 | .f_attach = filt_procattach, |
320 | .f_detach = filt_procdetach, | |
321 | .f_event = filt_proc, | |
39037602 A |
322 | .f_touch = filt_proctouch, |
323 | .f_process = filt_procprocess, | |
b0d623f7 | 324 | }; |
55e303ae | 325 | |
39236c6e | 326 | #if CONFIG_MEMORYSTATUS |
5ba3f43e | 327 | extern const struct filterops memorystatus_filtops; |
39236c6e A |
328 | #endif /* CONFIG_MEMORYSTATUS */ |
329 | ||
5ba3f43e | 330 | extern const struct filterops fs_filtops; |
b0d623f7 | 331 | |
5ba3f43e | 332 | extern const struct filterops sig_filtops; |
55e303ae | 333 | |
39236c6e | 334 | static zone_t knote_zone; |
39037602 A |
335 | static zone_t kqfile_zone; |
336 | static zone_t kqworkq_zone; | |
5ba3f43e | 337 | static zone_t kqworkloop_zone; |
55e303ae | 338 | |
39236c6e | 339 | #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask)) |
55e303ae | 340 | |
b0d623f7 | 341 | /* Mach portset filter */ |
5ba3f43e | 342 | extern const struct filterops machport_filtops; |
b0d623f7 A |
343 | |
344 | /* User filter */ | |
5ba3f43e | 345 | static int filt_userattach(struct knote *kn, struct kevent_internal_s *kev); |
39236c6e A |
346 | static void filt_userdetach(struct knote *kn); |
347 | static int filt_user(struct knote *kn, long hint); | |
39037602 A |
348 | static int filt_usertouch(struct knote *kn, struct kevent_internal_s *kev); |
349 | static int filt_userprocess(struct knote *kn, struct filt_process_s *data, struct kevent_internal_s *kev); | |
5ba3f43e | 350 | SECURITY_READ_ONLY_EARLY(static struct filterops) user_filtops = { |
39236c6e A |
351 | .f_attach = filt_userattach, |
352 | .f_detach = filt_userdetach, | |
353 | .f_event = filt_user, | |
354 | .f_touch = filt_usertouch, | |
39037602 | 355 | .f_process = filt_userprocess, |
b0d623f7 A |
356 | }; |
357 | ||
39037602 A |
358 | static lck_spin_t _filt_userlock; |
359 | static void filt_userlock(void); | |
360 | static void filt_userunlock(void); | |
361 | ||
5ba3f43e A |
362 | /* Workloop filter */ |
363 | static bool filt_wlneeds_boost(struct kevent_internal_s *kev); | |
364 | static int filt_wlattach(struct knote *kn, struct kevent_internal_s *kev); | |
365 | static int filt_wlpost_attach(struct knote *kn, struct kevent_internal_s *kev); | |
366 | static void filt_wldetach(struct knote *kn); | |
367 | static int filt_wlevent(struct knote *kn, long hint); | |
368 | static int filt_wltouch(struct knote *kn, struct kevent_internal_s *kev); | |
369 | static int filt_wldrop_and_unlock(struct knote *kn, struct kevent_internal_s *kev); | |
370 | static int filt_wlprocess(struct knote *kn, struct filt_process_s *data, struct kevent_internal_s *kev); | |
371 | SECURITY_READ_ONLY_EARLY(static struct filterops) workloop_filtops = { | |
372 | .f_needs_boost = filt_wlneeds_boost, | |
373 | .f_attach = filt_wlattach, | |
374 | .f_post_attach = filt_wlpost_attach, | |
375 | .f_detach = filt_wldetach, | |
376 | .f_event = filt_wlevent, | |
377 | .f_touch = filt_wltouch, | |
378 | .f_drop_and_unlock = filt_wldrop_and_unlock, | |
379 | .f_process = filt_wlprocess, | |
380 | }; | |
381 | ||
382 | extern const struct filterops pipe_rfiltops; | |
383 | extern const struct filterops pipe_wfiltops; | |
384 | extern const struct filterops ptsd_kqops; | |
5c9f4661 | 385 | extern const struct filterops ptmx_kqops; |
5ba3f43e A |
386 | extern const struct filterops soread_filtops; |
387 | extern const struct filterops sowrite_filtops; | |
388 | extern const struct filterops sock_filtops; | |
389 | extern const struct filterops soexcept_filtops; | |
390 | extern const struct filterops spec_filtops; | |
391 | extern const struct filterops bpfread_filtops; | |
392 | extern const struct filterops necp_fd_rfiltops; | |
393 | extern const struct filterops fsevent_filtops; | |
394 | extern const struct filterops vnode_filtops; | |
395 | extern const struct filterops tty_filtops; | |
396 | ||
397 | const static struct filterops timer_filtops; | |
39037602 | 398 | |
55e303ae | 399 | /* |
39037602 A |
400 | * |
401 | * Rules for adding new filters to the system: | |
402 | * Public filters: | |
403 | * - Add a new "EVFILT_" option value to bsd/sys/event.h (typically a negative value) | |
404 | * in the exported section of the header | |
405 | * - Update the EVFILT_SYSCOUNT value to reflect the new addition | |
406 | * - Add a filterops to the sysfilt_ops array. Public filters should be added at the end | |
407 | * of the Public Filters section in the array. | |
408 | * Private filters: | |
409 | * - Add a new "EVFILT_" value to bsd/sys/event.h (typically a positive value) | |
410 | * in the XNU_KERNEL_PRIVATE section of the header | |
411 | * - Update the EVFILTID_MAX value to reflect the new addition | |
412 | * - Add a filterops to the sysfilt_ops. Private filters should be added at the end of | |
413 | * the Private filters section of the array. | |
55e303ae | 414 | */ |
5ba3f43e | 415 | SECURITY_READ_ONLY_EARLY(static struct filterops *) sysfilt_ops[EVFILTID_MAX] = { |
39037602 A |
416 | /* Public Filters */ |
417 | [~EVFILT_READ] = &file_filtops, | |
418 | [~EVFILT_WRITE] = &file_filtops, | |
419 | [~EVFILT_AIO] = &bad_filtops, | |
420 | [~EVFILT_VNODE] = &file_filtops, | |
421 | [~EVFILT_PROC] = &proc_filtops, | |
422 | [~EVFILT_SIGNAL] = &sig_filtops, | |
423 | [~EVFILT_TIMER] = &timer_filtops, | |
424 | [~EVFILT_MACHPORT] = &machport_filtops, | |
425 | [~EVFILT_FS] = &fs_filtops, | |
426 | [~EVFILT_USER] = &user_filtops, | |
427 | &bad_filtops, | |
428 | &bad_filtops, | |
429 | [~EVFILT_SOCK] = &file_filtops, | |
39236c6e | 430 | #if CONFIG_MEMORYSTATUS |
39037602 | 431 | [~EVFILT_MEMORYSTATUS] = &memorystatus_filtops, |
39236c6e | 432 | #else |
39037602 | 433 | [~EVFILT_MEMORYSTATUS] = &bad_filtops, |
39236c6e | 434 | #endif |
39037602 A |
435 | [~EVFILT_EXCEPT] = &file_filtops, |
436 | ||
5ba3f43e A |
437 | [~EVFILT_WORKLOOP] = &workloop_filtops, |
438 | ||
39037602 A |
439 | /* Private filters */ |
440 | [EVFILTID_KQREAD] = &kqread_filtops, | |
441 | [EVFILTID_PIPE_R] = &pipe_rfiltops, | |
442 | [EVFILTID_PIPE_W] = &pipe_wfiltops, | |
443 | [EVFILTID_PTSD] = &ptsd_kqops, | |
444 | [EVFILTID_SOREAD] = &soread_filtops, | |
445 | [EVFILTID_SOWRITE] = &sowrite_filtops, | |
446 | [EVFILTID_SCK] = &sock_filtops, | |
447 | [EVFILTID_SOEXCEPT] = &soexcept_filtops, | |
448 | [EVFILTID_SPEC] = &spec_filtops, | |
449 | [EVFILTID_BPFREAD] = &bpfread_filtops, | |
450 | [EVFILTID_NECP_FD] = &necp_fd_rfiltops, | |
451 | [EVFILTID_FSEVENT] = &fsevent_filtops, | |
5ba3f43e | 452 | [EVFILTID_VN] = &vnode_filtops, |
5c9f4661 A |
453 | [EVFILTID_TTY] = &tty_filtops, |
454 | [EVFILTID_PTMX] = &ptmx_kqops, | |
55e303ae A |
455 | }; |
456 | ||
39037602 A |
457 | /* waitq prepost callback */ |
458 | void waitq_set__CALLING_PREPOST_HOOK__(void *kq_hook, void *knote_hook, int qos); | |
459 | ||
460 | #ifndef _PTHREAD_PRIORITY_EVENT_MANAGER_FLAG | |
461 | #define _PTHREAD_PRIORITY_EVENT_MANAGER_FLAG 0x02000000 /* pthread event manager bit */ | |
462 | #endif | |
463 | #ifndef _PTHREAD_PRIORITY_OVERCOMMIT_FLAG | |
464 | #define _PTHREAD_PRIORITY_OVERCOMMIT_FLAG 0x80000000 /* request overcommit threads */ | |
465 | #endif | |
466 | #ifndef _PTHREAD_PRIORITY_QOS_CLASS_MASK | |
467 | #define _PTHREAD_PRIORITY_QOS_CLASS_MASK 0x003fff00 /* QoS class mask */ | |
468 | #endif | |
469 | #ifndef _PTHREAD_PRIORITY_QOS_CLASS_SHIFT_32 | |
470 | #define _PTHREAD_PRIORITY_QOS_CLASS_SHIFT_32 8 | |
471 | #endif | |
472 | ||
5ba3f43e A |
473 | static inline __kdebug_only |
474 | uintptr_t | |
475 | kqr_thread_id(struct kqrequest *kqr) | |
476 | { | |
477 | return (uintptr_t)thread_tid(kqr->kqr_thread); | |
478 | } | |
479 | ||
480 | static inline | |
481 | boolean_t is_workqueue_thread(thread_t thread) | |
482 | { | |
483 | return (thread_get_tag(thread) & THREAD_TAG_WORKQUEUE); | |
484 | } | |
485 | ||
39037602 | 486 | static inline |
5ba3f43e | 487 | void knote_canonicalize_kevent_qos(struct knote *kn) |
39037602 | 488 | { |
5ba3f43e | 489 | struct kqueue *kq = knote_get_kq(kn); |
39037602 A |
490 | unsigned long canonical; |
491 | ||
5ba3f43e A |
492 | if ((kq->kq_state & (KQ_WORKQ | KQ_WORKLOOP)) == 0) |
493 | return; | |
494 | ||
39037602 | 495 | /* preserve manager and overcommit flags in this case */ |
5ba3f43e A |
496 | canonical = pthread_priority_canonicalize(kn->kn_qos, FALSE); |
497 | kn->kn_qos = (qos_t)canonical; | |
39037602 A |
498 | } |
499 | ||
500 | static inline | |
5ba3f43e | 501 | kq_index_t qos_index_from_qos(struct knote *kn, qos_t qos, boolean_t propagation) |
39037602 | 502 | { |
5ba3f43e | 503 | struct kqueue *kq = knote_get_kq(kn); |
39037602 A |
504 | kq_index_t qos_index; |
505 | unsigned long flags = 0; | |
506 | ||
5ba3f43e A |
507 | if ((kq->kq_state & (KQ_WORKQ | KQ_WORKLOOP)) == 0) |
508 | return QOS_INDEX_KQFILE; | |
509 | ||
39037602 A |
510 | qos_index = (kq_index_t)thread_qos_from_pthread_priority( |
511 | (unsigned long)qos, &flags); | |
512 | ||
5ba3f43e A |
513 | if (kq->kq_state & KQ_WORKQ) { |
514 | /* workq kqueues support requesting a manager thread (non-propagation) */ | |
515 | if (!propagation && (flags & _PTHREAD_PRIORITY_EVENT_MANAGER_FLAG)) | |
516 | return KQWQ_QOS_MANAGER; | |
517 | } | |
39037602 A |
518 | |
519 | return qos_index; | |
520 | } | |
521 | ||
522 | static inline | |
523 | qos_t qos_from_qos_index(kq_index_t qos_index) | |
524 | { | |
5ba3f43e A |
525 | /* should only happen for KQ_WORKQ */ |
526 | if (qos_index == KQWQ_QOS_MANAGER) | |
39037602 A |
527 | return _PTHREAD_PRIORITY_EVENT_MANAGER_FLAG; |
528 | ||
529 | if (qos_index == 0) | |
5ba3f43e | 530 | return THREAD_QOS_UNSPECIFIED; |
39037602 A |
531 | |
532 | /* Should have support from pthread kext support */ | |
533 | return (1 << (qos_index - 1 + | |
534 | _PTHREAD_PRIORITY_QOS_CLASS_SHIFT_32)); | |
535 | } | |
536 | ||
5ba3f43e A |
537 | /* kqr lock must be held */ |
538 | static inline | |
539 | unsigned long pthread_priority_for_kqrequest( | |
540 | struct kqrequest *kqr, | |
541 | kq_index_t qos_index) | |
542 | { | |
543 | unsigned long priority = qos_from_qos_index(qos_index); | |
544 | if (kqr->kqr_state & KQR_THOVERCOMMIT) { | |
545 | priority |= _PTHREAD_PRIORITY_OVERCOMMIT_FLAG; | |
546 | } | |
547 | return priority; | |
548 | } | |
549 | ||
39037602 A |
550 | static inline |
551 | kq_index_t qos_index_for_servicer(int qos_class, thread_t thread, int flags) | |
552 | { | |
5ba3f43e | 553 | #pragma unused(thread) |
39037602 A |
554 | kq_index_t qos_index; |
555 | ||
556 | if (flags & KEVENT_FLAG_WORKQ_MANAGER) | |
557 | return KQWQ_QOS_MANAGER; | |
558 | ||
5ba3f43e A |
559 | qos_index = (kq_index_t)qos_class; |
560 | assert(qos_index > 0 && qos_index < KQWQ_QOS_MANAGER); | |
39037602 A |
561 | |
562 | return qos_index; | |
563 | } | |
564 | ||
91447636 | 565 | /* |
39037602 A |
566 | * kqueue/note lock implementations |
567 | * | |
568 | * The kqueue lock guards the kq state, the state of its queues, | |
569 | * and the kqueue-aware status and use counts of individual knotes. | |
91447636 | 570 | * |
39037602 A |
571 | * The kqueue workq lock is used to protect state guarding the |
572 | * interaction of the kqueue with the workq. This state cannot | |
573 | * be guarded by the kq lock - as it needs to be taken when we | |
574 | * already have the waitq set lock held (during the waitq hook | |
575 | * callback). It might be better to use the waitq lock itself | |
576 | * for this, but the IRQ requirements make that difficult). | |
577 | * | |
578 | * Knote flags, filter flags, and associated data are protected | |
579 | * by the underlying object lock - and are only ever looked at | |
580 | * by calling the filter to get a [consistent] snapshot of that | |
581 | * data. | |
91447636 A |
582 | */ |
583 | lck_grp_attr_t * kq_lck_grp_attr; | |
584 | lck_grp_t * kq_lck_grp; | |
585 | lck_attr_t * kq_lck_attr; | |
586 | ||
587 | static inline void | |
588 | kqlock(struct kqueue *kq) | |
589 | { | |
590 | lck_spin_lock(&kq->kq_lock); | |
591 | } | |
592 | ||
5ba3f43e A |
593 | static inline void |
594 | kqlock_held(__assert_only struct kqueue *kq) | |
595 | { | |
596 | LCK_SPIN_ASSERT(&kq->kq_lock, LCK_ASSERT_OWNED); | |
597 | } | |
598 | ||
91447636 A |
599 | static inline void |
600 | kqunlock(struct kqueue *kq) | |
601 | { | |
602 | lck_spin_unlock(&kq->kq_lock); | |
603 | } | |
604 | ||
5ba3f43e A |
605 | static inline void |
606 | knhash_lock(proc_t p) | |
607 | { | |
608 | lck_mtx_lock(&p->p_fd->fd_knhashlock); | |
609 | } | |
610 | ||
611 | static inline void | |
612 | knhash_unlock(proc_t p) | |
613 | { | |
614 | lck_mtx_unlock(&p->p_fd->fd_knhashlock); | |
615 | } | |
616 | ||
39037602 | 617 | |
39236c6e | 618 | /* |
91447636 A |
619 | * Convert a kq lock to a knote use referece. |
620 | * | |
39037602 A |
621 | * If the knote is being dropped, or has |
622 | * vanished, we can't get a use reference. | |
623 | * Just return with it still locked. | |
624 | * | |
91447636 A |
625 | * - kq locked at entry |
626 | * - unlock on exit if we get the use reference | |
627 | */ | |
628 | static int | |
5ba3f43e | 629 | kqlock2knoteuse(struct kqueue *kq, struct knote *kn, int flags) |
91447636 | 630 | { |
39037602 | 631 | if (kn->kn_status & (KN_DROPPING | KN_VANISHED)) |
39236c6e | 632 | return (0); |
91447636 | 633 | |
39037602 | 634 | assert(kn->kn_status & KN_ATTACHED); |
b0d623f7 | 635 | kn->kn_inuse++; |
5ba3f43e A |
636 | if (flags & KNUSE_BOOST) { |
637 | set_thread_rwlock_boost(); | |
638 | } | |
b0d623f7 | 639 | kqunlock(kq); |
39236c6e A |
640 | return (1); |
641 | } | |
b0d623f7 | 642 | |
5ba3f43e A |
643 | /* |
644 | * - kq locked at entry | |
645 | * - kq unlocked at exit | |
646 | */ | |
647 | __disable_tail_calls | |
648 | static wait_result_t | |
649 | knoteusewait(struct kqueue *kq, struct knote *kn) | |
650 | { | |
651 | kn->kn_status |= KN_USEWAIT; | |
652 | waitq_assert_wait64((struct waitq *)&kq->kq_wqs, | |
653 | CAST_EVENT64_T(&kn->kn_status), | |
654 | THREAD_UNINT, TIMEOUT_WAIT_FOREVER); | |
655 | kqunlock(kq); | |
656 | return thread_block(THREAD_CONTINUE_NULL); | |
657 | } | |
658 | ||
659 | static bool | |
660 | knoteuse_needs_boost(struct knote *kn, struct kevent_internal_s *kev) | |
661 | { | |
662 | if (knote_fops(kn)->f_needs_boost) { | |
663 | return knote_fops(kn)->f_needs_boost(kev); | |
664 | } | |
665 | return false; | |
666 | } | |
39037602 | 667 | |
39236c6e | 668 | /* |
91447636 A |
669 | * Convert from a knote use reference back to kq lock. |
670 | * | |
671 | * Drop a use reference and wake any waiters if | |
672 | * this is the last one. | |
673 | * | |
39037602 | 674 | * If someone is trying to drop the knote, but the |
5ba3f43e | 675 | * caller has events they must deliver, take |
39037602 A |
676 | * responsibility for the drop later - and wake the |
677 | * other attempted dropper in a manner that informs | |
678 | * him of the transfer of responsibility. | |
679 | * | |
680 | * The exit return indicates if the knote is still alive | |
681 | * (or if not, the other dropper has been given the green | |
682 | * light to drop it). | |
683 | * | |
684 | * The kqueue lock is re-taken unconditionally. | |
91447636 A |
685 | */ |
686 | static int | |
5ba3f43e | 687 | knoteuse2kqlock(struct kqueue *kq, struct knote *kn, int flags) |
91447636 | 688 | { |
39037602 | 689 | int dropped = 0; |
5ba3f43e | 690 | int steal_drop = (flags & KNUSE_STEAL_DROP); |
39037602 | 691 | |
91447636 | 692 | kqlock(kq); |
5ba3f43e A |
693 | if (flags & KNUSE_BOOST) { |
694 | clear_thread_rwlock_boost(); | |
695 | } | |
696 | ||
b0d623f7 | 697 | if (--kn->kn_inuse == 0) { |
39037602 | 698 | |
b0d623f7 A |
699 | if ((kn->kn_status & KN_ATTACHING) != 0) { |
700 | kn->kn_status &= ~KN_ATTACHING; | |
701 | } | |
39037602 | 702 | |
b0d623f7 | 703 | if ((kn->kn_status & KN_USEWAIT) != 0) { |
39037602 A |
704 | wait_result_t result; |
705 | ||
706 | /* If we need to, try and steal the drop */ | |
707 | if (kn->kn_status & KN_DROPPING) { | |
708 | if (steal_drop && !(kn->kn_status & KN_STOLENDROP)) { | |
709 | kn->kn_status |= KN_STOLENDROP; | |
710 | } else { | |
711 | dropped = 1; | |
712 | } | |
713 | } | |
714 | ||
715 | /* wakeup indicating if ANY USE stole the drop */ | |
716 | result = (kn->kn_status & KN_STOLENDROP) ? | |
717 | THREAD_RESTART : THREAD_AWAKENED; | |
718 | ||
b0d623f7 | 719 | kn->kn_status &= ~KN_USEWAIT; |
39037602 | 720 | waitq_wakeup64_all((struct waitq *)&kq->kq_wqs, |
3e170ce0 | 721 | CAST_EVENT64_T(&kn->kn_status), |
39037602 | 722 | result, |
3e170ce0 | 723 | WAITQ_ALL_PRIORITIES); |
39037602 A |
724 | } else { |
725 | /* should have seen use-wait if dropping with use refs */ | |
726 | assert((kn->kn_status & (KN_DROPPING|KN_STOLENDROP)) == 0); | |
727 | } | |
728 | ||
729 | } else if (kn->kn_status & KN_DROPPING) { | |
730 | /* not the last ref but want to steal a drop if present */ | |
731 | if (steal_drop && ((kn->kn_status & KN_STOLENDROP) == 0)) { | |
732 | kn->kn_status |= KN_STOLENDROP; | |
733 | ||
734 | /* but we now have to wait to be the last ref */ | |
5ba3f43e | 735 | knoteusewait(kq, kn); |
39037602 A |
736 | kqlock(kq); |
737 | } else { | |
738 | dropped = 1; | |
b0d623f7 | 739 | } |
91447636 | 740 | } |
39037602 A |
741 | |
742 | return (!dropped); | |
743 | } | |
744 | ||
745 | /* | |
746 | * Convert a kq lock to a knote use reference | |
747 | * (for the purpose of detaching AND vanishing it). | |
748 | * | |
749 | * If the knote is being dropped, we can't get | |
750 | * a detach reference, so wait for the knote to | |
751 | * finish dropping before returning. | |
752 | * | |
753 | * If the knote is being used for other purposes, | |
754 | * we cannot detach it until those uses are done | |
755 | * as well. Again, just wait for them to finish | |
756 | * (caller will start over at lookup). | |
757 | * | |
758 | * - kq locked at entry | |
5ba3f43e | 759 | * - unlocked on exit |
39037602 A |
760 | */ |
761 | static int | |
5ba3f43e | 762 | kqlock2knotedetach(struct kqueue *kq, struct knote *kn, int flags) |
39037602 A |
763 | { |
764 | if ((kn->kn_status & KN_DROPPING) || kn->kn_inuse) { | |
765 | /* have to wait for dropper or current uses to go away */ | |
5ba3f43e | 766 | knoteusewait(kq, kn); |
39037602 A |
767 | return (0); |
768 | } | |
769 | assert((kn->kn_status & KN_VANISHED) == 0); | |
770 | assert(kn->kn_status & KN_ATTACHED); | |
771 | kn->kn_status &= ~KN_ATTACHED; | |
772 | kn->kn_status |= KN_VANISHED; | |
5ba3f43e A |
773 | if (flags & KNUSE_BOOST) { |
774 | clear_thread_rwlock_boost(); | |
775 | } | |
39037602 A |
776 | kn->kn_inuse++; |
777 | kqunlock(kq); | |
778 | return (1); | |
39236c6e | 779 | } |
91447636 | 780 | |
39236c6e A |
781 | /* |
782 | * Convert a kq lock to a knote drop reference. | |
91447636 A |
783 | * |
784 | * If the knote is in use, wait for the use count | |
785 | * to subside. We first mark our intention to drop | |
786 | * it - keeping other users from "piling on." | |
787 | * If we are too late, we have to wait for the | |
788 | * other drop to complete. | |
39236c6e | 789 | * |
91447636 A |
790 | * - kq locked at entry |
791 | * - always unlocked on exit. | |
792 | * - caller can't hold any locks that would prevent | |
793 | * the other dropper from completing. | |
794 | */ | |
795 | static int | |
796 | kqlock2knotedrop(struct kqueue *kq, struct knote *kn) | |
797 | { | |
b0d623f7 | 798 | int oktodrop; |
39037602 | 799 | wait_result_t result; |
91447636 | 800 | |
b0d623f7 | 801 | oktodrop = ((kn->kn_status & (KN_DROPPING | KN_ATTACHING)) == 0); |
39037602 | 802 | /* if another thread is attaching, they will become the dropping thread */ |
b0d623f7 | 803 | kn->kn_status |= KN_DROPPING; |
39037602 A |
804 | knote_unsuppress(kn); |
805 | knote_dequeue(kn); | |
b0d623f7 A |
806 | if (oktodrop) { |
807 | if (kn->kn_inuse == 0) { | |
91447636 | 808 | kqunlock(kq); |
39236c6e | 809 | return (oktodrop); |
b0d623f7 | 810 | } |
91447636 | 811 | } |
5ba3f43e | 812 | result = knoteusewait(kq, kn); |
39037602 A |
813 | /* THREAD_RESTART == another thread stole the knote drop */ |
814 | return (result == THREAD_AWAKENED); | |
91447636 | 815 | } |
39236c6e | 816 | |
39037602 | 817 | #if 0 |
39236c6e | 818 | /* |
91447636 A |
819 | * Release a knote use count reference. |
820 | */ | |
821 | static void | |
822 | knote_put(struct knote *kn) | |
823 | { | |
39037602 | 824 | struct kqueue *kq = knote_get_kq(kn); |
91447636 A |
825 | |
826 | kqlock(kq); | |
b0d623f7 A |
827 | if (--kn->kn_inuse == 0) { |
828 | if ((kn->kn_status & KN_USEWAIT) != 0) { | |
829 | kn->kn_status &= ~KN_USEWAIT; | |
39037602 | 830 | waitq_wakeup64_all((struct waitq *)&kq->kq_wqs, |
3e170ce0 A |
831 | CAST_EVENT64_T(&kn->kn_status), |
832 | THREAD_AWAKENED, | |
833 | WAITQ_ALL_PRIORITIES); | |
b0d623f7 | 834 | } |
91447636 A |
835 | } |
836 | kqunlock(kq); | |
39236c6e | 837 | } |
39037602 | 838 | #endif |
91447636 | 839 | |
55e303ae | 840 | static int |
5ba3f43e | 841 | filt_fileattach(struct knote *kn, struct kevent_internal_s *kev) |
55e303ae | 842 | { |
5ba3f43e | 843 | return (fo_kqfilter(kn->kn_fp, kn, kev, vfs_context_current())); |
55e303ae A |
844 | } |
845 | ||
39236c6e A |
846 | #define f_flag f_fglob->fg_flag |
847 | #define f_msgcount f_fglob->fg_msgcount | |
848 | #define f_cred f_fglob->fg_cred | |
849 | #define f_ops f_fglob->fg_ops | |
850 | #define f_offset f_fglob->fg_offset | |
851 | #define f_data f_fglob->fg_data | |
91447636 | 852 | |
55e303ae A |
853 | static void |
854 | filt_kqdetach(struct knote *kn) | |
855 | { | |
39037602 A |
856 | struct kqfile *kqf = (struct kqfile *)kn->kn_fp->f_data; |
857 | struct kqueue *kq = &kqf->kqf_kqueue; | |
55e303ae | 858 | |
91447636 | 859 | kqlock(kq); |
39037602 | 860 | KNOTE_DETACH(&kqf->kqf_sel.si_note, kn); |
91447636 | 861 | kqunlock(kq); |
55e303ae A |
862 | } |
863 | ||
864 | /*ARGSUSED*/ | |
865 | static int | |
91447636 | 866 | filt_kqueue(struct knote *kn, __unused long hint) |
55e303ae A |
867 | { |
868 | struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data; | |
39037602 A |
869 | int count; |
870 | ||
871 | count = kq->kq_count; | |
872 | return (count > 0); | |
873 | } | |
874 | ||
875 | static int | |
876 | filt_kqtouch(struct knote *kn, struct kevent_internal_s *kev) | |
877 | { | |
878 | #pragma unused(kev) | |
879 | struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data; | |
880 | int res; | |
881 | ||
882 | kqlock(kq); | |
883 | kn->kn_data = kq->kq_count; | |
884 | if ((kn->kn_status & KN_UDATA_SPECIFIC) == 0) | |
885 | kn->kn_udata = kev->udata; | |
886 | res = (kn->kn_data > 0); | |
887 | ||
888 | kqunlock(kq); | |
889 | ||
890 | return res; | |
891 | } | |
892 | ||
893 | static int | |
894 | filt_kqprocess(struct knote *kn, struct filt_process_s *data, struct kevent_internal_s *kev) | |
895 | { | |
896 | #pragma unused(data) | |
897 | struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data; | |
898 | int res; | |
55e303ae | 899 | |
39037602 | 900 | kqlock(kq); |
55e303ae | 901 | kn->kn_data = kq->kq_count; |
39037602 A |
902 | res = (kn->kn_data > 0); |
903 | if (res) { | |
904 | *kev = kn->kn_kevent; | |
905 | if (kn->kn_flags & EV_CLEAR) | |
906 | kn->kn_data = 0; | |
907 | } | |
908 | kqunlock(kq); | |
909 | ||
910 | return res; | |
55e303ae A |
911 | } |
912 | ||
5ba3f43e A |
913 | #pragma mark EVFILT_PROC |
914 | ||
55e303ae | 915 | static int |
5ba3f43e | 916 | filt_procattach(struct knote *kn, __unused struct kevent_internal_s *kev) |
55e303ae A |
917 | { |
918 | struct proc *p; | |
2d21ac55 A |
919 | |
920 | assert(PID_MAX < NOTE_PDATAMASK); | |
39236c6e | 921 | |
39037602 A |
922 | if ((kn->kn_sfflags & (NOTE_TRACK | NOTE_TRACKERR | NOTE_CHILD)) != 0) { |
923 | kn->kn_flags = EV_ERROR; | |
924 | kn->kn_data = ENOTSUP; | |
925 | return 0; | |
926 | } | |
0c530ab8 | 927 | |
2d21ac55 | 928 | p = proc_find(kn->kn_id); |
91447636 | 929 | if (p == NULL) { |
39037602 A |
930 | kn->kn_flags = EV_ERROR; |
931 | kn->kn_data = ESRCH; | |
932 | return 0; | |
91447636 | 933 | } |
55e303ae | 934 | |
99c3a104 A |
935 | const int NoteExitStatusBits = NOTE_EXIT | NOTE_EXITSTATUS; |
936 | ||
937 | if ((kn->kn_sfflags & NoteExitStatusBits) == NoteExitStatusBits) | |
938 | do { | |
939 | pid_t selfpid = proc_selfpid(); | |
940 | ||
941 | if (p->p_ppid == selfpid) | |
942 | break; /* parent => ok */ | |
943 | ||
944 | if ((p->p_lflag & P_LTRACED) != 0 && | |
945 | (p->p_oppid == selfpid)) | |
946 | break; /* parent-in-waiting => ok */ | |
947 | ||
6d2010ae | 948 | proc_rele(p); |
39037602 A |
949 | kn->kn_flags = EV_ERROR; |
950 | kn->kn_data = EACCES; | |
951 | return 0; | |
99c3a104 | 952 | } while (0); |
6d2010ae | 953 | |
2d21ac55 A |
954 | proc_klist_lock(); |
955 | ||
2d21ac55 | 956 | kn->kn_ptr.p_proc = p; /* store the proc handle */ |
55e303ae | 957 | |
55e303ae A |
958 | KNOTE_ATTACH(&p->p_klist, kn); |
959 | ||
2d21ac55 A |
960 | proc_klist_unlock(); |
961 | ||
962 | proc_rele(p); | |
91447636 | 963 | |
39037602 A |
964 | /* |
965 | * only captures edge-triggered events after this point | |
966 | * so it can't already be fired. | |
967 | */ | |
55e303ae A |
968 | return (0); |
969 | } | |
970 | ||
39037602 | 971 | |
55e303ae A |
972 | /* |
973 | * The knote may be attached to a different process, which may exit, | |
0c530ab8 | 974 | * leaving nothing for the knote to be attached to. In that case, |
2d21ac55 | 975 | * the pointer to the process will have already been nulled out. |
55e303ae A |
976 | */ |
977 | static void | |
978 | filt_procdetach(struct knote *kn) | |
979 | { | |
91447636 | 980 | struct proc *p; |
91447636 | 981 | |
2d21ac55 | 982 | proc_klist_lock(); |
39236c6e | 983 | |
2d21ac55 A |
984 | p = kn->kn_ptr.p_proc; |
985 | if (p != PROC_NULL) { | |
986 | kn->kn_ptr.p_proc = PROC_NULL; | |
91447636 | 987 | KNOTE_DETACH(&p->p_klist, kn); |
0c530ab8 | 988 | } |
2d21ac55 A |
989 | |
990 | proc_klist_unlock(); | |
55e303ae A |
991 | } |
992 | ||
993 | static int | |
994 | filt_proc(struct knote *kn, long hint) | |
995 | { | |
39037602 A |
996 | u_int event; |
997 | ||
998 | /* ALWAYS CALLED WITH proc_klist_lock */ | |
999 | ||
39236c6e A |
1000 | /* |
1001 | * Note: a lot of bits in hint may be obtained from the knote | |
1002 | * To free some of those bits, see <rdar://problem/12592988> Freeing up | |
1003 | * bits in hint for filt_proc | |
39037602 A |
1004 | * |
1005 | * mask off extra data | |
39236c6e | 1006 | */ |
39037602 | 1007 | event = (u_int)hint & NOTE_PCTRLMASK; |
4452a7af | 1008 | |
39037602 A |
1009 | /* |
1010 | * termination lifecycle events can happen while a debugger | |
1011 | * has reparented a process, in which case notifications | |
1012 | * should be quashed except to the tracing parent. When | |
1013 | * the debugger reaps the child (either via wait4(2) or | |
1014 | * process exit), the child will be reparented to the original | |
1015 | * parent and these knotes re-fired. | |
1016 | */ | |
1017 | if (event & NOTE_EXIT) { | |
1018 | if ((kn->kn_ptr.p_proc->p_oppid != 0) | |
1019 | && (knote_get_kq(kn)->kq_p->p_pid != kn->kn_ptr.p_proc->p_ppid)) { | |
1020 | /* | |
1021 | * This knote is not for the current ptrace(2) parent, ignore. | |
1022 | */ | |
1023 | return 0; | |
1024 | } | |
1025 | } | |
4b17d6b6 | 1026 | |
39037602 A |
1027 | /* |
1028 | * if the user is interested in this event, record it. | |
1029 | */ | |
1030 | if (kn->kn_sfflags & event) | |
1031 | kn->kn_fflags |= event; | |
55e303ae | 1032 | |
39236c6e A |
1033 | #pragma clang diagnostic push |
1034 | #pragma clang diagnostic ignored "-Wdeprecated-declarations" | |
39037602 A |
1035 | if ((event == NOTE_REAP) || ((event == NOTE_EXIT) && !(kn->kn_sfflags & NOTE_REAP))) { |
1036 | kn->kn_flags |= (EV_EOF | EV_ONESHOT); | |
1037 | } | |
39236c6e A |
1038 | #pragma clang diagnostic pop |
1039 | ||
fe8ab488 | 1040 | |
39037602 A |
1041 | /* |
1042 | * The kernel has a wrapper in place that returns the same data | |
1043 | * as is collected here, in kn_data. Any changes to how | |
1044 | * NOTE_EXITSTATUS and NOTE_EXIT_DETAIL are collected | |
1045 | * should also be reflected in the proc_pidnoteexit() wrapper. | |
1046 | */ | |
1047 | if (event == NOTE_EXIT) { | |
1048 | kn->kn_data = 0; | |
1049 | if ((kn->kn_sfflags & NOTE_EXITSTATUS) != 0) { | |
1050 | kn->kn_fflags |= NOTE_EXITSTATUS; | |
1051 | kn->kn_data |= (hint & NOTE_PDATAMASK); | |
1052 | } | |
1053 | if ((kn->kn_sfflags & NOTE_EXIT_DETAIL) != 0) { | |
1054 | kn->kn_fflags |= NOTE_EXIT_DETAIL; | |
1055 | if ((kn->kn_ptr.p_proc->p_lflag & | |
1056 | P_LTERM_DECRYPTFAIL) != 0) { | |
1057 | kn->kn_data |= NOTE_EXIT_DECRYPTFAIL; | |
39236c6e | 1058 | } |
39037602 A |
1059 | if ((kn->kn_ptr.p_proc->p_lflag & |
1060 | P_LTERM_JETSAM) != 0) { | |
1061 | kn->kn_data |= NOTE_EXIT_MEMORY; | |
1062 | switch (kn->kn_ptr.p_proc->p_lflag & P_JETSAM_MASK) { | |
1063 | case P_JETSAM_VMPAGESHORTAGE: | |
1064 | kn->kn_data |= NOTE_EXIT_MEMORY_VMPAGESHORTAGE; | |
1065 | break; | |
1066 | case P_JETSAM_VMTHRASHING: | |
1067 | kn->kn_data |= NOTE_EXIT_MEMORY_VMTHRASHING; | |
1068 | break; | |
1069 | case P_JETSAM_FCTHRASHING: | |
1070 | kn->kn_data |= NOTE_EXIT_MEMORY_FCTHRASHING; | |
1071 | break; | |
1072 | case P_JETSAM_VNODE: | |
1073 | kn->kn_data |= NOTE_EXIT_MEMORY_VNODE; | |
1074 | break; | |
1075 | case P_JETSAM_HIWAT: | |
1076 | kn->kn_data |= NOTE_EXIT_MEMORY_HIWAT; | |
1077 | break; | |
1078 | case P_JETSAM_PID: | |
1079 | kn->kn_data |= NOTE_EXIT_MEMORY_PID; | |
1080 | break; | |
1081 | case P_JETSAM_IDLEEXIT: | |
1082 | kn->kn_data |= NOTE_EXIT_MEMORY_IDLE; | |
1083 | break; | |
39236c6e A |
1084 | } |
1085 | } | |
39037602 A |
1086 | if ((kn->kn_ptr.p_proc->p_csflags & |
1087 | CS_KILLED) != 0) { | |
1088 | kn->kn_data |= NOTE_EXIT_CSERROR; | |
1089 | } | |
316670eb | 1090 | } |
0c530ab8 | 1091 | } |
6601e61a | 1092 | |
39037602 | 1093 | /* if we have any matching state, activate the knote */ |
39236c6e | 1094 | return (kn->kn_fflags != 0); |
55e303ae A |
1095 | } |
1096 | ||
6d2010ae | 1097 | static int |
39037602 | 1098 | filt_proctouch(struct knote *kn, struct kevent_internal_s *kev) |
39236c6e | 1099 | { |
39037602 A |
1100 | int res; |
1101 | ||
1102 | proc_klist_lock(); | |
1103 | ||
1104 | /* accept new filter flags and mask off output events no long interesting */ | |
1105 | kn->kn_sfflags = kev->fflags; | |
1106 | if ((kn->kn_status & KN_UDATA_SPECIFIC) == 0) | |
1107 | kn->kn_udata = kev->udata; | |
1108 | ||
1109 | /* restrict the current results to the (smaller?) set of new interest */ | |
39236c6e | 1110 | /* |
39037602 A |
1111 | * For compatibility with previous implementations, we leave kn_fflags |
1112 | * as they were before. | |
6d2010ae | 1113 | */ |
39037602 | 1114 | //kn->kn_fflags &= kn->kn_sfflags; |
6d2010ae | 1115 | |
39037602 A |
1116 | res = (kn->kn_fflags != 0); |
1117 | ||
1118 | proc_klist_unlock(); | |
1119 | ||
1120 | return res; | |
6d2010ae A |
1121 | } |
1122 | ||
1123 | static int | |
39037602 | 1124 | filt_procprocess(struct knote *kn, struct filt_process_s *data, struct kevent_internal_s *kev) |
6d2010ae | 1125 | { |
39037602 A |
1126 | #pragma unused(data) |
1127 | int res; | |
39236c6e | 1128 | |
39037602 A |
1129 | proc_klist_lock(); |
1130 | res = (kn->kn_fflags != 0); | |
1131 | if (res) { | |
1132 | *kev = kn->kn_kevent; | |
1133 | kn->kn_flags |= EV_CLEAR; /* automatically set */ | |
1134 | kn->kn_fflags = 0; | |
1135 | kn->kn_data = 0; | |
1136 | } | |
1137 | proc_klist_unlock(); | |
1138 | return res; | |
6d2010ae | 1139 | } |
b0d623f7 | 1140 | |
5ba3f43e A |
1141 | |
1142 | #pragma mark EVFILT_TIMER | |
1143 | ||
1144 | ||
91447636 | 1145 | /* |
5ba3f43e | 1146 | * Values stored in the knote at rest (using Mach absolute time units) |
39236c6e | 1147 | * |
5ba3f43e A |
1148 | * kn->kn_hook where the thread_call object is stored |
1149 | * kn->kn_ext[0] next deadline or 0 if immediate expiration | |
1150 | * kn->kn_ext[1] leeway value | |
1151 | * kn->kn_sdata interval timer: the interval | |
1152 | * absolute/deadline timer: 0 | |
1153 | * kn->kn_data fire count | |
1154 | */ | |
1155 | ||
1156 | static lck_mtx_t _filt_timerlock; | |
1157 | ||
1158 | static void filt_timerlock(void) { lck_mtx_lock(&_filt_timerlock); } | |
1159 | static void filt_timerunlock(void) { lck_mtx_unlock(&_filt_timerlock); } | |
1160 | ||
1161 | static inline void filt_timer_assert_locked(void) | |
1162 | { | |
1163 | LCK_MTX_ASSERT(&_filt_timerlock, LCK_MTX_ASSERT_OWNED); | |
1164 | } | |
1165 | ||
1166 | /* state flags stored in kn_hookid */ | |
1167 | #define TIMER_RUNNING 0x1 | |
1168 | #define TIMER_CANCELWAIT 0x2 | |
1169 | ||
1170 | /* | |
1171 | * filt_timervalidate - process data from user | |
39236c6e | 1172 | * |
5ba3f43e | 1173 | * Sets up the deadline, interval, and leeway from the provided user data |
91447636 | 1174 | * |
5ba3f43e A |
1175 | * Input: |
1176 | * kn_sdata timer deadline or interval time | |
1177 | * kn_sfflags style of timer, unit of measurement | |
b0d623f7 | 1178 | * |
5ba3f43e A |
1179 | * Output: |
1180 | * kn_sdata either interval in abstime or 0 if non-repeating timer | |
1181 | * ext[0] fire deadline in abs/cont time | |
1182 | * (or 0 if NOTE_ABSOLUTE and deadline is in past) | |
b0d623f7 | 1183 | * |
5ba3f43e A |
1184 | * Returns: |
1185 | * EINVAL Invalid user data parameters | |
b0d623f7 | 1186 | * |
5ba3f43e | 1187 | * Called with timer filter lock held. |
91447636 A |
1188 | */ |
1189 | static int | |
b0d623f7 | 1190 | filt_timervalidate(struct knote *kn) |
91447636 | 1191 | { |
5ba3f43e A |
1192 | /* |
1193 | * There are 4 knobs that need to be chosen for a timer registration: | |
1194 | * | |
1195 | * A) Units of time (what is the time duration of the specified number) | |
1196 | * Absolute and interval take: | |
1197 | * NOTE_SECONDS, NOTE_USECONDS, NOTE_NSECONDS, NOTE_MACHTIME | |
1198 | * Defaults to milliseconds if not specified | |
1199 | * | |
1200 | * B) Clock epoch (what is the zero point of the specified number) | |
1201 | * For interval, there is none | |
1202 | * For absolute, defaults to the gettimeofday/calendar epoch | |
1203 | * With NOTE_MACHTIME, uses mach_absolute_time() | |
1204 | * With NOTE_MACHTIME and NOTE_MACH_CONTINUOUS_TIME, uses mach_continuous_time() | |
1205 | * | |
1206 | * C) The knote's behavior on delivery | |
1207 | * Interval timer causes the knote to arm for the next interval unless one-shot is set | |
1208 | * Absolute is a forced one-shot timer which deletes on delivery | |
1209 | * TODO: Add a way for absolute to be not forced one-shot | |
1210 | * | |
1211 | * D) Whether the time duration is relative to now or absolute | |
1212 | * Interval fires at now + duration when it is set up | |
1213 | * Absolute fires at now + difference between now walltime and passed in walltime | |
1214 | * With NOTE_MACHTIME it fires at an absolute MAT or MCT. | |
1215 | * | |
1216 | * E) Whether the timer continues to tick across sleep | |
1217 | * By default all three do not. | |
1218 | * For interval and absolute, NOTE_MACH_CONTINUOUS_TIME causes them to tick across sleep | |
1219 | * With NOTE_ABSOLUTE | NOTE_MACHTIME | NOTE_MACH_CONTINUOUS_TIME: | |
1220 | * expires when mach_continuous_time() is > the passed in value. | |
1221 | */ | |
1222 | ||
1223 | filt_timer_assert_locked(); | |
1224 | ||
91447636 | 1225 | uint64_t multiplier; |
91447636 | 1226 | |
5ba3f43e A |
1227 | boolean_t use_abstime = FALSE; |
1228 | ||
1229 | switch (kn->kn_sfflags & (NOTE_SECONDS|NOTE_USECONDS|NOTE_NSECONDS|NOTE_MACHTIME)) { | |
91447636 A |
1230 | case NOTE_SECONDS: |
1231 | multiplier = NSEC_PER_SEC; | |
1232 | break; | |
1233 | case NOTE_USECONDS: | |
1234 | multiplier = NSEC_PER_USEC; | |
1235 | break; | |
1236 | case NOTE_NSECONDS: | |
1237 | multiplier = 1; | |
1238 | break; | |
5ba3f43e A |
1239 | case NOTE_MACHTIME: |
1240 | multiplier = 0; | |
1241 | use_abstime = TRUE; | |
1242 | break; | |
91447636 A |
1243 | case 0: /* milliseconds (default) */ |
1244 | multiplier = NSEC_PER_SEC / 1000; | |
1245 | break; | |
1246 | default: | |
39236c6e A |
1247 | return (EINVAL); |
1248 | } | |
1249 | ||
5ba3f43e A |
1250 | /* transform the leeway in kn_ext[1] to same time scale */ |
1251 | if (kn->kn_sfflags & NOTE_LEEWAY) { | |
1252 | uint64_t leeway_abs; | |
1253 | ||
1254 | if (use_abstime) { | |
1255 | leeway_abs = (uint64_t)kn->kn_ext[1]; | |
1256 | } else { | |
1257 | uint64_t leeway_ns; | |
1258 | if (os_mul_overflow((uint64_t)kn->kn_ext[1], multiplier, &leeway_ns)) | |
1259 | return (ERANGE); | |
b0d623f7 | 1260 | |
5ba3f43e A |
1261 | nanoseconds_to_absolutetime(leeway_ns, &leeway_abs); |
1262 | } | |
b0d623f7 | 1263 | |
5ba3f43e A |
1264 | kn->kn_ext[1] = leeway_abs; |
1265 | } | |
b0d623f7 A |
1266 | |
1267 | if (kn->kn_sfflags & NOTE_ABSOLUTE) { | |
5ba3f43e A |
1268 | uint64_t deadline_abs; |
1269 | ||
1270 | if (use_abstime) { | |
1271 | deadline_abs = (uint64_t)kn->kn_sdata; | |
1272 | } else { | |
1273 | uint64_t calendar_deadline_ns; | |
1274 | ||
1275 | if (os_mul_overflow((uint64_t)kn->kn_sdata, multiplier, &calendar_deadline_ns)) | |
1276 | return (ERANGE); | |
1277 | ||
1278 | /* calendar_deadline_ns is in nanoseconds since the epoch */ | |
1279 | ||
1280 | clock_sec_t seconds; | |
1281 | clock_nsec_t nanoseconds; | |
1282 | ||
1283 | /* | |
1284 | * Note that the conversion through wall-time is only done once. | |
1285 | * | |
1286 | * If the relationship between MAT and gettimeofday changes, | |
1287 | * the underlying timer does not update. | |
1288 | * | |
1289 | * TODO: build a wall-time denominated timer_call queue | |
1290 | * and a flag to request DTRTing with wall-time timers | |
1291 | */ | |
1292 | clock_get_calendar_nanotime(&seconds, &nanoseconds); | |
1293 | ||
1294 | uint64_t calendar_now_ns = (uint64_t)seconds * NSEC_PER_SEC + nanoseconds; | |
91447636 | 1295 | |
5ba3f43e A |
1296 | /* if deadline is in the future */ |
1297 | if (calendar_now_ns < calendar_deadline_ns) { | |
1298 | uint64_t interval_ns = calendar_deadline_ns - calendar_now_ns; | |
1299 | uint64_t interval_abs; | |
b0d623f7 | 1300 | |
5ba3f43e A |
1301 | nanoseconds_to_absolutetime(interval_ns, &interval_abs); |
1302 | ||
1303 | /* | |
1304 | * Note that the NOTE_MACH_CONTINUOUS_TIME flag here only | |
1305 | * causes the timer to keep ticking across sleep, but | |
1306 | * it does not change the calendar timebase. | |
1307 | */ | |
39037602 | 1308 | |
5ba3f43e A |
1309 | if (kn->kn_sfflags & NOTE_MACH_CONTINUOUS_TIME) |
1310 | clock_continuoustime_interval_to_deadline(interval_abs, | |
1311 | &deadline_abs); | |
1312 | else | |
1313 | clock_absolutetime_interval_to_deadline(interval_abs, | |
1314 | &deadline_abs); | |
39037602 | 1315 | } else { |
5ba3f43e | 1316 | deadline_abs = 0; /* cause immediate expiration */ |
39037602 | 1317 | } |
91447636 | 1318 | } |
5ba3f43e A |
1319 | |
1320 | kn->kn_ext[0] = deadline_abs; | |
1321 | kn->kn_sdata = 0; /* NOTE_ABSOLUTE is non-repeating */ | |
1322 | } else if (kn->kn_sdata < 0) { | |
1323 | /* | |
1324 | * Negative interval timers fire immediately, once. | |
1325 | * | |
1326 | * Ideally a negative interval would be an error, but certain clients | |
1327 | * pass negative values on accident, and expect an event back. | |
1328 | * | |
1329 | * In the old implementation the timer would repeat with no delay | |
1330 | * N times until mach_absolute_time() + (N * interval) underflowed, | |
1331 | * then it would wait ~forever by accidentally arming a timer for the far future. | |
1332 | * | |
1333 | * We now skip the power-wasting hot spin phase and go straight to the idle phase. | |
1334 | */ | |
1335 | ||
1336 | kn->kn_sdata = 0; /* non-repeating */ | |
1337 | kn->kn_ext[0] = 0; /* expire immediately */ | |
b0d623f7 | 1338 | } else { |
5ba3f43e A |
1339 | uint64_t interval_abs = 0; |
1340 | ||
1341 | if (use_abstime) { | |
1342 | interval_abs = (uint64_t)kn->kn_sdata; | |
1343 | } else { | |
1344 | uint64_t interval_ns; | |
1345 | if (os_mul_overflow((uint64_t)kn->kn_sdata, multiplier, &interval_ns)) | |
1346 | return (ERANGE); | |
1347 | ||
1348 | nanoseconds_to_absolutetime(interval_ns, &interval_abs); | |
1349 | } | |
1350 | ||
1351 | uint64_t deadline = 0; | |
1352 | ||
1353 | if (kn->kn_sfflags & NOTE_MACH_CONTINUOUS_TIME) | |
1354 | clock_continuoustime_interval_to_deadline(interval_abs, &deadline); | |
1355 | else | |
1356 | clock_absolutetime_interval_to_deadline(interval_abs, &deadline); | |
1357 | ||
1358 | kn->kn_sdata = interval_abs; /* default to a repeating timer */ | |
1359 | kn->kn_ext[0] = deadline; | |
b0d623f7 A |
1360 | } |
1361 | ||
39236c6e | 1362 | return (0); |
91447636 A |
1363 | } |
1364 | ||
39037602 | 1365 | |
b0d623f7 | 1366 | |
b0d623f7 | 1367 | |
39236c6e | 1368 | /* |
91447636 A |
1369 | * filt_timerexpire - the timer callout routine |
1370 | * | |
39236c6e A |
1371 | * Just propagate the timer event into the knote |
1372 | * filter routine (by going through the knote | |
1373 | * synchronization point). Pass a hint to | |
1374 | * indicate this is a real event, not just a | |
1375 | * query from above. | |
91447636 | 1376 | */ |
55e303ae | 1377 | static void |
91447636 | 1378 | filt_timerexpire(void *knx, __unused void *spare) |
55e303ae | 1379 | { |
91447636 | 1380 | struct klist timer_list; |
55e303ae | 1381 | struct knote *kn = knx; |
91447636 | 1382 | |
b0d623f7 A |
1383 | filt_timerlock(); |
1384 | ||
1385 | kn->kn_hookid &= ~TIMER_RUNNING; | |
1386 | ||
91447636 A |
1387 | /* no "object" for timers, so fake a list */ |
1388 | SLIST_INIT(&timer_list); | |
39236c6e | 1389 | SLIST_INSERT_HEAD(&timer_list, kn, kn_selnext); |
5ba3f43e | 1390 | |
91447636 | 1391 | KNOTE(&timer_list, 1); |
b0d623f7 A |
1392 | |
1393 | /* if someone is waiting for timer to pop */ | |
1394 | if (kn->kn_hookid & TIMER_CANCELWAIT) { | |
39037602 A |
1395 | struct kqueue *kq = knote_get_kq(kn); |
1396 | waitq_wakeup64_all((struct waitq *)&kq->kq_wqs, | |
3e170ce0 A |
1397 | CAST_EVENT64_T(&kn->kn_hook), |
1398 | THREAD_AWAKENED, | |
1399 | WAITQ_ALL_PRIORITIES); | |
5ba3f43e A |
1400 | |
1401 | kn->kn_hookid &= ~TIMER_CANCELWAIT; | |
b0d623f7 A |
1402 | } |
1403 | ||
1404 | filt_timerunlock(); | |
1405 | } | |
1406 | ||
1407 | /* | |
1408 | * Cancel a running timer (or wait for the pop). | |
1409 | * Timer filter lock is held. | |
5ba3f43e | 1410 | * May drop and retake the timer filter lock. |
b0d623f7 A |
1411 | */ |
1412 | static void | |
1413 | filt_timercancel(struct knote *kn) | |
1414 | { | |
5ba3f43e A |
1415 | filt_timer_assert_locked(); |
1416 | ||
1417 | assert((kn->kn_hookid & TIMER_CANCELWAIT) == 0); | |
1418 | ||
1419 | /* if no timer, then we're good */ | |
1420 | if ((kn->kn_hookid & TIMER_RUNNING) == 0) | |
1421 | return; | |
1422 | ||
1423 | thread_call_t callout = (thread_call_t)kn->kn_hook; | |
1424 | ||
1425 | /* cancel the callout if we can */ | |
1426 | if (thread_call_cancel(callout)) { | |
1427 | kn->kn_hookid &= ~TIMER_RUNNING; | |
1428 | return; | |
b0d623f7 | 1429 | } |
5ba3f43e A |
1430 | |
1431 | /* cancel failed, we have to wait for the in-flight expire routine */ | |
1432 | ||
1433 | kn->kn_hookid |= TIMER_CANCELWAIT; | |
1434 | ||
1435 | struct kqueue *kq = knote_get_kq(kn); | |
1436 | ||
1437 | waitq_assert_wait64((struct waitq *)&kq->kq_wqs, | |
1438 | CAST_EVENT64_T(&kn->kn_hook), | |
1439 | THREAD_UNINT, TIMEOUT_WAIT_FOREVER); | |
1440 | ||
1441 | filt_timerunlock(); | |
1442 | thread_block(THREAD_CONTINUE_NULL); | |
1443 | filt_timerlock(); | |
1444 | ||
1445 | assert((kn->kn_hookid & TIMER_CANCELWAIT) == 0); | |
1446 | assert((kn->kn_hookid & TIMER_RUNNING) == 0); | |
1447 | } | |
1448 | ||
1449 | static void | |
1450 | filt_timerarm(struct knote *kn) | |
1451 | { | |
1452 | filt_timer_assert_locked(); | |
1453 | ||
1454 | assert((kn->kn_hookid & TIMER_RUNNING) == 0); | |
1455 | ||
1456 | thread_call_t callout = (thread_call_t)kn->kn_hook; | |
