]>
Commit | Line | Data |
---|---|---|
2d21ac55 A |
1 | /* |
2 | * CDDL HEADER START | |
3 | * | |
4 | * The contents of this file are subject to the terms of the | |
5 | * Common Development and Distribution License (the "License"). | |
6 | * You may not use this file except in compliance with the License. | |
7 | * | |
8 | * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE | |
9 | * or http://www.opensolaris.org/os/licensing. | |
10 | * See the License for the specific language governing permissions | |
11 | * and limitations under the License. | |
12 | * | |
13 | * When distributing Covered Code, include this CDDL HEADER in each | |
14 | * file and include the License file at usr/src/OPENSOLARIS.LICENSE. | |
15 | * If applicable, add the following below this CDDL HEADER, with the | |
16 | * fields enclosed by brackets "[]" replaced with your own identifying | |
17 | * information: Portions Copyright [yyyy] [name of copyright owner] | |
18 | * | |
19 | * CDDL HEADER END | |
20 | */ | |
21 | ||
22 | /* | |
b0d623f7 | 23 | * Copyright 2008 Sun Microsystems, Inc. All rights reserved. |
2d21ac55 A |
24 | * Use is subject to license terms. |
25 | */ | |
26 | ||
27 | /* | |
b0d623f7 | 28 | * #pragma ident "@(#)fasttrap_isa.c 1.27 08/04/09 SMI" |
2d21ac55 A |
29 | */ |
30 | ||
31 | #ifdef KERNEL | |
32 | #ifndef _KERNEL | |
33 | #define _KERNEL /* Solaris vs. Darwin */ | |
34 | #endif | |
35 | #endif | |
36 | ||
37 | #include <sys/fasttrap_isa.h> | |
38 | #include <sys/fasttrap_impl.h> | |
39 | #include <sys/dtrace.h> | |
40 | #include <sys/dtrace_impl.h> | |
cf7d32b8 | 41 | extern dtrace_id_t dtrace_probeid_error; |
2d21ac55 A |
42 | |
43 | #include "fasttrap_regset.h" | |
44 | ||
45 | #include <sys/dtrace_ptss.h> | |
46 | #include <kern/debug.h> | |
47 | ||
6d2010ae A |
48 | #include <machine/pal_routines.h> |
49 | ||
b0d623f7 A |
50 | /* Solaris proc_t is the struct. Darwin's proc_t is a pointer to it. */ |
51 | #define proc_t struct proc /* Steer clear of the Darwin typedef for proc_t */ | |
2d21ac55 A |
52 | |
53 | /* | |
54 | * Lossless User-Land Tracing on x86 | |
55 | * --------------------------------- | |
56 | * | |
57 | * The execution of most instructions is not dependent on the address; for | |
58 | * these instructions it is sufficient to copy them into the user process's | |
59 | * address space and execute them. To effectively single-step an instruction | |
60 | * in user-land, we copy out the following sequence of instructions to scratch | |
61 | * space in the user thread's ulwp_t structure. | |
62 | * | |
63 | * We then set the program counter (%eip or %rip) to point to this scratch | |
64 | * space. Once execution resumes, the original instruction is executed and | |
65 | * then control flow is redirected to what was originally the subsequent | |
66 | * instruction. If the kernel attemps to deliver a signal while single- | |
67 | * stepping, the signal is deferred and the program counter is moved into the | |
68 | * second sequence of instructions. The second sequence ends in a trap into | |
69 | * the kernel where the deferred signal is then properly handled and delivered. | |
70 | * | |
71 | * For instructions whose execute is position dependent, we perform simple | |
72 | * emulation. These instructions are limited to control transfer | |
73 | * instructions in 32-bit mode, but in 64-bit mode there's the added wrinkle | |
74 | * of %rip-relative addressing that means that almost any instruction can be | |
75 | * position dependent. For all the details on how we emulate generic | |
76 | * instructions included %rip-relative instructions, see the code in | |
77 | * fasttrap_pid_probe() below where we handle instructions of type | |
78 | * FASTTRAP_T_COMMON (under the header: Generic Instruction Tracing). | |
79 | */ | |
80 | ||
81 | #define FASTTRAP_MODRM_MOD(modrm) (((modrm) >> 6) & 0x3) | |
82 | #define FASTTRAP_MODRM_REG(modrm) (((modrm) >> 3) & 0x7) | |
83 | #define FASTTRAP_MODRM_RM(modrm) ((modrm) & 0x7) | |
84 | #define FASTTRAP_MODRM(mod, reg, rm) (((mod) << 6) | ((reg) << 3) | (rm)) | |
85 | ||
86 | #define FASTTRAP_SIB_SCALE(sib) (((sib) >> 6) & 0x3) | |
87 | #define FASTTRAP_SIB_INDEX(sib) (((sib) >> 3) & 0x7) | |
88 | #define FASTTRAP_SIB_BASE(sib) ((sib) & 0x7) | |
89 | ||
90 | #define FASTTRAP_REX_W(rex) (((rex) >> 3) & 1) | |
91 | #define FASTTRAP_REX_R(rex) (((rex) >> 2) & 1) | |
92 | #define FASTTRAP_REX_X(rex) (((rex) >> 1) & 1) | |
93 | #define FASTTRAP_REX_B(rex) ((rex) & 1) | |
94 | #define FASTTRAP_REX(w, r, x, b) \ | |
95 | (0x40 | ((w) << 3) | ((r) << 2) | ((x) << 1) | (b)) | |
96 | ||
97 | /* | |
98 | * Single-byte op-codes. | |
99 | */ | |
100 | #define FASTTRAP_PUSHL_EBP 0x55 | |
101 | ||
102 | #define FASTTRAP_JO 0x70 | |
103 | #define FASTTRAP_JNO 0x71 | |
104 | #define FASTTRAP_JB 0x72 | |
105 | #define FASTTRAP_JAE 0x73 | |
106 | #define FASTTRAP_JE 0x74 | |
107 | #define FASTTRAP_JNE 0x75 | |
108 | #define FASTTRAP_JBE 0x76 | |
109 | #define FASTTRAP_JA 0x77 | |
110 | #define FASTTRAP_JS 0x78 | |
111 | #define FASTTRAP_JNS 0x79 | |
112 | #define FASTTRAP_JP 0x7a | |
113 | #define FASTTRAP_JNP 0x7b | |
114 | #define FASTTRAP_JL 0x7c | |
115 | #define FASTTRAP_JGE 0x7d | |
116 | #define FASTTRAP_JLE 0x7e | |
117 | #define FASTTRAP_JG 0x7f | |
118 | ||
119 | #define FASTTRAP_NOP 0x90 | |
120 | ||
121 | #define FASTTRAP_MOV_EAX 0xb8 | |
122 | #define FASTTRAP_MOV_ECX 0xb9 | |
123 | ||
124 | #define FASTTRAP_RET16 0xc2 | |
125 | #define FASTTRAP_RET 0xc3 | |
126 | ||
127 | #define FASTTRAP_LOOPNZ 0xe0 | |
128 | #define FASTTRAP_LOOPZ 0xe1 | |
129 | #define FASTTRAP_LOOP 0xe2 | |
130 | #define FASTTRAP_JCXZ 0xe3 | |
131 | ||
132 | #define FASTTRAP_CALL 0xe8 | |
133 | #define FASTTRAP_JMP32 0xe9 | |
134 | #define FASTTRAP_JMP8 0xeb | |
135 | ||
136 | #define FASTTRAP_INT3 0xcc | |
137 | #define FASTTRAP_INT 0xcd | |
138 | #define T_DTRACE_RET 0x7f | |
139 | ||
140 | #define FASTTRAP_2_BYTE_OP 0x0f | |
141 | #define FASTTRAP_GROUP5_OP 0xff | |
142 | ||
143 | /* | |
144 | * Two-byte op-codes (second byte only). | |
145 | */ | |
146 | #define FASTTRAP_0F_JO 0x80 | |
147 | #define FASTTRAP_0F_JNO 0x81 | |
148 | #define FASTTRAP_0F_JB 0x82 | |
149 | #define FASTTRAP_0F_JAE 0x83 | |
150 | #define FASTTRAP_0F_JE 0x84 | |
151 | #define FASTTRAP_0F_JNE 0x85 | |
152 | #define FASTTRAP_0F_JBE 0x86 | |
153 | #define FASTTRAP_0F_JA 0x87 | |
154 | #define FASTTRAP_0F_JS 0x88 | |
155 | #define FASTTRAP_0F_JNS 0x89 | |
156 | #define FASTTRAP_0F_JP 0x8a | |
157 | #define FASTTRAP_0F_JNP 0x8b | |
158 | #define FASTTRAP_0F_JL 0x8c | |
159 | #define FASTTRAP_0F_JGE 0x8d | |
160 | #define FASTTRAP_0F_JLE 0x8e | |
161 | #define FASTTRAP_0F_JG 0x8f | |
162 | ||
163 | #define FASTTRAP_EFLAGS_OF 0x800 | |
164 | #define FASTTRAP_EFLAGS_DF 0x400 | |
165 | #define FASTTRAP_EFLAGS_SF 0x080 | |
166 | #define FASTTRAP_EFLAGS_ZF 0x040 | |
167 | #define FASTTRAP_EFLAGS_AF 0x010 | |
168 | #define FASTTRAP_EFLAGS_PF 0x004 | |
169 | #define FASTTRAP_EFLAGS_CF 0x001 | |
170 | ||
171 | /* | |
172 | * Instruction prefixes. | |
173 | */ | |
174 | #define FASTTRAP_PREFIX_OPERAND 0x66 | |
175 | #define FASTTRAP_PREFIX_ADDRESS 0x67 | |
176 | #define FASTTRAP_PREFIX_CS 0x2E | |
177 | #define FASTTRAP_PREFIX_DS 0x3E | |
178 | #define FASTTRAP_PREFIX_ES 0x26 | |
179 | #define FASTTRAP_PREFIX_FS 0x64 | |
180 | #define FASTTRAP_PREFIX_GS 0x65 | |
181 | #define FASTTRAP_PREFIX_SS 0x36 | |
182 | #define FASTTRAP_PREFIX_LOCK 0xF0 | |
183 | #define FASTTRAP_PREFIX_REP 0xF3 | |
184 | #define FASTTRAP_PREFIX_REPNE 0xF2 | |
185 | ||
186 | #define FASTTRAP_NOREG 0xff | |
187 | ||
188 | /* | |
189 | * Map between instruction register encodings and the kernel constants which | |
190 | * correspond to indicies into struct regs. | |
191 | */ | |
192 | ||
193 | /* | |
194 | * APPLE NOTE: We are cheating here. The regmap is used to decode which register | |
195 | * a given instruction is trying to reference. OS X does not have extended registers | |
196 | * for 32 bit apps, but the *order* is the same. So for 32 bit state, we will return: | |
197 | * | |
198 | * REG_RAX -> EAX | |
199 | * REG_RCX -> ECX | |
fe8ab488 A |
200 | * REG_RDX -> EDX |
201 | * REG_RBX -> EBX | |
202 | * REG_RSP -> UESP | |
203 | * REG_RBP -> EBP | |
204 | * REG_RSI -> ESI | |
2d21ac55 A |
205 | * REG_RDI -> EDI |
206 | * | |
207 | * The fasttrap_getreg function knows how to make the correct transformation. | |
208 | */ | |
2d21ac55 A |
209 | static const uint8_t regmap[16] = { |
210 | REG_RAX, REG_RCX, REG_RDX, REG_RBX, REG_RSP, REG_RBP, REG_RSI, REG_RDI, | |
211 | REG_R8, REG_R9, REG_R10, REG_R11, REG_R12, REG_R13, REG_R14, REG_R15, | |
212 | }; | |
2d21ac55 A |
213 | |
214 | static user_addr_t fasttrap_getreg(x86_saved_state_t *, uint_t); | |
215 | ||
216 | static uint64_t | |
217 | fasttrap_anarg(x86_saved_state_t *regs, int function_entry, int argno) | |
218 | { | |
219 | uint64_t value; | |
220 | int shift = function_entry ? 1 : 0; | |
221 | ||
222 | x86_saved_state64_t *regs64; | |
223 | x86_saved_state32_t *regs32; | |
224 | unsigned int p_model; | |
225 | ||
226 | if (is_saved_state64(regs)) { | |
227 | regs64 = saved_state64(regs); | |
228 | regs32 = NULL; | |
229 | p_model = DATAMODEL_LP64; | |
230 | } else { | |
231 | regs64 = NULL; | |
232 | regs32 = saved_state32(regs); | |
233 | p_model = DATAMODEL_ILP32; | |
234 | } | |
235 | ||
236 | if (p_model == DATAMODEL_LP64) { | |
237 | user_addr_t stack; | |
238 | ||
239 | /* | |
240 | * In 64-bit mode, the first six arguments are stored in | |
241 | * registers. | |
242 | */ | |
243 | if (argno < 6) | |
244 | return ((®s64->rdi)[argno]); | |
245 | ||
246 | stack = regs64->isf.rsp + sizeof(uint64_t) * (argno - 6 + shift); | |
247 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); | |
248 | value = dtrace_fuword64(stack); | |
249 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR); | |
250 | } else { | |
b0d623f7 | 251 | uint32_t *stack = (uint32_t *)(uintptr_t)(regs32->uesp); |
2d21ac55 A |
252 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); |
253 | value = dtrace_fuword32((user_addr_t)(unsigned long)&stack[argno + shift]); | |
254 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR); | |
