]>
Commit | Line | Data |
---|---|---|
2d21ac55 A |
1 | /* |
2 | * Copyright (c) 2005-2006 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | ||
29 | ||
30 | /* | |
31 | * APPLE NOTE: This file is compiled even if dtrace is unconfig'd. A symbol | |
32 | * from this file (_dtrace_register_anon_DOF) always needs to be exported for | |
33 | * an external kext to link against. | |
34 | */ | |
35 | ||
36 | #if CONFIG_DTRACE | |
37 | ||
38 | #define MACH__POSIX_C_SOURCE_PRIVATE 1 /* pulls in suitable savearea from mach/ppc/thread_status.h */ | |
39 | #include <kern/thread.h> | |
40 | #include <mach/thread_status.h> | |
41 | ||
42 | #include <stdarg.h> | |
43 | #include <string.h> | |
44 | #include <sys/malloc.h> | |
45 | #include <sys/time.h> | |
46 | #include <sys/proc.h> | |
47 | #include <sys/proc_internal.h> | |
48 | #include <sys/kauth.h> | |
49 | #include <sys/user.h> | |
50 | #include <sys/systm.h> | |
51 | #include <sys/dtrace.h> | |
52 | #include <sys/dtrace_impl.h> | |
53 | #include <libkern/OSAtomic.h> | |
54 | #include <kern/thread_call.h> | |
55 | #include <kern/task.h> | |
56 | #include <kern/sched_prim.h> | |
57 | #include <kern/queue.h> | |
58 | #include <miscfs/devfs/devfs.h> | |
59 | #include <kern/kalloc.h> | |
60 | ||
61 | #include <mach/vm_param.h> | |
62 | #include <mach/mach_vm.h> | |
63 | #include <mach/task.h> | |
64 | #include <vm/pmap.h> | |
65 | #include <vm/vm_map.h> /* All the bits we care about are guarded by MACH_KERNEL_PRIVATE :-( */ | |
66 | ||
67 | /* | |
68 | * pid/proc | |
69 | */ | |
70 | #define proc_t struct proc | |
71 | ||
72 | /* Not called from probe context */ | |
73 | proc_t * | |
74 | sprlock(pid_t pid) | |
75 | { | |
76 | proc_t* p; | |
77 | ||
78 | if ((p = proc_find(pid)) == PROC_NULL) { | |
79 | return PROC_NULL; | |
80 | } | |
81 | ||
82 | task_suspend(p->task); | |
83 | ||
84 | proc_lock(p); | |
85 | ||
86 | lck_mtx_lock(&p->p_dtrace_sprlock); | |
87 | ||
88 | return p; | |
89 | } | |
90 | ||
91 | /* Not called from probe context */ | |
92 | void | |
93 | sprunlock(proc_t *p) | |
94 | { | |
95 | if (p != PROC_NULL) { | |
96 | lck_mtx_unlock(&p->p_dtrace_sprlock); | |
97 | ||
98 | proc_unlock(p); | |
99 | ||
100 | task_resume(p->task); | |
101 | ||
102 | proc_rele(p); | |
103 | } | |
104 | } | |
105 | ||
106 | /* | |
107 | * uread/uwrite | |
108 | */ | |
109 | ||
110 | // These are not exported from vm_map.h. | |
111 | extern kern_return_t vm_map_read_user(vm_map_t map, vm_map_address_t src_addr, void *dst_p, vm_size_t size); | |
112 | extern kern_return_t vm_map_write_user(vm_map_t map, void *src_p, vm_map_address_t dst_addr, vm_size_t size); | |
113 | ||
114 | /* Not called from probe context */ | |
115 | int | |
116 | uread(proc_t *p, void *buf, user_size_t len, user_addr_t a) | |
117 | { | |
118 | kern_return_t ret; | |
119 | ||
120 | ASSERT(p != PROC_NULL); | |
121 | ASSERT(p->task != NULL); | |
122 | ||
123 | task_t task = p->task; | |
124 | ||
125 | /* | |
126 | * Grab a reference to the task vm_map_t to make sure | |
127 | * the map isn't pulled out from under us. | |
128 | * | |
129 | * Because the proc_lock is not held at all times on all code | |
130 | * paths leading here, it is possible for the proc to have | |
131 | * exited. If the map is null, fail. | |
132 | */ | |
133 | vm_map_t map = get_task_map_reference(task); | |
134 | if (map) { | |
135 | ret = vm_map_read_user( map, (vm_map_address_t)a, buf, (vm_size_t)len); | |
136 | vm_map_deallocate(map); | |
137 | } else | |
138 | ret = KERN_TERMINATED; | |
139 | ||
140 | return (int)ret; | |
141 | } | |
142 | ||
143 | ||
144 | /* Not called from probe context */ | |
145 | int | |
146 | uwrite(proc_t *p, void *buf, user_size_t len, user_addr_t a) | |
147 | { | |
148 | kern_return_t ret; | |
149 | ||
150 | ASSERT(p != NULL); | |
151 | ASSERT(p->task != NULL); | |
152 | ||
153 | task_t task = p->task; | |
154 | ||
155 | /* | |
156 | * Grab a reference to the task vm_map_t to make sure | |
157 | * the map isn't pulled out from under us. | |
158 | * | |
159 | * Because the proc_lock is not held at all times on all code | |
160 | * paths leading here, it is possible for the proc to have | |
161 | * exited. If the map is null, fail. | |
162 | */ | |
163 | vm_map_t map = get_task_map_reference(task); | |
164 | if (map) { | |
165 | /* Find the memory permissions. */ | |
166 | uint32_t nestingDepth=999999; | |
167 | vm_region_submap_short_info_data_64_t info; | |
168 | mach_msg_type_number_t count = VM_REGION_SUBMAP_SHORT_INFO_COUNT_64; | |
169 | mach_vm_address_t address = (mach_vm_address_t)a; | |
170 | mach_vm_size_t sizeOfRegion = (mach_vm_size_t)len; | |
171 | ||
172 | ret = mach_vm_region_recurse(map, &address, &sizeOfRegion, &nestingDepth, (vm_region_recurse_info_t)&info, &count); | |
173 | if (ret != KERN_SUCCESS) | |
174 | goto done; | |
175 | ||
176 | vm_prot_t reprotect; | |
177 | ||
178 | if (!(info.protection & VM_PROT_WRITE)) { | |
179 | /* Save the original protection values for restoration later */ | |
180 | reprotect = info.protection; | |
181 | ||
182 | if (info.max_protection & VM_PROT_WRITE) { | |
183 | /* The memory is not currently writable, but can be made writable. */ | |
184 | ret = mach_vm_protect (map, (mach_vm_offset_t)a, (mach_vm_size_t)len, 0, reprotect | VM_PROT_WRITE); | |
185 | } else { | |
186 | /* | |
187 | * The memory is not currently writable, and cannot be made writable. We need to COW this memory. | |
188 | * | |
189 | * Strange, we can't just say "reprotect | VM_PROT_COPY", that fails. | |
190 | */ | |
191 | ret = mach_vm_protect (map, (mach_vm_offset_t)a, (mach_vm_size_t)len, 0, VM_PROT_COPY | VM_PROT_READ | VM_PROT_WRITE); | |
192 | } | |
193 | ||
194 | if (ret != KERN_SUCCESS) | |
195 | goto done; | |
196 | ||
197 | } else { | |
198 | /* The memory was already writable. */ | |
199 | reprotect = VM_PROT_NONE; | |
200 | } | |
201 | ||
202 | ret = vm_map_write_user( map, | |
203 | buf, | |
204 | (vm_map_address_t)a, | |
205 | (vm_size_t)len); | |
206 | ||
207 | if (ret != KERN_SUCCESS) | |
208 | goto done; | |
209 | ||
210 | if (reprotect != VM_PROT_NONE) { | |
211 | ASSERT(reprotect & VM_PROT_EXECUTE); | |
212 | ret = mach_vm_protect (map, (mach_vm_offset_t)a, (mach_vm_size_t)len, 0, reprotect); | |
213 | } | |
214 | ||
215 | done: | |
216 | vm_map_deallocate(map); | |
217 | } else | |
218 | ret = KERN_TERMINATED; | |