1457 | ||
1458 | uint64_t deadline = kn->kn_ext[0]; | |
1459 | uint64_t leeway = kn->kn_ext[1]; | |
1460 | ||
1461 | int filter_flags = kn->kn_sfflags; | |
1462 | unsigned int timer_flags = 0; | |
1463 | ||
1464 | if (filter_flags & NOTE_CRITICAL) | |
1465 | timer_flags |= THREAD_CALL_DELAY_USER_CRITICAL; | |
1466 | else if (filter_flags & NOTE_BACKGROUND) | |
1467 | timer_flags |= THREAD_CALL_DELAY_USER_BACKGROUND; | |
1468 | else | |
1469 | timer_flags |= THREAD_CALL_DELAY_USER_NORMAL; | |
1470 | ||
1471 | if (filter_flags & NOTE_LEEWAY) | |
1472 | timer_flags |= THREAD_CALL_DELAY_LEEWAY; | |
1473 | ||
1474 | if (filter_flags & NOTE_MACH_CONTINUOUS_TIME) | |
1475 | timer_flags |= THREAD_CALL_CONTINUOUS; | |
1476 | ||
1477 | thread_call_enter_delayed_with_leeway(callout, NULL, | |
1478 | deadline, leeway, | |
1479 | timer_flags); | |
1480 | ||
1481 | kn->kn_hookid |= TIMER_RUNNING; | |
1482 | } | |
1483 | ||
1484 | /* | |
1485 | * Does this knote need a timer armed for it, or should it be ready immediately? | |
1486 | */ | |
1487 | static boolean_t | |
1488 | filt_timer_is_ready(struct knote *kn) | |
1489 | { | |
1490 | uint64_t now; | |
1491 | ||
1492 | if (kn->kn_sfflags & NOTE_MACH_CONTINUOUS_TIME) | |
1493 | now = mach_continuous_time(); | |
1494 | else | |
1495 | now = mach_absolute_time(); | |
1496 | ||
1497 | uint64_t deadline = kn->kn_ext[0]; | |
1498 | ||
1499 | if (deadline < now) | |
1500 | return TRUE; | |
1501 | else | |
1502 | return FALSE; | |
55e303ae A |
1503 | } |
1504 | ||
1505 | /* | |
b0d623f7 | 1506 | * Allocate a thread call for the knote's lifetime, and kick off the timer. |
39236c6e | 1507 | */ |
55e303ae | 1508 | static int |
5ba3f43e | 1509 | filt_timerattach(struct knote *kn, __unused struct kevent_internal_s *kev) |
55e303ae | 1510 | { |
91447636 | 1511 | thread_call_t callout; |
91447636 | 1512 | int error; |
55e303ae | 1513 | |
5ba3f43e A |
1514 | callout = thread_call_allocate_with_options(filt_timerexpire, |
1515 | (thread_call_param_t)kn, THREAD_CALL_PRIORITY_HIGH, | |
1516 | THREAD_CALL_OPTIONS_ONCE); | |
1517 | ||
39037602 A |
1518 | if (NULL == callout) { |
1519 | kn->kn_flags = EV_ERROR; | |
1520 | kn->kn_data = ENOMEM; | |
1521 | return 0; | |
1522 | } | |
55e303ae | 1523 | |
b0d623f7 | 1524 | filt_timerlock(); |
5ba3f43e A |
1525 | |
1526 | if ((error = filt_timervalidate(kn)) != 0) { | |
39037602 | 1527 | kn->kn_flags = EV_ERROR; |
5ba3f43e A |
1528 | kn->kn_data = error; |
1529 | filt_timerunlock(); | |
1530 | ||
1531 | __assert_only boolean_t freed = thread_call_free(callout); | |
1532 | assert(freed); | |
39037602 | 1533 | return 0; |
91447636 | 1534 | } |
55e303ae | 1535 | |
b0d623f7 A |
1536 | kn->kn_hook = (void*)callout; |
1537 | kn->kn_hookid = 0; | |
5ba3f43e | 1538 | kn->kn_flags |= EV_CLEAR; |
55e303ae | 1539 | |
5ba3f43e | 1540 | /* NOTE_ABSOLUTE implies EV_ONESHOT */ |
91447636 | 1541 | if (kn->kn_sfflags & NOTE_ABSOLUTE) |
39236c6e | 1542 | kn->kn_flags |= EV_ONESHOT; |
91447636 | 1543 | |
5ba3f43e | 1544 | boolean_t timer_ready = FALSE; |
39236c6e | 1545 | |
5ba3f43e A |
1546 | if ((timer_ready = filt_timer_is_ready(kn))) { |
1547 | /* cause immediate expiration */ | |
b0d623f7 | 1548 | kn->kn_data = 1; |
5ba3f43e A |
1549 | } else { |
1550 | filt_timerarm(kn); | |
91447636 | 1551 | } |
b0d623f7 | 1552 | |
91447636 | 1553 | filt_timerunlock(); |
39037602 | 1554 | |
5ba3f43e | 1555 | return timer_ready; |
55e303ae A |
1556 | } |
1557 | ||
b0d623f7 A |
1558 | /* |
1559 | * Shut down the timer if it's running, and free the callout. | |
1560 | */ | |
55e303ae A |
1561 | static void |
1562 | filt_timerdetach(struct knote *kn) | |
1563 | { | |
91447636 A |
1564 | thread_call_t callout; |
1565 | ||
1566 | filt_timerlock(); | |
91447636 | 1567 | |
b0d623f7 A |
1568 | callout = (thread_call_t)kn->kn_hook; |
1569 | filt_timercancel(kn); | |
39236c6e A |
1570 | |
1571 | filt_timerunlock(); | |
b0d623f7 | 1572 | |
5ba3f43e A |
1573 | __assert_only boolean_t freed = thread_call_free(callout); |
1574 | assert(freed); | |
b0d623f7 A |
1575 | } |
1576 | ||
b0d623f7 | 1577 | /* |
5ba3f43e | 1578 | * filt_timerevent - post events to a timer knote |
b0d623f7 | 1579 | * |
5ba3f43e A |
1580 | * Called in the context of filt_timerexpire with |
1581 | * the filt_timerlock held | |
b0d623f7 | 1582 | */ |
39037602 | 1583 | static int |
5ba3f43e | 1584 | filt_timerevent(struct knote *kn, __unused long hint) |
b0d623f7 | 1585 | { |
5ba3f43e | 1586 | filt_timer_assert_locked(); |
39236c6e | 1587 | |
5ba3f43e | 1588 | kn->kn_data = 1; |
39037602 A |
1589 | return (1); |
1590 | } | |
91447636 | 1591 | |
39037602 A |
1592 | /* |
1593 | * filt_timertouch - update timer knote with new user input | |
1594 | * | |
1595 | * Cancel and restart the timer based on new user data. When | |
1596 | * the user picks up a knote, clear the count of how many timer | |
1597 | * pops have gone off (in kn_data). | |
1598 | */ | |
1599 | static int | |
1600 | filt_timertouch( | |
1601 | struct knote *kn, | |
1602 | struct kevent_internal_s *kev) | |
1603 | { | |
1604 | int error; | |
39037602 A |
1605 | |
1606 | filt_timerlock(); | |
1607 | ||
5ba3f43e A |
1608 | /* |
1609 | * cancel current call - drops and retakes lock | |
1610 | * TODO: not safe against concurrent touches? | |
1611 | */ | |
39037602 A |
1612 | filt_timercancel(kn); |
1613 | ||
5ba3f43e A |
1614 | /* clear if the timer had previously fired, the user no longer wants to see it */ |
1615 | kn->kn_data = 0; | |
1616 | ||
39037602 A |
1617 | /* capture the new values used to compute deadline */ |
1618 | kn->kn_sdata = kev->data; | |
1619 | kn->kn_sfflags = kev->fflags; | |
1620 | kn->kn_ext[0] = kev->ext[0]; | |
1621 | kn->kn_ext[1] = kev->ext[1]; | |
1622 | ||
1623 | if ((kn->kn_status & KN_UDATA_SPECIFIC) == 0) | |
1624 | kn->kn_udata = kev->udata; | |
1625 | ||
1626 | /* recalculate deadline */ | |
1627 | error = filt_timervalidate(kn); | |
1628 | if (error) { | |
1629 | /* no way to report error, so mark it in the knote */ | |
39037602 A |
1630 | kn->kn_flags |= EV_ERROR; |
1631 | kn->kn_data = error; | |
5ba3f43e | 1632 | filt_timerunlock(); |
39037602 A |
1633 | return 1; |
1634 | } | |
1635 | ||
5ba3f43e | 1636 | boolean_t timer_ready = FALSE; |
39037602 | 1637 | |
5ba3f43e A |
1638 | if ((timer_ready = filt_timer_is_ready(kn))) { |
1639 | /* cause immediate expiration */ | |
39037602 | 1640 | kn->kn_data = 1; |
5ba3f43e A |
1641 | } else { |
1642 | filt_timerarm(kn); | |
39037602 A |
1643 | } |
1644 | ||
39037602 A |
1645 | filt_timerunlock(); |
1646 | ||
5ba3f43e | 1647 | return timer_ready; |
39037602 A |
1648 | } |
1649 | ||
1650 | /* | |
1651 | * filt_timerprocess - query state of knote and snapshot event data | |
1652 | * | |
1653 | * Determine if the timer has fired in the past, snapshot the state | |
1654 | * of the kevent for returning to user-space, and clear pending event | |
1655 | * counters for the next time. | |
1656 | */ | |
1657 | static int | |
1658 | filt_timerprocess( | |
1659 | struct knote *kn, | |
1660 | __unused struct filt_process_s *data, | |
1661 | struct kevent_internal_s *kev) | |
1662 | { | |
1663 | filt_timerlock(); | |
1664 | ||
5ba3f43e A |
1665 | if (kn->kn_data == 0 || (kn->kn_hookid & TIMER_CANCELWAIT)) { |
1666 | /* | |
1667 | * kn_data = 0: | |
1668 | * The timer hasn't yet fired, so there's nothing to deliver | |
1669 | * TIMER_CANCELWAIT: | |
1670 | * touch is in the middle of canceling the timer, | |
1671 | * so don't deliver or re-arm anything | |
1672 | * | |
1673 | * This can happen if a touch resets a timer that had fired | |
1674 | * without being processed | |
1675 | */ | |
39037602 A |
1676 | filt_timerunlock(); |
1677 | return 0; | |
b0d623f7 | 1678 | } |
91447636 | 1679 | |
5ba3f43e A |
1680 | if (kn->kn_sdata != 0 && ((kn->kn_flags & EV_ERROR) == 0)) { |
1681 | /* | |
1682 | * This is a 'repeating' timer, so we have to emit | |
1683 | * how many intervals expired between the arm | |
1684 | * and the process. | |
1685 | * | |
1686 | * A very strange style of interface, because | |
1687 | * this could easily be done in the client... | |
1688 | */ | |
1689 | ||
1690 | /* The timer better have had expired... */ | |
1691 | assert((kn->kn_hookid & TIMER_RUNNING) == 0); | |
1692 | ||
1693 | uint64_t now; | |
1694 | ||
1695 | if (kn->kn_sfflags & NOTE_MACH_CONTINUOUS_TIME) | |
1696 | now = mach_continuous_time(); | |
1697 | else | |
1698 | now = mach_absolute_time(); | |
1699 | ||
1700 | uint64_t first_deadline = kn->kn_ext[0]; | |
1701 | uint64_t interval_abs = kn->kn_sdata; | |
1702 | uint64_t orig_arm_time = first_deadline - interval_abs; | |
1703 | ||
1704 | assert(now > orig_arm_time); | |
1705 | assert(now > first_deadline); | |
1706 | ||
1707 | uint64_t elapsed = now - orig_arm_time; | |
1708 | ||
1709 | uint64_t num_fired = elapsed / interval_abs; | |
1710 | ||
1711 | /* | |
1712 | * To reach this code, we must have seen the timer pop | |
1713 | * and be in repeating mode, so therefore it must have been | |
1714 | * more than 'interval' time since the attach or last | |
1715 | * successful touch. | |
1716 | * | |
1717 | * An unsuccessful touch would: | |
1718 | * disarm the timer | |
1719 | * clear kn_data | |
1720 | * clear kn_sdata | |
1721 | * set EV_ERROR | |
1722 | * all of which will prevent this code from running. | |
1723 | */ | |
1724 | assert(num_fired > 0); | |
1725 | ||
1726 | /* report how many intervals have elapsed to the user */ | |
1727 | kn->kn_data = (int64_t) num_fired; | |
1728 | ||
1729 | /* We only need to re-arm the timer if it's not about to be destroyed */ | |
1730 | if ((kn->kn_flags & EV_ONESHOT) == 0) { | |
1731 | /* fire at the end of the next interval */ | |
1732 | uint64_t new_deadline = first_deadline + num_fired * interval_abs; | |
1733 | ||
1734 | assert(new_deadline > now); | |
1735 | ||
1736 | kn->kn_ext[0] = new_deadline; | |
1737 | ||
1738 | filt_timerarm(kn); | |
1739 | } | |
1740 | } | |
1741 | ||
39037602 A |
1742 | /* |
1743 | * Copy out the interesting kevent state, | |
1744 | * but don't leak out the raw time calculations. | |
5ba3f43e A |
1745 | * |
1746 | * TODO: potential enhancements - tell the user about: | |
1747 | * - deadline to which this timer thought it was expiring | |
1748 | * - return kn_sfflags in the fflags field so the client can know | |
1749 | * under what flags the timer fired | |
39037602 A |
1750 | */ |
1751 | *kev = kn->kn_kevent; | |
1752 | kev->ext[0] = 0; | |
1753 | /* kev->ext[1] = 0; JMM - shouldn't we hide this too? */ | |
1754 | ||
5ba3f43e | 1755 | /* we have delivered the event, reset the timer pop count */ |
39037602 | 1756 | kn->kn_data = 0; |
39037602 | 1757 | |
91447636 | 1758 | filt_timerunlock(); |
39037602 | 1759 | return 1; |
91447636 A |
1760 | } |
1761 | ||
5ba3f43e A |
1762 | SECURITY_READ_ONLY_EARLY(static struct filterops) timer_filtops = { |
1763 | .f_attach = filt_timerattach, | |
1764 | .f_detach = filt_timerdetach, | |
1765 | .f_event = filt_timerevent, | |
1766 | .f_touch = filt_timertouch, | |
1767 | .f_process = filt_timerprocess, | |
1768 | }; | |
1769 | ||
1770 | ||
1771 | #pragma mark EVFILT_USER | |
91447636 | 1772 | |
55e303ae | 1773 | |
39037602 A |
1774 | static void |
1775 | filt_userlock(void) | |
1776 | { | |
1777 | lck_spin_lock(&_filt_userlock); | |
1778 | } | |
1779 | ||
1780 | static void | |
1781 | filt_userunlock(void) | |
1782 | { | |
1783 | lck_spin_unlock(&_filt_userlock); | |
1784 | } | |
1785 | ||
b0d623f7 | 1786 | static int |
5ba3f43e | 1787 | filt_userattach(struct knote *kn, __unused struct kevent_internal_s *kev) |
b0d623f7 | 1788 | { |
39236c6e | 1789 | /* EVFILT_USER knotes are not attached to anything in the kernel */ |
39037602 | 1790 | /* Cant discover this knote until after attach - so no lock needed */ |
39236c6e | 1791 | kn->kn_hook = NULL; |
5ba3f43e | 1792 | if (kn->kn_sfflags & NOTE_TRIGGER) { |
b0d623f7 A |
1793 | kn->kn_hookid = 1; |
1794 | } else { | |
1795 | kn->kn_hookid = 0; | |
1796 | } | |
39037602 | 1797 | return (kn->kn_hookid); |
b0d623f7 A |
1798 | } |
1799 | ||
1800 | static void | |
1801 | filt_userdetach(__unused struct knote *kn) | |
1802 | { | |
39236c6e | 1803 | /* EVFILT_USER knotes are not attached to anything in the kernel */ |
b0d623f7 A |
1804 | } |
1805 | ||
1806 | static int | |
39037602 A |
1807 | filt_user( |
1808 | __unused struct knote *kn, | |
1809 | __unused long hint) | |
b0d623f7 | 1810 | { |
39037602 A |
1811 | panic("filt_user"); |
1812 | return 0; | |
b0d623f7 A |
1813 | } |
1814 | ||
39037602 A |
1815 | static int |
1816 | filt_usertouch( | |
1817 | struct knote *kn, | |
1818 | struct kevent_internal_s *kev) | |
b0d623f7 | 1819 | { |
39236c6e | 1820 | uint32_t ffctrl; |
39037602 A |
1821 | int fflags; |
1822 | int active; | |
39236c6e | 1823 | |
39037602 A |
1824 | filt_userlock(); |
1825 | ||
1826 | ffctrl = kev->fflags & NOTE_FFCTRLMASK; | |
1827 | fflags = kev->fflags & NOTE_FFLAGSMASK; | |
1828 | switch (ffctrl) { | |
1829 | case NOTE_FFNOP: | |
39236c6e | 1830 | break; |
39037602 A |
1831 | case NOTE_FFAND: |
1832 | kn->kn_sfflags &= fflags; | |
39236c6e | 1833 | break; |
39037602 A |
1834 | case NOTE_FFOR: |
1835 | kn->kn_sfflags |= fflags; | |
1836 | break; | |
1837 | case NOTE_FFCOPY: | |
1838 | kn->kn_sfflags = fflags; | |
39236c6e A |
1839 | break; |
1840 | } | |
39037602 A |
1841 | kn->kn_sdata = kev->data; |
1842 | ||
1843 | if ((kn->kn_status & KN_UDATA_SPECIFIC) == 0) | |
1844 | kn->kn_udata = kev->udata; | |
1845 | ||
1846 | if (kev->fflags & NOTE_TRIGGER) { | |
1847 | kn->kn_hookid = 1; | |
1848 | } | |
1849 | active = kn->kn_hookid; | |
1850 | ||
1851 | filt_userunlock(); | |
1852 | ||
1853 | return (active); | |
1854 | } | |
1855 | ||
1856 | static int | |
1857 | filt_userprocess( | |
1858 | struct knote *kn, | |
1859 | __unused struct filt_process_s *data, | |
1860 | struct kevent_internal_s *kev) | |
1861 | { | |
1862 | filt_userlock(); | |
1863 | ||
1864 | if (kn->kn_hookid == 0) { | |
1865 | filt_userunlock(); | |
1866 | return 0; | |
1867 | } | |
1868 | ||
1869 | *kev = kn->kn_kevent; | |
1870 | kev->fflags = (volatile UInt32)kn->kn_sfflags; | |
1871 | kev->data = kn->kn_sdata; | |
1872 | if (kn->kn_flags & EV_CLEAR) { | |
1873 | kn->kn_hookid = 0; | |
1874 | kn->kn_data = 0; | |
1875 | kn->kn_fflags = 0; | |
1876 | } | |
1877 | filt_userunlock(); | |
1878 | ||
1879 | return 1; | |
b0d623f7 A |
1880 | } |
1881 | ||
5ba3f43e A |
1882 | #pragma mark EVFILT_WORKLOOP |
1883 | ||
1884 | #if DEBUG || DEVELOPMENT | |
55e303ae | 1885 | /* |
5ba3f43e | 1886 | * see src/queue_internal.h in libdispatch |
39236c6e | 1887 | */ |
5ba3f43e A |
1888 | #define DISPATCH_QUEUE_ENQUEUED 0x1ull |
1889 | #endif | |
1890 | ||
1891 | static inline void | |
1892 | filt_wllock(struct kqworkloop *kqwl) | |
55e303ae | 1893 | { |
5ba3f43e | 1894 | lck_mtx_lock(&kqwl->kqwl_statelock); |
55e303ae A |
1895 | } |
1896 | ||
5ba3f43e A |
1897 | static inline void |
1898 | filt_wlunlock(struct kqworkloop *kqwl) | |
91447636 | 1899 | { |
5ba3f43e A |
1900 | lck_mtx_unlock(&kqwl->kqwl_statelock); |
1901 | } | |
91447636 | 1902 | |
5ba3f43e A |
1903 | static inline void |
1904 | filt_wlheld(__assert_only struct kqworkloop *kqwl) | |
1905 | { | |
1906 | LCK_MTX_ASSERT(&kqwl->kqwl_statelock, LCK_MTX_ASSERT_OWNED); | |
1907 | } | |
39037602 | 1908 | |
5ba3f43e | 1909 | #define WL_OWNER_SUSPENDED ((thread_t)(~0ull)) /* special owner when suspended */ |
39037602 | 1910 | |
5ba3f43e A |
1911 | static inline bool |
1912 | filt_wlowner_is_valid(thread_t owner) | |
1913 | { | |
1914 | return owner != THREAD_NULL && owner != WL_OWNER_SUSPENDED; | |
1915 | } | |
39037602 | 1916 | |
5ba3f43e A |
1917 | static inline bool |
1918 | filt_wlshould_end_ownership(struct kqworkloop *kqwl, | |
1919 | struct kevent_internal_s *kev, int error) | |
1920 | { | |
1921 | thread_t owner = kqwl->kqwl_owner; | |
1922 | return (error == 0 || error == ESTALE) && | |
1923 | (kev->fflags & NOTE_WL_END_OWNERSHIP) && | |
1924 | (owner == current_thread() || owner == WL_OWNER_SUSPENDED); | |
1925 | } | |
39037602 | 1926 | |
5ba3f43e A |
1927 | static inline bool |
1928 | filt_wlshould_update_ownership(struct kevent_internal_s *kev, int error) | |
1929 | { | |
1930 | return error == 0 && (kev->fflags & NOTE_WL_DISCOVER_OWNER) && | |
1931 | kev->ext[EV_EXTIDX_WL_ADDR]; | |
1932 | } | |
39037602 | 1933 | |
5ba3f43e A |
1934 | static inline bool |
1935 | filt_wlshould_set_async_qos(struct kevent_internal_s *kev, int error, | |
1936 | kq_index_t async_qos) | |
1937 | { | |
1938 | if (error != 0) { | |
1939 | return false; | |
1940 | } | |
1941 | if (async_qos != THREAD_QOS_UNSPECIFIED) { | |
1942 | return true; | |
1943 | } | |
1944 | if ((kev->fflags & NOTE_WL_THREAD_REQUEST) && (kev->flags & EV_DELETE)) { | |
1945 | /* see filt_wlprocess() */ | |
1946 | return true; | |
1947 | } | |
1948 | return false; | |
1949 | } | |
39037602 | 1950 | |
5ba3f43e A |
1951 | __result_use_check |
1952 | static int | |
1953 | filt_wlupdateowner(struct kqworkloop *kqwl, struct kevent_internal_s *kev, | |
1954 | int error, kq_index_t async_qos) | |
1955 | { | |
1956 | struct kqrequest *kqr = &kqwl->kqwl_request; | |
1957 | thread_t cur_owner, new_owner, extra_thread_ref = THREAD_NULL; | |
1958 | kq_index_t cur_override = THREAD_QOS_UNSPECIFIED; | |
1959 | kq_index_t old_owner_override = THREAD_QOS_UNSPECIFIED; | |
1960 | boolean_t ipc_override_is_sync = false; | |
1961 | boolean_t old_owner_override_is_sync = false; | |
1962 | int action = KQWL_UTQ_NONE; | |
39037602 | 1963 | |
5ba3f43e | 1964 | filt_wlheld(kqwl); |
91447636 | 1965 | |
5ba3f43e A |
1966 | /* |
1967 | * The owner is only changed under both the filt_wllock and the | |
1968 | * kqwl_req_lock. Looking at it with either one held is fine. | |
1969 | */ | |
1970 | cur_owner = kqwl->kqwl_owner; | |
1971 | if (filt_wlshould_end_ownership(kqwl, kev, error)) { | |
1972 | new_owner = THREAD_NULL; | |
1973 | } else if (filt_wlshould_update_ownership(kev, error)) { | |
1974 | /* | |
1975 | * Decipher the owner port name, and translate accordingly. | |
1976 | * The low 2 bits were borrowed for other flags, so mask them off. | |
1977 | */ | |
1978 | uint64_t udata = kev->ext[EV_EXTIDX_WL_VALUE]; | |
1979 | mach_port_name_t new_owner_name = (mach_port_name_t)udata & ~0x3; | |
1980 | if (new_owner_name != MACH_PORT_NULL) { | |
1981 | new_owner_name = ipc_entry_name_mask(new_owner_name); | |
1982 | } | |
39037602 | 1983 | |
5ba3f43e A |
1984 | if (MACH_PORT_VALID(new_owner_name)) { |
1985 | new_owner = port_name_to_thread(new_owner_name); | |
1986 | if (new_owner == THREAD_NULL) | |
1987 | return EOWNERDEAD; | |
1988 | extra_thread_ref = new_owner; | |
1989 | } else if (new_owner_name == MACH_PORT_DEAD) { | |
1990 | new_owner = WL_OWNER_SUSPENDED; | |
1991 | } else { | |
1992 | /* | |
1993 | * We never want to learn a new owner that is NULL. | |
1994 | * Ownership should be ended with END_OWNERSHIP. | |
1995 | */ | |
1996 | new_owner = cur_owner; | |
1997 | } | |
1998 | } else { | |
1999 | new_owner = cur_owner; | |
91447636 A |
2000 | } |
2001 | ||
5ba3f43e A |
2002 | if (filt_wlshould_set_async_qos(kev, error, async_qos)) { |
2003 | action = KQWL_UTQ_SET_ASYNC_QOS; | |
2004 | } | |
2005 | if (cur_owner == new_owner && action == KQWL_UTQ_NONE) { | |
2006 | goto out; | |
2007 | } | |
91447636 | 2008 | |
5ba3f43e | 2009 | kqwl_req_lock(kqwl); |
3e170ce0 | 2010 | |
5ba3f43e A |
2011 | /* If already tracked as servicer, don't track as owner */ |
2012 | if ((kqr->kqr_state & KQR_BOUND) && new_owner == kqr->kqr_thread) { | |
2013 | kqwl->kqwl_owner = new_owner = THREAD_NULL; | |
2014 | } | |
3e170ce0 | 2015 | |
5ba3f43e A |
2016 | if (cur_owner != new_owner) { |
2017 | kqwl->kqwl_owner = new_owner; | |
2018 | if (new_owner == extra_thread_ref) { | |
2019 | /* we just transfered this ref to kqwl_owner */ | |
2020 | extra_thread_ref = THREAD_NULL; | |
2021 | } | |
2022 | cur_override = kqworkloop_combined_qos(kqwl, &ipc_override_is_sync); | |
2023 | old_owner_override = kqr->kqr_dsync_owner_qos; | |
2024 | old_owner_override_is_sync = kqr->kqr_owner_override_is_sync; | |
2025 | ||
2026 | if (filt_wlowner_is_valid(new_owner)) { | |
2027 | /* override it before we drop the old */ | |
2028 | if (cur_override != THREAD_QOS_UNSPECIFIED) { | |
2029 | thread_add_ipc_override(new_owner, cur_override); | |
2030 | } | |
2031 | if (ipc_override_is_sync) { | |
2032 | thread_add_sync_ipc_override(new_owner); | |
2033 | } | |
2034 | /* Update the kqr to indicate that owner has sync ipc override */ | |
2035 | kqr->kqr_dsync_owner_qos = cur_override; | |
2036 | kqr->kqr_owner_override_is_sync = ipc_override_is_sync; | |
2037 | thread_starts_owning_workloop(new_owner); | |
2038 | if ((kqr->kqr_state & (KQR_THREQUESTED | KQR_BOUND)) == KQR_THREQUESTED) { | |
2039 | if (action == KQWL_UTQ_NONE) { | |
2040 | action = KQWL_UTQ_REDRIVE_EVENTS; | |
91447636 | 2041 | } |
91447636 | 2042 | } |
5ba3f43e A |
2043 | } else if (new_owner == THREAD_NULL) { |
2044 | kqr->kqr_dsync_owner_qos = THREAD_QOS_UNSPECIFIED; | |
2045 | kqr->kqr_owner_override_is_sync = false; | |
2046 | if ((kqr->kqr_state & (KQR_THREQUESTED | KQR_WAKEUP)) == KQR_WAKEUP) { | |
2047 | if (action == KQWL_UTQ_NONE) { | |
2048 | action = KQWL_UTQ_REDRIVE_EVENTS; | |
91447636 | 2049 | } |
91447636 A |
2050 | } |
2051 | } | |
2052 | } | |
b0d623f7 | 2053 | |
5ba3f43e A |
2054 | if (action != KQWL_UTQ_NONE) { |
2055 | kqworkloop_update_threads_qos(kqwl, action, async_qos); | |
2056 | } | |
39037602 | 2057 | |
5ba3f43e | 2058 | kqwl_req_unlock(kqwl); |
39037602 | 2059 | |
5ba3f43e A |
2060 | /* Now that we are unlocked, drop the override and ref on old owner */ |
2061 | if (new_owner != cur_owner && filt_wlowner_is_valid(cur_owner)) { | |
2062 | if (old_owner_override != THREAD_QOS_UNSPECIFIED) { | |
2063 | thread_drop_ipc_override(cur_owner); | |
2064 | } | |
2065 | if (old_owner_override_is_sync) { | |
2066 | thread_drop_sync_ipc_override(cur_owner); | |
2067 | } | |
2068 | thread_ends_owning_workloop(cur_owner); | |
2069 | thread_deallocate(cur_owner); | |
2070 | } | |
39037602 | 2071 | |
5ba3f43e A |
2072 | out: |
2073 | if (extra_thread_ref) { | |
2074 | thread_deallocate(extra_thread_ref); | |
39037602 | 2075 | } |
5ba3f43e | 2076 | return error; |
91447636 A |
2077 | } |
2078 | ||
5ba3f43e A |
2079 | static int |
2080 | filt_wldebounce( | |
2081 | struct kqworkloop *kqwl, | |
2082 | struct kevent_internal_s *kev, | |
2083 | int default_result) | |
91447636 | 2084 | { |
5ba3f43e A |
2085 | user_addr_t addr = CAST_USER_ADDR_T(kev->ext[EV_EXTIDX_WL_ADDR]); |
2086 | uint64_t udata; | |
2087 | int error; | |
55e303ae | 2088 | |
5ba3f43e A |
2089 | /* we must have the workloop state mutex held */ |
2090 | filt_wlheld(kqwl); | |
91447636 | 2091 | |
5ba3f43e A |
2092 | /* Do we have a debounce address to work with? */ |
2093 | if (addr) { | |
2094 | uint64_t kdata = kev->ext[EV_EXTIDX_WL_VALUE]; | |
2095 | uint64_t mask = kev->ext[EV_EXTIDX_WL_MASK]; | |
91447636 | 2096 | |
5ba3f43e A |
2097 | error = copyin_word(addr, &udata, sizeof(udata)); |
2098 | if (error) { | |
2099 | return error; | |
2100 | } | |
91447636 | 2101 | |
5ba3f43e A |
2102 | /* update state as copied in */ |
2103 | kev->ext[EV_EXTIDX_WL_VALUE] = udata; | |
91447636 | 2104 | |
5ba3f43e A |
2105 | /* If the masked bits don't match, reject it as stale */ |
2106 | if ((udata & mask) != (kdata & mask)) { | |
2107 | return ESTALE; | |
2108 | } | |
2109 | ||
2110 | #if DEBUG || DEVELOPMENT | |
2111 | if ((kev->fflags & NOTE_WL_THREAD_REQUEST) && !(kev->flags & EV_DELETE)) { | |
5c9f4661 A |
2112 | if ((udata & DISPATCH_QUEUE_ENQUEUED) == 0 && |
2113 | (udata >> 48) != 0 && (udata >> 48) != 0xffff) { | |
5ba3f43e A |
2114 | panic("kevent: workloop %#016llx is not enqueued " |
2115 | "(kev:%p dq_state:%#016llx)", kev->udata, kev, udata); | |
2116 | } | |
2117 | } | |
2118 | #endif | |
2119 | } | |
2120 | ||
2121 | return default_result; | |
2122 | } | |
2123 | ||
2124 | /* | |
2125 | * Remembers the last updated that came in from userspace for debugging reasons. | |
2126 | * - fflags is mirrored from the userspace kevent | |
2127 | * - ext[i, i != VALUE] is mirrored from the userspace kevent | |
2128 | * - ext[VALUE] is set to what the kernel loaded atomically | |
2129 | * - data is set to the error if any | |
2130 | */ | |
2131 | static inline void | |
2132 | filt_wlremember_last_update( | |
2133 | __assert_only struct kqworkloop *kqwl, | |
2134 | struct knote *kn, | |
2135 | struct kevent_internal_s *kev, | |
2136 | int error) | |
2137 | { | |
2138 | filt_wlheld(kqwl); | |
2139 | kn->kn_fflags = kev->fflags; | |
2140 | kn->kn_data = error; | |
2141 | memcpy(kn->kn_ext, kev->ext, sizeof(kev->ext)); | |
2142 | } | |
2143 | ||
2144 | /* | |
2145 | * Return which operations on EVFILT_WORKLOOP need to be protected against | |
2146 | * knoteusewait() causing priority inversions. | |
2147 | */ | |
2148 | static bool | |
2149 | filt_wlneeds_boost(struct kevent_internal_s *kev) | |
2150 | { | |
2151 | if (kev == NULL) { | |
2152 | /* | |
2153 | * this is an f_process() usecount, and it can cause a drop to wait | |
2154 | */ | |
2155 | return true; | |
2156 | } | |
2157 | if (kev->fflags & NOTE_WL_THREAD_REQUEST) { | |
2158 | /* | |
2159 | * All operations on thread requests may starve drops or re-attach of | |
2160 | * the same knote, all of them need boosts. None of what we do under | |
2161 | * thread-request usecount holds blocks anyway. | |
2162 | */ | |
2163 | return true; | |
2164 | } | |
2165 | if (kev->fflags & NOTE_WL_SYNC_WAIT) { | |
2166 | /* | |
2167 | * this may call filt_wlwait() and we don't want to hold any boost when | |
2168 | * woken up, this would cause background threads contending on | |
2169 | * dispatch_sync() to wake up at 64 and be preempted immediately when | |
2170 | * this drops. | |
2171 | */ | |
2172 | return false; | |
2173 | } | |
2174 | ||
2175 | /* | |
2176 | * SYNC_WAIT knotes when deleted don't need to be rushed, there's no | |
2177 | * detach/reattach race with these ever. In addition to this, when the | |
2178 | * SYNC_WAIT knote is dropped, the caller is no longer receiving the | |
2179 | * workloop overrides if any, and we'd rather schedule other threads than | |
2180 | * him, he's not possibly stalling anything anymore. | |
2181 | */ | |
2182 | return (kev->flags & EV_DELETE) == 0; | |
2183 | } | |
2184 | ||
2185 | static int | |
2186 | filt_wlattach(struct knote *kn, struct kevent_internal_s *kev) | |
2187 | { | |
2188 | struct kqueue *kq = knote_get_kq(kn); | |
2189 | struct kqworkloop *kqwl = (struct kqworkloop *)kq; | |
2190 | int error = 0; | |
2191 | kq_index_t qos_index = 0; | |
2192 | ||
2193 | if ((kq->kq_state & KQ_WORKLOOP) == 0) { | |
2194 | error = ENOTSUP; | |
2195 | goto out; | |
2196 | } | |
2197 | ||
2198 | #if DEVELOPMENT || DEBUG | |
2199 | if (kev->ident == 0 && kev->udata == 0 && kev->fflags == 0) { | |
2200 | struct kqrequest *kqr = &kqwl->kqwl_request; | |
2201 | ||
2202 | kqwl_req_lock(kqwl); | |
2203 | kev->fflags = 0; | |
2204 | if (kqr->kqr_dsync_waiters) { | |
2205 | kev->fflags |= NOTE_WL_SYNC_WAIT; | |
2206 | } | |
2207 | if (kqr->kqr_qos_index) { | |
2208 | kev->fflags |= NOTE_WL_THREAD_REQUEST; | |
2209 | } | |
2210 | if (kqwl->kqwl_owner == WL_OWNER_SUSPENDED) { | |
2211 | kev->ext[0] = ~0ull; | |
2212 | } else { | |
2213 | kev->ext[0] = thread_tid(kqwl->kqwl_owner); | |
2214 | } | |
2215 | kev->ext[1] = thread_tid(kqwl->kqwl_request.kqr_thread); | |
2216 | kev->ext[2] = thread_owned_workloops_count(current_thread()); | |
2217 | kev->ext[3] = kn->kn_kevent.ext[3]; | |
2218 | kqwl_req_unlock(kqwl); | |
2219 | error = EBUSY; | |
2220 | goto out; | |
2221 | } | |
2222 | #endif | |
2223 | ||
2224 | /* Some simple validation */ | |
2225 | int command = (kn->kn_sfflags & NOTE_WL_COMMANDS_MASK); | |
2226 | switch (command) { | |
2227 | case NOTE_WL_THREAD_REQUEST: | |
2228 | if (kn->kn_id != kqwl->kqwl_dynamicid) { | |
2229 | error = EINVAL; | |
2230 | goto out; | |
2231 | } | |
2232 | qos_index = qos_index_from_qos(kn, kn->kn_qos, FALSE); | |
2233 | if (qos_index < THREAD_QOS_MAINTENANCE || | |
2234 | qos_index > THREAD_QOS_USER_INTERACTIVE) { | |
2235 | error = ERANGE; | |
2236 | goto out; | |
2237 | } | |
2238 | break; | |
2239 | case NOTE_WL_SYNC_WAIT: | |
2240 | case NOTE_WL_SYNC_WAKE: | |
2241 | if (kq->kq_state & KQ_NO_WQ_THREAD) { | |
2242 | error = ENOTSUP; | |
2243 | goto out; | |
2244 | } | |
2245 | if (kn->kn_id == kqwl->kqwl_dynamicid) { | |
2246 | error = EINVAL; | |
2247 | goto out; | |
2248 | } | |
2249 | if ((kn->kn_flags & EV_DISABLE) == 0) { | |
2250 | error = EINVAL; | |
2251 | goto out; | |
2252 | } | |
2253 | if (kn->kn_sfflags & NOTE_WL_END_OWNERSHIP) { | |
2254 | error = EINVAL; | |
2255 | goto out; | |
2256 | } | |
2257 | break; | |
2258 | default: | |
2259 | error = EINVAL; | |
2260 | goto out; | |
2261 | } | |
2262 | ||
2263 | filt_wllock(kqwl); | |
2264 | kn->kn_hook = NULL; | |
2265 | ||
2266 | if (command == NOTE_WL_THREAD_REQUEST && kqwl->kqwl_request.kqr_qos_index) { | |
2267 | /* | |
2268 | * There already is a thread request, and well, you're only allowed | |
2269 | * one per workloop, so fail the attach. | |
2270 | * | |
2271 | * Note: kqr_qos_index is always set with the wllock held, so we | |
2272 | * don't need to take the kqr lock. | |
2273 | */ | |
2274 | error = EALREADY; | |
2275 | } else { | |
2276 | /* Make sure user and kernel are in agreement on important state */ | |
2277 | error = filt_wldebounce(kqwl, kev, 0); | |
2278 | } | |
2279 | ||
2280 | error = filt_wlupdateowner(kqwl, kev, error, qos_index); | |
2281 | filt_wlunlock(kqwl); | |
2282 | out: | |
2283 | if (error) { | |
2284 | kn->kn_flags |= EV_ERROR; | |
2285 | /* If userland wants ESTALE to be hidden, fail the attach anyway */ | |
2286 | if (error == ESTALE && (kn->kn_sfflags & NOTE_WL_IGNORE_ESTALE)) { | |
2287 | error = 0; | |
2288 | } | |
2289 | kn->kn_data = error; | |
2290 | return 0; | |
2291 | } | |
2292 | ||
2293 | /* Just attaching the thread request successfully will fire it */ | |
2294 | return command == NOTE_WL_THREAD_REQUEST; | |
2295 | } | |
2296 | ||
2297 | __attribute__((noinline,not_tail_called)) | |
2298 | static int | |
2299 | filt_wlwait(struct kqworkloop *kqwl, | |
2300 | struct knote *kn, | |
2301 | struct kevent_internal_s *kev) | |
2302 | { | |
2303 | filt_wlheld(kqwl); | |
2304 | assert((kn->kn_sfflags & NOTE_WL_SYNC_WAKE) == 0); | |
2305 | ||
2306 | /* | |
2307 | * Hint to the wakeup side that this thread is waiting. Also used by | |
2308 | * stackshot for waitinfo. | |
2309 | */ | |
2310 | kn->kn_hook = current_thread(); | |
2311 | ||
2312 | thread_set_pending_block_hint(current_thread(), kThreadWaitWorkloopSyncWait); | |
2313 | ||
2314 | wait_result_t wr = assert_wait(kn, THREAD_ABORTSAFE); | |
2315 | ||
2316 | if (wr == THREAD_WAITING) { | |
2317 | kq_index_t qos_index = qos_index_from_qos(kn, kev->qos, TRUE); | |
2318 | struct kqrequest *kqr = &kqwl->kqwl_request; | |
2319 | ||
2320 | thread_t thread_to_handoff = THREAD_NULL; /* holds +1 thread ref */ | |
2321 | ||
2322 | thread_t kqwl_owner = kqwl->kqwl_owner; | |
2323 | if (filt_wlowner_is_valid(kqwl_owner)) { | |
2324 | thread_reference(kqwl_owner); | |
2325 | thread_to_handoff = kqwl_owner; | |
2326 | } | |
2327 | ||
2328 | kqwl_req_lock(kqwl); | |
2329 | ||
2330 | if (qos_index) { | |
2331 | assert(kqr->kqr_dsync_waiters < UINT16_MAX); | |
2332 | kqr->kqr_dsync_waiters++; | |
2333 | if (qos_index > kqr->kqr_dsync_waiters_qos) { | |
2334 | kqworkloop_update_threads_qos(kqwl, | |
2335 | KQWL_UTQ_SET_SYNC_WAITERS_QOS, qos_index); | |
2336 | } | |
2337 | } | |
2338 | ||
2339 | if ((kqr->kqr_state & KQR_BOUND) && thread_to_handoff == THREAD_NULL) { | |
2340 | assert(kqr->kqr_thread != THREAD_NULL); | |
2341 | thread_t servicer = kqr->kqr_thread; | |
2342 | ||
2343 | thread_reference(servicer); | |
2344 | thread_to_handoff = servicer; | |
2345 | } | |
2346 | ||
2347 | kqwl_req_unlock(kqwl); | |
2348 | ||
2349 | filt_wlunlock(kqwl); | |
2350 | ||
2351 | /* TODO: use continuation based blocking <rdar://problem/31299584> */ | |
2352 | ||
2353 | /* consume a refcount on thread_to_handoff, then thread_block() */ | |
2354 | wr = thread_handoff(thread_to_handoff); | |
2355 | thread_to_handoff = THREAD_NULL; | |
2356 | ||
2357 | filt_wllock(kqwl); | |
2358 | ||
2359 | /* clear waiting state (only one waiting thread - so no race) */ | |
2360 | assert(kn->kn_hook == current_thread()); | |
2361 | ||
2362 | if (qos_index) { | |
2363 | kqwl_req_lock(kqwl); | |
2364 | assert(kqr->kqr_dsync_waiters > 0); | |
2365 | if (--kqr->kqr_dsync_waiters == 0) { | |
2366 | assert(kqr->kqr_dsync_waiters_qos); | |
2367 | kqworkloop_update_threads_qos(kqwl, | |
2368 | KQWL_UTQ_SET_SYNC_WAITERS_QOS, 0); | |
2369 | } | |
2370 | kqwl_req_unlock(kqwl); | |
2371 | } | |
2372 | } | |
2373 | ||
2374 | kn->kn_hook = NULL; | |
2375 | ||
2376 | switch (wr) { | |
2377 | case THREAD_AWAKENED: | |
2378 | return 0; | |
2379 | case THREAD_INTERRUPTED: | |
2380 | return EINTR; | |
2381 | case THREAD_RESTART: | |
2382 | return ECANCELED; | |
2383 | default: | |
2384 | panic("filt_wlattach: unexpected wait result %d", wr); | |
2385 | return EINVAL; | |
2386 | } | |
2387 | } | |
2388 | ||
2389 | /* called in stackshot context to report the thread responsible for blocking this thread */ | |
2390 | void | |
2391 | kdp_workloop_sync_wait_find_owner(__assert_only thread_t thread, | |
2392 | event64_t event, | |
2393 | thread_waitinfo_t *waitinfo) | |
2394 | { | |
2395 | struct knote *kn = (struct knote*) event; | |
2396 | assert(kdp_is_in_zone(kn, "knote zone")); | |
2397 | ||
2398 | assert(kn->kn_hook == thread); | |
2399 | ||
2400 | struct kqueue *kq = knote_get_kq(kn); | |
2401 | assert(kdp_is_in_zone(kq, "kqueue workloop zone")); | |
2402 | assert(kq->kq_state & KQ_WORKLOOP); | |
2403 | ||
2404 | struct kqworkloop *kqwl = (struct kqworkloop *)kq; | |
2405 | struct kqrequest *kqr = &kqwl->kqwl_request; | |
2406 | ||
2407 | thread_t kqwl_owner = kqwl->kqwl_owner; | |
2408 | thread_t servicer = kqr->kqr_thread; | |
2409 | ||
2410 | if (kqwl_owner == WL_OWNER_SUSPENDED) { | |
2411 | waitinfo->owner = STACKSHOT_WAITOWNER_SUSPENDED; | |
2412 | } else if (kqwl_owner != THREAD_NULL) { | |
2413 | assert(kdp_is_in_zone(kqwl_owner, "threads")); | |
2414 | ||
2415 | waitinfo->owner = thread_tid(kqwl->kqwl_owner); | |
2416 | } else if (servicer != THREAD_NULL) { | |
2417 | assert(kdp_is_in_zone(servicer, "threads")); | |
2418 | ||
2419 | waitinfo->owner = thread_tid(servicer); | |
2420 | } else if (kqr->kqr_state & KQR_THREQUESTED) { | |
2421 | waitinfo->owner = STACKSHOT_WAITOWNER_THREQUESTED; | |
2422 | } else { | |
2423 | waitinfo->owner = 0; | |
2424 | } | |
2425 | ||
2426 | waitinfo->context = kqwl->kqwl_dynamicid; | |
2427 | ||
2428 | return; | |
2429 | } | |
2430 | ||
2431 | /* | |
2432 | * Takes kqueue locked, returns locked, may drop in the middle and/or block for a while | |
2433 | */ | |
2434 | static int | |
2435 | filt_wlpost_attach(struct knote *kn, struct kevent_internal_s *kev) | |
2436 | { | |
2437 | struct kqueue *kq = knote_get_kq(kn); | |
2438 | struct kqworkloop *kqwl = (struct kqworkloop *)kq; | |
2439 | int error = 0; | |
2440 | ||
2441 | if (kev->fflags & NOTE_WL_SYNC_WAIT) { | |
2442 | if (kqlock2knoteuse(kq, kn, KNUSE_NONE)) { | |
2443 | filt_wllock(kqwl); | |
2444 | /* if the wake has already preposted, don't wait */ | |
2445 | if ((kn->kn_sfflags & NOTE_WL_SYNC_WAKE) == 0) | |
2446 | error = filt_wlwait(kqwl, kn, kev); | |
2447 | filt_wlunlock(kqwl); | |
2448 | knoteuse2kqlock(kq, kn, KNUSE_NONE); | |
2449 | } | |
2450 | } | |
2451 | return error; | |
2452 | } | |
2453 | ||
2454 | static void | |
2455 | filt_wldetach(__assert_only struct knote *kn) | |
2456 | { | |
2457 | assert(knote_get_kq(kn)->kq_state & KQ_WORKLOOP); | |
2458 | ||
2459 | /* | |
2460 | * Thread requests have nothing to detach. | |
2461 | * Sync waiters should have been aborted out | |
2462 | * and drop their refs before we could drop/ | |
2463 | * detach their knotes. | |
2464 | */ | |
2465 | assert(kn->kn_hook == NULL); | |
2466 | } | |
2467 | ||
2468 | static int | |
2469 | filt_wlevent( | |
2470 | __unused struct knote *kn, | |
2471 | __unused long hint) | |
2472 | { | |
2473 | panic("filt_wlevent"); | |
2474 | return 0; | |
2475 | } | |
2476 | ||
2477 | static int | |
2478 | filt_wlvalidate_kev_flags(struct knote *kn, struct kevent_internal_s *kev) | |
2479 | { | |
2480 | int new_commands = kev->fflags & NOTE_WL_COMMANDS_MASK; | |
2481 | int sav_commands = kn->kn_sfflags & NOTE_WL_COMMANDS_MASK; | |
2482 | int error = 0; | |
2483 | ||
2484 | switch (new_commands) { | |
2485 | case NOTE_WL_THREAD_REQUEST: | |
2486 | /* thread requests can only update themselves */ | |
2487 | if (sav_commands != new_commands) | |
2488 | error = EINVAL; | |
2489 | break; | |
2490 | ||
2491 | case NOTE_WL_SYNC_WAIT: | |
2492 | if (kev->fflags & NOTE_WL_END_OWNERSHIP) | |
2493 | error = EINVAL; | |
2494 | /* FALLTHROUGH */ | |
2495 | case NOTE_WL_SYNC_WAKE: | |
2496 | /* waits and wakes can update themselves or their counterparts */ | |
2497 | if (!(sav_commands & (NOTE_WL_SYNC_WAIT | NOTE_WL_SYNC_WAKE))) | |
2498 | error = EINVAL; | |
2499 | if (kev->fflags & NOTE_WL_UPDATE_QOS) | |
2500 | error = EINVAL; | |
2501 | if ((kev->flags & (EV_ENABLE | EV_DELETE)) == EV_ENABLE) | |
2502 | error = EINVAL; | |
2503 | if (kev->flags & EV_DELETE) { | |
2504 | /* | |
2505 | * Really this is not supported: there is absolutely no reason | |
2506 | * whatsoever to want to fail the drop of a NOTE_WL_SYNC_WAIT knote. | |
2507 | */ | |
2508 | if (kev->ext[EV_EXTIDX_WL_ADDR] && kev->ext[EV_EXTIDX_WL_MASK]) { | |
2509 | error = EINVAL; | |
2510 | } | |
2511 | } | |
2512 | break; | |
2513 | ||
2514 | default: | |
2515 | error = EINVAL; | |
2516 | } | |
2517 | if ((kev->flags & EV_DELETE) && (kev->fflags & NOTE_WL_DISCOVER_OWNER)) { | |
2518 | error = EINVAL; | |
2519 | } | |
2520 | return error; | |
2521 | } | |
2522 | ||
2523 | static int | |
2524 | filt_wltouch( | |
2525 | struct knote *kn, | |
2526 | struct kevent_internal_s *kev) | |
2527 | { | |
2528 | struct kqueue *kq = knote_get_kq(kn); | |
2529 | int error = 0; | |
2530 | struct kqworkloop *kqwl; | |
2531 | ||
2532 | assert(kq->kq_state & KQ_WORKLOOP); | |
2533 | kqwl = (struct kqworkloop *)kq; | |
2534 | ||
2535 | error = filt_wlvalidate_kev_flags(kn, kev); | |
2536 | if (error) { | |
2537 | goto out; | |
2538 | } | |
2539 | ||
2540 | filt_wllock(kqwl); | |
2541 | ||
2542 | /* Make sure user and kernel are in agreement on important state */ | |
2543 | error = filt_wldebounce(kqwl, kev, 0); | |
2544 | if (error) { | |
2545 | error = filt_wlupdateowner(kqwl, kev, error, 0); | |
2546 | goto out_unlock; | |
2547 | } | |
2548 | ||
2549 | int new_command = kev->fflags & NOTE_WL_COMMANDS_MASK; | |
2550 | switch (new_command) { | |
2551 | case NOTE_WL_THREAD_REQUEST: | |
2552 | assert(kqwl->kqwl_request.kqr_qos_index != THREAD_QOS_UNSPECIFIED); | |
2553 | break; | |
2554 | ||
2555 | case NOTE_WL_SYNC_WAIT: | |
2556 | /* | |
2557 | * we need to allow waiting several times on the same knote because | |
2558 | * of EINTR. If it's already woken though, it won't block. | |
2559 | */ | |
2560 | break; | |
2561 | ||
2562 | case NOTE_WL_SYNC_WAKE: | |
2563 | if (kn->kn_sfflags & NOTE_WL_SYNC_WAKE) { | |
2564 | /* disallow waking the same knote twice */ | |
2565 | error = EALREADY; | |
2566 | goto out_unlock; | |
2567 | } | |
2568 | if (kn->kn_hook) { | |
2569 | thread_wakeup_thread((event_t)kn, (thread_t)kn->kn_hook); | |
2570 | } | |
2571 | break; | |
2572 | ||
2573 | default: | |
2574 | error = EINVAL; | |
2575 | goto out_unlock; | |
2576 | } | |
2577 | ||
2578 | /* | |
2579 | * Save off any additional fflags/data we just accepted | |
2580 | * But only keep the last round of "update" bits we acted on which helps | |
2581 | * debugging a lot. | |
2582 | */ | |
2583 | kn->kn_sfflags &= ~NOTE_WL_UPDATES_MASK; | |
2584 | kn->kn_sfflags |= kev->fflags; | |
2585 | kn->kn_sdata = kev->data; | |
2586 | ||
2587 | kq_index_t qos_index = THREAD_QOS_UNSPECIFIED; | |
2588 | ||
2589 | if (kev->fflags & NOTE_WL_UPDATE_QOS) { | |
2590 | qos_t qos = pthread_priority_canonicalize(kev->qos, FALSE); | |
2591 | ||
2592 | if (kn->kn_qos != qos) { | |
2593 | qos_index = qos_index_from_qos(kn, qos, FALSE); | |
2594 | if (qos_index == THREAD_QOS_UNSPECIFIED) { | |
2595 | error = ERANGE; | |
2596 | goto out_unlock; | |
2597 | } | |
2598 | kqlock(kq); | |
2599 | if (kn->kn_status & KN_QUEUED) { | |
2600 | knote_dequeue(kn); | |
2601 | knote_set_qos_index(kn, qos_index); | |
2602 | knote_enqueue(kn); | |
2603 | knote_wakeup(kn); | |
2604 | } else { | |
2605 | knote_set_qos_index(kn, qos_index); | |
2606 | } | |
2607 | kn->kn_qos = qos; | |
2608 | kqunlock(kq); | |
2609 | } | |
2610 | } | |
2611 | ||
2612 | error = filt_wlupdateowner(kqwl, kev, 0, qos_index); | |
2613 | if (error) { | |
2614 | goto out_unlock; | |
2615 | } | |
2616 | ||
2617 | if (new_command == NOTE_WL_SYNC_WAIT) { | |
2618 | /* if the wake has already preposted, don't wait */ | |
2619 | if ((kn->kn_sfflags & NOTE_WL_SYNC_WAKE) == 0) | |
2620 | error = filt_wlwait(kqwl, kn, kev); | |
2621 | } | |
2622 | ||
2623 | out_unlock: | |
2624 | filt_wlremember_last_update(kqwl, kn, kev, error); | |
2625 | filt_wlunlock(kqwl); | |
2626 | out: | |
2627 | if (error) { | |
2628 | if (error == ESTALE && (kev->fflags & NOTE_WL_IGNORE_ESTALE)) { | |
2629 | /* If userland wants ESTALE to be hidden, do not activate */ | |
2630 | return 0; | |
2631 | } | |
2632 | kev->flags |= EV_ERROR; | |
2633 | kev->data = error; | |
2634 | return 0; | |
2635 | } | |
2636 | /* Just touching the thread request successfully will fire it */ | |
2637 | return new_command == NOTE_WL_THREAD_REQUEST; | |
2638 | } | |
2639 | ||
2640 | static int | |
2641 | filt_wldrop_and_unlock( | |
2642 | struct knote *kn, | |
2643 | struct kevent_internal_s *kev) | |
2644 | { | |
2645 | struct kqueue *kq = knote_get_kq(kn); | |
2646 | struct kqworkloop *kqwl = (struct kqworkloop *)kq; | |
2647 | int error = 0, knoteuse_flags = KNUSE_NONE; | |
2648 | ||
2649 | kqlock_held(kq); | |
2650 | ||
2651 | assert(kev->flags & EV_DELETE); | |
2652 | assert(kq->kq_state & KQ_WORKLOOP); | |
2653 | ||
2654 | error = filt_wlvalidate_kev_flags(kn, kev); | |
2655 | if (error) { | |
2656 | goto out; | |
2657 | } | |
2658 | ||
2659 | if (kn->kn_sfflags & NOTE_WL_THREAD_REQUEST) { | |
2660 | knoteuse_flags |= KNUSE_BOOST; | |
2661 | } | |
2662 | ||
2663 | /* take a usecount to allow taking the filt_wllock */ | |
2664 | if (!kqlock2knoteuse(kq, kn, knoteuse_flags)) { | |
2665 | /* knote is being dropped already */ | |
2666 | error = EINPROGRESS; | |
2667 | goto out; | |
2668 | } | |
2669 | ||
2670 | filt_wllock(kqwl); | |
2671 | ||
2672 | /* | |
2673 | * Make sure user and kernel are in agreement on important state | |
2674 | * | |
2675 | * Userland will modify bits to cause this to fail for the touch / drop | |
2676 | * race case (when a drop for a thread request quiescing comes in late after | |
2677 | * the workloop has been woken up again). | |
2678 | */ | |
2679 | error = filt_wldebounce(kqwl, kev, 0); | |
2680 | ||
2681 | if (!knoteuse2kqlock(kq, kn, knoteuse_flags)) { | |
2682 | /* knote is no longer alive */ | |
2683 | error = EINPROGRESS; | |
2684 | goto out_unlock; | |
2685 | } | |
2686 | ||
2687 | if (!error && (kn->kn_sfflags & NOTE_WL_THREAD_REQUEST) && kn->kn_inuse) { | |
2688 | /* | |
2689 | * There is a concurrent drop or touch happening, we can't resolve this, | |
2690 | * userland has to redrive. | |
2691 | * | |
2692 | * The race we're worried about here is the following: | |
2693 | * | |
2694 | * f_touch | f_drop_and_unlock | |
2695 | * ------------------------+-------------------------------------------- | |
