]> git.saurik.com Git - apple/xnu.git/blame - bsd/kern/kern_event.c
xnu-3248.40.184.tar.gz
[apple/xnu.git] / bsd / kern / kern_event.c
CommitLineData
1c79356b 1/*
3e170ce0 2 * Copyright (c) 2000-2015 Apple Inc. All rights reserved.
1c79356b 3 *
2d21ac55 4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
39236c6e 5 *
2d21ac55
A
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
39236c6e 14 *
2d21ac55
A
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
39236c6e 17 *
2d21ac55
A
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
8f6c56a5
A
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
2d21ac55
A
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
39236c6e 25 *
2d21ac55 26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
1c79356b
A
27 *
28 */
55e303ae
A
29/*-
30 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
31 * All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 *
42 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
43 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
44 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
45 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
46 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
47 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
48 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
49 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
50 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
51 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
52 * SUCH DAMAGE.
53 */
1c79356b
A
54/*
55 * @(#)kern_event.c 1.0 (3/31/2000)
56 */
91447636 57#include <stdint.h>
1c79356b 58
55e303ae
A
59#include <sys/param.h>
60#include <sys/systm.h>
61#include <sys/filedesc.h>
62#include <sys/kernel.h>
91447636
A
63#include <sys/proc_internal.h>
64#include <sys/kauth.h>
39236c6e 65#include <sys/malloc.h>
55e303ae 66#include <sys/unistd.h>
91447636 67#include <sys/file_internal.h>
55e303ae
A
68#include <sys/fcntl.h>
69#include <sys/select.h>
70#include <sys/queue.h>
71#include <sys/event.h>
72#include <sys/eventvar.h>
73#include <sys/protosw.h>
74#include <sys/socket.h>
75#include <sys/socketvar.h>
76#include <sys/stat.h>
77#include <sys/sysctl.h>
78#include <sys/uio.h>
91447636
A
79#include <sys/sysproto.h>
80#include <sys/user.h>
b0d623f7 81#include <sys/vnode_internal.h>
91447636 82#include <string.h>
0c530ab8 83#include <sys/proc_info.h>
39236c6e 84#include <sys/codesign.h>
3e170ce0 85#include <sys/pthread_shims.h>
91447636 86
fe8ab488 87#include <kern/locks.h>
91447636
A
88#include <kern/clock.h>
89#include <kern/thread_call.h>
90#include <kern/sched_prim.h>
3e170ce0 91#include <kern/waitq.h>
55e303ae 92#include <kern/zalloc.h>
3e170ce0 93#include <kern/kalloc.h>
91447636
A
94#include <kern/assert.h>
95
96#include <libkern/libkern.h>
b0d623f7 97#include "net/net_str_id.h"
55e303ae 98
6d2010ae 99#include <mach/task.h>
316670eb
A
100
101#if VM_PRESSURE_EVENTS
6d2010ae 102#include <kern/vm_pressure.h>
316670eb 103#endif
6d2010ae 104
39236c6e
A
105#if CONFIG_MEMORYSTATUS
106#include <sys/kern_memorystatus.h>
107#endif
108
55e303ae
A
109MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
110
3e170ce0 111#define KQ_EVENT NO_EVENT64
b0d623f7 112
91447636
A
113static inline void kqlock(struct kqueue *kq);
114static inline void kqunlock(struct kqueue *kq);
115
39236c6e
A
116static int kqlock2knoteuse(struct kqueue *kq, struct knote *kn);
117static int kqlock2knoteusewait(struct kqueue *kq, struct knote *kn);
118static int kqlock2knotedrop(struct kqueue *kq, struct knote *kn);
119static int knoteuse2kqlock(struct kqueue *kq, struct knote *kn);
120
121static void kqueue_wakeup(struct kqueue *kq, int closed);
122static int kqueue_read(struct fileproc *fp, struct uio *uio,
123 int flags, vfs_context_t ctx);
124static int kqueue_write(struct fileproc *fp, struct uio *uio,
125 int flags, vfs_context_t ctx);
126static int kqueue_ioctl(struct fileproc *fp, u_long com, caddr_t data,
127 vfs_context_t ctx);
3e170ce0 128static int kqueue_select(struct fileproc *fp, int which, void *wq_link_id,
39236c6e
A
129 vfs_context_t ctx);
130static int kqueue_close(struct fileglob *fg, vfs_context_t ctx);
131static int kqueue_kqfilter(struct fileproc *fp, struct knote *kn,
132 vfs_context_t ctx);
133static int kqueue_drain(struct fileproc *fp, vfs_context_t ctx);
39236c6e
A
134
135static const struct fileops kqueueops = {
136 .fo_type = DTYPE_KQUEUE,
137 .fo_read = kqueue_read,
138 .fo_write = kqueue_write,
139 .fo_ioctl = kqueue_ioctl,
140 .fo_select = kqueue_select,
141 .fo_close = kqueue_close,
142 .fo_kqfilter = kqueue_kqfilter,
b0d623f7 143 .fo_drain = kqueue_drain,
55e303ae
A
144};
145
3e170ce0
A
146static int kevent_internal(struct proc *p, int fd,
147 user_addr_t changelist, int nchanges,
148 user_addr_t eventlist, int nevents,
149 user_addr_t data_out, user_size_t *data_available,
150 unsigned int flags, user_addr_t utimeout,
151 kqueue_continue_t continuation,
152 int32_t *retval);
153static int kevent_copyin(user_addr_t *addrp, struct kevent_internal_s *kevp,
