]>
Commit | Line | Data |
---|---|---|
2d21ac55 | 1 | /* |
6d2010ae | 2 | * Copyright (c) 2000-2008 Apple Inc. All rights reserved. |
2d21ac55 A |
3 | * |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | * @APPLE_FREE_COPYRIGHT@ | |
33 | */ | |
34 | /* | |
35 | * File: etimer.c | |
36 | * Purpose: Routines for handling the machine independent | |
37 | * event timer. | |
38 | */ | |
39 | ||
40 | #include <mach/mach_types.h> | |
41 | ||
c910b4d9 | 42 | #include <kern/timer_queue.h> |
2d21ac55 A |
43 | #include <kern/clock.h> |
44 | #include <kern/thread.h> | |
45 | #include <kern/processor.h> | |
46 | #include <kern/macro_help.h> | |
47 | #include <kern/spl.h> | |
48 | #include <kern/etimer.h> | |
49 | #include <kern/pms.h> | |
50 | ||
51 | #include <machine/commpage.h> | |
52 | #include <machine/machine_routines.h> | |
53 | ||
54 | #include <sys/kdebug.h> | |
55 | #include <i386/cpu_data.h> | |
56 | #include <i386/cpu_topology.h> | |
57 | #include <i386/cpu_threads.h> | |
58 | ||
2d21ac55 A |
59 | /* |
60 | * Event timer interrupt. | |
61 | * | |
62 | * XXX a drawback of this implementation is that events serviced earlier must not set deadlines | |
63 | * that occur before the entire chain completes. | |
64 | * | |
65 | * XXX a better implementation would use a set of generic callouts and iterate over them | |
66 | */ | |
67 | void | |
060df5ea A |
68 | etimer_intr(int user_mode, |
69 | uint64_t rip) | |
2d21ac55 A |
70 | { |
71 | uint64_t abstime; | |
72 | rtclock_timer_t *mytimer; | |
73 | cpu_data_t *pp; | |
060df5ea A |
74 | int32_t latency; |
75 | uint64_t pmdeadline; | |
2d21ac55 A |
76 | |
77 | pp = current_cpu_datap(); | |
2d21ac55 | 78 | |
6d2010ae A |
79 | SCHED_STATS_TIMER_POP(current_processor()); |
80 | ||
81 | abstime = mach_absolute_time(); /* Get the time now */ | |
2d21ac55 A |
82 | |
83 | /* has a pending clock timer expired? */ | |
6d2010ae | 84 | mytimer = &pp->rtclock_timer; /* Point to the event timer */ |
060df5ea | 85 | if (mytimer->deadline <= abstime) { |
6d2010ae | 86 | /* |
060df5ea A |
87 | * Log interrupt service latency (-ve value expected by tool) |
88 | * a non-PM event is expected next. | |
6d2010ae A |
89 | * The requested deadline may be earlier than when it was set |
90 | * - use MAX to avoid reporting bogus latencies. | |
060df5ea | 91 | */ |
6d2010ae A |
92 | latency = (int32_t) (abstime - MAX(mytimer->deadline, |
93 | mytimer->when_set)); | |
316670eb | 94 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
6d2010ae | 95 | DECR_TRAP_LATENCY | DBG_FUNC_NONE, |
316670eb A |
96 | -latency, |
97 | ((user_mode != 0) ? rip : VM_KERNEL_UNSLIDE(rip)), | |
98 | user_mode, 0, 0); | |
060df5ea | 99 | |
6d2010ae | 100 | mytimer->has_expired = TRUE; /* Remember that we popped */ |
c910b4d9 | 101 | mytimer->deadline = timer_queue_expire(&mytimer->queue, abstime); |
2d21ac55 | 102 | mytimer->has_expired = FALSE; |
060df5ea | 103 | |
6d2010ae | 104 | /* Get the time again since we ran a bit */ |
060df5ea | 105 | abstime = mach_absolute_time(); |
6d2010ae | 106 | mytimer->when_set = abstime; |
060df5ea A |
107 | } |
108 | ||
109 | /* is it time for power management state change? */ | |
110 | if ((pmdeadline = pmCPUGetDeadline(pp)) && (pmdeadline <= abstime)) { | |
316670eb | 111 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
6d2010ae A |
112 | DECR_PM_DEADLINE | DBG_FUNC_START, |
113 | 0, 0, 0, 0, 0); | |