2696 | * | kqlock() | |
2697 | * | kqlock2knoteuse() | |
2698 | * | filt_wllock() | |
2699 | * | debounces successfully | |
2700 | * kqlock() | | |
2701 | * kqlock2knoteuse | | |
2702 | * filt_wllock() <BLOCKS> | | |
2703 | * | knoteuse2kqlock() | |
2704 | * | filt_wlunlock() | |
2705 | * | kqlock2knotedrop() <BLOCKS, WAKES f_touch> | |
2706 | * debounces successfully | | |
2707 | * filt_wlunlock() | | |
2708 | * caller WAKES f_drop | | |
2709 | * | performs drop, but f_touch should have won | |
2710 | * | |
2711 | * So if the usecount is not 0 here, we need to wait for it to drop and | |
2712 | * redrive the whole logic (including looking up the knote again). | |
2713 | */ | |
2714 | filt_wlunlock(kqwl); | |
2715 | knoteusewait(kq, kn); | |
2716 | return ERESTART; | |
2717 | } | |
2718 | ||
2719 | /* | |
2720 | * If error is 0 this will set kqr_qos_index to THREAD_QOS_UNSPECIFIED | |
2721 | * | |
2722 | * If error is 0 or ESTALE this may drop ownership and cause a thread | |
2723 | * request redrive, however the kqlock is held which prevents f_process() to | |
2724 | * run until we did the drop for real. | |
2725 | */ | |
2726 | error = filt_wlupdateowner(kqwl, kev, error, 0); | |
2727 | if (error) { | |
2728 | goto out_unlock; | |
2729 | } | |
2730 | ||
2731 | if ((kn->kn_sfflags & (NOTE_WL_SYNC_WAIT | NOTE_WL_SYNC_WAKE)) == | |
2732 | NOTE_WL_SYNC_WAIT) { | |
2733 | /* | |
2734 | * When deleting a SYNC_WAIT knote that hasn't been woken up | |
2735 | * explicitly, issue a wake up. | |
2736 | */ | |
2737 | kn->kn_sfflags |= NOTE_WL_SYNC_WAKE; | |
2738 | if (kn->kn_hook) { | |
2739 | thread_wakeup_thread((event_t)kn, (thread_t)kn->kn_hook); | |
2740 | } | |
2741 | } | |
2742 | ||
2743 | out_unlock: | |
2744 | filt_wlremember_last_update(kqwl, kn, kev, error); | |
2745 | filt_wlunlock(kqwl); | |
2746 | ||
2747 | out: | |
2748 | if (error == 0) { | |
2749 | /* If nothing failed, do the regular knote drop. */ | |
2750 | if (kqlock2knotedrop(kq, kn)) { | |
2751 | knote_drop(kn, current_proc()); | |
2752 | } else { | |
2753 | error = EINPROGRESS; | |
2754 | } | |
2755 | } else { | |
2756 | kqunlock(kq); | |
2757 | } | |
2758 | if (error == ESTALE && (kev->fflags & NOTE_WL_IGNORE_ESTALE)) { | |
2759 | error = 0; | |
2760 | } | |
2761 | if (error == EINPROGRESS) { | |
2762 | /* | |
2763 | * filt_wlprocess() makes sure that no event can be delivered for | |
2764 | * NOTE_WL_THREAD_REQUEST knotes once a drop is happening, and | |
2765 | * NOTE_WL_SYNC_* knotes are never fired. | |
2766 | * | |
2767 | * It means that EINPROGRESS is about a state that userland cannot | |
2768 | * observe for this filter (an event being delivered concurrently from | |
2769 | * a drop), so silence the error. | |
2770 | */ | |
2771 | error = 0; | |
2772 | } | |
2773 | return error; | |
2774 | } | |
2775 | ||
2776 | static int | |
2777 | filt_wlprocess( | |
2778 | struct knote *kn, | |
2779 | __unused struct filt_process_s *data, | |
2780 | struct kevent_internal_s *kev) | |
2781 | { | |
2782 | struct kqueue *kq = knote_get_kq(kn); | |
2783 | struct kqworkloop *kqwl = (struct kqworkloop *)kq; | |
2784 | struct kqrequest *kqr = &kqwl->kqwl_request; | |
2785 | int rc = 0; | |
2786 | ||
2787 | assert(kq->kq_state & KQ_WORKLOOP); | |
2788 | ||
2789 | /* only thread requests should get here */ | |
2790 | assert(kn->kn_sfflags & NOTE_WL_THREAD_REQUEST); | |
2791 | if (kn->kn_sfflags & NOTE_WL_THREAD_REQUEST) { | |
2792 | filt_wllock(kqwl); | |
2793 | assert(kqr->kqr_qos_index != THREAD_QOS_UNSPECIFIED); | |
2794 | if (kqwl->kqwl_owner) { | |
2795 | /* | |
2796 | * <rdar://problem/33584321> userspace sometimes due to events being | |
2797 | * delivered but not triggering a drain session can cause a process | |
2798 | * of the thread request knote. | |
2799 | * | |
2800 | * When that happens, the automatic deactivation due to process | |
2801 | * would swallow the event, so we have to activate the knote again. | |
2802 | */ | |
2803 | kqlock(kq); | |
2804 | knote_activate(kn); | |
2805 | kqunlock(kq); | |
2806 | } else if (kqr->kqr_qos_index) { | |
2807 | #if DEBUG || DEVELOPMENT | |
2808 | user_addr_t addr = CAST_USER_ADDR_T(kn->kn_ext[EV_EXTIDX_WL_ADDR]); | |
2809 | task_t t = current_task(); | |
2810 | uint64_t val; | |
2811 | if (addr && task_is_active(t) && !task_is_halting(t) && | |
2812 | copyin_word(addr, &val, sizeof(val)) == 0 && | |
5c9f4661 A |
2813 | val && (val & DISPATCH_QUEUE_ENQUEUED) == 0 && |
2814 | (val >> 48) != 0 && (val >> 48) != 0xffff) { | |
5ba3f43e A |
2815 | panic("kevent: workloop %#016llx is not enqueued " |
2816 | "(kn:%p dq_state:%#016llx kev.dq_state:%#016llx)", | |
2817 | kn->kn_udata, kn, val, | |
2818 | kn->kn_ext[EV_EXTIDX_WL_VALUE]); | |
2819 | } | |
2820 | #endif | |
2821 | *kev = kn->kn_kevent; | |
2822 | kev->fflags = kn->kn_sfflags; | |
2823 | kev->data = kn->kn_sdata; | |
2824 | kev->qos = kn->kn_qos; | |
2825 | rc = 1; | |
2826 | } | |
2827 | filt_wlunlock(kqwl); | |
2828 | } | |
2829 | return rc; | |
2830 | } | |
2831 | ||
2832 | #pragma mark kevent / knotes | |
2833 | ||
2834 | /* | |
2835 | * JMM - placeholder for not-yet-implemented filters | |
2836 | */ | |
2837 | static int | |
2838 | filt_badattach(__unused struct knote *kn, __unused struct kevent_internal_s *kev) | |
2839 | { | |
2840 | kn->kn_flags |= EV_ERROR; | |
2841 | kn->kn_data = ENOTSUP; | |
2842 | return 0; | |
2843 | } | |
2844 | ||
2845 | struct kqueue * | |
2846 | kqueue_alloc(struct proc *p, unsigned int flags) | |
2847 | { | |
2848 | struct filedesc *fdp = p->p_fd; | |
2849 | struct kqueue *kq = NULL; | |
2850 | int policy; | |
2851 | void *hook = NULL; | |
2852 | uint64_t kq_addr_offset; | |
2853 | ||
2854 | if (flags & KEVENT_FLAG_WORKQ) { | |
2855 | struct kqworkq *kqwq; | |
2856 | int i; | |
2857 | ||
2858 | kqwq = (struct kqworkq *)zalloc(kqworkq_zone); | |
2859 | if (kqwq == NULL) | |
2860 | return NULL; | |
2861 | ||
2862 | kq = &kqwq->kqwq_kqueue; | |
2863 | bzero(kqwq, sizeof (struct kqworkq)); | |
2864 | ||
2865 | kqwq->kqwq_state = KQ_WORKQ; | |
2866 | ||
2867 | for (i = 0; i < KQWQ_NBUCKETS; i++) { | |
2868 | TAILQ_INIT(&kq->kq_queue[i]); | |
2869 | } | |
2870 | for (i = 0; i < KQWQ_NQOS; i++) { | |
2871 | kqwq->kqwq_request[i].kqr_qos_index = i; | |
2872 | } | |
2873 | ||
2874 | lck_spin_init(&kqwq->kqwq_reqlock, kq_lck_grp, kq_lck_attr); | |
2875 | policy = SYNC_POLICY_FIFO; | |
2876 | hook = (void *)kqwq; | |
2877 | ||
2878 | } else if (flags & KEVENT_FLAG_WORKLOOP) { | |
2879 | struct kqworkloop *kqwl; | |
2880 | int i; | |
2881 | ||
2882 | kqwl = (struct kqworkloop *)zalloc(kqworkloop_zone); | |
2883 | if (kqwl == NULL) | |
2884 | return NULL; | |
2885 | ||
2886 | bzero(kqwl, sizeof (struct kqworkloop)); | |
2887 | ||
2888 | kqwl->kqwl_state = KQ_WORKLOOP | KQ_DYNAMIC; | |
2889 | kqwl->kqwl_retains = 1; /* donate a retain to creator */ | |
2890 | ||
2891 | kq = &kqwl->kqwl_kqueue; | |
2892 | for (i = 0; i < KQWL_NBUCKETS; i++) { | |
2893 | TAILQ_INIT(&kq->kq_queue[i]); | |
2894 | } | |
2895 | TAILQ_INIT(&kqwl->kqwl_request.kqr_suppressed); | |
2896 | ||
2897 | lck_spin_init(&kqwl->kqwl_reqlock, kq_lck_grp, kq_lck_attr); | |
2898 | lck_mtx_init(&kqwl->kqwl_statelock, kq_lck_grp, kq_lck_attr); | |
2899 | ||
2900 | policy = SYNC_POLICY_FIFO; | |
2901 | if (flags & KEVENT_FLAG_WORKLOOP_NO_WQ_THREAD) { | |
2902 | policy |= SYNC_POLICY_PREPOST; | |
2903 | kq->kq_state |= KQ_NO_WQ_THREAD; | |
2904 | } else { | |
2905 | hook = (void *)kqwl; | |
2906 | } | |
2907 | ||
2908 | } else { | |
2909 | struct kqfile *kqf; | |
2910 | ||
2911 | kqf = (struct kqfile *)zalloc(kqfile_zone); | |
2912 | if (kqf == NULL) | |
2913 | return NULL; | |
2914 | ||
2915 | kq = &kqf->kqf_kqueue; | |
2916 | bzero(kqf, sizeof (struct kqfile)); | |
2917 | TAILQ_INIT(&kq->kq_queue[0]); | |
2918 | TAILQ_INIT(&kqf->kqf_suppressed); | |
2919 | ||
2920 | policy = SYNC_POLICY_FIFO | SYNC_POLICY_PREPOST; | |
2921 | } | |
2922 | ||
2923 | waitq_set_init(&kq->kq_wqs, policy, NULL, hook); | |
2924 | lck_spin_init(&kq->kq_lock, kq_lck_grp, kq_lck_attr); | |
2925 | kq->kq_p = p; | |
2926 | ||
2927 | if (fdp->fd_knlistsize < 0) { | |
2928 | proc_fdlock(p); | |
2929 | if (fdp->fd_knlistsize < 0) | |
2930 | fdp->fd_knlistsize = 0; /* this process has had a kq */ | |
2931 | proc_fdunlock(p); | |
2932 | } | |
2933 | ||
2934 | kq_addr_offset = ((uintptr_t)kq - (uintptr_t)VM_MIN_KERNEL_AND_KEXT_ADDRESS); | |
2935 | /* Assert that the address can be pointer compacted for use with knote */ | |
2936 | assert(kq_addr_offset < (uint64_t)(1ull << KNOTE_KQ_BITSIZE)); | |
2937 | return (kq); | |
2938 | } | |
2939 | ||
2940 | /* | |
2941 | * knotes_dealloc - detach all knotes for the process and drop them | |
2942 | * | |
2943 | * Called with proc_fdlock held. | |
2944 | * Returns with it locked. | |
2945 | * May drop it temporarily. | |
2946 | * Process is in such a state that it will not try to allocate | |
2947 | * any more knotes during this process (stopped for exit or exec). | |
2948 | */ | |
2949 | void | |
2950 | knotes_dealloc(proc_t p) | |
2951 | { | |
2952 | struct filedesc *fdp = p->p_fd; | |
2953 | struct kqueue *kq; | |
2954 | struct knote *kn; | |
2955 | struct klist *kn_hash = NULL; | |
2956 | int i; | |
2957 | ||
2958 | /* Close all the fd-indexed knotes up front */ | |
2959 | if (fdp->fd_knlistsize > 0) { | |
2960 | for (i = 0; i < fdp->fd_knlistsize; i++) { | |
2961 | while ((kn = SLIST_FIRST(&fdp->fd_knlist[i])) != NULL) { | |
2962 | kq = knote_get_kq(kn); | |
2963 | kqlock(kq); | |
2964 | proc_fdunlock(p); | |
2965 | /* drop it ourselves or wait */ | |
2966 | if (kqlock2knotedrop(kq, kn)) { | |
2967 | knote_drop(kn, p); | |
2968 | } | |
2969 | proc_fdlock(p); | |
2970 | } | |
2971 | } | |
2972 | /* free the table */ | |
2973 | FREE(fdp->fd_knlist, M_KQUEUE); | |
2974 | fdp->fd_knlist = NULL; | |
2975 | } | |
2976 | fdp->fd_knlistsize = -1; | |
2977 | ||
2978 | knhash_lock(p); | |
2979 | proc_fdunlock(p); | |
2980 | ||
2981 | /* Clean out all the hashed knotes as well */ | |
2982 | if (fdp->fd_knhashmask != 0) { | |
2983 | for (i = 0; i <= (int)fdp->fd_knhashmask; i++) { | |
2984 | while ((kn = SLIST_FIRST(&fdp->fd_knhash[i])) != NULL) { | |
2985 | kq = knote_get_kq(kn); | |
2986 | kqlock(kq); | |
2987 | knhash_unlock(p); | |
2988 | /* drop it ourselves or wait */ | |
2989 | if (kqlock2knotedrop(kq, kn)) { | |
2990 | knote_drop(kn, p); | |
2991 | } | |
2992 | knhash_lock(p); | |
2993 | } | |
2994 | } | |
2995 | kn_hash = fdp->fd_knhash; | |
2996 | fdp->fd_knhashmask = 0; | |
2997 | fdp->fd_knhash = NULL; | |
2998 | } | |
2999 | ||
3000 | knhash_unlock(p); | |
3001 | ||
3002 | /* free the kn_hash table */ | |
3003 | if (kn_hash) | |
3004 | FREE(kn_hash, M_KQUEUE); | |
3005 | ||
3006 | proc_fdlock(p); | |
3007 | } | |
3008 | ||
3009 | ||
3010 | /* | |
3011 | * kqueue_dealloc - detach all knotes from a kqueue and free it | |
3012 | * | |
3013 | * We walk each list looking for knotes referencing this | |
3014 | * this kqueue. If we find one, we try to drop it. But | |
3015 | * if we fail to get a drop reference, that will wait | |
3016 | * until it is dropped. So, we can just restart again | |
3017 | * safe in the assumption that the list will eventually | |
3018 | * not contain any more references to this kqueue (either | |
3019 | * we dropped them all, or someone else did). | |
3020 | * | |
3021 | * Assumes no new events are being added to the kqueue. | |
3022 | * Nothing locked on entry or exit. | |
3023 | * | |
3024 | * Workloop kqueues cant get here unless all the knotes | |
3025 | * are already gone and all requested threads have come | |
3026 | * and gone (cancelled or arrived). | |
3027 | */ | |
3028 | void | |
3029 | kqueue_dealloc(struct kqueue *kq) | |
3030 | { | |
3031 | struct proc *p; | |
3032 | struct filedesc *fdp; | |
3033 | struct knote *kn; | |
3034 | int i; | |
3035 | ||
3036 | if (kq == NULL) | |
3037 | return; | |
3038 | ||
3039 | p = kq->kq_p; | |
3040 | fdp = p->p_fd; | |
3041 | ||
3042 | proc_fdlock(p); | |
3043 | for (i = 0; i < fdp->fd_knlistsize; i++) { | |
3044 | kn = SLIST_FIRST(&fdp->fd_knlist[i]); | |
3045 | while (kn != NULL) { | |
3046 | if (kq == knote_get_kq(kn)) { | |
3047 | assert((kq->kq_state & KQ_WORKLOOP) == 0); | |
3048 | kqlock(kq); | |
3049 | proc_fdunlock(p); | |
3050 | /* drop it ourselves or wait */ | |
3051 | if (kqlock2knotedrop(kq, kn)) { | |
3052 | knote_drop(kn, p); | |
3053 | } | |
3054 | proc_fdlock(p); | |
3055 | /* start over at beginning of list */ | |
3056 | kn = SLIST_FIRST(&fdp->fd_knlist[i]); | |
3057 | continue; | |
3058 | } | |
3059 | kn = SLIST_NEXT(kn, kn_link); | |
3060 | } | |
3061 | } | |
3062 | knhash_lock(p); | |
3063 | proc_fdunlock(p); | |
3064 | ||
3065 | if (fdp->fd_knhashmask != 0) { | |
3066 | for (i = 0; i < (int)fdp->fd_knhashmask + 1; i++) { | |
3067 | kn = SLIST_FIRST(&fdp->fd_knhash[i]); | |
3068 | while (kn != NULL) { | |
3069 | if (kq == knote_get_kq(kn)) { | |
3070 | assert((kq->kq_state & KQ_WORKLOOP) == 0); | |
3071 | kqlock(kq); | |
3072 | knhash_unlock(p); | |
3073 | /* drop it ourselves or wait */ | |
3074 | if (kqlock2knotedrop(kq, kn)) { | |
3075 | knote_drop(kn, p); | |
3076 | } | |
3077 | knhash_lock(p); | |
3078 | /* start over at beginning of list */ | |
3079 | kn = SLIST_FIRST(&fdp->fd_knhash[i]); | |
3080 | continue; | |
3081 | } | |
3082 | kn = SLIST_NEXT(kn, kn_link); | |
3083 | } | |
3084 | } | |
3085 | } | |
3086 | knhash_unlock(p); | |
3087 | ||
3088 | if (kq->kq_state & KQ_WORKLOOP) { | |
3089 | struct kqworkloop *kqwl = (struct kqworkloop *)kq; | |
3090 | struct kqrequest *kqr = &kqwl->kqwl_request; | |
3091 | thread_t cur_owner = kqwl->kqwl_owner; | |
3092 | ||
3093 | assert(TAILQ_EMPTY(&kqwl->kqwl_request.kqr_suppressed)); | |
3094 | if (filt_wlowner_is_valid(cur_owner)) { | |
3095 | /* | |
3096 | * If the kqueue had an owner that prevented the thread request to | |
3097 | * go through, then no unbind happened, and we may have lingering | |
3098 | * overrides to drop. | |
3099 | */ | |
3100 | if (kqr->kqr_dsync_owner_qos != THREAD_QOS_UNSPECIFIED) { | |
3101 | thread_drop_ipc_override(cur_owner); | |
3102 | kqr->kqr_dsync_owner_qos = THREAD_QOS_UNSPECIFIED; | |
3103 | } | |
3104 | ||
3105 | if (kqr->kqr_owner_override_is_sync) { | |
3106 | thread_drop_sync_ipc_override(cur_owner); | |
3107 | kqr->kqr_owner_override_is_sync = 0; | |
3108 | } | |
3109 | thread_ends_owning_workloop(cur_owner); | |
3110 | thread_deallocate(cur_owner); | |
3111 | kqwl->kqwl_owner = THREAD_NULL; | |
3112 | } | |
3113 | } | |
3114 | ||
3115 | /* | |
3116 | * waitq_set_deinit() remove the KQ's waitq set from | |
3117 | * any select sets to which it may belong. | |
3118 | */ | |
3119 | waitq_set_deinit(&kq->kq_wqs); | |
3120 | lck_spin_destroy(&kq->kq_lock, kq_lck_grp); | |
3121 | ||
3122 | if (kq->kq_state & KQ_WORKQ) { | |
3123 | struct kqworkq *kqwq = (struct kqworkq *)kq; | |
3124 | ||
3125 | lck_spin_destroy(&kqwq->kqwq_reqlock, kq_lck_grp); | |
3126 | zfree(kqworkq_zone, kqwq); | |
3127 | } else if (kq->kq_state & KQ_WORKLOOP) { | |
3128 | struct kqworkloop *kqwl = (struct kqworkloop *)kq; | |
3129 | ||
3130 | assert(kqwl->kqwl_retains == 0); | |
3131 | lck_spin_destroy(&kqwl->kqwl_reqlock, kq_lck_grp); | |
3132 | lck_mtx_destroy(&kqwl->kqwl_statelock, kq_lck_grp); | |
3133 | zfree(kqworkloop_zone, kqwl); | |
3134 | } else { | |
3135 | struct kqfile *kqf = (struct kqfile *)kq; | |
3136 | ||
3137 | zfree(kqfile_zone, kqf); | |
3138 | } | |
3139 | } | |
3140 | ||
3141 | static inline void | |
3142 | kqueue_retain(struct kqueue *kq) | |
3143 | { | |
3144 | struct kqworkloop *kqwl = (struct kqworkloop *)kq; | |
3145 | uint32_t previous; | |
3146 | ||
3147 | if ((kq->kq_state & KQ_DYNAMIC) == 0) | |
3148 | return; | |
3149 | ||
3150 | previous = OSIncrementAtomic(&kqwl->kqwl_retains); | |
3151 | if (previous == KQ_WORKLOOP_RETAINS_MAX) | |
3152 | panic("kq(%p) retain overflow", kq); | |
3153 | ||
3154 | if (previous == 0) | |
3155 | panic("kq(%p) resurrection", kq); | |
3156 | } | |
3157 | ||
3158 | #define KQUEUE_CANT_BE_LAST_REF 0 | |
3159 | #define KQUEUE_MIGHT_BE_LAST_REF 1 | |
3160 | ||
3161 | static inline int | |
3162 | kqueue_release(struct kqueue *kq, __assert_only int possibly_last) | |
3163 | { | |
3164 | struct kqworkloop *kqwl = (struct kqworkloop *)kq; | |
3165 | ||
3166 | if ((kq->kq_state & KQ_DYNAMIC) == 0) { | |
3167 | return 0; | |
3168 | } | |
3169 | ||
3170 | assert(kq->kq_state & KQ_WORKLOOP); /* for now */ | |
3171 | uint32_t refs = OSDecrementAtomic(&kqwl->kqwl_retains); | |
3172 | if (__improbable(refs == 0)) { | |
3173 | panic("kq(%p) over-release", kq); | |
3174 | } | |
3175 | if (refs == 1) { | |
3176 | assert(possibly_last); | |
3177 | } | |
3178 | return refs == 1; | |
3179 | } | |
3180 | ||
3181 | int | |
3182 | kqueue_body(struct proc *p, fp_allocfn_t fp_zalloc, void *cra, int32_t *retval) | |
3183 | { | |
3184 | struct kqueue *kq; | |
3185 | struct fileproc *fp; | |
3186 | int fd, error; | |
3187 | ||
3188 | error = falloc_withalloc(p, | |
3189 | &fp, &fd, vfs_context_current(), fp_zalloc, cra); | |
3190 | if (error) { | |
3191 | return (error); | |
3192 | } | |
3193 | ||
3194 | kq = kqueue_alloc(p, 0); | |
3195 | if (kq == NULL) { | |
3196 | fp_free(p, fd, fp); | |
3197 | return (ENOMEM); | |
3198 | } | |
3199 | ||
3200 | fp->f_flag = FREAD | FWRITE; | |
3201 | fp->f_ops = &kqueueops; | |
3202 | fp->f_data = kq; | |
3203 | ||
3204 | proc_fdlock(p); | |
3205 | *fdflags(p, fd) |= UF_EXCLOSE; | |
3206 | procfdtbl_releasefd(p, fd, NULL); | |
3207 | fp_drop(p, fd, fp, 1); | |
3208 | proc_fdunlock(p); | |
3209 | ||
3210 | *retval = fd; | |
3211 | return (error); | |
55e303ae A |
3212 | } |
3213 | ||
39236c6e A |
3214 | int |
3215 | kqueue(struct proc *p, __unused struct kqueue_args *uap, int32_t *retval) | |
3216 | { | |
3217 | return (kqueue_body(p, fileproc_alloc_init, NULL, retval)); | |
3218 | } | |
3219 | ||
91447636 | 3220 | static int |
3e170ce0 A |
3221 | kevent_copyin(user_addr_t *addrp, struct kevent_internal_s *kevp, struct proc *p, |
3222 | unsigned int flags) | |
55e303ae | 3223 | { |
91447636 A |
3224 | int advance; |
3225 | int error; | |
55e303ae | 3226 | |
3e170ce0 A |
3227 | if (flags & KEVENT_FLAG_LEGACY32) { |
3228 | bzero(kevp, sizeof (*kevp)); | |
91447636 | 3229 | |
3e170ce0 A |
3230 | if (IS_64BIT_PROCESS(p)) { |
3231 | struct user64_kevent kev64; | |
3232 | ||
3233 | advance = sizeof (kev64); | |
3234 | error = copyin(*addrp, (caddr_t)&kev64, advance); | |
3235 | if (error) | |
3236 | return (error); | |
3237 | kevp->ident = kev64.ident; | |
3238 | kevp->filter = kev64.filter; | |
3239 | kevp->flags = kev64.flags; | |
3240 | kevp->udata = kev64.udata; | |
3241 | kevp->fflags = kev64.fflags; | |
3242 | kevp->data = kev64.data; | |
3243 | } else { | |
3244 | struct user32_kevent kev32; | |
3245 | ||
3246 | advance = sizeof (kev32); | |
3247 | error = copyin(*addrp, (caddr_t)&kev32, advance); | |
3248 | if (error) | |
3249 | return (error); | |
3250 | kevp->ident = (uintptr_t)kev32.ident; | |
3251 | kevp->filter = kev32.filter; | |
3252 | kevp->flags = kev32.flags; | |
3253 | kevp->udata = CAST_USER_ADDR_T(kev32.udata); | |
3254 | kevp->fflags = kev32.fflags; | |
3255 | kevp->data = (intptr_t)kev32.data; | |
3256 | } | |
3257 | } else if (flags & KEVENT_FLAG_LEGACY64) { | |
3258 | struct kevent64_s kev64; | |
3259 | ||
3260 | bzero(kevp, sizeof (*kevp)); | |
3261 | ||
3262 | advance = sizeof (struct kevent64_s); | |
91447636 | 3263 | error = copyin(*addrp, (caddr_t)&kev64, advance); |
55e303ae | 3264 | if (error) |
3e170ce0 | 3265 | return(error); |
b0d623f7 | 3266 | kevp->ident = kev64.ident; |
91447636 A |
3267 | kevp->filter = kev64.filter; |
3268 | kevp->flags = kev64.flags; | |
3e170ce0 | 3269 | kevp->udata = kev64.udata; |
91447636 | 3270 | kevp->fflags = kev64.fflags; |
b0d623f7 | 3271 | kevp->data = kev64.data; |
3e170ce0 A |
3272 | kevp->ext[0] = kev64.ext[0]; |
3273 | kevp->ext[1] = kev64.ext[1]; | |
3274 | ||
91447636 | 3275 | } else { |
3e170ce0 | 3276 | struct kevent_qos_s kevqos; |
b0d623f7 | 3277 | |
3e170ce0 A |
3278 | bzero(kevp, sizeof (*kevp)); |
3279 | ||
3280 | advance = sizeof (struct kevent_qos_s); | |
3281 | error = copyin(*addrp, (caddr_t)&kevqos, advance); | |
b0d623f7 | 3282 | if (error) |
3e170ce0 A |
3283 | return error; |
3284 | kevp->ident = kevqos.ident; | |
3285 | kevp->filter = kevqos.filter; | |
3286 | kevp->flags = kevqos.flags; | |
39037602 A |
3287 | kevp->qos = kevqos.qos; |
3288 | // kevp->xflags = kevqos.xflags; | |
3e170ce0 A |
3289 | kevp->udata = kevqos.udata; |
3290 | kevp->fflags = kevqos.fflags; | |
3291 | kevp->data = kevqos.data; | |
3292 | kevp->ext[0] = kevqos.ext[0]; | |
3293 | kevp->ext[1] = kevqos.ext[1]; | |
39037602 A |
3294 | kevp->ext[2] = kevqos.ext[2]; |
3295 | kevp->ext[3] = kevqos.ext[3]; | |
55e303ae | 3296 | } |
91447636 A |
3297 | if (!error) |
3298 | *addrp += advance; | |
39236c6e | 3299 | return (error); |
91447636 | 3300 | } |
55e303ae | 3301 | |
91447636 | 3302 | static int |
3e170ce0 A |
3303 | kevent_copyout(struct kevent_internal_s *kevp, user_addr_t *addrp, struct proc *p, |
3304 | unsigned int flags) | |
91447636 | 3305 | { |
3e170ce0 | 3306 | user_addr_t addr = *addrp; |
91447636 A |
3307 | int advance; |
3308 | int error; | |
3309 | ||
39037602 A |
3310 | /* |
3311 | * fully initialize the differnt output event structure | |
3312 | * types from the internal kevent (and some universal | |
3313 | * defaults for fields not represented in the internal | |
3314 | * form). | |
3315 | */ | |
3e170ce0 A |
3316 | if (flags & KEVENT_FLAG_LEGACY32) { |
3317 | assert((flags & KEVENT_FLAG_STACK_EVENTS) == 0); | |
91447636 | 3318 | |
3e170ce0 A |
3319 | if (IS_64BIT_PROCESS(p)) { |
3320 | struct user64_kevent kev64; | |
3321 | ||
39037602 A |
3322 | advance = sizeof (kev64); |
3323 | bzero(&kev64, advance); | |
3324 | ||
3e170ce0 A |
3325 | /* |
3326 | * deal with the special case of a user-supplied | |
3327 | * value of (uintptr_t)-1. | |
3328 | */ | |
3329 | kev64.ident = (kevp->ident == (uintptr_t)-1) ? | |
3330 | (uint64_t)-1LL : (uint64_t)kevp->ident; | |
3331 | ||
3332 | kev64.filter = kevp->filter; | |
3333 | kev64.flags = kevp->flags; | |
3334 | kev64.fflags = kevp->fflags; | |
3335 | kev64.data = (int64_t) kevp->data; | |
3336 | kev64.udata = kevp->udata; | |
3e170ce0 A |
3337 | error = copyout((caddr_t)&kev64, addr, advance); |
3338 | } else { | |
3339 | struct user32_kevent kev32; | |
3340 | ||
39037602 A |
3341 | advance = sizeof (kev32); |
3342 | bzero(&kev32, advance); | |
3e170ce0 A |
3343 | kev32.ident = (uint32_t)kevp->ident; |
3344 | kev32.filter = kevp->filter; | |
3345 | kev32.flags = kevp->flags; | |
3346 | kev32.fflags = kevp->fflags; | |
3347 | kev32.data = (int32_t)kevp->data; | |
3348 | kev32.udata = kevp->udata; | |
3e170ce0 A |
3349 | error = copyout((caddr_t)&kev32, addr, advance); |
3350 | } | |
3351 | } else if (flags & KEVENT_FLAG_LEGACY64) { | |
3352 | struct kevent64_s kev64; | |
2d21ac55 | 3353 | |
3e170ce0 A |
3354 | advance = sizeof (struct kevent64_s); |
3355 | if (flags & KEVENT_FLAG_STACK_EVENTS) { | |
3356 | addr -= advance; | |
3357 | } | |
39037602 | 3358 | bzero(&kev64, advance); |
3e170ce0 | 3359 | kev64.ident = kevp->ident; |
91447636 A |
3360 | kev64.filter = kevp->filter; |
3361 | kev64.flags = kevp->flags; | |
3362 | kev64.fflags = kevp->fflags; | |
3363 | kev64.data = (int64_t) kevp->data; | |
3364 | kev64.udata = kevp->udata; | |
3e170ce0 A |
3365 | kev64.ext[0] = kevp->ext[0]; |
3366 | kev64.ext[1] = kevp->ext[1]; | |
3367 | error = copyout((caddr_t)&kev64, addr, advance); | |
91447636 | 3368 | } else { |
3e170ce0 | 3369 | struct kevent_qos_s kevqos; |
39037602 | 3370 | |
3e170ce0 A |
3371 | advance = sizeof (struct kevent_qos_s); |
3372 | if (flags & KEVENT_FLAG_STACK_EVENTS) { | |
3373 | addr -= advance; | |
3374 | } | |
39037602 | 3375 | bzero(&kevqos, advance); |
3e170ce0 A |
3376 | kevqos.ident = kevp->ident; |
3377 | kevqos.filter = kevp->filter; | |
3378 | kevqos.flags = kevp->flags; | |
39037602 A |
3379 | kevqos.qos = kevp->qos; |
3380 | kevqos.udata = kevp->udata; | |
3e170ce0 | 3381 | kevqos.fflags = kevp->fflags; |
39037602 | 3382 | kevqos.xflags = 0; |
3e170ce0 | 3383 | kevqos.data = (int64_t) kevp->data; |
3e170ce0 A |
3384 | kevqos.ext[0] = kevp->ext[0]; |
3385 | kevqos.ext[1] = kevp->ext[1]; | |
39037602 A |
3386 | kevqos.ext[2] = kevp->ext[2]; |
3387 | kevqos.ext[3] = kevp->ext[3]; | |
3e170ce0 A |
3388 | error = copyout((caddr_t)&kevqos, addr, advance); |
3389 | } | |
3390 | if (!error) { | |
3391 | if (flags & KEVENT_FLAG_STACK_EVENTS) | |
3392 | *addrp = addr; | |
3393 | else | |
3394 | *addrp = addr + advance; | |
91447636 | 3395 | } |
39236c6e | 3396 | return (error); |
91447636 | 3397 | } |
55e303ae | 3398 | |
39037602 A |
3399 | static int |
3400 | kevent_get_data_size(struct proc *p, | |
3401 | uint64_t data_available, | |
3402 | unsigned int flags, | |
3403 | user_size_t *residp) | |
3404 | { | |
3405 | user_size_t resid; | |
3406 | int error = 0; | |
3407 | ||
3408 | if (data_available != USER_ADDR_NULL) { | |
3409 | if (flags & KEVENT_FLAG_KERNEL) { | |
3410 | resid = *(user_size_t *)(uintptr_t)data_available; | |
3411 | } else if (IS_64BIT_PROCESS(p)) { | |
3412 | user64_size_t usize; | |
3413 | error = copyin((user_addr_t)data_available, &usize, sizeof(usize)); | |
3414 | resid = (user_size_t)usize; | |
3415 | } else { | |
3416 | user32_size_t usize; | |
3417 | error = copyin((user_addr_t)data_available, &usize, sizeof(usize)); | |
3418 | resid = (user_size_t)usize; | |
3419 | } | |
3420 | if (error) | |
3421 | return(error); | |
3422 | } else { | |
3423 | resid = 0; | |
3424 | } | |
3425 | *residp = resid; | |
3426 | return 0; | |
3427 | } | |
3428 | ||
3429 | static int | |
3430 | kevent_put_data_size(struct proc *p, | |
3431 | uint64_t data_available, | |
3432 | unsigned int flags, | |
3433 | user_size_t resid) | |
3434 | { | |
3435 | int error = 0; | |
3436 | ||
3437 | if (data_available) { | |
3438 | if (flags & KEVENT_FLAG_KERNEL) { | |
3439 | *(user_size_t *)(uintptr_t)data_available = resid; | |
3440 | } else if (IS_64BIT_PROCESS(p)) { | |
3441 | user64_size_t usize = (user64_size_t)resid; | |
3442 | error = copyout(&usize, (user_addr_t)data_available, sizeof(usize)); | |
3443 | } else { | |
3444 | user32_size_t usize = (user32_size_t)resid; | |
3445 | error = copyout(&usize, (user_addr_t)data_available, sizeof(usize)); | |
3446 | } | |
3447 | } | |
3448 | return error; | |
3449 | } | |
3450 | ||
91447636 A |
3451 | /* |
3452 | * kevent_continue - continue a kevent syscall after blocking | |
3453 | * | |
3454 | * assume we inherit a use count on the kq fileglob. | |
3455 | */ | |
55e303ae | 3456 | |
39037602 | 3457 | __attribute__((noreturn)) |
91447636 A |
3458 | static void |
3459 | kevent_continue(__unused struct kqueue *kq, void *data, int error) | |
3460 | { | |
3461 | struct _kevent *cont_args; | |
3462 | struct fileproc *fp; | |
39037602 A |
3463 | uint64_t data_available; |
3464 | user_size_t data_size; | |
3465 | user_size_t data_resid; | |
3466 | unsigned int flags; | |
b0d623f7 | 3467 | int32_t *retval; |
91447636 A |
3468 | int noutputs; |
3469 | int fd; | |
3470 | struct proc *p = current_proc(); | |
3471 | ||
3472 | cont_args = (struct _kevent *)data; | |
39037602 A |
3473 | data_available = cont_args->data_available; |
3474 | flags = cont_args->process_data.fp_flags; | |
3475 | data_size = cont_args->process_data.fp_data_size; | |
3476 | data_resid = cont_args->process_data.fp_data_resid; | |
91447636 A |
3477 | noutputs = cont_args->eventout; |
3478 | retval = cont_args->retval; | |
3479 | fd = cont_args->fd; | |
3480 | fp = cont_args->fp; | |
3481 | ||
5ba3f43e | 3482 | kevent_put_kq(p, fd, fp, kq); |
91447636 | 3483 | |
39037602 A |
3484 | /* don't abandon other output just because of residual copyout failures */ |
3485 | if (error == 0 && data_available && data_resid != data_size) { | |
3486 | (void)kevent_put_data_size(p, data_available, flags, data_resid); | |
3487 | } | |
3488 | ||
91447636 A |
3489 | /* don't restart after signals... */ |
3490 | if (error == ERESTART) | |
3491 | error = EINTR; | |
3492 | else if (error == EWOULDBLOCK) | |
3493 | error = 0; | |
3494 | if (error == 0) | |
3495 | *retval = noutputs; | |
3496 | unix_syscall_return(error); | |
3497 | } | |
55e303ae | 3498 | |
91447636 A |
3499 | /* |
3500 | * kevent - [syscall] register and wait for kernel events | |
3501 | * | |
3502 | */ | |
91447636 | 3503 | int |
b0d623f7 A |
3504 | kevent(struct proc *p, struct kevent_args *uap, int32_t *retval) |
3505 | { | |
3e170ce0 A |
3506 | unsigned int flags = KEVENT_FLAG_LEGACY32; |
3507 | ||
3508 | return kevent_internal(p, | |
5ba3f43e | 3509 | (kqueue_id_t)uap->fd, NULL, |
39037602 A |
3510 | uap->changelist, uap->nchanges, |
3511 | uap->eventlist, uap->nevents, | |
3512 | 0ULL, 0ULL, | |
3513 | flags, | |
3514 | uap->timeout, | |
3515 | kevent_continue, | |
3516 | retval); | |
39236c6e A |
3517 | } |
3518 | ||
b0d623f7 A |
3519 | int |
3520 | kevent64(struct proc *p, struct kevent64_args *uap, int32_t *retval) | |
3521 | { | |
3e170ce0 A |
3522 | unsigned int flags; |
3523 | ||
3524 | /* restrict to user flags and set legacy64 */ | |
3525 | flags = uap->flags & KEVENT_FLAG_USER; | |
3526 | flags |= KEVENT_FLAG_LEGACY64; | |
3527 | ||
3528 | return kevent_internal(p, | |
5ba3f43e A |
3529 | (kqueue_id_t)uap->fd, NULL, |
3530 | uap->changelist, uap->nchanges, | |
3531 | uap->eventlist, uap->nevents, | |
3532 | 0ULL, 0ULL, | |
3533 | flags, | |
3534 | uap->timeout, | |
3535 | kevent_continue, | |
3536 | retval); | |
3537 | } | |
3538 | ||
3539 | int | |
3540 | kevent_qos(struct proc *p, struct kevent_qos_args *uap, int32_t *retval) | |
3541 | { | |
3542 | /* restrict to user flags */ | |
3543 | uap->flags &= KEVENT_FLAG_USER; | |
3544 | ||
3545 | return kevent_internal(p, | |
3546 | (kqueue_id_t)uap->fd, NULL, | |
3547 | uap->changelist, uap->nchanges, | |
3548 | uap->eventlist, uap->nevents, | |
3549 | uap->data_out, (uint64_t)uap->data_available, | |
3550 | uap->flags, | |
3551 | 0ULL, | |
3552 | kevent_continue, | |
3553 | retval); | |
3554 | } | |
3555 | ||
3556 | int | |
3557 | kevent_qos_internal(struct proc *p, int fd, | |
3558 | user_addr_t changelist, int nchanges, | |
3559 | user_addr_t eventlist, int nevents, | |
3560 | user_addr_t data_out, user_size_t *data_available, | |
3561 | unsigned int flags, | |
3562 | int32_t *retval) | |
3563 | { | |
3564 | return kevent_internal(p, | |
3565 | (kqueue_id_t)fd, NULL, | |
3566 | changelist, nchanges, | |
3567 | eventlist, nevents, | |
3568 | data_out, (uint64_t)data_available, | |
3569 | (flags | KEVENT_FLAG_KERNEL), | |
3570 | 0ULL, | |
3571 | NULL, | |
39037602 | 3572 | retval); |
b0d623f7 | 3573 | } |
91447636 | 3574 | |
3e170ce0 | 3575 | int |
5ba3f43e | 3576 | kevent_id(struct proc *p, struct kevent_id_args *uap, int32_t *retval) |
3e170ce0 | 3577 | { |
3e170ce0 A |
3578 | /* restrict to user flags */ |
3579 | uap->flags &= KEVENT_FLAG_USER; | |
3580 | ||
39037602 | 3581 | return kevent_internal(p, |
5ba3f43e | 3582 | (kqueue_id_t)uap->id, NULL, |
39037602 A |
3583 | uap->changelist, uap->nchanges, |
3584 | uap->eventlist, uap->nevents, | |
3585 | uap->data_out, (uint64_t)uap->data_available, | |
5ba3f43e | 3586 | (uap->flags | KEVENT_FLAG_DYNAMIC_KQUEUE), |
39037602 A |
3587 | 0ULL, |
3588 | kevent_continue, | |
3589 | retval); | |
3e170ce0 A |
3590 | } |
3591 | ||
5ba3f43e A |
3592 | int |
3593 | kevent_id_internal(struct proc *p, kqueue_id_t *id, | |
3e170ce0 A |
3594 | user_addr_t changelist, int nchanges, |
3595 | user_addr_t eventlist, int nevents, | |
3596 | user_addr_t data_out, user_size_t *data_available, | |
3597 | unsigned int flags, | |
3598 | int32_t *retval) | |
3599 | { | |
3600 | return kevent_internal(p, | |
5ba3f43e | 3601 | *id, id, |
39037602 A |
3602 | changelist, nchanges, |
3603 | eventlist, nevents, | |
3604 | data_out, (uint64_t)data_available, | |
5ba3f43e | 3605 | (flags | KEVENT_FLAG_KERNEL | KEVENT_FLAG_DYNAMIC_KQUEUE), |
39037602 A |
3606 | 0ULL, |
3607 | NULL, | |
3608 | retval); | |
3e170ce0 A |
3609 | } |
3610 | ||
b0d623f7 | 3611 | static int |
39037602 A |
3612 | kevent_get_timeout(struct proc *p, |
3613 | user_addr_t utimeout, | |
3614 | unsigned int flags, | |
3615 | struct timeval *atvp) | |
b0d623f7 | 3616 | { |
91447636 | 3617 | struct timeval atv; |
39037602 | 3618 | int error = 0; |
91447636 | 3619 | |
3e170ce0 A |
3620 | if (flags & KEVENT_FLAG_IMMEDIATE) { |
3621 | getmicrouptime(&atv); | |
3622 | } else if (utimeout != USER_ADDR_NULL) { | |
91447636 | 3623 | struct timeval rtv; |
39037602 A |
3624 | if (flags & KEVENT_FLAG_KERNEL) { |
3625 | struct timespec *tsp = (struct timespec *)utimeout; | |
3626 | TIMESPEC_TO_TIMEVAL(&rtv, tsp); | |
3627 | } else if (IS_64BIT_PROCESS(p)) { | |
b0d623f7 A |
3628 | struct user64_timespec ts; |
3629 | error = copyin(utimeout, &ts, sizeof(ts)); | |
91447636 A |
3630 | if ((ts.tv_sec & 0xFFFFFFFF00000000ull) != 0) |
3631 | error = EINVAL; | |
3632 | else | |
3633 | TIMESPEC_TO_TIMEVAL(&rtv, &ts); | |
3634 | } else { | |
b0d623f7 A |
3635 | struct user32_timespec ts; |
3636 | error = copyin(utimeout, &ts, sizeof(ts)); | |
91447636 A |
3637 | TIMESPEC_TO_TIMEVAL(&rtv, &ts); |
3638 | } | |
55e303ae | 3639 | if (error) |
39236c6e | 3640 | return (error); |
91447636 | 3641 | if (itimerfix(&rtv)) |
39236c6e | 3642 | return (EINVAL); |
91447636 A |
3643 | getmicrouptime(&atv); |
3644 | timevaladd(&atv, &rtv); | |
3645 | } else { | |
3e170ce0 | 3646 | /* wait forever value */ |
91447636 A |
3647 | atv.tv_sec = 0; |
3648 | atv.tv_usec = 0; | |
3649 | } | |
39037602 A |
3650 | *atvp = atv; |
3651 | return 0; | |
3652 | } | |
3653 | ||
5ba3f43e A |
3654 | static int |
3655 | kevent_set_kq_mode(struct kqueue *kq, unsigned int flags) | |
3656 | { | |
3657 | /* each kq should only be used for events of one type */ | |
3658 | kqlock(kq); | |
3659 | if (kq->kq_state & (KQ_KEV32 | KQ_KEV64 | KQ_KEV_QOS)) { | |
3660 | if (flags & KEVENT_FLAG_LEGACY32) { | |
3661 | if ((kq->kq_state & KQ_KEV32) == 0) { | |
3662 | kqunlock(kq); | |
3663 | return EINVAL; | |
3664 | } | |
3665 | } else if (kq->kq_state & KQ_KEV32) { | |
3666 | kqunlock(kq); | |
3667 | return EINVAL; | |
3668 | } | |
3669 | } else if (flags & KEVENT_FLAG_LEGACY32) { | |
3670 | kq->kq_state |= KQ_KEV32; | |
3671 | } else if (flags & KEVENT_FLAG_LEGACY64) { | |
3672 | kq->kq_state |= KQ_KEV64; | |
3673 | } else { | |
3674 | kq->kq_state |= KQ_KEV_QOS; | |
3675 | } | |
3676 | kqunlock(kq); | |
3677 | return 0; | |
3678 | } | |
3679 | ||
3680 | #define KQ_HASH(val, mask) (((val) ^ (val >> 8)) & (mask)) | |
3681 | #define CONFIG_KQ_HASHSIZE CONFIG_KN_HASHSIZE | |
3682 | ||
3683 | static inline void | |
3684 | kqhash_lock(proc_t p) | |
3685 | { | |
3686 | lck_mtx_lock_spin_always(&p->p_fd->fd_kqhashlock); | |
3687 | } | |
3688 | ||
3689 | static inline void | |
3690 | kqhash_lock_held(__assert_only proc_t p) | |
3691 | { | |
3692 | LCK_MTX_ASSERT(&p->p_fd->fd_kqhashlock, LCK_MTX_ASSERT_OWNED); | |
3693 | } | |
3694 | ||
3695 | static inline void | |
3696 | kqhash_unlock(proc_t p) | |
3697 | { | |
3698 | lck_mtx_unlock(&p->p_fd->fd_kqhashlock); | |
3699 | } | |
3700 | ||
3701 | static void | |
3702 | kqueue_hash_init_if_needed(proc_t p) | |
3703 | { | |
3704 | struct filedesc *fdp = p->p_fd; | |
3705 | ||
3706 | kqhash_lock_held(p); | |
3707 | ||
3708 | if (__improbable(fdp->fd_kqhash == NULL)) { | |
3709 | struct kqlist *alloc_hash; | |
3710 | u_long alloc_mask; | |
3711 | ||
3712 | kqhash_unlock(p); | |
3713 | alloc_hash = hashinit(CONFIG_KQ_HASHSIZE, M_KQUEUE, &alloc_mask); | |
3714 | kqhash_lock(p); | |
3715 | ||
3716 | /* See if we won the race */ | |
3717 | if (fdp->fd_kqhashmask == 0) { | |
3718 | fdp->fd_kqhash = alloc_hash; | |
3719 | fdp->fd_kqhashmask = alloc_mask; | |
3720 | } else { | |
3721 | kqhash_unlock(p); | |
3722 | FREE(alloc_hash, M_KQUEUE); | |
3723 | kqhash_lock(p); | |
3724 | } | |
3725 | } | |
3726 | } | |
3727 | ||
3728 | /* | |
3729 | * Called with the kqhash_lock() held | |
3730 | */ | |
3731 | static void | |
3732 | kqueue_hash_insert( | |
3733 | struct proc *p, | |
3734 | kqueue_id_t id, | |
3735 | struct kqueue *kq) | |
3736 | { | |
3737 | struct kqworkloop *kqwl = (struct kqworkloop *)kq; | |
3738 | struct filedesc *fdp = p->p_fd; | |
3739 | struct kqlist *list; | |
3740 | ||
3741 | /* should hold the kq hash lock */ | |
3742 | kqhash_lock_held(p); | |
3743 | ||
3744 | if ((kq->kq_state & KQ_DYNAMIC) == 0) { | |
3745 | assert(kq->kq_state & KQ_DYNAMIC); | |
3746 | return; | |
3747 | } | |
3748 | ||
3749 | /* only dynamically allocate workloop kqs for now */ | |
3750 | assert(kq->kq_state & KQ_WORKLOOP); | |
3751 | assert(fdp->fd_kqhash); | |
3752 | ||
3753 | kqwl->kqwl_dynamicid = id; | |
3754 | ||
3755 | list = &fdp->fd_kqhash[KQ_HASH(id, fdp->fd_kqhashmask)]; | |
3756 | SLIST_INSERT_HEAD(list, kqwl, kqwl_hashlink); | |
3757 | } | |
3758 | ||
3759 | /* Called with kqhash_lock held */ | |
3760 | static void | |
3761 | kqueue_hash_remove( | |
3762 | struct proc *p, | |
3763 | struct kqueue *kq) | |
3764 | { | |
3765 | struct kqworkloop *kqwl = (struct kqworkloop *)kq; | |
3766 | struct filedesc *fdp = p->p_fd; | |
3767 | struct kqlist *list; | |
3768 | ||
3769 | /* should hold the kq hash lock */ | |
3770 | kqhash_lock_held(p); | |
3771 | ||
3772 | if ((kq->kq_state & KQ_DYNAMIC) == 0) { | |
3773 | assert(kq->kq_state & KQ_DYNAMIC); | |
3774 | return; | |
3775 | } | |
3776 | assert(kq->kq_state & KQ_WORKLOOP); /* for now */ | |
3777 | list = &fdp->fd_kqhash[KQ_HASH(kqwl->kqwl_dynamicid, fdp->fd_kqhashmask)]; | |
3778 | SLIST_REMOVE(list, kqwl, kqworkloop, kqwl_hashlink); | |
3779 | } | |
3780 | ||
3781 | /* Called with kqhash_lock held */ | |
3782 | static struct kqueue * | |
3783 | kqueue_hash_lookup(struct proc *p, kqueue_id_t id) | |
3784 | { | |
3785 | struct filedesc *fdp = p->p_fd; | |
3786 | struct kqlist *list; | |
3787 | struct kqworkloop *kqwl; | |
3788 | ||
3789 | /* should hold the kq hash lock */ | |
3790 | kqhash_lock_held(p); | |
3791 | ||
3792 | if (fdp->fd_kqhashmask == 0) return NULL; | |
3793 | ||
3794 | list = &fdp->fd_kqhash[KQ_HASH(id, fdp->fd_kqhashmask)]; | |
3795 | SLIST_FOREACH(kqwl, list, kqwl_hashlink) { | |
3796 | if (kqwl->kqwl_dynamicid == id) { | |
3797 | struct kqueue *kq = (struct kqueue *)kqwl; | |
3798 | ||
3799 | assert(kq->kq_state & KQ_DYNAMIC); | |
3800 | assert(kq->kq_state & KQ_WORKLOOP); /* for now */ | |
3801 | return kq; | |
3802 | } | |
3803 | } | |
3804 | return NULL; | |
3805 | } | |
3806 | ||
3807 | static inline void | |
3808 | kqueue_release_last(struct proc *p, struct kqueue *kq) | |
3809 | { | |
3810 | if (kq->kq_state & KQ_DYNAMIC) { | |
3811 | kqhash_lock(p); | |
3812 | if (kqueue_release(kq, KQUEUE_MIGHT_BE_LAST_REF)) { | |
3813 | kqueue_hash_remove(p, kq); | |
3814 | kqhash_unlock(p); | |
3815 | kqueue_dealloc(kq); | |
3816 | } else { | |
3817 | kqhash_unlock(p); | |
3818 | } | |
3819 | } | |
3820 | } | |
3821 | ||
3822 | static struct kqueue * | |
3823 | kevent_get_bound_kq(__assert_only struct proc *p, thread_t thread, | |
3824 | unsigned int kev_flags, unsigned int kq_flags) | |
3825 | { | |
3826 | struct kqueue *kq; | |
3827 | struct uthread *ut = get_bsdthread_info(thread); | |
3828 | ||
3829 | assert(p == get_bsdthreadtask_info(thread)); | |
3830 | ||
3831 | if (!(ut->uu_kqueue_flags & kev_flags)) | |
3832 | return NULL; | |
3833 | ||
3834 | kq = ut->uu_kqueue_bound; | |
3835 | if (!kq) | |
3836 | return NULL; | |
3837 | ||
3838 | if (!(kq->kq_state & kq_flags)) | |
3839 | return NULL; | |
3840 | ||
3841 | return kq; | |
3842 | } | |
3843 | ||
3844 | static int | |
3845 | kevent_get_kq(struct proc *p, kqueue_id_t id, unsigned int flags, struct fileproc **fpp, int *fdp, struct kqueue **kqp) | |
3846 | { | |
3847 | struct filedesc *descp = p->p_fd; | |
3848 | struct fileproc *fp = NULL; | |
3849 | struct kqueue *kq; | |
3850 | int fd = 0; | |
3851 | int error = 0; | |
3852 | ||
3853 | /* Was the workloop flag passed? Then it is for sure only a workloop */ | |
3854 | if (flags & KEVENT_FLAG_DYNAMIC_KQUEUE) { | |
3855 | assert(flags & KEVENT_FLAG_WORKLOOP); | |
3856 | if (id == (kqueue_id_t)-1 && | |
3857 | (flags & KEVENT_FLAG_KERNEL) && | |
3858 | (flags & KEVENT_FLAG_WORKLOOP)) { | |
3859 | ||
3860 | assert(is_workqueue_thread(current_thread())); | |
3861 | ||
3862 | /* | |
3863 | * when kevent_id_internal is called from within the | |
3864 | * kernel, and the passed 'id' value is '-1' then we | |
3865 | * look for the currently bound workloop kq. | |
3866 | * | |
3867 | * Until pthread kext avoids calling in to kevent_id_internal | |
3868 | * for threads whose fulfill is canceled, calling in unbound | |
3869 | * can't be fatal. | |
3870 | */ | |
3871 | kq = kevent_get_bound_kq(p, current_thread(), | |
3872 | KEVENT_FLAG_WORKLOOP, KQ_WORKLOOP); | |
3873 | if (kq) { | |
3874 | kqueue_retain(kq); | |
3875 | } else { | |
3876 | struct uthread *ut = get_bsdthread_info(current_thread()); | |
3877 | ||
3878 | /* If thread is unbound due to cancel, just return an error */ | |
3879 | if (ut->uu_kqueue_flags == KEVENT_FLAG_WORKLOOP_CANCELED) { | |
3880 | ut->uu_kqueue_flags = 0; | |
3881 | error = ECANCELED; | |
3882 | } else { | |
3883 | panic("Unbound thread called kevent_internal with id=-1" | |
3884 | " uu_kqueue_flags:0x%x, uu_kqueue_bound:%p", | |
3885 | ut->uu_kqueue_flags, ut->uu_kqueue_bound); | |
3886 | } | |
3887 | } | |
3888 | ||
3889 | *fpp = NULL; | |
3890 | *fdp = 0; | |
3891 | *kqp = kq; | |
3892 | return error; | |
3893 | } | |
3894 | ||
3895 | /* try shortcut on kq lookup for bound threads */ | |
3896 | kq = kevent_get_bound_kq(p, current_thread(), KEVENT_FLAG_WORKLOOP, KQ_WORKLOOP); | |
3897 | if (kq != NULL && ((struct kqworkloop *)kq)->kqwl_dynamicid == id) { | |
3898 | ||
3899 | if (flags & KEVENT_FLAG_DYNAMIC_KQ_MUST_NOT_EXIST) { | |
3900 | error = EEXIST; | |
3901 | kq = NULL; | |
3902 | goto out; | |
3903 | } | |
3904 | ||
3905 | /* retain a reference while working with this kq. */ | |
3906 | assert(kq->kq_state & KQ_DYNAMIC); | |
3907 | kqueue_retain(kq); | |
3908 | error = 0; | |
3909 | goto out; | |
3910 | } | |
3911 | ||
3912 | /* look for the kq on the hash table */ | |
3913 | kqhash_lock(p); | |
3914 | kq = kqueue_hash_lookup(p, id); | |
3915 | if (kq == NULL) { | |
3916 | kqhash_unlock(p); | |
3917 | ||
3918 | if (flags & KEVENT_FLAG_DYNAMIC_KQ_MUST_EXIST) { | |
3919 | error = ENOENT; | |
3920 | goto out; | |
3921 | } | |
3922 | ||
3923 | struct kqueue *alloc_kq; | |
3924 | alloc_kq = kqueue_alloc(p, flags); | |
3925 | if (alloc_kq) { | |
3926 | kqhash_lock(p); | |
3927 | kqueue_hash_init_if_needed(p); | |
3928 | kq = kqueue_hash_lookup(p, id); | |
3929 | if (kq == NULL) { | |
3930 | /* insert our new one */ | |
3931 | kq = alloc_kq; | |
3932 | kqueue_hash_insert(p, id, kq); | |
3933 | kqhash_unlock(p); | |
3934 | } else { | |
3935 | /* lost race, retain existing workloop */ | |
3936 | kqueue_retain(kq); | |
3937 | kqhash_unlock(p); | |
3938 | kqueue_release(alloc_kq, KQUEUE_MIGHT_BE_LAST_REF); | |
3939 | kqueue_dealloc(alloc_kq); | |
3940 | } | |
3941 | } else { | |
3942 | error = ENOMEM; | |
3943 | goto out; | |
3944 | } | |
3945 | } else { | |
3946 | ||
3947 | if (flags & KEVENT_FLAG_DYNAMIC_KQ_MUST_NOT_EXIST) { | |
3948 | kqhash_unlock(p); | |
3949 | kq = NULL; | |
3950 | error = EEXIST; | |
3951 | goto out; | |
3952 | } | |
3953 | ||
3954 | /* retain a reference while working with this kq. */ | |
3955 | assert(kq->kq_state & KQ_DYNAMIC); | |
3956 | kqueue_retain(kq); | |
3957 | kqhash_unlock(p); | |
3958 | } | |
3959 | ||
3960 | } else if (flags & KEVENT_FLAG_WORKQ) { | |
3961 | /* must already exist for bound threads. */ | |
3962 | if (flags & KEVENT_FLAG_KERNEL) { | |