154 struct proc *p, unsigned int flags);
155static int kevent_copyout(struct kevent_internal_s *kevp, user_addr_t *addrp,
156 struct proc *p, unsigned int flags);
157char * kevent_description(struct kevent_internal_s *kevp, char *s, size_t n);
158
159static int kevent_callback(struct kqueue *kq, struct kevent_internal_s *kevp,
160 void *data);
39236c6e
A
161static void kevent_continue(struct kqueue *kq, void *data, int error);
162static void kqueue_scan_continue(void *contp, wait_result_t wait_result);
163static int kqueue_process(struct kqueue *kq, kevent_callback_t callback,
3e170ce0 164 void *data, int *countp, struct proc *p);
39236c6e
A
165static int kqueue_begin_processing(struct kqueue *kq);
166static void kqueue_end_processing(struct kqueue *kq);
167static int knote_process(struct knote *kn, kevent_callback_t callback,
3e170ce0 168 void *data, struct kqtailq *inprocessp, struct proc *p);
39236c6e
A
169static void knote_put(struct knote *kn);
170static int knote_fdpattach(struct knote *kn, struct filedesc *fdp,
3e170ce0 171 struct proc *p);
39236c6e
A
172static void knote_drop(struct knote *kn, struct proc *p);
173static void knote_activate(struct knote *kn, int);
174static void knote_deactivate(struct knote *kn);
175static void knote_enqueue(struct knote *kn);
176static void knote_dequeue(struct knote *kn);
177static struct knote *knote_alloc(void);
178static void knote_free(struct knote *kn);
179
180static int filt_fileattach(struct knote *kn);
b0d623f7 181static struct filterops file_filtops = {
39236c6e
A
182 .f_isfd = 1,
183 .f_attach = filt_fileattach,
b0d623f7 184};
55e303ae 185
39236c6e
A
186static void filt_kqdetach(struct knote *kn);
187static int filt_kqueue(struct knote *kn, long hint);
b0d623f7 188static struct filterops kqread_filtops = {
39236c6e
A
189 .f_isfd = 1,
190 .f_detach = filt_kqdetach,
191 .f_event = filt_kqueue,
b0d623f7 192};
55e303ae 193
39236c6e
A
194/* placeholder for not-yet-implemented filters */
195static int filt_badattach(struct knote *kn);
b0d623f7 196static struct filterops bad_filtops = {
39236c6e 197 .f_attach = filt_badattach,
b0d623f7 198};
55e303ae 199
39236c6e
A
200static int filt_procattach(struct knote *kn);
201static void filt_procdetach(struct knote *kn);
202static int filt_proc(struct knote *kn, long hint);
b0d623f7 203static struct filterops proc_filtops = {
39236c6e
A
204 .f_attach = filt_procattach,
205 .f_detach = filt_procdetach,
206 .f_event = filt_proc,
b0d623f7 207};
55e303ae 208
316670eb 209#if VM_PRESSURE_EVENTS
6d2010ae
A
210static int filt_vmattach(struct knote *kn);
211static void filt_vmdetach(struct knote *kn);
212static int filt_vm(struct knote *kn, long hint);
213static struct filterops vm_filtops = {
214 .f_attach = filt_vmattach,
215 .f_detach = filt_vmdetach,
216 .f_event = filt_vm,
217};
316670eb 218#endif /* VM_PRESSURE_EVENTS */
6d2010ae 219
39236c6e
A
220#if CONFIG_MEMORYSTATUS
221extern struct filterops memorystatus_filtops;
222#endif /* CONFIG_MEMORYSTATUS */
223
55e303ae
A
224extern struct filterops fs_filtops;
225
226extern struct filterops sig_filtops;
227
91447636 228/* Timer filter */
39236c6e
A
229static int filt_timerattach(struct knote *kn);
230static void filt_timerdetach(struct knote *kn);
231static int filt_timer(struct knote *kn, long hint);
3e170ce0 232static void filt_timertouch(struct knote *kn, struct kevent_internal_s *kev,
39236c6e 233 long type);
b0d623f7 234static struct filterops timer_filtops = {
39236c6e
A
235 .f_attach = filt_timerattach,
236 .f_detach = filt_timerdetach,
237 .f_event = filt_timer,
238 .f_touch = filt_timertouch,
b0d623f7 239};
55e303ae 240
b0d623f7 241/* Helpers */
39236c6e
A
242static void filt_timerexpire(void *knx, void *param1);
243static int filt_timervalidate(struct knote *kn);
244static void filt_timerupdate(struct knote *kn);
245static void filt_timercancel(struct knote *kn);
b0d623f7 246
39236c6e
A
247#define TIMER_RUNNING 0x1
248#define TIMER_CANCELWAIT 0x2
55e303ae 249
91447636 250static lck_mtx_t _filt_timerlock;
39236c6e
A
251static void filt_timerlock(void);
252static void filt_timerunlock(void);
55e303ae 253
39236c6e 254static zone_t knote_zone;
55e303ae 255
39236c6e 256#define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
55e303ae
A
257
258#if 0
259extern struct filterops aio_filtops;
260#endif
261
b0d623f7
A
262/* Mach portset filter */
263extern struct filterops machport_filtops;
264
265/* User filter */
39236c6e
A
266static int filt_userattach(struct knote *kn);
267static void filt_userdetach(struct knote *kn);
268static int filt_user(struct knote *kn, long hint);
3e170ce0 269static void filt_usertouch(struct knote *kn, struct kevent_internal_s *kev,
39236c6e 270 long type);
b0d623f7 271static struct filterops user_filtops = {
39236c6e
A
272 .f_attach = filt_userattach,
273 .f_detach = filt_userdetach,
274 .f_event = filt_user,
275 .f_touch = filt_usertouch,
b0d623f7
A
276};
277
55e303ae 278/*
39236c6e 279 * Table for all system-defined filters.
