]>
Commit | Line | Data |
---|---|---|
2d21ac55 A |
1 | #include <AvailabilityMacros.h> |
2 | #ifdef AVAILABLE_MAC_OS_X_VERSION_10_5_AND_LATER | |
3 | #include </System/Library/Frameworks/System.framework/PrivateHeaders/mach/thread_policy.h> | |
4 | #endif | |
5 | #include <mach/mach.h> | |
6 | #include <mach/mach_error.h> | |
7 | #include <mach/mach_time.h> | |
8 | #include <pthread.h> | |
9 | #include <sys/queue.h> | |
10 | #include <stdio.h> | |
11 | #include <stdlib.h> | |
12 | #include <string.h> | |
13 | #include <unistd.h> | |
14 | #include <err.h> | |
15 | #include <errno.h> | |
16 | ||
17 | /* | |
18 | * Sets is a multithreaded test/benchmarking program to evaluate | |
19 | * affinity set placement in Leopard. | |
20 | * | |
21 | * The picture here, for each set, is: | |
22 | * | |
23 | * free work | |
24 | * -> queue --> producer --> queue --> consumer -- | |
25 | * | | | |
26 | * ----------------------------------------------- | |
27 | * | |
28 | * <------ "stage" -----> <------ "stage" -----> | |
29 | ||
30 | * We spin off sets of production line threads (2 sets by default). | |
31 | * All threads of each line sets the same affinity tag (unless disabled). | |
32 | * By default there are 2 stage (worker) threads per production line. | |
33 | * A worker thread removes a buffer from an input queue, processses it and | |
34 | * queues it on an output queue. By default the initial stage (producer) | |
35 | * writes every byte in a buffer and the other (consumer) stages read every | |
36 | * byte. By default the buffers are 1MB (256 pages) in size but this can be | |
37 | * overidden. By default there are 2 buffers per set (again overridable). | |
38 | * Worker threads process (iterate over) 10000 buffers by default. | |
39 | * | |
40 | * With affinity enabled, each producer and consumer thread sets its affinity | |
41 | * to the set number, 1 .. N. So the threads of each set share an L2 cache. | |
42 | * | |
43 | * Buffer management uses pthread mutex/condition variables. A thread blocks | |
44 | * when no buffer is available on a queue and it is signaled when a buffer | |
45 | * is placed on an empty queue. Queues are tailq'a a la <sys/queue.h>. | |
46 | * The queue management is centralized in a single routine: what queues to | |
47 | * use as input and output and what function to call for processing is | |
48 | * data-driven. | |
49 | */ | |
50 | ||
51 | pthread_mutex_t funnel; | |
52 | pthread_cond_t barrier; | |
53 | ||
54 | uint64_t timer; | |
55 | int threads; | |
56 | int threads_ready = 0; | |
57 | ||
58 | int iterations = 10000; | |
59 | boolean_t affinity = FALSE; | |
60 | boolean_t halting = FALSE; | |
61 | boolean_t cache_config = FALSE; | |
62 | int verbosity = 1; | |
63 | ||
64 | typedef struct work { | |
65 | TAILQ_ENTRY(work) link; | |
66 | int *data; | |
67 | } work_t; | |
68 | ||
69 | /* | |
70 | * A work queue, complete with pthread objects for its management | |
71 | */ | |
72 | typedef struct work_queue { | |
73 | pthread_mutex_t mtx; | |
74 | pthread_cond_t cnd; | |
75 | TAILQ_HEAD(, work) queue; | |
76 | boolean_t waiters; | |
77 | } work_queue_t; | |
78 | ||
79 | /* Worker functions take a integer array and size */ | |
80 | typedef void (worker_fn_t)(int *, int); | |
81 | ||
82 | /* This struct controls the function of a thread */ | |