255 | } | |
256 | ||
257 | return (value); | |
258 | } | |
259 | ||
260 | /*ARGSUSED*/ | |
261 | int | |
262 | fasttrap_tracepoint_init(proc_t *p, fasttrap_tracepoint_t *tp, user_addr_t pc, | |
263 | fasttrap_probe_type_t type) | |
264 | { | |
265 | #pragma unused(type) | |
266 | uint8_t instr[FASTTRAP_MAX_INSTR_SIZE + 10]; | |
267 | size_t len = FASTTRAP_MAX_INSTR_SIZE; | |
268 | size_t first = MIN(len, PAGE_SIZE - (pc & PAGE_MASK)); | |
269 | uint_t start = 0; | |
270 | size_t size; | |
271 | int rmindex; | |
272 | uint8_t seg, rex = 0; | |
273 | unsigned int p_model = (p->p_flag & P_LP64) ? DATAMODEL_LP64 : DATAMODEL_ILP32; | |
274 | ||
275 | /* | |
276 | * Read the instruction at the given address out of the process's | |
277 | * address space. We don't have to worry about a debugger | |
278 | * changing this instruction before we overwrite it with our trap | |
279 | * instruction since P_PR_LOCK is set. Since instructions can span | |
280 | * pages, we potentially read the instruction in two parts. If the | |
281 | * second part fails, we just zero out that part of the instruction. | |
282 | */ | |
283 | /* | |
284 | * APPLE NOTE: Of course, we do not have a P_PR_LOCK, so this is racey... | |
285 | */ | |
286 | if (uread(p, &instr[0], first, pc) != 0) | |
287 | return (-1); | |
288 | if (len > first && | |
289 | uread(p, &instr[first], len - first, pc + first) != 0) { | |
290 | bzero(&instr[first], len - first); | |
291 | len = first; | |
292 | } | |
293 | ||
294 | /* | |
295 | * If the disassembly fails, then we have a malformed instruction. | |
296 | */ | |
297 | if ((size = dtrace_instr_size_isa(instr, p_model, &rmindex)) <= 0) | |
298 | return (-1); | |
299 | ||
300 | /* | |
301 | * Make sure the disassembler isn't completely broken. | |
302 | */ | |
303 | ASSERT(-1 <= rmindex && rmindex < (int)size); | |
304 | ||
305 | /* | |
306 | * If the computed size is greater than the number of bytes read, | |
307 | * then it was a malformed instruction possibly because it fell on a | |
308 | * page boundary and the subsequent page was missing or because of | |
309 | * some malicious user. | |
310 | */ | |
311 | if (size > len) | |
312 | return (-1); | |
313 | ||
314 | tp->ftt_size = (uint8_t)size; | |
315 | tp->ftt_segment = FASTTRAP_SEG_NONE; | |
316 | ||
317 | /* | |
318 | * Find the start of the instruction's opcode by processing any | |
319 | * legacy prefixes. | |
320 | */ | |
321 | for (;;) { | |
322 | seg = 0; | |
323 | switch (instr[start]) { | |
324 | case FASTTRAP_PREFIX_SS: | |
325 | seg++; | |
326 | /*FALLTHRU*/ | |
327 | case FASTTRAP_PREFIX_GS: | |
328 | seg++; | |
329 | /*FALLTHRU*/ | |
330 | case FASTTRAP_PREFIX_FS: | |
331 | seg++; | |
332 | /*FALLTHRU*/ | |
333 | case FASTTRAP_PREFIX_ES: | |
334 | seg++; | |
335 | /*FALLTHRU*/ | |
336 | case FASTTRAP_PREFIX_DS: | |
337 | seg++; | |
338 | /*FALLTHRU*/ | |
339 | case FASTTRAP_PREFIX_CS: | |
340 | seg++; | |
341 | /*FALLTHRU*/ | |
342 | case FASTTRAP_PREFIX_OPERAND: | |
343 | case FASTTRAP_PREFIX_ADDRESS: | |
344 | case FASTTRAP_PREFIX_LOCK: | |
345 | case FASTTRAP_PREFIX_REP: | |
346 | case FASTTRAP_PREFIX_REPNE: | |
347 | if (seg != 0) { | |
348 | /* | |
349 | * It's illegal for an instruction to specify | |
350 | * two segment prefixes -- give up on this | |
351 | * illegal instruction. | |
352 | */ | |
353 | if (tp->ftt_segment != FASTTRAP_SEG_NONE) | |
354 | return (-1); | |
355 | ||
356 | tp->ftt_segment = seg; | |
357 | } | |
358 | start++; | |
359 | continue; | |
360 | } | |
361 | break; | |
362 | } | |
363 | ||
2d21ac55 A |
364 | /* |
365 | * Identify the REX prefix on 64-bit processes. | |
366 | */ | |
367 | if (p_model == DATAMODEL_LP64 && (instr[start] & 0xf0) == 0x40) | |
368 | rex = instr[start++]; | |
2d21ac55 A |
369 | |
370 | /* | |
371 | * Now that we're pretty sure that the instruction is okay, copy the | |
372 | * valid part to the tracepoint. | |
373 | */ | |
374 | bcopy(instr, tp->ftt_instr, FASTTRAP_MAX_INSTR_SIZE); | |
375 | ||
376 | tp->ftt_type = FASTTRAP_T_COMMON; | |
377 | if (instr[start] == FASTTRAP_2_BYTE_OP) { | |
378 | switch (instr[start + 1]) { | |
379 | case FASTTRAP_0F_JO: | |
380 | case FASTTRAP_0F_JNO: | |
381 | case FASTTRAP_0F_JB: | |
382 | case FASTTRAP_0F_JAE: | |
383 | case FASTTRAP_0F_JE: | |
384 | case FASTTRAP_0F_JNE: | |
385 | case FASTTRAP_0F_JBE: | |
386 | case FASTTRAP_0F_JA: | |
387 | case FASTTRAP_0F_JS: | |
388 | case FASTTRAP_0F_JNS: | |
389 | case FASTTRAP_0F_JP: | |
390 | case FASTTRAP_0F_JNP: | |
391 | case FASTTRAP_0F_JL: | |
392 | case FASTTRAP_0F_JGE: | |
393 | case FASTTRAP_0F_JLE: | |
394 | case FASTTRAP_0F_JG: | |
395 | tp->ftt_type = FASTTRAP_T_JCC; | |
396 | tp->ftt_code = (instr[start + 1] & 0x0f) | FASTTRAP_JO; | |
397 | tp->ftt_dest = pc + tp->ftt_size + | |
b0d623f7 | 398 | /* LINTED - alignment */ |
2d21ac55 A |
399 | *(int32_t *)&instr[start + 2]; |
400 | break; | |
401 | } | |
402 | } else if (instr[start] == FASTTRAP_GROUP5_OP) { | |
403 | uint_t mod = FASTTRAP_MODRM_MOD(instr[start + 1]); | |
404 | uint_t reg = FASTTRAP_MODRM_REG(instr[start + 1]); | |
405 | uint_t rm = FASTTRAP_MODRM_RM(instr[start + 1]); | |
406 | ||
407 | if (reg == 2 || reg == 4) { | |
408 | uint_t i, sz; | |
409 | ||
410 | if (reg == 2) | |
411 | tp->ftt_type = FASTTRAP_T_CALL; | |
412 | else | |
413 | tp->ftt_type = FASTTRAP_T_JMP; | |
414 | ||
415 | if (mod == 3) | |
416 | tp->ftt_code = 2; | |
417 | else | |
418 | tp->ftt_code = 1; | |
419 | ||
420 | ASSERT(p_model == DATAMODEL_LP64 || rex == 0); | |
421 | ||
422 | /* | |
423 | * See AMD x86-64 Architecture Programmer's Manual | |
424 | * Volume 3, Section 1.2.7, Table 1-12, and | |
425 | * Appendix A.3.1, Table A-15. | |
426 | */ | |
427 | if (mod != 3 && rm == 4) { | |
428 | uint8_t sib = instr[start + 2]; | |
429 | uint_t index = FASTTRAP_SIB_INDEX(sib); | |
430 | uint_t base = FASTTRAP_SIB_BASE(sib); | |
431 | ||
432 | tp->ftt_scale = FASTTRAP_SIB_SCALE(sib); | |
433 | ||
434 | tp->ftt_index = (index == 4) ? | |
435 | FASTTRAP_NOREG : | |
436 | regmap[index | (FASTTRAP_REX_X(rex) << 3)]; | |
437 | tp->ftt_base = (mod == 0 && base == 5) ? | |
438 | FASTTRAP_NOREG : | |
439 | regmap[base | (FASTTRAP_REX_B(rex) << 3)]; | |
440 | ||
441 | i = 3; | |
442 | sz = mod == 1 ? 1 : 4; | |
443 | } else { | |
444 | /* | |
445 | * In 64-bit mode, mod == 0 and r/m == 5 | |
446 | * denotes %rip-relative addressing; in 32-bit | |
447 | * mode, the base register isn't used. In both | |
448 | * modes, there is a 32-bit operand. | |
449 | */ | |
450 | if (mod == 0 && rm == 5) { | |
2d21ac55 A |
451 | if (p_model == DATAMODEL_LP64) |
452 | tp->ftt_base = REG_RIP; | |
453 | else | |
2d21ac55 A |
454 | tp->ftt_base = FASTTRAP_NOREG; |
455 | sz = 4; | |
456 | } else { | |
457 | uint8_t base = rm | | |
458 | (FASTTRAP_REX_B(rex) << 3); | |
459 | ||
460 | tp->ftt_base = regmap[base]; | |
461 | sz = mod == 1 ? 1 : mod == 2 ? 4 : 0; | |
462 | } | |
463 | tp->ftt_index = FASTTRAP_NOREG; | |
464 | i = 2; | |
465 | } | |
466 | ||
b0d623f7 | 467 | if (sz == 1) { |
2d21ac55 | 468 | tp->ftt_dest = *(int8_t *)&instr[start + i]; |
b0d623f7 A |
469 | } else if (sz == 4) { |
470 | /* LINTED - alignment */ | |
2d21ac55 | 471 | tp->ftt_dest = *(int32_t *)&instr[start + i]; |
b0d623f7 | 472 | } else { |
2d21ac55 | 473 | tp->ftt_dest = 0; |
b0d623f7 | 474 | } |
2d21ac55 A |
475 | } |
476 | } else { | |
477 | switch (instr[start]) { | |
478 | case FASTTRAP_RET: | |
479 | tp->ftt_type = FASTTRAP_T_RET; | |
480 | break; | |
481 | ||
482 | case FASTTRAP_RET16: | |
483 | tp->ftt_type = FASTTRAP_T_RET16; | |
b0d623f7 | 484 | /* LINTED - alignment */ |
2d21ac55 A |
485 | tp->ftt_dest = *(uint16_t *)&instr[start + 1]; |
486 | break; | |
487 | ||
488 | case FASTTRAP_JO: | |
489 | case FASTTRAP_JNO: | |
490 | case FASTTRAP_JB: | |
491 | case FASTTRAP_JAE: | |
492 | case FASTTRAP_JE: | |
493 | case FASTTRAP_JNE: | |
494 | case FASTTRAP_JBE: | |
495 | case FASTTRAP_JA: | |
496 | case FASTTRAP_JS: | |
497 | case FASTTRAP_JNS: | |
498 | case FASTTRAP_JP: | |
499 | case FASTTRAP_JNP: | |
500 | case FASTTRAP_JL: | |
501 | case FASTTRAP_JGE: | |
502 | case FASTTRAP_JLE: | |
503 | case FASTTRAP_JG: | |
504 | tp->ftt_type = FASTTRAP_T_JCC; | |
505 | tp->ftt_code = instr[start]; | |
506 | tp->ftt_dest = pc + tp->ftt_size + | |
507 | (int8_t)instr[start + 1]; | |
508 | break; | |
509 | ||
510 | case FASTTRAP_LOOPNZ: | |
511 | case FASTTRAP_LOOPZ: | |
512 | case FASTTRAP_LOOP: | |
513 | tp->ftt_type = FASTTRAP_T_LOOP; | |
514 | tp->ftt_code = instr[start]; | |
515 | tp->ftt_dest = pc + tp->ftt_size + | |
516 | (int8_t)instr[start + 1]; | |
517 | break; | |
518 | ||
519 | case FASTTRAP_JCXZ: | |
520 | tp->ftt_type = FASTTRAP_T_JCXZ; | |
521 | tp->ftt_dest = pc + tp->ftt_size + | |
522 | (int8_t)instr[start + 1]; | |
523 | break; | |
524 | ||
525 | case FASTTRAP_CALL: | |
526 | tp->ftt_type = FASTTRAP_T_CALL; | |
527 | tp->ftt_dest = pc + tp->ftt_size + | |
b0d623f7 | 528 | /* LINTED - alignment */ |
2d21ac55 A |
529 | *(int32_t *)&instr[start + 1]; |
530 | tp->ftt_code = 0; | |
531 | break; | |
532 | ||
533 | case FASTTRAP_JMP32: | |
534 | tp->ftt_type = FASTTRAP_T_JMP; | |
535 | tp->ftt_dest = pc + tp->ftt_size + | |
b0d623f7 | 536 | /* LINTED - alignment */ |
2d21ac55 A |
537 | *(int32_t *)&instr[start + 1]; |
538 | break; | |
539 | case FASTTRAP_JMP8: | |
540 | tp->ftt_type = FASTTRAP_T_JMP; | |
541 | tp->ftt_dest = pc + tp->ftt_size + | |
542 | (int8_t)instr[start + 1]; | |
543 | break; | |
544 | ||
545 | case FASTTRAP_PUSHL_EBP: | |
546 | if (start == 0) | |
547 | tp->ftt_type = FASTTRAP_T_PUSHL_EBP; | |
548 | break; | |
549 | ||
550 | case FASTTRAP_NOP: | |
2d21ac55 A |
551 | ASSERT(p_model == DATAMODEL_LP64 || rex == 0); |
552 | ||
553 | /* | |
554 | * On sol64 we have to be careful not to confuse a nop | |
555 | * (actually xchgl %eax, %eax) with an instruction using | |
556 | * the same opcode, but that does something different | |
557 | * (e.g. xchgl %r8d, %eax or xcghq %r8, %rax). | |
558 | */ | |
559 | if (FASTTRAP_REX_B(rex) == 0) | |
2d21ac55 A |
560 | tp->ftt_type = FASTTRAP_T_NOP; |
561 | break; | |
562 | ||
563 | case FASTTRAP_INT3: | |
564 | /* | |