3963 | assert(descp->fd_wqkqueue != NULL); | |
3964 | } | |
3965 | ||
3966 | /* | |
3967 | * use the private kq associated with the proc workq. | |
3968 | * Just being a thread within the process (and not | |
3969 | * being the exit/exec thread) is enough to hold a | |
3970 | * reference on this special kq. | |
3971 | */ | |
3972 | kq = descp->fd_wqkqueue; | |
3973 | if (kq == NULL) { | |
3974 | struct kqueue *alloc_kq = kqueue_alloc(p, KEVENT_FLAG_WORKQ); | |
3975 | if (alloc_kq == NULL) | |
3976 | return ENOMEM; | |
3977 | ||
3978 | knhash_lock(p); | |
3979 | if (descp->fd_wqkqueue == NULL) { | |
3980 | kq = descp->fd_wqkqueue = alloc_kq; | |
3981 | knhash_unlock(p); | |
3982 | } else { | |
3983 | knhash_unlock(p); | |
3984 | kq = descp->fd_wqkqueue; | |
3985 | kqueue_dealloc(alloc_kq); | |
3986 | } | |
3987 | } | |
3988 | } else { | |
3989 | /* get a usecount for the kq itself */ | |
3990 | fd = (int)id; | |
3991 | if ((error = fp_getfkq(p, fd, &fp, &kq)) != 0) | |
3992 | return (error); | |
3993 | } | |
3994 | if ((error = kevent_set_kq_mode(kq, flags)) != 0) { | |
3995 | /* drop the usecount */ | |
3996 | if (fp != NULL) | |
3997 | fp_drop(p, fd, fp, 0); | |
3998 | return error; | |
3999 | } | |
4000 | ||
4001 | out: | |
4002 | *fpp = fp; | |
4003 | *fdp = fd; | |
4004 | *kqp = kq; | |
4005 | ||
4006 | return error; | |
4007 | } | |
4008 | ||
4009 | static void | |
4010 | kevent_put_kq( | |
4011 | struct proc *p, | |
4012 | kqueue_id_t id, | |
4013 | struct fileproc *fp, | |
4014 | struct kqueue *kq) | |
4015 | { | |
4016 | kqueue_release_last(p, kq); | |
4017 | if (fp != NULL) { | |
4018 | assert((kq->kq_state & KQ_WORKQ) == 0); | |
4019 | fp_drop(p, (int)id, fp, 0); | |
4020 | } | |
4021 | } | |
4022 | ||
4023 | static uint64_t | |
4024 | kevent_workloop_serial_no_copyin(proc_t p, uint64_t workloop_id) | |
4025 | { | |
4026 | uint64_t serial_no = 0; | |
4027 | user_addr_t addr; | |
4028 | int rc; | |
4029 | ||
4030 | if (workloop_id == 0 || p->p_dispatchqueue_serialno_offset == 0) { | |
4031 | return 0; | |
4032 | } | |
4033 | addr = (user_addr_t)(workloop_id + p->p_dispatchqueue_serialno_offset); | |
4034 | ||
4035 | if (proc_is64bit(p)) { | |
4036 | rc = copyin(addr, (caddr_t)&serial_no, sizeof(serial_no)); | |
4037 | } else { | |
4038 | uint32_t serial_no32 = 0; | |
4039 | rc = copyin(addr, (caddr_t)&serial_no32, sizeof(serial_no32)); | |
4040 | serial_no = serial_no32; | |
4041 | } | |
4042 | return rc == 0 ? serial_no : 0; | |
4043 | } | |
4044 | ||
4045 | int | |
4046 | kevent_exit_on_workloop_ownership_leak(thread_t thread) | |
4047 | { | |
4048 | proc_t p = current_proc(); | |
4049 | struct filedesc *fdp = p->p_fd; | |
4050 | kqueue_id_t workloop_id = 0; | |
4051 | os_reason_t reason; | |
4052 | mach_vm_address_t addr; | |
4053 | uint32_t reason_size; | |
4054 | ||
4055 | kqhash_lock(p); | |
4056 | if (fdp->fd_kqhashmask > 0) { | |
4057 | for (uint32_t i = 0; i < fdp->fd_kqhashmask + 1; i++) { | |
4058 | struct kqworkloop *kqwl; | |
4059 | ||
4060 | SLIST_FOREACH(kqwl, &fdp->fd_kqhash[i], kqwl_hashlink) { | |
4061 | struct kqueue *kq = &kqwl->kqwl_kqueue; | |
4062 | if ((kq->kq_state & KQ_DYNAMIC) && kqwl->kqwl_owner == thread) { | |
4063 | workloop_id = kqwl->kqwl_dynamicid; | |
4064 | break; | |
4065 | } | |
4066 | } | |
4067 | } | |
4068 | } | |
4069 | kqhash_unlock(p); | |
4070 | assert(workloop_id); | |
4071 | ||
4072 | reason = os_reason_create(OS_REASON_LIBSYSTEM, | |
4073 | OS_REASON_LIBSYSTEM_CODE_WORKLOOP_OWNERSHIP_LEAK); | |
4074 | if (reason == OS_REASON_NULL) { | |
4075 | goto out; | |
4076 | } | |
4077 | ||
4078 | reason->osr_flags |= OS_REASON_FLAG_GENERATE_CRASH_REPORT; | |
4079 | reason_size = 2 * sizeof(uint64_t); | |
4080 | reason_size = kcdata_estimate_required_buffer_size(2, reason_size); | |
4081 | if (os_reason_alloc_buffer(reason, reason_size) != 0) { | |
4082 | goto out; | |
4083 | } | |
4084 | ||
4085 | struct kcdata_descriptor *kcd = &reason->osr_kcd_descriptor; | |
4086 | ||
4087 | if (kcdata_get_memory_addr(kcd, EXIT_REASON_WORKLOOP_ID, | |
4088 | sizeof(workloop_id), &addr) == KERN_SUCCESS) { | |
4089 | kcdata_memcpy(kcd, addr, &workloop_id, sizeof(workloop_id)); | |
4090 | } | |
4091 | ||
4092 | uint64_t serial_no = kevent_workloop_serial_no_copyin(p, workloop_id); | |
4093 | if (serial_no && kcdata_get_memory_addr(kcd, EXIT_REASON_DISPATCH_QUEUE_NO, | |
4094 | sizeof(serial_no), &addr) == KERN_SUCCESS) { | |
4095 | kcdata_memcpy(kcd, addr, &serial_no, sizeof(serial_no)); | |
4096 | } | |
4097 | ||
4098 | out: | |
4099 | #if DEVELOPMENT || DEBUG | |
4100 | psignal_try_thread_with_reason(p, thread, SIGABRT, reason); | |
4101 | return 0; | |
4102 | #else | |
4103 | return exit_with_reason(p, W_EXITCODE(0, SIGKILL), (int *)NULL, | |
4104 | FALSE, FALSE, 0, reason); | |
4105 | #endif | |
4106 | } | |
4107 | ||
4108 | ||
4109 | static int | |
4110 | kevent_servicer_detach_preflight(thread_t thread, unsigned int flags, struct kqueue *kq) | |
4111 | { | |
4112 | int error = 0; | |
4113 | struct kqworkloop *kqwl; | |
4114 | struct uthread *ut; | |
4115 | struct kqrequest *kqr; | |
4116 | ||
4117 | if (!(flags & KEVENT_FLAG_WORKLOOP) || !(kq->kq_state & KQ_WORKLOOP)) | |
4118 | return EINVAL; | |
4119 | ||
4120 | /* only kq created with KEVENT_FLAG_WORKLOOP_NO_WQ_THREAD from userspace can have attached threads */ | |
4121 | if (!(kq->kq_state & KQ_NO_WQ_THREAD)) | |
4122 | return EINVAL; | |
4123 | ||
4124 | /* allow detach only on not wq threads */ | |
4125 | if (is_workqueue_thread(thread)) | |
4126 | return EINVAL; | |
4127 | ||
4128 | /* check that the current thread is bound to the requested wq */ | |
4129 | ut = get_bsdthread_info(thread); | |
4130 | if (ut->uu_kqueue_bound != kq) | |
4131 | return EINVAL; | |
4132 | ||
4133 | kqwl = (struct kqworkloop *)kq; | |
4134 | kqwl_req_lock(kqwl); | |
4135 | kqr = &kqwl->kqwl_request; | |
4136 | ||
4137 | /* check that the wq is bound to the thread */ | |
4138 | if ((kqr->kqr_state & KQR_BOUND) == 0 || (kqr->kqr_thread != thread)) | |
4139 | error = EINVAL; | |
4140 | ||
4141 | kqwl_req_unlock(kqwl); | |
4142 | ||
4143 | return error; | |
4144 | } | |
4145 | ||
4146 | static void | |
4147 | kevent_servicer_detach_thread(struct proc *p, kqueue_id_t id, thread_t thread, | |
4148 | unsigned int flags, struct kqueue *kq) | |
39037602 | 4149 | { |
5ba3f43e A |
4150 | struct kqworkloop *kqwl; |
4151 | struct uthread *ut; | |
4152 | ||
4153 | assert((flags & KEVENT_FLAG_WORKLOOP) && (kq->kq_state & KQ_WORKLOOP)); | |
4154 | ||
4155 | /* allow detach only on not wqthreads threads */ | |
4156 | assert(!is_workqueue_thread(thread)); | |
4157 | ||
4158 | /* only kq created with KEVENT_FLAG_WORKLOOP_NO_WQ_THREAD from userspace can have attached threads */ | |
4159 | assert(kq->kq_state & KQ_NO_WQ_THREAD); | |
4160 | ||
4161 | /* check that the current thread is bound to the requested kq */ | |
4162 | ut = get_bsdthread_info(thread); | |
4163 | assert(ut->uu_kqueue_bound == kq); | |
4164 | ||
4165 | kqwl = (struct kqworkloop *)kq; | |
4166 | ||
39037602 | 4167 | kqlock(kq); |
5ba3f43e A |
4168 | |
4169 | /* unbind the thread. | |
4170 | * unbind itself checks if still processing and ends it. | |
4171 | */ | |
4172 | kqworkloop_unbind_thread(kqwl, thread, flags); | |
4173 | ||
39037602 | 4174 | kqunlock(kq); |
5ba3f43e A |
4175 | |
4176 | kevent_put_kq(p, id, NULL, kq); | |
4177 | ||
4178 | return; | |
39037602 A |
4179 | } |
4180 | ||
4181 | static int | |
5ba3f43e | 4182 | kevent_servicer_attach_thread(thread_t thread, unsigned int flags, struct kqueue *kq) |
39037602 | 4183 | { |
5ba3f43e A |
4184 | int error = 0; |
4185 | struct kqworkloop *kqwl; | |
4186 | struct uthread *ut; | |
4187 | struct kqrequest *kqr; | |
55e303ae | 4188 | |
5ba3f43e A |
4189 | if (!(flags & KEVENT_FLAG_WORKLOOP) || !(kq->kq_state & KQ_WORKLOOP)) |
4190 | return EINVAL; | |
3e170ce0 | 4191 | |
5ba3f43e A |
4192 | /* only kq created with KEVENT_FLAG_WORKLOOP_NO_WQ_THREAD from userspace can have attached threads*/ |
4193 | if (!(kq->kq_state & KQ_NO_WQ_THREAD)) | |
4194 | return EINVAL; | |
4195 | ||
4196 | /* allow attach only on not wqthreads */ | |
4197 | if (is_workqueue_thread(thread)) | |
4198 | return EINVAL; | |
4199 | ||
4200 | /* check that the thread is not already bound */ | |
4201 | ut = get_bsdthread_info(thread); | |
4202 | if (ut->uu_kqueue_bound != NULL) | |
4203 | return EINVAL; | |
4204 | ||
4205 | assert(ut->uu_kqueue_flags == 0); | |
4206 | ||
4207 | kqlock(kq); | |
4208 | kqwl = (struct kqworkloop *)kq; | |
4209 | kqwl_req_lock(kqwl); | |
4210 | kqr = &kqwl->kqwl_request; | |
4211 | ||
4212 | /* check that the kqueue is not already bound */ | |
4213 | if (kqr->kqr_state & (KQR_BOUND | KQR_THREQUESTED | KQR_DRAIN)) { | |
4214 | error = EINVAL; | |
4215 | goto out; | |
3e170ce0 | 4216 | } |
39037602 | 4217 | |
5ba3f43e A |
4218 | assert(kqr->kqr_thread == NULL); |
4219 | assert((kqr->kqr_state & KQR_PROCESSING) == 0); | |
4220 | ||
4221 | kqr->kqr_state |= KQR_THREQUESTED; | |
4222 | kqr->kqr_qos_index = THREAD_QOS_UNSPECIFIED; | |
4223 | kqr->kqr_override_index = THREAD_QOS_UNSPECIFIED; | |
4224 | kqr->kqr_dsync_owner_qos = THREAD_QOS_UNSPECIFIED; | |
4225 | kqr->kqr_owner_override_is_sync = 0; | |
4226 | ||
4227 | kqworkloop_bind_thread_impl(kqwl, thread, KEVENT_FLAG_WORKLOOP); | |
4228 | ||
4229 | /* get a ref on the wlkq on behalf of the attached thread */ | |
4230 | kqueue_retain(kq); | |
4231 | ||
4232 | out: | |
4233 | kqwl_req_unlock(kqwl); | |
4234 | kqunlock(kq); | |
4235 | ||
4236 | return error; | |
39037602 | 4237 | } |
39236c6e | 4238 | |
5ba3f43e A |
4239 | static inline |
4240 | boolean_t kevent_args_requesting_events(unsigned int flags, int nevents) | |
4241 | { | |
4242 | return (!(flags & KEVENT_FLAG_ERROR_EVENTS) && nevents > 0); | |
4243 | } | |
39037602 A |
4244 | |
4245 | static int | |
5ba3f43e A |
4246 | kevent_internal(struct proc *p, |
4247 | kqueue_id_t id, kqueue_id_t *id_out, | |
39037602 A |
4248 | user_addr_t changelist, int nchanges, |
4249 | user_addr_t ueventlist, int nevents, | |
4250 | user_addr_t data_out, uint64_t data_available, | |
4251 | unsigned int flags, | |
4252 | user_addr_t utimeout, | |
4253 | kqueue_continue_t continuation, | |
4254 | int32_t *retval) | |
4255 | { | |
4256 | struct _kevent *cont_args; | |
4257 | uthread_t ut; | |
4258 | struct kqueue *kq; | |
4259 | struct fileproc *fp = NULL; | |
5ba3f43e | 4260 | int fd = 0; |
39037602 A |
4261 | struct kevent_internal_s kev; |
4262 | int error, noutputs; | |
4263 | struct timeval atv; | |
4264 | user_size_t data_size; | |
4265 | user_size_t data_resid; | |
5ba3f43e | 4266 | thread_t thread = current_thread(); |
39037602 | 4267 | |
5ba3f43e A |
4268 | /* Don't allow user-space threads to process output events from the workq kqs */ |
4269 | if (((flags & (KEVENT_FLAG_WORKQ | KEVENT_FLAG_KERNEL)) == KEVENT_FLAG_WORKQ) && | |
4270 | kevent_args_requesting_events(flags, nevents)) | |
39037602 A |
4271 | return EINVAL; |
4272 | ||
5ba3f43e A |
4273 | /* restrict dynamic kqueue allocation to workloops (for now) */ |
4274 | if ((flags & (KEVENT_FLAG_DYNAMIC_KQUEUE | KEVENT_FLAG_WORKLOOP)) == KEVENT_FLAG_DYNAMIC_KQUEUE) | |
4275 | return EINVAL; | |
4276 | ||
4277 | if (flags & (KEVENT_FLAG_WORKLOOP_SERVICER_ATTACH | KEVENT_FLAG_WORKLOOP_SERVICER_DETACH | | |
4278 | KEVENT_FLAG_DYNAMIC_KQ_MUST_EXIST | KEVENT_FLAG_DYNAMIC_KQ_MUST_NOT_EXIST | KEVENT_FLAG_WORKLOOP_NO_WQ_THREAD)) { | |
4279 | ||
4280 | /* allowed only on workloops when calling kevent_id from user-space */ | |
4281 | if (!(flags & KEVENT_FLAG_WORKLOOP) || (flags & KEVENT_FLAG_KERNEL) || !(flags & KEVENT_FLAG_DYNAMIC_KQUEUE)) | |
4282 | return EINVAL; | |
4283 | ||
4284 | /* cannot attach and detach simultaneously*/ | |
4285 | if ((flags & KEVENT_FLAG_WORKLOOP_SERVICER_ATTACH) && (flags & KEVENT_FLAG_WORKLOOP_SERVICER_DETACH)) | |
4286 | return EINVAL; | |
4287 | ||
4288 | /* cannot ask for events and detach */ | |
4289 | if ((flags & KEVENT_FLAG_WORKLOOP_SERVICER_DETACH) && kevent_args_requesting_events(flags, nevents)) | |
4290 | return EINVAL; | |
4291 | ||
4292 | } | |
4293 | ||
39037602 A |
4294 | /* prepare to deal with stack-wise allocation of out events */ |
4295 | if (flags & KEVENT_FLAG_STACK_EVENTS) { | |
4296 | int scale = ((flags & KEVENT_FLAG_LEGACY32) ? | |
4297 | (IS_64BIT_PROCESS(p) ? sizeof(struct user64_kevent) : | |
4298 | sizeof(struct user32_kevent)) : | |
4299 | ((flags & KEVENT_FLAG_LEGACY64) ? sizeof(struct kevent64_s) : | |
4300 | sizeof(struct kevent_qos_s))); | |
4301 | ueventlist += nevents * scale; | |
b0d623f7 | 4302 | } |
39037602 A |
4303 | |
4304 | /* convert timeout to absolute - if we have one (and not immediate) */ | |
4305 | error = kevent_get_timeout(p, utimeout, flags, &atv); | |
4306 | if (error) | |
4307 | return error; | |
4308 | ||
4309 | /* copyin initial value of data residual from data_available */ | |
4310 | error = kevent_get_data_size(p, data_available, flags, &data_size); | |
4311 | if (error) | |
4312 | return error; | |
4313 | ||
4314 | /* get the kq we are going to be working on */ | |
5ba3f43e | 4315 | error = kevent_get_kq(p, id, flags, &fp, &fd, &kq); |
39037602 A |
4316 | if (error) |
4317 | return error; | |
91447636 | 4318 | |
5ba3f43e A |
4319 | /* only bound threads can receive events on workloops */ |
4320 | if ((flags & KEVENT_FLAG_WORKLOOP) && kevent_args_requesting_events(flags, nevents)) { | |
4321 | ut = (uthread_t)get_bsdthread_info(thread); | |
4322 | if (ut->uu_kqueue_bound != kq) { | |
4323 | error = EXDEV; | |
4324 | goto out; | |
4325 | } | |
4326 | ||
4327 | } | |
4328 | ||
4329 | /* attach the current thread if necessary */ | |
4330 | if (flags & KEVENT_FLAG_WORKLOOP_SERVICER_ATTACH) { | |
4331 | error = kevent_servicer_attach_thread(thread, flags, kq); | |
4332 | if (error) | |
4333 | goto out; | |
4334 | } | |
4335 | else { | |
4336 | /* before processing events and committing to the system call, return an error if the thread cannot be detached when requested */ | |
4337 | if (flags & KEVENT_FLAG_WORKLOOP_SERVICER_DETACH) { | |
4338 | error = kevent_servicer_detach_preflight(thread, flags, kq); | |
4339 | if (error) | |
4340 | goto out; | |
4341 | } | |
4342 | } | |
4343 | ||
4344 | if (id_out && kq && (flags & KEVENT_FLAG_WORKLOOP)) { | |
4345 | assert(kq->kq_state & KQ_WORKLOOP); | |
4346 | struct kqworkloop *kqwl; | |
4347 | kqwl = (struct kqworkloop *)kq; | |
4348 | *id_out = kqwl->kqwl_dynamicid; | |
4349 | } | |
4350 | ||
91447636 A |
4351 | /* register all the change requests the user provided... */ |
4352 | noutputs = 0; | |
3a60a9f5 | 4353 | while (nchanges > 0 && error == 0) { |
3e170ce0 | 4354 | error = kevent_copyin(&changelist, &kev, p, flags); |
91447636 A |
4355 | if (error) |
4356 | break; | |
39236c6e | 4357 | |
39037602 | 4358 | /* Make sure user doesn't pass in any system flags */ |
91447636 | 4359 | kev.flags &= ~EV_SYSFLAGS; |
39037602 A |
4360 | |
4361 | kevent_register(kq, &kev, p); | |
4362 | ||
4363 | if (nevents > 0 && | |
4364 | ((kev.flags & EV_ERROR) || (kev.flags & EV_RECEIPT))) { | |
4365 | if (kev.flags & EV_RECEIPT) { | |
4366 | kev.flags |= EV_ERROR; | |
4367 | kev.data = 0; | |
4368 | } | |
3e170ce0 | 4369 | error = kevent_copyout(&kev, &ueventlist, p, flags); |
3a60a9f5 A |
4370 | if (error == 0) { |
4371 | nevents--; | |
4372 | noutputs++; | |
4373 | } | |
39037602 A |
4374 | } else if (kev.flags & EV_ERROR) { |
4375 | error = kev.data; | |
55e303ae | 4376 | } |
91447636 | 4377 | nchanges--; |
55e303ae A |
4378 | } |
4379 | ||
3e170ce0 | 4380 | /* short-circuit the scan if we only want error events */ |
39037602 | 4381 | if (flags & KEVENT_FLAG_ERROR_EVENTS) |
3e170ce0 A |
4382 | nevents = 0; |
4383 | ||
39037602 | 4384 | /* process pending events */ |
3e170ce0 | 4385 | if (nevents > 0 && noutputs == 0 && error == 0) { |
3e170ce0 | 4386 | /* store the continuation/completion data in the uthread */ |
5ba3f43e | 4387 | ut = (uthread_t)get_bsdthread_info(thread); |
3e170ce0 A |
4388 | cont_args = &ut->uu_kevent.ss_kevent; |
4389 | cont_args->fp = fp; | |
4390 | cont_args->fd = fd; | |
4391 | cont_args->retval = retval; | |
4392 | cont_args->eventlist = ueventlist; | |
4393 | cont_args->eventcount = nevents; | |
4394 | cont_args->eventout = noutputs; | |
39037602 | 4395 | cont_args->data_available = data_available; |
5ba3f43e | 4396 | cont_args->process_data.fp_fd = (int)id; |
39037602 A |
4397 | cont_args->process_data.fp_flags = flags; |
4398 | cont_args->process_data.fp_data_out = data_out; | |
4399 | cont_args->process_data.fp_data_size = data_size; | |
4400 | cont_args->process_data.fp_data_resid = data_size; | |
91447636 | 4401 | |
b0d623f7 | 4402 | error = kqueue_scan(kq, kevent_callback, |
3e170ce0 | 4403 | continuation, cont_args, |
39037602 | 4404 | &cont_args->process_data, |
3e170ce0 A |
4405 | &atv, p); |
4406 | ||
39037602 | 4407 | /* process remaining outputs */ |
3e170ce0 | 4408 | noutputs = cont_args->eventout; |
39037602 A |
4409 | data_resid = cont_args->process_data.fp_data_resid; |
4410 | ||
4411 | /* copyout residual data size value (if it needs to be copied out) */ | |
4412 | /* don't abandon other output just because of residual copyout failures */ | |
4413 | if (error == 0 && data_available && data_resid != data_size) { | |
4414 | (void)kevent_put_data_size(p, data_available, flags, data_resid); | |
4415 | } | |
3e170ce0 | 4416 | } |
b0d623f7 | 4417 | |
5ba3f43e A |
4418 | /* detach the current thread if necessary */ |
4419 | if (flags & KEVENT_FLAG_WORKLOOP_SERVICER_DETACH) { | |
4420 | assert(fp == NULL); | |
4421 | kevent_servicer_detach_thread(p, id, thread, flags, kq); | |
4422 | } | |
4423 | ||
4424 | out: | |
4425 | kevent_put_kq(p, id, fp, kq); | |
4426 | ||
3e170ce0 A |
4427 | /* don't restart after signals... */ |
4428 | if (error == ERESTART) | |
4429 | error = EINTR; | |
4430 | else if (error == EWOULDBLOCK) | |
4431 | error = 0; | |
4432 | if (error == 0) | |
4433 | *retval = noutputs; | |
39236c6e | 4434 | return (error); |
91447636 A |
4435 | } |
4436 | ||
4437 | ||
4438 | /* | |
4439 | * kevent_callback - callback for each individual event | |
4440 | * | |
39236c6e A |
4441 | * called with nothing locked |
4442 | * caller holds a reference on the kqueue | |
91447636 | 4443 | */ |
91447636 | 4444 | static int |
3e170ce0 | 4445 | kevent_callback(__unused struct kqueue *kq, struct kevent_internal_s *kevp, |
39236c6e | 4446 | void *data) |
91447636 A |
4447 | { |
4448 | struct _kevent *cont_args; | |
4449 | int error; | |
4450 | ||
4451 | cont_args = (struct _kevent *)data; | |
2d21ac55 | 4452 | assert(cont_args->eventout < cont_args->eventcount); |
91447636 A |
4453 | |
4454 | /* | |
4455 | * Copy out the appropriate amount of event data for this user. | |
4456 | */ | |
39236c6e | 4457 | error = kevent_copyout(kevp, &cont_args->eventlist, current_proc(), |
39037602 | 4458 | cont_args->process_data.fp_flags); |
91447636 A |
4459 | |
4460 | /* | |
4461 | * If there isn't space for additional events, return | |
4462 | * a harmless error to stop the processing here | |
4463 | */ | |
4464 | if (error == 0 && ++cont_args->eventout == cont_args->eventcount) | |
39236c6e A |
4465 | error = EWOULDBLOCK; |
4466 | return (error); | |
55e303ae A |
4467 | } |
4468 | ||
b0d623f7 A |
4469 | /* |
4470 | * kevent_description - format a description of a kevent for diagnostic output | |
4471 | * | |
3e170ce0 | 4472 | * called with a 256-byte string buffer |
b0d623f7 A |
4473 | */ |
4474 | ||
4475 | char * | |
3e170ce0 | 4476 | kevent_description(struct kevent_internal_s *kevp, char *s, size_t n) |
b0d623f7 | 4477 | { |
39236c6e A |
4478 | snprintf(s, n, |
4479 | "kevent=" | |
3e170ce0 | 4480 | "{.ident=%#llx, .filter=%d, .flags=%#x, .udata=%#llx, .fflags=%#x, .data=%#llx, .ext[0]=%#llx, .ext[1]=%#llx}", |
39236c6e A |
4481 | kevp->ident, |
4482 | kevp->filter, | |
4483 | kevp->flags, | |
3e170ce0 | 4484 | kevp->udata, |
39236c6e A |
4485 | kevp->fflags, |
4486 | kevp->data, | |
39236c6e | 4487 | kevp->ext[0], |
3e170ce0 | 4488 | kevp->ext[1] ); |
39236c6e A |
4489 | |
4490 | return (s); | |
b0d623f7 A |
4491 | } |
4492 | ||
91447636 A |
4493 | /* |
4494 | * kevent_register - add a new event to a kqueue | |
4495 | * | |
4496 | * Creates a mapping between the event source and | |
4497 | * the kqueue via a knote data structure. | |
4498 | * | |
4499 | * Because many/most the event sources are file | |
4500 | * descriptor related, the knote is linked off | |
4501 | * the filedescriptor table for quick access. | |
4502 | * | |
4503 | * called with nothing locked | |
4504 | * caller holds a reference on the kqueue | |
4505 | */ | |
4506 | ||
39037602 | 4507 | void |
3e170ce0 | 4508 | kevent_register(struct kqueue *kq, struct kevent_internal_s *kev, |
39236c6e | 4509 | __unused struct proc *ctxp) |
55e303ae | 4510 | { |
2d21ac55 | 4511 | struct proc *p = kq->kq_p; |
5ba3f43e | 4512 | const struct filterops *fops; |
55e303ae | 4513 | struct knote *kn = NULL; |
39037602 | 4514 | int result = 0; |
91447636 | 4515 | int error = 0; |
5ba3f43e A |
4516 | unsigned short kev_flags = kev->flags; |
4517 | int knoteuse_flags = KNUSE_NONE; | |
55e303ae A |
4518 | |
4519 | if (kev->filter < 0) { | |
39037602 A |
4520 | if (kev->filter + EVFILT_SYSCOUNT < 0) { |
4521 | error = EINVAL; | |
4522 | goto out; | |
4523 | } | |
55e303ae A |
4524 | fops = sysfilt_ops[~kev->filter]; /* to 0-base index */ |
4525 | } else { | |
39037602 A |
4526 | error = EINVAL; |
4527 | goto out; | |
55e303ae A |
4528 | } |
4529 | ||
39037602 A |
4530 | /* restrict EV_VANISHED to adding udata-specific dispatch kevents */ |
4531 | if ((kev->flags & EV_VANISHED) && | |
4532 | (kev->flags & (EV_ADD | EV_DISPATCH2)) != (EV_ADD | EV_DISPATCH2)) { | |
4533 | error = EINVAL; | |
4534 | goto out; | |
4535 | } | |
4536 | ||
4537 | /* Simplify the flags - delete and disable overrule */ | |
4538 | if (kev->flags & EV_DELETE) | |
4539 | kev->flags &= ~EV_ADD; | |
4540 | if (kev->flags & EV_DISABLE) | |
4541 | kev->flags &= ~EV_ENABLE; | |
4542 | ||
5ba3f43e A |
4543 | if (kq->kq_state & KQ_WORKLOOP) { |
4544 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQWL_REGISTER), | |
4545 | ((struct kqworkloop *)kq)->kqwl_dynamicid, | |
4546 | kev->udata, kev->flags, kev->filter); | |
4547 | } else if (kq->kq_state & KQ_WORKQ) { | |
4548 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQWQ_REGISTER), | |
4549 | 0, kev->udata, kev->flags, kev->filter); | |
4550 | } else { | |
4551 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQ_REGISTER), | |
4552 | VM_KERNEL_UNSLIDE_OR_PERM(kq), | |
4553 | kev->udata, kev->flags, kev->filter); | |
4554 | } | |
39037602 | 4555 | |
5ba3f43e | 4556 | restart: |
55e303ae | 4557 | |
39037602 | 4558 | /* find the matching knote from the fd tables/hashes */ |
5ba3f43e | 4559 | kn = kq_find_knote_and_kq_lock(kq, kev, fops->f_isfd, p); |
3e170ce0 | 4560 | |
39037602 A |
4561 | if (kn == NULL) { |
4562 | if (kev->flags & EV_ADD) { | |
5ba3f43e | 4563 | struct fileproc *knote_fp = NULL; |
39037602 A |
4564 | |
4565 | /* grab a file reference for the new knote */ | |
4566 | if (fops->f_isfd) { | |
5ba3f43e | 4567 | if ((error = fp_lookup(p, kev->ident, &knote_fp, 0)) != 0) { |
39037602 | 4568 | goto out; |
3e170ce0 A |
4569 | } |
4570 | } | |
55e303ae | 4571 | |
91447636 A |
4572 | kn = knote_alloc(); |
4573 | if (kn == NULL) { | |
91447636 | 4574 | error = ENOMEM; |
5ba3f43e A |
4575 | if (knote_fp != NULL) |
4576 | fp_drop(p, kev->ident, knote_fp, 0); | |
39037602 | 4577 | goto out; |
91447636 | 4578 | } |
39037602 | 4579 | |
5ba3f43e A |
4580 | kn->kn_fp = knote_fp; |
4581 | knote_set_kq(kn, kq); | |
4582 | kqueue_retain(kq); /* retain a kq ref */ | |
39037602 A |
4583 | kn->kn_filtid = ~kev->filter; |
4584 | kn->kn_inuse = 1; /* for f_attach() */ | |
4585 | kn->kn_status = KN_ATTACHING | KN_ATTACHED; | |
4586 | ||
4587 | /* was vanish support requested */ | |
4588 | if (kev->flags & EV_VANISHED) { | |
4589 | kev->flags &= ~EV_VANISHED; | |
4590 | kn->kn_status |= KN_REQVANISH; | |
4591 | } | |
4592 | ||
4593 | /* snapshot matching/dispatching protcol flags into knote */ | |
4594 | if (kev->flags & EV_DISPATCH) | |
4595 | kn->kn_status |= KN_DISPATCH; | |
4596 | if (kev->flags & EV_UDATA_SPECIFIC) | |
4597 | kn->kn_status |= KN_UDATA_SPECIFIC; | |
4598 | ||
4599 | /* | |
4600 | * copy the kevent state into knote | |
4601 | * protocol is that fflags and data | |
4602 | * are saved off, and cleared before | |
4603 | * calling the attach routine. | |
4604 | */ | |
4605 | kn->kn_kevent = *kev; | |
91447636 A |
4606 | kn->kn_sfflags = kev->fflags; |
4607 | kn->kn_sdata = kev->data; | |
39037602 A |
4608 | kn->kn_fflags = 0; |
4609 | kn->kn_data = 0; | |
4610 | ||
4611 | /* invoke pthread kext to convert kevent qos to thread qos */ | |
5ba3f43e A |
4612 | knote_canonicalize_kevent_qos(kn); |
4613 | knote_set_qos_index(kn, qos_index_from_qos(kn, kn->kn_qos, FALSE)); | |
91447636 A |
4614 | |
4615 | /* before anyone can find it */ | |
5ba3f43e A |
4616 | if (kev->flags & EV_DISABLE) { |
4617 | /* | |
4618 | * do this before anyone can find it, | |
4619 | * this can't call knote_disable() because it expects having | |
4620 | * the kqlock held | |
4621 | */ | |
4622 | kn->kn_status |= KN_DISABLED; | |
4623 | } | |
91447636 | 4624 | |
39037602 | 4625 | /* Add the knote for lookup thru the fd table */ |
5ba3f43e | 4626 | error = kq_add_knote(kq, kn, kev, p, &knoteuse_flags); |
91447636 | 4627 | if (error) { |
5ba3f43e | 4628 | (void)kqueue_release(kq, KQUEUE_CANT_BE_LAST_REF); |
91447636 | 4629 | knote_free(kn); |
5ba3f43e A |
4630 | if (knote_fp != NULL) |
4631 | fp_drop(p, kev->ident, knote_fp, 0); | |
4632 | ||
4633 | if (error == ERESTART) { | |
4634 | error = 0; | |
4635 | goto restart; | |
4636 | } | |
39037602 | 4637 | goto out; |
91447636 A |
4638 | } |
4639 | ||
39037602 | 4640 | /* fp reference count now applies to knote */ |
5ba3f43e | 4641 | /* rwlock boost is now held */ |
91447636 | 4642 | |
39037602 | 4643 | /* call filter attach routine */ |
5ba3f43e | 4644 | result = fops->f_attach(kn, kev); |
b0d623f7 | 4645 | |
39037602 A |
4646 | /* |
4647 | * Trade knote use count for kq lock. | |
4648 | * Cannot be dropped because we held | |
4649 | * KN_ATTACHING throughout. | |
4650 | */ | |
5ba3f43e | 4651 | knoteuse2kqlock(kq, kn, KNUSE_STEAL_DROP | knoteuse_flags); |
6d2010ae | 4652 | |
39037602 | 4653 | if (kn->kn_flags & EV_ERROR) { |
7e4a7d39 A |
4654 | /* |
4655 | * Failed to attach correctly, so drop. | |
4656 | * All other possible users/droppers | |
39037602 A |
4657 | * have deferred to us. Save the error |
4658 | * to return to our caller. | |
7e4a7d39 | 4659 | */ |
39037602 | 4660 | kn->kn_status &= ~KN_ATTACHED; |
b0d623f7 | 4661 | kn->kn_status |= KN_DROPPING; |
39037602 | 4662 | error = kn->kn_data; |
b0d623f7 | 4663 | kqunlock(kq); |
91447636 | 4664 | knote_drop(kn, p); |
39037602 A |
4665 | goto out; |
4666 | } | |
4667 | ||
4668 | /* end "attaching" phase - now just attached */ | |
4669 | kn->kn_status &= ~KN_ATTACHING; | |
4670 | ||
4671 | if (kn->kn_status & KN_DROPPING) { | |
7e4a7d39 A |
4672 | /* |
4673 | * Attach succeeded, but someone else | |
4674 | * deferred their drop - now we have | |
39037602 | 4675 | * to do it for them. |
7e4a7d39 A |
4676 | */ |
4677 | kqunlock(kq); | |
7e4a7d39 | 4678 | knote_drop(kn, p); |
39037602 | 4679 | goto out; |
91447636 | 4680 | } |
39037602 | 4681 | |
5ba3f43e A |
4682 | /* Mark the thread request overcommit - if appropos */ |
4683 | knote_set_qos_overcommit(kn); | |
4684 | ||
39037602 A |
4685 | /* |
4686 | * If the attach routine indicated that an | |
4687 | * event is already fired, activate the knote. | |
4688 | */ | |
4689 | if (result) | |
4690 | knote_activate(kn); | |
4691 | ||
5ba3f43e A |
4692 | if (knote_fops(kn)->f_post_attach) { |
4693 | error = knote_fops(kn)->f_post_attach(kn, kev); | |
4694 | if (error) { | |
4695 | kqunlock(kq); | |
4696 | goto out; | |
4697 | } | |
4698 | } | |
4699 | ||
91447636 | 4700 | } else { |
5ba3f43e A |
4701 | if ((kev_flags & (EV_ADD | EV_DELETE)) == (EV_ADD | EV_DELETE) && |
4702 | (kq->kq_state & KQ_WORKLOOP)) { | |
4703 | /* | |
4704 | * For workloops, understand EV_ADD|EV_DELETE as a "soft" delete | |
4705 | * that doesn't care about ENOENT, so just pretend the deletion | |
4706 | * happened. | |
4707 | */ | |
4708 | } else { | |
4709 | error = ENOENT; | |
4710 | } | |
39037602 | 4711 | goto out; |
91447636 | 4712 | } |
39037602 | 4713 | |
91447636 | 4714 | } else { |
5ba3f43e | 4715 | /* existing knote: kqueue lock already taken by kq_find_knote_and_kq_lock */ |
39236c6e | 4716 | |
39037602 A |
4717 | if ((kn->kn_status & (KN_DROPPING | KN_ATTACHING)) != 0) { |
4718 | /* | |
4719 | * The knote is not in a stable state, wait for that | |
4720 | * transition to complete and then redrive the lookup. | |
4721 | */ | |
5ba3f43e | 4722 | knoteusewait(kq, kn); |
39037602 A |
4723 | goto restart; |
4724 | } | |
4725 | ||
91447636 | 4726 | if (kev->flags & EV_DELETE) { |
39037602 A |
4727 | |
4728 | /* | |
4729 | * If attempting to delete a disabled dispatch2 knote, | |
4730 | * we must wait for the knote to be re-enabled (unless | |
4731 | * it is being re-enabled atomically here). | |
4732 | */ | |
3e170ce0 | 4733 | if ((kev->flags & EV_ENABLE) == 0 && |
39037602 A |
4734 | (kn->kn_status & (KN_DISPATCH2 | KN_DISABLED)) == |
4735 | (KN_DISPATCH2 | KN_DISABLED)) { | |
4736 | kn->kn_status |= KN_DEFERDELETE; | |
3e170ce0 A |
4737 | kqunlock(kq); |
4738 | error = EINPROGRESS; | |
5ba3f43e A |
4739 | } else if (knote_fops(kn)->f_drop_and_unlock) { |
4740 | /* | |
4741 | * The filter has requested to handle EV_DELETE events | |
4742 | * | |
4743 | * ERESTART means the kevent has to be re-evaluated | |
4744 | */ | |
4745 | error = knote_fops(kn)->f_drop_and_unlock(kn, kev); | |
4746 | if (error == ERESTART) { | |
4747 | error = 0; | |
4748 | goto restart; | |
4749 | } | |
39037602 | 4750 | } else if (kqlock2knotedrop(kq, kn)) { |
5ba3f43e | 4751 | /* standard/default EV_DELETE path */ |
39037602 | 4752 | knote_drop(kn, p); |
3e170ce0 | 4753 | } else { |
39037602 A |
4754 | /* |
4755 | * The kqueue is unlocked, it's not being | |
4756 | * dropped, and kqlock2knotedrop returned 0: | |
4757 | * this means that someone stole the drop of | |
4758 | * the knote from us. | |
4759 | */ | |
4760 | error = EINPROGRESS; | |
3e170ce0 | 4761 | } |
39037602 | 4762 | goto out; |
91447636 A |
4763 | } |
4764 | ||
b7266188 | 4765 | /* |
39037602 A |
4766 | * If we are re-enabling a deferred-delete knote, |
4767 | * just enable it now and avoid calling the | |
4768 | * filter touch routine (it has delivered its | |
4769 | * last event already). | |
b7266188 | 4770 | */ |
39037602 A |
4771 | if ((kev->flags & EV_ENABLE) && |
4772 | (kn->kn_status & KN_DEFERDELETE)) { | |
4773 | assert(kn->kn_status & KN_DISABLED); | |
4774 | knote_activate(kn); | |
4775 | knote_enable(kn); | |
4776 | kqunlock(kq); | |
4777 | goto out; | |
b7266188 A |
4778 | } |
4779 | ||
91447636 | 4780 | /* |
39037602 A |
4781 | * If we are disabling, do it before unlocking and |
4782 | * calling the touch routine (so no processing can | |
4783 | * see the new kevent state before the disable is | |
4784 | * applied). | |
91447636 | 4785 | */ |
39037602 A |
4786 | if (kev->flags & EV_DISABLE) |
4787 | knote_disable(kn); | |
91447636 A |
4788 | |
4789 | /* | |
39037602 A |
4790 | * Convert the kqlock to a use reference on the |
4791 | * knote so we can call the filter touch routine. | |
91447636 | 4792 | */ |
5ba3f43e A |
4793 | if (knoteuse_needs_boost(kn, kev)) { |
4794 | knoteuse_flags |= KNUSE_BOOST; | |
4795 | } | |
4796 | if (kqlock2knoteuse(kq, kn, knoteuse_flags)) { | |
39037602 A |
4797 | /* |
4798 | * Call touch routine to notify filter of changes | |
4799 | * in filter values (and to re-determine if any | |
4800 | * events are fired). | |
4801 | */ | |
4802 | result = knote_fops(kn)->f_touch(kn, kev); | |
4803 | ||
4804 | /* Get the kq lock back (don't defer droppers). */ | |
5ba3f43e A |
4805 | if (!knoteuse2kqlock(kq, kn, knoteuse_flags)) { |
4806 | kqunlock(kq); | |
4807 | goto out; | |
4808 | } | |
4809 | ||
4810 | /* Handle errors during touch routine */ | |
4811 | if (kev->flags & EV_ERROR) { | |
4812 | error = kev->data; | |
39037602 A |
4813 | kqunlock(kq); |
4814 | goto out; | |
4815 | } | |
4816 | ||
4817 | /* Activate it if the touch routine said to */ | |
4818 | if (result) | |
4819 | knote_activate(kn); | |
4820 | } | |
4821 | ||
4822 | /* Enable the knote if called for */ | |
4823 | if (kev->flags & EV_ENABLE) | |
4824 | knote_enable(kn); | |
b0d623f7 | 4825 | |
91447636 A |
4826 | } |
4827 | ||
39037602 A |
4828 | /* still have kqlock held and knote is valid */ |
4829 | kqunlock(kq); | |
4830 | ||
5ba3f43e | 4831 | out: |
39037602 A |
4832 | /* output local errors through the kevent */ |
4833 | if (error) { | |
4834 | kev->flags |= EV_ERROR; | |
4835 | kev->data = error; | |
4836 | } | |
91447636 A |
4837 | } |
4838 | ||
b0d623f7 A |
4839 | |
4840 | /* | |
4841 | * knote_process - process a triggered event | |
4842 | * | |
4843 | * Validate that it is really still a triggered event | |
4844 | * by calling the filter routines (if necessary). Hold | |
4845 | * a use reference on the knote to avoid it being detached. | |
39037602 A |
4846 | * |
4847 | * If it is still considered triggered, we will have taken | |
4848 | * a copy of the state under the filter lock. We use that | |
4849 | * snapshot to dispatch the knote for future processing (or | |
4850 | * not, if this was a lost event). | |
4851 | * | |
4852 | * Our caller assures us that nobody else can be processing | |
4853 | * events from this knote during the whole operation. But | |
4854 | * others can be touching or posting events to the knote | |
4855 | * interspersed with our processing it. | |
b0d623f7 A |
4856 | * |
4857 | * caller holds a reference on the kqueue. | |
4858 | * kqueue locked on entry and exit - but may be dropped | |
4859 | */ | |
4860 | static int | |
39037602 A |
4861 | knote_process(struct knote *kn, |
4862 | kevent_callback_t callback, | |
4863 | void *callback_data, | |
4864 | struct filt_process_s *process_data, | |
4865 | struct proc *p) | |
b0d623f7 | 4866 | { |
3e170ce0 | 4867 | struct kevent_internal_s kev; |
39037602 A |
4868 | struct kqueue *kq = knote_get_kq(kn); |
4869 | int result = 0; | |
4870 | int error = 0; | |
4871 | ||
4872 | bzero(&kev, sizeof(kev)); | |
b0d623f7 A |
4873 | |
4874 | /* | |
39037602 A |
4875 | * Must be active or stayactive |
4876 | * Must be queued and not disabled/suppressed | |
b0d623f7 | 4877 | */ |
39037602 A |
4878 | assert(kn->kn_status & KN_QUEUED); |
4879 | assert(kn->kn_status & (KN_ACTIVE|KN_STAYACTIVE)); | |
4880 | assert(!(kn->kn_status & (KN_DISABLED|KN_SUPPRESSED|KN_DROPPING))); | |
b0d623f7 | 4881 | |
5ba3f43e A |
4882 | if (kq->kq_state & KQ_WORKLOOP) { |
4883 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQWL_PROCESS), | |
4884 | ((struct kqworkloop *)kq)->kqwl_dynamicid, | |
4885 | kn->kn_udata, kn->kn_status | (kn->kn_id << 32), | |
4886 | kn->kn_filtid); | |
4887 | } else if (kq->kq_state & KQ_WORKQ) { | |
4888 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQWQ_PROCESS), | |
4889 | 0, kn->kn_udata, kn->kn_status | (kn->kn_id << 32), | |
4890 | kn->kn_filtid); | |
4891 | } else { | |
4892 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQ_PROCESS), | |
4893 | VM_KERNEL_UNSLIDE_OR_PERM(kq), kn->kn_udata, | |
4894 | kn->kn_status | (kn->kn_id << 32), kn->kn_filtid); | |
4895 | } | |
4896 | ||
39037602 A |
4897 | /* |
4898 | * For deferred-drop or vanished events, we just create a fake | |
4899 | * event to acknowledge end-of-life. Otherwise, we call the | |
4900 | * filter's process routine to snapshot the kevent state under | |
4901 | * the filter's locking protocol. | |
4902 | */ | |
4903 | if (kn->kn_status & (KN_DEFERDELETE | KN_VANISHED)) { | |
4904 | /* create fake event */ | |
4905 | kev.filter = kn->kn_filter; | |
4906 | kev.ident = kn->kn_id; | |
4907 | kev.qos = kn->kn_qos; | |
4908 | kev.flags = (kn->kn_status & KN_DEFERDELETE) ? | |
4909 | EV_DELETE : EV_VANISHED; | |
4910 | kev.flags |= (EV_DISPATCH2 | EV_ONESHOT); | |
4911 | kev.udata = kn->kn_udata; | |
b0d623f7 | 4912 | result = 1; |
b0d623f7 | 4913 | |
39037602 A |
4914 | knote_suppress(kn); |
4915 | } else { | |
5ba3f43e | 4916 | int flags = KNUSE_NONE; |
39037602 A |
4917 | /* deactivate - so new activations indicate a wakeup */ |
4918 | knote_deactivate(kn); | |
b0d623f7 | 4919 | |
39037602 A |
4920 | /* suppress knotes to avoid returning the same event multiple times in a single call. */ |
4921 | knote_suppress(kn); | |
b7266188 | 4922 | |
5ba3f43e A |
4923 | if (knoteuse_needs_boost(kn, NULL)) { |
4924 | flags |= KNUSE_BOOST; | |
4925 | } | |
39037602 | 4926 | /* convert lock to a knote use reference */ |
5ba3f43e | 4927 | if (!kqlock2knoteuse(kq, kn, flags)) |
39037602 | 4928 | panic("dropping knote found on queue\n"); |
b7266188 | 4929 | |
39037602 A |
4930 | /* call out to the filter to process with just a ref */ |
4931 | result = knote_fops(kn)->f_process(kn, process_data, &kev); | |
5ba3f43e | 4932 | if (result) flags |= KNUSE_STEAL_DROP; |
39037602 A |
4933 | |
4934 | /* | |
4935 | * convert our reference back to a lock. accept drop | |
4936 | * responsibility from others if we've committed to | |
4937 | * delivering event data. | |
4938 | */ | |
5ba3f43e | 4939 | if (!knoteuse2kqlock(kq, kn, flags)) { |
39037602 A |
4940 | /* knote dropped */ |
4941 | kn = NULL; | |
4942 | } | |
4943 | } | |
4944 | ||
4945 | if (kn != NULL) { | |
4946 | /* | |
4947 | * Determine how to dispatch the knote for future event handling. | |
4948 | * not-fired: just return (do not callout, leave deactivated). | |
4949 | * One-shot: If dispatch2, enter deferred-delete mode (unless this is | |
4950 | * is the deferred delete event delivery itself). Otherwise, | |
4951 | * drop it. | |
4952 | * stolendrop:We took responsibility for someone else's drop attempt. | |
4953 | * treat this just like one-shot and prepare to turn it back | |
4954 | * into a deferred delete if required. | |
4955 | * Dispatch: don't clear state, just mark it disabled. | |
4956 | * Cleared: just leave it deactivated. | |
4957 | * Others: re-activate as there may be more events to handle. | |
4958 | * This will not wake up more handlers right now, but | |
4959 | * at the completion of handling events it may trigger | |
4960 | * more handler threads (TODO: optimize based on more than | |
4961 | * just this one event being detected by the filter). | |
4962 | */ | |
4963 | ||
4964 | if (result == 0) | |
4965 | return (EJUSTRETURN); | |
4966 | ||
4967 | if ((kev.flags & EV_ONESHOT) || (kn->kn_status & KN_STOLENDROP)) { | |
4968 | if ((kn->kn_status & (KN_DISPATCH2 | KN_DEFERDELETE)) == KN_DISPATCH2) { | |
4969 | /* defer dropping non-delete oneshot dispatch2 events */ | |
4970 | kn->kn_status |= KN_DEFERDELETE; | |
4971 | knote_disable(kn); | |
b7266188 | 4972 | |
39037602 A |
4973 | /* if we took over another's drop clear those flags here */ |
4974 | if (kn->kn_status & KN_STOLENDROP) { | |
4975 | assert(kn->kn_status & KN_DROPPING); | |
39236c6e | 4976 | /* |
39037602 A |
4977 | * the knote will be dropped when the |
4978 | * deferred deletion occurs | |
39236c6e | 4979 | */ |
39037602 | 4980 | kn->kn_status &= ~(KN_DROPPING|KN_STOLENDROP); |
b0d623f7 | 4981 | } |
39037602 A |
4982 | } else if (kn->kn_status & KN_STOLENDROP) { |
4983 | /* We now own the drop of the knote. */ | |
4984 | assert(kn->kn_status & KN_DROPPING); | |
4985 | knote_unsuppress(kn); | |
4986 | kqunlock(kq); | |
4987 | knote_drop(kn, p); | |
4988 | kqlock(kq); | |
4989 | } else if (kqlock2knotedrop(kq, kn)) { | |
4990 | /* just EV_ONESHOT, _not_ DISPATCH2 */ | |
4991 | knote_drop(kn, p); | |
4992 | kqlock(kq); | |
b0d623f7 | 4993 | } |
39037602 A |
4994 | } else if (kn->kn_status & KN_DISPATCH) { |
4995 | /* disable all dispatch knotes */ | |
4996 | knote_disable(kn); | |
4997 | } else if ((kev.flags & EV_CLEAR) == 0) { | |
4998 | /* re-activate in case there are more events */ | |
4999 | knote_activate(kn); | |
b0d623f7 A |
5000 | } |
5001 | } | |
39236c6e | 5002 | |
b0d623f7 | 5003 | /* |
39037602 A |
5004 | * callback to handle each event as we find it. |
5005 | * If we have to detach and drop the knote, do | |
5006 | * it while we have the kq unlocked. | |
b0d623f7 | 5007 | */ |
39037602 A |
5008 | if (result) { |
5009 | kqunlock(kq); | |
5010 | error = (callback)(kq, &kev, callback_data); | |
5011 | kqlock(kq); | |
5012 | } | |
5013 | return (error); | |
5014 | } | |
b0d623f7 | 5015 | |
39037602 A |
5016 | |
5017 | /* | |
5018 | * Return 0 to indicate that processing should proceed, | |
5019 | * -1 if there is nothing to process. | |
5020 | * | |
5021 | * Called with kqueue locked and returns the same way, | |
5022 | * but may drop lock temporarily. | |
5023 | */ | |
5024 | static int | |
5025 | kqworkq_begin_processing(struct kqworkq *kqwq, kq_index_t qos_index, int flags) | |
5026 | { | |
5027 | struct kqrequest *kqr; | |
5028 | thread_t self = current_thread(); | |
5029 | __assert_only struct uthread *ut = get_bsdthread_info(self); | |
39037602 A |
5030 | |
5031 | assert(kqwq->kqwq_state & KQ_WORKQ); | |
5032 | assert(qos_index < KQWQ_NQOS); | |
5033 | ||
5ba3f43e A |
5034 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQWQ_PROCESS_BEGIN) | DBG_FUNC_START, |
5035 | flags, qos_index); | |
5036 | ||
39037602 | 5037 | kqwq_req_lock(kqwq); |
39037602 | 5038 | |
5ba3f43e | 5039 | kqr = kqworkq_get_request(kqwq, qos_index); |
39037602 | 5040 | |
5ba3f43e | 5041 | /* manager skips buckets that haven't asked for its help */ |
39037602 A |
5042 | if (flags & KEVENT_FLAG_WORKQ_MANAGER) { |
5043 | ||
5044 | /* If nothing for manager to do, just return */ | |
5045 | if ((kqr->kqr_state & KQWQ_THMANAGER) == 0) { | |
5ba3f43e A |
5046 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQWQ_PROCESS_BEGIN) | DBG_FUNC_END, |
5047 | 0, kqr->kqr_state); | |
39037602 A |
5048 | kqwq_req_unlock(kqwq); |
5049 | return -1; | |
b0d623f7 | 5050 | } |
39037602 | 5051 | /* bind manager thread from this time on */ |
5ba3f43e | 5052 | kqworkq_bind_thread_impl(kqwq, qos_index, self, flags); |
39037602 | 5053 | |
b0d623f7 | 5054 | } else { |
5ba3f43e A |
5055 | /* We should already be bound to this kqueue */ |
5056 | assert(kqr->kqr_state & KQR_BOUND); | |
5057 | assert(kqr->kqr_thread == self); | |
5058 | assert(ut->uu_kqueue_bound == (struct kqueue *)kqwq); | |
5059 | assert(ut->uu_kqueue_qos_index == qos_index); | |
39037602 | 5060 | assert((ut->uu_kqueue_flags & flags) == ut->uu_kqueue_flags); |
b0d623f7 A |
5061 | } |
5062 | ||
5ba3f43e A |
5063 | /* |
5064 | * we should have been requested to be here | |
5065 | * and nobody else should still be processing | |
5066 | */ | |
5067 | assert(kqr->kqr_state & KQR_WAKEUP); | |
5068 | assert(kqr->kqr_state & KQR_THREQUESTED); | |
5069 | assert((kqr->kqr_state & KQR_PROCESSING) == 0); | |
5070 | ||
5071 | /* reset wakeup trigger to catch new events after we start processing */ | |
5072 | kqr->kqr_state &= ~KQR_WAKEUP; | |
39236c6e | 5073 | |
39037602 | 5074 | /* convert to processing mode */ |
5ba3f43e A |
5075 | kqr->kqr_state |= KQR_PROCESSING; |
5076 | ||
5077 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQWQ_PROCESS_BEGIN) | DBG_FUNC_END, | |
5078 | kqr_thread_id(kqr), kqr->kqr_state); | |
5079 | ||
39037602 A |
5080 | kqwq_req_unlock(kqwq); |
5081 | return 0; | |
b0d623f7 A |
5082 | } |
5083 | ||
5ba3f43e A |
5084 | static inline bool |
5085 | kqworkloop_is_processing_on_current_thread(struct kqworkloop *kqwl) | |
5086 | { | |
5087 | struct kqueue *kq = &kqwl->kqwl_kqueue; | |
5088 | ||
5089 | kqlock_held(kq); | |
5090 | ||