55e303ae
A
280 */
281static struct filterops *sysfilt_ops[] = {
282 &file_filtops, /* EVFILT_READ */
283 &file_filtops, /* EVFILT_WRITE */
284#if 0
285 &aio_filtops, /* EVFILT_AIO */
286#else
287 &bad_filtops, /* EVFILT_AIO */
288#endif
289 &file_filtops, /* EVFILT_VNODE */
290 &proc_filtops, /* EVFILT_PROC */
291 &sig_filtops, /* EVFILT_SIGNAL */
55e303ae 292 &timer_filtops, /* EVFILT_TIMER */
b0d623f7
A
293 &machport_filtops, /* EVFILT_MACHPORT */
294 &fs_filtops, /* EVFILT_FS */
295 &user_filtops, /* EVFILT_USER */
6d2010ae 296 &bad_filtops, /* unused */
316670eb 297#if VM_PRESSURE_EVENTS
6d2010ae 298 &vm_filtops, /* EVFILT_VM */
316670eb
A
299#else
300 &bad_filtops, /* EVFILT_VM */
301#endif
302 &file_filtops, /* EVFILT_SOCK */
39236c6e
A
303#if CONFIG_MEMORYSTATUS
304 &memorystatus_filtops, /* EVFILT_MEMORYSTATUS */
305#else
306 &bad_filtops, /* EVFILT_MEMORYSTATUS */
307#endif
55e303ae
A
308};
309
91447636
A
310/*
311 * kqueue/note lock attributes and implementations
312 *
313 * kqueues have locks, while knotes have use counts
314 * Most of the knote state is guarded by the object lock.
315 * the knote "inuse" count and status use the kqueue lock.
316 */
317lck_grp_attr_t * kq_lck_grp_attr;
318lck_grp_t * kq_lck_grp;
319lck_attr_t * kq_lck_attr;
320
321static inline void
322kqlock(struct kqueue *kq)
323{
324 lck_spin_lock(&kq->kq_lock);
325}
326
327static inline void
328kqunlock(struct kqueue *kq)
329{
330 lck_spin_unlock(&kq->kq_lock);
331}
332
39236c6e 333/*
91447636
A
334 * Convert a kq lock to a knote use referece.
335 *
336 * If the knote is being dropped, we can't get
337 * a use reference, so just return with it
338 * still locked.
91447636
A
339 * - kq locked at entry
340 * - unlock on exit if we get the use reference
341 */
342static int
343kqlock2knoteuse(struct kqueue *kq, struct knote *kn)
344{
345 if (kn->kn_status & KN_DROPPING)
39236c6e 346 return (0);
91447636
A
347 kn->kn_inuse++;
348 kqunlock(kq);
39236c6e
A
349 return (1);
350}
91447636 351
39236c6e 352/*
b0d623f7
A
353 * Convert a kq lock to a knote use referece,
354 * but wait for attach and drop events to complete.
91447636
A
355 *
356 * If the knote is being dropped, we can't get
357 * a use reference, so just return with it
358 * still locked.
91447636
A
359 * - kq locked at entry
360 * - kq always unlocked on exit
361 */
362static int
363kqlock2knoteusewait(struct kqueue *kq, struct knote *kn)
364{
b0d623f7
A
365 if ((kn->kn_status & (KN_DROPPING | KN_ATTACHING)) != 0) {
366 kn->kn_status |= KN_USEWAIT;
3e170ce0
A
367 waitq_assert_wait64((struct waitq *)kq->kq_wqs,
368 CAST_EVENT64_T(&kn->kn_status),
369 THREAD_UNINT, TIMEOUT_WAIT_FOREVER);
91447636
A
370 kqunlock(kq);
371 thread_block(THREAD_CONTINUE_NULL);
39236c6e 372 return (0);
91447636 373 }
b0d623f7
A
374 kn->kn_inuse++;
375 kqunlock(kq);
39236c6e
A
376 return (1);
377}
b0d623f7 378
39236c6e 379/*
91447636
A
380 * Convert from a knote use reference back to kq lock.
381 *
382 * Drop a use reference and wake any waiters if
383 * this is the last one.
384 *
385 * The exit return indicates if the knote is
386 * still alive - but the kqueue lock is taken
387 * unconditionally.