565 | * The pid provider shares the int3 trap with debugger | |
566 | * breakpoints so we can't instrument them. | |
567 | */ | |
568 | ASSERT(instr[start] == FASTTRAP_INSTR); | |
569 | return (-1); | |
570 | ||
571 | case FASTTRAP_INT: | |
572 | /* | |
573 | * Interrupts seem like they could be traced with | |
574 | * no negative implications, but it's possible that | |
575 | * a thread could be redirected by the trap handling | |
576 | * code which would eventually return to the | |
577 | * instruction after the interrupt. If the interrupt | |
578 | * were in our scratch space, the subsequent | |
579 | * instruction might be overwritten before we return. | |
580 | * Accordingly we refuse to instrument any interrupt. | |
581 | */ | |
582 | return (-1); | |
583 | } | |
584 | } | |
585 | ||
2d21ac55 A |
586 | if (p_model == DATAMODEL_LP64 && tp->ftt_type == FASTTRAP_T_COMMON) { |
587 | /* | |
588 | * If the process is 64-bit and the instruction type is still | |
589 | * FASTTRAP_T_COMMON -- meaning we're going to copy it out an | |
590 | * execute it -- we need to watch for %rip-relative | |
591 | * addressing mode. See the portion of fasttrap_pid_probe() | |
592 | * below where we handle tracepoints with type | |
593 | * FASTTRAP_T_COMMON for how we emulate instructions that | |
594 | * employ %rip-relative addressing. | |
595 | */ | |
596 | if (rmindex != -1) { | |
597 | uint_t mod = FASTTRAP_MODRM_MOD(instr[rmindex]); | |
598 | uint_t reg = FASTTRAP_MODRM_REG(instr[rmindex]); | |
599 | uint_t rm = FASTTRAP_MODRM_RM(instr[rmindex]); | |
600 | ||
601 | ASSERT(rmindex > (int)start); | |
602 | ||
603 | if (mod == 0 && rm == 5) { | |
604 | /* | |
605 | * We need to be sure to avoid other | |
606 | * registers used by this instruction. While | |
607 | * the reg field may determine the op code | |
608 | * rather than denoting a register, assuming | |
609 | * that it denotes a register is always safe. | |
610 | * We leave the REX field intact and use | |
611 | * whatever value's there for simplicity. | |
612 | */ | |
613 | if (reg != 0) { | |
614 | tp->ftt_ripmode = FASTTRAP_RIP_1 | | |
615 | (FASTTRAP_RIP_X * | |
616 | FASTTRAP_REX_B(rex)); | |
617 | rm = 0; | |
618 | } else { | |
619 | tp->ftt_ripmode = FASTTRAP_RIP_2 | | |
620 | (FASTTRAP_RIP_X * | |
621 | FASTTRAP_REX_B(rex)); | |
622 | rm = 1; | |
623 | } | |
624 | ||
625 | tp->ftt_modrm = tp->ftt_instr[rmindex]; | |
626 | tp->ftt_instr[rmindex] = | |
627 | FASTTRAP_MODRM(2, reg, rm); | |
628 | } | |
629 | } | |
630 | } | |
2d21ac55 A |
631 | |
632 | return (0); | |
633 | } | |
634 | ||
635 | int | |
636 | fasttrap_tracepoint_install(proc_t *p, fasttrap_tracepoint_t *tp) | |
637 | { | |
638 | fasttrap_instr_t instr = FASTTRAP_INSTR; | |
639 | ||
640 | if (uwrite(p, &instr, 1, tp->ftt_pc) != 0) | |
641 | return (-1); | |
642 | ||
643 | return (0); | |
644 | } | |
645 | ||
646 | int | |
647 | fasttrap_tracepoint_remove(proc_t *p, fasttrap_tracepoint_t *tp) | |
648 | { | |
649 | uint8_t instr; | |
650 | ||
651 | /* | |
652 | * Distinguish between read or write failures and a changed | |
653 | * instruction. | |
654 | */ | |
655 | if (uread(p, &instr, 1, tp->ftt_pc) != 0) | |
656 | return (0); | |
657 | if (instr != FASTTRAP_INSTR) | |
658 | return (0); | |
659 | if (uwrite(p, &tp->ftt_instr[0], 1, tp->ftt_pc) != 0) | |
660 | return (-1); | |
661 | ||
662 | return (0); | |
663 | } | |
664 | ||
665 | static void | |
666 | fasttrap_return_common(x86_saved_state_t *regs, user_addr_t pc, pid_t pid, | |
667 | user_addr_t new_pc) | |
668 | { | |
669 | x86_saved_state64_t *regs64; | |
670 | x86_saved_state32_t *regs32; | |
671 | unsigned int p_model; | |
672 | ||
b0d623f7 A |
673 | dtrace_icookie_t cookie; |
674 | ||
2d21ac55 A |
675 | if (is_saved_state64(regs)) { |
676 | regs64 = saved_state64(regs); | |
677 | regs32 = NULL; | |
678 | p_model = DATAMODEL_LP64; | |
679 | } else { | |
680 | regs64 = NULL; | |
681 | regs32 = saved_state32(regs); | |
682 | p_model = DATAMODEL_ILP32; | |
683 | } | |
684 | ||
685 | fasttrap_tracepoint_t *tp; | |
686 | fasttrap_bucket_t *bucket; | |
687 | fasttrap_id_t *id; | |
688 | lck_mtx_t *pid_mtx; | |
689 | ||
690 | pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock; | |
691 | lck_mtx_lock(pid_mtx); | |
692 | bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)]; | |
693 | ||
694 | for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) { | |
695 | if (pid == tp->ftt_pid && pc == tp->ftt_pc && | |
b0d623f7 | 696 | tp->ftt_proc->ftpc_acount != 0) |
2d21ac55 A |
697 | break; |
698 | } | |
699 | ||
700 | /* | |
701 | * Don't sweat it if we can't find the tracepoint again; unlike | |
702 | * when we're in fasttrap_pid_probe(), finding the tracepoint here | |
703 | * is not essential to the correct execution of the process. | |
704 | */ | |
705 | if (tp == NULL) { | |
706 | lck_mtx_unlock(pid_mtx); | |
707 | return; | |
708 | } | |
709 | ||
710 | for (id = tp->ftt_retids; id != NULL; id = id->fti_next) { | |
711 | /* | |
712 | * If there's a branch that could act as a return site, we | |
713 | * need to trace it, and check here if the program counter is | |
714 | * external to the function. | |
715 | */ | |
716 | if (tp->ftt_type != FASTTRAP_T_RET && | |
717 | tp->ftt_type != FASTTRAP_T_RET16 && | |
718 | new_pc - id->fti_probe->ftp_faddr < | |
719 | id->fti_probe->ftp_fsize) | |
720 | continue; | |
721 | ||
b0d623f7 A |
722 | /* |
723 | * Provide a hint to the stack trace functions to add the | |
724 | * following pc to the top of the stack since it's missing | |
725 | * on a return probe yet highly desirable for consistency. | |
726 | */ | |
727 | cookie = dtrace_interrupt_disable(); | |
728 | cpu_core[CPU->cpu_id].cpuc_missing_tos = pc; | |
cf7d32b8 A |
729 | if (ISSET(current_proc()->p_lflag, P_LNOATTACH)) { |
730 | dtrace_probe(dtrace_probeid_error, 0 /* state */, id->fti_probe->ftp_id, | |
731 | 1 /* ndx */, -1 /* offset */, DTRACEFLT_UPRIV); | |
732 | } else if (p_model == DATAMODEL_LP64) { | |
2d21ac55 A |
733 | dtrace_probe(id->fti_probe->ftp_id, |
734 | pc - id->fti_probe->ftp_faddr, | |
735 | regs64->rax, regs64->rdx, 0, 0); | |
736 | } else { | |
737 | dtrace_probe(id->fti_probe->ftp_id, | |
738 | pc - id->fti_probe->ftp_faddr, | |
739 | regs32->eax, regs32->edx, 0, 0); | |
740 | } | |
b0d623f7 A |
741 | /* remove the hint */ |
742 | cpu_core[CPU->cpu_id].cpuc_missing_tos = 0; | |
743 | dtrace_interrupt_enable(cookie); | |
2d21ac55 A |
744 | } |
745 | ||
746 | lck_mtx_unlock(pid_mtx); | |
747 | } | |
748 | ||
749 | static void | |
750 | fasttrap_sigsegv(proc_t *p, uthread_t t, user_addr_t addr) | |
751 | { | |
752 | proc_lock(p); | |
753 | ||
754 | /* Set fault address and mark signal */ | |
755 | t->uu_code = addr; | |
756 | t->uu_siglist |= sigmask(SIGSEGV); | |
757 | ||
758 | /* | |
759 | * XXX These two line may be redundant; if not, then we need | |
760 | * XXX to potentially set the data address in the machine | |
761 | * XXX specific thread state structure to indicate the address. | |
762 | */ | |
763 | t->uu_exception = KERN_INVALID_ADDRESS; /* SIGSEGV */ | |
764 | t->uu_subcode = 0; /* XXX pad */ | |
765 | ||
766 | proc_unlock(p); | |
767 | ||
768 | /* raise signal */ | |
769 | signal_setast(t->uu_context.vc_thread); | |
770 | } | |
771 | ||
772 | static void | |
773 | fasttrap_usdt_args64(fasttrap_probe_t *probe, x86_saved_state64_t *regs64, int argc, | |
774 | uint64_t *argv) | |
775 | { | |
776 | int i, x, cap = MIN(argc, probe->ftp_nargs); | |
777 | user_addr_t stack = (user_addr_t)regs64->isf.rsp; | |
778 | ||
779 | for (i = 0; i < cap; i++) { | |
780 | x = probe->ftp_argmap[i]; | |
781 | ||
782 | if (x < 6) { | |
783 | /* FIXME! This may be broken, needs testing */ | |
784 | argv[i] = (®s64->rdi)[x]; | |
785 | } else { | |
786 | fasttrap_fuword64_noerr(stack + (x * sizeof(uint64_t)), &argv[i]); | |
787 | } | |
788 | } | |
789 | ||
790 | for (; i < argc; i++) { | |
791 | argv[i] = 0; | |
792 | } | |
793 | } | |
794 | ||
795 | static void | |
796 | fasttrap_usdt_args32(fasttrap_probe_t *probe, x86_saved_state32_t *regs32, int argc, | |
797 | uint32_t *argv) | |
798 | { | |
799 | int i, x, cap = MIN(argc, probe->ftp_nargs); | |
b0d623f7 | 800 | uint32_t *stack = (uint32_t *)(uintptr_t)(regs32->uesp); |
2d21ac55 A |
801 | |
802 | for (i = 0; i < cap; i++) { | |
803 | x = probe->ftp_argmap[i]; | |
804 | ||
805 | fasttrap_fuword32_noerr((user_addr_t)(unsigned long)&stack[x], &argv[i]); | |
806 | } | |
807 | ||
808 | for (; i < argc; i++) { | |
809 | argv[i] = 0; | |
810 | } | |
811 | } | |
812 | ||
813 | /* | |
814 | * FIXME! | |
815 | */ | |
816 | static int | |
817 | fasttrap_do_seg(fasttrap_tracepoint_t *tp, x86_saved_state_t *rp, user_addr_t *addr) // 64 bit | |
818 | { | |
819 | #pragma unused(tp, rp, addr) | |
820 | printf("fasttrap_do_seg() called while unimplemented.\n"); | |
821 | #if 0 | |
822 | proc_t *p = curproc; | |
823 | user_desc_t *desc; | |
824 | uint16_t sel, ndx, type; | |
825 | uintptr_t limit; | |
826 | ||
827 | switch (tp->ftt_segment) { | |
828 | case FASTTRAP_SEG_CS: | |
829 | sel = rp->r_cs; | |
830 | break; | |
831 | case FASTTRAP_SEG_DS: | |
832 | sel = rp->r_ds; | |
833 | break; | |
834 | case FASTTRAP_SEG_ES: | |
835 | sel = rp->r_es; | |
836 | break; | |
837 | case FASTTRAP_SEG_FS: | |
838 | sel = rp->r_fs; | |
839 | break; | |
840 | case FASTTRAP_SEG_GS: | |
841 | sel = rp->r_gs; | |
842 | break; | |
843 | case FASTTRAP_SEG_SS: | |
844 | sel = rp->r_ss; | |
845 | break; | |
846 | } | |
847 | ||
848 | /* | |
849 | * Make sure the given segment register specifies a user priority | |
850 | * selector rather than a kernel selector. | |
851 | */ | |
852 | if (!SELISUPL(sel)) | |
853 | return (-1); | |
854 | ||
855 | ndx = SELTOIDX(sel); | |
856 | ||
857 | /* | |
858 | * Check the bounds and grab the descriptor out of the specified | |
859 | * descriptor table. | |
860 | */ | |
861 | if (SELISLDT(sel)) { | |
862 | if (ndx > p->p_ldtlimit) | |
863 | return (-1); | |
864 | ||
865 | desc = p->p_ldt + ndx; | |
866 | ||
867 | } else { | |
868 | if (ndx >= NGDT) | |
869 | return (-1); | |
870 | ||
871 | desc = cpu_get_gdt() + ndx; | |
872 | } | |
873 | ||
874 | /* | |
875 | * The descriptor must have user privilege level and it must be | |