83 | typedef struct { | |
84 | int stagenum; | |
85 | char *name; | |
86 | worker_fn_t *fn; | |
87 | work_queue_t *input; | |
88 | work_queue_t *output; | |
89 | struct line_info *set; | |
90 | pthread_t thread; | |
91 | work_queue_t bufq; | |
92 | } stage_info_t; | |
93 | ||
94 | /* This defines a thread set */ | |
95 | #define WORKERS_MAX 10 | |
96 | typedef struct line_info { | |
97 | int setnum; | |
98 | int *data; | |
99 | int isize; | |
100 | stage_info_t *stage[WORKERS_MAX]; | |
101 | } line_info_t; | |
102 | ||
103 | #define DBG(x...) do { \ | |
104 | if (verbosity > 1) { \ | |
105 | pthread_mutex_lock(&funnel); \ | |
106 | printf(x); \ | |
107 | pthread_mutex_unlock(&funnel); \ | |
108 | } \ | |
109 | } while (0) | |
110 | ||
111 | #define mutter(x...) do { \ | |
112 | if (verbosity > 0) { \ | |
113 | printf(x); \ | |
114 | } \ | |
115 | } while (0) | |
116 | ||
117 | #define s_if_plural(x) (((x) > 1) ? "s" : "") | |
118 | ||
119 | static void | |
120 | usage() | |
121 | { | |
122 | fprintf(stderr, | |
123 | #ifdef AVAILABLE_MAC_OS_X_VERSION_10_5_AND_LATER | |
124 | "usage: sets [-a] Turn affinity on (off)\n" | |
125 | " [-b B] Number of buffers per set/line (2)\n" | |
126 | #else | |
127 | "usage: sets [-b B] Number of buffers per set/line (2)\n" | |
128 | #endif | |
129 | " [-c] Configure for max cache performance\n" | |
130 | " [-h] Print this\n" | |
131 | " [-i I] Number of items/buffers to process (1000)\n" | |
132 | " [-s S] Number of stages per set/line (2)\n" | |
133 | " [-t] Halt for keyboard input to start\n" | |
134 | " [-p P] Number of pages per buffer (256=1MB)]\n" | |
135 | " [-w] Consumer writes data\n" | |
136 | " [-v V] Level of verbosity 0..2 (1)\n" | |
137 | " [N] Number of sets/lines (2)\n" | |
138 | ); | |
139 | exit(1); | |
140 | } | |
141 | ||
142 | /* Trivial producer: write to each byte */ | |
143 | void | |
144 | writer_fn(int *data, int isize) | |
145 | { | |
146 | int i; | |
147 | ||
148 | for (i = 0; i < isize; i++) { | |
149 | data[i] = i; | |
150 | } | |
151 | } | |
152 | ||
153 | /* Trivial consumer: read each byte */ | |
154 | void | |
155 | reader_fn(int *data, int isize) | |
156 | { | |
157 | int i; | |
158 | int datum; | |
159 | ||
160 | for (i = 0; i < isize; i++) { | |
161 | datum = data[i]; | |
162 | } | |
163 | } | |
164 | ||
165 | /* Consumer reading and writing the buffer */ | |
166 | void | |
167 | reader_writer_fn(int *data, int isize) | |
168 | { | |
169 | int i; | |
170 | ||
171 | for (i = 0; i < isize; i++) { | |
172 | data[i] += 1; | |
173 | } | |
174 | } | |
175 | ||
176 | /* | |
177 | * This is the central function for every thread. | |
178 | * For each invocation, its role is ets by (a pointer to) a stage_info_t. | |
179 | */ | |
180 | void * | |
181 | manager_fn(void *arg) | |
182 | { | |
183 | stage_info_t *sp = (stage_info_t *) arg; | |
184 | line_info_t *lp = sp->set; | |
185 | kern_return_t ret; | |
186 | long iteration = 0; | |
187 | ||
188 | /* | |
189 | * If we're using affinity sets (we are by default) | |
190 | * set our tag to by our thread set number. | |
191 | */ | |
192 | #ifdef AVAILABLE_MAC_OS_X_VERSION_10_5_AND_LATER | |
193 | thread_extended_policy_data_t epolicy; | |
194 | thread_affinity_policy_data_t policy; | |
195 | ||
196 | epolicy.timeshare = FALSE; | |
197 | ret = thread_policy_set( | |