5091 | if (kq->kq_state & KQ_PROCESSING) { | |
5092 | /* | |
5093 | * KQ_PROCESSING is unset with the kqlock held, and the kqr thread is | |
5094 | * never modified while KQ_PROCESSING is set, meaning that peeking at | |
5095 | * its value is safe from this context. | |
5096 | */ | |
5097 | return kqwl->kqwl_request.kqr_thread == current_thread(); | |
5098 | } | |
5099 | return false; | |
5100 | } | |
5101 | ||
5102 | static void | |
5103 | kqworkloop_acknowledge_events(struct kqworkloop *kqwl, boolean_t clear_ipc_override) | |
5104 | { | |
5105 | struct kqrequest *kqr = &kqwl->kqwl_request; | |
5106 | struct knote *kn, *tmp; | |
5107 | ||
5108 | kqlock_held(&kqwl->kqwl_kqueue); | |
5109 | ||
5110 | TAILQ_FOREACH_SAFE(kn, &kqr->kqr_suppressed, kn_tqe, tmp) { | |
5111 | /* | |
5112 | * If a knote that can adjust QoS is disabled because of the automatic | |
5113 | * behavior of EV_DISPATCH, the knotes should stay suppressed so that | |
5114 | * further overrides keep pushing. | |
5115 | */ | |
5116 | if (knote_fops(kn)->f_adjusts_qos && (kn->kn_status & KN_DISABLED) && | |
5117 | (kn->kn_status & (KN_STAYACTIVE | KN_DROPPING)) == 0 && | |
5118 | (kn->kn_flags & (EV_DISPATCH | EV_DISABLE)) == EV_DISPATCH) { | |
5119 | /* | |
5120 | * When called from unbind, clear the sync ipc override on the knote | |
5121 | * for events which are delivered. | |
5122 | */ | |
5123 | if (clear_ipc_override) { | |
5124 | knote_adjust_sync_qos(kn, THREAD_QOS_UNSPECIFIED, FALSE); | |
5125 | } | |
5126 | continue; | |
5127 | } | |
5128 | knote_unsuppress(kn); | |
5129 | } | |
5130 | } | |
5131 | ||
5132 | static int | |
5133 | kqworkloop_begin_processing(struct kqworkloop *kqwl, | |
5134 | __assert_only unsigned int flags) | |
5135 | { | |
5136 | struct kqrequest *kqr = &kqwl->kqwl_request; | |
5137 | struct kqueue *kq = &kqwl->kqwl_kqueue; | |
5138 | ||
5139 | kqlock_held(kq); | |
5140 | ||
5141 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQWL_PROCESS_BEGIN) | DBG_FUNC_START, | |
5142 | kqwl->kqwl_dynamicid, flags, 0); | |
5143 | ||
5144 | kqwl_req_lock(kqwl); | |
5145 | ||
5146 | /* nobody else should still be processing */ | |
5147 | assert((kqr->kqr_state & KQR_PROCESSING) == 0); | |
5148 | assert((kq->kq_state & KQ_PROCESSING) == 0); | |
5149 | ||
5150 | kqr->kqr_state |= KQR_PROCESSING | KQR_R2K_NOTIF_ARMED; | |
5151 | kq->kq_state |= KQ_PROCESSING; | |
5152 | ||
5153 | kqwl_req_unlock(kqwl); | |
5154 | ||
5155 | kqworkloop_acknowledge_events(kqwl, FALSE); | |
5156 | ||
5157 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQWL_PROCESS_BEGIN) | DBG_FUNC_END, | |
5158 | kqwl->kqwl_dynamicid, flags, 0); | |
5159 | ||
5160 | return 0; | |
5161 | } | |
5162 | ||
6d2010ae A |
5163 | /* |
5164 | * Return 0 to indicate that processing should proceed, | |
5165 | * -1 if there is nothing to process. | |
5166 | * | |
5167 | * Called with kqueue locked and returns the same way, | |
5168 | * but may drop lock temporarily. | |
39037602 | 5169 | * May block. |
6d2010ae A |
5170 | */ |
5171 | static int | |
39037602 | 5172 | kqueue_begin_processing(struct kqueue *kq, kq_index_t qos_index, unsigned int flags) |
6d2010ae | 5173 | { |
39037602 A |
5174 | struct kqtailq *suppressq; |
5175 | ||
5ba3f43e A |
5176 | kqlock_held(kq); |
5177 | ||
5178 | if (kq->kq_state & KQ_WORKQ) { | |
39037602 | 5179 | return kqworkq_begin_processing((struct kqworkq *)kq, qos_index, flags); |
5ba3f43e A |
5180 | } else if (kq->kq_state & KQ_WORKLOOP) { |
5181 | return kqworkloop_begin_processing((struct kqworkloop*)kq, flags); | |
5182 | } | |
5183 | ||
5184 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQ_PROCESS_BEGIN) | DBG_FUNC_START, | |
5185 | VM_KERNEL_UNSLIDE_OR_PERM(kq), flags); | |
39037602 A |
5186 | |
5187 | assert(qos_index == QOS_INDEX_KQFILE); | |
5188 | ||
5189 | /* wait to become the exclusive processing thread */ | |
6d2010ae | 5190 | for (;;) { |
5ba3f43e A |
5191 | if (kq->kq_state & KQ_DRAIN) { |
5192 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQ_PROCESS_BEGIN) | DBG_FUNC_END, | |
5193 | VM_KERNEL_UNSLIDE_OR_PERM(kq), 2); | |
39037602 | 5194 | return -1; |
5ba3f43e | 5195 | } |
39037602 A |
5196 | |
5197 | if ((kq->kq_state & KQ_PROCESSING) == 0) | |
5198 | break; | |
6d2010ae A |
5199 | |
5200 | /* if someone else is processing the queue, wait */ | |
39037602 A |
5201 | kq->kq_state |= KQ_PROCWAIT; |
5202 | suppressq = kqueue_get_suppressed_queue(kq, qos_index); | |
5203 | waitq_assert_wait64((struct waitq *)&kq->kq_wqs, | |
5204 | CAST_EVENT64_T(suppressq), | |
5205 | THREAD_UNINT, TIMEOUT_WAIT_FOREVER); | |
5206 | ||
5207 | kqunlock(kq); | |
5208 | thread_block(THREAD_CONTINUE_NULL); | |
5209 | kqlock(kq); | |
5210 | } | |
5211 | ||
5212 | /* Nobody else processing */ | |
5213 | ||
5214 | /* clear pre-posts and KQ_WAKEUP now, in case we bail early */ | |
5215 | waitq_set_clear_preposts(&kq->kq_wqs); | |
5216 | kq->kq_state &= ~KQ_WAKEUP; | |
5ba3f43e | 5217 | |
39037602 | 5218 | /* anything left to process? */ |
5ba3f43e A |
5219 | if (kqueue_queue_empty(kq, qos_index)) { |
5220 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQ_PROCESS_BEGIN) | DBG_FUNC_END, | |
5221 | VM_KERNEL_UNSLIDE_OR_PERM(kq), 1); | |
39037602 | 5222 | return -1; |
5ba3f43e | 5223 | } |
39037602 A |
5224 | |
5225 | /* convert to processing mode */ | |
5226 | kq->kq_state |= KQ_PROCESSING; | |
5227 | ||
5ba3f43e A |
5228 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQ_PROCESS_BEGIN) | DBG_FUNC_END, |
5229 | VM_KERNEL_UNSLIDE_OR_PERM(kq)); | |
5230 | ||
39037602 A |
5231 | return 0; |
5232 | } | |
5233 | ||
5234 | /* | |
5235 | * kqworkq_end_processing - Complete the processing of a workq kqueue | |
5236 | * | |
5237 | * We may have to request new threads. | |
5238 | * This can happen there are no waiting processing threads and: | |
5239 | * - there were active events we never got to (count > 0) | |
5240 | * - we pended waitq hook callouts during processing | |
5241 | * - we pended wakeups while processing (or unsuppressing) | |
5242 | * | |
5243 | * Called with kqueue lock held. | |
5244 | */ | |
5245 | static void | |
5246 | kqworkq_end_processing(struct kqworkq *kqwq, kq_index_t qos_index, int flags) | |
5247 | { | |
5248 | #pragma unused(flags) | |
5249 | ||
5250 | struct kqueue *kq = &kqwq->kqwq_kqueue; | |
5251 | struct kqtailq *suppressq = kqueue_get_suppressed_queue(kq, qos_index); | |
5252 | ||
5253 | thread_t self = current_thread(); | |
5ba3f43e | 5254 | struct uthread *ut = get_bsdthread_info(self); |
39037602 A |
5255 | struct knote *kn; |
5256 | struct kqrequest *kqr; | |
39037602 A |
5257 | thread_t thread; |
5258 | ||
5259 | assert(kqwq->kqwq_state & KQ_WORKQ); | |
5260 | assert(qos_index < KQWQ_NQOS); | |
5261 | ||
5ba3f43e A |
5262 | /* Are we really bound to this kqueue? */ |
5263 | if (ut->uu_kqueue_bound != kq) { | |
5264 | assert(ut->uu_kqueue_bound == kq); | |
5265 | return; | |
5266 | } | |
5267 | ||
39037602 | 5268 | kqr = kqworkq_get_request(kqwq, qos_index); |
39037602 | 5269 | |
5ba3f43e A |
5270 | kqwq_req_lock(kqwq); |
5271 | ||
5272 | /* Do we claim to be manager? */ | |
39037602 | 5273 | if (flags & KEVENT_FLAG_WORKQ_MANAGER) { |
39037602 | 5274 | |
5ba3f43e A |
5275 | /* bail if not bound that way */ |
5276 | if (ut->uu_kqueue_qos_index != KQWQ_QOS_MANAGER || | |
5277 | (ut->uu_kqueue_flags & KEVENT_FLAG_WORKQ_MANAGER) == 0) { | |
5278 | assert(ut->uu_kqueue_qos_index == KQWQ_QOS_MANAGER); | |
5279 | assert(ut->uu_kqueue_flags & KEVENT_FLAG_WORKQ_MANAGER); | |
39037602 A |
5280 | kqwq_req_unlock(kqwq); |
5281 | return; | |
5282 | } | |
5283 | ||
5ba3f43e A |
5284 | /* bail if this request wasn't already getting manager help */ |
5285 | if ((kqr->kqr_state & KQWQ_THMANAGER) == 0 || | |
5286 | (kqr->kqr_state & KQR_PROCESSING) == 0) { | |
5287 | kqwq_req_unlock(kqwq); | |
5288 | return; | |
6d2010ae | 5289 | } |
39037602 | 5290 | } else { |
5ba3f43e A |
5291 | if (ut->uu_kqueue_qos_index != qos_index || |
5292 | (ut->uu_kqueue_flags & KEVENT_FLAG_WORKQ_MANAGER)) { | |
5293 | assert(ut->uu_kqueue_qos_index == qos_index); | |
5294 | assert((ut->uu_kqueue_flags & KEVENT_FLAG_WORKQ_MANAGER) == 0); | |
5295 | kqwq_req_unlock(kqwq); | |
5296 | return; | |
5297 | } | |
6d2010ae | 5298 | } |
39037602 | 5299 | |
5ba3f43e A |
5300 | assert(kqr->kqr_state & KQR_BOUND); |
5301 | thread = kqr->kqr_thread; | |
5302 | assert(thread == self); | |
39037602 | 5303 | |
5ba3f43e A |
5304 | assert(kqr->kqr_state & KQR_PROCESSING); |
5305 | ||
5306 | /* If we didn't drain the whole queue, re-mark a wakeup being needed */ | |
5307 | if (!kqueue_queue_empty(kq, qos_index)) | |
5308 | kqr->kqr_state |= KQR_WAKEUP; | |
5309 | ||
5310 | kqwq_req_unlock(kqwq); | |
39037602 A |
5311 | |
5312 | /* | |
5313 | * Return suppressed knotes to their original state. | |
5314 | * For workq kqueues, suppressed ones that are still | |
5315 | * truly active (not just forced into the queue) will | |
5316 | * set flags we check below to see if anything got | |
5317 | * woken up. | |
5318 | */ | |
5319 | while ((kn = TAILQ_FIRST(suppressq)) != NULL) { | |
5320 | assert(kn->kn_status & KN_SUPPRESSED); | |
5321 | knote_unsuppress(kn); | |
5322 | } | |
5323 | ||
5324 | kqwq_req_lock(kqwq); | |
5325 | ||
5ba3f43e A |
5326 | /* Indicate that we are done processing this request */ |
5327 | kqr->kqr_state &= ~KQR_PROCESSING; | |
39037602 | 5328 | |
5ba3f43e A |
5329 | /* |
5330 | * Drop our association with this one request and its | |
5331 | * override on us. | |
5332 | */ | |
5333 | kqworkq_unbind_thread(kqwq, qos_index, thread, flags); | |
39037602 A |
5334 | |
5335 | /* | |
5ba3f43e A |
5336 | * request a new thread if we didn't process the whole |
5337 | * queue or real events have happened (not just putting | |
5338 | * stay-active events back). | |
39037602 | 5339 | */ |
5ba3f43e A |
5340 | if (kqr->kqr_state & KQR_WAKEUP) { |
5341 | if (kqueue_queue_empty(kq, qos_index)) { | |
5342 | kqr->kqr_state &= ~KQR_WAKEUP; | |
5343 | } else { | |
5344 | kqworkq_request_thread(kqwq, qos_index); | |
5345 | } | |
39037602 | 5346 | } |
39037602 | 5347 | kqwq_req_unlock(kqwq); |
6d2010ae A |
5348 | } |
5349 | ||
5ba3f43e A |
5350 | static void |
5351 | kqworkloop_end_processing(struct kqworkloop *kqwl, int nevents, | |
5352 | unsigned int flags) | |
5353 | { | |
5354 | struct kqrequest *kqr = &kqwl->kqwl_request; | |
5355 | struct kqueue *kq = &kqwl->kqwl_kqueue; | |
5356 | ||
5357 | kqlock_held(kq); | |
5358 | ||
5359 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQWL_PROCESS_END) | DBG_FUNC_START, | |
5360 | kqwl->kqwl_dynamicid, flags, 0); | |
5361 | ||
5362 | if ((kq->kq_state & KQ_NO_WQ_THREAD) && nevents == 0 && | |
5363 | (flags & KEVENT_FLAG_IMMEDIATE) == 0) { | |
5364 | /* | |
5365 | * <rdar://problem/31634014> We may soon block, but have returned no | |
5366 | * kevents that need to be kept supressed for overriding purposes. | |
5367 | * | |
5368 | * It is hence safe to acknowledge events and unsuppress everything, so | |
5369 | * that if we block we can observe all events firing. | |
5370 | */ | |
5371 | kqworkloop_acknowledge_events(kqwl, TRUE); | |
5372 | } | |
5373 | ||
5374 | kqwl_req_lock(kqwl); | |
5375 | ||
5376 | assert(kqr->kqr_state & KQR_PROCESSING); | |
5377 | assert(kq->kq_state & KQ_PROCESSING); | |
5378 | ||
5379 | kq->kq_state &= ~KQ_PROCESSING; | |
5380 | kqr->kqr_state &= ~KQR_PROCESSING; | |
5381 | kqworkloop_update_threads_qos(kqwl, KQWL_UTQ_RECOMPUTE_WAKEUP_QOS, 0); | |
5382 | ||
5383 | kqwl_req_unlock(kqwl); | |
5384 | ||
5385 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQWL_PROCESS_END) | DBG_FUNC_END, | |
5386 | kqwl->kqwl_dynamicid, flags, 0); | |
5387 | } | |
5388 | ||
6d2010ae A |
5389 | /* |
5390 | * Called with kqueue lock held. | |
5391 | */ | |
5392 | static void | |
5ba3f43e A |
5393 | kqueue_end_processing(struct kqueue *kq, kq_index_t qos_index, |
5394 | int nevents, unsigned int flags) | |
39037602 A |
5395 | { |
5396 | struct knote *kn; | |
5397 | struct kqtailq *suppressq; | |
5398 | int procwait; | |
5399 | ||
5ba3f43e A |
5400 | kqlock_held(kq); |
5401 | ||
5402 | assert((kq->kq_state & KQ_WORKQ) == 0); | |
5403 | ||
5404 | if (kq->kq_state & KQ_WORKLOOP) { | |
5405 | return kqworkloop_end_processing((struct kqworkloop *)kq, nevents, flags); | |
39037602 A |
5406 | } |
5407 | ||
5ba3f43e A |
5408 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQ_PROCESS_END), |
5409 | VM_KERNEL_UNSLIDE_OR_PERM(kq), flags); | |
5410 | ||
39037602 A |
5411 | assert(qos_index == QOS_INDEX_KQFILE); |
5412 | ||
5413 | /* | |
5414 | * Return suppressed knotes to their original state. | |
39037602 A |
5415 | */ |
5416 | suppressq = kqueue_get_suppressed_queue(kq, qos_index); | |
5417 | while ((kn = TAILQ_FIRST(suppressq)) != NULL) { | |
5418 | assert(kn->kn_status & KN_SUPPRESSED); | |
5419 | knote_unsuppress(kn); | |
5420 | } | |
5421 | ||
5422 | procwait = (kq->kq_state & KQ_PROCWAIT); | |
5423 | kq->kq_state &= ~(KQ_PROCESSING | KQ_PROCWAIT); | |
5424 | ||
5425 | if (procwait) { | |
5426 | /* first wake up any thread already waiting to process */ | |
5427 | waitq_wakeup64_all((struct waitq *)&kq->kq_wqs, | |
5428 | CAST_EVENT64_T(suppressq), | |
5429 | THREAD_AWAKENED, | |
5430 | WAITQ_ALL_PRIORITIES); | |
5ba3f43e A |
5431 | } |
5432 | } | |
5433 | ||
5434 | /* | |
5435 | * kqwq_internal_bind - bind thread to processing workq kqueue | |
5436 | * | |
5437 | * Determines if the provided thread will be responsible for | |
5438 | * servicing the particular QoS class index specified in the | |
5439 | * parameters. Once the binding is done, any overrides that may | |
5440 | * be associated with the cooresponding events can be applied. | |
5441 | * | |
5442 | * This should be called as soon as the thread identity is known, | |
5443 | * preferably while still at high priority during creation. | |
5444 | * | |
5445 | * - caller holds a reference on the process (and workq kq) | |
5446 | * - the thread MUST call kevent_qos_internal after being bound | |
5447 | * or the bucket of events may never be delivered. | |
5448 | * - Nothing locked | |
5449 | * (unless this is a synchronous bind, then the request is locked) | |
5450 | */ | |
5451 | static int | |
5452 | kqworkq_internal_bind( | |
5453 | struct proc *p, | |
5454 | kq_index_t qos_index, | |
5455 | thread_t thread, | |
5456 | unsigned int flags) | |
5457 | { | |
5458 | struct kqueue *kq; | |
5459 | struct kqworkq *kqwq; | |
5460 | struct kqrequest *kqr; | |
5461 | struct uthread *ut = get_bsdthread_info(thread); | |
5462 | ||
5463 | /* If no process workq, can't be our thread. */ | |
5464 | kq = p->p_fd->fd_wqkqueue; | |
5465 | ||
5466 | if (kq == NULL) | |
5467 | return 0; | |
5468 | ||
5469 | assert(kq->kq_state & KQ_WORKQ); | |
5470 | kqwq = (struct kqworkq *)kq; | |
5471 | ||
5472 | /* | |
5473 | * No need to bind the manager thread to any specific | |
5474 | * bucket, but still claim the thread. | |
5475 | */ | |
5476 | if (qos_index == KQWQ_QOS_MANAGER) { | |
5477 | assert(ut->uu_kqueue_bound == NULL); | |
5478 | assert(flags & KEVENT_FLAG_WORKQ_MANAGER); | |
5479 | ut->uu_kqueue_bound = kq; | |
5480 | ut->uu_kqueue_qos_index = qos_index; | |
5481 | ut->uu_kqueue_flags = flags; | |
5482 | ||
5483 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQWQ_BIND), | |
5484 | thread_tid(thread), flags, qos_index); | |
5485 | ||
5486 | return 1; | |
5487 | } | |
5488 | ||
5489 | /* | |
5490 | * If this is a synchronous bind callback, the request | |
5491 | * lock is already held, so just do the bind. | |
5492 | */ | |
5493 | if (flags & KEVENT_FLAG_SYNCHRONOUS_BIND) { | |
5494 | kqwq_req_held(kqwq); | |
5495 | /* strip out synchronout bind flag */ | |
5496 | flags &= ~KEVENT_FLAG_SYNCHRONOUS_BIND; | |
5497 | kqworkq_bind_thread_impl(kqwq, qos_index, thread, flags); | |
5498 | return 1; | |
5499 | } | |
5500 | ||
5501 | /* | |
5502 | * check the request that corresponds to our qos_index | |
5503 | * to see if there is an outstanding request. | |
5504 | */ | |
5505 | kqr = kqworkq_get_request(kqwq, qos_index); | |
5506 | assert(kqr->kqr_qos_index == qos_index); | |
5507 | kqwq_req_lock(kqwq); | |
5508 | ||
5509 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQWQ_BIND), | |
5510 | thread_tid(thread), flags, qos_index, kqr->kqr_state); | |
5511 | ||
5512 | if ((kqr->kqr_state & KQR_THREQUESTED) && | |
5513 | (kqr->kqr_state & KQR_PROCESSING) == 0) { | |
5514 | ||
5515 | if ((kqr->kqr_state & KQR_BOUND) && | |
5516 | thread == kqr->kqr_thread) { | |
5517 | /* duplicate bind - claim the thread */ | |
5518 | assert(ut->uu_kqueue_bound == kq); | |
5519 | assert(ut->uu_kqueue_qos_index == qos_index); | |
5520 | kqwq_req_unlock(kqwq); | |
5521 | return 1; | |
5522 | } | |
5523 | if ((kqr->kqr_state & (KQR_BOUND | KQWQ_THMANAGER)) == 0) { | |
5524 | /* ours to bind to */ | |
5525 | kqworkq_bind_thread_impl(kqwq, qos_index, thread, flags); | |
5526 | kqwq_req_unlock(kqwq); | |
5527 | return 1; | |
5528 | } | |
5529 | } | |
5530 | kqwq_req_unlock(kqwq); | |
5531 | return 0; | |
5532 | } | |
5533 | ||
5534 | static void | |
5535 | kqworkloop_bind_thread_impl(struct kqworkloop *kqwl, | |
5536 | thread_t thread, | |
5537 | __assert_only unsigned int flags) | |
5538 | { | |
5539 | assert(flags & KEVENT_FLAG_WORKLOOP); | |
5540 | ||
5541 | /* the request object must be locked */ | |
5542 | kqwl_req_held(kqwl); | |
5543 | ||
5544 | struct kqrequest *kqr = &kqwl->kqwl_request; | |
5545 | struct uthread *ut = get_bsdthread_info(thread); | |
5546 | boolean_t ipc_override_is_sync; | |
5547 | kq_index_t qos_index = kqworkloop_combined_qos(kqwl, &ipc_override_is_sync); | |
5548 | ||
5549 | /* nobody else bound so finally bind (as a workloop) */ | |
5550 | assert(kqr->kqr_state & KQR_THREQUESTED); | |
5551 | assert((kqr->kqr_state & (KQR_BOUND | KQR_PROCESSING)) == 0); | |
5552 | assert(thread != kqwl->kqwl_owner); | |
5553 | ||
5554 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQWL_BIND), | |
5555 | kqwl->kqwl_dynamicid, (uintptr_t)thread_tid(thread), | |
5556 | qos_index, | |
5557 | (uintptr_t)(((uintptr_t)kqr->kqr_override_index << 16) | | |
5558 | (((uintptr_t)kqr->kqr_state) << 8) | | |
5559 | ((uintptr_t)ipc_override_is_sync))); | |
5560 | ||
5561 | kqr->kqr_state |= KQR_BOUND | KQR_R2K_NOTIF_ARMED; | |
5562 | kqr->kqr_thread = thread; | |
5563 | ||
5564 | /* bind the workloop to the uthread */ | |
5565 | ut->uu_kqueue_bound = (struct kqueue *)kqwl; | |
5566 | ut->uu_kqueue_flags = flags; | |
5567 | ut->uu_kqueue_qos_index = qos_index; | |
5568 | assert(ut->uu_kqueue_override_is_sync == 0); | |
5569 | ut->uu_kqueue_override_is_sync = ipc_override_is_sync; | |
5570 | if (qos_index) { | |
5571 | thread_add_ipc_override(thread, qos_index); | |
5572 | } | |
5573 | if (ipc_override_is_sync) { | |
5574 | thread_add_sync_ipc_override(thread); | |
5575 | } | |
5576 | } | |
5577 | ||
5578 | /* | |
5579 | * workloop_fulfill_threadreq - bind thread to processing workloop | |
5580 | * | |
5581 | * The provided thread will be responsible for delivering events | |
5582 | * associated with the given kqrequest. Bind it and get ready for | |
5583 | * the thread to eventually arrive. | |
5584 | * | |
5585 | * If WORKLOOP_FULFILL_THREADREQ_SYNC is specified, the callback | |
5586 | * within the context of the pthread_functions->workq_threadreq | |
5587 | * callout. In this case, the request structure is already locked. | |
5588 | */ | |
5589 | int | |
5590 | workloop_fulfill_threadreq(struct proc *p, | |
5591 | workq_threadreq_t req, | |
5592 | thread_t thread, | |
5593 | int flags) | |
5594 | { | |
5595 | int sync = (flags & WORKLOOP_FULFILL_THREADREQ_SYNC); | |
5596 | int cancel = (flags & WORKLOOP_FULFILL_THREADREQ_CANCEL); | |
5597 | struct kqrequest *kqr; | |
5598 | struct kqworkloop *kqwl; | |
5599 | ||
5600 | kqwl = (struct kqworkloop *)((uintptr_t)req - | |
5601 | offsetof(struct kqworkloop, kqwl_request) - | |
5602 | offsetof(struct kqrequest, kqr_req)); | |
5603 | kqr = &kqwl->kqwl_request; | |
5604 | ||
5605 | /* validate we're looking at something valid */ | |
5606 | if (kqwl->kqwl_p != p || | |
5607 | (kqwl->kqwl_state & KQ_WORKLOOP) == 0) { | |
5608 | assert(kqwl->kqwl_p == p); | |
5609 | assert(kqwl->kqwl_state & KQ_WORKLOOP); | |
5610 | return EINVAL; | |
5611 | } | |
5612 | ||
5613 | if (!sync) | |
5614 | kqwl_req_lock(kqwl); | |
5615 | ||
5616 | /* Should be a pending request */ | |
5617 | if ((kqr->kqr_state & KQR_BOUND) || | |
5618 | (kqr->kqr_state & KQR_THREQUESTED) == 0) { | |
5619 | ||
5620 | assert((kqr->kqr_state & KQR_BOUND) == 0); | |
5621 | assert(kqr->kqr_state & KQR_THREQUESTED); | |
5622 | if (!sync) | |
5623 | kqwl_req_unlock(kqwl); | |
5624 | return EINPROGRESS; | |
5625 | } | |
5626 | ||
5627 | assert((kqr->kqr_state & KQR_DRAIN) == 0); | |
5628 | ||
5629 | /* | |
5630 | * Is it a cancel indication from pthread. | |
5631 | * If so, we must be exiting/exec'ing. Forget | |
5632 | * our pending request. | |
5633 | */ | |
5634 | if (cancel) { | |
5635 | kqr->kqr_state &= ~KQR_THREQUESTED; | |
5636 | kqr->kqr_state |= KQR_DRAIN; | |
5637 | } else { | |
5638 | /* do the actual bind? */ | |
5639 | kqworkloop_bind_thread_impl(kqwl, thread, KEVENT_FLAG_WORKLOOP); | |
5640 | } | |
5641 | ||
5642 | if (!sync) | |
5643 | kqwl_req_unlock(kqwl); | |
5644 | ||
5645 | if (cancel) | |
5646 | kqueue_release_last(p, &kqwl->kqwl_kqueue); /* may dealloc kq */ | |
5647 | ||
5648 | return 0; | |
39037602 | 5649 | } |
5ba3f43e | 5650 | |
39037602 A |
5651 | |
5652 | /* | |
5653 | * kevent_qos_internal_bind - bind thread to processing kqueue | |
5654 | * | |
5655 | * Indicates that the provided thread will be responsible for | |
5656 | * servicing the particular QoS class index specified in the | |
5657 | * parameters. Once the binding is done, any overrides that may | |
5658 | * be associated with the cooresponding events can be applied. | |
5659 | * | |
5660 | * This should be called as soon as the thread identity is known, | |
5661 | * preferably while still at high priority during creation. | |
5662 | * | |
5663 | * - caller holds a reference on the kqueue. | |
5664 | * - the thread MUST call kevent_qos_internal after being bound | |
5665 | * or the bucket of events may never be delivered. | |
5666 | * - Nothing locked (may take mutex or block). | |
5667 | */ | |
5668 | ||
5669 | int | |
5670 | kevent_qos_internal_bind( | |
5671 | struct proc *p, | |
5672 | int qos_class, | |
5673 | thread_t thread, | |
5674 | unsigned int flags) | |
5675 | { | |
39037602 | 5676 | kq_index_t qos_index; |
39037602 | 5677 | |
39037602 A |
5678 | assert(flags & KEVENT_FLAG_WORKQ); |
5679 | ||
5ba3f43e | 5680 | if (thread == THREAD_NULL || (flags & KEVENT_FLAG_WORKQ) == 0) { |
39037602 A |
5681 | return EINVAL; |
5682 | } | |
5683 | ||
39037602 A |
5684 | /* get the qos index we're going to service */ |
5685 | qos_index = qos_index_for_servicer(qos_class, thread, flags); | |
5ba3f43e A |
5686 | |
5687 | if (kqworkq_internal_bind(p, qos_index, thread, flags)) | |
39037602 | 5688 | return 0; |
39037602 | 5689 | |
5ba3f43e A |
5690 | return EINPROGRESS; |
5691 | } | |
39037602 | 5692 | |
39037602 | 5693 | |
5ba3f43e A |
5694 | static void |
5695 | kqworkloop_internal_unbind( | |
5696 | struct proc *p, | |
5697 | thread_t thread, | |
5698 | unsigned int flags) | |
5699 | { | |
5700 | struct kqueue *kq; | |
5701 | struct kqworkloop *kqwl; | |
5702 | struct uthread *ut = get_bsdthread_info(thread); | |
39037602 | 5703 | |
5ba3f43e A |
5704 | assert(ut->uu_kqueue_bound != NULL); |
5705 | kq = ut->uu_kqueue_bound; | |
5706 | assert(kq->kq_state & KQ_WORKLOOP); | |
5707 | kqwl = (struct kqworkloop *)kq; | |
39037602 | 5708 | |
5ba3f43e A |
5709 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQWL_UNBIND), |
5710 | kqwl->kqwl_dynamicid, (uintptr_t)thread_tid(thread), | |
5711 | flags, 0); | |
39037602 | 5712 | |
5ba3f43e A |
5713 | if (!(kq->kq_state & KQ_NO_WQ_THREAD)) { |
5714 | assert(is_workqueue_thread(thread)); | |
39037602 | 5715 | |
5ba3f43e A |
5716 | kqlock(kq); |
5717 | kqworkloop_unbind_thread(kqwl, thread, flags); | |
5718 | kqunlock(kq); | |
39037602 | 5719 | |
5ba3f43e A |
5720 | /* If last reference, dealloc the workloop kq */ |
5721 | kqueue_release_last(p, kq); | |
5722 | } else { | |
5723 | assert(!is_workqueue_thread(thread)); | |
5724 | kevent_servicer_detach_thread(p, kqwl->kqwl_dynamicid, thread, flags, kq); | |
39037602 | 5725 | } |
5ba3f43e | 5726 | } |
39037602 | 5727 | |
5ba3f43e A |
5728 | static void |
5729 | kqworkq_internal_unbind( | |
5730 | struct proc *p, | |
5731 | kq_index_t qos_index, | |
5732 | thread_t thread, | |
5733 | unsigned int flags) | |
5734 | { | |
5735 | struct kqueue *kq; | |
5736 | struct kqworkq *kqwq; | |
5737 | struct uthread *ut; | |
5738 | kq_index_t end_index; | |
39037602 | 5739 | |
5ba3f43e A |
5740 | assert(thread == current_thread()); |
5741 | ut = get_bsdthread_info(thread); | |
5742 | ||
5743 | kq = p->p_fd->fd_wqkqueue; | |
5744 | assert(kq->kq_state & KQ_WORKQ); | |
5745 | assert(ut->uu_kqueue_bound == kq); | |
5746 | ||
5747 | kqwq = (struct kqworkq *)kq; | |
5748 | ||
5749 | /* end servicing any requests we might own */ | |
5750 | end_index = (qos_index == KQWQ_QOS_MANAGER) ? | |
5751 | 0 : qos_index; | |
5752 | kqlock(kq); | |
5753 | ||
5754 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQWQ_UNBIND), | |
5755 | (uintptr_t)thread_tid(thread), flags, qos_index); | |
5756 | ||
5757 | do { | |
5758 | kqworkq_end_processing(kqwq, qos_index, flags); | |
5759 | } while (qos_index-- > end_index); | |
5760 | ||
5761 | ut->uu_kqueue_bound = NULL; | |
5762 | ut->uu_kqueue_qos_index = 0; | |
5763 | ut->uu_kqueue_flags = 0; | |
5764 | ||
5765 | kqunlock(kq); | |
39037602 A |
5766 | } |
5767 | ||
5768 | /* | |
5769 | * kevent_qos_internal_unbind - unbind thread from processing kqueue | |
5770 | * | |
5771 | * End processing the per-QoS bucket of events and allow other threads | |
5772 | * to be requested for future servicing. | |
5773 | * | |
5774 | * caller holds a reference on the kqueue. | |
5775 | * thread is the current thread. | |
5776 | */ | |
5777 | ||
5778 | int | |
5779 | kevent_qos_internal_unbind( | |
5780 | struct proc *p, | |
5781 | int qos_class, | |
5782 | thread_t thread, | |
5783 | unsigned int flags) | |
6d2010ae | 5784 | { |
5ba3f43e | 5785 | #pragma unused(qos_class) |
39037602 | 5786 | |
5ba3f43e A |
5787 | struct uthread *ut; |
5788 | struct kqueue *kq; | |
5789 | unsigned int bound_flags; | |
5790 | bool check_flags; | |
39037602 | 5791 | |
5ba3f43e A |
5792 | ut = get_bsdthread_info(thread); |
5793 | if (ut->uu_kqueue_bound == NULL) { | |
5794 | /* early out if we are already unbound */ | |
5795 | assert(ut->uu_kqueue_flags == 0); | |
5796 | assert(ut->uu_kqueue_qos_index == 0); | |
5797 | assert(ut->uu_kqueue_override_is_sync == 0); | |
5798 | return EALREADY; | |
5799 | } | |
39037602 | 5800 | |
5ba3f43e A |
5801 | assert(flags & (KEVENT_FLAG_WORKQ | KEVENT_FLAG_WORKLOOP)); |
5802 | assert(thread == current_thread()); | |
39037602 | 5803 | |
5ba3f43e | 5804 | check_flags = flags & KEVENT_FLAG_UNBIND_CHECK_FLAGS; |
39037602 | 5805 | |
5ba3f43e A |
5806 | /* Get the kqueue we started with */ |
5807 | kq = ut->uu_kqueue_bound; | |
5808 | assert(kq != NULL); | |
5809 | assert(kq->kq_state & (KQ_WORKQ | KQ_WORKLOOP)); | |
39037602 | 5810 | |
5ba3f43e A |
5811 | /* get flags and QoS parameters we started with */ |
5812 | bound_flags = ut->uu_kqueue_flags; | |
39037602 | 5813 | |
5ba3f43e A |
5814 | /* Unbind from the class of workq */ |
5815 | if (kq->kq_state & KQ_WORKQ) { | |
5816 | if (check_flags && !(flags & KEVENT_FLAG_WORKQ)) { | |
5817 | return EINVAL; | |
5818 | } | |
39037602 | 5819 | |
5ba3f43e A |
5820 | kqworkq_internal_unbind(p, ut->uu_kqueue_qos_index, thread, bound_flags); |
5821 | } else { | |
5822 | if (check_flags && !(flags & KEVENT_FLAG_WORKLOOP)) { | |
5823 | return EINVAL; | |
5824 | } | |
39037602 | 5825 | |
5ba3f43e A |
5826 | kqworkloop_internal_unbind(p, thread, bound_flags); |
5827 | } | |
39037602 A |
5828 | |
5829 | return 0; | |
6d2010ae | 5830 | } |
b0d623f7 | 5831 | |
91447636 | 5832 | /* |
b0d623f7 | 5833 | * kqueue_process - process the triggered events in a kqueue |
91447636 A |
5834 | * |
5835 | * Walk the queued knotes and validate that they are | |
5836 | * really still triggered events by calling the filter | |
5837 | * routines (if necessary). Hold a use reference on | |
5838 | * the knote to avoid it being detached. For each event | |
5839 | * that is still considered triggered, invoke the | |
5840 | * callback routine provided. | |
5841 | * | |
5842 | * caller holds a reference on the kqueue. | |
5843 | * kqueue locked on entry and exit - but may be dropped | |
b0d623f7 | 5844 | * kqueue list locked (held for duration of call) |
91447636 A |
5845 | */ |
5846 | ||
5847 | static int | |
b0d623f7 | 5848 | kqueue_process(struct kqueue *kq, |
39236c6e | 5849 | kevent_callback_t callback, |
39037602 A |
5850 | void *callback_data, |
5851 | struct filt_process_s *process_data, | |
39236c6e A |
5852 | int *countp, |
5853 | struct proc *p) | |
91447636 | 5854 | { |
39037602 | 5855 | unsigned int flags = process_data ? process_data->fp_flags : 0; |
5ba3f43e | 5856 | struct uthread *ut = get_bsdthread_info(current_thread()); |
39037602 | 5857 | kq_index_t start_index, end_index, i; |
91447636 | 5858 | struct knote *kn; |
39037602 A |
5859 | int nevents = 0; |
5860 | int error = 0; | |
91447636 | 5861 | |
b0d623f7 | 5862 | /* |
5ba3f43e A |
5863 | * Based on the mode of the kqueue and the bound QoS of the servicer, |
5864 | * determine the range of thread requests that need checking | |
b0d623f7 | 5865 | */ |
5ba3f43e A |
5866 | if (kq->kq_state & KQ_WORKQ) { |
5867 | if (flags & KEVENT_FLAG_WORKQ_MANAGER) { | |
5868 | start_index = KQWQ_QOS_MANAGER; | |
5869 | } else if (ut->uu_kqueue_bound != kq) { | |
5870 | return EJUSTRETURN; | |
5871 | } else { | |
5872 | start_index = ut->uu_kqueue_qos_index; | |
5873 | } | |
5874 | ||
5875 | /* manager services every request in a workq kqueue */ | |
5876 | assert(start_index > 0 && start_index <= KQWQ_QOS_MANAGER); | |
5877 | end_index = (start_index == KQWQ_QOS_MANAGER) ? 0 : start_index; | |
5878 | ||
5879 | } else if (kq->kq_state & KQ_WORKLOOP) { | |
5880 | if (ut->uu_kqueue_bound != kq) | |
5881 | return EJUSTRETURN; | |
5882 | ||
5883 | /* | |
5884 | * Single request servicing | |
5885 | * we want to deliver all events, regardless of the QOS | |
5886 | */ | |
5887 | start_index = end_index = THREAD_QOS_UNSPECIFIED; | |
5888 | } else { | |
5889 | start_index = end_index = QOS_INDEX_KQFILE; | |
5890 | } | |
39037602 A |
5891 | |
5892 | i = start_index; | |
b0d623f7 | 5893 | |
39037602 A |
5894 | do { |
5895 | if (kqueue_begin_processing(kq, i, flags) == -1) { | |
5896 | *countp = 0; | |
5897 | /* Nothing to process */ | |
5898 | continue; | |
5899 | } | |
b0d623f7 | 5900 | |
39037602 | 5901 | /* |
5ba3f43e A |
5902 | * loop through the enqueued knotes associated with this request, |
5903 | * processing each one. Each request may have several queues | |
5904 | * of knotes to process (depending on the type of kqueue) so we | |
5905 | * have to loop through all the queues as long as we have additional | |
5906 | * space. | |
39037602 A |
5907 | */ |
5908 | error = 0; | |
55e303ae | 5909 | |
39037602 A |
5910 | struct kqtailq *base_queue = kqueue_get_base_queue(kq, i); |
5911 | struct kqtailq *queue = kqueue_get_high_queue(kq, i); | |
5912 | do { | |
5ba3f43e | 5913 | while (error == 0 && (kn = TAILQ_FIRST(queue)) != NULL) { |
39037602 | 5914 | error = knote_process(kn, callback, callback_data, process_data, p); |
5ba3f43e | 5915 | if (error == EJUSTRETURN) { |
39037602 | 5916 | error = 0; |
5ba3f43e | 5917 | } else { |
39037602 | 5918 | nevents++; |
39037602 | 5919 | } |
5ba3f43e | 5920 | /* error is EWOULDBLOCK when the out event array is full */ |
39037602 A |
5921 | } |
5922 | } while (error == 0 && queue-- > base_queue); | |
5923 | ||
5ba3f43e A |
5924 | if ((kq->kq_state & KQ_WORKQ) == 0) { |
5925 | kqueue_end_processing(kq, i, nevents, flags); | |
5926 | } | |
6d2010ae | 5927 | |
5ba3f43e A |
5928 | if (error == EWOULDBLOCK) { |
5929 | /* break out if no more space for additional events */ | |
5930 | error = 0; | |
5931 | break; | |
5932 | } | |
39037602 | 5933 | } while (i-- > end_index); |
55e303ae | 5934 | |
91447636 | 5935 | *countp = nevents; |
39236c6e | 5936 | return (error); |
55e303ae A |
5937 | } |
5938 | ||
91447636 | 5939 | static void |
b0d623f7 | 5940 | kqueue_scan_continue(void *data, wait_result_t wait_result) |
55e303ae | 5941 | { |
b0d623f7 A |
5942 | thread_t self = current_thread(); |
5943 | uthread_t ut = (uthread_t)get_bsdthread_info(self); | |
5944 | struct _kqueue_scan * cont_args = &ut->uu_kevent.ss_kqueue_scan; | |
91447636 | 5945 | struct kqueue *kq = (struct kqueue *)data; |
39037602 | 5946 | struct filt_process_s *process_data = cont_args->process_data; |
91447636 A |
5947 | int error; |
5948 | int count; | |
5949 | ||
5950 | /* convert the (previous) wait_result to a proper error */ | |
5951 | switch (wait_result) { | |
39037602 | 5952 | case THREAD_AWAKENED: { |
91447636 | 5953 | kqlock(kq); |
39037602 A |
5954 | retry: |
5955 | error = kqueue_process(kq, cont_args->call, cont_args->data, | |
5ba3f43e | 5956 | process_data, &count, current_proc()); |
91447636 | 5957 | if (error == 0 && count == 0) { |
5ba3f43e A |
5958 | if (kq->kq_state & KQ_DRAIN) { |
5959 | kqunlock(kq); | |
5960 | goto drain; | |
5961 | } | |
5962 | ||
39037602 A |
5963 | if (kq->kq_state & KQ_WAKEUP) |
5964 | goto retry; | |
5ba3f43e | 5965 | |
39037602 | 5966 | waitq_assert_wait64((struct waitq *)&kq->kq_wqs, |
3e170ce0 A |
5967 | KQ_EVENT, THREAD_ABORTSAFE, |
5968 | cont_args->deadline); | |
91447636 A |
5969 | kq->kq_state |= KQ_SLEEP; |
5970 | kqunlock(kq); | |
b0d623f7 | 5971 | thread_block_parameter(kqueue_scan_continue, kq); |
91447636 | 5972 | /* NOTREACHED */ |
55e303ae | 5973 | } |
91447636 | 5974 | kqunlock(kq); |
39037602 | 5975 | } break; |
91447636 | 5976 | case THREAD_TIMED_OUT: |
39236c6e | 5977 | error = EWOULDBLOCK; |
91447636 A |
5978 | break; |
5979 | case THREAD_INTERRUPTED: | |
5980 | error = EINTR; | |
5981 | break; | |
39037602 | 5982 | case THREAD_RESTART: |
5ba3f43e | 5983 | drain: |
39037602 A |
5984 | error = EBADF; |
5985 | break; | |
91447636 | 5986 | default: |
39236c6e A |
5987 | panic("%s: - invalid wait_result (%d)", __func__, |
5988 | wait_result); | |
91447636 | 5989 | error = 0; |
55e303ae | 5990 | } |
39236c6e | 5991 | |
91447636 A |
5992 | /* call the continuation with the results */ |
5993 | assert(cont_args->cont != NULL); | |
5994 | (cont_args->cont)(kq, cont_args->data, error); | |
5995 | } | |
55e303ae | 5996 | |
55e303ae | 5997 | |
91447636 | 5998 | /* |
b0d623f7 | 5999 | * kqueue_scan - scan and wait for events in a kqueue |
91447636 A |
6000 | * |
6001 | * Process the triggered events in a kqueue. | |
6002 | * | |
6003 | * If there are no events triggered arrange to | |
6004 | * wait for them. If the caller provided a | |
6005 | * continuation routine, then kevent_scan will | |
6006 | * also. | |
6007 | * | |
6008 | * The callback routine must be valid. | |
6009 | * The caller must hold a use-count reference on the kq. | |
6010 | */ | |
55e303ae | 6011 | |
91447636 | 6012 | int |
39236c6e | 6013 | kqueue_scan(struct kqueue *kq, |
91447636 | 6014 | kevent_callback_t callback, |
b0d623f7 | 6015 | kqueue_continue_t continuation, |
39037602 A |
6016 | void *callback_data, |
6017 | struct filt_process_s *process_data, | |
91447636 A |
6018 | struct timeval *atvp, |
6019 | struct proc *p) | |
6020 | { | |
6021 | thread_continue_t cont = THREAD_CONTINUE_NULL; | |
39037602 | 6022 | unsigned int flags; |
91447636 A |
6023 | uint64_t deadline; |
6024 | int error; | |
6025 | int first; | |
39037602 | 6026 | int fd; |
55e303ae | 6027 | |
91447636 | 6028 | assert(callback != NULL); |
55e303ae | 6029 | |
39037602 A |
6030 | /* |
6031 | * Determine which QoS index we are servicing | |
6032 | */ | |
6033 | flags = (process_data) ? process_data->fp_flags : 0; | |
6034 | fd = (process_data) ? process_data->fp_fd : -1; | |
39037602 | 6035 | |
91447636 A |
6036 | first = 1; |
6037 | for (;;) { | |
6038 | wait_result_t wait_result; | |
6039 | int count; | |
6040 | ||
6041 | /* | |
6042 | * Make a pass through the kq to find events already | |
39236c6e | 6043 | * triggered. |
91447636 A |
6044 | */ |
6045 | kqlock(kq); | |
39037602 | 6046 | error = kqueue_process(kq, callback, callback_data, |
5ba3f43e | 6047 | process_data, &count, p); |
91447636 A |
6048 | if (error || count) |
6049 | break; /* lock still held */ | |
6050 | ||
6051 | /* looks like we have to consider blocking */ | |
6052 | if (first) { | |
6053 | first = 0; | |
6054 | /* convert the timeout to a deadline once */ | |
6055 | if (atvp->tv_sec || atvp->tv_usec) { | |
91447636 | 6056 | uint64_t now; |
39236c6e | 6057 | |
91447636 A |
6058 | clock_get_uptime(&now); |
6059 | nanoseconds_to_absolutetime((uint64_t)atvp->tv_sec * NSEC_PER_SEC + | |
39236c6e | 6060 | atvp->tv_usec * (long)NSEC_PER_USEC, |
91447636 A |
6061 | &deadline); |
6062 | if (now >= deadline) { | |
6063 | /* non-blocking call */ | |
6064 | error = EWOULDBLOCK; | |
6065 | break; /* lock still held */ | |
6066 | } | |
6067 | deadline -= now; | |
6068 | clock_absolutetime_interval_to_deadline(deadline, &deadline); | |
55e303ae | 6069 | } else { |
91447636 A |
6070 | deadline = 0; /* block forever */ |
6071 | } | |
6072 | ||
6073 | if (continuation) { | |
6074 | uthread_t ut = (uthread_t)get_bsdthread_info(current_thread()); | |
b0d623f7 | 6075 | struct _kqueue_scan *cont_args = &ut->uu_kevent.ss_kqueue_scan; |
39236c6e | 6076 | |
91447636 A |
6077 | cont_args->call = callback; |
6078 | cont_args->cont = continuation; | |
6079 | cont_args->deadline = deadline; | |
39037602 A |
6080 | cont_args->data = callback_data; |
6081 | cont_args->process_data = process_data; | |
b0d623f7 | 6082 | cont = kqueue_scan_continue; |
55e303ae A |
6083 | } |
6084 | } | |
91447636 | 6085 | |
5ba3f43e A |
6086 | if (kq->kq_state & KQ_DRAIN) { |
6087 | kqunlock(kq); | |
6088 | return EBADF; | |
6089 | } | |
6090 | ||
39037602 A |
6091 | /* If awakened during processing, try again */ |
6092 | if (kq->kq_state & KQ_WAKEUP) { | |
6093 | kqunlock(kq); | |
6094 | continue; | |
6095 | } | |
6096 | ||
91447636 | 6097 | /* go ahead and wait */ |
39037602 | 6098 | waitq_assert_wait64_leeway((struct waitq *)&kq->kq_wqs, |
3e170ce0 A |
6099 | KQ_EVENT, THREAD_ABORTSAFE, |
6100 | TIMEOUT_URGENCY_USER_NORMAL, | |
6101 | deadline, TIMEOUT_NO_LEEWAY); | |
91447636 A |
6102 | kq->kq_state |= KQ_SLEEP; |
6103 | kqunlock(kq); | |
6104 | wait_result = thread_block_parameter(cont, kq); | |
6105 | /* NOTREACHED if (continuation != NULL) */ | |
6106 | ||
6107 | switch (wait_result) { | |
6108 | case THREAD_AWAKENED: | |
6109 | continue; | |
6110 | case THREAD_TIMED_OUT: | |
39037602 | 6111 | return EWOULDBLOCK; |
91447636 | 6112 | case THREAD_INTERRUPTED: |
39037602 A |
6113 | return EINTR; |
6114 | case THREAD_RESTART: | |
6115 | return EBADF; | |
91447636 | 6116 | default: |
39236c6e A |
6117 | panic("%s: - bad wait_result (%d)", __func__, |
6118 | wait_result); | |
91447636 A |
6119 | error = 0; |
6120 | } | |
55e303ae | 6121 | } |
91447636 | 6122 | kqunlock(kq); |
39236c6e | 6123 | return (error); |
55e303ae A |
6124 | } |
6125 | ||
91447636 | 6126 | |
55e303ae A |
6127 | /* |
6128 | * XXX | |
6129 | * This could be expanded to call kqueue_scan, if desired. | |
6130 | */ | |
6131 | /*ARGSUSED*/ | |
6132 | static int | |
39236c6e A |
6133 | kqueue_read(__unused struct fileproc *fp, |
6134 | __unused struct uio *uio, | |
6135 | __unused int flags, | |
6136 | __unused vfs_context_t ctx) | |
55e303ae A |
6137 | { |
6138 | return (ENXIO); | |
6139 | } | |
6140 | ||
6141 | /*ARGSUSED*/ | |
6142 | static int | |
39236c6e A |
6143 | kqueue_write(__unused struct fileproc *fp, |
6144 | __unused struct uio *uio, | |
6145 | __unused int flags, | |
6146 | __unused vfs_context_t ctx) | |
55e303ae A |
6147 | { |
6148 | return (ENXIO); | |
6149 | } | |
6150 | ||
6151 | /*ARGSUSED*/ | |
6152 | static int | |
39236c6e A |
6153 | kqueue_ioctl(__unused struct fileproc *fp, |
6154 | __unused u_long com, | |
6155 | __unused caddr_t data, | |
6156 | __unused vfs_context_t ctx) | |
55e303ae A |
6157 | { |
6158 | return (ENOTTY); | |
6159 | } | |
6160 | ||
6161 | /*ARGSUSED*/ | |
6162 | static int | |
3e170ce0 | 6163 | kqueue_select(struct fileproc *fp, int which, void *wq_link_id, |
39236c6e | 6164 | __unused vfs_context_t ctx) |
55e303ae A |
6165 | { |
6166 | struct kqueue *kq = (struct kqueue *)fp->f_data; | |
39037602 A |
6167 | struct kqtailq *queue; |
6168 | struct kqtailq *suppressq; | |
6d2010ae | 6169 | struct knote *kn; |
6d2010ae | 6170 | int retnum = 0; |
39236c6e | 6171 | |
b0d623f7 | 6172 | if (which != FREAD) |
39236c6e | 6173 | return (0); |
b0d623f7 A |
6174 | |
6175 | kqlock(kq); | |
39037602 A |
6176 | |
6177 | assert((kq->kq_state & KQ_WORKQ) == 0); | |
6178 | ||
39236c6e | 6179 | /* |
b0d623f7 A |
6180 | * If this is the first pass, link the wait queue associated with the |
6181 | * the kqueue onto the wait queue set for the select(). Normally we | |
6182 | * use selrecord() for this, but it uses the wait queue within the | |
6183 | * selinfo structure and we need to use the main one for the kqueue to | |
6184 | * catch events from KN_STAYQUEUED sources. So we do the linkage manually. | |
6185 | * (The select() call will unlink them when it ends). | |
6186 | */ | |
3e170ce0 | 6187 | if (wq_link_id != NULL) { |
39236c6e | 6188 | thread_t cur_act = current_thread(); |
b0d623f7 A |
6189 | struct uthread * ut = get_bsdthread_info(cur_act); |
6190 | ||
6191 | kq->kq_state |= KQ_SEL; | |
39037602 | 6192 | waitq_link((struct waitq *)&kq->kq_wqs, ut->uu_wqset, |
3e170ce0 A |
6193 | WAITQ_SHOULD_LOCK, (uint64_t *)wq_link_id); |
6194 | ||
6195 | /* always consume the reserved link object */ | |
6196 | waitq_link_release(*(uint64_t *)wq_link_id); | |
6197 | *(uint64_t *)wq_link_id = 0; | |
6198 | ||
6199 | /* | |
6200 | * selprocess() is expecting that we send it back the waitq | |
6201 | * that was just added to the thread's waitq set. In order | |
6202 | * to not change the selrecord() API (which is exported to | |
6203 | * kexts), we pass this value back through the | |
6204 | * void *wq_link_id pointer we were passed. We need to use | |
6205 | * memcpy here because the pointer may not be properly aligned | |
6206 | * on 32-bit systems. | |
6207 | */ | |
39037602 A |
6208 | void *wqptr = &kq->kq_wqs; |
6209 | memcpy(wq_link_id, (void *)&wqptr, sizeof(void *)); | |
b0d623f7 A |
6210 | } |
6211 | ||
39037602 | 6212 | if (kqueue_begin_processing(kq, QOS_INDEX_KQFILE, 0) == -1) { |
6d2010ae | 6213 | kqunlock(kq); |
39236c6e | 6214 | return (0); |
6d2010ae | 6215 | } |
b0d623f7 | 6216 | |
39037602 A |
6217 | queue = kqueue_get_base_queue(kq, QOS_INDEX_KQFILE); |
6218 | if (!TAILQ_EMPTY(queue)) { | |
b0d623f7 A |
6219 | /* |
6220 | * there is something queued - but it might be a | |
39037602 A |
6221 | * KN_STAYACTIVE knote, which may or may not have |
6222 | * any events pending. Otherwise, we have to walk | |
6223 | * the list of knotes to see, and peek at the | |
6224 | * (non-vanished) stay-active ones to be really sure. | |
b0d623f7 | 6225 | */ |
39037602 A |
6226 | while ((kn = (struct knote *)TAILQ_FIRST(queue)) != NULL) { |
6227 | if (kn->kn_status & KN_ACTIVE) { | |
6d2010ae A |
6228 | retnum = 1; |
6229 | goto out; | |
b0d623f7 | 6230 | } |
39037602 A |
6231 | assert(kn->kn_status & KN_STAYACTIVE); |
6232 | knote_suppress(kn); | |
6233 | } | |
6d2010ae | 6234 | |
39037602 A |
6235 | /* |
6236 | * There were no regular events on the queue, so take | |