876 | * present in memory. | |
877 | */ | |
878 | if (desc->usd_dpl != SEL_UPL || desc->usd_p != 1) | |
879 | return (-1); | |
880 | ||
881 | type = desc->usd_type; | |
882 | ||
883 | /* | |
884 | * If the S bit in the type field is not set, this descriptor can | |
885 | * only be used in system context. | |
886 | */ | |
887 | if ((type & 0x10) != 0x10) | |
888 | return (-1); | |
889 | ||
890 | limit = USEGD_GETLIMIT(desc) * (desc->usd_gran ? PAGESIZE : 1); | |
891 | ||
892 | if (tp->ftt_segment == FASTTRAP_SEG_CS) { | |
893 | /* | |
894 | * The code/data bit and readable bit must both be set. | |
895 | */ | |
896 | if ((type & 0xa) != 0xa) | |
897 | return (-1); | |
898 | ||
899 | if (*addr > limit) | |
900 | return (-1); | |
901 | } else { | |
902 | /* | |
903 | * The code/data bit must be clear. | |
904 | */ | |
905 | if ((type & 0x8) != 0) | |
906 | return (-1); | |
907 | ||
908 | /* | |
909 | * If the expand-down bit is clear, we just check the limit as | |
910 | * it would naturally be applied. Otherwise, we need to check | |
911 | * that the address is the range [limit + 1 .. 0xffff] or | |
912 | * [limit + 1 ... 0xffffffff] depending on if the default | |
913 | * operand size bit is set. | |
914 | */ | |
915 | if ((type & 0x4) == 0) { | |
916 | if (*addr > limit) | |
917 | return (-1); | |
918 | } else if (desc->usd_def32) { | |
919 | if (*addr < limit + 1 || 0xffff < *addr) | |
920 | return (-1); | |
921 | } else { | |
922 | if (*addr < limit + 1 || 0xffffffff < *addr) | |
923 | return (-1); | |
924 | } | |
925 | } | |
926 | ||
927 | *addr += USEGD_GETBASE(desc); | |
928 | #endif /* 0 */ | |
929 | return (0); | |
930 | } | |
931 | ||
932 | /* | |
933 | * Due to variances between Solaris and xnu, I have split this into a 32 bit and 64 bit | |
934 | * code path. It still takes an x86_saved_state_t* argument, because it must sometimes | |
935 | * call other methods that require a x86_saved_state_t. | |
936 | * | |
937 | * NOTE!!!! | |
938 | * | |
939 | * Any changes made to this method must be echo'd in fasttrap_pid_probe64! | |
940 | * | |
941 | */ | |
942 | static int | |
943 | fasttrap_pid_probe32(x86_saved_state_t *regs) | |
944 | { | |
945 | ASSERT(is_saved_state32(regs)); | |
946 | ||
947 | x86_saved_state32_t *regs32 = saved_state32(regs); | |
948 | user_addr_t pc = regs32->eip - 1; | |
949 | proc_t *p = current_proc(); | |
950 | user_addr_t new_pc = 0; | |
951 | fasttrap_bucket_t *bucket; | |
952 | lck_mtx_t *pid_mtx; | |
953 | fasttrap_tracepoint_t *tp, tp_local; | |
954 | pid_t pid; | |
955 | dtrace_icookie_t cookie; | |
956 | uint_t is_enabled = 0; | |
957 | ||
958 | uthread_t uthread = (uthread_t)get_bsdthread_info(current_thread()); | |
959 | ||
960 | /* | |
961 | * It's possible that a user (in a veritable orgy of bad planning) | |
962 | * could redirect this thread's flow of control before it reached the | |
963 | * return probe fasttrap. In this case we need to kill the process | |
964 | * since it's in a unrecoverable state. | |
965 | */ | |
966 | if (uthread->t_dtrace_step) { | |
967 | ASSERT(uthread->t_dtrace_on); | |
968 | fasttrap_sigtrap(p, uthread, pc); | |
969 | return (0); | |
970 | } | |
971 | ||
972 | /* | |
973 | * Clear all user tracing flags. | |
974 | */ | |
975 | uthread->t_dtrace_ft = 0; | |
976 | uthread->t_dtrace_pc = 0; | |
977 | uthread->t_dtrace_npc = 0; | |
978 | uthread->t_dtrace_scrpc = 0; | |
979 | uthread->t_dtrace_astpc = 0; | |
980 | ||
981 | /* | |
982 | * Treat a child created by a call to vfork(2) as if it were its | |
983 | * parent. We know that there's only one thread of control in such a | |
984 | * process: this one. | |
985 | */ | |
fe8ab488 A |
986 | if (p->p_lflag & P_LINVFORK) { |
987 | proc_list_lock(); | |
988 | while (p->p_lflag & P_LINVFORK) | |
989 | p = p->p_pptr; | |
990 | proc_list_unlock(); | |
991 | } | |
2d21ac55 A |
992 | |
993 | pid = p->p_pid; | |
994 | pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock; | |
995 | lck_mtx_lock(pid_mtx); | |
996 | bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)]; | |
997 | ||
998 | /* | |
999 | * Lookup the tracepoint that the process just hit. | |
1000 | */ | |
1001 | for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) { | |
1002 | if (pid == tp->ftt_pid && pc == tp->ftt_pc && | |
b0d623f7 | 1003 | tp->ftt_proc->ftpc_acount != 0) |
2d21ac55 A |
1004 | break; |
1005 | } | |
1006 | ||
1007 | /* | |
1008 | * If we couldn't find a matching tracepoint, either a tracepoint has | |
1009 | * been inserted without using the pid<pid> ioctl interface (see | |
1010 | * fasttrap_ioctl), or somehow we have mislaid this tracepoint. | |
1011 | */ | |
1012 | if (tp == NULL) { | |
1013 | lck_mtx_unlock(pid_mtx); | |
1014 | return (-1); | |
1015 | } | |
1016 | ||
1017 | /* | |
1018 | * Set the program counter to the address of the traced instruction | |
1019 | * so that it looks right in ustack() output. | |
1020 | */ | |
1021 | regs32->eip = pc; | |
1022 | ||
1023 | if (tp->ftt_ids != NULL) { | |
1024 | fasttrap_id_t *id; | |
1025 | ||
1026 | uint32_t s0, s1, s2, s3, s4, s5; | |
b0d623f7 | 1027 | uint32_t *stack = (uint32_t *)(uintptr_t)(regs32->uesp); |
2d21ac55 A |
1028 | |
1029 | /* | |
1030 | * In 32-bit mode, all arguments are passed on the | |
1031 | * stack. If this is a function entry probe, we need | |
1032 | * to skip the first entry on the stack as it | |
1033 | * represents the return address rather than a | |
1034 | * parameter to the function. | |
1035 | */ | |
1036 | fasttrap_fuword32_noerr((user_addr_t)(unsigned long)&stack[0], &s0); | |
1037 | fasttrap_fuword32_noerr((user_addr_t)(unsigned long)&stack[1], &s1); | |
1038 | fasttrap_fuword32_noerr((user_addr_t)(unsigned long)&stack[2], &s2); | |
1039 | fasttrap_fuword32_noerr((user_addr_t)(unsigned long)&stack[3], &s3); | |
1040 | fasttrap_fuword32_noerr((user_addr_t)(unsigned long)&stack[4], &s4); | |
1041 | fasttrap_fuword32_noerr((user_addr_t)(unsigned long)&stack[5], &s5); | |
1042 | ||
1043 | for (id = tp->ftt_ids; id != NULL; id = id->fti_next) { | |
1044 | fasttrap_probe_t *probe = id->fti_probe; | |
1045 | ||
cf7d32b8 A |
1046 | if (ISSET(current_proc()->p_lflag, P_LNOATTACH)) { |
1047 | dtrace_probe(dtrace_probeid_error, 0 /* state */, probe->ftp_id, | |
1048 | 1 /* ndx */, -1 /* offset */, DTRACEFLT_UPRIV); | |
1049 | } else if (id->fti_ptype == DTFTP_ENTRY) { | |
2d21ac55 A |
1050 | /* |
1051 | * We note that this was an entry | |
1052 | * probe to help ustack() find the | |
1053 | * first caller. | |
1054 | */ | |
1055 | cookie = dtrace_interrupt_disable(); | |
1056 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY); | |
1057 | dtrace_probe(probe->ftp_id, s1, s2, | |
1058 | s3, s4, s5); | |
1059 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY); | |
1060 | dtrace_interrupt_enable(cookie); | |
1061 | } else if (id->fti_ptype == DTFTP_IS_ENABLED) { | |
1062 | /* | |
1063 | * Note that in this case, we don't | |
1064 | * call dtrace_probe() since it's only | |
1065 | * an artificial probe meant to change | |
1066 | * the flow of control so that it | |
1067 | * encounters the true probe. | |
1068 | */ | |
1069 | is_enabled = 1; | |
1070 | } else if (probe->ftp_argmap == NULL) { | |
1071 | dtrace_probe(probe->ftp_id, s0, s1, | |
1072 | s2, s3, s4); | |
1073 | } else { | |
1074 | uint32_t t[5]; | |
1075 | ||
1076 | fasttrap_usdt_args32(probe, regs32, | |
1077 | sizeof (t) / sizeof (t[0]), t); | |
1078 | ||
1079 | dtrace_probe(probe->ftp_id, t[0], t[1], | |
1080 | t[2], t[3], t[4]); | |
1081 | } | |
1082 | ||
1083 | /* APPLE NOTE: Oneshot probes get one and only one chance... */ | |
1084 | if (probe->ftp_prov->ftp_provider_type == DTFTP_PROVIDER_ONESHOT) { | |
1085 | fasttrap_tracepoint_remove(p, tp); | |
1086 | } | |
1087 | } | |
1088 | } | |
1089 | ||
1090 | /* | |
1091 | * We're about to do a bunch of work so we cache a local copy of | |
1092 | * the tracepoint to emulate the instruction, and then find the | |
1093 | * tracepoint again later if we need to light up any return probes. | |
1094 | */ | |
1095 | tp_local = *tp; | |
1096 | lck_mtx_unlock(pid_mtx); | |
1097 | tp = &tp_local; | |
1098 | ||
1099 | /* | |
1100 | * Set the program counter to appear as though the traced instruction | |
1101 | * had completely executed. This ensures that fasttrap_getreg() will | |
1102 | * report the expected value for REG_RIP. | |
1103 | */ | |
1104 | regs32->eip = pc + tp->ftt_size; | |
1105 | ||
1106 | /* | |
1107 | * If there's an is-enabled probe connected to this tracepoint it | |
1108 | * means that there was a 'xorl %eax, %eax' or 'xorq %rax, %rax' | |
1109 | * instruction that was placed there by DTrace when the binary was | |
1110 | * linked. As this probe is, in fact, enabled, we need to stuff 1 | |
1111 | * into %eax or %rax. Accordingly, we can bypass all the instruction | |
1112 | * emulation logic since we know the inevitable result. It's possible | |
1113 | * that a user could construct a scenario where the 'is-enabled' | |
1114 | * probe was on some other instruction, but that would be a rather | |
1115 | * exotic way to shoot oneself in the foot. | |
1116 | */ | |
1117 | if (is_enabled) { | |
1118 | regs32->eax = 1; | |
1119 | new_pc = regs32->eip; | |
1120 | goto done; | |
1121 | } | |
1122 | ||
1123 | /* | |
1124 | * We emulate certain types of instructions to ensure correctness | |
1125 | * (in the case of position dependent instructions) or optimize | |
1126 | * common cases. The rest we have the thread execute back in user- | |
1127 | * land. | |
1128 | */ | |
1129 | switch (tp->ftt_type) { | |
1130 | case FASTTRAP_T_RET: | |
1131 | case FASTTRAP_T_RET16: | |
1132 | { | |
1133 | user_addr_t dst; | |
1134 | user_addr_t addr; | |
1135 | int ret; | |
1136 | ||
1137 | /* | |
1138 | * We have to emulate _every_ facet of the behavior of a ret | |
1139 | * instruction including what happens if the load from %esp | |
1140 | * fails; in that case, we send a SIGSEGV. | |
1141 | */ | |
1142 | uint32_t dst32; | |
1143 | ret = fasttrap_fuword32((user_addr_t)regs32->uesp, &dst32); | |
1144 | dst = dst32; | |
1145 | addr = regs32->uesp + sizeof (uint32_t); | |
1146 | ||
1147 | if (ret == -1) { | |