198 | mach_thread_self(), THREAD_EXTENDED_POLICY, | |
199 | (thread_policy_t) &epolicy, | |
200 | THREAD_EXTENDED_POLICY_COUNT); | |
201 | if (ret != KERN_SUCCESS) | |
202 | printf("thread_policy_set(THREAD_EXTENDED_POLICY) returned %d\n", ret); | |
203 | ||
204 | if (affinity) { | |
205 | policy.affinity_tag = lp->setnum; | |
206 | ret = thread_policy_set( | |
207 | mach_thread_self(), THREAD_AFFINITY_POLICY, | |
208 | (thread_policy_t) &policy, | |
209 | THREAD_AFFINITY_POLICY_COUNT); | |
210 | if (ret != KERN_SUCCESS) | |
211 | printf("thread_policy_set(THREAD_AFFINITY_POLICY) returned %d\n", ret); | |
212 | } | |
213 | #endif | |
214 | ||
215 | DBG("Starting %s set: %d stage: %d\n", sp->name, lp->setnum, sp->stagenum); | |
216 | ||
217 | /* | |
218 | * Start barrier. | |
219 | * The tets thread to get here releases everyone and starts the timer. | |
220 | */ | |
221 | pthread_mutex_lock(&funnel); | |
222 | threads_ready++; | |
223 | if (threads_ready == threads) { | |
224 | pthread_mutex_unlock(&funnel); | |
225 | if (halting) { | |
226 | printf(" all threads ready for process %d, " | |
227 | "hit any key to start", getpid()); | |
228 | fflush(stdout); | |
229 | (void) getchar(); | |
230 | } | |
231 | pthread_cond_broadcast(&barrier); | |
232 | timer = mach_absolute_time(); | |
233 | } else { | |
234 | pthread_cond_wait(&barrier, &funnel); | |
235 | pthread_mutex_unlock(&funnel); | |
236 | } | |
237 | ||
238 | do { | |
239 | int i; | |
240 | work_t *workp; | |
241 | ||
242 | /* | |
243 | * Get a buffer from the input queue. | |
244 | * Block if none. | |
245 | */ | |
246 | pthread_mutex_lock(&sp->input->mtx); | |
247 | while (1) { | |
248 | workp = TAILQ_FIRST(&(sp->input->queue)); | |
249 | if (workp != NULL) | |
250 | break; | |
251 | DBG(" %s[%d,%d] iteration %d waiting for buffer\n", | |
252 | sp->name, lp->setnum, sp->stagenum, iteration); | |
253 | sp->input->waiters = TRUE; | |
254 | pthread_cond_wait(&sp->input->cnd, &sp->input->mtx); | |
255 | sp->input->waiters = FALSE; | |
256 | } | |
257 | TAILQ_REMOVE(&(sp->input->queue), workp, link); | |
258 | pthread_mutex_unlock(&sp->input->mtx); | |
259 | ||
260 | DBG(" %s[%d,%d] iteration %d work %p data %p\n", | |
261 | sp->name, lp->setnum, sp->stagenum, iteration, workp, workp->data); | |
262 | ||
263 | /* Do our stuff with the buffer */ | |
264 | (void) sp->fn(workp->data, lp->isize); | |
265 | ||
266 | /* | |
267 | * Place the buffer on the input queue. | |
268 | * Signal waiters if required. | |
269 | */ | |
270 | pthread_mutex_lock(&sp->output->mtx); | |
271 | TAILQ_INSERT_TAIL(&(sp->output->queue), workp, link); | |
272 | if (sp->output->waiters) { | |
273 | DBG(" %s[%d,%d] iteration %d signaling work\n", | |
274 | sp->name, lp->setnum, sp->stagenum, iteration); | |
275 | pthread_cond_signal(&sp->output->cnd); | |
276 | } | |
277 | pthread_mutex_unlock(&sp->output->mtx); | |
278 | } while (++iteration < iterations); | |
279 | ||
280 | DBG("Ending %s[%d,%d]\n", sp->name, lp->setnum, sp->stagenum); | |
281 | ||
282 | return (void *) iteration; | |
283 | } | |
284 | ||
285 | static void | |
286 | auto_config(int npages, int *nbufs, int *nsets) | |
287 | { | |
288 | int len; | |
289 | int ncpu; | |
290 | int64_t cacheconfig[10]; | |
291 | int64_t cachesize[10]; | |
292 | ||