6237 | * a deeper look at the stay-queued ones we suppressed. | |
6238 | */ | |
6239 | suppressq = kqueue_get_suppressed_queue(kq, QOS_INDEX_KQFILE); | |
6240 | while ((kn = (struct knote *)TAILQ_FIRST(suppressq)) != NULL) { | |
6241 | unsigned peek = 1; | |
6d2010ae | 6242 | |
5ba3f43e | 6243 | assert(!knoteuse_needs_boost(kn, NULL)); |
6d2010ae | 6244 | |
5ba3f43e A |
6245 | /* If didn't vanish while suppressed - peek at it */ |
6246 | if (kqlock2knoteuse(kq, kn, KNUSE_NONE)) { | |
39037602 A |
6247 | peek = knote_fops(kn)->f_peek(kn); |
6248 | ||
6249 | /* if it dropped while getting lock - move on */ | |
5ba3f43e | 6250 | if (!knoteuse2kqlock(kq, kn, KNUSE_NONE)) |
39037602 A |
6251 | continue; |
6252 | } | |
6253 | ||
6254 | /* unsuppress it */ | |
6255 | knote_unsuppress(kn); | |
6256 | ||
6257 | /* has data or it has to report a vanish */ | |
6258 | if (peek > 0) { | |
6259 | retnum = 1; | |
6260 | goto out; | |
39236c6e | 6261 | } |
55e303ae | 6262 | } |
b0d623f7 A |
6263 | } |
6264 | ||
6d2010ae | 6265 | out: |
5ba3f43e | 6266 | kqueue_end_processing(kq, QOS_INDEX_KQFILE, retnum, 0); |
b0d623f7 | 6267 | kqunlock(kq); |
39236c6e | 6268 | return (retnum); |
55e303ae A |
6269 | } |
6270 | ||
91447636 A |
6271 | /* |
6272 | * kqueue_close - | |
6273 | */ | |
55e303ae A |
6274 | /*ARGSUSED*/ |
6275 | static int | |
2d21ac55 | 6276 | kqueue_close(struct fileglob *fg, __unused vfs_context_t ctx) |
55e303ae | 6277 | { |
39037602 | 6278 | struct kqfile *kqf = (struct kqfile *)fg->fg_data; |
55e303ae | 6279 | |
39037602 A |
6280 | assert((kqf->kqf_state & KQ_WORKQ) == 0); |
6281 | kqueue_dealloc(&kqf->kqf_kqueue); | |
91447636 | 6282 | fg->fg_data = NULL; |
55e303ae A |
6283 | return (0); |
6284 | } | |
6285 | ||
6286 | /*ARGSUSED*/ | |
91447636 A |
6287 | /* |
6288 | * The callers has taken a use-count reference on this kqueue and will donate it | |
6289 | * to the kqueue we are being added to. This keeps the kqueue from closing until | |
6290 | * that relationship is torn down. | |
6291 | */ | |
55e303ae | 6292 | static int |
5ba3f43e A |
6293 | kqueue_kqfilter(__unused struct fileproc *fp, struct knote *kn, |
6294 | __unused struct kevent_internal_s *kev, __unused vfs_context_t ctx) | |
55e303ae | 6295 | { |
39037602 A |
6296 | struct kqfile *kqf = (struct kqfile *)kn->kn_fp->f_data; |
6297 | struct kqueue *kq = &kqf->kqf_kqueue; | |
6298 | struct kqueue *parentkq = knote_get_kq(kn); | |
6299 | ||
6300 | assert((kqf->kqf_state & KQ_WORKQ) == 0); | |
55e303ae | 6301 | |
2d21ac55 | 6302 | if (parentkq == kq || |
39037602 A |
6303 | kn->kn_filter != EVFILT_READ) { |
6304 | kn->kn_flags = EV_ERROR; | |
6305 | kn->kn_data = EINVAL; | |
6306 | return 0; | |
6307 | } | |
55e303ae | 6308 | |
2d21ac55 A |
6309 | /* |
6310 | * We have to avoid creating a cycle when nesting kqueues | |
6311 | * inside another. Rather than trying to walk the whole | |
6312 | * potential DAG of nested kqueues, we just use a simple | |
6313 | * ceiling protocol. When a kqueue is inserted into another, | |
6314 | * we check that the (future) parent is not already nested | |
6315 | * into another kqueue at a lower level than the potenial | |
6316 | * child (because it could indicate a cycle). If that test | |
6317 | * passes, we just mark the nesting levels accordingly. | |
6318 | */ | |
6319 | ||
6320 | kqlock(parentkq); | |
39236c6e | 6321 | if (parentkq->kq_level > 0 && |
2d21ac55 A |
6322 | parentkq->kq_level < kq->kq_level) |
6323 | { | |
6324 | kqunlock(parentkq); | |
39037602 A |
6325 | kn->kn_flags = EV_ERROR; |
6326 | kn->kn_data = EINVAL; | |
6327 | return 0; | |
2d21ac55 A |
6328 | } else { |
6329 | /* set parent level appropriately */ | |
6330 | if (parentkq->kq_level == 0) | |
6331 | parentkq->kq_level = 2; | |
6332 | if (parentkq->kq_level < kq->kq_level + 1) | |
6333 | parentkq->kq_level = kq->kq_level + 1; | |
6334 | kqunlock(parentkq); | |
6335 | ||
39037602 | 6336 | kn->kn_filtid = EVFILTID_KQREAD; |
2d21ac55 | 6337 | kqlock(kq); |
39037602 | 6338 | KNOTE_ATTACH(&kqf->kqf_sel.si_note, kn); |
2d21ac55 A |
6339 | /* indicate nesting in child, if needed */ |
6340 | if (kq->kq_level == 0) | |
6341 | kq->kq_level = 1; | |
39037602 A |
6342 | |
6343 | int count = kq->kq_count; | |
2d21ac55 | 6344 | kqunlock(kq); |
39037602 | 6345 | return (count > 0); |
2d21ac55 | 6346 | } |
55e303ae A |
6347 | } |
6348 | ||
b0d623f7 A |
6349 | /* |
6350 | * kqueue_drain - called when kq is closed | |
6351 | */ | |
6352 | /*ARGSUSED*/ | |
6353 | static int | |
6354 | kqueue_drain(struct fileproc *fp, __unused vfs_context_t ctx) | |
6355 | { | |
6356 | struct kqueue *kq = (struct kqueue *)fp->f_fglob->fg_data; | |
39037602 A |
6357 | |
6358 | assert((kq->kq_state & KQ_WORKQ) == 0); | |
6359 | ||
b0d623f7 | 6360 | kqlock(kq); |
39037602 A |
6361 | kq->kq_state |= KQ_DRAIN; |
6362 | kqueue_interrupt(kq); | |
b0d623f7 | 6363 | kqunlock(kq); |
39236c6e | 6364 | return (0); |
b0d623f7 A |
6365 | } |
6366 | ||
55e303ae A |
6367 | /*ARGSUSED*/ |
6368 | int | |
fe8ab488 | 6369 | kqueue_stat(struct kqueue *kq, void *ub, int isstat64, proc_t p) |
55e303ae | 6370 | { |
39037602 A |
6371 | assert((kq->kq_state & KQ_WORKQ) == 0); |
6372 | ||
fe8ab488 | 6373 | kqlock(kq); |
2d21ac55 | 6374 | if (isstat64 != 0) { |
b0d623f7 A |
6375 | struct stat64 *sb64 = (struct stat64 *)ub; |
6376 | ||
5ba3f43e A |
6377 | bzero((void *)sb64, sizeof(*sb64)); |
6378 | sb64->st_size = kq->kq_count; | |
6379 | if (kq->kq_state & KQ_KEV_QOS) | |
6380 | sb64->st_blksize = sizeof(struct kevent_qos_s); | |
6381 | else if (kq->kq_state & KQ_KEV64) | |
6382 | sb64->st_blksize = sizeof(struct kevent64_s); | |
6383 | else if (IS_64BIT_PROCESS(p)) | |
6384 | sb64->st_blksize = sizeof(struct user64_kevent); | |
6385 | else | |
6386 | sb64->st_blksize = sizeof(struct user32_kevent); | |
6387 | sb64->st_mode = S_IFIFO; | |
6388 | } else { | |
6389 | struct stat *sb = (struct stat *)ub; | |
6390 | ||
6391 | bzero((void *)sb, sizeof(*sb)); | |
6392 | sb->st_size = kq->kq_count; | |
6393 | if (kq->kq_state & KQ_KEV_QOS) | |
6394 | sb->st_blksize = sizeof(struct kevent_qos_s); | |
6395 | else if (kq->kq_state & KQ_KEV64) | |
6396 | sb->st_blksize = sizeof(struct kevent64_s); | |
6397 | else if (IS_64BIT_PROCESS(p)) | |
6398 | sb->st_blksize = sizeof(struct user64_kevent); | |
6399 | else | |
6400 | sb->st_blksize = sizeof(struct user32_kevent); | |
6401 | sb->st_mode = S_IFIFO; | |
6402 | } | |
6403 | kqunlock(kq); | |
6404 | return (0); | |
6405 | } | |
6406 | ||
6407 | /* | |
6408 | * Interact with the pthread kext to request a servicing there. | |
6409 | * Eventually, this will request threads at specific QoS levels. | |
6410 | * For now, it only requests a dispatch-manager-QoS thread, and | |
6411 | * only one-at-a-time. | |
6412 | * | |
6413 | * - Caller holds the workq request lock | |
6414 | * | |
6415 | * - May be called with the kqueue's wait queue set locked, | |
6416 | * so cannot do anything that could recurse on that. | |
6417 | */ | |
6418 | static void | |
6419 | kqworkq_request_thread( | |
6420 | struct kqworkq *kqwq, | |
6421 | kq_index_t qos_index) | |
6422 | { | |
6423 | struct kqrequest *kqr; | |
6424 | ||
6425 | assert(kqwq->kqwq_state & KQ_WORKQ); | |
6426 | assert(qos_index < KQWQ_NQOS); | |
6427 | ||
6428 | kqr = kqworkq_get_request(kqwq, qos_index); | |
6429 | ||
6430 | assert(kqr->kqr_state & KQR_WAKEUP); | |
6431 | ||
6432 | /* | |
6433 | * If we have already requested a thread, and it hasn't | |
6434 | * started processing yet, there's no use hammering away | |
6435 | * on the pthread kext. | |
6436 | */ | |
6437 | if (kqr->kqr_state & KQR_THREQUESTED) | |
6438 | return; | |
6439 | ||
6440 | assert((kqr->kqr_state & KQR_BOUND) == 0); | |
6441 | ||
6442 | /* request additional workq threads if appropriate */ | |
6443 | if (pthread_functions != NULL && | |
6444 | pthread_functions->workq_reqthreads != NULL) { | |
6445 | unsigned int flags = KEVENT_FLAG_WORKQ; | |
6446 | unsigned long priority; | |
6447 | thread_t wqthread; | |
6448 | ||
6449 | /* Compute the appropriate pthread priority */ | |
6450 | priority = qos_from_qos_index(qos_index); | |
6451 | ||
6452 | #if 0 | |
6453 | /* JMM - for now remain compatible with old invocations */ | |
6454 | /* set the over-commit flag on the request if needed */ | |
6455 | if (kqr->kqr_state & KQR_THOVERCOMMIT) | |
6456 | priority |= _PTHREAD_PRIORITY_OVERCOMMIT_FLAG; | |
6457 | #endif /* 0 */ | |
6458 | ||
6459 | /* Compute a priority based on qos_index. */ | |
6460 | struct workq_reqthreads_req_s request = { | |
6461 | .priority = priority, | |
6462 | .count = 1 | |
6463 | }; | |
6464 | ||
6465 | /* mark that we are making a request */ | |
6466 | kqr->kqr_state |= KQR_THREQUESTED; | |
6467 | if (qos_index == KQWQ_QOS_MANAGER) | |
6468 | kqr->kqr_state |= KQWQ_THMANAGER; | |
6469 | ||
6470 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQWQ_THREQUEST), | |
6471 | 0, qos_index, | |
6472 | (((uintptr_t)kqr->kqr_override_index << 8) | | |
6473 | (uintptr_t)kqr->kqr_state)); | |
6474 | wqthread = (*pthread_functions->workq_reqthreads)(kqwq->kqwq_p, 1, &request); | |
6475 | ||
6476 | /* We've been switched to the emergency/manager thread */ | |
6477 | if (wqthread == (thread_t)-1) { | |
6478 | assert(qos_index != KQWQ_QOS_MANAGER); | |
6479 | kqr->kqr_state |= KQWQ_THMANAGER; | |
6480 | return; | |
6481 | } | |
6482 | ||
6483 | /* | |
6484 | * bind the returned thread identity | |
6485 | * This goes away when we switch to synchronous callback | |
6486 | * binding from the pthread kext. | |
6487 | */ | |
6488 | if (wqthread != NULL) { | |
6489 | kqworkq_bind_thread_impl(kqwq, qos_index, wqthread, flags); | |
6490 | } | |
6491 | } | |
6492 | } | |
6493 | ||
6494 | /* | |
6495 | * If we aren't already busy processing events [for this QoS], | |
6496 | * request workq thread support as appropriate. | |
6497 | * | |
6498 | * TBD - for now, we don't segregate out processing by QoS. | |
6499 | * | |
6500 | * - May be called with the kqueue's wait queue set locked, | |
6501 | * so cannot do anything that could recurse on that. | |
6502 | */ | |
6503 | static void | |
6504 | kqworkq_request_help( | |
6505 | struct kqworkq *kqwq, | |
6506 | kq_index_t qos_index) | |
6507 | { | |
6508 | struct kqrequest *kqr; | |
6509 | ||
6510 | /* convert to thread qos value */ | |
6511 | assert(qos_index < KQWQ_NQOS); | |
6512 | ||
6513 | kqwq_req_lock(kqwq); | |
6514 | kqr = kqworkq_get_request(kqwq, qos_index); | |
6515 | ||
6516 | if ((kqr->kqr_state & KQR_WAKEUP) == 0) { | |
6517 | /* Indicate that we needed help from this request */ | |
6518 | kqr->kqr_state |= KQR_WAKEUP; | |
6519 | ||
6520 | /* Go assure a thread request has been made */ | |
6521 | kqworkq_request_thread(kqwq, qos_index); | |
6522 | } | |
6523 | kqwq_req_unlock(kqwq); | |
6524 | } | |
6525 | ||
6526 | static void | |
6527 | kqworkloop_threadreq_impl(struct kqworkloop *kqwl, kq_index_t qos_index) | |
6528 | { | |
6529 | struct kqrequest *kqr = &kqwl->kqwl_request; | |
6530 | unsigned long pri = pthread_priority_for_kqrequest(kqr, qos_index); | |
6531 | int op, ret; | |
6532 | ||
6533 | assert((kqr->kqr_state & (KQR_THREQUESTED | KQR_BOUND)) == KQR_THREQUESTED); | |
6534 | ||
6535 | /* | |
6536 | * New-style thread request supported. Provide | |
6537 | * the pthread kext a pointer to a workq_threadreq_s | |
6538 | * structure for its use until a corresponding | |
6539 | * workloop_fulfill_threqreq callback. | |
6540 | */ | |
6541 | if (current_proc() == kqwl->kqwl_kqueue.kq_p) { | |
6542 | op = WORKQ_THREADREQ_WORKLOOP_NO_THREAD_CALL; | |
6543 | } else { | |
6544 | op = WORKQ_THREADREQ_WORKLOOP; | |
6545 | } | |
6546 | again: | |
6547 | ret = (*pthread_functions->workq_threadreq)(kqwl->kqwl_p, &kqr->kqr_req, | |
6548 | WORKQ_THREADREQ_WORKLOOP, pri, 0); | |
6549 | switch (ret) { | |
6550 | case ENOTSUP: | |
6551 | assert(op == WORKQ_THREADREQ_WORKLOOP_NO_THREAD_CALL); | |
6552 | op = WORKQ_THREADREQ_WORKLOOP; | |
6553 | goto again; | |
6554 | ||
6555 | case ECANCELED: | |
6556 | case EINVAL: | |
6557 | /* | |
6558 | * Process is shutting down or exec'ing. | |
6559 | * All the kqueues are going to be cleaned up | |
6560 | * soon. Forget we even asked for a thread - | |
6561 | * and make sure we don't ask for more. | |
6562 | */ | |
6563 | kqueue_release((struct kqueue *)kqwl, KQUEUE_CANT_BE_LAST_REF); | |
6564 | kqr->kqr_state &= ~KQR_THREQUESTED; | |
6565 | kqr->kqr_state |= KQR_DRAIN; | |
6566 | break; | |
6567 | ||
6568 | case EAGAIN: | |
6569 | assert(op == WORKQ_THREADREQ_WORKLOOP_NO_THREAD_CALL); | |
6570 | act_set_astkevent(current_thread(), AST_KEVENT_REDRIVE_THREADREQ); | |
6571 | break; | |
6572 | ||
6573 | default: | |
6574 | assert(ret == 0); | |
6575 | } | |
6576 | } | |
6577 | ||
6578 | static void | |
6579 | kqworkloop_threadreq_modify(struct kqworkloop *kqwl, kq_index_t qos_index) | |
6580 | { | |
6581 | struct kqrequest *kqr = &kqwl->kqwl_request; | |
6582 | unsigned long pri = pthread_priority_for_kqrequest(kqr, qos_index); | |
6583 | int ret, op = WORKQ_THREADREQ_CHANGE_PRI_NO_THREAD_CALL; | |
6584 | ||
6585 | assert((kqr->kqr_state & (KQR_THREQUESTED | KQR_BOUND)) == KQR_THREQUESTED); | |
6586 | ||
6587 | if (current_proc() == kqwl->kqwl_kqueue.kq_p) { | |
6588 | op = WORKQ_THREADREQ_CHANGE_PRI_NO_THREAD_CALL; | |
6589 | } else { | |
6590 | op = WORKQ_THREADREQ_CHANGE_PRI; | |
6591 | } | |
6592 | again: | |
6593 | ret = (*pthread_functions->workq_threadreq_modify)(kqwl->kqwl_p, | |
6594 | &kqr->kqr_req, op, pri, 0); | |
6595 | switch (ret) { | |
6596 | case ENOTSUP: | |
6597 | assert(op == WORKQ_THREADREQ_CHANGE_PRI_NO_THREAD_CALL); | |
6598 | op = WORKQ_THREADREQ_CHANGE_PRI; | |
6599 | goto again; | |
6600 | ||
6601 | case EAGAIN: | |
6602 | assert(op == WORKQ_THREADREQ_WORKLOOP_NO_THREAD_CALL); | |
6603 | act_set_astkevent(current_thread(), AST_KEVENT_REDRIVE_THREADREQ); | |
6604 | break; | |
6605 | ||
6606 | case ECANCELED: | |
6607 | case EINVAL: | |
6608 | case 0: | |
6609 | break; | |
6610 | ||
6611 | default: | |
6612 | assert(ret == 0); | |
6613 | } | |
6614 | } | |
6615 | ||
6616 | /* | |
6617 | * Interact with the pthread kext to request a servicing thread. | |
6618 | * This will request a single thread at the highest QoS level | |
6619 | * for which there is work (whether that was the requested QoS | |
6620 | * for an event or an override applied to a lower-QoS request). | |
6621 | * | |
6622 | * - Caller holds the workloop request lock | |
6623 | * | |
6624 | * - May be called with the kqueue's wait queue set locked, | |
6625 | * so cannot do anything that could recurse on that. | |
6626 | */ | |
6627 | static void | |
6628 | kqworkloop_request_thread(struct kqworkloop *kqwl, kq_index_t qos_index) | |
6629 | { | |
6630 | struct kqrequest *kqr; | |
6631 | ||
6632 | assert(kqwl->kqwl_state & KQ_WORKLOOP); | |
6633 | ||
6634 | kqr = &kqwl->kqwl_request; | |
6635 | ||
6636 | assert(kqwl->kqwl_owner == THREAD_NULL); | |
6637 | assert((kqr->kqr_state & KQR_BOUND) == 0); | |
6638 | assert((kqr->kqr_state & KQR_THREQUESTED) == 0); | |
6639 | assert(!(kqwl->kqwl_kqueue.kq_state & KQ_NO_WQ_THREAD)); | |
6640 | ||
6641 | /* If we're draining thread requests, just bail */ | |
6642 | if (kqr->kqr_state & KQR_DRAIN) | |
6643 | return; | |
6644 | ||
6645 | if (pthread_functions != NULL && | |
6646 | pthread_functions->workq_threadreq != NULL) { | |
6647 | /* | |
6648 | * set request state flags, etc... before calling pthread | |
6649 | * This assures they are set before a possible synchronous | |
6650 | * callback to workloop_fulfill_threadreq(). | |
6651 | */ | |
6652 | kqr->kqr_state |= KQR_THREQUESTED; | |
6653 | ||
6654 | /* Add a thread request reference on the kqueue. */ | |
6655 | kqueue_retain((struct kqueue *)kqwl); | |
6656 | ||
6657 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQWL_THREQUEST), | |
6658 | kqwl->kqwl_dynamicid, | |
6659 | 0, qos_index, kqr->kqr_state); | |
6660 | kqworkloop_threadreq_impl(kqwl, qos_index); | |
6661 | } else { | |
6662 | panic("kqworkloop_request_thread"); | |
6663 | return; | |
6664 | } | |
6665 | } | |
6666 | ||
6667 | static void | |
6668 | kqworkloop_update_sync_override_state(struct kqworkloop *kqwl, boolean_t sync_ipc_override) | |
6669 | { | |
6670 | struct kqrequest *kqr = &kqwl->kqwl_request; | |
6671 | kqwl_req_lock(kqwl); | |
6672 | kqr->kqr_has_sync_override = sync_ipc_override; | |
6673 | kqwl_req_unlock(kqwl); | |
6674 | ||
6675 | } | |
6676 | ||
6677 | static inline kq_index_t | |
6678 | kqworkloop_combined_qos(struct kqworkloop *kqwl, boolean_t *ipc_override_is_sync) | |
6679 | { | |
6680 | struct kqrequest *kqr = &kqwl->kqwl_request; | |
6681 | kq_index_t override; | |
6682 | ||
6683 | *ipc_override_is_sync = FALSE; | |
6684 | override = MAX(MAX(kqr->kqr_qos_index, kqr->kqr_override_index), | |
6685 | kqr->kqr_dsync_waiters_qos); | |
6686 | ||
6687 | if (kqr->kqr_sync_suppress_count > 0 || kqr->kqr_has_sync_override) { | |
6688 | *ipc_override_is_sync = TRUE; | |
6689 | override = THREAD_QOS_USER_INTERACTIVE; | |
6690 | } | |
6691 | return override; | |
6692 | } | |
6693 | ||
6694 | static inline void | |
6695 | kqworkloop_request_fire_r2k_notification(struct kqworkloop *kqwl) | |
6696 | { | |
6697 | struct kqrequest *kqr = &kqwl->kqwl_request; | |
6698 | ||
6699 | kqwl_req_held(kqwl); | |
6700 | ||
6701 | if (kqr->kqr_state & KQR_R2K_NOTIF_ARMED) { | |
6702 | assert(kqr->kqr_state & KQR_BOUND); | |
6703 | assert(kqr->kqr_thread); | |
6704 | ||
6705 | kqr->kqr_state &= ~KQR_R2K_NOTIF_ARMED; | |
6706 | act_set_astkevent(kqr->kqr_thread, AST_KEVENT_RETURN_TO_KERNEL); | |
6707 | } | |
6708 | } | |
6709 | ||
6710 | static void | |
6711 | kqworkloop_update_threads_qos(struct kqworkloop *kqwl, int op, kq_index_t qos) | |
6712 | { | |
6713 | const uint8_t KQWL_STAYACTIVE_FIRED_BIT = (1 << 0); | |
6714 | ||
6715 | struct kqrequest *kqr = &kqwl->kqwl_request; | |
6716 | boolean_t old_ipc_override_is_sync = FALSE; | |
6717 | kq_index_t old_qos = kqworkloop_combined_qos(kqwl, &old_ipc_override_is_sync); | |
6718 | struct kqueue *kq = &kqwl->kqwl_kqueue; | |
6719 | bool static_thread = (kq->kq_state & KQ_NO_WQ_THREAD); | |
6720 | kq_index_t i; | |
6721 | ||
6722 | /* must hold the kqr lock */ | |
6723 | kqwl_req_held(kqwl); | |
6724 | ||
6725 | switch (op) { | |
6726 | case KQWL_UTQ_UPDATE_WAKEUP_QOS: | |
6727 | if (qos == KQWL_BUCKET_STAYACTIVE) { | |
6728 | /* | |
6729 | * the KQWL_BUCKET_STAYACTIVE is not a QoS bucket, we only remember | |
6730 | * a high watermark (kqr_stayactive_qos) of any stay active knote | |
6731 | * that was ever registered with this workloop. | |
6732 | * | |
6733 | * When waitq_set__CALLING_PREPOST_HOOK__() wakes up any stay active | |
6734 | * knote, we use this high-watermark as a wakeup-index, and also set | |
6735 | * the magic KQWL_BUCKET_STAYACTIVE bit to make sure we remember | |
6736 | * there is at least one stay active knote fired until the next full | |
6737 | * processing of this bucket. | |
6738 | */ | |
6739 | kqr->kqr_wakeup_indexes |= KQWL_STAYACTIVE_FIRED_BIT; | |
6740 | qos = kqr->kqr_stayactive_qos; | |
6741 | assert(qos); | |
6742 | assert(!static_thread); | |
6743 | } | |
6744 | if (kqr->kqr_wakeup_indexes & (1 << qos)) { | |
6745 | assert(kqr->kqr_state & KQR_WAKEUP); | |
6746 | break; | |
6747 | } | |
6748 | ||
6749 | kqr->kqr_wakeup_indexes |= (1 << qos); | |
6750 | kqr->kqr_state |= KQR_WAKEUP; | |
6751 | kqworkloop_request_fire_r2k_notification(kqwl); | |
6752 | goto recompute_async; | |
6753 | ||
6754 | case KQWL_UTQ_UPDATE_STAYACTIVE_QOS: | |
6755 | assert(qos); | |
6756 | if (kqr->kqr_stayactive_qos < qos) { | |
6757 | kqr->kqr_stayactive_qos = qos; | |
6758 | if (kqr->kqr_wakeup_indexes & KQWL_STAYACTIVE_FIRED_BIT) { | |
6759 | assert(kqr->kqr_state & KQR_WAKEUP); | |
6760 | kqr->kqr_wakeup_indexes |= (1 << qos); | |
6761 | goto recompute_async; | |
6762 | } | |
6763 | } | |
6764 | break; | |
6765 | ||
6766 | case KQWL_UTQ_RECOMPUTE_WAKEUP_QOS: | |
6767 | kqlock_held(kq); // to look at kq_queues | |
6768 | kqr->kqr_has_sync_override = FALSE; | |
6769 | i = KQWL_BUCKET_STAYACTIVE; | |
6770 | if (TAILQ_EMPTY(&kqr->kqr_suppressed)) { | |
6771 | kqr->kqr_override_index = THREAD_QOS_UNSPECIFIED; | |
6772 | } | |
6773 | if (!TAILQ_EMPTY(&kq->kq_queue[i]) && | |
6774 | (kqr->kqr_wakeup_indexes & KQWL_STAYACTIVE_FIRED_BIT)) { | |
6775 | /* | |
6776 | * If the KQWL_STAYACTIVE_FIRED_BIT is set, it means a stay active | |
6777 | * knote may have fired, so we need to merge in kqr_stayactive_qos. | |
6778 | * | |
6779 | * Unlike other buckets, this one is never empty but could be idle. | |
6780 | */ | |
6781 | kqr->kqr_wakeup_indexes &= KQWL_STAYACTIVE_FIRED_BIT; | |
6782 | kqr->kqr_wakeup_indexes |= (1 << kqr->kqr_stayactive_qos); | |
6783 | } else { | |
6784 | kqr->kqr_wakeup_indexes = 0; | |
6785 | } | |
6786 | for (i = THREAD_QOS_UNSPECIFIED + 1; i < KQWL_BUCKET_STAYACTIVE; i++) { | |
6787 | if (!TAILQ_EMPTY(&kq->kq_queue[i])) { | |
6788 | kqr->kqr_wakeup_indexes |= (1 << i); | |
6789 | struct knote *kn = TAILQ_FIRST(&kqwl->kqwl_kqueue.kq_queue[i]); | |
6790 | if (i == THREAD_QOS_USER_INTERACTIVE && | |
6791 | kn->kn_qos_override_is_sync) { | |
6792 | kqr->kqr_has_sync_override = TRUE; | |
6793 | } | |
6794 | } | |
6795 | } | |
6796 | if (kqr->kqr_wakeup_indexes) { | |
6797 | kqr->kqr_state |= KQR_WAKEUP; | |
6798 | kqworkloop_request_fire_r2k_notification(kqwl); | |
6799 | } else { | |
6800 | kqr->kqr_state &= ~KQR_WAKEUP; | |
6801 | } | |
6802 | assert(qos == THREAD_QOS_UNSPECIFIED); | |
6803 | goto recompute_async; | |
6804 | ||
6805 | case KQWL_UTQ_RESET_WAKEUP_OVERRIDE: | |
6806 | kqr->kqr_override_index = THREAD_QOS_UNSPECIFIED; | |
6807 | assert(qos == THREAD_QOS_UNSPECIFIED); | |
6808 | goto recompute_async; | |
6809 | ||
6810 | case KQWL_UTQ_UPDATE_WAKEUP_OVERRIDE: | |
6811 | recompute_async: | |
6812 | /* | |
6813 | * When modifying the wakeup QoS or the async override QoS, we always | |
6814 | * need to maintain our invariant that kqr_override_index is at least as | |
6815 | * large as the highest QoS for which an event is fired. | |
6816 | * | |
6817 | * However this override index can be larger when there is an overriden | |
6818 | * suppressed knote pushing on the kqueue. | |
6819 | */ | |
6820 | if (kqr->kqr_wakeup_indexes > (1 << qos)) { | |
6821 | qos = fls(kqr->kqr_wakeup_indexes) - 1; /* fls is 1-based */ | |
6822 | } | |
6823 | if (kqr->kqr_override_index < qos) { | |
6824 | kqr->kqr_override_index = qos; | |
6825 | } | |
6826 | break; | |
6827 | ||
6828 | case KQWL_UTQ_REDRIVE_EVENTS: | |
6829 | break; | |
39037602 | 6830 | |
5ba3f43e A |
6831 | case KQWL_UTQ_SET_ASYNC_QOS: |
6832 | filt_wlheld(kqwl); | |
6833 | kqr->kqr_qos_index = qos; | |
6834 | break; | |
39037602 | 6835 | |
5ba3f43e A |
6836 | case KQWL_UTQ_SET_SYNC_WAITERS_QOS: |
6837 | filt_wlheld(kqwl); | |
6838 | kqr->kqr_dsync_waiters_qos = qos; | |
6839 | break; | |
39037602 | 6840 | |
5ba3f43e A |
6841 | default: |
6842 | panic("unknown kqwl thread qos update operation: %d", op); | |
6843 | } | |
39037602 | 6844 | |
5ba3f43e A |
6845 | boolean_t new_ipc_override_is_sync = FALSE; |
6846 | kq_index_t new_qos = kqworkloop_combined_qos(kqwl, &new_ipc_override_is_sync); | |
6847 | thread_t kqwl_owner = kqwl->kqwl_owner; | |
6848 | thread_t servicer = kqr->kqr_thread; | |
6849 | __assert_only int ret; | |
39037602 | 6850 | |
5ba3f43e A |
6851 | /* |
6852 | * Apply the diffs to the owner if applicable | |
6853 | */ | |
6854 | if (filt_wlowner_is_valid(kqwl_owner)) { | |
6855 | #if 0 | |
6856 | /* JMM - need new trace hooks for owner overrides */ | |
6857 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQWL_THADJUST), | |
6858 | kqwl->kqwl_dynamicid, | |
6859 | (kqr->kqr_state & KQR_BOUND) ? thread_tid(kqwl_owner) : 0, | |
6860 | (kqr->kqr_qos_index << 8) | new_qos, | |
6861 | (kqr->kqr_override_index << 8) | kqr->kqr_state); | |
6862 | #endif | |
6863 | if (new_qos == kqr->kqr_dsync_owner_qos) { | |
6864 | // nothing to do | |
6865 | } else if (kqr->kqr_dsync_owner_qos == THREAD_QOS_UNSPECIFIED) { | |
6866 | thread_add_ipc_override(kqwl_owner, new_qos); | |
6867 | } else if (new_qos == THREAD_QOS_UNSPECIFIED) { | |
6868 | thread_drop_ipc_override(kqwl_owner); | |
6869 | } else /* kqr->kqr_dsync_owner_qos != new_qos */ { | |
6870 | thread_update_ipc_override(kqwl_owner, new_qos); | |
6871 | } | |
6872 | kqr->kqr_dsync_owner_qos = new_qos; | |
6873 | ||
6874 | if (new_ipc_override_is_sync && | |
6875 | !kqr->kqr_owner_override_is_sync) { | |
6876 | thread_add_sync_ipc_override(kqwl_owner); | |
6877 | } else if (!new_ipc_override_is_sync && | |
6878 | kqr->kqr_owner_override_is_sync) { | |
6879 | thread_drop_sync_ipc_override(kqwl_owner); | |
6880 | } | |
6881 | kqr->kqr_owner_override_is_sync = new_ipc_override_is_sync; | |
6882 | } | |
39037602 | 6883 | |
5ba3f43e A |
6884 | /* |
6885 | * apply the diffs to the servicer | |
39037602 | 6886 | */ |
5ba3f43e A |
6887 | if (static_thread) { |
6888 | /* | |
6889 | * Statically bound thread | |
6890 | * | |
6891 | * These threads don't participates in QoS overrides today, just wakeup | |
6892 | * the thread blocked on this kqueue if a new event arrived. | |
6893 | */ | |
39037602 | 6894 | |
5ba3f43e A |
6895 | switch (op) { |
6896 | case KQWL_UTQ_UPDATE_WAKEUP_QOS: | |
6897 | case KQWL_UTQ_UPDATE_STAYACTIVE_QOS: | |
6898 | case KQWL_UTQ_RECOMPUTE_WAKEUP_QOS: | |
6899 | break; | |
39037602 | 6900 | |
5ba3f43e A |
6901 | case KQWL_UTQ_RESET_WAKEUP_OVERRIDE: |
6902 | case KQWL_UTQ_UPDATE_WAKEUP_OVERRIDE: | |
6903 | case KQWL_UTQ_REDRIVE_EVENTS: | |
6904 | case KQWL_UTQ_SET_ASYNC_QOS: | |
6905 | case KQWL_UTQ_SET_SYNC_WAITERS_QOS: | |
6906 | panic("should never be called"); | |
6907 | break; | |
6908 | } | |
39037602 | 6909 | |
5ba3f43e | 6910 | kqlock_held(kq); |
39037602 | 6911 | |
5ba3f43e A |
6912 | if ((kqr->kqr_state & KQR_BOUND) && (kqr->kqr_state & KQR_WAKEUP)) { |
6913 | assert(servicer && !is_workqueue_thread(servicer)); | |
6914 | if (kq->kq_state & (KQ_SLEEP | KQ_SEL)) { | |
6915 | kq->kq_state &= ~(KQ_SLEEP | KQ_SEL); | |
6916 | waitq_wakeup64_all((struct waitq *)&kq->kq_wqs, KQ_EVENT, | |
6917 | THREAD_AWAKENED, WAITQ_ALL_PRIORITIES); | |
6918 | } | |
6919 | } | |
6920 | } else if ((kqr->kqr_state & KQR_THREQUESTED) == 0) { | |
6921 | /* | |
6922 | * No servicer, nor thread-request | |
6923 | * | |
6924 | * Make a new thread request, unless there is an owner (or the workloop | |
6925 | * is suspended in userland) or if there is no asynchronous work in the | |
6926 | * first place. | |
6927 | */ | |
39037602 | 6928 | |
5ba3f43e A |
6929 | if (kqwl_owner == THREAD_NULL && (kqr->kqr_state & KQR_WAKEUP)) { |
6930 | kqworkloop_request_thread(kqwl, new_qos); | |
6931 | } | |
6932 | } else if ((kqr->kqr_state & KQR_BOUND) == 0 && | |
6933 | (kqwl_owner || (kqr->kqr_state & KQR_WAKEUP) == 0)) { | |
6934 | /* | |
6935 | * No servicer, thread request in flight we want to cancel | |
6936 | * | |
6937 | * We just got rid of the last knote of the kqueue or noticed an owner | |
6938 | * with a thread request still in flight, take it back. | |
6939 | */ | |
6940 | ret = (*pthread_functions->workq_threadreq_modify)(kqwl->kqwl_p, | |
6941 | &kqr->kqr_req, WORKQ_THREADREQ_CANCEL, 0, 0); | |
6942 | if (ret == 0) { | |
6943 | kqr->kqr_state &= ~KQR_THREQUESTED; | |
6944 | kqueue_release(kq, KQUEUE_CANT_BE_LAST_REF); | |
6945 | } | |
6946 | } else { | |
6947 | boolean_t qos_changed = FALSE; | |
6948 | ||
6949 | /* | |
6950 | * Servicer or request is in flight | |
6951 | * | |
6952 | * Just apply the diff to the servicer or the thread request | |
6953 | */ | |
6954 | if (kqr->kqr_state & KQR_BOUND) { | |
6955 | servicer = kqr->kqr_thread; | |
6956 | struct uthread *ut = get_bsdthread_info(servicer); | |
6957 | if (ut->uu_kqueue_qos_index != new_qos) { | |
6958 | if (ut->uu_kqueue_qos_index == THREAD_QOS_UNSPECIFIED) { | |
6959 | thread_add_ipc_override(servicer, new_qos); | |
6960 | } else if (new_qos == THREAD_QOS_UNSPECIFIED) { | |
6961 | thread_drop_ipc_override(servicer); | |
6962 | } else /* ut->uu_kqueue_qos_index != new_qos */ { | |
6963 | thread_update_ipc_override(servicer, new_qos); | |
6964 | } | |
6965 | ut->uu_kqueue_qos_index = new_qos; | |
6966 | qos_changed = TRUE; | |
6967 | } | |
39037602 | 6968 | |
5ba3f43e A |
6969 | if (new_ipc_override_is_sync != ut->uu_kqueue_override_is_sync) { |
6970 | if (new_ipc_override_is_sync && | |
6971 | !ut->uu_kqueue_override_is_sync) { | |
6972 | thread_add_sync_ipc_override(servicer); | |
6973 | } else if (!new_ipc_override_is_sync && | |
6974 | ut->uu_kqueue_override_is_sync) { | |
6975 | thread_drop_sync_ipc_override(servicer); | |
6976 | } | |
6977 | ut->uu_kqueue_override_is_sync = new_ipc_override_is_sync; | |
6978 | qos_changed = TRUE; | |
6979 | } | |
6980 | } else if (old_qos != new_qos) { | |
6981 | assert(new_qos); | |
6982 | kqworkloop_threadreq_modify(kqwl, new_qos); | |
6983 | qos_changed = TRUE; | |
6984 | } | |
6985 | if (qos_changed) { | |
6986 | servicer = kqr->kqr_thread; | |
6987 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KQWL_THADJUST), | |
6988 | kqwl->kqwl_dynamicid, | |
6989 | (kqr->kqr_state & KQR_BOUND) ? thread_tid(servicer) : 0, | |
6990 | (kqr->kqr_qos_index << 16) | (new_qos << 8) | new_ipc_override_is_sync, | |
6991 | (kqr->kqr_override_index << 8) | kqr->kqr_state); | |
6992 | } | |
39037602 A |
6993 | } |
6994 | } | |
6995 | ||
39037602 | 6996 | static void |
5ba3f43e | 6997 | kqworkloop_request_help(struct kqworkloop *kqwl, kq_index_t qos_index) |
39037602 | 6998 | { |
39037602 | 6999 | /* convert to thread qos value */ |
5ba3f43e | 7000 | assert(qos_index < KQWL_NBUCKETS); |
39037602 | 7001 | |
5ba3f43e A |
7002 | kqwl_req_lock(kqwl); |
7003 | kqworkloop_update_threads_qos(kqwl, KQWL_UTQ_UPDATE_WAKEUP_QOS, qos_index); | |
7004 | kqwl_req_unlock(kqwl); | |
39037602 A |
7005 | } |
7006 | ||
7007 | /* | |
7008 | * These arrays described the low and high qindexes for a given qos_index. | |
7009 | * The values come from the chart in <sys/eventvar.h> (must stay in sync). | |
7010 | */ | |
5ba3f43e A |
7011 | static kq_index_t _kqwq_base_index[KQWQ_NQOS] = {0, 0, 6, 11, 15, 18, 20, 21}; |
7012 | static kq_index_t _kqwq_high_index[KQWQ_NQOS] = {0, 5, 10, 14, 17, 19, 20, 21}; | |
39037602 A |
7013 | |
7014 | static struct kqtailq * | |
7015 | kqueue_get_base_queue(struct kqueue *kq, kq_index_t qos_index) | |
7016 | { | |
5ba3f43e A |
7017 | if (kq->kq_state & KQ_WORKQ) { |
7018 | assert(qos_index < KQWQ_NQOS); | |
7019 | return &kq->kq_queue[_kqwq_base_index[qos_index]]; | |
7020 | } else if (kq->kq_state & KQ_WORKLOOP) { | |
7021 | assert(qos_index < KQWL_NBUCKETS); | |
7022 | return &kq->kq_queue[qos_index]; | |
7023 | } else { | |
7024 | assert(qos_index == QOS_INDEX_KQFILE); | |
7025 | return &kq->kq_queue[QOS_INDEX_KQFILE]; | |
7026 | } | |
39037602 A |
7027 | } |
7028 | ||
7029 | static struct kqtailq * | |
7030 | kqueue_get_high_queue(struct kqueue *kq, kq_index_t qos_index) | |
7031 | { | |
5ba3f43e A |
7032 | if (kq->kq_state & KQ_WORKQ) { |
7033 | assert(qos_index < KQWQ_NQOS); | |
7034 | return &kq->kq_queue[_kqwq_high_index[qos_index]]; | |
7035 | } else if (kq->kq_state & KQ_WORKLOOP) { | |
7036 | assert(qos_index < KQWL_NBUCKETS); | |
7037 | return &kq->kq_queue[KQWL_BUCKET_STAYACTIVE]; | |
7038 | } else { | |
7039 | assert(qos_index == QOS_INDEX_KQFILE); | |
7040 | return &kq->kq_queue[QOS_INDEX_KQFILE]; | |
7041 | } | |
39037602 A |
7042 | } |
7043 | ||
7044 | static int | |
7045 | kqueue_queue_empty(struct kqueue *kq, kq_index_t qos_index) | |
7046 | { | |
7047 | struct kqtailq *base_queue = kqueue_get_base_queue(kq, qos_index); | |
7048 | struct kqtailq *queue = kqueue_get_high_queue(kq, qos_index); | |
7049 | ||
7050 | do { | |
7051 | if (!TAILQ_EMPTY(queue)) | |
7052 | return 0; | |
7053 | } while (queue-- > base_queue); | |
7054 | return 1; | |
7055 | } | |
7056 | ||
7057 | static struct kqtailq * | |
7058 | kqueue_get_suppressed_queue(struct kqueue *kq, kq_index_t qos_index) | |
7059 | { | |
5ba3f43e A |
7060 | struct kqtailq *res; |
7061 | struct kqrequest *kqr; | |
7062 | ||
39037602 A |
7063 | if (kq->kq_state & KQ_WORKQ) { |
7064 | struct kqworkq *kqwq = (struct kqworkq *)kq; | |
39037602 A |
7065 | |
7066 | kqr = kqworkq_get_request(kqwq, qos_index); | |
5ba3f43e A |
7067 | res = &kqr->kqr_suppressed; |
7068 | } else if (kq->kq_state & KQ_WORKLOOP) { | |
7069 | struct kqworkloop *kqwl = (struct kqworkloop *)kq; | |
7070 | ||
7071 | kqr = &kqwl->kqwl_request; | |
7072 | res = &kqr->kqr_suppressed; | |
39037602 A |
7073 | } else { |
7074 | struct kqfile *kqf = (struct kqfile *)kq; | |
5ba3f43e | 7075 | res = &kqf->kqf_suppressed; |
39037602 | 7076 | } |
5ba3f43e | 7077 | return res; |
39037602 A |
7078 | } |
7079 | ||
7080 | static kq_index_t | |
7081 | knote_get_queue_index(struct knote *kn) | |
7082 | { | |
7083 | kq_index_t override_index = knote_get_qos_override_index(kn); | |
7084 | kq_index_t qos_index = knote_get_qos_index(kn); | |
7085 | struct kqueue *kq = knote_get_kq(kn); | |
7086 | kq_index_t res; | |
7087 | ||
5ba3f43e A |
7088 | if (kq->kq_state & KQ_WORKQ) { |
7089 | res = _kqwq_base_index[qos_index]; | |
7090 | if (override_index > qos_index) | |
7091 | res += override_index - qos_index; | |
7092 | assert(res <= _kqwq_high_index[qos_index]); | |
7093 | } else if (kq->kq_state & KQ_WORKLOOP) { | |
7094 | res = MAX(override_index, qos_index); | |
7095 | assert(res < KQWL_NBUCKETS); | |
7096 | } else { | |
7097 | assert(qos_index == QOS_INDEX_KQFILE); | |
7098 | assert(override_index == QOS_INDEX_KQFILE); | |
7099 | res = QOS_INDEX_KQFILE; | |
39037602 | 7100 | } |
39037602 A |
7101 | return res; |
7102 | } | |
7103 | ||
7104 | static struct kqtailq * | |
7105 | knote_get_queue(struct knote *kn) | |
7106 | { | |
7107 | kq_index_t qindex = knote_get_queue_index(kn); | |
7108 | ||
7109 | return &(knote_get_kq(kn))->kq_queue[qindex]; | |
7110 | } | |
7111 | ||
39037602 A |
7112 | static kq_index_t |
7113 | knote_get_req_index(struct knote *kn) | |
7114 | { | |
7115 | return kn->kn_req_index; | |
7116 | } | |
7117 | ||
7118 | static kq_index_t | |
7119 | knote_get_qos_index(struct knote *kn) | |
7120 | { | |
7121 | return kn->kn_qos_index; | |
7122 | } | |
7123 | ||
7124 | static void | |
7125 | knote_set_qos_index(struct knote *kn, kq_index_t qos_index) | |
7126 | { | |
7127 | struct kqueue *kq = knote_get_kq(kn); | |
7128 | ||
7129 | assert(qos_index < KQWQ_NQOS); | |
7130 | assert((kn->kn_status & KN_QUEUED) == 0); | |
7131 | ||
5ba3f43e A |
7132 | if (kq->kq_state & KQ_WORKQ) { |
7133 | assert(qos_index > THREAD_QOS_UNSPECIFIED); | |
7134 | } else if (kq->kq_state & KQ_WORKLOOP) { | |
7135 | /* XXX this policy decision shouldn't be here */ | |
7136 | if (qos_index == THREAD_QOS_UNSPECIFIED) | |
7137 | qos_index = THREAD_QOS_LEGACY; | |
7138 | } else | |
7139 | qos_index = QOS_INDEX_KQFILE; | |
39037602 A |
7140 | |
7141 | /* always set requested */ | |
7142 | kn->kn_req_index = qos_index; | |
7143 | ||
7144 | /* only adjust in-use qos index when not suppressed */ | |
7145 | if ((kn->kn_status & KN_SUPPRESSED) == 0) | |
7146 | kn->kn_qos_index = qos_index; | |
7147 | } | |
7148 | ||
5ba3f43e A |
7149 | static void |
7150 | knote_set_qos_overcommit(struct knote *kn) | |
7151 | { | |
7152 | struct kqueue *kq = knote_get_kq(kn); | |
7153 | struct kqrequest *kqr; | |
7154 | ||
7155 | /* turn overcommit on for the appropriate thread request? */ | |
7156 | if (kn->kn_qos & _PTHREAD_PRIORITY_OVERCOMMIT_FLAG) { | |
7157 | if (kq->kq_state & KQ_WORKQ) { | |
7158 | kq_index_t qos_index = knote_get_qos_index(kn); | |
7159 | struct kqworkq *kqwq = (struct kqworkq *)kq; | |
7160 | ||
7161 | kqr = kqworkq_get_request(kqwq, qos_index); | |
7162 | ||
7163 | kqwq_req_lock(kqwq); | |
7164 | kqr->kqr_state |= KQR_THOVERCOMMIT; | |
7165 | kqwq_req_unlock(kqwq); | |
7166 | } else if (kq->kq_state & KQ_WORKLOOP) { | |
7167 | struct kqworkloop *kqwl = (struct kqworkloop *)kq; | |
7168 | ||
7169 | kqr = &kqwl->kqwl_request; | |
7170 | ||
7171 | kqwl_req_lock(kqwl); | |
7172 | kqr->kqr_state |= KQR_THOVERCOMMIT; | |
7173 | kqwl_req_unlock(kqwl); | |
7174 | } | |
7175 | } | |
7176 | } | |
7177 | ||
39037602 A |
7178 | static kq_index_t |
7179 | knote_get_qos_override_index(struct knote *kn) | |
7180 | { | |
7181 | return kn->kn_qos_override; | |
7182 | } | |
7183 | ||
7184 | static void | |
5ba3f43e A |
7185 | knote_set_qos_override_index(struct knote *kn, kq_index_t override_index, |
7186 | boolean_t override_is_sync) | |
39037602 A |
7187 | { |
7188 | struct kqueue *kq = knote_get_kq(kn); | |
7189 | kq_index_t qos_index = knote_get_qos_index(kn); | |
5ba3f43e A |
7190 | kq_index_t old_override_index = knote_get_qos_override_index(kn); |
7191 | boolean_t old_override_is_sync = kn->kn_qos_override_is_sync; | |
7192 | uint32_t flags = 0; | |
39037602 A |
7193 | |
7194 | assert((kn->kn_status & KN_QUEUED) == 0); | |
7195 | ||
5ba3f43e | 7196 | if (override_index == KQWQ_QOS_MANAGER) { |
39037602 | 7197 | assert(qos_index == KQWQ_QOS_MANAGER); |
5ba3f43e | 7198 | } else { |
39037602 | 7199 | assert(override_index < KQWQ_QOS_MANAGER); |
5ba3f43e | 7200 | } |
39037602 A |
7201 | |
7202 | kn->kn_qos_override = override_index; | |
5ba3f43e | 7203 | kn->kn_qos_override_is_sync = override_is_sync; |
39037602 | 7204 | |
5ba3f43e A |
7205 | /* |
7206 | * If this is a workq/workloop kqueue, apply the override to the | |
7207 | * servicing thread. | |
39037602 A |
7208 | */ |
7209 | if (kq->kq_state & KQ_WORKQ) { | |
7210 | struct kqworkq *kqwq = (struct kqworkq *)kq; | |
7211 | ||
5ba3f43e | 7212 | assert(qos_index > THREAD_QOS_UNSPECIFIED); |
39037602 | 7213 | kqworkq_update_override(kqwq, qos_index, override_index); |
5ba3f43e A |
7214 | } else if (kq->kq_state & KQ_WORKLOOP) { |
7215 | struct kqworkloop *kqwl = (struct kqworkloop *)kq; | |
7216 | ||
7217 | if ((kn->kn_status & KN_SUPPRESSED) == KN_SUPPRESSED) { | |
7218 | flags = flags | KQWL_UO_UPDATE_SUPPRESS_SYNC_COUNTERS; | |
7219 | ||
7220 | if (override_index == THREAD_QOS_USER_INTERACTIVE | |
7221 | && override_is_sync) { | |
7222 | flags = flags | KQWL_UO_NEW_OVERRIDE_IS_SYNC_UI; | |
7223 | } | |
7224 | ||
7225 | if (old_override_index == THREAD_QOS_USER_INTERACTIVE | |
7226 | && old_override_is_sync) { | |
7227 | flags = flags | KQWL_UO_OLD_OVERRIDE_IS_SYNC_UI; | |
7228 | } | |
7229 | } | |
7230 | ||
7231 | assert(qos_index > THREAD_QOS_UNSPECIFIED); | |
7232 | kqworkloop_update_override(kqwl, qos_index, override_index, flags); | |
39037602 A |
7233 | } |
7234 | } | |
7235 | ||
5ba3f43e A |
7236 | static kq_index_t |
7237 | knote_get_sync_qos_override_index(struct knote *kn) | |
7238 | { | |
7239 | return kn->kn_qos_sync_override; | |
7240 | } | |
7241 | ||
39037602 A |
7242 | static void |
7243 | kqworkq_update_override(struct kqworkq *kqwq, kq_index_t qos_index, kq_index_t override_index) | |
7244 | { | |
7245 | struct kqrequest *kqr; | |
5ba3f43e | 7246 | kq_index_t old_override_index; |
39037602 | 7247 | |
5ba3f43e A |
7248 | if (override_index <= qos_index) { |
7249 | return; | |
7250 | } | |
39037602 A |
7251 | |
7252 | kqr = kqworkq_get_request(kqwq, qos_index); | |
7253 | ||
7254 | kqwq_req_lock(kqwq); | |
5ba3f43e A |
7255 | old_override_index = kqr->kqr_override_index; |
7256 | if (override_index > MAX(kqr->kqr_qos_index, old_override_index)) { | |
7257 | kqr->kqr_override_index = override_index; | |
39037602 A |
7258 | |
7259 | /* apply the override to [incoming?] servicing thread */ | |
5ba3f43e A |
7260 | if (kqr->kqr_state & KQR_BOUND) { |
7261 | thread_t wqthread = kqr->kqr_thread; | |
7262 | ||
39037602 | 7263 | /* only apply if non-manager */ |
5ba3f43e | 7264 | assert(wqthread); |
39037602 | 7265 | if ((kqr->kqr_state & KQWQ_THMANAGER) == 0) { |
5ba3f43e | 7266 | if (old_override_index) |
39037602 A |
7267 | thread_update_ipc_override(wqthread, override_index); |
7268 | else | |
7269 | thread_add_ipc_override(wqthread, override_index); | |
7270 | } | |
7271 | } | |
7272 | } | |
7273 | kqwq_req_unlock(kqwq); | |
7274 | } | |
7275 | ||
5ba3f43e A |
7276 | /* called with the kqworkq lock held */ |
7277 | static void | |
7278 | kqworkq_bind_thread_impl( | |
7279 | struct kqworkq *kqwq, | |
7280 | kq_index_t qos_index, | |
7281 | thread_t thread, | |
7282 | unsigned int flags) | |
7283 | { | |
7284 | /* request lock must be held */ | |
7285 | kqwq_req_held(kqwq); | |
7286 | ||
7287 | struct kqrequest *kqr = kqworkq_get_request(kqwq, qos_index); | |
7288 | assert(kqr->kqr_state & KQR_THREQUESTED); | |
7289 | ||
7290 | if (qos_index == KQWQ_QOS_MANAGER) | |
7291 | flags |= KEVENT_FLAG_WORKQ_MANAGER; | |
7292 | ||
7293 | struct uthread *ut = get_bsdthread_info(thread); | |
7294 | ||
7295 | /* | |
7296 | * If this is a manager, and the manager request bit is | |
7297 | * not set, assure no other thread is bound. If the bit | |
7298 | * is set, make sure the old thread is us (or not set). | |
7299 | */ | |
7300 | if (flags & KEVENT_FLAG_WORKQ_MANAGER) { | |
7301 | if ((kqr->kqr_state & KQR_BOUND) == 0) { | |
7302 | kqr->kqr_state |= (KQR_BOUND | KQWQ_THMANAGER); | |
7303 | TAILQ_INIT(&kqr->kqr_suppressed); | |
7304 | kqr->kqr_thread = thread; | |
7305 | ut->uu_kqueue_bound = (struct kqueue *)kqwq; | |
7306 | ut->uu_kqueue_qos_index = KQWQ_QOS_MANAGER; | |
7307 | ut->uu_kqueue_flags = (KEVENT_FLAG_WORKQ | | |
7308 | KEVENT_FLAG_WORKQ_MANAGER); | |
7309 | } else { | |
7310 | assert(kqr->kqr_state & KQR_BOUND); | |
7311 | assert(thread == kqr->kqr_thread); | |
7312 | assert(ut->uu_kqueue_bound == (struct kqueue *)kqwq); | |
7313 | assert(ut->uu_kqueue_qos_index == KQWQ_QOS_MANAGER); | |
7314 | assert(ut->uu_kqueue_flags & KEVENT_FLAG_WORKQ_MANAGER); | |
7315 | } | |
7316 | return; | |
7317 | } | |
7318 | ||
7319 | /* Just a normal one-queue servicing thread */ | |
7320 | assert(kqr->kqr_state & KQR_THREQUESTED); | |
7321 | assert(kqr->kqr_qos_index == qos_index); | |
7322 | ||
7323 | if ((kqr->kqr_state & KQR_BOUND) == 0) { | |
7324 | kqr->kqr_state |= KQR_BOUND; | |
7325 | TAILQ_INIT(&kqr->kqr_suppressed); | |
7326 | kqr->kqr_thread = thread; | |
7327 | ||
7328 | /* apply an ipc QoS override if one is needed */ | |
7329 | if (kqr->kqr_override_index) { | |
7330 | assert(kqr->kqr_qos_index); | |
7331 | assert(kqr->kqr_override_index > kqr->kqr_qos_index); | |
7332 | assert(thread_get_ipc_override(thread) == THREAD_QOS_UNSPECIFIED); | |
7333 | thread_add_ipc_override(thread, kqr->kqr_override_index); | |
7334 | } | |
7335 | ||
7336 | /* indicate that we are processing in the uthread */ | |
7337 | ut->uu_kqueue_bound = (struct kqueue *)kqwq; | |
7338 | ut->uu_kqueue_qos_index = qos_index; | |
7339 | ut->uu_kqueue_flags = flags; | |
7340 | } else { | |
7341 | /* | |
7342 | * probably syncronously bound AND post-request bound | |
7343 | * this logic can go away when we get rid of post-request bind | |
7344 | */ | |
7345 | assert(kqr->kqr_state & KQR_BOUND); | |
7346 | assert(thread == kqr->kqr_thread); | |
7347 | assert(ut->uu_kqueue_bound == (struct kqueue *)kqwq); | |
7348 | assert(ut->uu_kqueue_qos_index == qos_index); | |
7349 | assert((ut->uu_kqueue_flags & flags) == flags); | |
7350 | } | |
7351 | } | |
7352 | ||
7353 | static void | |
7354 | kqworkloop_update_override( | |
7355 | struct kqworkloop *kqwl, | |
7356 | kq_index_t qos_index, | |
7357 | kq_index_t override_index, | |
7358 | uint32_t flags) | |
7359 | { | |
7360 | struct kqrequest *kqr = &kqwl->kqwl_request; | |
7361 | ||
7362 | kqwl_req_lock(kqwl); | |
7363 | ||
7364 | /* Do not override on attached threads */ | |
7365 | if (kqr->kqr_state & KQR_BOUND) { | |
7366 | assert(kqr->kqr_thread); | |
7367 | ||
7368 | if (kqwl->kqwl_kqueue.kq_state & KQ_NO_WQ_THREAD) { | |
7369 | kqwl_req_unlock(kqwl); | |
7370 | assert(!is_workqueue_thread(kqr->kqr_thread)); | |
7371 | return; | |
7372 | } | |