219 | ||
220 | return (int)ret; | |
221 | } | |
222 | ||
223 | /* | |
224 | * cpuvar | |
225 | */ | |
226 | lck_mtx_t cpu_lock; | |
227 | lck_mtx_t mod_lock; | |
228 | ||
229 | cpu_t *cpu_list; | |
230 | cpu_core_t *cpu_core; /* XXX TLB lockdown? */ | |
231 | ||
232 | /* | |
233 | * cred_t | |
234 | */ | |
235 | ||
236 | /* | |
237 | * dtrace_CRED() can be called from probe context. We cannot simply call kauth_cred_get() since | |
238 | * that function may try to resolve a lazy credential binding, which entails taking the proc_lock. | |
239 | */ | |
240 | cred_t * | |
241 | dtrace_CRED(void) | |
242 | { | |
243 | struct uthread *uthread = get_bsdthread_info(current_thread()); | |
244 | ||
245 | if (uthread == NULL) | |
246 | return NULL; | |
247 | else | |
248 | return uthread->uu_ucred; /* May return NOCRED which is defined to be 0 */ | |
249 | } | |
250 | ||
251 | #define HAS_ALLPRIVS(cr) priv_isfullset(&CR_OEPRIV(cr)) | |
252 | #define HAS_PRIVILEGE(cr, pr) ((pr) == PRIV_ALL ? \ | |
253 | HAS_ALLPRIVS(cr) : \ | |
254 | PRIV_ISASSERT(&CR_OEPRIV(cr), pr)) | |
255 | ||
256 | int PRIV_POLICY_CHOICE(void* cred, int priv, int all) | |
257 | { | |
258 | #pragma unused(priv, all) | |
259 | return kauth_cred_issuser(cred); /* XXX TODO: How is this different from PRIV_POLICY_ONLY? */ | |
260 | } | |
261 | ||
262 | int | |
263 | PRIV_POLICY_ONLY(void *cr, int priv, int boolean) | |
264 | { | |
265 | #pragma unused(priv, boolean) | |
266 | return kauth_cred_issuser(cr); /* XXX TODO: HAS_PRIVILEGE(cr, priv); */ | |
267 | } | |
268 | ||
269 | gid_t | |
270 | crgetgid(const cred_t *cr) { return cr->cr_groups[0]; } | |
271 | ||
272 | uid_t | |
273 | crgetuid(const cred_t *cr) { return cr->cr_uid; } | |
274 | ||
275 | /* | |
276 | * "cyclic" | |
277 | */ | |
278 | ||
279 | /* osfmk/kern/timer_call.h */ | |
280 | typedef void *call_entry_param_t; | |
281 | typedef void (*call_entry_func_t)( | |
282 | call_entry_param_t param0, | |
283 | call_entry_param_t param1); | |
284 | ||
285 | typedef struct call_entry { | |
286 | queue_chain_t q_link; | |
287 | call_entry_func_t func; | |
288 | call_entry_param_t param0; | |
289 | call_entry_param_t param1; | |
290 | uint64_t deadline; | |
291 | enum { | |
292 | IDLE, | |
293 | PENDING, | |
294 | DELAYED } state; | |
295 | } call_entry_data_t; | |
296 | ||
297 | ||
298 | typedef struct call_entry *timer_call_t; | |
299 | typedef void *timer_call_param_t; | |
300 | typedef void (*timer_call_func_t)( | |
301 | timer_call_param_t param0, | |
302 | timer_call_param_t param1); | |
303 | ||
304 | extern void | |
305 | timer_call_setup( | |
306 | timer_call_t call, | |
307 | timer_call_func_t func, | |
308 | timer_call_param_t param0); | |
309 | ||
310 | extern boolean_t | |
311 | timer_call_enter1( | |
312 | timer_call_t call, | |
313 | timer_call_param_t param1, | |
314 | uint64_t deadline); | |
315 | ||
316 | extern boolean_t | |
317 | timer_call_cancel( | |
318 | timer_call_t call); | |
319 | ||
320 | typedef struct wrap_timer_call { | |
321 | cyc_handler_t hdlr; | |
322 | cyc_time_t when; | |
323 | uint64_t deadline; | |
324 | struct call_entry call; | |
325 | } wrap_timer_call_t; | |
326 | ||
327 | #define WAKEUP_REAPER 0x7FFFFFFFFFFFFFFFLL | |
328 | #define NEARLY_FOREVER 0x7FFFFFFFFFFFFFFELL | |
329 | ||
330 | static void | |
331 | _timer_call_apply_cyclic( void *ignore, void *vTChdl ) | |
332 | { | |
333 | #pragma unused(ignore) | |
334 | wrap_timer_call_t *wrapTC = (wrap_timer_call_t *)vTChdl; | |
335 | ||
336 | (*(wrapTC->hdlr.cyh_func))( wrapTC->hdlr.cyh_arg ); | |
337 | ||
338 | clock_deadline_for_periodic_event( wrapTC->when.cyt_interval, mach_absolute_time(), &(wrapTC->deadline) ); | |
339 | timer_call_enter1( &(wrapTC->call), (void *)wrapTC, wrapTC->deadline ); | |
340 | ||
341 | /* Did timer_call_remove_cyclic request a wakeup call when this timer call was re-armed? */ | |
342 | if (wrapTC->when.cyt_interval == WAKEUP_REAPER) | |
343 | thread_wakeup((event_t)wrapTC); | |
344 | } | |
345 | ||
346 | static cyclic_id_t | |
347 | timer_call_add_cyclic(wrap_timer_call_t *wrapTC, cyc_handler_t *handler, cyc_time_t *when) | |
348 | { | |
349 | uint64_t now; | |
350 | ||
351 | timer_call_setup( &(wrapTC->call), _timer_call_apply_cyclic, NULL ); | |
352 | wrapTC->hdlr = *handler; | |
353 | wrapTC->when = *when; | |
354 | ||
355 | nanoseconds_to_absolutetime( wrapTC->when.cyt_interval, (uint64_t *)&wrapTC->when.cyt_interval ); | |
356 | ||
357 | now = mach_absolute_time(); | |
358 | wrapTC->deadline = now; | |
359 | ||
360 | clock_deadline_for_periodic_event( wrapTC->when.cyt_interval, now, &(wrapTC->deadline) ); | |
361 | timer_call_enter1( &(wrapTC->call), (void *)wrapTC, wrapTC->deadline ); | |
362 | ||
363 | return (cyclic_id_t)wrapTC; | |
364 | } | |
365 | ||
366 | static void | |
367 | timer_call_remove_cyclic(cyclic_id_t cyclic) | |
368 | { | |
369 | wrap_timer_call_t *wrapTC = (wrap_timer_call_t *)cyclic; | |
370 | ||
371 | while (!timer_call_cancel(&(wrapTC->call))) { | |
372 | int ret = assert_wait(wrapTC, THREAD_UNINT); | |
373 | ASSERT(ret == THREAD_WAITING); | |
374 | ||
375 | wrapTC->when.cyt_interval = WAKEUP_REAPER; | |
376 | ||
377 | ret = thread_block(THREAD_CONTINUE_NULL); | |
378 | ASSERT(ret == THREAD_AWAKENED); | |
379 | } | |
380 | } | |
381 | ||
382 | static void * | |
383 | timer_call_get_cyclic_arg(cyclic_id_t cyclic) | |
384 | { | |
385 | wrap_timer_call_t *wrapTC = (wrap_timer_call_t *)cyclic; | |
386 | ||
387 | return (wrapTC ? wrapTC->hdlr.cyh_arg : NULL); | |
388 | } | |
389 | ||
390 | cyclic_id_t | |
391 | cyclic_timer_add(cyc_handler_t *handler, cyc_time_t *when) | |
392 | { | |
393 | wrap_timer_call_t *wrapTC = _MALLOC(sizeof(wrap_timer_call_t), M_TEMP, M_ZERO | M_WAITOK); | |
394 | if (NULL == wrapTC) | |
395 | return CYCLIC_NONE; | |
396 | else | |
397 | return timer_call_add_cyclic( wrapTC, handler, when ); | |
398 | } | |
399 | ||
400 | void | |
401 | cyclic_timer_remove(cyclic_id_t cyclic) | |
402 | { | |
403 | ASSERT( cyclic != CYCLIC_NONE ); | |
404 | ||
405 | timer_call_remove_cyclic( cyclic ); | |
406 | _FREE((void *)cyclic, M_TEMP); | |
407 | } | |
408 | ||
409 | static void | |
410 | _cyclic_add_omni(cyclic_id_list_t cyc_list) | |
411 | { | |
412 | cyc_time_t cT; | |
413 | cyc_handler_t cH; | |
414 | wrap_timer_call_t *wrapTC; | |
415 | cyc_omni_handler_t *omni = (cyc_omni_handler_t *)cyc_list; | |