388 */
389static int
390knoteuse2kqlock(struct kqueue *kq, struct knote *kn)
391{
392 kqlock(kq);
b0d623f7
A
393 if (--kn->kn_inuse == 0) {
394 if ((kn->kn_status & KN_ATTACHING) != 0) {
395 kn->kn_status &= ~KN_ATTACHING;
396 }
397 if ((kn->kn_status & KN_USEWAIT) != 0) {
398 kn->kn_status &= ~KN_USEWAIT;
3e170ce0
A
399 waitq_wakeup64_all((struct waitq *)kq->kq_wqs,
400 CAST_EVENT64_T(&kn->kn_status),
401 THREAD_AWAKENED,
402 WAITQ_ALL_PRIORITIES);
b0d623f7 403 }
91447636
A
404 }
405 return ((kn->kn_status & KN_DROPPING) == 0);
39236c6e 406}
91447636 407
39236c6e
A
408/*
409 * Convert a kq lock to a knote drop reference.
91447636
A
410 *
411 * If the knote is in use, wait for the use count
412 * to subside. We first mark our intention to drop
413 * it - keeping other users from "piling on."
414 * If we are too late, we have to wait for the
415 * other drop to complete.
39236c6e 416 *
91447636
A
417 * - kq locked at entry
418 * - always unlocked on exit.
419 * - caller can't hold any locks that would prevent
420 * the other dropper from completing.
421 */
422static int
423kqlock2knotedrop(struct kqueue *kq, struct knote *kn)
424{
b0d623f7 425 int oktodrop;
91447636 426
b0d623f7 427 oktodrop = ((kn->kn_status & (KN_DROPPING | KN_ATTACHING)) == 0);
04b8595b 428 kn->kn_status &= ~KN_STAYQUEUED;
b0d623f7
A
429 kn->kn_status |= KN_DROPPING;
430 if (oktodrop) {
431 if (kn->kn_inuse == 0) {
91447636 432 kqunlock(kq);
39236c6e 433 return (oktodrop);
b0d623f7 434 }
91447636 435 }
b0d623f7 436 kn->kn_status |= KN_USEWAIT;
3e170ce0
A
437 waitq_assert_wait64((struct waitq *)kq->kq_wqs,
438 CAST_EVENT64_T(&kn->kn_status),
439 THREAD_UNINT, TIMEOUT_WAIT_FOREVER);
b0d623f7
A
440 kqunlock(kq);
441 thread_block(THREAD_CONTINUE_NULL);
39236c6e 442 return (oktodrop);
91447636 443}
39236c6e
A
444
445/*
91447636
A
446 * Release a knote use count reference.
447 */
448static void
449knote_put(struct knote *kn)
450{
451 struct kqueue *kq = kn->kn_kq;
452
453 kqlock(kq);
b0d623f7
A
454 if (--kn->kn_inuse == 0) {
455 if ((kn->kn_status & KN_USEWAIT) != 0) {
456 kn->kn_status &= ~KN_USEWAIT;
3e170ce0
A
457 waitq_wakeup64_all((struct waitq *)kq->kq_wqs,
458 CAST_EVENT64_T(&kn->kn_status),
459 THREAD_AWAKENED,
460 WAITQ_ALL_PRIORITIES);
b0d623f7 461 }
91447636
A
462 }
463 kqunlock(kq);
39236c6e 464}
91447636 465
55e303ae
A
466static int
467filt_fileattach(struct knote *kn)
468{
2d21ac55 469 return (fo_kqfilter(kn->kn_fp, kn, vfs_context_current()));
55e303ae
A
470}
471
39236c6e
A
472#define f_flag f_fglob->fg_flag
473#define f_msgcount f_fglob->fg_msgcount
474#define f_cred f_fglob->fg_cred
475#define f_ops f_fglob->fg_ops
476#define f_offset f_fglob->fg_offset
477#define f_data f_fglob->fg_data
91447636 478
55e303ae
A
479static void
480filt_kqdetach(struct knote *kn)
481{
482 struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
483
91447636 484 kqlock(kq);
55e303ae 485 KNOTE_DETACH(&kq->kq_sel.si_note, kn);
91447636 486 kqunlock(kq);
55e303ae
A
487}
488
489/*ARGSUSED*/
490static int
91447636 491filt_kqueue(struct knote *kn, __unused long hint)
55e303ae
A
492{
493 struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
494
495 kn->kn_data = kq->kq_count;
496 return (kn->kn_data > 0);
497}
498
499static int
500filt_procattach(struct knote *kn)
501{
502 struct proc *p;
2d21ac55
A
503
504 assert(PID_MAX < NOTE_PDATAMASK);
39236c6e 505
2d21ac55 506 if ((kn->kn_sfflags & (NOTE_TRACK | NOTE_TRACKERR | NOTE_CHILD)) != 0)
39236c6e 507 return (ENOTSUP);
0c530ab8 508
2d21ac55 509 p = proc_find(kn->kn_id);
91447636 510 if (p == NULL) {
55e303ae 511 return (ESRCH);
91447636 512 }
55e303ae 513
99c3a104
A
514 const int NoteExitStatusBits = NOTE_EXIT | NOTE_EXITSTATUS;
515
516 if ((kn->kn_sfflags & NoteExitStatusBits) == NoteExitStatusBits)
517 do {
518 pid_t selfpid = proc_selfpid();
519
520 if (p->p_ppid == selfpid)
521 break; /* parent => ok */
522
523 if ((p->p_lflag & P_LTRACED) != 0 &&
524 (p->p_oppid == selfpid))
525 break; /* parent-in-waiting => ok */
526
6d2010ae 527 proc_rele(p);
99c3a104
A
528 return (EACCES);
529 } while (0);
6d2010ae 530
2d21ac55
A
531 proc_klist_lock();
532
533 kn->kn_flags |= EV_CLEAR; /* automatically set */
534 kn->kn_ptr.p_proc = p; /* store the proc handle */
55e303ae 535
55e303ae
A
536 KNOTE_ATTACH(&p->p_klist, kn);
537
2d21ac55
A
538 proc_klist_unlock();
539
540 proc_rele(p);
91447636 541
55e303ae
A
542 return (0);
543}
544
545/*
546 * The knote may be attached to a different process, which may exit,
0c530ab8 547 * leaving nothing for the knote to be attached to. In that case,
2d21ac55 548 * the pointer to the process will have already been nulled out.