1148 | fasttrap_sigsegv(p, uthread, (user_addr_t)regs32->uesp); | |
1149 | new_pc = pc; | |
1150 | break; | |
1151 | } | |
1152 | ||
1153 | if (tp->ftt_type == FASTTRAP_T_RET16) | |
1154 | addr += tp->ftt_dest; | |
1155 | ||
1156 | regs32->uesp = addr; | |
1157 | new_pc = dst; | |
1158 | break; | |
1159 | } | |
1160 | ||
1161 | case FASTTRAP_T_JCC: | |
1162 | { | |
1163 | uint_t taken; | |
1164 | ||
1165 | switch (tp->ftt_code) { | |
1166 | case FASTTRAP_JO: | |
1167 | taken = (regs32->efl & FASTTRAP_EFLAGS_OF) != 0; | |
1168 | break; | |
1169 | case FASTTRAP_JNO: | |
1170 | taken = (regs32->efl & FASTTRAP_EFLAGS_OF) == 0; | |
1171 | break; | |
1172 | case FASTTRAP_JB: | |
1173 | taken = (regs32->efl & FASTTRAP_EFLAGS_CF) != 0; | |
1174 | break; | |
1175 | case FASTTRAP_JAE: | |
1176 | taken = (regs32->efl & FASTTRAP_EFLAGS_CF) == 0; | |
1177 | break; | |
1178 | case FASTTRAP_JE: | |
1179 | taken = (regs32->efl & FASTTRAP_EFLAGS_ZF) != 0; | |
1180 | break; | |
1181 | case FASTTRAP_JNE: | |
1182 | taken = (regs32->efl & FASTTRAP_EFLAGS_ZF) == 0; | |
1183 | break; | |
1184 | case FASTTRAP_JBE: | |
1185 | taken = (regs32->efl & FASTTRAP_EFLAGS_CF) != 0 || | |
1186 | (regs32->efl & FASTTRAP_EFLAGS_ZF) != 0; | |
1187 | break; | |
1188 | case FASTTRAP_JA: | |
1189 | taken = (regs32->efl & FASTTRAP_EFLAGS_CF) == 0 && | |
1190 | (regs32->efl & FASTTRAP_EFLAGS_ZF) == 0; | |
1191 | break; | |
1192 | case FASTTRAP_JS: | |
1193 | taken = (regs32->efl & FASTTRAP_EFLAGS_SF) != 0; | |
1194 | break; | |
1195 | case FASTTRAP_JNS: | |
1196 | taken = (regs32->efl & FASTTRAP_EFLAGS_SF) == 0; | |
1197 | break; | |
1198 | case FASTTRAP_JP: | |
1199 | taken = (regs32->efl & FASTTRAP_EFLAGS_PF) != 0; | |
1200 | break; | |
1201 | case FASTTRAP_JNP: | |
1202 | taken = (regs32->efl & FASTTRAP_EFLAGS_PF) == 0; | |
1203 | break; | |
1204 | case FASTTRAP_JL: | |
1205 | taken = ((regs32->efl & FASTTRAP_EFLAGS_SF) == 0) != | |
1206 | ((regs32->efl & FASTTRAP_EFLAGS_OF) == 0); | |
1207 | break; | |
1208 | case FASTTRAP_JGE: | |
1209 | taken = ((regs32->efl & FASTTRAP_EFLAGS_SF) == 0) == | |
1210 | ((regs32->efl & FASTTRAP_EFLAGS_OF) == 0); | |
1211 | break; | |
1212 | case FASTTRAP_JLE: | |
1213 | taken = (regs32->efl & FASTTRAP_EFLAGS_ZF) != 0 || | |
1214 | ((regs32->efl & FASTTRAP_EFLAGS_SF) == 0) != | |
1215 | ((regs32->efl & FASTTRAP_EFLAGS_OF) == 0); | |
1216 | break; | |
1217 | case FASTTRAP_JG: | |
1218 | taken = (regs32->efl & FASTTRAP_EFLAGS_ZF) == 0 && | |
1219 | ((regs32->efl & FASTTRAP_EFLAGS_SF) == 0) == | |
1220 | ((regs32->efl & FASTTRAP_EFLAGS_OF) == 0); | |
1221 | break; | |
1222 | default: | |
1223 | taken = FALSE; | |
1224 | } | |
1225 | ||
1226 | if (taken) | |
1227 | new_pc = tp->ftt_dest; | |
1228 | else | |
1229 | new_pc = pc + tp->ftt_size; | |
1230 | break; | |
1231 | } | |
1232 | ||
1233 | case FASTTRAP_T_LOOP: | |
1234 | { | |
1235 | uint_t taken; | |
1236 | greg_t cx = regs32->ecx--; | |
1237 | ||
1238 | switch (tp->ftt_code) { | |
1239 | case FASTTRAP_LOOPNZ: | |
1240 | taken = (regs32->efl & FASTTRAP_EFLAGS_ZF) == 0 && | |
1241 | cx != 0; | |
1242 | break; | |
1243 | case FASTTRAP_LOOPZ: | |
1244 | taken = (regs32->efl & FASTTRAP_EFLAGS_ZF) != 0 && | |
1245 | cx != 0; | |
1246 | break; | |
1247 | case FASTTRAP_LOOP: | |
1248 | taken = (cx != 0); | |
1249 | break; | |
1250 | default: | |
1251 | taken = FALSE; | |
1252 | } | |
1253 | ||
1254 | if (taken) | |
1255 | new_pc = tp->ftt_dest; | |
1256 | else | |
1257 | new_pc = pc + tp->ftt_size; | |
1258 | break; | |
1259 | } | |
1260 | ||
1261 | case FASTTRAP_T_JCXZ: | |
1262 | { | |
1263 | greg_t cx = regs32->ecx; | |
1264 | ||
1265 | if (cx == 0) | |
1266 | new_pc = tp->ftt_dest; | |
1267 | else | |
1268 | new_pc = pc + tp->ftt_size; | |
1269 | break; | |
1270 | } | |
1271 | ||
1272 | case FASTTRAP_T_PUSHL_EBP: | |
1273 | { | |
1274 | user_addr_t addr = regs32->uesp - sizeof (uint32_t); | |
1275 | int ret = fasttrap_suword32(addr, (uint32_t)regs32->ebp); | |
1276 | ||
1277 | if (ret == -1) { | |
1278 | fasttrap_sigsegv(p, uthread, addr); | |
1279 | new_pc = pc; | |
1280 | break; | |
1281 | } | |
1282 | ||
1283 | regs32->uesp = addr; | |
1284 | new_pc = pc + tp->ftt_size; | |
1285 | break; | |
1286 | } | |
1287 | ||
1288 | case FASTTRAP_T_NOP: | |
1289 | new_pc = pc + tp->ftt_size; | |
1290 | break; | |
1291 | ||
1292 | case FASTTRAP_T_JMP: | |
1293 | case FASTTRAP_T_CALL: | |
1294 | if (tp->ftt_code == 0) { | |
1295 | new_pc = tp->ftt_dest; | |
1296 | } else { | |
1297 | user_addr_t /* value ,*/ addr = tp->ftt_dest; | |
1298 | ||
1299 | if (tp->ftt_base != FASTTRAP_NOREG) | |
1300 | addr += fasttrap_getreg(regs, tp->ftt_base); | |
1301 | if (tp->ftt_index != FASTTRAP_NOREG) | |
1302 | addr += fasttrap_getreg(regs, tp->ftt_index) << | |
1303 | tp->ftt_scale; | |
1304 | ||
1305 | if (tp->ftt_code == 1) { | |
1306 | /* | |
1307 | * If there's a segment prefix for this | |
1308 | * instruction, we'll need to check permissions | |
1309 | * and bounds on the given selector, and adjust | |
1310 | * the address accordingly. | |
1311 | */ | |
1312 | if (tp->ftt_segment != FASTTRAP_SEG_NONE && | |
1313 | fasttrap_do_seg(tp, regs, &addr) != 0) { | |
1314 | fasttrap_sigsegv(p, uthread, addr); | |
1315 | new_pc = pc; | |
1316 | break; | |
1317 | } | |
1318 | ||
1319 | uint32_t value32; | |
1320 | addr = (user_addr_t)(uint32_t)addr; | |
1321 | if (fasttrap_fuword32(addr, &value32) == -1) { | |
1322 | fasttrap_sigsegv(p, uthread, addr); | |
1323 | new_pc = pc; | |
1324 | break; | |
1325 | } | |
1326 | new_pc = value32; | |
1327 | } else { | |
1328 | new_pc = addr; | |
1329 | } | |
1330 | } | |
1331 | ||
1332 | /* | |
1333 | * If this is a call instruction, we need to push the return | |
1334 | * address onto the stack. If this fails, we send the process | |
1335 | * a SIGSEGV and reset the pc to emulate what would happen if | |
1336 | * this instruction weren't traced. | |
1337 | */ | |
1338 | if (tp->ftt_type == FASTTRAP_T_CALL) { | |
1339 | user_addr_t addr = regs32->uesp - sizeof (uint32_t); | |
1340 | int ret = fasttrap_suword32(addr, (uint32_t)(pc + tp->ftt_size)); | |
1341 | ||
1342 | if (ret == -1) { | |
1343 | fasttrap_sigsegv(p, uthread, addr); | |
1344 | new_pc = pc; | |
1345 | break; | |
1346 | } | |
1347 | ||
1348 | regs32->uesp = addr; | |
1349 | } | |
1350 | break; | |
1351 | ||
1352 | case FASTTRAP_T_COMMON: | |
1353 | { | |
1354 | user_addr_t addr; | |
b0d623f7 | 1355 | uint8_t scratch[2 * FASTTRAP_MAX_INSTR_SIZE + 7]; |
2d21ac55 A |
1356 | uint_t i = 0; |
1357 | ||
1358 | /* | |
1359 | * Generic Instruction Tracing | |
1360 | * --------------------------- | |
1361 | * | |
1362 | * This is the layout of the scratch space in the user-land | |
1363 | * thread structure for our generated instructions. | |
1364 | * | |
1365 | * 32-bit mode bytes | |
1366 | * ------------------------ ----- | |
1367 | * a: <original instruction> <= 15 | |
1368 | * jmp <pc + tp->ftt_size> 5 | |
1369 | * b: <original instrction> <= 15 | |
1370 | * int T_DTRACE_RET 2 | |
1371 | * ----- | |
1372 | * <= 37 | |
1373 | * | |
1374 | * 64-bit mode bytes | |
1375 | * ------------------------ ----- | |
1376 | * a: <original instruction> <= 15 | |
1377 | * jmp 0(%rip) 6 | |
1378 | * <pc + tp->ftt_size> 8 | |
1379 | * b: <original instruction> <= 15 | |
1380 | * int T_DTRACE_RET 2 | |
1381 | * ----- | |
1382 | * <= 46 | |
1383 | * | |
1384 | * The %pc is set to a, and curthread->t_dtrace_astpc is set | |
1385 | * to b. If we encounter a signal on the way out of the | |
1386 | * kernel, trap() will set %pc to curthread->t_dtrace_astpc | |
1387 | * so that we execute the original instruction and re-enter | |
1388 | * the kernel rather than redirecting to the next instruction. | |
1389 | * | |
1390 | * If there are return probes (so we know that we're going to | |
1391 | * need to reenter the kernel after executing the original | |
1392 | * instruction), the scratch space will just contain the | |
1393 | * original instruction followed by an interrupt -- the same | |
1394 | * data as at b. | |
1395 | */ | |
1396 | ||
1397 | addr = uthread->t_dtrace_scratch->addr; | |
1398 | ||
1399 | if (addr == 0LL) { | |
1400 | fasttrap_sigtrap(p, uthread, pc); // Should be killing target proc | |
1401 | new_pc = pc; | |
1402 | break; | |
1403 | } | |
1404 | ||
1405 | ASSERT(tp->ftt_size < FASTTRAP_MAX_INSTR_SIZE); | |
1406 | ||
1407 | uthread->t_dtrace_scrpc = addr; | |
1408 | bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size); | |
1409 | i += tp->ftt_size; | |
1410 | ||
1411 | /* | |
1412 | * Set up the jmp to the next instruction; note that | |
1413 | * the size of the traced instruction cancels out. | |
1414 | */ | |
1415 | scratch[i++] = FASTTRAP_JMP32; | |
b0d623f7 | 1416 | /* LINTED - alignment */ |
2d21ac55 A |
1417 | *(uint32_t *)&scratch[i] = pc - addr - 5; |
1418 | i += sizeof (uint32_t); | |
1419 | ||
1420 | uthread->t_dtrace_astpc = addr + i; | |
1421 | bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size); | |
1422 | i += tp->ftt_size; | |
1423 | scratch[i++] = FASTTRAP_INT; | |
1424 | scratch[i++] = T_DTRACE_RET; | |
1425 | ||
b0d623f7 A |
1426 | ASSERT(i <= sizeof (scratch)); |
1427 | ||
2d21ac55 A |
1428 | if (fasttrap_copyout(scratch, addr, i)) { |
1429 | fasttrap_sigtrap(p, uthread, pc); | |
1430 | new_pc = pc; | |
1431 | break; | |
1432 | } | |
1433 | ||
1434 | if (tp->ftt_retids != NULL) { | |
1435 | uthread->t_dtrace_step = 1; | |
1436 | uthread->t_dtrace_ret = 1; | |
1437 | new_pc = uthread->t_dtrace_astpc; | |
1438 | } else { | |
1439 | new_pc = uthread->t_dtrace_scrpc; | |
1440 | } | |
1441 | ||
1442 | uthread->t_dtrace_pc = pc; | |
1443 | uthread->t_dtrace_npc = pc + tp->ftt_size; | |
1444 | uthread->t_dtrace_on = 1; | |
1445 | break; | |
1446 | } | |
1447 | ||
1448 | default: | |
1449 | panic("fasttrap: mishandled an instruction"); | |
1450 | } | |
1451 | ||
1452 | done: | |
1453 | /* | |
1454 | * APPLE NOTE: | |
1455 | * | |
1456 | * We're setting this earlier than Solaris does, to get a "correct" | |
1457 | * ustack() output. In the Sun code, a() -> b() -> c() -> d() is | |
1458 | * reported at: d, b, a. The new way gives c, b, a, which is closer | |