416 | char *t; | |
417 | ||
418 | (omni->cyo_online)(omni->cyo_arg, CPU, &cH, &cT); | |
419 | ||
420 | t = (char *)cyc_list; | |
421 | t += sizeof(cyc_omni_handler_t); | |
422 | cyc_list = (cyclic_id_list_t)t; | |
423 | ||
424 | t += sizeof(cyclic_id_t)*NCPU; | |
425 | t += (sizeof(wrap_timer_call_t))*cpu_number(); | |
426 | wrapTC = (wrap_timer_call_t *)t; | |
427 | ||
428 | cyc_list[cpu_number()] = timer_call_add_cyclic(wrapTC, &cH, &cT); | |
429 | } | |
430 | ||
431 | cyclic_id_list_t | |
432 | cyclic_add_omni(cyc_omni_handler_t *omni) | |
433 | { | |
434 | cyclic_id_list_t cyc_list = | |
435 | _MALLOC( (sizeof(wrap_timer_call_t))*NCPU + | |
436 | sizeof(cyclic_id_t)*NCPU + | |
437 | sizeof(cyc_omni_handler_t), M_TEMP, M_ZERO | M_WAITOK); | |
438 | if (NULL == cyc_list) | |
439 | return (cyclic_id_list_t)CYCLIC_NONE; | |
440 | ||
441 | *(cyc_omni_handler_t *)cyc_list = *omni; | |
442 | dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)_cyclic_add_omni, (void *)cyc_list); | |
443 | ||
444 | return cyc_list; | |
445 | } | |
446 | ||
447 | static void | |
448 | _cyclic_remove_omni(cyclic_id_list_t cyc_list) | |
449 | { | |
450 | cyc_omni_handler_t *omni = (cyc_omni_handler_t *)cyc_list; | |
451 | void *oarg; | |
452 | cyclic_id_t cid; | |
453 | char *t; | |
454 | ||
455 | t = (char *)cyc_list; | |
456 | t += sizeof(cyc_omni_handler_t); | |
457 | cyc_list = (cyclic_id_list_t)t; | |
458 | ||
459 | cid = cyc_list[cpu_number()]; | |
460 | oarg = timer_call_get_cyclic_arg(cid); | |
461 | ||
462 | timer_call_remove_cyclic( cid ); | |
463 | (omni->cyo_offline)(omni->cyo_arg, CPU, oarg); | |
464 | } | |
465 | ||
466 | void | |
467 | cyclic_remove_omni(cyclic_id_list_t cyc_list) | |
468 | { | |
469 | ASSERT( cyc_list != (cyclic_id_list_t)CYCLIC_NONE ); | |
470 | ||
471 | dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)_cyclic_remove_omni, (void *)cyc_list); | |
472 | _FREE(cyc_list, M_TEMP); | |
473 | } | |
474 | ||
475 | typedef struct wrap_thread_call { | |
476 | thread_call_t TChdl; | |
477 | cyc_handler_t hdlr; | |
478 | cyc_time_t when; | |
479 | uint64_t deadline; | |
480 | } wrap_thread_call_t; | |
481 | ||
482 | /* | |
483 | * _cyclic_apply will run on some thread under kernel_task. That's OK for the | |
484 | * cleaner and the deadman, but too distant in time and place for the profile provider. | |
485 | */ | |
486 | static void | |
487 | _cyclic_apply( void *ignore, void *vTChdl ) | |
488 | { | |
489 | #pragma unused(ignore) | |
490 | wrap_thread_call_t *wrapTC = (wrap_thread_call_t *)vTChdl; | |
491 | ||
492 | (*(wrapTC->hdlr.cyh_func))( wrapTC->hdlr.cyh_arg ); | |
493 | ||
494 | clock_deadline_for_periodic_event( wrapTC->when.cyt_interval, mach_absolute_time(), &(wrapTC->deadline) ); | |
495 | (void)thread_call_enter1_delayed( wrapTC->TChdl, (void *)wrapTC, wrapTC->deadline ); | |
496 | ||
497 | /* Did cyclic_remove request a wakeup call when this thread call was re-armed? */ | |
498 | if (wrapTC->when.cyt_interval == WAKEUP_REAPER) | |
499 | thread_wakeup((event_t)wrapTC); | |
500 | } | |
501 | ||
502 | cyclic_id_t | |
503 | cyclic_add(cyc_handler_t *handler, cyc_time_t *when) | |
504 | { | |
505 | uint64_t now; | |
506 | ||
507 | wrap_thread_call_t *wrapTC = _MALLOC(sizeof(wrap_thread_call_t), M_TEMP, M_ZERO | M_WAITOK); | |
508 | if (NULL == wrapTC) | |
509 | return CYCLIC_NONE; | |
510 | ||
511 | wrapTC->TChdl = thread_call_allocate( _cyclic_apply, NULL ); | |
512 | wrapTC->hdlr = *handler; | |
513 | wrapTC->when = *when; | |
514 | ||
515 | ASSERT(when->cyt_when == 0); | |
516 | ASSERT(when->cyt_interval < WAKEUP_REAPER); | |
517 | ||
518 | nanoseconds_to_absolutetime(wrapTC->when.cyt_interval, (uint64_t *)&wrapTC->when.cyt_interval); | |
519 | ||
520 | now = mach_absolute_time(); | |
521 | wrapTC->deadline = now; | |
522 | ||
523 | clock_deadline_for_periodic_event( wrapTC->when.cyt_interval, now, &(wrapTC->deadline) ); | |
524 | (void)thread_call_enter1_delayed( wrapTC->TChdl, (void *)wrapTC, wrapTC->deadline ); | |
525 | ||
526 | return (cyclic_id_t)wrapTC; | |
527 | } | |
528 | ||
529 | static void | |
530 | noop_cyh_func(void * ignore) | |
531 | { | |
532 | #pragma unused(ignore) | |
533 | } | |
534 | ||
535 | void | |
536 | cyclic_remove(cyclic_id_t cyclic) | |
537 | { | |
538 | wrap_thread_call_t *wrapTC = (wrap_thread_call_t *)cyclic; | |
539 | ||
540 | ASSERT(cyclic != CYCLIC_NONE); | |
541 | ||
542 | while (!thread_call_cancel(wrapTC->TChdl)) { | |
543 | int ret = assert_wait(wrapTC, THREAD_UNINT); | |
544 | ASSERT(ret == THREAD_WAITING); | |
545 | ||
546 | wrapTC->when.cyt_interval = WAKEUP_REAPER; | |
547 | ||
548 | ret = thread_block(THREAD_CONTINUE_NULL); | |
549 | ASSERT(ret == THREAD_AWAKENED); | |
550 | } | |
551 | ||
552 | if (thread_call_free(wrapTC->TChdl)) | |
553 | _FREE(wrapTC, M_TEMP); | |
554 | else { | |
555 | /* Gut this cyclic and move on ... */ | |
556 | wrapTC->hdlr.cyh_func = noop_cyh_func; | |
557 | wrapTC->when.cyt_interval = NEARLY_FOREVER; | |
558 | } | |
559 | } | |
560 | ||
561 | /* | |
562 | * timeout / untimeout (converted to dtrace_timeout / dtrace_untimeout due to name collision) | |
563 | */ | |
564 | ||
565 | thread_call_t | |
566 | dtrace_timeout(void (*func)(void *, void *), void* arg, uint64_t nanos) | |
567 | { | |
568 | #pragma unused(arg) | |
569 | thread_call_t call = thread_call_allocate(func, NULL); | |
570 | ||
571 | nanoseconds_to_absolutetime(nanos, &nanos); | |
572 | ||
573 | /* | |
574 | * This method does not use clock_deadline_for_periodic_event() because it is a one-shot, | |
575 | * and clock drift on later invocations is not a worry. | |
576 | */ | |
577 | uint64_t deadline = mach_absolute_time() + nanos; | |
578 | ||
579 | thread_call_enter_delayed(call, deadline); | |
580 | ||
581 | return call; | |
582 | } | |
583 | ||
584 | /* | |
585 | * ddi | |
586 | */ | |
587 | void | |
588 | ddi_report_dev(dev_info_t *devi) | |
589 | { | |
590 | #pragma unused(devi) | |
591 | } | |
592 | ||
593 | #define NSOFT_STATES 32 /* XXX No more than 32 clients at a time, please. */ | |
594 | static void *soft[NSOFT_STATES]; | |
595 | ||
596 | int | |
597 | ddi_soft_state_init(void **state_p, size_t size, size_t n_items) | |
598 | { | |
599 | #pragma unused(n_items) | |
600 | int i; | |
601 | ||
602 | for (i = 0; i < NSOFT_STATES; ++i) soft[i] = _MALLOC(size, M_TEMP, M_ZERO | M_WAITOK); | |