55e303ae
A
549 */
550static void
551filt_procdetach(struct knote *kn)
552{
91447636 553 struct proc *p;
91447636 554
2d21ac55 555 proc_klist_lock();
39236c6e 556
2d21ac55
A
557 p = kn->kn_ptr.p_proc;
558 if (p != PROC_NULL) {
559 kn->kn_ptr.p_proc = PROC_NULL;
91447636 560 KNOTE_DETACH(&p->p_klist, kn);
0c530ab8 561 }
2d21ac55
A
562
563 proc_klist_unlock();
55e303ae
A
564}
565
566static int
567filt_proc(struct knote *kn, long hint)
568{
39236c6e
A
569 /*
570 * Note: a lot of bits in hint may be obtained from the knote
571 * To free some of those bits, see <rdar://problem/12592988> Freeing up
572 * bits in hint for filt_proc
573 */
2d21ac55 574 /* hint is 0 when called from above */
0c530ab8
A
575 if (hint != 0) {
576 u_int event;
55e303ae 577
2d21ac55 578 /* ALWAYS CALLED WITH proc_klist_lock when (hint != 0) */
55e303ae 579
0c530ab8
A
580 /*
581 * mask off extra data
582 */
583 event = (u_int)hint & NOTE_PCTRLMASK;
4452a7af 584
4b17d6b6
A
585 /*
586 * termination lifecycle events can happen while a debugger
587 * has reparented a process, in which case notifications
588 * should be quashed except to the tracing parent. When
589 * the debugger reaps the child (either via wait4(2) or
590 * process exit), the child will be reparented to the original
591 * parent and these knotes re-fired.
592 */
593 if (event & NOTE_EXIT) {
594 if ((kn->kn_ptr.p_proc->p_oppid != 0)
595 && (kn->kn_kq->kq_p->p_pid != kn->kn_ptr.p_proc->p_ppid)) {
596 /*
597 * This knote is not for the current ptrace(2) parent, ignore.
598 */
599 return 0;
600 }
601 }
602
0c530ab8
A
603 /*
604 * if the user is interested in this event, record it.
605 */
606 if (kn->kn_sfflags & event)
607 kn->kn_fflags |= event;
55e303ae 608
39236c6e
A
609#pragma clang diagnostic push
610#pragma clang diagnostic ignored "-Wdeprecated-declarations"
611 if ((event == NOTE_REAP) || ((event == NOTE_EXIT) && !(kn->kn_sfflags & NOTE_REAP))) {
2d21ac55 612 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
0c530ab8 613 }
39236c6e
A
614#pragma clang diagnostic pop
615
fe8ab488
A
616
617 /*
618 * The kernel has a wrapper in place that returns the same data
619 * as is collected here, in kn_data. Any changes to how
620 * NOTE_EXITSTATUS and NOTE_EXIT_DETAIL are collected
621 * should also be reflected in the proc_pidnoteexit() wrapper.
622 */
39236c6e
A
623 if (event == NOTE_EXIT) {
624 kn->kn_data = 0;
625 if ((kn->kn_sfflags & NOTE_EXITSTATUS) != 0) {
626 kn->kn_fflags |= NOTE_EXITSTATUS;
627 kn->kn_data |= (hint & NOTE_PDATAMASK);
628 }
629 if ((kn->kn_sfflags & NOTE_EXIT_DETAIL) != 0) {
630 kn->kn_fflags |= NOTE_EXIT_DETAIL;
631 if ((kn->kn_ptr.p_proc->p_lflag &
632 P_LTERM_DECRYPTFAIL) != 0) {
633 kn->kn_data |= NOTE_EXIT_DECRYPTFAIL;
634 }
635 if ((kn->kn_ptr.p_proc->p_lflag &
636 P_LTERM_JETSAM) != 0) {
637 kn->kn_data |= NOTE_EXIT_MEMORY;
638 switch (kn->kn_ptr.p_proc->p_lflag &
639 P_JETSAM_MASK) {
640 case P_JETSAM_VMPAGESHORTAGE:
641 kn->kn_data |= NOTE_EXIT_MEMORY_VMPAGESHORTAGE;
642 break;
643 case P_JETSAM_VMTHRASHING:
644 kn->kn_data |= NOTE_EXIT_MEMORY_VMTHRASHING;
645 break;
fe8ab488
A
646 case P_JETSAM_FCTHRASHING:
647 kn->kn_data |= NOTE_EXIT_MEMORY_FCTHRASHING;
648 break;
39236c6e
A
649 case P_JETSAM_VNODE:
650 kn->kn_data |= NOTE_EXIT_MEMORY_VNODE;
651 break;
652 case P_JETSAM_HIWAT:
653 kn->kn_data |= NOTE_EXIT_MEMORY_HIWAT;
654 break;
655 case P_JETSAM_PID:
656 kn->kn_data |= NOTE_EXIT_MEMORY_PID;
657 break;
658 case P_JETSAM_IDLEEXIT:
659 kn->kn_data |= NOTE_EXIT_MEMORY_IDLE;
660 break;
661 }
662 }
663 if ((kn->kn_ptr.p_proc->p_csflags &
664 CS_KILLED) != 0) {
665 kn->kn_data |= NOTE_EXIT_CSERROR;
666 }
667 }
316670eb 668 }
0c530ab8 669 }
6601e61a 670
2d21ac55 671 /* atomic check, no locking need when called from above */
39236c6e 672 return (kn->kn_fflags != 0);
55e303ae
A
673}
674
316670eb 675#if VM_PRESSURE_EVENTS
6d2010ae
A
676/*
677 * Virtual memory kevents
678 *
679 * author: Matt Jacobson [matthew_jacobson@apple.com]
680 */
681
682static int
683filt_vmattach(struct knote *kn)
39236c6e
A
684{
685 /*
686 * The note will be cleared once the information has been flushed to
687 * the client. If there is still pressure, we will be re-alerted.