293 | mutter("Autoconfiguring...\n"); | |
294 | ||
295 | len = sizeof(cacheconfig); | |
296 | if (sysctlbyname("hw.cacheconfig", | |
297 | &cacheconfig[0], &len, NULL, 0) != 0) { | |
298 | printf("Unable to get hw.cacheconfig, %d\n", errno); | |
299 | exit(1); | |
300 | } | |
301 | len = sizeof(cachesize); | |
302 | if (sysctlbyname("hw.cachesize", | |
303 | &cachesize[0], &len, NULL, 0) != 0) { | |
304 | printf("Unable to get hw.cachesize, %d\n", errno); | |
305 | exit(1); | |
306 | } | |
307 | ||
308 | /* | |
309 | * Calculate number of buffers of size pages*4096 bytes | |
310 | * fit into 90% of an L2 cache. | |
311 | */ | |
312 | *nbufs = cachesize[2] * 9 / (npages * 4096 * 10); | |
313 | mutter(" L2 cache %qd bytes: " | |
314 | "using %d buffers of size %d bytes\n", | |
315 | cachesize[2], *nbufs, (npages * 4096)); | |
316 | ||
317 | /* | |
318 | * Calcalute how many sets: | |
319 | */ | |
320 | *nsets = cacheconfig[0]/cacheconfig[2]; | |
321 | mutter(" %qd cpus; %qd cpus per L2 cache: using %d sets\n", | |
322 | cacheconfig[0], cacheconfig[2], *nsets); | |
323 | } | |
324 | ||
325 | void (*producer_fnp)(int *data, int isize) = &writer_fn; | |
326 | void (*consumer_fnp)(int *data, int isize) = &reader_fn; | |
327 | ||
328 | int | |
329 | main(int argc, char *argv[]) | |
330 | { | |
331 | int i; | |
332 | int j; | |
333 | int pages = 256; /* 1MB */ | |
334 | int buffers = 2; | |
335 | int sets = 2; | |
336 | int stages = 2; | |
337 | int *status; | |
338 | line_info_t *line_info; | |
339 | line_info_t *lp; | |
340 | stage_info_t *stage_info; | |
341 | stage_info_t *sp; | |
342 | kern_return_t ret; | |
343 | int c; | |
344 | ||
345 | /* Do switch parsing: */ | |
346 | while ((c = getopt (argc, argv, "ab:chi:p:s:twv:")) != -1) { | |
347 | switch (c) { | |
348 | case 'a': | |
349 | #ifdef AVAILABLE_MAC_OS_X_VERSION_10_5_AND_LATER | |
350 | affinity = !affinity; | |
351 | break; | |
352 | #else | |
353 | usage(); | |
354 | #endif | |
355 | case 'b': | |
356 | buffers = atoi(optarg); | |
357 | break; | |
358 | case 'c': | |
359 | cache_config = TRUE; | |
360 | break; | |
361 | case 'i': | |
362 | iterations = atoi(optarg); | |
363 | break; | |
364 | case 'p': | |
365 | pages = atoi(optarg); | |
366 | break; | |
367 | case 's': | |
368 | stages = atoi(optarg); | |
369 | if (stages >= WORKERS_MAX) | |
370 | usage(); | |
371 | break; | |
372 | case 't': | |
373 | halting = TRUE; | |
374 | break; | |
375 | case 'w': | |
376 | consumer_fnp = &reader_writer_fn; | |
377 | break; | |
378 | case 'v': | |
379 | verbosity = atoi(optarg); | |
380 | break; | |
381 | case '?': | |
382 | case 'h': | |
383 | default: | |
384 | usage(); | |
385 | } | |
386 | } | |
387 | argc -= optind; argv += optind; | |
388 | if (argc > 0) | |
389 | sets = atoi(*argv); | |
390 | ||
391 | if (cache_config) | |
392 | auto_config(pages, &buffers, &sets); | |
393 | ||
394 | pthread_mutex_init(&funnel, NULL); | |
395 | pthread_cond_init(&barrier, NULL); | |
396 | ||
397 | /* | |
398 | * Fire up the worker threads. | |
399 | */ | |
400 | threads = sets * stages; | |
401 | mutter("Launching %d set%s of %d threads with %saffinity, " | |
402 | "consumer reads%s data\n", | |
403 | sets, s_if_plural(sets), stages, affinity? "": "no ", | |
404 | (consumer_fnp == &reader_writer_fn)? " and writes" : ""); | |