603 | *(size_t *)state_p = size; | |
604 | return 0; | |
605 | } | |
606 | ||
607 | int | |
608 | ddi_soft_state_zalloc(void *state, int item) | |
609 | { | |
610 | #pragma unused(state) | |
611 | if (item < NSOFT_STATES) | |
612 | return DDI_SUCCESS; | |
613 | else | |
614 | return DDI_FAILURE; | |
615 | } | |
616 | ||
617 | void * | |
618 | ddi_get_soft_state(void *state, int item) | |
619 | { | |
620 | #pragma unused(state) | |
621 | ASSERT(item < NSOFT_STATES); | |
622 | return soft[item]; | |
623 | } | |
624 | ||
625 | int | |
626 | ddi_soft_state_free(void *state, int item) | |
627 | { | |
628 | ASSERT(item < NSOFT_STATES); | |
629 | bzero( soft[item], (size_t)state ); | |
630 | return DDI_SUCCESS; | |
631 | } | |
632 | ||
633 | void | |
634 | ddi_soft_state_fini(void **state_p) | |
635 | { | |
636 | #pragma unused(state_p) | |
637 | int i; | |
638 | ||
639 | for (i = 0; i < NSOFT_STATES; ++i) _FREE( soft[i], M_TEMP ); | |
640 | } | |
641 | ||
642 | static unsigned int gRegisteredProps = 0; | |
643 | static struct { | |
644 | char name[32]; /* enough for "dof-data-" + digits */ | |
645 | int *data; | |
646 | uint_t nelements; | |
647 | } gPropTable[16]; | |
648 | ||
649 | kern_return_t _dtrace_register_anon_DOF(char *, uchar_t *, uint_t); | |
650 | ||
651 | kern_return_t | |
652 | _dtrace_register_anon_DOF(char *name, uchar_t *data, uint_t nelements) | |
653 | { | |
654 | if (gRegisteredProps < sizeof(gPropTable)/sizeof(gPropTable[0])) { | |
655 | int *p = (int *)_MALLOC(nelements*sizeof(int), M_TEMP, M_WAITOK); | |
656 | ||
657 | if (NULL == p) | |
658 | return KERN_FAILURE; | |
659 | ||
660 | strlcpy(gPropTable[gRegisteredProps].name, name, sizeof(gPropTable[0].name)); | |
661 | gPropTable[gRegisteredProps].nelements = nelements; | |
662 | gPropTable[gRegisteredProps].data = p; | |
663 | ||
664 | while (nelements-- > 0) { | |
665 | *p++ = (int)(*data++); | |
666 | } | |
667 | ||
668 | gRegisteredProps++; | |
669 | return KERN_SUCCESS; | |
670 | } | |
671 | else | |
672 | return KERN_FAILURE; | |
673 | } | |
674 | ||
675 | int | |
676 | ddi_prop_lookup_int_array(dev_t match_dev, dev_info_t *dip, uint_t flags, | |
677 | char *name, int **data, uint_t *nelements) | |
678 | { | |
679 | #pragma unused(match_dev,dip,flags) | |
680 | unsigned int i; | |
681 | for (i = 0; i < gRegisteredProps; ++i) | |
682 | { | |
683 | if (0 == strncmp(name, gPropTable[i].name, | |
684 | sizeof(gPropTable[i].name))) { | |
685 | *data = gPropTable[i].data; | |
686 | *nelements = gPropTable[i].nelements; | |
687 | return DDI_SUCCESS; | |
688 | } | |
689 | } | |
690 | return DDI_FAILURE; | |
691 | } | |
692 | ||
693 | int | |
694 | ddi_prop_free(void *buf) | |
695 | { | |
696 | _FREE(buf, M_TEMP); | |
697 | return DDI_SUCCESS; | |
698 | } | |
699 | ||
700 | int | |
701 | ddi_driver_major(dev_info_t *devi) { return (int)major(devi); } | |
702 | ||
703 | int | |
704 | ddi_create_minor_node(dev_info_t *dip, const char *name, int spec_type, | |
705 | minor_t minor_num, const char *node_type, int flag) | |
706 | { | |
707 | #pragma unused(spec_type,node_type,flag) | |
708 | dev_t dev = makedev( (uint32_t)dip, minor_num ); | |
709 | ||
710 | if (NULL == devfs_make_node( dev, DEVFS_CHAR, UID_ROOT, GID_WHEEL, 0666, name, 0 )) | |
711 | return DDI_FAILURE; | |
712 | else | |
713 | return DDI_SUCCESS; | |
714 | } | |
715 | ||
716 | void | |
717 | ddi_remove_minor_node(dev_info_t *dip, char *name) | |
718 | { | |
719 | #pragma unused(dip,name) | |
720 | /* XXX called from dtrace_detach, so NOTREACHED for now. */ | |
721 | } | |
722 | ||
723 | major_t | |
724 | getemajor( dev_t d ) | |
725 | { | |
726 | return (major_t) major(d); | |
727 | } | |
728 | ||
729 | minor_t | |
730 | getminor ( dev_t d ) | |
731 | { | |
732 | return (minor_t) minor(d); | |
733 | } | |
734 | ||
735 | dev_t | |
736 | makedevice(major_t major, minor_t minor) | |
737 | { | |
738 | return makedev( major, minor ); | |
739 | } | |
740 | ||
741 | int ddi_getprop(dev_t dev, dev_info_t *dip, int flags, const char *name, int defvalue) | |
742 | { | |
743 | #pragma unused(dev, dip, flags, name) | |
744 | ||
745 | return defvalue; | |
746 | } | |
747 | ||
748 | /* | |
749 | * Kernel Debug Interface | |
750 | */ | |
751 | int | |
752 | kdi_dtrace_set(kdi_dtrace_set_t ignore) | |
753 | { | |
754 | #pragma unused(ignore) | |
755 | return 0; /* Success */ | |
756 | } | |
757 | ||
758 | extern void Debugger(const char*); | |
759 | ||
760 | void | |
761 | debug_enter(char *c) { Debugger(c); } | |
762 | ||
763 | /* | |
764 | * kmem | |
765 | */ | |
766 | ||
767 | void * | |
768 | dt_kmem_alloc(size_t size, int kmflag) | |
769 | { | |
770 | #pragma unused(kmflag) | |
771 | ||
772 | /* | |
773 | * We ignore the M_NOWAIT bit in kmflag (all of kmflag, in fact). | |
774 | * Requests larger than 8K with M_NOWAIT fail in kalloc_canblock. | |
775 | */ | |
776 | #if defined(DTRACE_MEMORY_ZONES) | |
777 | return dtrace_alloc(size); | |
778 | #else | |
779 | return kalloc(size); | |
780 | #endif | |
781 | } | |
782 | ||
783 | void * | |
784 | dt_kmem_zalloc(size_t size, int kmflag) | |
785 | { | |
786 | #pragma unused(kmflag) | |
787 | ||
788 | /* | |
789 | * We ignore the M_NOWAIT bit in kmflag (all of kmflag, in fact). | |
790 | * Requests larger than 8K with M_NOWAIT fail in kalloc_canblock. | |
791 | */ | |
792 | #if defined(DTRACE_MEMORY_ZONES) | |
793 | void* buf = dtrace_alloc(size); | |
794 | #else | |
795 | void* buf = kalloc(size); | |
796 | #endif | |
797 | ||
798 | if(!buf) | |
799 | return NULL; | |
800 | ||
801 | bzero(buf, size); | |
802 | ||
803 | return buf; | |
804 | } | |
805 | ||
806 | void | |
807 | dt_kmem_free(void *buf, size_t size) | |
808 | { | |
809 | #pragma unused(size) | |
810 | /* | |
811 | * DTrace relies on this, its doing a lot of NULL frees. | |
812 | * A null free causes the debug builds to panic. | |
813 | */ | |
814 | if (buf == NULL) return; | |
815 | ||
816 | ASSERT(size > 0); | |
817 | ||
818 | #if defined(DTRACE_MEMORY_ZONES) | |
819 | dtrace_free(buf, size); | |
820 | #else | |
821 | kfree(buf, size); | |
822 | #endif | |
823 | } | |
824 | ||
825 | ||
826 | ||
827 | /* | |
828 | * aligned kmem allocator | |
829 | * align should be a power of two | |
830 | */ | |
831 | ||
832 | void* dt_kmem_alloc_aligned(size_t size, size_t align, int kmflag) | |
833 | { | |
834 | void* buf; | |
835 | intptr_t p; | |