1459 | * to correct, as the return instruction has already exectued. | |
1460 | */ | |
1461 | regs32->eip = new_pc; | |
1462 | ||
1463 | /* | |
1464 | * If there were no return probes when we first found the tracepoint, | |
1465 | * we should feel no obligation to honor any return probes that were | |
1466 | * subsequently enabled -- they'll just have to wait until the next | |
1467 | * time around. | |
1468 | */ | |
1469 | if (tp->ftt_retids != NULL) { | |
1470 | /* | |
1471 | * We need to wait until the results of the instruction are | |
1472 | * apparent before invoking any return probes. If this | |
1473 | * instruction was emulated we can just call | |
1474 | * fasttrap_return_common(); if it needs to be executed, we | |
1475 | * need to wait until the user thread returns to the kernel. | |
1476 | */ | |
1477 | if (tp->ftt_type != FASTTRAP_T_COMMON) { | |
1478 | fasttrap_return_common(regs, pc, pid, new_pc); | |
1479 | } else { | |
1480 | ASSERT(uthread->t_dtrace_ret != 0); | |
1481 | ASSERT(uthread->t_dtrace_pc == pc); | |
1482 | ASSERT(uthread->t_dtrace_scrpc != 0); | |
1483 | ASSERT(new_pc == uthread->t_dtrace_astpc); | |
1484 | } | |
1485 | } | |
1486 | ||
1487 | return (0); | |
1488 | } | |
1489 | ||
1490 | /* | |
1491 | * Due to variances between Solaris and xnu, I have split this into a 32 bit and 64 bit | |
1492 | * code path. It still takes an x86_saved_state_t* argument, because it must sometimes | |
1493 | * call other methods that require a x86_saved_state_t. | |
1494 | * | |
1495 | * NOTE!!!! | |
1496 | * | |
1497 | * Any changes made to this method must be echo'd in fasttrap_pid_probe32! | |
1498 | * | |
1499 | */ | |
1500 | static int | |
1501 | fasttrap_pid_probe64(x86_saved_state_t *regs) | |
1502 | { | |
1503 | ASSERT(is_saved_state64(regs)); | |
1504 | ||
1505 | x86_saved_state64_t *regs64 = saved_state64(regs); | |
1506 | user_addr_t pc = regs64->isf.rip - 1; | |
1507 | proc_t *p = current_proc(); | |
1508 | user_addr_t new_pc = 0; | |
1509 | fasttrap_bucket_t *bucket; | |
1510 | lck_mtx_t *pid_mtx; | |
1511 | fasttrap_tracepoint_t *tp, tp_local; | |
1512 | pid_t pid; | |
1513 | dtrace_icookie_t cookie; | |
1514 | uint_t is_enabled = 0; | |
1515 | ||
1516 | uthread_t uthread = (uthread_t)get_bsdthread_info(current_thread()); | |
1517 | ||
1518 | /* | |
1519 | * It's possible that a user (in a veritable orgy of bad planning) | |
1520 | * could redirect this thread's flow of control before it reached the | |
1521 | * return probe fasttrap. In this case we need to kill the process | |
1522 | * since it's in a unrecoverable state. | |
1523 | */ | |
1524 | if (uthread->t_dtrace_step) { | |
1525 | ASSERT(uthread->t_dtrace_on); | |
1526 | fasttrap_sigtrap(p, uthread, pc); | |
1527 | return (0); | |
1528 | } | |
1529 | ||
1530 | /* | |
1531 | * Clear all user tracing flags. | |
1532 | */ | |
1533 | uthread->t_dtrace_ft = 0; | |
1534 | uthread->t_dtrace_pc = 0; | |
1535 | uthread->t_dtrace_npc = 0; | |
1536 | uthread->t_dtrace_scrpc = 0; | |
1537 | uthread->t_dtrace_astpc = 0; | |
1538 | uthread->t_dtrace_regv = 0; | |
1539 | ||
1540 | /* | |
1541 | * Treat a child created by a call to vfork(2) as if it were its | |
1542 | * parent. We know that there's only one thread of control in such a | |
1543 | * process: this one. | |
1544 | */ | |
fe8ab488 A |
1545 | if (p->p_lflag & P_LINVFORK) { |
1546 | proc_list_lock(); | |
1547 | while (p->p_lflag & P_LINVFORK) | |
1548 | p = p->p_pptr; | |
1549 | proc_list_unlock(); | |
1550 | } | |
2d21ac55 A |
1551 | |
1552 | pid = p->p_pid; | |
1553 | pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock; | |
1554 | lck_mtx_lock(pid_mtx); | |
1555 | bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)]; | |
1556 | ||
1557 | /* | |
1558 | * Lookup the tracepoint that the process just hit. | |
1559 | */ | |
1560 | for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) { | |
1561 | if (pid == tp->ftt_pid && pc == tp->ftt_pc && | |
b0d623f7 | 1562 | tp->ftt_proc->ftpc_acount != 0) |
2d21ac55 A |
1563 | break; |
1564 | } | |
1565 | ||
1566 | /* | |
1567 | * If we couldn't find a matching tracepoint, either a tracepoint has | |
1568 | * been inserted without using the pid<pid> ioctl interface (see | |
1569 | * fasttrap_ioctl), or somehow we have mislaid this tracepoint. | |
1570 | */ | |
1571 | if (tp == NULL) { | |
1572 | lck_mtx_unlock(pid_mtx); | |
1573 | return (-1); | |
1574 | } | |
1575 | ||
1576 | /* | |
1577 | * Set the program counter to the address of the traced instruction | |
1578 | * so that it looks right in ustack() output. | |
1579 | */ | |
1580 | regs64->isf.rip = pc; | |
1581 | ||
1582 | if (tp->ftt_ids != NULL) { | |
1583 | fasttrap_id_t *id; | |
1584 | ||
1585 | for (id = tp->ftt_ids; id != NULL; id = id->fti_next) { | |
1586 | fasttrap_probe_t *probe = id->fti_probe; | |
1587 | ||
cf7d32b8 A |
1588 | if (ISSET(current_proc()->p_lflag, P_LNOATTACH)) { |
1589 | dtrace_probe(dtrace_probeid_error, 0 /* state */, probe->ftp_id, | |
1590 | 1 /* ndx */, -1 /* offset */, DTRACEFLT_UPRIV); | |
1591 | } else if (id->fti_ptype == DTFTP_ENTRY) { | |
2d21ac55 A |
1592 | /* |
1593 | * We note that this was an entry | |
1594 | * probe to help ustack() find the | |
1595 | * first caller. | |
1596 | */ | |
1597 | cookie = dtrace_interrupt_disable(); | |
1598 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY); | |
1599 | dtrace_probe(probe->ftp_id, regs64->rdi, | |
1600 | regs64->rsi, regs64->rdx, regs64->rcx, | |
1601 | regs64->r8); | |
1602 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY); | |
1603 | dtrace_interrupt_enable(cookie); | |
1604 | } else if (id->fti_ptype == DTFTP_IS_ENABLED) { | |
1605 | /* | |
1606 | * Note that in this case, we don't | |
1607 | * call dtrace_probe() since it's only | |
1608 | * an artificial probe meant to change | |
1609 | * the flow of control so that it | |
1610 | * encounters the true probe. | |
1611 | */ | |
1612 | is_enabled = 1; | |
1613 | } else if (probe->ftp_argmap == NULL) { | |
1614 | dtrace_probe(probe->ftp_id, regs64->rdi, | |
1615 | regs64->rsi, regs64->rdx, regs64->rcx, | |
1616 | regs64->r8); | |
1617 | } else { | |
1618 | uint64_t t[5]; | |
1619 | ||
1620 | fasttrap_usdt_args64(probe, regs64, | |
1621 | sizeof (t) / sizeof (t[0]), t); | |
1622 | ||
1623 | dtrace_probe(probe->ftp_id, t[0], t[1], | |
1624 | t[2], t[3], t[4]); | |
1625 | } | |
1626 | ||
1627 | /* APPLE NOTE: Oneshot probes get one and only one chance... */ | |
1628 | if (probe->ftp_prov->ftp_provider_type == DTFTP_PROVIDER_ONESHOT) { | |
1629 | fasttrap_tracepoint_remove(p, tp); | |
1630 | } | |
1631 | } | |
1632 | } | |
1633 | ||
1634 | /* | |
1635 | * We're about to do a bunch of work so we cache a local copy of | |
1636 | * the tracepoint to emulate the instruction, and then find the | |
1637 | * tracepoint again later if we need to light up any return probes. | |
1638 | */ | |
1639 | tp_local = *tp; | |
1640 | lck_mtx_unlock(pid_mtx); | |
1641 | tp = &tp_local; | |
1642 | ||
1643 | /* | |
1644 | * Set the program counter to appear as though the traced instruction | |
1645 | * had completely executed. This ensures that fasttrap_getreg() will | |
1646 | * report the expected value for REG_RIP. | |
1647 | */ | |
1648 | regs64->isf.rip = pc + tp->ftt_size; | |
1649 | ||
1650 | /* | |
1651 | * If there's an is-enabled probe connected to this tracepoint it | |
1652 | * means that there was a 'xorl %eax, %eax' or 'xorq %rax, %rax' | |
1653 | * instruction that was placed there by DTrace when the binary was | |
1654 | * linked. As this probe is, in fact, enabled, we need to stuff 1 | |
1655 | * into %eax or %rax. Accordingly, we can bypass all the instruction | |
1656 | * emulation logic since we know the inevitable result. It's possible | |
1657 | * that a user could construct a scenario where the 'is-enabled' | |
1658 | * probe was on some other instruction, but that would be a rather | |
1659 | * exotic way to shoot oneself in the foot. | |
1660 | */ | |
1661 | if (is_enabled) { | |
1662 | regs64->rax = 1; | |
1663 | new_pc = regs64->isf.rip; | |
1664 | goto done; | |
1665 | } | |
1666 | ||
1667 | /* | |
1668 | * We emulate certain types of instructions to ensure correctness | |
1669 | * (in the case of position dependent instructions) or optimize | |
1670 | * common cases. The rest we have the thread execute back in user- | |
1671 | * land. | |
1672 | */ | |
1673 | switch (tp->ftt_type) { | |
1674 | case FASTTRAP_T_RET: | |
1675 | case FASTTRAP_T_RET16: | |
1676 | { | |
1677 | user_addr_t dst; | |
1678 | user_addr_t addr; | |
1679 | int ret; | |
1680 | ||
1681 | /* | |
1682 | * We have to emulate _every_ facet of the behavior of a ret | |
1683 | * instruction including what happens if the load from %esp | |
1684 | * fails; in that case, we send a SIGSEGV. | |
1685 | */ | |
1686 | ret = fasttrap_fuword64((user_addr_t)regs64->isf.rsp, &dst); | |
1687 | addr = regs64->isf.rsp + sizeof (uint64_t); | |
1688 | ||
1689 | if (ret == -1) { | |
1690 | fasttrap_sigsegv(p, uthread, (user_addr_t)regs64->isf.rsp); | |
1691 | new_pc = pc; | |
1692 | break; | |
1693 | } | |
1694 | ||
1695 | if (tp->ftt_type == FASTTRAP_T_RET16) | |
1696 | addr += tp->ftt_dest; | |
1697 | ||
1698 | regs64->isf.rsp = addr; | |
1699 | new_pc = dst; | |
1700 | break; | |
1701 | } | |
1702 | ||
1703 | case FASTTRAP_T_JCC: | |
1704 | { | |
1705 | uint_t taken; | |
1706 | ||
1707 | switch (tp->ftt_code) { | |
1708 | case FASTTRAP_JO: | |
1709 | taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_OF) != 0; | |
1710 | break; | |
1711 | case FASTTRAP_JNO: | |
1712 | taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_OF) == 0; | |
1713 | break; | |
1714 | case FASTTRAP_JB: | |
1715 | taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_CF) != 0; | |
1716 | break; | |
1717 | case FASTTRAP_JAE: | |
1718 | taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_CF) == 0; | |
1719 | break; | |
1720 | case FASTTRAP_JE: | |
1721 | taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_ZF) != 0; | |
1722 | break; | |
1723 | case FASTTRAP_JNE: | |
1724 | taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_ZF) == 0; | |
1725 | break; | |
1726 | case FASTTRAP_JBE: | |