060df5ea | 114 | pmCPUDeadline(pp); |
316670eb | 115 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
6d2010ae A |
116 | DECR_PM_DEADLINE | DBG_FUNC_END, |
117 | 0, 0, 0, 0, 0); | |
2d21ac55 A |
118 | } |
119 | ||
6d2010ae | 120 | /* schedule our next deadline */ |
2d21ac55 A |
121 | etimer_resync_deadlines(); |
122 | } | |
123 | ||
124 | /* | |
c910b4d9 | 125 | * Set the clock deadline. |
2d21ac55 A |
126 | */ |
127 | void etimer_set_deadline(uint64_t deadline) | |
128 | { | |
129 | rtclock_timer_t *mytimer; | |
130 | spl_t s; | |
131 | cpu_data_t *pp; | |
132 | ||
060df5ea | 133 | s = splclock(); /* no interruptions */ |
2d21ac55 A |
134 | pp = current_cpu_datap(); |
135 | ||
060df5ea | 136 | mytimer = &pp->rtclock_timer; /* Point to the timer itself */ |
6d2010ae A |
137 | mytimer->deadline = deadline; /* Set new expiration time */ |
138 | mytimer->when_set = mach_absolute_time(); | |
2d21ac55 A |
139 | |
140 | etimer_resync_deadlines(); | |
141 | ||
142 | splx(s); | |
143 | } | |
144 | ||
145 | /* | |
146 | * Re-evaluate the outstanding deadlines and select the most proximate. | |
147 | * | |
148 | * Should be called at splclock. | |
149 | */ | |
150 | void | |
151 | etimer_resync_deadlines(void) | |
152 | { | |
153 | uint64_t deadline; | |
154 | uint64_t pmdeadline; | |
155 | rtclock_timer_t *mytimer; | |
156 | spl_t s = splclock(); | |
157 | cpu_data_t *pp; | |
060df5ea | 158 | uint32_t decr; |
2d21ac55 A |
159 | |
160 | pp = current_cpu_datap(); | |
060df5ea | 161 | deadline = EndOfAllTime; |
2d21ac55 A |
162 | |
163 | /* | |
060df5ea | 164 | * If we have a clock timer set, pick that. |
2d21ac55 A |
165 | */ |
166 | mytimer = &pp->rtclock_timer; | |
060df5ea A |
167 | if (!mytimer->has_expired && |
168 | 0 < mytimer->deadline && mytimer->deadline < EndOfAllTime) | |
2d21ac55 A |
169 | deadline = mytimer->deadline; |
170 | ||
171 | /* | |
172 | * If we have a power management deadline, see if that's earlier. | |
173 | */ | |
174 | pmdeadline = pmCPUGetDeadline(pp); | |
060df5ea | 175 | if (0 < pmdeadline && pmdeadline < deadline) |
6d2010ae | 176 | deadline = pmdeadline; |
2d21ac55 A |
177 | |
178 | /* | |
179 | * Go and set the "pop" event. | |
180 | */ | |
060df5ea A |
181 | decr = (uint32_t) setPop(deadline); |
182 | ||
183 | /* Record non-PM deadline for latency tool */ | |
184 | if (deadline != pmdeadline) { | |
316670eb | 185 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
6d2010ae A |
186 | DECR_SET_DEADLINE | DBG_FUNC_NONE, |
187 | decr, 2, | |
188 | deadline, (uint32_t)(deadline >> 32), 0); | |
2d21ac55 A |
189 | } |
190 | splx(s); | |
191 | } | |
c910b4d9 A |
192 | |
193 | void etimer_timer_expire(void *arg); | |
194 | ||
195 | void | |
196 | etimer_timer_expire( | |
197 | __unused void *arg) | |
198 | { | |
199 | rtclock_timer_t *mytimer; | |
200 | uint64_t abstime; | |
201 | cpu_data_t *pp; | |
c910b4d9 A |
202 | |
203 | pp = current_cpu_datap(); | |
c910b4d9 A |
204 | |
205 | mytimer = &pp->rtclock_timer; | |
206 | abstime = mach_absolute_time(); | |
207 | ||
208 | mytimer->has_expired = TRUE; | |
209 | mytimer->deadline = timer_queue_expire(&mytimer->queue, abstime); | |
210 | mytimer->has_expired = FALSE; | |
6d2010ae | 211 | mytimer->when_set = mach_absolute_time(); |
c910b4d9 | 212 | |
c910b4d9 A |
213 | etimer_resync_deadlines(); |
214 | } | |
215 | ||
6d2010ae A |
216 | uint64_t |
217 | timer_call_slop( | |