836 | void** buf_backup; | |
837 | ||
838 | buf = dt_kmem_alloc(align + sizeof(void*) + size, kmflag); | |
839 | ||
840 | if(!buf) | |
841 | return NULL; | |
842 | ||
843 | p = (intptr_t)buf; | |
844 | p += sizeof(void*); /* now we have enough room to store the backup */ | |
845 | p = P2ROUNDUP(p, align); /* and now we're aligned */ | |
846 | ||
847 | buf_backup = (void**)(p - sizeof(void*)); | |
848 | *buf_backup = buf; /* back up the address we need to free */ | |
849 | ||
850 | return (void*)p; | |
851 | } | |
852 | ||
853 | void* dt_kmem_zalloc_aligned(size_t size, size_t align, int kmflag) | |
854 | { | |
855 | void* buf; | |
856 | ||
857 | buf = dt_kmem_alloc_aligned(size, align, kmflag); | |
858 | ||
859 | if(!buf) | |
860 | return NULL; | |
861 | ||
862 | bzero(buf, size); | |
863 | ||
864 | return buf; | |
865 | } | |
866 | ||
867 | void dt_kmem_free_aligned(void* buf, size_t size) | |
868 | { | |
869 | #pragma unused(size) | |
870 | intptr_t p; | |
871 | void** buf_backup; | |
872 | ||
873 | p = (intptr_t)buf; | |
874 | p -= sizeof(void*); | |
875 | buf_backup = (void**)(p); | |
876 | ||
877 | dt_kmem_free(*buf_backup, size + ((char*)buf - (char*)*buf_backup)); | |
878 | } | |
879 | ||
880 | /* | |
881 | * dtrace wants to manage just a single block: dtrace_state_percpu_t * NCPU, and | |
882 | * doesn't specify constructor, destructor, or reclaim methods. | |
883 | * At present, it always zeroes the block it obtains from kmem_cache_alloc(). | |
884 | * We'll manage this constricted use of kmem_cache with ordinary _MALLOC and _FREE. | |
885 | */ | |
886 | kmem_cache_t * | |
887 | kmem_cache_create( | |
888 | char *name, /* descriptive name for this cache */ | |
889 | size_t bufsize, /* size of the objects it manages */ | |
890 | size_t align, /* required object alignment */ | |
891 | int (*constructor)(void *, void *, int), /* object constructor */ | |
892 | void (*destructor)(void *, void *), /* object destructor */ | |
893 | void (*reclaim)(void *), /* memory reclaim callback */ | |
894 | void *private, /* pass-thru arg for constr/destr/reclaim */ | |
895 | vmem_t *vmp, /* vmem source for slab allocation */ | |
896 | int cflags) /* cache creation flags */ | |
897 | { | |
898 | #pragma unused(name,align,constructor,destructor,reclaim,private,vmp,cflags) | |
899 | return (kmem_cache_t *)bufsize; /* A cookie that tracks the single object size. */ | |
900 | } | |
901 | ||
902 | void * | |
903 | kmem_cache_alloc(kmem_cache_t *cp, int kmflag) | |
904 | { | |
905 | #pragma unused(kmflag) | |
906 | size_t bufsize = (size_t)cp; | |
907 | return (void *)_MALLOC(bufsize, M_TEMP, M_WAITOK); | |
908 | } | |
909 | ||
910 | void | |
911 | kmem_cache_free(kmem_cache_t *cp, void *buf) | |
912 | { | |
913 | #pragma unused(cp) | |
914 | _FREE(buf, M_TEMP); | |
915 | } | |
916 | ||
917 | void | |
918 | kmem_cache_destroy(kmem_cache_t *cp) | |
919 | { | |
920 | #pragma unused(cp) | |
921 | } | |
922 | ||
923 | /* | |
924 | * taskq | |
925 | */ | |
926 | extern void thread_call_setup(thread_call_t, thread_call_func_t, thread_call_param_t); /* XXX MACH_KERNEL_PRIVATE */ | |
927 | ||
928 | static void | |
929 | _taskq_apply( task_func_t func, thread_call_param_t arg ) | |
930 | { | |
931 | func( (void *)arg ); | |
932 | } | |
933 | ||
934 | taskq_t * | |
935 | taskq_create(const char *name, int nthreads, pri_t pri, int minalloc, | |
936 | int maxalloc, uint_t flags) | |
937 | { | |
938 | #pragma unused(name,nthreads,pri,minalloc,maxalloc,flags) | |
939 | ||
940 | return (taskq_t *)thread_call_allocate( (thread_call_func_t)_taskq_apply, NULL ); | |
941 | } | |
942 | ||
943 | taskqid_t | |
944 | taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t flags) | |
945 | { | |
946 | #pragma unused(flags) | |
947 | thread_call_setup( (thread_call_t) tq, (thread_call_func_t)_taskq_apply, (thread_call_param_t)func ); | |
948 | thread_call_enter1( (thread_call_t) tq, (thread_call_param_t)arg ); | |
949 | return (taskqid_t) tq /* for lack of anything better */; | |
950 | } | |
951 | ||
952 | void | |
953 | taskq_destroy(taskq_t *tq) | |
954 | { | |
955 | thread_call_cancel( (thread_call_t) tq ); | |
956 | thread_call_free( (thread_call_t) tq ); | |
957 | } | |
958 | ||
959 | pri_t maxclsyspri; | |
960 | ||
961 | /* | |
962 | * vmem (Solaris "slab" allocator) used by DTrace solely to hand out resource ids | |
963 | */ | |
964 | typedef unsigned int u_daddr_t; | |
965 | #include "blist.h" | |
966 | ||
967 | /* By passing around blist *handles*, the underlying blist can be resized as needed. */ | |
968 | struct blist_hdl { | |
969 | blist_t blist; | |
970 | }; | |
971 | ||
972 | vmem_t * | |
973 | vmem_create(const char *name, void *base, size_t size, size_t quantum, void *ignore5, | |
974 | void *ignore6, vmem_t *source, size_t qcache_max, int vmflag) | |
975 | { | |
976 | #pragma unused(name,quantum,ignore5,ignore6,source,qcache_max,vmflag) | |
977 | blist_t bl; | |
978 | struct blist_hdl *p = _MALLOC(sizeof(struct blist_hdl), M_TEMP, M_WAITOK); | |
979 | ||
980 | ASSERT(quantum == 1); | |
981 | ASSERT(NULL == ignore5); | |
982 | ASSERT(NULL == ignore6); | |
983 | ASSERT(NULL == source); | |
984 | ASSERT(0 == qcache_max); | |
985 | ASSERT(vmflag & VMC_IDENTIFIER); | |
986 | ||
987 | size = MIN(128, size); /* Clamp to 128 initially, since the underlying data structure is pre-allocated */ | |
988 | ||
989 | p->blist = bl = blist_create( size ); | |
990 | blist_free(bl, 0, size); | |
991 | if (base) blist_alloc( bl, (daddr_t)base ); /* Chomp off initial ID(s) */ | |
992 | ||
993 | return (vmem_t *)p; | |
994 | } | |
995 | ||
996 | void * | |
997 | vmem_alloc(vmem_t *vmp, size_t size, int vmflag) | |
998 | { | |
999 | #pragma unused(vmflag) | |
1000 | struct blist_hdl *q = (struct blist_hdl *)vmp; | |
1001 | blist_t bl = q->blist; | |
1002 | daddr_t p; | |
1003 | ||
1004 | p = blist_alloc(bl, (daddr_t)size); | |
1005 | ||
1006 | if ((daddr_t)-1 == p) { | |
1007 | blist_resize(&bl, (bl->bl_blocks) << 1, 1); | |
1008 | q->blist = bl; | |
1009 | p = blist_alloc(bl, (daddr_t)size); | |
1010 | if ((daddr_t)-1 == p) | |
1011 | panic("vmem_alloc: failure after blist_resize!"); | |
1012 | } | |
1013 | ||
1014 | return (void *)p; | |
1015 | } | |
1016 | ||
1017 | void | |
1018 | vmem_free(vmem_t *vmp, void *vaddr, size_t size) | |
1019 | { | |
1020 | struct blist_hdl *p = (struct blist_hdl *)vmp; | |