7373 | } | |
7374 | ||
7375 | /* Update sync ipc counts on kqr for suppressed knotes */ | |
7376 | if (flags & KQWL_UO_UPDATE_SUPPRESS_SYNC_COUNTERS) { | |
7377 | kqworkloop_update_suppress_sync_count(kqr, flags); | |
7378 | } | |
7379 | ||
7380 | if ((flags & KQWL_UO_UPDATE_OVERRIDE_LAZY) == 0) { | |
7381 | kqworkloop_update_threads_qos(kqwl, KQWL_UTQ_UPDATE_WAKEUP_OVERRIDE, | |
7382 | MAX(qos_index, override_index)); | |
7383 | } | |
7384 | kqwl_req_unlock(kqwl); | |
7385 | } | |
7386 | ||
7387 | static void | |
7388 | kqworkloop_update_suppress_sync_count( | |
7389 | struct kqrequest *kqr, | |
7390 | uint32_t flags) | |
7391 | { | |
7392 | if (flags & KQWL_UO_NEW_OVERRIDE_IS_SYNC_UI) { | |
7393 | kqr->kqr_sync_suppress_count++; | |
7394 | } | |
7395 | ||
7396 | if (flags & KQWL_UO_OLD_OVERRIDE_IS_SYNC_UI) { | |
7397 | assert(kqr->kqr_sync_suppress_count > 0); | |
7398 | kqr->kqr_sync_suppress_count--; | |
7399 | } | |
7400 | } | |
7401 | ||
7402 | /* | |
7403 | * kqworkloop_unbind_thread - Unbind the servicer thread of a workloop kqueue | |
7404 | * | |
7405 | * It will end the processing phase in case it was still processing: | |
7406 | * | |
7407 | * We may have to request a new thread for not KQ_NO_WQ_THREAD workloop. | |
7408 | * This can happen if : | |
7409 | * - there were active events at or above our QoS we never got to (count > 0) | |
7410 | * - we pended waitq hook callouts during processing | |
7411 | * - we pended wakeups while processing (or unsuppressing) | |
7412 | * | |
7413 | * Called with kqueue lock held. | |
7414 | */ | |
7415 | ||
39037602 | 7416 | static void |
5ba3f43e A |
7417 | kqworkloop_unbind_thread( |
7418 | struct kqworkloop *kqwl, | |
39037602 | 7419 | thread_t thread, |
5ba3f43e | 7420 | __unused unsigned int flags) |
39037602 | 7421 | { |
5ba3f43e A |
7422 | struct kqueue *kq = &kqwl->kqwl_kqueue; |
7423 | struct kqrequest *kqr = &kqwl->kqwl_request; | |
39037602 | 7424 | |
5ba3f43e | 7425 | kqlock_held(kq); |
39037602 | 7426 | |
5ba3f43e A |
7427 | assert((kq->kq_state & KQ_PROCESSING) == 0); |
7428 | if (kq->kq_state & KQ_PROCESSING) { | |
39037602 A |
7429 | return; |
7430 | } | |
7431 | ||
5ba3f43e A |
7432 | /* |
7433 | * Forcing the KQ_PROCESSING flag allows for QoS updates because of | |
7434 | * unsuppressing knotes not to be applied until the eventual call to | |
7435 | * kqworkloop_update_threads_qos() below. | |
39037602 | 7436 | */ |
5ba3f43e A |
7437 | kq->kq_state |= KQ_PROCESSING; |
7438 | kqworkloop_acknowledge_events(kqwl, TRUE); | |
7439 | kq->kq_state &= ~KQ_PROCESSING; | |
7440 | ||
7441 | kqwl_req_lock(kqwl); | |
7442 | ||
7443 | /* deal with extraneous unbinds in release kernels */ | |
7444 | assert((kqr->kqr_state & (KQR_BOUND | KQR_PROCESSING)) == KQR_BOUND); | |
7445 | if ((kqr->kqr_state & (KQR_BOUND | KQR_PROCESSING)) != KQR_BOUND) { | |
7446 | kqwl_req_unlock(kqwl); | |
39037602 A |
7447 | return; |
7448 | } | |
7449 | ||
5ba3f43e A |
7450 | assert(thread == current_thread()); |
7451 | assert(kqr->kqr_thread == thread); | |
7452 | if (kqr->kqr_thread != thread) { | |
7453 | kqwl_req_unlock(kqwl); | |
7454 | return; | |
7455 | } | |
7456 | ||
7457 | struct uthread *ut = get_bsdthread_info(thread); | |
7458 | kq_index_t old_qos_index = ut->uu_kqueue_qos_index; | |
7459 | boolean_t ipc_override_is_sync = ut->uu_kqueue_override_is_sync; | |
7460 | ut->uu_kqueue_bound = NULL; | |
7461 | ut->uu_kqueue_qos_index = 0; | |
7462 | ut->uu_kqueue_override_is_sync = 0; | |
7463 | ut->uu_kqueue_flags = 0; | |
39037602 | 7464 | |
5ba3f43e A |
7465 | /* unbind the servicer thread, drop overrides */ |
7466 | kqr->kqr_thread = NULL; | |
7467 | kqr->kqr_state &= ~(KQR_BOUND | KQR_THREQUESTED | KQR_R2K_NOTIF_ARMED); | |
7468 | kqworkloop_update_threads_qos(kqwl, KQWL_UTQ_RECOMPUTE_WAKEUP_QOS, 0); | |
39037602 | 7469 | |
5ba3f43e A |
7470 | kqwl_req_unlock(kqwl); |
7471 | ||
7472 | /* | |
7473 | * Drop the override on the current thread last, after the call to | |
7474 | * kqworkloop_update_threads_qos above. | |
7475 | */ | |
7476 | if (old_qos_index) { | |
7477 | thread_drop_ipc_override(thread); | |
7478 | } | |
7479 | if (ipc_override_is_sync) { | |
7480 | thread_drop_sync_ipc_override(thread); | |
7481 | } | |
39037602 A |
7482 | } |
7483 | ||
7484 | /* called with the kqworkq lock held */ | |
7485 | static void | |
7486 | kqworkq_unbind_thread( | |
7487 | struct kqworkq *kqwq, | |
7488 | kq_index_t qos_index, | |
7489 | thread_t thread, | |
7490 | __unused unsigned int flags) | |
7491 | { | |
7492 | struct kqrequest *kqr = kqworkq_get_request(kqwq, qos_index); | |
5ba3f43e A |
7493 | kq_index_t override_index = 0; |
7494 | ||
7495 | /* request lock must be held */ | |
7496 | kqwq_req_held(kqwq); | |
39037602 A |
7497 | |
7498 | assert(thread == current_thread()); | |
7499 | ||
5ba3f43e A |
7500 | if ((kqr->kqr_state & KQR_BOUND) == 0) { |
7501 | assert(kqr->kqr_state & KQR_BOUND); | |
7502 | return; | |
7503 | } | |
7504 | ||
7505 | assert(kqr->kqr_thread == thread); | |
7506 | assert(TAILQ_EMPTY(&kqr->kqr_suppressed)); | |
7507 | ||
39037602 A |
7508 | /* |
7509 | * If there is an override, drop it from the current thread | |
7510 | * and then we are free to recompute (a potentially lower) | |
7511 | * minimum override to apply to the next thread request. | |
7512 | */ | |
5ba3f43e | 7513 | if (kqr->kqr_override_index) { |
39037602 A |
7514 | struct kqtailq *base_queue = kqueue_get_base_queue(&kqwq->kqwq_kqueue, qos_index); |
7515 | struct kqtailq *queue = kqueue_get_high_queue(&kqwq->kqwq_kqueue, qos_index); | |
7516 | ||
7517 | /* if not bound to a manager thread, drop the current ipc override */ | |
7518 | if ((kqr->kqr_state & KQWQ_THMANAGER) == 0) { | |
39037602 A |
7519 | thread_drop_ipc_override(thread); |
7520 | } | |
7521 | ||
7522 | /* recompute the new override */ | |
7523 | do { | |
7524 | if (!TAILQ_EMPTY(queue)) { | |
5ba3f43e | 7525 | override_index = queue - base_queue + qos_index; |
39037602 A |
7526 | break; |
7527 | } | |
7528 | } while (queue-- > base_queue); | |
7529 | } | |
7530 | ||
5ba3f43e A |
7531 | /* Mark it unbound */ |
7532 | kqr->kqr_thread = NULL; | |
7533 | kqr->kqr_state &= ~(KQR_BOUND | KQR_THREQUESTED | KQWQ_THMANAGER); | |
7534 | ||
7535 | /* apply the new override */ | |
7536 | if (override_index > kqr->kqr_qos_index) { | |
7537 | kqr->kqr_override_index = override_index; | |
7538 | } else { | |
7539 | kqr->kqr_override_index = THREAD_QOS_UNSPECIFIED; | |
7540 | } | |
39037602 A |
7541 | } |
7542 | ||
7543 | struct kqrequest * | |
7544 | kqworkq_get_request(struct kqworkq *kqwq, kq_index_t qos_index) | |
7545 | { | |
7546 | assert(qos_index < KQWQ_NQOS); | |
7547 | return &kqwq->kqwq_request[qos_index]; | |
7548 | } | |
7549 | ||
7550 | void | |
5ba3f43e | 7551 | knote_adjust_qos(struct knote *kn, qos_t new_qos, qos_t new_override, kq_index_t sync_override_index) |
39037602 | 7552 | { |
5ba3f43e A |
7553 | struct kqueue *kq = knote_get_kq(kn); |
7554 | boolean_t override_is_sync = FALSE; | |
7555 | ||
7556 | if (kq->kq_state & (KQ_WORKQ | KQ_WORKLOOP)) { | |
39037602 A |
7557 | kq_index_t new_qos_index; |
7558 | kq_index_t new_override_index; | |
7559 | kq_index_t servicer_qos_index; | |
7560 | ||
5ba3f43e A |
7561 | new_qos_index = qos_index_from_qos(kn, new_qos, FALSE); |
7562 | new_override_index = qos_index_from_qos(kn, new_override, TRUE); | |
39037602 A |
7563 | |
7564 | /* make sure the servicer qos acts as a floor */ | |
5ba3f43e | 7565 | servicer_qos_index = qos_index_from_qos(kn, kn->kn_qos, FALSE); |
39037602 A |
7566 | if (servicer_qos_index > new_qos_index) |
7567 | new_qos_index = servicer_qos_index; | |
7568 | if (servicer_qos_index > new_override_index) | |
7569 | new_override_index = servicer_qos_index; | |
5ba3f43e A |
7570 | if (sync_override_index >= new_override_index) { |
7571 | new_override_index = sync_override_index; | |
7572 | override_is_sync = TRUE; | |
7573 | } | |
39037602 | 7574 | |
5ba3f43e | 7575 | kqlock(kq); |
39037602 | 7576 | if (new_qos_index != knote_get_req_index(kn) || |
5ba3f43e A |
7577 | new_override_index != knote_get_qos_override_index(kn) || |
7578 | override_is_sync != kn->kn_qos_override_is_sync) { | |
39037602 A |
7579 | if (kn->kn_status & KN_QUEUED) { |
7580 | knote_dequeue(kn); | |
7581 | knote_set_qos_index(kn, new_qos_index); | |
5ba3f43e | 7582 | knote_set_qos_override_index(kn, new_override_index, override_is_sync); |
39037602 A |
7583 | knote_enqueue(kn); |
7584 | knote_wakeup(kn); | |
7585 | } else { | |
7586 | knote_set_qos_index(kn, new_qos_index); | |
5ba3f43e A |
7587 | knote_set_qos_override_index(kn, new_override_index, override_is_sync); |
7588 | } | |
7589 | } | |
7590 | kqunlock(kq); | |
7591 | } | |
7592 | } | |
7593 | ||
7594 | void | |
7595 | knote_adjust_sync_qos(struct knote *kn, kq_index_t sync_qos, boolean_t lock_kq) | |
7596 | { | |
7597 | struct kqueue *kq = knote_get_kq(kn); | |
7598 | kq_index_t old_sync_override; | |
7599 | kq_index_t qos_index = knote_get_qos_index(kn); | |
7600 | uint32_t flags = 0; | |
7601 | ||
7602 | /* Tracking only happens for UI qos */ | |
7603 | if (sync_qos != THREAD_QOS_USER_INTERACTIVE && | |
7604 | sync_qos != THREAD_QOS_UNSPECIFIED) { | |
7605 | return; | |
7606 | } | |
7607 | ||
7608 | if (lock_kq) | |
7609 | kqlock(kq); | |
7610 | ||
7611 | if (kq->kq_state & KQ_WORKLOOP) { | |
7612 | struct kqworkloop *kqwl = (struct kqworkloop *)kq; | |
7613 | ||
7614 | old_sync_override = knote_get_sync_qos_override_index(kn); | |
7615 | if (old_sync_override != sync_qos) { | |
7616 | kn->kn_qos_sync_override = sync_qos; | |
7617 | ||
7618 | /* update sync ipc counters for suppressed knotes */ | |
7619 | if ((kn->kn_status & KN_SUPPRESSED) == KN_SUPPRESSED) { | |
7620 | flags = flags | KQWL_UO_UPDATE_SUPPRESS_SYNC_COUNTERS; | |
7621 | ||
7622 | /* Do not recalculate kqwl override, it would be done later */ | |
7623 | flags = flags | KQWL_UO_UPDATE_OVERRIDE_LAZY; | |
7624 | ||
7625 | if (sync_qos == THREAD_QOS_USER_INTERACTIVE) { | |
7626 | flags = flags | KQWL_UO_NEW_OVERRIDE_IS_SYNC_UI; | |
7627 | } | |
7628 | ||
7629 | if (old_sync_override == THREAD_QOS_USER_INTERACTIVE) { | |
7630 | flags = flags | KQWL_UO_OLD_OVERRIDE_IS_SYNC_UI; | |
7631 | } | |
7632 | ||
7633 | kqworkloop_update_override(kqwl, qos_index, sync_qos, | |
7634 | flags); | |
39037602 | 7635 | } |
5ba3f43e | 7636 | |
39037602 | 7637 | } |
39037602 | 7638 | } |
5ba3f43e A |
7639 | if (lock_kq) |
7640 | kqunlock(kq); | |
39037602 A |
7641 | } |
7642 | ||
7643 | static void | |
7644 | knote_wakeup(struct knote *kn) | |
7645 | { | |
7646 | struct kqueue *kq = knote_get_kq(kn); | |
5ba3f43e A |
7647 | kq_index_t qos_index = knote_get_qos_index(kn); |
7648 | ||
7649 | kqlock_held(kq); | |
39037602 A |
7650 | |
7651 | if (kq->kq_state & KQ_WORKQ) { | |
7652 | /* request a servicing thread */ | |
7653 | struct kqworkq *kqwq = (struct kqworkq *)kq; | |
39037602 | 7654 | |
5ba3f43e A |
7655 | kqworkq_request_help(kqwq, qos_index); |
7656 | ||
7657 | } else if (kq->kq_state & KQ_WORKLOOP) { | |
7658 | /* request a servicing thread */ | |
7659 | struct kqworkloop *kqwl = (struct kqworkloop *)kq; | |
39037602 | 7660 | |
5ba3f43e A |
7661 | if (kqworkloop_is_processing_on_current_thread(kqwl)) { |
7662 | /* | |
7663 | * kqworkloop_end_processing() will perform the required QoS | |
7664 | * computations when it unsets the processing mode. | |
7665 | */ | |
7666 | return; | |
7667 | } | |
7668 | kqworkloop_request_help(kqwl, qos_index); | |
39037602 A |
7669 | } else { |
7670 | struct kqfile *kqf = (struct kqfile *)kq; | |
7671 | ||
7672 | /* flag wakeups during processing */ | |
7673 | if (kq->kq_state & KQ_PROCESSING) | |
7674 | kq->kq_state |= KQ_WAKEUP; | |
7675 | ||
7676 | /* wakeup a thread waiting on this queue */ | |
7677 | if (kq->kq_state & (KQ_SLEEP | KQ_SEL)) { | |
7678 | kq->kq_state &= ~(KQ_SLEEP | KQ_SEL); | |
7679 | waitq_wakeup64_all((struct waitq *)&kq->kq_wqs, | |
7680 | KQ_EVENT, | |
7681 | THREAD_AWAKENED, | |
7682 | WAITQ_ALL_PRIORITIES); | |
7683 | } | |
b0d623f7 | 7684 | |
39037602 A |
7685 | /* wakeup other kqueues/select sets we're inside */ |
7686 | KNOTE(&kqf->kqf_sel.si_note, 0); | |
2d21ac55 | 7687 | } |
55e303ae | 7688 | } |
5ba3f43e | 7689 | |
91447636 A |
7690 | /* |
7691 | * Called with the kqueue locked | |
7692 | */ | |
55e303ae | 7693 | static void |
39037602 | 7694 | kqueue_interrupt(struct kqueue *kq) |
55e303ae | 7695 | { |
39037602 | 7696 | assert((kq->kq_state & KQ_WORKQ) == 0); |
3e170ce0 | 7697 | |
39037602 A |
7698 | /* wakeup sleeping threads */ |
7699 | if ((kq->kq_state & (KQ_SLEEP | KQ_SEL)) != 0) { | |
b0d623f7 | 7700 | kq->kq_state &= ~(KQ_SLEEP | KQ_SEL); |
39037602 A |
7701 | (void)waitq_wakeup64_all((struct waitq *)&kq->kq_wqs, |
7702 | KQ_EVENT, | |
7703 | THREAD_RESTART, | |
7704 | WAITQ_ALL_PRIORITIES); | |
3e170ce0 A |
7705 | } |
7706 | ||
39037602 A |
7707 | /* wakeup threads waiting their turn to process */ |
7708 | if (kq->kq_state & KQ_PROCWAIT) { | |
7709 | struct kqtailq *suppressq; | |
3e170ce0 | 7710 | |
39037602 A |
7711 | assert(kq->kq_state & KQ_PROCESSING); |
7712 | ||
7713 | kq->kq_state &= ~KQ_PROCWAIT; | |
7714 | suppressq = kqueue_get_suppressed_queue(kq, QOS_INDEX_KQFILE); | |
7715 | (void)waitq_wakeup64_all((struct waitq *)&kq->kq_wqs, | |
7716 | CAST_EVENT64_T(suppressq), | |
7717 | THREAD_RESTART, | |
7718 | WAITQ_ALL_PRIORITIES); | |
91447636 | 7719 | } |
55e303ae A |
7720 | } |
7721 | ||
39037602 A |
7722 | /* |
7723 | * Called back from waitq code when no threads waiting and the hook was set. | |
7724 | * | |
7725 | * Interrupts are likely disabled and spin locks are held - minimal work | |
7726 | * can be done in this context!!! | |
7727 | * | |
7728 | * JMM - in the future, this will try to determine which knotes match the | |
7729 | * wait queue wakeup and apply these wakeups against those knotes themselves. | |
7730 | * For now, all the events dispatched this way are dispatch-manager handled, | |
7731 | * so hard-code that for now. | |
7732 | */ | |
7733 | void | |
7734 | waitq_set__CALLING_PREPOST_HOOK__(void *kq_hook, void *knote_hook, int qos) | |
7735 | { | |
7736 | #pragma unused(knote_hook, qos) | |
7737 | ||
5ba3f43e | 7738 | struct kqueue *kq = (struct kqueue *)kq_hook; |
39037602 | 7739 | |
5ba3f43e A |
7740 | if (kq->kq_state & KQ_WORKQ) { |
7741 | struct kqworkq *kqwq = (struct kqworkq *)kq; | |
7742 | ||
7743 | kqworkq_request_help(kqwq, KQWQ_QOS_MANAGER); | |
7744 | ||
7745 | } else if (kq->kq_state & KQ_WORKLOOP) { | |
7746 | struct kqworkloop *kqwl = (struct kqworkloop *)kq; | |
7747 | ||
7748 | kqworkloop_request_help(kqwl, KQWL_BUCKET_STAYACTIVE); | |
7749 | } | |
39037602 A |
7750 | } |
7751 | ||
55e303ae A |
7752 | void |
7753 | klist_init(struct klist *list) | |
7754 | { | |
7755 | SLIST_INIT(list); | |
7756 | } | |
7757 | ||
91447636 | 7758 | |
55e303ae | 7759 | /* |
91447636 A |
7760 | * Query/Post each knote in the object's list |
7761 | * | |
7762 | * The object lock protects the list. It is assumed | |
7763 | * that the filter/event routine for the object can | |
7764 | * determine that the object is already locked (via | |
b0d623f7 | 7765 | * the hint) and not deadlock itself. |
91447636 A |
7766 | * |
7767 | * The object lock should also hold off pending | |
7768 | * detach/drop operations. But we'll prevent it here | |
39037602 | 7769 | * too (by taking a use reference) - just in case. |
55e303ae A |
7770 | */ |
7771 | void | |
7772 | knote(struct klist *list, long hint) | |
7773 | { | |
7774 | struct knote *kn; | |
7775 | ||
91447636 | 7776 | SLIST_FOREACH(kn, list, kn_selnext) { |
39037602 | 7777 | struct kqueue *kq = knote_get_kq(kn); |
91447636 A |
7778 | |
7779 | kqlock(kq); | |
39037602 | 7780 | |
5ba3f43e A |
7781 | assert(!knoteuse_needs_boost(kn, NULL)); |
7782 | ||
39037602 | 7783 | /* If we can get a use reference - deliver event */ |
5ba3f43e | 7784 | if (kqlock2knoteuse(kq, kn, KNUSE_NONE)) { |
91447636 A |
7785 | int result; |
7786 | ||
7787 | /* call the event with only a use count */ | |
39037602 | 7788 | result = knote_fops(kn)->f_event(kn, hint); |
91447636 A |
7789 | |
7790 | /* if its not going away and triggered */ | |
5ba3f43e | 7791 | if (knoteuse2kqlock(kq, kn, KNUSE_NONE) && result) |
39037602 A |
7792 | knote_activate(kn); |
7793 | /* kq lock held */ | |
91447636 A |
7794 | } |
7795 | kqunlock(kq); | |
7796 | } | |
55e303ae A |
7797 | } |
7798 | ||
7799 | /* | |
7800 | * attach a knote to the specified list. Return true if this is the first entry. | |
91447636 | 7801 | * The list is protected by whatever lock the object it is associated with uses. |
55e303ae A |
7802 | */ |
7803 | int | |
7804 | knote_attach(struct klist *list, struct knote *kn) | |
7805 | { | |
7806 | int ret = SLIST_EMPTY(list); | |
7807 | SLIST_INSERT_HEAD(list, kn, kn_selnext); | |
39236c6e | 7808 | return (ret); |
55e303ae A |
7809 | } |
7810 | ||
7811 | /* | |
7812 | * detach a knote from the specified list. Return true if that was the last entry. | |
91447636 | 7813 | * The list is protected by whatever lock the object it is associated with uses. |
55e303ae A |
7814 | */ |
7815 | int | |
7816 | knote_detach(struct klist *list, struct knote *kn) | |
7817 | { | |
7818 | SLIST_REMOVE(list, kn, knote, kn_selnext); | |
39236c6e | 7819 | return (SLIST_EMPTY(list)); |
55e303ae A |
7820 | } |
7821 | ||
39037602 A |
7822 | /* |
7823 | * knote_vanish - Indicate that the source has vanished | |
7824 | * | |
7825 | * If the knote has requested EV_VANISHED delivery, | |
7826 | * arrange for that. Otherwise, deliver a NOTE_REVOKE | |
7827 | * event for backward compatibility. | |
7828 | * | |
7829 | * The knote is marked as having vanished, but is not | |
7830 | * actually detached from the source in this instance. | |
7831 | * The actual detach is deferred until the knote drop. | |
7832 | * | |
7833 | * Our caller already has the object lock held. Calling | |
7834 | * the detach routine would try to take that lock | |
7835 | * recursively - which likely is not supported. | |
7836 | */ | |
7837 | void | |
7838 | knote_vanish(struct klist *list) | |
7839 | { | |
7840 | struct knote *kn; | |
7841 | struct knote *kn_next; | |
7842 | ||
7843 | SLIST_FOREACH_SAFE(kn, list, kn_selnext, kn_next) { | |
7844 | struct kqueue *kq = knote_get_kq(kn); | |
7845 | int result; | |
7846 | ||
7847 | kqlock(kq); | |
39037602 | 7848 | |
5ba3f43e A |
7849 | assert(!knoteuse_needs_boost(kn, NULL)); |
7850 | ||
7851 | if ((kn->kn_status & KN_DROPPING) == 0) { | |
39037602 A |
7852 | /* If EV_VANISH supported - prepare to deliver one */ |
7853 | if (kn->kn_status & KN_REQVANISH) { | |
7854 | kn->kn_status |= KN_VANISHED; | |
7855 | knote_activate(kn); | |
7856 | ||
5ba3f43e | 7857 | } else if (kqlock2knoteuse(kq, kn, KNUSE_NONE)) { |
39037602 A |
7858 | /* call the event with only a use count */ |
7859 | result = knote_fops(kn)->f_event(kn, NOTE_REVOKE); | |
5ba3f43e | 7860 | |
39037602 | 7861 | /* if its not going away and triggered */ |
5ba3f43e | 7862 | if (knoteuse2kqlock(kq, kn, KNUSE_NONE) && result) |
39037602 A |
7863 | knote_activate(kn); |
7864 | /* lock held again */ | |
7865 | } | |
7866 | } | |
7867 | kqunlock(kq); | |
7868 | } | |
7869 | } | |
7870 | ||
b0d623f7 A |
7871 | /* |
7872 | * For a given knote, link a provided wait queue directly with the kqueue. | |
39236c6e | 7873 | * Wakeups will happen via recursive wait queue support. But nothing will move |
b0d623f7 A |
7874 | * the knote to the active list at wakeup (nothing calls knote()). Instead, |
7875 | * we permanently enqueue them here. | |
7876 | * | |
7877 | * kqueue and knote references are held by caller. | |
39037602 | 7878 | * waitq locked by caller. |
316670eb A |
7879 | * |
7880 | * caller provides the wait queue link structure. | |
b0d623f7 A |
7881 | */ |
7882 | int | |
3e170ce0 | 7883 | knote_link_waitq(struct knote *kn, struct waitq *wq, uint64_t *reserved_link) |
b0d623f7 | 7884 | { |
39037602 | 7885 | struct kqueue *kq = knote_get_kq(kn); |
b0d623f7 A |
7886 | kern_return_t kr; |
7887 | ||
39037602 | 7888 | kr = waitq_link(wq, &kq->kq_wqs, WAITQ_ALREADY_LOCKED, reserved_link); |
b0d623f7 | 7889 | if (kr == KERN_SUCCESS) { |
39037602 | 7890 | knote_markstayactive(kn); |
39236c6e | 7891 | return (0); |
b0d623f7 | 7892 | } else { |
39236c6e | 7893 | return (EINVAL); |
b0d623f7 A |
7894 | } |
7895 | } | |
7896 | ||
7897 | /* | |
7898 | * Unlink the provided wait queue from the kqueue associated with a knote. | |
7899 | * Also remove it from the magic list of directly attached knotes. | |
7900 | * | |
7901 | * Note that the unlink may have already happened from the other side, so | |
7902 | * ignore any failures to unlink and just remove it from the kqueue list. | |
316670eb A |
7903 | * |
7904 | * On success, caller is responsible for the link structure | |
b0d623f7 | 7905 | */ |
316670eb | 7906 | int |
3e170ce0 | 7907 | knote_unlink_waitq(struct knote *kn, struct waitq *wq) |
b0d623f7 | 7908 | { |
39037602 | 7909 | struct kqueue *kq = knote_get_kq(kn); |
316670eb | 7910 | kern_return_t kr; |
b0d623f7 | 7911 | |
39037602 A |
7912 | kr = waitq_unlink(wq, &kq->kq_wqs); |
7913 | knote_clearstayactive(kn); | |
39236c6e | 7914 | return ((kr != KERN_SUCCESS) ? EINVAL : 0); |
b0d623f7 A |
7915 | } |
7916 | ||
55e303ae | 7917 | /* |
91447636 A |
7918 | * remove all knotes referencing a specified fd |
7919 | * | |
7920 | * Essentially an inlined knote_remove & knote_drop | |
7921 | * when we know for sure that the thing is a file | |
39236c6e | 7922 | * |
91447636 A |
7923 | * Entered with the proc_fd lock already held. |
7924 | * It returns the same way, but may drop it temporarily. | |
55e303ae A |
7925 | */ |
7926 | void | |
39037602 | 7927 | knote_fdclose(struct proc *p, int fd, int force) |
55e303ae | 7928 | { |
91447636 | 7929 | struct klist *list; |
55e303ae A |
7930 | struct knote *kn; |
7931 | ||
39037602 A |
7932 | restart: |
7933 | list = &p->p_fd->fd_knlist[fd]; | |
7934 | SLIST_FOREACH(kn, list, kn_link) { | |
7935 | struct kqueue *kq = knote_get_kq(kn); | |
7936 | ||
7937 | kqlock(kq); | |
55e303ae | 7938 | |
2d21ac55 | 7939 | if (kq->kq_p != p) |
39236c6e A |
7940 | panic("%s: proc mismatch (kq->kq_p=%p != p=%p)", |
7941 | __func__, kq->kq_p, p); | |
2d21ac55 | 7942 | |
39037602 A |
7943 | /* |
7944 | * If the knote supports EV_VANISHED delivery, | |
7945 | * transition it to vanished mode (or skip over | |
7946 | * it if already vanished). | |
7947 | */ | |
7948 | if (!force && (kn->kn_status & KN_REQVANISH)) { | |
7949 | ||
7950 | if ((kn->kn_status & KN_VANISHED) == 0) { | |
7951 | proc_fdunlock(p); | |
7952 | ||
5ba3f43e | 7953 | assert(!knoteuse_needs_boost(kn, NULL)); |
39037602 | 7954 | |
5ba3f43e A |
7955 | /* get detach reference (also marks vanished) */ |
7956 | if (kqlock2knotedetach(kq, kn, KNUSE_NONE)) { | |
39037602 A |
7957 | /* detach knote and drop fp use reference */ |
7958 | knote_fops(kn)->f_detach(kn); | |
7959 | if (knote_fops(kn)->f_isfd) | |
7960 | fp_drop(p, kn->kn_id, kn->kn_fp, 0); | |
7961 | ||
7962 | /* activate it if it's still in existence */ | |
5ba3f43e | 7963 | if (knoteuse2kqlock(kq, kn, KNUSE_NONE)) { |
39037602 A |
7964 | knote_activate(kn); |
7965 | } | |
7966 | kqunlock(kq); | |
7967 | } | |
7968 | proc_fdlock(p); | |
7969 | goto restart; | |
7970 | } else { | |
7971 | kqunlock(kq); | |
7972 | continue; | |
7973 | } | |
7974 | } | |
7975 | ||
91447636 A |
7976 | proc_fdunlock(p); |
7977 | ||
7978 | /* | |
39037602 | 7979 | * Convert the kq lock to a drop ref. |
91447636 | 7980 | * If we get it, go ahead and drop it. |
39037602 A |
7981 | * Otherwise, we waited for the blocking |
7982 | * condition to complete. Either way, | |
7983 | * we dropped the fdlock so start over. | |
91447636 A |
7984 | */ |
7985 | if (kqlock2knotedrop(kq, kn)) { | |
91447636 A |
7986 | knote_drop(kn, p); |
7987 | } | |
39236c6e | 7988 | |
91447636 | 7989 | proc_fdlock(p); |
39037602 | 7990 | goto restart; |
91447636 | 7991 | } |
55e303ae A |
7992 | } |
7993 | ||
39037602 | 7994 | /* |
5ba3f43e A |
7995 | * knote_fdfind - lookup a knote in the fd table for process |
7996 | * | |
7997 | * If the filter is file-based, lookup based on fd index. | |
7998 | * Otherwise use a hash based on the ident. | |
7999 | * | |
8000 | * Matching is based on kq, filter, and ident. Optionally, | |
8001 | * it may also be based on the udata field in the kevent - | |
8002 | * allowing multiple event registration for the file object | |
8003 | * per kqueue. | |
8004 | * | |
8005 | * fd_knhashlock or fdlock held on entry (and exit) | |
8006 | */ | |
8007 | static struct knote * | |
8008 | knote_fdfind(struct kqueue *kq, | |
8009 | struct kevent_internal_s *kev, | |
8010 | bool is_fd, | |
8011 | struct proc *p) | |
8012 | { | |
8013 | struct filedesc *fdp = p->p_fd; | |
8014 | struct klist *list = NULL; | |
8015 | struct knote *kn = NULL; | |
8016 | ||
8017 | /* | |
8018 | * determine where to look for the knote | |
8019 | */ | |
8020 | if (is_fd) { | |
8021 | /* fd-based knotes are linked off the fd table */ | |
8022 | if (kev->ident < (u_int)fdp->fd_knlistsize) { | |
8023 | list = &fdp->fd_knlist[kev->ident]; | |
8024 | } | |
8025 | } else if (fdp->fd_knhashmask != 0) { | |
8026 | /* hash non-fd knotes here too */ | |
8027 | list = &fdp->fd_knhash[KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)]; | |
8028 | } | |
8029 | ||
8030 | /* | |
8031 | * scan the selected list looking for a match | |
8032 | */ | |
8033 | if (list != NULL) { | |
8034 | SLIST_FOREACH(kn, list, kn_link) { | |
8035 | if (kq == knote_get_kq(kn) && | |
8036 | kev->ident == kn->kn_id && | |
8037 | kev->filter == kn->kn_filter) { | |
8038 | if (kev->flags & EV_UDATA_SPECIFIC) { | |
8039 | if ((kn->kn_status & KN_UDATA_SPECIFIC) && | |
8040 | kev->udata == kn->kn_udata) { | |
8041 | break; /* matching udata-specific knote */ | |
8042 | } | |
8043 | } else if ((kn->kn_status & KN_UDATA_SPECIFIC) == 0) { | |
8044 | break; /* matching non-udata-specific knote */ | |
8045 | } | |
8046 | } | |
8047 | } | |
8048 | } | |
8049 | return kn; | |
8050 | } | |
8051 | ||
8052 | /* | |
8053 | * kq_add_knote- Add knote to the fd table for process | |
8054 | * while checking for duplicates. | |
39037602 A |
8055 | * |
8056 | * All file-based filters associate a list of knotes by file | |
8057 | * descriptor index. All other filters hash the knote by ident. | |
8058 | * | |
8059 | * May have to grow the table of knote lists to cover the | |
8060 | * file descriptor index presented. | |
8061 | * | |
5ba3f43e A |
8062 | * fd_knhashlock and fdlock unheld on entry (and exit). |
8063 | * | |
8064 | * Takes a rwlock boost if inserting the knote is successful. | |
39037602 | 8065 | */ |
91447636 | 8066 | static int |
5ba3f43e A |
8067 | kq_add_knote(struct kqueue *kq, struct knote *kn, |
8068 | struct kevent_internal_s *kev, | |
8069 | struct proc *p, int *knoteuse_flags) | |
55e303ae | 8070 | { |
39037602 | 8071 | struct filedesc *fdp = p->p_fd; |
91447636 | 8072 | struct klist *list = NULL; |
5ba3f43e A |
8073 | int ret = 0; |
8074 | bool is_fd = knote_fops(kn)->f_isfd; | |
8075 | ||
8076 | if (is_fd) | |
8077 | proc_fdlock(p); | |
8078 | else | |
8079 | knhash_lock(p); | |
8080 | ||
8081 | if (knote_fdfind(kq, kev, is_fd, p) != NULL) { | |
8082 | /* found an existing knote: we can't add this one */ | |
8083 | ret = ERESTART; | |
8084 | goto out_locked; | |
8085 | } | |
8086 | ||
8087 | /* knote was not found: add it now */ | |
8088 | if (!is_fd) { | |
8089 | if (fdp->fd_knhashmask == 0) { | |
8090 | u_long size = 0; | |
8091 | ||
8092 | list = hashinit(CONFIG_KN_HASHSIZE, M_KQUEUE, | |
8093 | &size); | |
8094 | if (list == NULL) { | |
8095 | ret = ENOMEM; | |
8096 | goto out_locked; | |
8097 | } | |
8098 | ||
8099 | fdp->fd_knhash = list; | |
8100 | fdp->fd_knhashmask = size; | |
8101 | } | |
55e303ae | 8102 | |
55e303ae | 8103 | list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)]; |
5ba3f43e A |
8104 | SLIST_INSERT_HEAD(list, kn, kn_link); |
8105 | ret = 0; | |
8106 | goto out_locked; | |
8107 | ||
91447636 | 8108 | } else { |
5ba3f43e A |
8109 | /* knote is fd based */ |
8110 | ||
91447636 A |
8111 | if ((u_int)fdp->fd_knlistsize <= kn->kn_id) { |
8112 | u_int size = 0; | |
8113 | ||
39236c6e | 8114 | if (kn->kn_id >= (uint64_t)p->p_rlimit[RLIMIT_NOFILE].rlim_cur |
5ba3f43e A |
8115 | || kn->kn_id >= (uint64_t)maxfiles) { |
8116 | ret = EINVAL; | |
8117 | goto out_locked; | |
8118 | } | |
91447636 A |
8119 | /* have to grow the fd_knlist */ |
8120 | size = fdp->fd_knlistsize; | |
8121 | while (size <= kn->kn_id) | |
8122 | size += KQEXTENT; | |
316670eb | 8123 | |
5ba3f43e A |
8124 | if (size >= (UINT_MAX/sizeof(struct klist *))) { |
8125 | ret = EINVAL; | |
8126 | goto out_locked; | |
8127 | } | |
316670eb | 8128 | |
91447636 | 8129 | MALLOC(list, struct klist *, |
39236c6e | 8130 | size * sizeof(struct klist *), M_KQUEUE, M_WAITOK); |
5ba3f43e A |
8131 | if (list == NULL) { |
8132 | ret = ENOMEM; | |
8133 | goto out_locked; | |
8134 | } | |
39236c6e | 8135 | |
91447636 | 8136 | bcopy((caddr_t)fdp->fd_knlist, (caddr_t)list, |
39236c6e | 8137 | fdp->fd_knlistsize * sizeof(struct klist *)); |
91447636 | 8138 | bzero((caddr_t)list + |
39236c6e A |
8139 | fdp->fd_knlistsize * sizeof(struct klist *), |
8140 | (size - fdp->fd_knlistsize) * sizeof(struct klist *)); | |
55e303ae | 8141 | FREE(fdp->fd_knlist, M_KQUEUE); |
91447636 A |
8142 | fdp->fd_knlist = list; |
8143 | fdp->fd_knlistsize = size; | |
8144 | } | |
5ba3f43e | 8145 | |
91447636 | 8146 | list = &fdp->fd_knlist[kn->kn_id]; |
5ba3f43e A |
8147 | SLIST_INSERT_HEAD(list, kn, kn_link); |
8148 | ret = 0; | |
8149 | goto out_locked; | |
8150 | ||
55e303ae | 8151 | } |
5ba3f43e A |
8152 | |
8153 | out_locked: | |
8154 | if (ret == 0 && knoteuse_needs_boost(kn, kev)) { | |
8155 | set_thread_rwlock_boost(); | |
8156 | *knoteuse_flags = KNUSE_BOOST; | |
8157 | } else { | |
8158 | *knoteuse_flags = KNUSE_NONE; | |
8159 | } | |
8160 | if (is_fd) | |
8161 | proc_fdunlock(p); | |
8162 | else | |
8163 | knhash_unlock(p); | |
8164 | ||
8165 | return ret; | |
55e303ae A |
8166 | } |
8167 | ||
5ba3f43e A |
8168 | /* |
8169 | * kq_remove_knote - remove a knote from the fd table for process | |
8170 | * and copy kn_status an kq_state while holding kqlock and | |
8171 | * fd table locks. | |
39037602 A |
8172 | * |
8173 | * If the filter is file-based, remove based on fd index. | |
8174 | * Otherwise remove from the hash based on the ident. | |
8175 | * | |
5ba3f43e | 8176 | * fd_knhashlock and fdlock unheld on entry (and exit). |
39037602 A |
8177 | */ |
8178 | static void | |
5ba3f43e A |
8179 | kq_remove_knote(struct kqueue *kq, struct knote *kn, struct proc *p, |
8180 | kn_status_t *kn_status, uint16_t *kq_state) | |
39037602 A |
8181 | { |
8182 | struct filedesc *fdp = p->p_fd; | |
8183 | struct klist *list = NULL; | |
5ba3f43e A |
8184 | bool is_fd; |
8185 | ||
8186 | is_fd = knote_fops(kn)->f_isfd; | |
39037602 | 8187 | |
5ba3f43e A |
8188 | if (is_fd) |
8189 | proc_fdlock(p); | |
8190 | else | |
8191 | knhash_lock(p); | |
8192 | ||
8193 | if (is_fd) { | |
39037602 A |
8194 | assert ((u_int)fdp->fd_knlistsize > kn->kn_id); |
8195 | list = &fdp->fd_knlist[kn->kn_id]; | |
8196 | } else { | |
8197 | list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)]; | |
8198 | } | |
8199 | SLIST_REMOVE(list, kn, knote, kn_link); | |
5ba3f43e A |
8200 | |
8201 | kqlock(kq); | |
8202 | *kn_status = kn->kn_status; | |
8203 | *kq_state = kq->kq_state; | |
8204 | kqunlock(kq); | |
8205 | ||
8206 | if (is_fd) | |
8207 | proc_fdunlock(p); | |
8208 | else | |
8209 | knhash_unlock(p); | |
39037602 A |
8210 | } |
8211 | ||
5ba3f43e A |
8212 | /* |
8213 | * kq_find_knote_and_kq_lock - lookup a knote in the fd table for process | |
8214 | * and, if the knote is found, acquires the kqlock while holding the fd table lock/spinlock. | |
39037602 | 8215 | * |
5ba3f43e | 8216 | * fd_knhashlock or fdlock unheld on entry (and exit) |
39037602 | 8217 | */ |
91447636 | 8218 | |
5ba3f43e A |
8219 | static struct knote * |
8220 | kq_find_knote_and_kq_lock(struct kqueue *kq, | |
8221 | struct kevent_internal_s *kev, | |
8222 | bool is_fd, | |
8223 | struct proc *p) | |
8224 | { | |
8225 | struct knote * ret; | |
8226 | ||
8227 | if (is_fd) | |
8228 | proc_fdlock(p); | |
8229 | else | |
8230 | knhash_lock(p); | |
8231 | ||
8232 | ret = knote_fdfind(kq, kev, is_fd, p); | |
8233 | ||
8234 | if (ret) { | |
8235 | kqlock(kq); | |
39037602 | 8236 | } |
91447636 | 8237 | |
5ba3f43e A |
8238 | if (is_fd) |
8239 | proc_fdunlock(p); | |
8240 | else | |
8241 | knhash_unlock(p); | |
8242 | ||
8243 | return ret; | |
8244 | } | |
55e303ae | 8245 | /* |
39037602 A |
8246 | * knote_drop - disconnect and drop the knote |
8247 | * | |
8248 | * Called with the kqueue unlocked and holding a | |
8249 | * "drop reference" on the knote in question. | |
8250 | * This reference is most often aquired thru a call | |
8251 | * to kqlock2knotedrop(). But it can also be acquired | |
8252 | * through stealing a drop reference via a call to | |
8253 | * knoteuse2knotedrop() or during the initial attach | |
8254 | * of the knote. | |
8255 | * | |
8256 | * The knote may have already been detached from | |
8257 | * (or not yet attached to) its source object. | |
55e303ae A |
8258 | */ |
8259 | static void | |
2d21ac55 | 8260 | knote_drop(struct knote *kn, __unused struct proc *ctxp) |
55e303ae | 8261 | { |
39037602 | 8262 | struct kqueue *kq = knote_get_kq(kn); |
2d21ac55 | 8263 | struct proc *p = kq->kq_p; |
5ba3f43e A |
8264 | kn_status_t kn_status; |
8265 | uint16_t kq_state; | |
39037602 A |
8266 | |
8267 | /* If we are attached, disconnect from the source first */ | |
8268 | if (kn->kn_status & KN_ATTACHED) { | |
8269 | knote_fops(kn)->f_detach(kn); | |
8270 | } | |
8271 | ||
39037602 | 8272 | /* Remove the source from the appropriate hash */ |
5ba3f43e | 8273 | kq_remove_knote(kq, kn, p, &kn_status, &kq_state); |
39037602 | 8274 | |
5ba3f43e A |
8275 | /* |
8276 | * If a kqueue_dealloc is happening in parallel for the kq | |
8277 | * pointed by the knote the kq could be aready deallocated | |
8278 | * at this point. | |
8279 | * Do not access the kq after the kq_remove_knote if it is | |
8280 | * not a KQ_DYNAMIC. | |
8281 | */ | |
39037602 A |
8282 | |
8283 | /* determine if anyone needs to know about the drop */ | |
5ba3f43e | 8284 | assert((kn_status & (KN_DROPPING | KN_SUPPRESSED | KN_QUEUED)) == KN_DROPPING); |
91447636 | 8285 | |
5ba3f43e A |
8286 | /* |
8287 | * If KN_USEWAIT is set, some other thread was trying to drop the kn. | |
8288 | * Or it was in kqueue_dealloc, so the kqueue_dealloc did not happen | |
8289 | * because that thread was waiting on this wake, or it was a drop happening | |
8290 | * because of a kevent_register that takes a reference on the kq, and therefore | |
8291 | * the kq cannot be deallocated in parallel. | |
8292 | * | |
8293 | * It is safe to access kq->kq_wqs if needswakeup is set. | |
8294 | */ | |
8295 | if (kn_status & KN_USEWAIT) | |
39037602 | 8296 | waitq_wakeup64_all((struct waitq *)&kq->kq_wqs, |
3e170ce0 | 8297 | CAST_EVENT64_T(&kn->kn_status), |
39037602 | 8298 | THREAD_RESTART, |
3e170ce0 | 8299 | WAITQ_ALL_PRIORITIES); |
b0d623f7 | 8300 | |
39037602 | 8301 | if (knote_fops(kn)->f_isfd && ((kn->kn_status & KN_VANISHED) == 0)) |
91447636 A |
8302 | fp_drop(p, kn->kn_id, kn->kn_fp, 0); |
8303 | ||
55e303ae | 8304 | knote_free(kn); |
5ba3f43e A |
8305 | |
8306 | /* | |
8307 | * release reference on dynamic kq (and free if last). | |
8308 | * Will only be last if this is from fdfree, etc... | |
8309 | * because otherwise processing thread has reference. | |
8310 | */ | |
8311 | if (kq_state & KQ_DYNAMIC) | |
8312 | kqueue_release_last(p, kq); | |
55e303ae A |
8313 | } |
8314 | ||
91447636 A |
8315 | /* called with kqueue lock held */ |
8316 | static void | |
39037602 | 8317 | knote_activate(struct knote *kn) |
91447636 | 8318 | { |
39037602 | 8319 | if (kn->kn_status & KN_ACTIVE) |
3e170ce0 A |
8320 | return; |
8321 | ||
5ba3f43e A |
8322 | KDBG_FILTERED(KEV_EVTID(BSD_KEVENT_KNOTE_ACTIVATE), |
8323 | kn->kn_udata, kn->kn_status | (kn->kn_id << 32), | |
8324 | kn->kn_filtid); | |
8325 | ||
91447636 | 8326 | kn->kn_status |= KN_ACTIVE; |
39037602 A |
8327 | if (knote_enqueue(kn)) |
8328 | knote_wakeup(kn); | |
b0d623f7 | 8329 | } |
91447636 A |
8330 | |
8331 | /* called with kqueue lock held */ | |
8332 | static void | |
8333 | knote_deactivate(struct knote *kn) | |
39236c6e | 8334 | { |
91447636 | 8335 | kn->kn_status &= ~KN_ACTIVE; |
39037602 A |
8336 | if ((kn->kn_status & KN_STAYACTIVE) == 0) |
8337 | knote_dequeue(kn); | |
8338 | } | |
8339 | ||
8340 | /* called with kqueue lock held */ | |
8341 | static void | |
8342 | knote_enable(struct knote *kn) | |
8343 | { | |
8344 | if ((kn->kn_status & KN_DISABLED) == 0) | |
8345 | return; | |
8346 | ||
8347 | kn->kn_status &= ~KN_DISABLED; | |
5ba3f43e A |
8348 | |
8349 | if (kn->kn_status & KN_SUPPRESSED) { | |
8350 | /* Clear the sync qos on the knote */ | |
8351 | knote_adjust_sync_qos(kn, THREAD_QOS_UNSPECIFIED, FALSE); | |
8352 | ||
8353 | /* | |
8354 | * it is possible for userland to have knotes registered for a given | |
8355 | * workloop `wl_orig` but really handled on another workloop `wl_new`. | |
8356 | * | |
8357 | * In that case, rearming will happen from the servicer thread of | |
8358 | * `wl_new` which if `wl_orig` is no longer being serviced, would cause | |
8359 | * this knote to stay suppressed forever if we only relied on | |
8360 | * kqworkloop_acknowledge_events to be called by `wl_orig`. | |
8361 | * | |
8362 | * However if we see the KQ_PROCESSING bit on `wl_orig` set, we can't | |
8363 | * unsuppress because that would mess with the processing phase of | |
8364 | * `wl_orig`, however it also means kqworkloop_acknowledge_events() | |
8365 | * will be called. | |
8366 | */ | |
8367 | struct kqueue *kq = knote_get_kq(kn); | |
8368 | if ((kq->kq_state & KQ_PROCESSING) == 0) { | |
8369 | knote_unsuppress(kn); | |
8370 | } | |
8371 | } else if (knote_enqueue(kn)) { | |
39037602 | 8372 | knote_wakeup(kn); |
5ba3f43e | 8373 | } |
39037602 A |
8374 | } |
8375 | ||
8376 | /* called with kqueue lock held */ | |
8377 | static void | |
8378 | knote_disable(struct knote *kn) | |
8379 | { | |
8380 | if (kn->kn_status & KN_DISABLED) | |
8381 | return; | |
8382 | ||
8383 | kn->kn_status |= KN_DISABLED; | |
8384 | knote_dequeue(kn); | |
8385 | } | |
8386 | ||
8387 | /* called with kqueue lock held */ | |
8388 | static void | |
8389 | knote_suppress(struct knote *kn) | |
8390 | { | |
8391 | struct kqtailq *suppressq; | |
5ba3f43e A |
8392 | struct kqueue *kq = knote_get_kq(kn); |
8393 | ||
8394 | kqlock_held(kq); | |
39037602 A |
8395 | |
8396 | if (kn->kn_status & KN_SUPPRESSED) | |
8397 | return; | |
8398 | ||
91447636 | 8399 | knote_dequeue(kn); |
39037602 | 8400 | kn->kn_status |= KN_SUPPRESSED; |
5ba3f43e | 8401 | suppressq = kqueue_get_suppressed_queue(kq, knote_get_qos_index(kn)); |
39037602 | 8402 | TAILQ_INSERT_TAIL(suppressq, kn, kn_tqe); |
5ba3f43e A |
8403 | |
8404 | if ((kq->kq_state & KQ_WORKLOOP) && | |
8405 | knote_get_qos_override_index(kn) == THREAD_QOS_USER_INTERACTIVE && | |
8406 | kn->kn_qos_override_is_sync) { | |
8407 | struct kqworkloop *kqwl = (struct kqworkloop *)kq; | |
8408 | /* update the sync qos override counter for suppressed knotes */ | |
8409 | kqworkloop_update_override(kqwl, knote_get_qos_index(kn), | |
8410 | knote_get_qos_override_index(kn), | |
8411 | (KQWL_UO_UPDATE_SUPPRESS_SYNC_COUNTERS | KQWL_UO_NEW_OVERRIDE_IS_SYNC_UI)); | |
8412 | } | |
91447636 | 8413 | } |
55e303ae | 8414 | |
91447636 | 8415 | /* called with kqueue lock held */ |
55e303ae | 8416 | static void |
39037602 A |
8417 | knote_unsuppress(struct knote *kn) |
8418 | { | |
8419 | struct kqtailq *suppressq; | |
5ba3f43e A |
8420 | struct kqueue *kq = knote_get_kq(kn); |
8421 | ||
8422 | kqlock_held(kq); | |
39037602 A |
8423 | |
8424 | if ((kn->kn_status & KN_SUPPRESSED) == 0) | |
8425 | return; | |
8426 | ||
5ba3f43e A |
8427 | /* Clear the sync qos on the knote */ |
8428 | knote_adjust_sync_qos(kn, THREAD_QOS_UNSPECIFIED, FALSE); | |
8429 | ||
39037602 | 8430 | kn->kn_status &= ~KN_SUPPRESSED; |
5ba3f43e | 8431 | suppressq = kqueue_get_suppressed_queue(kq, knote_get_qos_index(kn)); |
39037602 A |
8432 | TAILQ_REMOVE(suppressq, kn, kn_tqe); |
8433 | ||
8434 | /* udate in-use qos to equal requested qos */ | |
8435 | kn->kn_qos_index = kn->kn_req_index; | |
8436 | ||
8437 | /* don't wakeup if unsuppressing just a stay-active knote */ | |
5ba3f43e | 8438 | if (knote_enqueue(kn) && (kn->kn_status & KN_ACTIVE)) { |
39037602 | 8439 | knote_wakeup(kn); |
5ba3f43e A |
8440 | } |
8441 | ||
8442 | if ((kq->kq_state & KQ_WORKLOOP) && !(kq->kq_state & KQ_NO_WQ_THREAD) && | |
8443 | knote_get_qos_override_index(kn) == THREAD_QOS_USER_INTERACTIVE && | |
8444 | kn->kn_qos_override_is_sync) { | |
8445 | struct kqworkloop *kqwl = (struct kqworkloop *)kq; | |
8446 | ||
8447 | /* update the sync qos override counter for suppressed knotes */ | |
8448 | kqworkloop_update_override(kqwl, knote_get_qos_index(kn), | |
8449 | knote_get_qos_override_index(kn), | |
8450 | (KQWL_UO_UPDATE_SUPPRESS_SYNC_COUNTERS | KQWL_UO_OLD_OVERRIDE_IS_SYNC_UI)); | |
8451 | } | |
8452 | ||
8453 | if (TAILQ_EMPTY(suppressq) && (kq->kq_state & KQ_WORKLOOP) && | |
8454 | !(kq->kq_state & KQ_NO_WQ_THREAD)) { | |
8455 | struct kqworkloop *kqwl = (struct kqworkloop *)kq; | |
8456 | if (kqworkloop_is_processing_on_current_thread(kqwl)) { | |
8457 | /* | |
8458 | * kqworkloop_end_processing() will perform the required QoS | |
8459 | * computations when it unsets the processing mode. | |
8460 | */ | |
8461 | } else { | |
8462 | kqwl_req_lock(kqwl); | |
8463 | kqworkloop_update_threads_qos(kqwl, KQWL_UTQ_RESET_WAKEUP_OVERRIDE, 0); | |
8464 | kqwl_req_unlock(kqwl); | |
8465 | } | |
8466 | } | |
8467 | } | |
8468 | ||
8469 | /* called with kqueue lock held */ | |
8470 | static void | |
8471 | knote_update_sync_override_state(struct knote *kn) | |
8472 | { | |
8473 | struct kqtailq *queue = knote_get_queue(kn); | |
8474 | struct kqueue *kq = knote_get_kq(kn); | |
8475 | ||
8476 | if (!(kq->kq_state & KQ_WORKLOOP) || | |
8477 | knote_get_queue_index(kn) != THREAD_QOS_USER_INTERACTIVE) | |
8478 | return; | |
8479 | ||
8480 | /* Update the sync ipc state on workloop */ | |
8481 | struct kqworkloop *kqwl = (struct kqworkloop *)kq; | |
8482 | boolean_t sync_ipc_override = FALSE; | |
8483 | if (!TAILQ_EMPTY(queue)) { | |
8484 | struct knote *kn_head = TAILQ_FIRST(queue); | |
8485 | if (kn_head->kn_qos_override_is_sync) | |
8486 | sync_ipc_override = TRUE; | |
8487 | } | |
8488 | kqworkloop_update_sync_override_state(kqwl, sync_ipc_override); | |
39037602 A |
8489 | } |
8490 | ||
8491 | /* called with kqueue lock held */ | |
8492 | static int | |
55e303ae A |
8493 | knote_enqueue(struct knote *kn) |
8494 | { | |
39037602 A |
8495 | if ((kn->kn_status & (KN_ACTIVE | KN_STAYACTIVE)) == 0 || |
8496 | (kn->kn_status & (KN_DISABLED | KN_SUPPRESSED | KN_DROPPING))) | |
8497 | return 0; | |
55e303ae | 8498 | |
39037602 A |
8499 | if ((kn->kn_status & KN_QUEUED) == 0) { |
8500 | struct kqtailq *queue = knote_get_queue(kn); | |
8501 | struct kqueue *kq = knote_get_kq(kn); | |
8502 | ||
5ba3f43e A |
8503 | kqlock_held(kq); |
8504 | /* insert at head for sync ipc waiters */ | |
8505 | if (kn->kn_qos_override_is_sync) { | |
8506 | TAILQ_INSERT_HEAD(queue, kn, kn_tqe); | |
8507 | } else { | |
8508 | TAILQ_INSERT_TAIL(queue, kn, kn_tqe); | |
8509 | } | |
91447636 A |
8510 | kn->kn_status |= KN_QUEUED; |
8511 | kq->kq_count++; | |
5ba3f43e | 8512 | knote_update_sync_override_state(kn); |
39037602 | 8513 | return 1; |
91447636 | 8514 | } |
39037602 | 8515 | return ((kn->kn_status & KN_STAYACTIVE) != 0); |