1727 | taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_CF) != 0 || | |
1728 | (regs64->isf.rflags & FASTTRAP_EFLAGS_ZF) != 0; | |
1729 | break; | |
1730 | case FASTTRAP_JA: | |
1731 | taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_CF) == 0 && | |
1732 | (regs64->isf.rflags & FASTTRAP_EFLAGS_ZF) == 0; | |
1733 | break; | |
1734 | case FASTTRAP_JS: | |
1735 | taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_SF) != 0; | |
1736 | break; | |
1737 | case FASTTRAP_JNS: | |
1738 | taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_SF) == 0; | |
1739 | break; | |
1740 | case FASTTRAP_JP: | |
1741 | taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_PF) != 0; | |
1742 | break; | |
1743 | case FASTTRAP_JNP: | |
1744 | taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_PF) == 0; | |
1745 | break; | |
1746 | case FASTTRAP_JL: | |
1747 | taken = ((regs64->isf.rflags & FASTTRAP_EFLAGS_SF) == 0) != | |
1748 | ((regs64->isf.rflags & FASTTRAP_EFLAGS_OF) == 0); | |
1749 | break; | |
1750 | case FASTTRAP_JGE: | |
1751 | taken = ((regs64->isf.rflags & FASTTRAP_EFLAGS_SF) == 0) == | |
1752 | ((regs64->isf.rflags & FASTTRAP_EFLAGS_OF) == 0); | |
1753 | break; | |
1754 | case FASTTRAP_JLE: | |
1755 | taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_ZF) != 0 || | |
1756 | ((regs64->isf.rflags & FASTTRAP_EFLAGS_SF) == 0) != | |
1757 | ((regs64->isf.rflags & FASTTRAP_EFLAGS_OF) == 0); | |
1758 | break; | |
1759 | case FASTTRAP_JG: | |
1760 | taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_ZF) == 0 && | |
1761 | ((regs64->isf.rflags & FASTTRAP_EFLAGS_SF) == 0) == | |
1762 | ((regs64->isf.rflags & FASTTRAP_EFLAGS_OF) == 0); | |
1763 | break; | |
1764 | default: | |
1765 | taken = FALSE; | |
1766 | } | |
1767 | ||
1768 | if (taken) | |
1769 | new_pc = tp->ftt_dest; | |
1770 | else | |
1771 | new_pc = pc + tp->ftt_size; | |
1772 | break; | |
1773 | } | |
1774 | ||
1775 | case FASTTRAP_T_LOOP: | |
1776 | { | |
1777 | uint_t taken; | |
1778 | uint64_t cx = regs64->rcx--; | |
1779 | ||
1780 | switch (tp->ftt_code) { | |
1781 | case FASTTRAP_LOOPNZ: | |
1782 | taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_ZF) == 0 && | |
1783 | cx != 0; | |
1784 | break; | |
1785 | case FASTTRAP_LOOPZ: | |
1786 | taken = (regs64->isf.rflags & FASTTRAP_EFLAGS_ZF) != 0 && | |
1787 | cx != 0; | |
1788 | break; | |
1789 | case FASTTRAP_LOOP: | |
1790 | taken = (cx != 0); | |
1791 | break; | |
1792 | default: | |
1793 | taken = FALSE; | |
1794 | } | |
1795 | ||
1796 | if (taken) | |
1797 | new_pc = tp->ftt_dest; | |
1798 | else | |
1799 | new_pc = pc + tp->ftt_size; | |
1800 | break; | |
1801 | } | |
1802 | ||
1803 | case FASTTRAP_T_JCXZ: | |
1804 | { | |
1805 | uint64_t cx = regs64->rcx; | |
1806 | ||
1807 | if (cx == 0) | |
1808 | new_pc = tp->ftt_dest; | |
1809 | else | |
1810 | new_pc = pc + tp->ftt_size; | |
1811 | break; | |
1812 | } | |
1813 | ||
1814 | case FASTTRAP_T_PUSHL_EBP: | |
1815 | { | |
1816 | user_addr_t addr = regs64->isf.rsp - sizeof (uint64_t); | |
1817 | int ret = fasttrap_suword64(addr, (uint64_t)regs64->rbp); | |
1818 | ||
1819 | if (ret == -1) { | |
1820 | fasttrap_sigsegv(p, uthread, addr); | |
1821 | new_pc = pc; | |
1822 | break; | |
1823 | } | |
1824 | ||
1825 | regs64->isf.rsp = addr; | |
1826 | new_pc = pc + tp->ftt_size; | |
1827 | break; | |
1828 | } | |
1829 | ||
1830 | case FASTTRAP_T_NOP: | |
1831 | new_pc = pc + tp->ftt_size; | |
1832 | break; | |
1833 | ||
1834 | case FASTTRAP_T_JMP: | |
1835 | case FASTTRAP_T_CALL: | |
1836 | if (tp->ftt_code == 0) { | |
1837 | new_pc = tp->ftt_dest; | |
1838 | } else { | |
1839 | user_addr_t value, addr = tp->ftt_dest; | |
1840 | ||
1841 | if (tp->ftt_base != FASTTRAP_NOREG) | |
1842 | addr += fasttrap_getreg(regs, tp->ftt_base); | |
1843 | if (tp->ftt_index != FASTTRAP_NOREG) | |
1844 | addr += fasttrap_getreg(regs, tp->ftt_index) << | |
1845 | tp->ftt_scale; | |
1846 | ||
1847 | if (tp->ftt_code == 1) { | |
1848 | /* | |
1849 | * If there's a segment prefix for this | |
1850 | * instruction, we'll need to check permissions | |
1851 | * and bounds on the given selector, and adjust | |
1852 | * the address accordingly. | |
1853 | */ | |
1854 | if (tp->ftt_segment != FASTTRAP_SEG_NONE && | |
1855 | fasttrap_do_seg(tp, regs, &addr) != 0) { | |
1856 | fasttrap_sigsegv(p, uthread, addr); | |
1857 | new_pc = pc; | |
1858 | break; | |
1859 | } | |
1860 | ||
1861 | if (fasttrap_fuword64(addr, &value) == -1) { | |
1862 | fasttrap_sigsegv(p, uthread, addr); | |
1863 | new_pc = pc; | |
1864 | break; | |
1865 | } | |
1866 | new_pc = value; | |
1867 | } else { | |
1868 | new_pc = addr; | |
1869 | } | |
1870 | } | |
1871 | ||
1872 | /* | |
1873 | * If this is a call instruction, we need to push the return | |
1874 | * address onto the stack. If this fails, we send the process | |
1875 | * a SIGSEGV and reset the pc to emulate what would happen if | |
1876 | * this instruction weren't traced. | |
1877 | */ | |
1878 | if (tp->ftt_type == FASTTRAP_T_CALL) { | |
1879 | user_addr_t addr = regs64->isf.rsp - sizeof (uint64_t); | |
1880 | int ret = fasttrap_suword64(addr, pc + tp->ftt_size); | |
1881 | ||
1882 | if (ret == -1) { | |
1883 | fasttrap_sigsegv(p, uthread, addr); | |
1884 | new_pc = pc; | |
1885 | break; | |
1886 | } | |
1887 | ||
1888 | regs64->isf.rsp = addr; | |
1889 | } | |
1890 | break; | |
1891 | ||
1892 | case FASTTRAP_T_COMMON: | |
1893 | { | |
1894 | user_addr_t addr; | |
b0d623f7 | 1895 | uint8_t scratch[2 * FASTTRAP_MAX_INSTR_SIZE + 22]; |
2d21ac55 A |
1896 | uint_t i = 0; |
1897 | ||
1898 | /* | |
1899 | * Generic Instruction Tracing | |
1900 | * --------------------------- | |
1901 | * | |
1902 | * This is the layout of the scratch space in the user-land | |
1903 | * thread structure for our generated instructions. | |
1904 | * | |
1905 | * 32-bit mode bytes | |
1906 | * ------------------------ ----- | |
1907 | * a: <original instruction> <= 15 | |
1908 | * jmp <pc + tp->ftt_size> 5 | |
1909 | * b: <original instrction> <= 15 | |
1910 | * int T_DTRACE_RET 2 | |
1911 | * ----- | |
1912 | * <= 37 | |
1913 | * | |
1914 | * 64-bit mode bytes | |
1915 | * ------------------------ ----- | |
1916 | * a: <original instruction> <= 15 | |
1917 | * jmp 0(%rip) 6 | |
1918 | * <pc + tp->ftt_size> 8 | |
1919 | * b: <original instruction> <= 15 | |
1920 | * int T_DTRACE_RET 2 | |
1921 | * ----- | |
1922 | * <= 46 | |
1923 | * | |
1924 | * The %pc is set to a, and curthread->t_dtrace_astpc is set | |
1925 | * to b. If we encounter a signal on the way out of the | |
1926 | * kernel, trap() will set %pc to curthread->t_dtrace_astpc | |
1927 | * so that we execute the original instruction and re-enter | |
1928 | * the kernel rather than redirecting to the next instruction. | |
1929 | * | |
1930 | * If there are return probes (so we know that we're going to | |
1931 | * need to reenter the kernel after executing the original | |
1932 | * instruction), the scratch space will just contain the | |
1933 | * original instruction followed by an interrupt -- the same | |
1934 | * data as at b. | |
1935 | * | |
1936 | * %rip-relative Addressing | |
1937 | * ------------------------ | |
1938 | * | |
1939 | * There's a further complication in 64-bit mode due to %rip- | |
1940 | * relative addressing. While this is clearly a beneficial | |
1941 | * architectural decision for position independent code, it's | |
1942 | * hard not to see it as a personal attack against the pid | |
1943 | * provider since before there was a relatively small set of | |
1944 | * instructions to emulate; with %rip-relative addressing, | |
1945 | * almost every instruction can potentially depend on the | |
1946 | * address at which it's executed. Rather than emulating | |
1947 | * the broad spectrum of instructions that can now be | |
1948 | * position dependent, we emulate jumps and others as in | |
1949 | * 32-bit mode, and take a different tack for instructions | |
1950 | * using %rip-relative addressing. | |
1951 | * | |
1952 | * For every instruction that uses the ModRM byte, the | |
1953 | * in-kernel disassembler reports its location. We use the | |
1954 | * ModRM byte to identify that an instruction uses | |
1955 | * %rip-relative addressing and to see what other registers | |
1956 | * the instruction uses. To emulate those instructions, | |
1957 | * we modify the instruction to be %rax-relative rather than | |
1958 | * %rip-relative (or %rcx-relative if the instruction uses | |
1959 | * %rax; or %r8- or %r9-relative if the REX.B is present so | |
1960 | * we don't have to rewrite the REX prefix). We then load | |
1961 | * the value that %rip would have been into the scratch | |
1962 | * register and generate an instruction to reset the scratch | |
1963 | * register back to its original value. The instruction | |
1964 | * sequence looks like this: | |
1965 | * | |
1966 | * 64-mode %rip-relative bytes | |
1967 | * ------------------------ ----- | |
1968 | * a: <modified instruction> <= 15 | |
1969 | * movq $<value>, %<scratch> 6 | |
1970 | * jmp 0(%rip) 6 | |
1971 | * <pc + tp->ftt_size> 8 | |
1972 | * b: <modified instruction> <= 15 | |
1973 | * int T_DTRACE_RET 2 | |
1974 | * ----- | |
1975 | * 52 | |
1976 | * | |
1977 | * We set curthread->t_dtrace_regv so that upon receiving | |
1978 | * a signal we can reset the value of the scratch register. | |
1979 | */ | |
1980 | ||
1981 | addr = uthread->t_dtrace_scratch->addr; | |
1982 | ||
1983 | if (addr == 0LL) { | |
1984 | fasttrap_sigtrap(p, uthread, pc); // Should be killing target proc | |
1985 | new_pc = pc; | |
1986 | break; | |
1987 | } | |
1988 | ||
1989 | ASSERT(tp->ftt_size < FASTTRAP_MAX_INSTR_SIZE); | |
1990 | ||
1991 | uthread->t_dtrace_scrpc = addr; | |
1992 | bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size); | |
1993 | i += tp->ftt_size; | |
1994 | ||
1995 | if (tp->ftt_ripmode != 0) { | |
1996 | uint64_t* reg; | |
1997 | ||
1998 | ASSERT(tp->ftt_ripmode & | |
1999 | (FASTTRAP_RIP_1 | FASTTRAP_RIP_2)); | |
2000 | ||
2001 | /* | |
2002 | * If this was a %rip-relative instruction, we change | |
2003 | * it to be either a %rax- or %rcx-relative | |
2004 | * instruction (depending on whether those registers | |