1021 | ||
1022 | blist_free( p->blist, (daddr_t)vaddr, (daddr_t)size ); | |
1023 | } | |
1024 | ||
1025 | void | |
1026 | vmem_destroy(vmem_t *vmp) | |
1027 | { | |
1028 | struct blist_hdl *p = (struct blist_hdl *)vmp; | |
1029 | ||
1030 | blist_destroy( p->blist ); | |
1031 | _FREE( p, sizeof(struct blist_hdl) ); | |
1032 | } | |
1033 | ||
1034 | /* | |
1035 | * Timing | |
1036 | */ | |
1037 | ||
1038 | /* | |
1039 | * dtrace_gethrestime() provides the "walltimestamp", a value that is anchored at | |
1040 | * January 1, 1970. Because it can be called from probe context, it must take no locks. | |
1041 | */ | |
1042 | ||
1043 | hrtime_t | |
1044 | dtrace_gethrestime(void) | |
1045 | { | |
1046 | uint32_t secs, nanosecs; | |
1047 | uint64_t secs64, ns64; | |
1048 | ||
1049 | clock_get_calendar_nanotime_nowait(&secs, &nanosecs); | |
1050 | secs64 = (uint64_t)secs; | |
1051 | ns64 = (uint64_t)nanosecs; | |
1052 | ||
1053 | ns64 = ns64 + (secs64 * 1000000000LL); | |
1054 | return ns64; | |
1055 | } | |
1056 | ||
1057 | /* | |
1058 | * dtrace_gethrtime() provides high-resolution timestamps with machine-dependent origin. | |
1059 | * Hence its primary use is to specify intervals. | |
1060 | */ | |
1061 | ||
1062 | hrtime_t | |
1063 | dtrace_abs_to_nano(uint64_t elapsed) | |
1064 | { | |
1065 | static mach_timebase_info_data_t sTimebaseInfo = { 0, 0 }; | |
1066 | ||
1067 | /* | |
1068 | * If this is the first time we've run, get the timebase. | |
1069 | * We can use denom == 0 to indicate that sTimebaseInfo is | |
1070 | * uninitialised because it makes no sense to have a zero | |
1071 | * denominator in a fraction. | |
1072 | */ | |
1073 | ||
1074 | if ( sTimebaseInfo.denom == 0 ) { | |
1075 | (void) clock_timebase_info(&sTimebaseInfo); | |
1076 | } | |
1077 | ||
1078 | /* | |
1079 | * Convert to nanoseconds. | |
1080 | * return (elapsed * (uint64_t)sTimebaseInfo.numer)/(uint64_t)sTimebaseInfo.denom; | |
1081 | * | |
1082 | * Provided the final result is representable in 64 bits the following maneuver will | |
1083 | * deliver that result without intermediate overflow. | |
1084 | */ | |
1085 | if (sTimebaseInfo.denom == sTimebaseInfo.numer) | |
1086 | return elapsed; | |
1087 | else if (sTimebaseInfo.denom == 1) | |
1088 | return elapsed * (uint64_t)sTimebaseInfo.numer; | |
1089 | else { | |
1090 | /* Decompose elapsed = eta32 * 2^32 + eps32: */ | |
1091 | uint64_t eta32 = elapsed >> 32; | |
1092 | uint64_t eps32 = elapsed & 0x00000000ffffffffLL; | |
1093 | ||
1094 | uint32_t numer = sTimebaseInfo.numer, denom = sTimebaseInfo.denom; | |
1095 | ||
1096 | /* Form product of elapsed64 (decomposed) and numer: */ | |
1097 | uint64_t mu64 = numer * eta32; | |
1098 | uint64_t lambda64 = numer * eps32; | |
1099 | ||
1100 | /* Divide the constituents by denom: */ | |
1101 | uint64_t q32 = mu64/denom; | |
1102 | uint64_t r32 = mu64 - (q32 * denom); /* mu64 % denom */ | |
1103 | ||
1104 | return (q32 << 32) + ((r32 << 32) + lambda64)/denom; | |
1105 | } | |
1106 | } | |
1107 | ||
1108 | hrtime_t | |
1109 | dtrace_gethrtime(void) | |
1110 | { | |
1111 | static uint64_t start = 0; | |
1112 | ||
1113 | if (start == 0) | |
1114 | start = mach_absolute_time(); | |
1115 | ||
1116 | return dtrace_abs_to_nano(mach_absolute_time() - start); | |
1117 | } | |
1118 | ||
1119 | /* | |
1120 | * Atomicity and synchronization | |
1121 | */ | |
1122 | uint32_t | |
1123 | dtrace_cas32(uint32_t *target, uint32_t cmp, uint32_t new) | |
1124 | { | |
1125 | if (OSCompareAndSwap( cmp, new, (unsigned long *)target )) | |
1126 | return cmp; | |
1127 | else | |
1128 | return ~cmp; /* Must return something *other* than cmp */ | |
1129 | } | |
1130 | ||
1131 | void * | |
1132 | dtrace_casptr(void *target, void *cmp, void *new) | |
1133 | { | |
1134 | #if defined(__LP64__) | |
1135 | #error dtrace_casptr implementation missing for LP64 | |
1136 | #else | |
1137 | if (OSCompareAndSwap( (uint32_t)cmp, (uint32_t)new, (unsigned long *)target )) | |
1138 | return cmp; | |
1139 | else | |
1140 | return (void *)(~(uintptr_t)cmp); /* Must return something *other* than cmp */ | |
1141 | #endif | |
1142 | } | |
1143 | ||
1144 | /* | |
1145 | * Interrupt manipulation | |
1146 | */ | |
1147 | dtrace_icookie_t | |
1148 | dtrace_interrupt_disable(void) | |
1149 | { | |
1150 | return (dtrace_icookie_t)ml_set_interrupts_enabled(FALSE); | |
1151 | } | |
1152 | ||
1153 | void | |
1154 | dtrace_interrupt_enable(dtrace_icookie_t reenable) | |
1155 | { | |
1156 | (void)ml_set_interrupts_enabled((boolean_t)reenable); | |
1157 | } | |
1158 | ||
1159 | /* | |
1160 | * MP coordination | |
1161 | */ | |
1162 | static void | |
1163 | dtrace_sync_func(void) {} | |
1164 | ||
1165 | /* | |
1166 | * dtrace_sync() is not called from probe context. | |
1167 | */ | |
1168 | void | |
1169 | dtrace_sync(void) | |
1170 | { | |
1171 | dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_sync_func, NULL); | |
1172 | } | |
1173 | ||
1174 | /* | |
1175 | * The dtrace_copyin/out/instr and dtrace_fuword* routines can be called from probe context. | |
1176 | */ | |
1177 | ||
1178 | extern kern_return_t dtrace_copyio_preflight(addr64_t); | |
1179 | extern kern_return_t dtrace_copyio_postflight(addr64_t); | |
1180 | ||
1181 | static int | |
1182 | dtrace_copycheck(user_addr_t uaddr, uintptr_t kaddr, size_t size) | |
1183 | { | |
1184 | #pragma unused(kaddr) | |
1185 | ||
1186 | vm_offset_t recover = dtrace_set_thread_recover( current_thread(), 0 ); /* Snare any extant recovery point. */ | |
1187 | dtrace_set_thread_recover( current_thread(), recover ); /* Put it back. We *must not* re-enter and overwrite. */ | |
1188 | ||
1189 | ASSERT(kaddr + size >= kaddr); | |
1190 | ||
1191 | if (ml_at_interrupt_context() || /* Avoid possible copyio page fault on int stack, which panics! */ | |
1192 | 0 != recover || /* Avoid reentrancy into copyio facility. */ | |
1193 | uaddr + size < uaddr || /* Avoid address wrap. */ | |
1194 | KERN_FAILURE == dtrace_copyio_preflight(uaddr)) /* Machine specific setup/constraints. */ | |
1195 | { | |
1196 | DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); | |
1197 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr; | |
1198 | return (0); | |
1199 | } | |
1200 | return (1); | |
1201 | } | |
1202 | ||
1203 | void | |
1204 | dtrace_copyin(user_addr_t src, uintptr_t dst, size_t len) | |
1205 | { | |