405 | if (pages < 256) | |
406 | mutter(" %dkB bytes per buffer, ", pages * 4); | |
407 | else | |
408 | mutter(" %dMB bytes per buffer, ", pages / 256); | |
409 | mutter("%d buffer%s per set ", | |
410 | buffers, s_if_plural(buffers)); | |
411 | if (buffers * pages < 256) | |
412 | mutter("(total %dkB)\n", buffers * pages * 4); | |
413 | else | |
414 | mutter("(total %dMB)\n", buffers * pages / 256); | |
415 | mutter(" processing %d buffer%s...\n", | |
416 | iterations, s_if_plural(iterations)); | |
417 | line_info = (line_info_t *) malloc(sets * sizeof(line_info_t)); | |
418 | stage_info = (stage_info_t *) malloc(sets * stages * sizeof(stage_info_t)); | |
419 | for (i = 0; i < sets; i++) { | |
420 | work_t *work_array; | |
421 | ||
422 | lp = &line_info[i]; | |
423 | ||
424 | lp->setnum = i + 1; | |
425 | lp->isize = pages * 4096 / sizeof(int); | |
426 | lp->data = (int *) malloc(buffers * pages * 4096); | |
427 | ||
428 | /* Set up the queue for the workers of this thread set: */ | |
429 | for (j = 0; j < stages; j++) { | |
430 | sp = &stage_info[(i*stages) + j]; | |
431 | sp->stagenum = j; | |
432 | sp->set = lp; | |
433 | lp->stage[j] = sp; | |
434 | pthread_mutex_init(&sp->bufq.mtx, NULL); | |
435 | pthread_cond_init(&sp->bufq.cnd, NULL); | |
436 | TAILQ_INIT(&sp->bufq.queue); | |
437 | sp->bufq.waiters = FALSE; | |
438 | } | |
439 | ||
440 | /* | |
441 | * Take a second pass through the stages | |
442 | * to define what the workers are and to interconnect their input/outputs | |
443 | */ | |
444 | for (j = 0; j < stages; j++) { | |
445 | sp = lp->stage[j]; | |
446 | if (j == 0) { | |
447 | sp->fn = producer_fnp; | |
448 | sp->name = "producer"; | |
449 | } else { | |
450 | sp->fn = consumer_fnp; | |
451 | sp->name = "consumer"; | |
452 | } | |
453 | sp->input = &lp->stage[j]->bufq; | |
454 | sp->output = &lp->stage[(j + 1) % stages]->bufq; | |
455 | } | |
456 | ||
457 | /* Set up the buffers on the first worker of the set. */ | |
458 | work_array = (work_t *) malloc(buffers * sizeof(work_t)); | |
459 | for (j = 0; j < buffers; j++) { | |
460 | work_array[j].data = lp->data + (lp->isize * j); | |
461 | TAILQ_INSERT_TAIL(&lp->stage[0]->bufq.queue, &work_array[j], link); | |
462 | DBG(" empty work item %p for set %d data %p\n", | |
463 | &work_array[j], i, work_array[j].data); | |
464 | } | |
465 | ||
466 | /* Create this set of threads */ | |
467 | for (j = 0; j < stages; j++) { | |
468 | if (ret = pthread_create(&lp->stage[j]->thread, NULL, | |
469 | &manager_fn, | |
470 | (void *) lp->stage[j])) | |
471 | err(1, "pthread_create %d,%d", i, j); | |
472 | } | |
473 | } | |
474 | ||
475 | /* | |
476 | * We sit back anf wait for the slave to finish. | |
477 | */ | |
478 | for (i = 0; i < sets; i++) { | |
479 | lp = &line_info[i]; | |
480 | for (j = 0; j < stages; j++) { | |
481 | if(ret = pthread_join(lp->stage[j]->thread, (void **)&status)) | |
482 | err(1, "pthread_join %d,%d", i, j); | |
483 | DBG("Thread %d,%d status %d\n", i, j, status); | |
484 | } | |
485 | } | |
486 | ||
487 | /* | |
488 | * See how long the work took. | |
489 | */ | |
490 | timer = mach_absolute_time() - timer; | |
491 | timer = timer / 1000000ULL; | |
492 | printf("%d.%03d seconds elapsed.\n", | |
493 | (int) (timer/1000ULL), (int) (timer % 1000ULL)); | |
494 | ||
495 | return 0; | |
496 | } |