6d2010ae 688 */
39236c6e
A
689 kn->kn_flags |= EV_CLEAR;
690 return (vm_knote_register(kn));
6d2010ae
A
691}
692
693static void
694filt_vmdetach(struct knote *kn)
695{
696 vm_knote_unregister(kn);
697}
698
699static int
700filt_vm(struct knote *kn, long hint)
701{
702 /* hint == 0 means this is just an alive? check (always true) */
39236c6e 703 if (hint != 0) {
316670eb 704 const pid_t pid = (pid_t)hint;
39236c6e
A
705 if ((kn->kn_sfflags & NOTE_VM_PRESSURE) &&
706 (kn->kn_kq->kq_p->p_pid == pid)) {
316670eb 707 kn->kn_fflags |= NOTE_VM_PRESSURE;
6d2010ae
A
708 }
709 }
39236c6e 710
6d2010ae
A
711 return (kn->kn_fflags != 0);
712}
316670eb 713#endif /* VM_PRESSURE_EVENTS */
b0d623f7 714
91447636 715/*
b0d623f7 716 * filt_timervalidate - process data from user
39236c6e
A
717 *
718 * Converts to either interval or deadline format.
719 *
91447636
A
720 * The saved-data field in the knote contains the
721 * time value. The saved filter-flags indicates
722 * the unit of measurement.
723 *
39236c6e
A
724 * After validation, either the saved-data field
725 * contains the interval in absolute time, or ext[0]
726 * contains the expected deadline. If that deadline
b0d623f7
A
727 * is in the past, ext[0] is 0.
728 *
729 * Returns EINVAL for unrecognized units of time.
730 *
731 * Timer filter lock is held.
732 *
91447636
A
733 */
734static int
b0d623f7 735filt_timervalidate(struct knote *kn)
91447636
A
736{
737 uint64_t multiplier;
39236c6e 738 uint64_t raw = 0;
91447636
A
739
740 switch (kn->kn_sfflags & (NOTE_SECONDS|NOTE_USECONDS|NOTE_NSECONDS)) {
741 case NOTE_SECONDS:
742 multiplier = NSEC_PER_SEC;
743 break;
744 case NOTE_USECONDS:
745 multiplier = NSEC_PER_USEC;
746 break;
747 case NOTE_NSECONDS:
748 multiplier = 1;
749 break;
750 case 0: /* milliseconds (default) */
751 multiplier = NSEC_PER_SEC / 1000;
752 break;
753 default:
39236c6e
A
754 return (EINVAL);
755 }
756
757 /* transform the slop delta(leeway) in kn_ext[1] if passed to same time scale */
758 if(kn->kn_sfflags & NOTE_LEEWAY){
759 nanoseconds_to_absolutetime((uint64_t)kn->kn_ext[1] * multiplier, &raw);
760 kn->kn_ext[1] = raw;
91447636 761 }
b0d623f7 762
91447636 763 nanoseconds_to_absolutetime((uint64_t)kn->kn_sdata * multiplier, &raw);
b0d623f7
A
764
765 kn->kn_ext[0] = 0;
766 kn->kn_sdata = 0;
767
768 if (kn->kn_sfflags & NOTE_ABSOLUTE) {
769 clock_sec_t seconds;
770 clock_nsec_t nanoseconds;
91447636
A
771 uint64_t now;
772
773 clock_get_calendar_nanotime(&seconds, &nanoseconds);
39236c6e
A
774 nanoseconds_to_absolutetime((uint64_t)seconds * NSEC_PER_SEC +
775 nanoseconds, &now);
b0d623f7
A
776
777 if (raw < now) {
778 /* time has already passed */
779 kn->kn_ext[0] = 0;
780 } else {
781 raw -= now;
39236c6e
A
782 clock_absolutetime_interval_to_deadline(raw,
783 &kn->kn_ext[0]);
91447636 784 }
b0d623f7
A
785 } else {
786 kn->kn_sdata = raw;
787 }
788
39236c6e 789 return (0);
91447636
A
790}
791
b0d623f7
A
792/*
793 * filt_timerupdate - compute the next deadline
794 *
795 * Repeating timers store their interval in kn_sdata. Absolute
796 * timers have already calculated the deadline, stored in ext[0].