1206 | if (dtrace_copycheck( src, dst, len )) { | |
1207 | if (copyin((const user_addr_t)src, (char *)dst, (vm_size_t)len)) { | |
1208 | DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); | |
1209 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = src; | |
1210 | } | |
1211 | dtrace_copyio_postflight(src); | |
1212 | } | |
1213 | } | |
1214 | ||
1215 | void | |
1216 | dtrace_copyinstr(user_addr_t src, uintptr_t dst, size_t len) | |
1217 | { | |
1218 | size_t actual; | |
1219 | ||
1220 | if (dtrace_copycheck( src, dst, len )) { | |
4a3eedf9 A |
1221 | /* copyin as many as 'len' bytes. */ |
1222 | int error = copyinstr((const user_addr_t)src, (char *)dst, (vm_size_t)len, &actual); | |
1223 | ||
1224 | /* | |
1225 | * ENAMETOOLONG is returned when 'len' bytes have been copied in but the NUL terminator was | |
1226 | * not encountered. That does not require raising CPU_DTRACE_BADADDR, and we press on. | |
1227 | * Note that we do *not* stuff a NUL terminator when returning ENAMETOOLONG, that's left | |
1228 | * to the caller. | |
1229 | */ | |
1230 | if (error && error != ENAMETOOLONG) { | |
2d21ac55 A |
1231 | DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); |
1232 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = src; | |
1233 | } | |
1234 | dtrace_copyio_postflight(src); | |
1235 | } | |
1236 | } | |
1237 | ||
1238 | void | |
1239 | dtrace_copyout(uintptr_t src, user_addr_t dst, size_t len) | |
1240 | { | |
1241 | if (dtrace_copycheck( dst, src, len )) { | |
1242 | if (copyout((const void *)src, dst, (vm_size_t)len)) { | |
1243 | DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); | |
1244 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = dst; | |
1245 | } | |
1246 | dtrace_copyio_postflight(dst); | |
1247 | } | |
1248 | } | |
1249 | ||
1250 | void | |
1251 | dtrace_copyoutstr(uintptr_t src, user_addr_t dst, size_t len) | |
1252 | { | |
1253 | size_t actual; | |
1254 | ||
1255 | if (dtrace_copycheck( dst, src, len )) { | |
4a3eedf9 A |
1256 | |
1257 | /* | |
1258 | * ENAMETOOLONG is returned when 'len' bytes have been copied out but the NUL terminator was | |
1259 | * not encountered. We raise CPU_DTRACE_BADADDR in that case. | |
1260 | * Note that we do *not* stuff a NUL terminator when returning ENAMETOOLONG, that's left | |
1261 | * to the caller. | |
1262 | */ | |
2d21ac55 A |
1263 | if (copyoutstr((const void *)src, dst, (size_t)len, &actual)) { |
1264 | DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); | |
1265 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = dst; | |
1266 | } | |
1267 | dtrace_copyio_postflight(dst); | |
1268 | } | |
1269 | } | |
1270 | ||
1271 | uint8_t | |
1272 | dtrace_fuword8(user_addr_t uaddr) | |
1273 | { | |
1274 | uint8_t ret = 0; | |
1275 | ||
1276 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); | |
1277 | if (dtrace_copycheck( uaddr, (uintptr_t)&ret, sizeof(ret))) { | |
1278 | if (copyin((const user_addr_t)uaddr, (char *)&ret, sizeof(ret))) { | |
1279 | DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); | |
1280 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr; | |
1281 | } | |
1282 | dtrace_copyio_postflight(uaddr); | |
1283 | } | |
1284 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); | |
1285 | ||
1286 | return(ret); | |
1287 | } | |
1288 | ||
1289 | uint16_t | |
1290 | dtrace_fuword16(user_addr_t uaddr) | |
1291 | { | |
1292 | uint16_t ret = 0; | |
1293 | ||
1294 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); | |
1295 | if (dtrace_copycheck( uaddr, (uintptr_t)&ret, sizeof(ret))) { | |
1296 | if (copyin((const user_addr_t)uaddr, (char *)&ret, sizeof(ret))) { | |
1297 | DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); | |
1298 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr; | |
1299 | } | |
1300 | dtrace_copyio_postflight(uaddr); | |
1301 | } | |
1302 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); | |
1303 | ||
1304 | return(ret); | |
1305 | } | |
1306 | ||
1307 | uint32_t | |
1308 | dtrace_fuword32(user_addr_t uaddr) | |
1309 | { | |
1310 | uint32_t ret = 0; | |
1311 | ||
1312 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); | |
1313 | if (dtrace_copycheck( uaddr, (uintptr_t)&ret, sizeof(ret))) { | |
1314 | if (copyin((const user_addr_t)uaddr, (char *)&ret, sizeof(ret))) { | |
1315 | DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); | |
1316 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr; | |
1317 | } | |
1318 | dtrace_copyio_postflight(uaddr); | |
1319 | } | |
1320 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); | |
1321 | ||
1322 | return(ret); | |
1323 | } | |
1324 | ||
1325 | uint64_t | |
1326 | dtrace_fuword64(user_addr_t uaddr) | |
1327 | { | |
1328 | uint64_t ret = 0; | |
1329 | ||
1330 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); | |
1331 | if (dtrace_copycheck( uaddr, (uintptr_t)&ret, sizeof(ret))) { | |
1332 | if (copyin((const user_addr_t)uaddr, (char *)&ret, sizeof(ret))) { | |
1333 | DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); | |
1334 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr; | |
1335 | } | |
1336 | dtrace_copyio_postflight(uaddr); | |
1337 | } | |
1338 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); | |
1339 | ||
1340 | return(ret); | |
1341 | } | |
1342 | ||
1343 | /* | |
1344 | * Emulation of Solaris fuword / suword | |
1345 | * Called from the fasttrap provider, so the use of copyin/out requires fewer safegaurds. | |
1346 | */ | |
1347 | ||
1348 | int | |
1349 | fuword8(user_addr_t uaddr, uint8_t *value) | |
1350 | { | |
1351 | if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint8_t)) != 0) { | |
1352 | return -1; | |
1353 | } | |
1354 | ||
1355 | return 0; | |
1356 | } | |
1357 | ||
1358 | int | |
1359 | fuword16(user_addr_t uaddr, uint16_t *value) | |
1360 | { | |
1361 | if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint16_t)) != 0) { | |
1362 | return -1; | |
1363 | } | |
1364 | ||
1365 | return 0; | |
1366 | } | |
1367 | ||
1368 | int | |
1369 | fuword32(user_addr_t uaddr, uint32_t *value) | |
1370 | { | |
1371 | if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint32_t)) != 0) { | |
1372 | return -1; | |
1373 | } | |
1374 | ||
1375 | return 0; | |
1376 | } | |
1377 | ||
1378 | int | |
1379 | fuword64(user_addr_t uaddr, uint64_t *value) | |
1380 | { | |
1381 | if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint64_t)) != 0) { | |