2005 | * are used as another operand; or %r8- or %r9- | |
2006 | * relative depending on the value of REX.B). We then | |
2007 | * set that register and generate a movq instruction | |
2008 | * to reset the value. | |
2009 | */ | |
2010 | if (tp->ftt_ripmode & FASTTRAP_RIP_X) | |
2011 | scratch[i++] = FASTTRAP_REX(1, 0, 0, 1); | |
2012 | else | |
2013 | scratch[i++] = FASTTRAP_REX(1, 0, 0, 0); | |
2014 | ||
2015 | if (tp->ftt_ripmode & FASTTRAP_RIP_1) | |
2016 | scratch[i++] = FASTTRAP_MOV_EAX; | |
2017 | else | |
2018 | scratch[i++] = FASTTRAP_MOV_ECX; | |
2019 | ||
2020 | switch (tp->ftt_ripmode) { | |
2021 | case FASTTRAP_RIP_1: | |
2022 | reg = ®s64->rax; | |
2023 | uthread->t_dtrace_reg = REG_RAX; | |
2024 | break; | |
2025 | case FASTTRAP_RIP_2: | |
2026 | reg = ®s64->rcx; | |
2027 | uthread->t_dtrace_reg = REG_RCX; | |
2028 | break; | |
2029 | case FASTTRAP_RIP_1 | FASTTRAP_RIP_X: | |
2030 | reg = ®s64->r8; | |
2031 | uthread->t_dtrace_reg = REG_R8; | |
2032 | break; | |
2033 | case FASTTRAP_RIP_2 | FASTTRAP_RIP_X: | |
2034 | reg = ®s64->r9; | |
2035 | uthread->t_dtrace_reg = REG_R9; | |
2036 | break; | |
2037 | default: | |
2038 | reg = NULL; | |
2039 | panic("unhandled ripmode in fasttrap_pid_probe64"); | |
2040 | } | |
2041 | ||
b0d623f7 | 2042 | /* LINTED - alignment */ |
2d21ac55 A |
2043 | *(uint64_t *)&scratch[i] = *reg; |
2044 | uthread->t_dtrace_regv = *reg; | |
2045 | *reg = pc + tp->ftt_size; | |
2046 | i += sizeof (uint64_t); | |
2047 | } | |
2048 | ||
2049 | /* | |
2050 | * Generate the branch instruction to what would have | |
2051 | * normally been the subsequent instruction. In 32-bit mode, | |
2052 | * this is just a relative branch; in 64-bit mode this is a | |
2053 | * %rip-relative branch that loads the 64-bit pc value | |
2054 | * immediately after the jmp instruction. | |
2055 | */ | |
2056 | scratch[i++] = FASTTRAP_GROUP5_OP; | |
2057 | scratch[i++] = FASTTRAP_MODRM(0, 4, 5); | |
b0d623f7 | 2058 | /* LINTED - alignment */ |
2d21ac55 A |
2059 | *(uint32_t *)&scratch[i] = 0; |
2060 | i += sizeof (uint32_t); | |
b0d623f7 | 2061 | /* LINTED - alignment */ |
2d21ac55 A |
2062 | *(uint64_t *)&scratch[i] = pc + tp->ftt_size; |
2063 | i += sizeof (uint64_t); | |
2064 | ||
2065 | uthread->t_dtrace_astpc = addr + i; | |
2066 | bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size); | |
2067 | i += tp->ftt_size; | |
2068 | scratch[i++] = FASTTRAP_INT; | |
2069 | scratch[i++] = T_DTRACE_RET; | |
2070 | ||
b0d623f7 A |
2071 | ASSERT(i <= sizeof (scratch)); |
2072 | ||
2d21ac55 A |
2073 | if (fasttrap_copyout(scratch, addr, i)) { |
2074 | fasttrap_sigtrap(p, uthread, pc); | |
2075 | new_pc = pc; | |
2076 | break; | |
2077 | } | |
2078 | ||
2079 | if (tp->ftt_retids != NULL) { | |
2080 | uthread->t_dtrace_step = 1; | |
2081 | uthread->t_dtrace_ret = 1; | |
2082 | new_pc = uthread->t_dtrace_astpc; | |
2083 | } else { | |
2084 | new_pc = uthread->t_dtrace_scrpc; | |
2085 | } | |
2086 | ||
2087 | uthread->t_dtrace_pc = pc; | |
2088 | uthread->t_dtrace_npc = pc + tp->ftt_size; | |
2089 | uthread->t_dtrace_on = 1; | |
2090 | break; | |
2091 | } | |
2092 | ||
2093 | default: | |
2094 | panic("fasttrap: mishandled an instruction"); | |
2095 | } | |
2096 | ||
2097 | done: | |
2098 | /* | |
2099 | * APPLE NOTE: | |
2100 | * | |
2101 | * We're setting this earlier than Solaris does, to get a "correct" | |
2102 | * ustack() output. In the Sun code, a() -> b() -> c() -> d() is | |
2103 | * reported at: d, b, a. The new way gives c, b, a, which is closer | |
2104 | * to correct, as the return instruction has already exectued. | |
2105 | */ | |
2106 | regs64->isf.rip = new_pc; | |
2107 | ||
2108 | ||
2109 | /* | |
2110 | * If there were no return probes when we first found the tracepoint, | |
2111 | * we should feel no obligation to honor any return probes that were | |
2112 | * subsequently enabled -- they'll just have to wait until the next | |
2113 | * time around. | |
2114 | */ | |
2115 | if (tp->ftt_retids != NULL) { | |
2116 | /* | |
2117 | * We need to wait until the results of the instruction are | |
2118 | * apparent before invoking any return probes. If this | |
2119 | * instruction was emulated we can just call | |
2120 | * fasttrap_return_common(); if it needs to be executed, we | |
2121 | * need to wait until the user thread returns to the kernel. | |
2122 | */ | |
2123 | if (tp->ftt_type != FASTTRAP_T_COMMON) { | |
2124 | fasttrap_return_common(regs, pc, pid, new_pc); | |
2125 | } else { | |
2126 | ASSERT(uthread->t_dtrace_ret != 0); | |
2127 | ASSERT(uthread->t_dtrace_pc == pc); | |
2128 | ASSERT(uthread->t_dtrace_scrpc != 0); | |
2129 | ASSERT(new_pc == uthread->t_dtrace_astpc); | |
2130 | } | |
2131 | } | |
2132 | ||
2133 | return (0); | |
2134 | } | |
2135 | ||
2136 | int | |
2137 | fasttrap_pid_probe(x86_saved_state_t *regs) | |
2138 | { | |
2139 | if (is_saved_state64(regs)) | |
2140 | return fasttrap_pid_probe64(regs); | |
2141 | ||
2142 | return fasttrap_pid_probe32(regs); | |
2143 | } | |
2144 | ||
2145 | int | |
2146 | fasttrap_return_probe(x86_saved_state_t *regs) | |
2147 | { | |
2148 | x86_saved_state64_t *regs64; | |
2149 | x86_saved_state32_t *regs32; | |
2150 | unsigned int p_model; | |
2151 | ||
2152 | if (is_saved_state64(regs)) { | |
2153 | regs64 = saved_state64(regs); | |
2154 | regs32 = NULL; | |
2155 | p_model = DATAMODEL_LP64; | |
2156 | } else { | |
2157 | regs64 = NULL; | |
2158 | regs32 = saved_state32(regs); | |
2159 | p_model = DATAMODEL_ILP32; | |
2160 | } | |
2161 | ||
2162 | proc_t *p = current_proc(); | |
2163 | uthread_t uthread = (uthread_t)get_bsdthread_info(current_thread()); | |
2164 | user_addr_t pc = uthread->t_dtrace_pc; | |
2165 | user_addr_t npc = uthread->t_dtrace_npc; | |
2166 | ||
2167 | uthread->t_dtrace_pc = 0; | |
2168 | uthread->t_dtrace_npc = 0; | |
2169 | uthread->t_dtrace_scrpc = 0; | |
2170 | uthread->t_dtrace_astpc = 0; | |
2171 | ||
2172 | /* | |
2173 | * Treat a child created by a call to vfork(2) as if it were its | |
2174 | * parent. We know that there's only one thread of control in such a | |
2175 | * process: this one. | |
2176 | */ | |
fe8ab488 A |
2177 | proc_list_lock(); |
2178 | while (p->p_lflag & P_LINVFORK) | |
2d21ac55 | 2179 | p = p->p_pptr; |
fe8ab488 | 2180 | proc_list_unlock(); |
2d21ac55 A |
2181 | |
2182 | /* | |
2183 | * We set rp->r_pc to the address of the traced instruction so | |
2184 | * that it appears to dtrace_probe() that we're on the original | |
2185 | * instruction, and so that the user can't easily detect our | |
2186 | * complex web of lies. dtrace_return_probe() (our caller) | |
2187 | * will correctly set %pc after we return. | |
2188 | */ | |
2189 | if (p_model == DATAMODEL_LP64) | |
2190 | regs64->isf.rip = pc; | |
2191 | else | |
2192 | regs32->eip = pc; | |
2193 | ||
2194 | fasttrap_return_common(regs, pc, p->p_pid, npc); | |
2195 | ||
2196 | return (0); | |
2197 | } | |
2198 | ||
2199 | uint64_t | |
2200 | fasttrap_pid_getarg(void *arg, dtrace_id_t id, void *parg, int argno, | |
2201 | int aframes) | |
2202 | { | |
6d2010ae | 2203 | pal_register_cache_state(current_thread(), VALID); |
2d21ac55 A |
2204 | #pragma unused(arg, id, parg, aframes) |
2205 | return (fasttrap_anarg((x86_saved_state_t *)find_user_regs(current_thread()), 1, argno)); | |
2206 | } | |
2207 | ||
2208 | uint64_t | |
2209 | fasttrap_usdt_getarg(void *arg, dtrace_id_t id, void *parg, int argno, | |
2210 | int aframes) | |
2211 | { | |
6d2010ae | 2212 | pal_register_cache_state(current_thread(), VALID); |
2d21ac55 A |
2213 | #pragma unused(arg, id, parg, aframes) |
2214 | return (fasttrap_anarg((x86_saved_state_t *)find_user_regs(current_thread()), 0, argno)); | |
2215 | } | |
2216 | ||
2217 | /* | |
2218 | * APPLE NOTE: See comments by regmap array definition. We are cheating | |
2219 | * when returning 32 bit registers. | |
2220 | */ | |
2221 | static user_addr_t | |
2222 | fasttrap_getreg(x86_saved_state_t *regs, uint_t reg) | |
2223 | { | |
2224 | if (is_saved_state64(regs)) { | |
2225 | x86_saved_state64_t *regs64 = saved_state64(regs); | |
2226 | ||
2227 | switch (reg) { | |
2228 | case REG_RAX: return regs64->rax; | |
2229 | case REG_RCX: return regs64->rcx; | |
2230 | case REG_RDX: return regs64->rdx; | |
2231 | case REG_RBX: return regs64->rbx; | |
2232 | case REG_RSP: return regs64->isf.rsp; | |
2233 | case REG_RBP: return regs64->rbp; | |
2234 | case REG_RSI: return regs64->rsi; | |
2235 | case REG_RDI: return regs64->rdi; | |
2236 | case REG_R8: return regs64->r8; | |
2237 | case REG_R9: return regs64->r9; | |
2238 | case REG_R10: return regs64->r10; | |
2239 | case REG_R11: return regs64->r11; | |
2240 | case REG_R12: return regs64->r12; | |
2241 | case REG_R13: return regs64->r13; | |
2242 | case REG_R14: return regs64->r14; | |
2243 | case REG_R15: return regs64->r15; | |
b0d623f7 A |
2244 | case REG_TRAPNO: return regs64->isf.trapno; |
2245 | case REG_ERR: return regs64->isf.err; | |
2246 | case REG_RIP: return regs64->isf.rip; | |
2247 | case REG_CS: return regs64->isf.cs; | |
2248 | case REG_RFL: return regs64->isf.rflags; | |
2249 | case REG_SS: return regs64->isf.ss; | |
2250 | case REG_FS: return regs64->fs; | |
2251 | case REG_GS: return regs64->gs; | |
2252 | case REG_ES: | |
2253 | case REG_DS: | |
2254 | case REG_FSBASE: | |
2255 | case REG_GSBASE: | |
2256 | // Important to distinguish these requests (which should be legal) from other values. | |
2257 | panic("dtrace: unimplemented x86_64 getreg()"); | |
2d21ac55 A |
2258 | } |
2259 | ||
2260 | panic("dtrace: unhandled x86_64 getreg() constant"); | |
2261 | } else { | |
2262 | x86_saved_state32_t *regs32 = saved_state32(regs); | |
2263 | ||
2264 | switch (reg) { | |
2265 | case REG_RAX: return regs32->eax; | |
2266 | case REG_RCX: return regs32->ecx; | |
2267 | case REG_RDX: return regs32->edx; | |
2268 | case REG_RBX: return regs32->ebx; | |
2269 | case REG_RSP: return regs32->uesp; | |
2270 | case REG_RBP: return regs32->ebp; | |
2271 | case REG_RSI: return regs32->esi; | |
2272 | case REG_RDI: return regs32->edi; | |
2273 | } | |
2274 | ||
2275 | panic("dtrace: unhandled i386 getreg() constant"); | |
2276 | } | |
2277 | ||
2278 | return 0; | |
2279 | } |