797 *
798 * On return, the next deadline (or zero if no deadline is needed)
799 * is stored in kn_ext[0].
800 *
801 * Timer filter lock is held.
802 */
39236c6e 803static void
b0d623f7
A
804filt_timerupdate(struct knote *kn)
805{
806 /* if there's no interval, deadline is just in kn_ext[0] */
807 if (kn->kn_sdata == 0)
808 return;
809
810 /* if timer hasn't fired before, fire in interval nsecs */
811 if (kn->kn_ext[0] == 0) {
812 clock_absolutetime_interval_to_deadline(kn->kn_sdata,
39236c6e 813 &kn->kn_ext[0]);
b0d623f7 814 } else {
39236c6e
A
815 /*
816 * If timer has fired before, schedule the next pop
817 * relative to the last intended deadline.
b0d623f7 818 *
39236c6e 819 * We could check for whether the deadline has expired,
b0d623f7
A
820 * but the thread call layer can handle that.
821 */
822 kn->kn_ext[0] += kn->kn_sdata;
823 }
824}
825
39236c6e 826/*
91447636
A
827 * filt_timerexpire - the timer callout routine
828 *
39236c6e
A
829 * Just propagate the timer event into the knote
830 * filter routine (by going through the knote
831 * synchronization point). Pass a hint to
832 * indicate this is a real event, not just a
833 * query from above.
91447636 834 */
55e303ae 835static void
91447636 836filt_timerexpire(void *knx, __unused void *spare)
55e303ae 837{
91447636 838 struct klist timer_list;
55e303ae 839 struct knote *kn = knx;
91447636 840
b0d623f7
A
841 filt_timerlock();
842
843 kn->kn_hookid &= ~TIMER_RUNNING;
844
91447636
A
845 /* no "object" for timers, so fake a list */
846 SLIST_INIT(&timer_list);
39236c6e 847 SLIST_INSERT_HEAD(&timer_list, kn, kn_selnext);
91447636 848 KNOTE(&timer_list, 1);
b0d623f7
A
849
850 /* if someone is waiting for timer to pop */
851 if (kn->kn_hookid & TIMER_CANCELWAIT) {
852 struct kqueue *kq = kn->kn_kq;
3e170ce0
A
853 waitq_wakeup64_all((struct waitq *)kq->kq_wqs,
854 CAST_EVENT64_T(&kn->kn_hook),
855 THREAD_AWAKENED,
856 WAITQ_ALL_PRIORITIES);
b0d623f7
A
857 }
858
859 filt_timerunlock();
860}
861
862/*
863 * Cancel a running timer (or wait for the pop).
864 * Timer filter lock is held.
865 */
866static void
867filt_timercancel(struct knote *kn)
868{
869 struct kqueue *kq = kn->kn_kq;
870 thread_call_t callout = kn->kn_hook;
871 boolean_t cancelled;
872
873 if (kn->kn_hookid & TIMER_RUNNING) {
874 /* cancel the callout if we can */
875 cancelled = thread_call_cancel(callout);
876 if (cancelled) {
877 kn->kn_hookid &= ~TIMER_RUNNING;
878 } else {
879 /* we have to wait for the expire routine. */
880 kn->kn_hookid |= TIMER_CANCELWAIT;
3e170ce0
A
881 waitq_assert_wait64((struct waitq *)kq->kq_wqs,
882 CAST_EVENT64_T(&kn->kn_hook),
883 THREAD_UNINT, TIMEOUT_WAIT_FOREVER);
b0d623f7
A
884 filt_timerunlock();
885 thread_block(THREAD_CONTINUE_NULL);
886 filt_timerlock();
887 assert((kn->kn_hookid & TIMER_RUNNING) == 0);
888 }
889 }
55e303ae
A
890}
891
892/*
b0d623f7 893 * Allocate a thread call for the knote's lifetime, and kick off the timer.