55e303ae A |
8516 | } |
8517 | ||
39037602 | 8518 | |
91447636 | 8519 | /* called with kqueue lock held */ |
55e303ae A |
8520 | static void |
8521 | knote_dequeue(struct knote *kn) | |
8522 | { | |
39037602 A |
8523 | struct kqueue *kq = knote_get_kq(kn); |
8524 | struct kqtailq *queue; | |
55e303ae | 8525 | |
5ba3f43e A |
8526 | kqlock_held(kq); |
8527 | ||
39037602 A |
8528 | if ((kn->kn_status & KN_QUEUED) == 0) |
8529 | return; | |
55e303ae | 8530 | |
39037602 A |
8531 | queue = knote_get_queue(kn); |
8532 | TAILQ_REMOVE(queue, kn, kn_tqe); | |
8533 | kn->kn_status &= ~KN_QUEUED; | |
8534 | kq->kq_count--; | |
5ba3f43e | 8535 | knote_update_sync_override_state(kn); |
55e303ae A |
8536 | } |
8537 | ||
8538 | void | |
8539 | knote_init(void) | |
8540 | { | |
39236c6e | 8541 | knote_zone = zinit(sizeof(struct knote), 8192*sizeof(struct knote), |
39037602 A |
8542 | 8192, "knote zone"); |
8543 | ||
8544 | kqfile_zone = zinit(sizeof(struct kqfile), 8192*sizeof(struct kqfile), | |
8545 | 8192, "kqueue file zone"); | |
8546 | ||
8547 | kqworkq_zone = zinit(sizeof(struct kqworkq), 8192*sizeof(struct kqworkq), | |
8548 | 8192, "kqueue workq zone"); | |
91447636 | 8549 | |
5ba3f43e A |
8550 | kqworkloop_zone = zinit(sizeof(struct kqworkloop), 8192*sizeof(struct kqworkloop), |
8551 | 8192, "kqueue workloop zone"); | |
8552 | ||
91447636 | 8553 | /* allocate kq lock group attribute and group */ |
39236c6e | 8554 | kq_lck_grp_attr = lck_grp_attr_alloc_init(); |
91447636 A |
8555 | |
8556 | kq_lck_grp = lck_grp_alloc_init("kqueue", kq_lck_grp_attr); | |
8557 | ||
8558 | /* Allocate kq lock attribute */ | |
8559 | kq_lck_attr = lck_attr_alloc_init(); | |
91447636 A |
8560 | |
8561 | /* Initialize the timer filter lock */ | |
8562 | lck_mtx_init(&_filt_timerlock, kq_lck_grp, kq_lck_attr); | |
39236c6e | 8563 | |
39037602 A |
8564 | /* Initialize the user filter lock */ |
8565 | lck_spin_init(&_filt_userlock, kq_lck_grp, kq_lck_attr); | |
39236c6e A |
8566 | |
8567 | #if CONFIG_MEMORYSTATUS | |
8568 | /* Initialize the memorystatus list lock */ | |
8569 | memorystatus_kevent_init(kq_lck_grp, kq_lck_attr); | |
8570 | #endif | |
55e303ae A |
8571 | } |
8572 | SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL) | |
8573 | ||
5ba3f43e | 8574 | const struct filterops * |
39037602 A |
8575 | knote_fops(struct knote *kn) |
8576 | { | |
8577 | return sysfilt_ops[kn->kn_filtid]; | |
8578 | } | |
8579 | ||
55e303ae A |
8580 | static struct knote * |
8581 | knote_alloc(void) | |
8582 | { | |
5ba3f43e A |
8583 | struct knote *kn; |
8584 | kn = ((struct knote *)zalloc(knote_zone)); | |
8585 | *kn = (struct knote) { .kn_qos_override = 0, .kn_qos_sync_override = 0, .kn_qos_override_is_sync = 0 }; | |
8586 | return kn; | |
55e303ae A |
8587 | } |
8588 | ||
8589 | static void | |
8590 | knote_free(struct knote *kn) | |
8591 | { | |
91447636 | 8592 | zfree(knote_zone, kn); |
55e303ae A |
8593 | } |
8594 | ||
2d21ac55 | 8595 | #if SOCKETS |
1c79356b A |
8596 | #include <sys/param.h> |
8597 | #include <sys/socket.h> | |
8598 | #include <sys/protosw.h> | |
8599 | #include <sys/domain.h> | |
8600 | #include <sys/mbuf.h> | |
8601 | #include <sys/kern_event.h> | |
8602 | #include <sys/malloc.h> | |
9bccf70c A |
8603 | #include <sys/sys_domain.h> |
8604 | #include <sys/syslog.h> | |
1c79356b | 8605 | |
fe8ab488 A |
8606 | #ifndef ROUNDUP64 |
8607 | #define ROUNDUP64(x) P2ROUNDUP((x), sizeof (u_int64_t)) | |
8608 | #endif | |
8609 | ||
8610 | #ifndef ADVANCE64 | |
8611 | #define ADVANCE64(p, n) (void*)((char *)(p) + ROUNDUP64(n)) | |
8612 | #endif | |
8613 | ||
39236c6e A |
8614 | static lck_grp_attr_t *kev_lck_grp_attr; |
8615 | static lck_attr_t *kev_lck_attr; | |
8616 | static lck_grp_t *kev_lck_grp; | |
8617 | static decl_lck_rw_data(,kev_lck_data); | |
8618 | static lck_rw_t *kev_rwlock = &kev_lck_data; | |
1c79356b | 8619 | |
91447636 A |
8620 | static int kev_attach(struct socket *so, int proto, struct proc *p); |
8621 | static int kev_detach(struct socket *so); | |
39236c6e A |
8622 | static int kev_control(struct socket *so, u_long cmd, caddr_t data, |
8623 | struct ifnet *ifp, struct proc *p); | |
8624 | static lck_mtx_t * event_getlock(struct socket *, int); | |
8625 | static int event_lock(struct socket *, int, void *); | |
8626 | static int event_unlock(struct socket *, int, void *); | |
8627 | ||
8628 | static int event_sofreelastref(struct socket *); | |
8629 | static void kev_delete(struct kern_event_pcb *); | |
8630 | ||
8631 | static struct pr_usrreqs event_usrreqs = { | |
8632 | .pru_attach = kev_attach, | |
8633 | .pru_control = kev_control, | |
8634 | .pru_detach = kev_detach, | |
8635 | .pru_soreceive = soreceive, | |
91447636 | 8636 | }; |
1c79356b | 8637 | |
39236c6e A |
8638 | static struct protosw eventsw[] = { |
8639 | { | |
8640 | .pr_type = SOCK_RAW, | |
8641 | .pr_protocol = SYSPROTO_EVENT, | |
8642 | .pr_flags = PR_ATOMIC, | |
8643 | .pr_usrreqs = &event_usrreqs, | |
8644 | .pr_lock = event_lock, | |
8645 | .pr_unlock = event_unlock, | |
8646 | .pr_getlock = event_getlock, | |
8647 | } | |
1c79356b A |
8648 | }; |
8649 | ||
fe8ab488 A |
8650 | __private_extern__ int kevt_getstat SYSCTL_HANDLER_ARGS; |
8651 | __private_extern__ int kevt_pcblist SYSCTL_HANDLER_ARGS; | |
8652 | ||
8653 | SYSCTL_NODE(_net_systm, OID_AUTO, kevt, | |
8654 | CTLFLAG_RW|CTLFLAG_LOCKED, 0, "Kernel event family"); | |
8655 | ||
8656 | struct kevtstat kevtstat; | |
8657 | SYSCTL_PROC(_net_systm_kevt, OID_AUTO, stats, | |
8658 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, | |
8659 | kevt_getstat, "S,kevtstat", ""); | |
8660 | ||
8661 | SYSCTL_PROC(_net_systm_kevt, OID_AUTO, pcblist, | |
8662 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, | |
8663 | kevt_pcblist, "S,xkevtpcb", ""); | |
8664 | ||
39236c6e | 8665 | static lck_mtx_t * |
5ba3f43e | 8666 | event_getlock(struct socket *so, int flags) |
39236c6e | 8667 | { |
5ba3f43e | 8668 | #pragma unused(flags) |
39236c6e A |
8669 | struct kern_event_pcb *ev_pcb = (struct kern_event_pcb *)so->so_pcb; |
8670 | ||
8671 | if (so->so_pcb != NULL) { | |
8672 | if (so->so_usecount < 0) | |
8673 | panic("%s: so=%p usecount=%d lrh= %s\n", __func__, | |
8674 | so, so->so_usecount, solockhistory_nr(so)); | |
8675 | /* NOTREACHED */ | |
8676 | } else { | |
8677 | panic("%s: so=%p NULL NO so_pcb %s\n", __func__, | |
8678 | so, solockhistory_nr(so)); | |
8679 | /* NOTREACHED */ | |
8680 | } | |
8681 | return (&ev_pcb->evp_mtx); | |
8682 | } | |
8683 | ||
8684 | static int | |
8685 | event_lock(struct socket *so, int refcount, void *lr) | |
8686 | { | |
8687 | void *lr_saved; | |
8688 | ||
8689 | if (lr == NULL) | |
8690 | lr_saved = __builtin_return_address(0); | |
8691 | else | |
8692 | lr_saved = lr; | |
8693 | ||
8694 | if (so->so_pcb != NULL) { | |
8695 | lck_mtx_lock(&((struct kern_event_pcb *)so->so_pcb)->evp_mtx); | |
8696 | } else { | |
8697 | panic("%s: so=%p NO PCB! lr=%p lrh= %s\n", __func__, | |
8698 | so, lr_saved, solockhistory_nr(so)); | |
8699 | /* NOTREACHED */ | |
8700 | } | |
8701 | ||
8702 | if (so->so_usecount < 0) { | |
8703 | panic("%s: so=%p so_pcb=%p lr=%p ref=%d lrh= %s\n", __func__, | |
8704 | so, so->so_pcb, lr_saved, so->so_usecount, | |
8705 | solockhistory_nr(so)); | |
8706 | /* NOTREACHED */ | |
8707 | } | |
8708 | ||
8709 | if (refcount) | |
8710 | so->so_usecount++; | |
8711 | ||
8712 | so->lock_lr[so->next_lock_lr] = lr_saved; | |
8713 | so->next_lock_lr = (so->next_lock_lr+1) % SO_LCKDBG_MAX; | |
8714 | return (0); | |
8715 | } | |
8716 | ||
8717 | static int | |
8718 | event_unlock(struct socket *so, int refcount, void *lr) | |
8719 | { | |
8720 | void *lr_saved; | |
8721 | lck_mtx_t *mutex_held; | |
8722 | ||
8723 | if (lr == NULL) | |
8724 | lr_saved = __builtin_return_address(0); | |
8725 | else | |
8726 | lr_saved = lr; | |
8727 | ||
d190cdc3 | 8728 | if (refcount) { |
39236c6e | 8729 | so->so_usecount--; |
d190cdc3 | 8730 | } |
39236c6e A |
8731 | if (so->so_usecount < 0) { |
8732 | panic("%s: so=%p usecount=%d lrh= %s\n", __func__, | |
8733 | so, so->so_usecount, solockhistory_nr(so)); | |
8734 | /* NOTREACHED */ | |
8735 | } | |
8736 | if (so->so_pcb == NULL) { | |
8737 | panic("%s: so=%p NO PCB usecount=%d lr=%p lrh= %s\n", __func__, | |
8738 | so, so->so_usecount, (void *)lr_saved, | |
8739 | solockhistory_nr(so)); | |
8740 | /* NOTREACHED */ | |
8741 | } | |
8742 | mutex_held = (&((struct kern_event_pcb *)so->so_pcb)->evp_mtx); | |
8743 | ||
5ba3f43e | 8744 | LCK_MTX_ASSERT(mutex_held, LCK_MTX_ASSERT_OWNED); |
39236c6e A |
8745 | so->unlock_lr[so->next_unlock_lr] = lr_saved; |
8746 | so->next_unlock_lr = (so->next_unlock_lr+1) % SO_LCKDBG_MAX; | |
8747 | ||
8748 | if (so->so_usecount == 0) { | |
8749 | VERIFY(so->so_flags & SOF_PCBCLEARING); | |
8750 | event_sofreelastref(so); | |
8751 | } else { | |
8752 | lck_mtx_unlock(mutex_held); | |
8753 | } | |
8754 | ||
8755 | return (0); | |
8756 | } | |
8757 | ||
8758 | static int | |
8759 | event_sofreelastref(struct socket *so) | |
8760 | { | |
8761 | struct kern_event_pcb *ev_pcb = (struct kern_event_pcb *)so->so_pcb; | |
8762 | ||
5ba3f43e | 8763 | LCK_MTX_ASSERT(&(ev_pcb->evp_mtx), LCK_MTX_ASSERT_OWNED); |
39236c6e A |
8764 | |
8765 | so->so_pcb = NULL; | |
8766 | ||
8767 | /* | |
8768 | * Disable upcall in the event another thread is in kev_post_msg() | |
8769 | * appending record to the receive socket buffer, since sbwakeup() | |
8770 | * may release the socket lock otherwise. | |
8771 | */ | |
8772 | so->so_rcv.sb_flags &= ~SB_UPCALL; | |
8773 | so->so_snd.sb_flags &= ~SB_UPCALL; | |
fe8ab488 | 8774 | so->so_event = sonullevent; |
39236c6e A |
8775 | lck_mtx_unlock(&(ev_pcb->evp_mtx)); |
8776 | ||
5ba3f43e | 8777 | LCK_MTX_ASSERT(&(ev_pcb->evp_mtx), LCK_MTX_ASSERT_NOTOWNED); |
39236c6e A |
8778 | lck_rw_lock_exclusive(kev_rwlock); |
8779 | LIST_REMOVE(ev_pcb, evp_link); | |
fe8ab488 A |
8780 | kevtstat.kes_pcbcount--; |
8781 | kevtstat.kes_gencnt++; | |
39236c6e A |
8782 | lck_rw_done(kev_rwlock); |
8783 | kev_delete(ev_pcb); | |
8784 | ||
8785 | sofreelastref(so, 1); | |
8786 | return (0); | |
8787 | } | |
8788 | ||
8789 | static int event_proto_count = (sizeof (eventsw) / sizeof (struct protosw)); | |
8790 | ||
1c79356b A |
8791 | static |
8792 | struct kern_event_head kern_event_head; | |
8793 | ||
b0d623f7 | 8794 | static u_int32_t static_event_id = 0; |
39236c6e A |
8795 | |
8796 | #define EVPCB_ZONE_MAX 65536 | |
8797 | #define EVPCB_ZONE_NAME "kerneventpcb" | |
8798 | static struct zone *ev_pcb_zone; | |
1c79356b | 8799 | |
9bccf70c | 8800 | /* |
39236c6e | 8801 | * Install the protosw's for the NKE manager. Invoked at extension load time |
9bccf70c | 8802 | */ |
39236c6e A |
8803 | void |
8804 | kern_event_init(struct domain *dp) | |
9bccf70c | 8805 | { |
39236c6e A |
8806 | struct protosw *pr; |
8807 | int i; | |
8808 | ||
8809 | VERIFY(!(dp->dom_flags & DOM_INITIALIZED)); | |
8810 | VERIFY(dp == systemdomain); | |
8811 | ||
8812 | kev_lck_grp_attr = lck_grp_attr_alloc_init(); | |
8813 | if (kev_lck_grp_attr == NULL) { | |
8814 | panic("%s: lck_grp_attr_alloc_init failed\n", __func__); | |
8815 | /* NOTREACHED */ | |
8816 | } | |
8817 | ||
8818 | kev_lck_grp = lck_grp_alloc_init("Kernel Event Protocol", | |
8819 | kev_lck_grp_attr); | |
8820 | if (kev_lck_grp == NULL) { | |
8821 | panic("%s: lck_grp_alloc_init failed\n", __func__); | |
8822 | /* NOTREACHED */ | |
8823 | } | |
8824 | ||
8825 | kev_lck_attr = lck_attr_alloc_init(); | |
8826 | if (kev_lck_attr == NULL) { | |
8827 | panic("%s: lck_attr_alloc_init failed\n", __func__); | |
8828 | /* NOTREACHED */ | |
8829 | } | |
9bccf70c | 8830 | |
39236c6e A |
8831 | lck_rw_init(kev_rwlock, kev_lck_grp, kev_lck_attr); |
8832 | if (kev_rwlock == NULL) { | |
8833 | panic("%s: lck_mtx_alloc_init failed\n", __func__); | |
8834 | /* NOTREACHED */ | |
91447636 | 8835 | } |
39236c6e A |
8836 | |
8837 | for (i = 0, pr = &eventsw[0]; i < event_proto_count; i++, pr++) | |
8838 | net_add_proto(pr, dp, 1); | |
8839 | ||
8840 | ev_pcb_zone = zinit(sizeof(struct kern_event_pcb), | |
8841 | EVPCB_ZONE_MAX * sizeof(struct kern_event_pcb), 0, EVPCB_ZONE_NAME); | |
8842 | if (ev_pcb_zone == NULL) { | |
8843 | panic("%s: failed allocating ev_pcb_zone", __func__); | |
8844 | /* NOTREACHED */ | |
8845 | } | |
8846 | zone_change(ev_pcb_zone, Z_EXPAND, TRUE); | |
8847 | zone_change(ev_pcb_zone, Z_CALLERACCT, TRUE); | |
9bccf70c A |
8848 | } |
8849 | ||
91447636 A |
8850 | static int |
8851 | kev_attach(struct socket *so, __unused int proto, __unused struct proc *p) | |
1c79356b | 8852 | { |
39236c6e A |
8853 | int error = 0; |
8854 | struct kern_event_pcb *ev_pcb; | |
1c79356b | 8855 | |
39236c6e A |
8856 | error = soreserve(so, KEV_SNDSPACE, KEV_RECVSPACE); |
8857 | if (error != 0) | |
8858 | return (error); | |
55e303ae | 8859 | |
39236c6e A |
8860 | if ((ev_pcb = (struct kern_event_pcb *)zalloc(ev_pcb_zone)) == NULL) { |
8861 | return (ENOBUFS); | |
8862 | } | |
8863 | bzero(ev_pcb, sizeof(struct kern_event_pcb)); | |
8864 | lck_mtx_init(&ev_pcb->evp_mtx, kev_lck_grp, kev_lck_attr); | |
1c79356b | 8865 | |
39236c6e A |
8866 | ev_pcb->evp_socket = so; |
8867 | ev_pcb->evp_vendor_code_filter = 0xffffffff; | |
1c79356b | 8868 | |
39236c6e A |
8869 | so->so_pcb = (caddr_t) ev_pcb; |
8870 | lck_rw_lock_exclusive(kev_rwlock); | |
8871 | LIST_INSERT_HEAD(&kern_event_head, ev_pcb, evp_link); | |
fe8ab488 A |
8872 | kevtstat.kes_pcbcount++; |
8873 | kevtstat.kes_gencnt++; | |
39236c6e | 8874 | lck_rw_done(kev_rwlock); |
1c79356b | 8875 | |
39236c6e | 8876 | return (error); |
1c79356b A |
8877 | } |
8878 | ||
39236c6e A |
8879 | static void |
8880 | kev_delete(struct kern_event_pcb *ev_pcb) | |
8881 | { | |
8882 | VERIFY(ev_pcb != NULL); | |
8883 | lck_mtx_destroy(&ev_pcb->evp_mtx, kev_lck_grp); | |
8884 | zfree(ev_pcb_zone, ev_pcb); | |
8885 | } | |
1c79356b | 8886 | |
91447636 A |
8887 | static int |
8888 | kev_detach(struct socket *so) | |
1c79356b | 8889 | { |
39236c6e | 8890 | struct kern_event_pcb *ev_pcb = (struct kern_event_pcb *) so->so_pcb; |
1c79356b | 8891 | |
39236c6e A |
8892 | if (ev_pcb != NULL) { |
8893 | soisdisconnected(so); | |
91447636 | 8894 | so->so_flags |= SOF_PCBCLEARING; |
39236c6e | 8895 | } |
1c79356b | 8896 | |
39236c6e | 8897 | return (0); |
1c79356b A |
8898 | } |
8899 | ||
91447636 | 8900 | /* |
2d21ac55 | 8901 | * For now, kev_vendor_code and mbuf_tags use the same |
91447636 A |
8902 | * mechanism. |
8903 | */ | |
91447636 A |
8904 | errno_t kev_vendor_code_find( |
8905 | const char *string, | |
2d21ac55 | 8906 | u_int32_t *out_vendor_code) |
91447636 A |
8907 | { |
8908 | if (strlen(string) >= KEV_VENDOR_CODE_MAX_STR_LEN) { | |
39236c6e | 8909 | return (EINVAL); |
91447636 | 8910 | } |
39236c6e A |
8911 | return (net_str_id_find_internal(string, out_vendor_code, |
8912 | NSI_VENDOR_CODE, 1)); | |
91447636 A |
8913 | } |
8914 | ||
39236c6e A |
8915 | errno_t |
8916 | kev_msg_post(struct kev_msg *event_msg) | |
91447636 | 8917 | { |
39236c6e A |
8918 | mbuf_tag_id_t min_vendor, max_vendor; |
8919 | ||
b0d623f7 | 8920 | net_str_id_first_last(&min_vendor, &max_vendor, NSI_VENDOR_CODE); |
39236c6e | 8921 | |
91447636 | 8922 | if (event_msg == NULL) |
39236c6e A |
8923 | return (EINVAL); |
8924 | ||
8925 | /* | |
8926 | * Limit third parties to posting events for registered vendor codes | |
8927 | * only | |
8928 | */ | |
91447636 | 8929 | if (event_msg->vendor_code < min_vendor || |
fe8ab488 A |
8930 | event_msg->vendor_code > max_vendor) { |
8931 | OSIncrementAtomic64((SInt64 *)&kevtstat.kes_badvendor); | |
39236c6e | 8932 | return (EINVAL); |
fe8ab488 | 8933 | } |
39236c6e | 8934 | return (kev_post_msg(event_msg)); |
91447636 | 8935 | } |
1c79356b | 8936 | |
39236c6e A |
8937 | int |
8938 | kev_post_msg(struct kev_msg *event_msg) | |
1c79356b | 8939 | { |
39236c6e A |
8940 | struct mbuf *m, *m2; |
8941 | struct kern_event_pcb *ev_pcb; | |
8942 | struct kern_event_msg *ev; | |
8943 | char *tmp; | |
8944 | u_int32_t total_size; | |
8945 | int i; | |
1c79356b | 8946 | |
91447636 A |
8947 | /* Verify the message is small enough to fit in one mbuf w/o cluster */ |
8948 | total_size = KEV_MSG_HEADER_SIZE; | |
39236c6e | 8949 | |
91447636 A |
8950 | for (i = 0; i < 5; i++) { |
8951 | if (event_msg->dv[i].data_length == 0) | |
8952 | break; | |
8953 | total_size += event_msg->dv[i].data_length; | |
8954 | } | |
39236c6e | 8955 | |
91447636 | 8956 | if (total_size > MLEN) { |
fe8ab488 | 8957 | OSIncrementAtomic64((SInt64 *)&kevtstat.kes_toobig); |
39236c6e A |
8958 | return (EMSGSIZE); |
8959 | } | |
8960 | ||
5ba3f43e | 8961 | m = m_get(M_WAIT, MT_DATA); |
fe8ab488 A |
8962 | if (m == 0) { |
8963 | OSIncrementAtomic64((SInt64 *)&kevtstat.kes_nomem); | |
8964 | return (ENOMEM); | |
8965 | } | |
39236c6e A |
8966 | ev = mtod(m, struct kern_event_msg *); |
8967 | total_size = KEV_MSG_HEADER_SIZE; | |
8968 | ||
8969 | tmp = (char *) &ev->event_data[0]; | |
8970 | for (i = 0; i < 5; i++) { | |
8971 | if (event_msg->dv[i].data_length == 0) | |
8972 | break; | |
8973 | ||
8974 | total_size += event_msg->dv[i].data_length; | |
8975 | bcopy(event_msg->dv[i].data_ptr, tmp, | |
8976 | event_msg->dv[i].data_length); | |
8977 | tmp += event_msg->dv[i].data_length; | |
8978 | } | |
8979 | ||
8980 | ev->id = ++static_event_id; | |
8981 | ev->total_size = total_size; | |
8982 | ev->vendor_code = event_msg->vendor_code; | |
8983 | ev->kev_class = event_msg->kev_class; | |
8984 | ev->kev_subclass = event_msg->kev_subclass; | |
8985 | ev->event_code = event_msg->event_code; | |
8986 | ||
8987 | m->m_len = total_size; | |
8988 | lck_rw_lock_shared(kev_rwlock); | |
8989 | for (ev_pcb = LIST_FIRST(&kern_event_head); | |
8990 | ev_pcb; | |
8991 | ev_pcb = LIST_NEXT(ev_pcb, evp_link)) { | |
8992 | lck_mtx_lock(&ev_pcb->evp_mtx); | |
8993 | if (ev_pcb->evp_socket->so_pcb == NULL) { | |
8994 | lck_mtx_unlock(&ev_pcb->evp_mtx); | |
8995 | continue; | |
8996 | } | |
8997 | if (ev_pcb->evp_vendor_code_filter != KEV_ANY_VENDOR) { | |
8998 | if (ev_pcb->evp_vendor_code_filter != ev->vendor_code) { | |
8999 | lck_mtx_unlock(&ev_pcb->evp_mtx); | |
9000 | continue; | |
9001 | } | |
9002 | ||
9003 | if (ev_pcb->evp_class_filter != KEV_ANY_CLASS) { | |
9004 | if (ev_pcb->evp_class_filter != ev->kev_class) { | |
9005 | lck_mtx_unlock(&ev_pcb->evp_mtx); | |
9006 | continue; | |
9007 | } | |
9008 | ||
fe8ab488 A |
9009 | if ((ev_pcb->evp_subclass_filter != |
9010 | KEV_ANY_SUBCLASS) && | |
9011 | (ev_pcb->evp_subclass_filter != | |
9012 | ev->kev_subclass)) { | |
39236c6e A |
9013 | lck_mtx_unlock(&ev_pcb->evp_mtx); |
9014 | continue; | |
9015 | } | |
9016 | } | |
9017 | } | |
9018 | ||
5ba3f43e | 9019 | m2 = m_copym(m, 0, m->m_len, M_WAIT); |
39236c6e | 9020 | if (m2 == 0) { |
fe8ab488 | 9021 | OSIncrementAtomic64((SInt64 *)&kevtstat.kes_nomem); |
39236c6e A |
9022 | m_free(m); |
9023 | lck_mtx_unlock(&ev_pcb->evp_mtx); | |
9024 | lck_rw_done(kev_rwlock); | |
fe8ab488 | 9025 | return (ENOMEM); |
39236c6e | 9026 | } |
fe8ab488 A |
9027 | if (sbappendrecord(&ev_pcb->evp_socket->so_rcv, m2)) { |
9028 | /* | |
9029 | * We use "m" for the socket stats as it would be | |
9030 | * unsafe to use "m2" | |
9031 | */ | |
9032 | so_inc_recv_data_stat(ev_pcb->evp_socket, | |
39037602 | 9033 | 1, m->m_len, MBUF_TC_BE); |
fe8ab488 | 9034 | |
39236c6e | 9035 | sorwakeup(ev_pcb->evp_socket); |
fe8ab488 A |
9036 | OSIncrementAtomic64((SInt64 *)&kevtstat.kes_posted); |
9037 | } else { | |
9038 | OSIncrementAtomic64((SInt64 *)&kevtstat.kes_fullsock); | |
9039 | } | |
39236c6e A |
9040 | lck_mtx_unlock(&ev_pcb->evp_mtx); |
9041 | } | |
9042 | m_free(m); | |
9043 | lck_rw_done(kev_rwlock); | |
9044 | ||
9045 | return (0); | |
1c79356b A |
9046 | } |
9047 | ||
91447636 | 9048 | static int |
39236c6e A |
9049 | kev_control(struct socket *so, |
9050 | u_long cmd, | |
9051 | caddr_t data, | |
9052 | __unused struct ifnet *ifp, | |
9053 | __unused struct proc *p) | |
1c79356b | 9054 | { |
91447636 A |
9055 | struct kev_request *kev_req = (struct kev_request *) data; |
9056 | struct kern_event_pcb *ev_pcb; | |
9057 | struct kev_vendor_code *kev_vendor; | |
b0d623f7 | 9058 | u_int32_t *id_value = (u_int32_t *) data; |
39236c6e | 9059 | |
91447636 | 9060 | switch (cmd) { |
91447636 A |
9061 | case SIOCGKEVID: |
9062 | *id_value = static_event_id; | |
9063 | break; | |
91447636 A |
9064 | case SIOCSKEVFILT: |
9065 | ev_pcb = (struct kern_event_pcb *) so->so_pcb; | |
39236c6e A |
9066 | ev_pcb->evp_vendor_code_filter = kev_req->vendor_code; |
9067 | ev_pcb->evp_class_filter = kev_req->kev_class; | |
9068 | ev_pcb->evp_subclass_filter = kev_req->kev_subclass; | |
91447636 | 9069 | break; |
91447636 A |
9070 | case SIOCGKEVFILT: |
9071 | ev_pcb = (struct kern_event_pcb *) so->so_pcb; | |
39236c6e A |
9072 | kev_req->vendor_code = ev_pcb->evp_vendor_code_filter; |
9073 | kev_req->kev_class = ev_pcb->evp_class_filter; | |
9074 | kev_req->kev_subclass = ev_pcb->evp_subclass_filter; | |
91447636 | 9075 | break; |
91447636 | 9076 | case SIOCGKEVVENDOR: |
39236c6e | 9077 | kev_vendor = (struct kev_vendor_code *)data; |
91447636 A |
9078 | /* Make sure string is NULL terminated */ |
9079 | kev_vendor->vendor_string[KEV_VENDOR_CODE_MAX_STR_LEN-1] = 0; | |
39236c6e A |
9080 | return (net_str_id_find_internal(kev_vendor->vendor_string, |
9081 | &kev_vendor->vendor_code, NSI_VENDOR_CODE, 0)); | |
91447636 | 9082 | default: |
39236c6e | 9083 | return (ENOTSUP); |
91447636 | 9084 | } |
39236c6e A |
9085 | |
9086 | return (0); | |
1c79356b A |
9087 | } |
9088 | ||
fe8ab488 A |
9089 | int |
9090 | kevt_getstat SYSCTL_HANDLER_ARGS | |
9091 | { | |
9092 | #pragma unused(oidp, arg1, arg2) | |
9093 | int error = 0; | |
9094 | ||
9095 | lck_rw_lock_shared(kev_rwlock); | |
9096 | ||
9097 | if (req->newptr != USER_ADDR_NULL) { | |
9098 | error = EPERM; | |
9099 | goto done; | |
9100 | } | |
9101 | if (req->oldptr == USER_ADDR_NULL) { | |
9102 | req->oldidx = sizeof(struct kevtstat); | |
9103 | goto done; | |
9104 | } | |
9105 | ||
9106 | error = SYSCTL_OUT(req, &kevtstat, | |
9107 | MIN(sizeof(struct kevtstat), req->oldlen)); | |
9108 | done: | |
9109 | lck_rw_done(kev_rwlock); | |
9110 | ||
9111 | return (error); | |
9112 | } | |
9113 | ||
9114 | __private_extern__ int | |
9115 | kevt_pcblist SYSCTL_HANDLER_ARGS | |
9116 | { | |
9117 | #pragma unused(oidp, arg1, arg2) | |
9118 | int error = 0; | |
9119 | int n, i; | |
9120 | struct xsystmgen xsg; | |
9121 | void *buf = NULL; | |
9122 | size_t item_size = ROUNDUP64(sizeof (struct xkevtpcb)) + | |
9123 | ROUNDUP64(sizeof (struct xsocket_n)) + | |
9124 | 2 * ROUNDUP64(sizeof (struct xsockbuf_n)) + | |
9125 | ROUNDUP64(sizeof (struct xsockstat_n)); | |
9126 | struct kern_event_pcb *ev_pcb; | |
9127 | ||
9128 | buf = _MALLOC(item_size, M_TEMP, M_WAITOK | M_ZERO); | |
9129 | if (buf == NULL) | |
9130 | return (ENOMEM); | |
9131 | ||
9132 | lck_rw_lock_shared(kev_rwlock); | |
9133 | ||
9134 | n = kevtstat.kes_pcbcount; | |
9135 | ||
9136 | if (req->oldptr == USER_ADDR_NULL) { | |
9137 | req->oldidx = (n + n/8) * item_size; | |
9138 | goto done; | |
9139 | } | |
9140 | if (req->newptr != USER_ADDR_NULL) { | |
9141 | error = EPERM; | |
9142 | goto done; | |
9143 | } | |
9144 | bzero(&xsg, sizeof (xsg)); | |
9145 | xsg.xg_len = sizeof (xsg); | |
9146 | xsg.xg_count = n; | |
9147 | xsg.xg_gen = kevtstat.kes_gencnt; | |
9148 | xsg.xg_sogen = so_gencnt; | |
9149 | error = SYSCTL_OUT(req, &xsg, sizeof (xsg)); | |
9150 | if (error) { | |
9151 | goto done; | |
9152 | } | |
9153 | /* | |
9154 | * We are done if there is no pcb | |
9155 | */ | |
9156 | if (n == 0) { | |
9157 | goto done; | |
9158 | } | |
9159 | ||
9160 | i = 0; | |
9161 | for (i = 0, ev_pcb = LIST_FIRST(&kern_event_head); | |
9162 | i < n && ev_pcb != NULL; | |
9163 | i++, ev_pcb = LIST_NEXT(ev_pcb, evp_link)) { | |
9164 | struct xkevtpcb *xk = (struct xkevtpcb *)buf; | |
9165 | struct xsocket_n *xso = (struct xsocket_n *) | |
9166 | ADVANCE64(xk, sizeof (*xk)); | |
9167 | struct xsockbuf_n *xsbrcv = (struct xsockbuf_n *) | |
9168 | ADVANCE64(xso, sizeof (*xso)); | |
9169 | struct xsockbuf_n *xsbsnd = (struct xsockbuf_n *) | |
9170 | ADVANCE64(xsbrcv, sizeof (*xsbrcv)); | |
9171 | struct xsockstat_n *xsostats = (struct xsockstat_n *) | |
9172 | ADVANCE64(xsbsnd, sizeof (*xsbsnd)); | |
9173 | ||
9174 | bzero(buf, item_size); | |
9175 | ||
9176 | lck_mtx_lock(&ev_pcb->evp_mtx); | |
9177 | ||
9178 | xk->kep_len = sizeof(struct xkevtpcb); | |
9179 | xk->kep_kind = XSO_EVT; | |
9180 | xk->kep_evtpcb = (uint64_t)VM_KERNEL_ADDRPERM(ev_pcb); | |
9181 | xk->kep_vendor_code_filter = ev_pcb->evp_vendor_code_filter; | |
9182 | xk->kep_class_filter = ev_pcb->evp_class_filter; | |
9183 | xk->kep_subclass_filter = ev_pcb->evp_subclass_filter; | |
9184 | ||
9185 | sotoxsocket_n(ev_pcb->evp_socket, xso); | |
9186 | sbtoxsockbuf_n(ev_pcb->evp_socket ? | |
9187 | &ev_pcb->evp_socket->so_rcv : NULL, xsbrcv); | |
9188 | sbtoxsockbuf_n(ev_pcb->evp_socket ? | |
9189 | &ev_pcb->evp_socket->so_snd : NULL, xsbsnd); | |
9190 | sbtoxsockstat_n(ev_pcb->evp_socket, xsostats); | |
9191 | ||
9192 | lck_mtx_unlock(&ev_pcb->evp_mtx); | |
9193 | ||
9194 | error = SYSCTL_OUT(req, buf, item_size); | |
9195 | } | |
9196 | ||
9197 | if (error == 0) { | |
9198 | /* | |
9199 | * Give the user an updated idea of our state. | |
9200 | * If the generation differs from what we told | |
9201 | * her before, she knows that something happened | |
9202 | * while we were processing this request, and it | |
9203 | * might be necessary to retry. | |
9204 | */ | |
9205 | bzero(&xsg, sizeof (xsg)); | |
9206 | xsg.xg_len = sizeof (xsg); | |
9207 | xsg.xg_count = n; | |
9208 | xsg.xg_gen = kevtstat.kes_gencnt; | |
9209 | xsg.xg_sogen = so_gencnt; | |
9210 | error = SYSCTL_OUT(req, &xsg, sizeof (xsg)); | |
9211 | if (error) { | |
9212 | goto done; | |
9213 | } | |
9214 | } | |
9215 | ||
9216 | done: | |
9217 | lck_rw_done(kev_rwlock); | |
9218 | ||
9219 | return (error); | |
9220 | } | |
9221 | ||
2d21ac55 | 9222 | #endif /* SOCKETS */ |
1c79356b | 9223 | |
1c79356b | 9224 | |
0c530ab8 A |
9225 | int |
9226 | fill_kqueueinfo(struct kqueue *kq, struct kqueue_info * kinfo) | |
9227 | { | |
2d21ac55 | 9228 | struct vinfo_stat * st; |
0c530ab8 | 9229 | |
0c530ab8 A |
9230 | st = &kinfo->kq_stat; |
9231 | ||
2d21ac55 | 9232 | st->vst_size = kq->kq_count; |
3e170ce0 A |
9233 | if (kq->kq_state & KQ_KEV_QOS) |
9234 | st->vst_blksize = sizeof(struct kevent_qos_s); | |
9235 | else if (kq->kq_state & KQ_KEV64) | |
b0d623f7 A |
9236 | st->vst_blksize = sizeof(struct kevent64_s); |
9237 | else | |
9238 | st->vst_blksize = sizeof(struct kevent); | |
2d21ac55 | 9239 | st->vst_mode = S_IFIFO; |
5ba3f43e A |
9240 | st->vst_ino = (kq->kq_state & KQ_DYNAMIC) ? |
9241 | ((struct kqworkloop *)kq)->kqwl_dynamicid : 0; | |
3e170ce0 A |
9242 | |
9243 | /* flags exported to libproc as PROC_KQUEUE_* (sys/proc_info.h) */ | |
5ba3f43e | 9244 | #define PROC_KQUEUE_MASK (KQ_SEL|KQ_SLEEP|KQ_KEV32|KQ_KEV64|KQ_KEV_QOS|KQ_WORKQ|KQ_WORKLOOP) |
3e170ce0 | 9245 | kinfo->kq_state = kq->kq_state & PROC_KQUEUE_MASK; |
0c530ab8 | 9246 | |
39236c6e | 9247 | return (0); |
0c530ab8 | 9248 | } |
1c79356b | 9249 | |
5ba3f43e A |
9250 | static int |
9251 | fill_kqueue_dyninfo(struct kqueue *kq, struct kqueue_dyninfo *kqdi) | |
9252 | { | |
9253 | struct kqworkloop *kqwl = (struct kqworkloop *)kq; | |
9254 | struct kqrequest *kqr = &kqwl->kqwl_request; | |
9255 | int err; | |
9256 | ||
9257 | if ((kq->kq_state & KQ_WORKLOOP) == 0) { | |
9258 | return EINVAL; | |
9259 | } | |
9260 | ||
9261 | if ((err = fill_kqueueinfo(kq, &kqdi->kqdi_info))) { | |
9262 | return err; | |
9263 | } | |
9264 | ||
9265 | kqwl_req_lock(kqwl); | |
9266 | ||
9267 | if (kqr->kqr_thread) { | |
9268 | kqdi->kqdi_servicer = thread_tid(kqr->kqr_thread); | |
9269 | } | |
9270 | ||
9271 | if (kqwl->kqwl_owner == WL_OWNER_SUSPENDED) { | |
9272 | kqdi->kqdi_owner = ~0ull; | |
9273 | } else { | |
9274 | kqdi->kqdi_owner = thread_tid(kqwl->kqwl_owner); | |
9275 | } | |
9276 | ||
9277 | kqdi->kqdi_request_state = kqr->kqr_state; | |
9278 | kqdi->kqdi_async_qos = kqr->kqr_qos_index; | |
9279 | kqdi->kqdi_events_qos = kqr->kqr_override_index; | |
9280 | kqdi->kqdi_sync_waiters = kqr->kqr_dsync_waiters; | |
9281 | kqdi->kqdi_sync_waiter_qos = kqr->kqr_dsync_waiters_qos; | |
9282 | ||
9283 | kqwl_req_unlock(kqwl); | |
9284 | ||
9285 | return 0; | |
9286 | } | |
9287 | ||
6d2010ae A |
9288 | |
9289 | void | |
39037602 | 9290 | knote_markstayactive(struct knote *kn) |
6d2010ae | 9291 | { |
5ba3f43e A |
9292 | struct kqueue *kq = knote_get_kq(kn); |
9293 | ||
9294 | kqlock(kq); | |
39037602 A |
9295 | kn->kn_status |= KN_STAYACTIVE; |
9296 | ||
5ba3f43e A |
9297 | /* |
9298 | * Making a knote stay active is a property of the knote that must be | |
9299 | * established before it is fully attached. | |
9300 | */ | |
9301 | assert(kn->kn_status & KN_ATTACHING); | |
9302 | ||
9303 | /* handle all stayactive knotes on the (appropriate) manager */ | |
9304 | if (kq->kq_state & KQ_WORKQ) { | |
39037602 | 9305 | knote_set_qos_index(kn, KQWQ_QOS_MANAGER); |
5ba3f43e A |
9306 | } else if (kq->kq_state & KQ_WORKLOOP) { |
9307 | struct kqworkloop *kqwl = (struct kqworkloop *)kq; | |
9308 | kqwl_req_lock(kqwl); | |
9309 | assert(kn->kn_req_index && kn->kn_req_index < THREAD_QOS_LAST); | |
9310 | kqworkloop_update_threads_qos(kqwl, KQWL_UTQ_UPDATE_STAYACTIVE_QOS, | |
9311 | kn->kn_req_index); | |
9312 | kqwl_req_unlock(kqwl); | |
9313 | knote_set_qos_index(kn, KQWL_BUCKET_STAYACTIVE); | |
9314 | } | |
39037602 A |
9315 | |
9316 | knote_activate(kn); | |
5ba3f43e | 9317 | kqunlock(kq); |
6d2010ae | 9318 | } |
04b8595b A |
9319 | |
9320 | void | |
39037602 | 9321 | knote_clearstayactive(struct knote *kn) |
04b8595b | 9322 | { |
39037602 A |
9323 | kqlock(knote_get_kq(kn)); |
9324 | kn->kn_status &= ~KN_STAYACTIVE; | |
9325 | knote_deactivate(kn); | |
9326 | kqunlock(knote_get_kq(kn)); | |
04b8595b | 9327 | } |
3e170ce0 A |
9328 | |
9329 | static unsigned long | |
9330 | kevent_extinfo_emit(struct kqueue *kq, struct knote *kn, struct kevent_extinfo *buf, | |
9331 | unsigned long buflen, unsigned long nknotes) | |
9332 | { | |
3e170ce0 | 9333 | for (; kn; kn = SLIST_NEXT(kn, kn_link)) { |
39037602 | 9334 | if (kq == knote_get_kq(kn)) { |
3e170ce0 A |
9335 | if (nknotes < buflen) { |
9336 | struct kevent_extinfo *info = &buf[nknotes]; | |
5ba3f43e | 9337 | struct kevent_internal_s *kevp = &kn->kn_kevent; |
3e170ce0 A |
9338 | |
9339 | kqlock(kq); | |
5ba3f43e A |
9340 | |
9341 | info->kqext_kev = (struct kevent_qos_s){ | |
9342 | .ident = kevp->ident, | |
9343 | .filter = kevp->filter, | |
9344 | .flags = kevp->flags, | |
9345 | .fflags = kevp->fflags, | |
9346 | .data = (int64_t)kevp->data, | |
9347 | .udata = kevp->udata, | |
9348 | .ext[0] = kevp->ext[0], | |
9349 | .ext[1] = kevp->ext[1], | |
9350 | .ext[2] = kevp->ext[2], | |
9351 | .ext[3] = kevp->ext[3], | |
9352 | .qos = kn->kn_req_index, | |
9353 | }; | |
3e170ce0 | 9354 | info->kqext_sdata = kn->kn_sdata; |
39037602 | 9355 | info->kqext_status = kn->kn_status; |
3e170ce0 A |
9356 | info->kqext_sfflags = kn->kn_sfflags; |
9357 | ||
9358 | kqunlock(kq); | |
9359 | } | |
9360 | ||
9361 | /* we return total number of knotes, which may be more than requested */ | |
9362 | nknotes++; | |
9363 | } | |
9364 | } | |
9365 | ||
9366 | return nknotes; | |
9367 | } | |
9368 | ||
5ba3f43e A |
9369 | int |
9370 | kevent_copyout_proc_dynkqids(void *proc, user_addr_t ubuf, uint32_t ubufsize, | |
9371 | int32_t *nkqueues_out) | |
9372 | { | |
9373 | proc_t p = (proc_t)proc; | |
9374 | struct filedesc *fdp = p->p_fd; | |
9375 | unsigned int nkqueues = 0; | |
9376 | unsigned long ubuflen = ubufsize / sizeof(kqueue_id_t); | |
9377 | size_t buflen, bufsize; | |
9378 | kqueue_id_t *kq_ids = NULL; | |
9379 | int err = 0; | |
9380 | ||
9381 | assert(p != NULL); | |
9382 | ||
9383 | if (ubuf == USER_ADDR_NULL && ubufsize != 0) { | |
9384 | err = EINVAL; | |
9385 | goto out; | |
9386 | } | |
9387 | ||
9388 | buflen = min(ubuflen, PROC_PIDDYNKQUEUES_MAX); | |
9389 | ||
9390 | if (ubuflen != 0) { | |
9391 | if (os_mul_overflow(sizeof(kqueue_id_t), buflen, &bufsize)) { | |
9392 | err = ERANGE; | |
9393 | goto out; | |
9394 | } | |
9395 | kq_ids = kalloc(bufsize); | |
9396 | assert(kq_ids != NULL); | |
9397 | } | |
9398 | ||
9399 | kqhash_lock(p); | |
9400 | ||
9401 | if (fdp->fd_kqhashmask > 0) { | |
9402 | for (uint32_t i = 0; i < fdp->fd_kqhashmask + 1; i++) { | |
9403 | struct kqworkloop *kqwl; | |
9404 | ||
9405 | SLIST_FOREACH(kqwl, &fdp->fd_kqhash[i], kqwl_hashlink) { | |
9406 | /* report the number of kqueues, even if they don't all fit */ | |
9407 | if (nkqueues < buflen) { | |
9408 | kq_ids[nkqueues] = kqwl->kqwl_dynamicid; | |
9409 | } | |
9410 | nkqueues++; | |
9411 | } | |
9412 | } | |
9413 | } | |
9414 | ||
9415 | kqhash_unlock(p); | |
9416 | ||
9417 | if (kq_ids) { | |
9418 | size_t copysize; | |
9419 | if (os_mul_overflow(sizeof(kqueue_id_t), min(ubuflen, nkqueues), ©size)) { | |
9420 | err = ERANGE; | |
9421 | goto out; | |
9422 | } | |
9423 | ||
9424 | assert(ubufsize >= copysize); | |
9425 | err = copyout(kq_ids, ubuf, copysize); | |
9426 | } | |
9427 | ||
9428 | out: | |
9429 | if (kq_ids) { | |
9430 | kfree(kq_ids, bufsize); | |
9431 | } | |
9432 | ||
9433 | if (!err) { | |
9434 | *nkqueues_out = (int)min(nkqueues, PROC_PIDDYNKQUEUES_MAX); | |
9435 | } | |
9436 | return err; | |
9437 | } | |
9438 | ||
9439 | int | |
9440 | kevent_copyout_dynkqinfo(void *proc, kqueue_id_t kq_id, user_addr_t ubuf, | |
9441 | uint32_t ubufsize, int32_t *size_out) | |
9442 | { | |
9443 | proc_t p = (proc_t)proc; | |
9444 | struct kqueue *kq; | |
9445 | int err = 0; | |
9446 | struct kqueue_dyninfo kqdi = { }; | |
9447 | ||
9448 | assert(p != NULL); | |
9449 | ||
9450 | if (ubufsize < sizeof(struct kqueue_info)) { | |
9451 | return ENOBUFS; | |
9452 | } | |
9453 | ||
9454 | kqhash_lock(p); | |
9455 | kq = kqueue_hash_lookup(p, kq_id); | |
9456 | if (!kq) { | |
9457 | kqhash_unlock(p); | |
9458 | return ESRCH; | |
9459 | } | |
9460 | kqueue_retain(kq); | |
9461 | kqhash_unlock(p); | |
9462 | ||
9463 | /* | |
9464 | * backward compatibility: allow the argument to this call to only be | |
9465 | * a struct kqueue_info | |
9466 | */ | |
9467 | if (ubufsize >= sizeof(struct kqueue_dyninfo)) { | |
9468 | ubufsize = sizeof(struct kqueue_dyninfo); | |
9469 | err = fill_kqueue_dyninfo(kq, &kqdi); | |
9470 | } else { | |
9471 | ubufsize = sizeof(struct kqueue_info); | |
9472 | err = fill_kqueueinfo(kq, &kqdi.kqdi_info); | |
9473 | } | |
9474 | if (err == 0 && (err = copyout(&kqdi, ubuf, ubufsize)) == 0) { | |
9475 | *size_out = ubufsize; | |
9476 | } | |
9477 | kqueue_release_last(p, kq); | |
9478 | return err; | |
9479 | } | |
9480 | ||
9481 | int | |
9482 | kevent_copyout_dynkqextinfo(void *proc, kqueue_id_t kq_id, user_addr_t ubuf, | |
9483 | uint32_t ubufsize, int32_t *nknotes_out) | |
9484 | { | |
9485 | proc_t p = (proc_t)proc; | |
9486 | struct kqueue *kq; | |
9487 | int err; | |
9488 | ||
9489 | assert(p != NULL); | |
9490 | ||
9491 | kqhash_lock(p); | |
9492 | kq = kqueue_hash_lookup(p, kq_id); | |
9493 | if (!kq) { | |
9494 | kqhash_unlock(p); | |
9495 | return ESRCH; | |
9496 | } | |
9497 | kqueue_retain(kq); | |
9498 | kqhash_unlock(p); | |
9499 | ||
9500 | err = pid_kqueue_extinfo(p, kq, ubuf, ubufsize, nknotes_out); | |
9501 | kqueue_release_last(p, kq); | |
9502 | return err; | |
9503 | } | |
9504 | ||
3e170ce0 A |
9505 | int |
9506 | pid_kqueue_extinfo(proc_t p, struct kqueue *kq, user_addr_t ubuf, | |
9507 | uint32_t bufsize, int32_t *retval) | |
9508 | { | |
9509 | struct knote *kn; | |
9510 | int i; | |
9511 | int err = 0; | |
9512 | struct filedesc *fdp = p->p_fd; | |
9513 | unsigned long nknotes = 0; | |
9514 | unsigned long buflen = bufsize / sizeof(struct kevent_extinfo); | |
9515 | struct kevent_extinfo *kqext = NULL; | |
9516 | ||
39037602 A |
9517 | /* arbitrary upper limit to cap kernel memory usage, copyout size, etc. */ |
9518 | buflen = min(buflen, PROC_PIDFDKQUEUE_KNOTES_MAX); | |
9519 | ||
3e170ce0 A |
9520 | kqext = kalloc(buflen * sizeof(struct kevent_extinfo)); |
9521 | if (kqext == NULL) { | |
9522 | err = ENOMEM; | |
9523 | goto out; | |
9524 | } | |
9525 | bzero(kqext, buflen * sizeof(struct kevent_extinfo)); | |
9526 | ||
9527 | proc_fdlock(p); | |
3e170ce0 A |
9528 | for (i = 0; i < fdp->fd_knlistsize; i++) { |
9529 | kn = SLIST_FIRST(&fdp->fd_knlist[i]); | |
9530 | nknotes = kevent_extinfo_emit(kq, kn, kqext, buflen, nknotes); | |
9531 | } | |
5ba3f43e | 9532 | proc_fdunlock(p); |
3e170ce0 A |
9533 | |
9534 | if (fdp->fd_knhashmask != 0) { | |
9535 | for (i = 0; i < (int)fdp->fd_knhashmask + 1; i++) { | |
5ba3f43e | 9536 | kqhash_lock(p); |
3e170ce0 A |
9537 | kn = SLIST_FIRST(&fdp->fd_knhash[i]); |
9538 | nknotes = kevent_extinfo_emit(kq, kn, kqext, buflen, nknotes); | |
5ba3f43e | 9539 | kqhash_unlock(p); |
3e170ce0 A |
9540 | } |
9541 | } | |
9542 | ||
3e170ce0 A |
9543 | assert(bufsize >= sizeof(struct kevent_extinfo) * min(buflen, nknotes)); |
9544 | err = copyout(kqext, ubuf, sizeof(struct kevent_extinfo) * min(buflen, nknotes)); | |
9545 | ||
9546 | out: | |
9547 | if (kqext) { | |
9548 | kfree(kqext, buflen * sizeof(struct kevent_extinfo)); | |
9549 | kqext = NULL; | |
9550 | } | |
9551 | ||
39037602 A |
9552 | if (!err) { |
9553 | *retval = min(nknotes, PROC_PIDFDKQUEUE_KNOTES_MAX); | |
9554 | } | |
3e170ce0 A |
9555 | return err; |
9556 | } | |
39037602 | 9557 | |
5ba3f43e A |
9558 | static unsigned int |
9559 | klist_copy_udata(struct klist *list, uint64_t *buf, | |
9560 | unsigned int buflen, unsigned int nknotes) | |
39037602 | 9561 | { |
5ba3f43e A |
9562 | struct kevent_internal_s *kev; |
9563 | struct knote *kn; | |
9564 | SLIST_FOREACH(kn, list, kn_link) { | |
9565 | if (nknotes < buflen) { | |
9566 | struct kqueue *kq = knote_get_kq(kn); | |
9567 | kqlock(kq); | |
9568 | kev = &(kn->kn_kevent); | |
9569 | buf[nknotes] = kev->udata; | |
9570 | kqunlock(kq); | |
39037602 | 9571 | } |
5ba3f43e A |
9572 | /* we return total number of knotes, which may be more than requested */ |
9573 | nknotes++; | |
39037602 A |
9574 | } |
9575 | ||
9576 | return nknotes; | |
9577 | } | |
9578 | ||
5ba3f43e A |
9579 | static unsigned int |
9580 | kqlist_copy_dynamicids(__assert_only proc_t p, struct kqlist *list, | |
9581 | uint64_t *buf, unsigned int buflen, unsigned int nids) | |
9582 | { | |
9583 | kqhash_lock_held(p); | |
9584 | struct kqworkloop *kqwl; | |
9585 | SLIST_FOREACH(kqwl, list, kqwl_hashlink) { | |
9586 | if (nids < buflen) { | |
9587 | buf[nids] = kqwl->kqwl_dynamicid; | |
9588 | } | |
9589 | nids++; | |
9590 | } | |
9591 | return nids; | |
9592 | } | |
9593 | ||
39037602 | 9594 | int |
5ba3f43e | 9595 | kevent_proc_copy_uptrs(void *proc, uint64_t *buf, int bufsize) |
39037602 | 9596 | { |
5ba3f43e | 9597 | proc_t p = (proc_t)proc; |
39037602 | 9598 | struct filedesc *fdp = p->p_fd; |
5ba3f43e | 9599 | unsigned int nuptrs = 0; |
39037602 A |
9600 | unsigned long buflen = bufsize / sizeof(uint64_t); |
9601 | ||
5ba3f43e A |
9602 | if (buflen > 0) { |
9603 | assert(buf != NULL); | |
9604 | } | |
9605 | ||
39037602 | 9606 | proc_fdlock(p); |
5ba3f43e A |
9607 | for (int i = 0; i < fdp->fd_knlistsize; i++) { |
9608 | nuptrs = klist_copy_udata(&fdp->fd_knlist[i], buf, buflen, nuptrs); | |
9609 | } | |
9610 | knhash_lock(p); | |
9611 | proc_fdunlock(p); | |
9612 | if (fdp->fd_knhashmask != 0) { | |
9613 | for (int i = 0; i < (int)fdp->fd_knhashmask + 1; i++) { | |
9614 | nuptrs = klist_copy_udata(&fdp->fd_knhash[i], buf, buflen, nuptrs); | |
9615 | } | |
9616 | } | |
9617 | knhash_unlock(p); | |
39037602 | 9618 | |
5ba3f43e A |
9619 | kqhash_lock(p); |
9620 | if (fdp->fd_kqhashmask != 0) { | |
9621 | for (int i = 0; i < (int)fdp->fd_kqhashmask + 1; i++) { | |
9622 | nuptrs = kqlist_copy_dynamicids(p, &fdp->fd_kqhash[i], buf, buflen, | |
9623 | nuptrs); | |
9624 | } | |
39037602 | 9625 | } |
5ba3f43e | 9626 | kqhash_unlock(p); |
39037602 | 9627 | |
5ba3f43e A |
9628 | return (int)nuptrs; |
9629 | } | |
9630 | ||
9631 | static void | |
9632 | kevent_redrive_proc_thread_request(proc_t p) | |
9633 | { | |
9634 | __assert_only int ret; | |
9635 | ret = (*pthread_functions->workq_threadreq)(p, NULL, WORKQ_THREADREQ_REDRIVE, 0, 0); | |
9636 | assert(ret == 0 || ret == ECANCELED); | |
9637 | } | |
9638 | ||
9639 | static void | |
9640 | kevent_set_return_to_kernel_user_tsd(proc_t p, thread_t thread) | |
9641 | { | |
9642 | uint64_t ast_addr; | |
9643 | bool proc_is_64bit = !!(p->p_flag & P_LP64); | |
9644 | size_t user_addr_size = proc_is_64bit ? 8 : 4; | |
9645 | uint32_t ast_flags32 = 0; | |
9646 | uint64_t ast_flags64 = 0; | |
9647 | struct uthread *ut = get_bsdthread_info(thread); | |
9648 | ||
9649 | if (ut->uu_kqueue_bound != NULL) { | |
9650 | if (ut->uu_kqueue_flags & KEVENT_FLAG_WORKLOOP) { | |
9651 | ast_flags64 |= R2K_WORKLOOP_PENDING_EVENTS; | |
9652 | } else if (ut->uu_kqueue_flags & KEVENT_FLAG_WORKQ) { | |
9653 | ast_flags64 |= R2K_WORKQ_PENDING_EVENTS; | |
39037602 A |
9654 | } |
9655 | } | |
9656 | ||
5ba3f43e A |
9657 | if (ast_flags64 == 0) { |
9658 | return; | |
9659 | } | |
9660 | ||
9661 | if (!(p->p_flag & P_LP64)) { | |
9662 | ast_flags32 = (uint32_t)ast_flags64; | |
9663 | assert(ast_flags64 < 0x100000000ull); | |
9664 | } | |
9665 | ||
9666 | ast_addr = thread_rettokern_addr(thread); | |
9667 | if (ast_addr == 0) { | |
9668 | return; | |
9669 | } | |
9670 | ||
9671 | if (copyout((proc_is_64bit ? (void *)&ast_flags64 : (void *)&ast_flags32), | |
9672 | (user_addr_t)ast_addr, | |
9673 | user_addr_size) != 0) { | |
9674 | printf("pid %d (tid:%llu): copyout of return_to_kernel ast flags failed with " | |
9675 | "ast_addr = %llu\n", p->p_pid, thread_tid(current_thread()), ast_addr); | |
9676 | } | |
9677 | } | |
9678 | ||
9679 | void | |
9680 | kevent_ast(thread_t thread, uint16_t bits) | |
9681 | { | |
9682 | proc_t p = current_proc(); | |
9683 | ||
9684 | if (bits & AST_KEVENT_REDRIVE_THREADREQ) { | |
9685 | kevent_redrive_proc_thread_request(p); | |
9686 | } | |
9687 | if (bits & AST_KEVENT_RETURN_TO_KERNEL) { | |
9688 | kevent_set_return_to_kernel_user_tsd(p, thread); | |
9689 | } | |
9690 | } | |
9691 | ||
9692 | #if DEVELOPMENT || DEBUG | |
9693 | ||
9694 | #define KEVENT_SYSCTL_BOUND_ID 1 | |
9695 | ||
9696 | static int | |
9697 | kevent_sysctl SYSCTL_HANDLER_ARGS | |
9698 | { | |
9699 | #pragma unused(oidp, arg2) | |
9700 | uintptr_t type = (uintptr_t)arg1; | |
9701 | uint64_t bound_id = 0; | |
9702 | struct uthread *ut; | |
9703 | struct kqueue *kq; | |
9704 | ||
9705 | if (type != KEVENT_SYSCTL_BOUND_ID) { | |
9706 | return EINVAL; | |
9707 | } | |
9708 | ||
9709 | if (req->newptr) { | |
9710 | return EINVAL; | |
9711 | } | |
9712 | ||
9713 | ut = get_bsdthread_info(current_thread()); | |
9714 | if (!ut) { | |
9715 | return EFAULT; | |
9716 | } | |
9717 | ||
9718 | kq = ut->uu_kqueue_bound; | |
9719 | if (kq) { | |
9720 | if (kq->kq_state & KQ_WORKLOOP) { | |
9721 | bound_id = ((struct kqworkloop *)kq)->kqwl_dynamicid; | |
9722 | } else if (kq->kq_state & KQ_WORKQ) { | |
9723 | bound_id = -1; | |
9724 | } | |
9725 | } | |
9726 | ||
9727 | return sysctl_io_number(req, bound_id, sizeof(bound_id), NULL, NULL); | |
39037602 A |
9728 | } |
9729 | ||
5ba3f43e A |
9730 | SYSCTL_NODE(_kern, OID_AUTO, kevent, CTLFLAG_RW | CTLFLAG_LOCKED, 0, |
9731 | "kevent information"); | |
9732 | ||
9733 | SYSCTL_PROC(_kern_kevent, OID_AUTO, bound_id, | |
9734 | CTLTYPE_QUAD | CTLFLAG_RD | CTLFLAG_LOCKED | CTLFLAG_MASKED, | |
9735 | (void *)KEVENT_SYSCTL_BOUND_ID, | |
9736 | sizeof(kqueue_id_t), kevent_sysctl, "Q", | |
9737 | "get the ID of the bound kqueue"); | |
9738 | ||
9739 | #endif /* DEVELOPMENT || DEBUG */ |