218 | uint64_t deadline) | |
219 | { | |
220 | uint64_t now = mach_absolute_time(); | |
221 | if (deadline > now) { | |
222 | return MIN((deadline - now) >> 3, NSEC_PER_MSEC); /* Min of 12.5% and 1ms */ | |
223 | } | |
224 | ||
225 | return 0; | |
226 | } | |
227 | ||
228 | mpqueue_head_t * | |
c910b4d9 A |
229 | timer_queue_assign( |
230 | uint64_t deadline) | |
231 | { | |
316670eb | 232 | cpu_data_t *cdp = current_cpu_datap(); |
6d2010ae | 233 | mpqueue_head_t *queue; |
c910b4d9 A |
234 | |
235 | if (cdp->cpu_running) { | |
6d2010ae | 236 | queue = &cdp->rtclock_timer.queue; |
c910b4d9 | 237 | |
6d2010ae | 238 | if (deadline < cdp->rtclock_timer.deadline) |
c910b4d9 A |
239 | etimer_set_deadline(deadline); |
240 | } | |
241 | else | |
6d2010ae | 242 | queue = &cpu_datap(master_cpu)->rtclock_timer.queue; |
c910b4d9 | 243 | |
316670eb | 244 | return (queue); |
c910b4d9 A |
245 | } |
246 | ||
247 | void | |
248 | timer_queue_cancel( | |
6d2010ae | 249 | mpqueue_head_t *queue, |
c910b4d9 A |
250 | uint64_t deadline, |
251 | uint64_t new_deadline) | |
252 | { | |
253 | if (queue == ¤t_cpu_datap()->rtclock_timer.queue) { | |
254 | if (deadline < new_deadline) | |
255 | etimer_set_deadline(new_deadline); | |
256 | } | |
257 | } | |
6d2010ae A |
258 | |
259 | /* | |
260 | * etimer_queue_migrate() is called from the Power-Management kext | |
261 | * when a logical processor goes idle (in a deep C-state) with a distant | |
262 | * deadline so that it's timer queue can be moved to another processor. | |
263 | * This target processor should be the least idle (most busy) -- | |
264 | * currently this is the primary processor for the calling thread's package. | |
316670eb | 265 | * Locking restrictions demand that the target cpu must be the boot cpu. |
6d2010ae A |
266 | */ |
267 | uint32_t | |
268 | etimer_queue_migrate(int target_cpu) | |
269 | { | |
270 | cpu_data_t *target_cdp = cpu_datap(target_cpu); | |
271 | cpu_data_t *cdp = current_cpu_datap(); | |
272 | int ntimers_moved; | |
273 | ||
274 | assert(!ml_get_interrupts_enabled()); | |
275 | assert(target_cpu != cdp->cpu_number); | |
276 | assert(target_cpu == master_cpu); | |
277 | ||
316670eb | 278 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
6d2010ae A |
279 | DECR_TIMER_MIGRATE | DBG_FUNC_START, |
280 | target_cpu, | |
281 | cdp->rtclock_timer.deadline, (cdp->rtclock_timer.deadline >>32), | |
282 | 0, 0); | |
283 | ||
284 | /* | |
285 | * Move timer requests from the local queue to the target processor's. | |
286 | * The return value is the number of requests moved. If this is 0, | |
287 | * it indicates that the first (i.e. earliest) timer is earlier than | |
288 | * the earliest for the target processor. Since this would force a | |
289 | * resync, the move of this and all later requests is aborted. | |
290 | */ | |
291 | ntimers_moved = timer_queue_migrate(&cdp->rtclock_timer.queue, | |
292 | &target_cdp->rtclock_timer.queue); | |
293 | ||
294 | /* | |
295 | * Assuming we moved stuff, clear local deadline. | |
296 | */ | |
297 | if (ntimers_moved > 0) { | |
298 | cdp->rtclock_timer.deadline = EndOfAllTime; | |
299 | setPop(EndOfAllTime); | |
300 | } | |
301 | ||
316670eb | 302 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
6d2010ae A |
303 | DECR_TIMER_MIGRATE | DBG_FUNC_END, |
304 | target_cpu, ntimers_moved, 0, 0, 0); | |
305 | ||
306 | return ntimers_moved; | |
307 | } |