1382 | return -1; | |
1383 | } | |
1384 | ||
1385 | return 0; | |
1386 | } | |
1387 | ||
1388 | void | |
1389 | fuword8_noerr(user_addr_t uaddr, uint8_t *value) | |
1390 | { | |
1391 | if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint8_t))) { | |
1392 | *value = 0; | |
1393 | } | |
1394 | } | |
1395 | ||
1396 | void | |
1397 | fuword16_noerr(user_addr_t uaddr, uint16_t *value) | |
1398 | { | |
1399 | if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint16_t))) { | |
1400 | *value = 0; | |
1401 | } | |
1402 | } | |
1403 | ||
1404 | void | |
1405 | fuword32_noerr(user_addr_t uaddr, uint32_t *value) | |
1406 | { | |
1407 | if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint32_t))) { | |
1408 | *value = 0; | |
1409 | } | |
1410 | } | |
1411 | ||
1412 | void | |
1413 | fuword64_noerr(user_addr_t uaddr, uint64_t *value) | |
1414 | { | |
1415 | if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint64_t))) { | |
1416 | *value = 0; | |
1417 | } | |
1418 | } | |
1419 | ||
1420 | int | |
1421 | suword64(user_addr_t addr, uint64_t value) | |
1422 | { | |
1423 | if (copyout((const void *)&value, addr, sizeof(value)) != 0) { | |
1424 | return -1; | |
1425 | } | |
1426 | ||
1427 | return 0; | |
1428 | } | |
1429 | ||
1430 | int | |
1431 | suword32(user_addr_t addr, uint32_t value) | |
1432 | { | |
1433 | if (copyout((const void *)&value, addr, sizeof(value)) != 0) { | |
1434 | return -1; | |
1435 | } | |
1436 | ||
1437 | return 0; | |
1438 | } | |
1439 | ||
1440 | int | |
1441 | suword16(user_addr_t addr, uint16_t value) | |
1442 | { | |
1443 | if (copyout((const void *)&value, addr, sizeof(value)) != 0) { | |
1444 | return -1; | |
1445 | } | |
1446 | ||
1447 | return 0; | |
1448 | } | |
1449 | ||
1450 | int | |
1451 | suword8(user_addr_t addr, uint8_t value) | |
1452 | { | |
1453 | if (copyout((const void *)&value, addr, sizeof(value)) != 0) { | |
1454 | return -1; | |
1455 | } | |
1456 | ||
1457 | return 0; | |
1458 | } | |
1459 | ||
1460 | ||
1461 | /* | |
1462 | * Miscellaneous | |
1463 | */ | |
1464 | extern boolean_t dtrace_tally_fault(user_addr_t); | |
1465 | ||
1466 | boolean_t | |
1467 | dtrace_tally_fault(user_addr_t uaddr) | |
1468 | { | |
1469 | DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); | |
1470 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr; | |
1471 | return( DTRACE_CPUFLAG_ISSET(CPU_DTRACE_NOFAULT) ? TRUE : FALSE ); | |
1472 | } | |
1473 | ||
1474 | void | |
1475 | dtrace_vpanic(const char *format, va_list alist) | |
1476 | { | |
1477 | vuprintf( format, alist ); | |
1478 | panic("dtrace_vpanic"); | |
1479 | } | |
1480 | ||
1481 | #define TOTTY 0x02 | |
1482 | extern int prf(const char *, va_list, int, struct tty *); /* bsd/kern/subr_prf.h */ | |
1483 | ||
1484 | int | |
1485 | vuprintf(const char *format, va_list ap) | |
1486 | { | |
1487 | return prf(format, ap, TOTTY, NULL); | |
1488 | } | |
1489 | ||
1490 | /* Not called from probe context */ | |
1491 | void cmn_err( int level, const char *format, ... ) | |
1492 | { | |
1493 | #pragma unused(level) | |
1494 | va_list alist; | |
1495 | ||
1496 | va_start(alist, format); | |
1497 | vuprintf(format, alist); | |
1498 | va_end(alist); | |
1499 | uprintf("\n"); | |
1500 | } | |
1501 | ||
1502 | /* | |
1503 | * History: | |
1504 | * 2002-01-24 gvdl Initial implementation of strstr | |
1505 | */ | |
1506 | ||
1507 | __private_extern__ char * | |
1508 | strstr(const char *in, const char *str) | |
1509 | { | |
1510 | char c; | |
1511 | size_t len; | |
1512 | ||
1513 | c = *str++; | |
1514 | if (!c) | |
1515 | return (char *) in; // Trivial empty string case | |
1516 | ||
1517 | len = strlen(str); | |
1518 | do { | |
1519 | char sc; | |
1520 | ||
1521 | do { | |
1522 | sc = *in++; | |
1523 | if (!sc) | |
1524 | return (char *) 0; | |
1525 | } while (sc != c); | |
1526 | } while (strncmp(in, str, len) != 0); | |
1527 | ||
1528 | return (char *) (in - 1); | |
1529 | } | |
1530 | ||
1531 | /* | |
1532 | * Runtime and ABI | |
1533 | */ | |
1534 | uintptr_t | |
1535 | dtrace_caller(int ignore) | |
1536 | { | |
1537 | #pragma unused(ignore) | |
1538 | return -1; /* Just as in Solaris dtrace_asm.s */ | |
1539 | } | |
1540 | ||
1541 | int | |
1542 | dtrace_getstackdepth(int aframes) | |
1543 | { | |
1544 | struct frame *fp = (struct frame *)dtrace_getfp(); | |
1545 | struct frame *nextfp, *minfp, *stacktop; | |
1546 | int depth = 0; | |
1547 | int on_intr; | |
1548 | ||
1549 | if ((on_intr = CPU_ON_INTR(CPU)) != 0) | |
1550 | stacktop = (struct frame *)dtrace_get_cpu_int_stack_top(); | |
1551 | else | |
1552 | stacktop = (struct frame *)(dtrace_get_kernel_stack(current_thread()) + KERNEL_STACK_SIZE); | |
1553 | ||
1554 | minfp = fp; | |
1555 | ||
1556 | aframes++; | |
1557 | ||
1558 | for (;;) { | |
1559 | depth++; | |
1560 | ||
1561 | nextfp = *(struct frame **)fp; | |
1562 | ||
1563 | if (nextfp <= minfp || nextfp >= stacktop) { | |
1564 | if (on_intr) { | |
1565 | /* | |
1566 | * Hop from interrupt stack to thread stack. | |
1567 | */ | |
1568 | vm_offset_t kstack_base = dtrace_get_kernel_stack(current_thread()); | |
1569 | ||
1570 | minfp = (struct frame *)kstack_base; | |
1571 | stacktop = (struct frame *)(kstack_base + KERNEL_STACK_SIZE); | |
1572 | ||
1573 | on_intr = 0; | |
1574 | continue; | |
1575 | } | |
1576 | break; | |
1577 | } | |
1578 | ||
1579 | fp = nextfp; | |
1580 | minfp = fp; | |
1581 | } | |
1582 | ||
1583 | if (depth <= aframes) | |
1584 | return (0); | |
1585 | ||
1586 | return (depth - aframes); | |
1587 | } | |
1588 | ||
1589 | /* | |
1590 | * Unconsidered | |
1591 | */ | |
1592 | void | |
1593 | dtrace_vtime_enable(void) {} | |
1594 | ||
1595 | void | |
1596 | dtrace_vtime_disable(void) {} | |
1597 | ||
1598 | #else /* else ! CONFIG_DTRACE */ | |
1599 | ||
1600 | #include <sys/types.h> | |
1601 | #include <mach/vm_types.h> | |
1602 | #include <mach/kmod.h> | |
1603 | ||
1604 | /* | |
1605 | * This exists to prevent build errors when dtrace is unconfigured. | |
1606 | */ | |
1607 | ||
1608 | kern_return_t _dtrace_register_anon_DOF(char *, unsigned char *, uint32_t); | |
1609 | ||
1610 | kern_return_t _dtrace_register_anon_DOF(char *arg1, unsigned char *arg2, uint32_t arg3) { | |
1611 | #pragma unused(arg1, arg2, arg3) | |
1612 | ||
1613 | return KERN_FAILURE; | |
1614 | } | |
1615 | ||
1616 | #endif /* CONFIG_DTRACE */ |