39236c6e 894 */
55e303ae
A
895static int
896filt_timerattach(struct knote *kn)
897{
91447636 898 thread_call_t callout;
91447636 899 int error;
55e303ae 900
b0d623f7
A
901 callout = thread_call_allocate(filt_timerexpire, kn);
902 if (NULL == callout)
903 return (ENOMEM);
55e303ae 904
b0d623f7
A
905 filt_timerlock();
906 error = filt_timervalidate(kn);
39236c6e 907 if (error != 0) {
b0d623f7 908 filt_timerunlock();
490019cf 909 thread_call_free(callout);
b0d623f7 910 return (error);
91447636 911 }
55e303ae 912
b0d623f7
A
913 kn->kn_hook = (void*)callout;
914 kn->kn_hookid = 0;
55e303ae 915
91447636
A
916 /* absolute=EV_ONESHOT */
917 if (kn->kn_sfflags & NOTE_ABSOLUTE)
39236c6e 918 kn->kn_flags |= EV_ONESHOT;
91447636 919
b0d623f7
A
920 filt_timerupdate(kn);
921 if (kn->kn_ext[0]) {
91447636 922 kn->kn_flags |= EV_CLEAR;
39236c6e
A
923 unsigned int timer_flags = 0;
924 if (kn->kn_sfflags & NOTE_CRITICAL)
925 timer_flags |= THREAD_CALL_DELAY_USER_CRITICAL;
926 else if (kn->kn_sfflags & NOTE_BACKGROUND)
927 timer_flags |= THREAD_CALL_DELAY_USER_BACKGROUND;
928 else
929 timer_flags |= THREAD_CALL_DELAY_USER_NORMAL;
930
931 if (kn->kn_sfflags & NOTE_LEEWAY)
932 timer_flags |= THREAD_CALL_DELAY_LEEWAY;
933
934 thread_call_enter_delayed_with_leeway(callout, NULL,
935 kn->kn_ext[0], kn->kn_ext[1], timer_flags);
936
b0d623f7 937 kn->kn_hookid |= TIMER_RUNNING;
91447636
A
938 } else {
939 /* fake immediate */
b0d623f7 940 kn->kn_data = 1;
91447636 941 }
b0d623f7 942
91447636 943 filt_timerunlock();
55e303ae
A
944 return (0);
945}
946
b0d623f7
A
947/*
948 * Shut down the timer if it's running, and free the callout.
949 */
55e303ae
A
950static void
951filt_timerdetach(struct knote *kn)
952{
91447636
A
953 thread_call_t callout;
954
955 filt_timerlock();
91447636 956
b0d623f7
A
957 callout = (thread_call_t)kn->kn_hook;
958 filt_timercancel(kn);
39236c6e
A
959
960 filt_timerunlock();
b0d623f7
A
961
962 thread_call_free(callout);
55e303ae
A
963}
964
91447636
A
965
966
55e303ae 967static int
b0d623f7 968filt_timer(struct knote *kn, long hint)
55e303ae 969{
91447636 970 int result;
39236c6e 971
91447636 972 if (hint) {
b0d623f7 973 /* real timer pop -- timer lock held by filt_timerexpire */
91447636
A
974 kn->kn_data++;
975
39236c6e 976 if (((kn->kn_hookid & TIMER_CANCELWAIT) == 0) &&
b0d623f7 977 ((kn->kn_flags & EV_ONESHOT) == 0)) {
55e303ae 978
b0d623f7
A
979 /* evaluate next time to fire */
980 filt_timerupdate(kn);
91447636 981
b0d623f7 982 if (kn->kn_ext[0]) {
39236c6e
A
983 unsigned int timer_flags = 0;
984
91447636 985 /* keep the callout and re-arm */
39236c6e
A
986 if (kn->kn_sfflags & NOTE_CRITICAL)
987 timer_flags |= THREAD_CALL_DELAY_USER_CRITICAL;
988 else if (kn->kn_sfflags & NOTE_BACKGROUND)
989 timer_flags |= THREAD_CALL_DELAY_USER_BACKGROUND;
990 else
991 timer_flags |= THREAD_CALL_DELAY_USER_NORMAL;
992
993 if (kn->kn_sfflags & NOTE_LEEWAY)
994 timer_flags |= THREAD_CALL_DELAY_LEEWAY;
995
996 thread_call_enter_delayed_with_leeway(kn->kn_hook, NULL,
997 kn->kn_ext[0], kn->kn_ext[1], timer_flags);
998
b0d623f7 999 kn->kn_hookid |= TIMER_RUNNING;
91447636
A
1000 }
1001 }
91447636 1002
39236c6e
A
1003 return (1);
1004 }
91447636
A
1005
1006 /* user-query */
1007 filt_timerlock();
1008
b0d623f7 1009 result = (kn->kn_data != 0);
91447636 1010
b0d623f7 1011 filt_timerunlock();
39236c6e
A
1012
1013 return (result);
b0d623f7
A
1014}
1015
1016
1017/*
1018 * filt_timertouch - update knote with new user input
1019 *
39236c6e
A
1020 * Cancel and restart the timer based on new user data. When
1021 * the user picks up a knote, clear the count of how many timer
1022 * pops have gone off (in kn_data).
b0d623f7 1023 */
39236c6e 1024static void
3e170ce0 1025filt_timertouch(struct knote *kn, struct kevent_internal_s *kev, long type)
b0d623f7
A
1026{
1027 int error;
1028 filt_timerlock();
1029
1030 switch (type) {
1031 case EVENT_REGISTER:
1032 /* cancel current call */
1033 filt_timercancel(kn);
1034
1035 /* recalculate deadline */
1036 kn->kn_sdata = kev->data;
1037 kn->kn_sfflags = kev->fflags;
39236c6e
A
1038 kn->kn_ext[0] = kev->ext[0];
1039 kn->kn_ext[1] = kev->ext[1];
b0d623f7
A
1040
1041 error = filt_timervalidate(kn);
91447636 1042 if (error) {
b0d623f7 1043 /* no way to report error, so mark it in the knote */
91447636
A
1044 kn->kn_flags |= EV_ERROR;
1045 kn->kn_data = error;
b0d623f7 1046 break;
39236c6e 1047 }
b0d623f7
A
1048
1049 /* start timer if necessary */
1050 filt_timerupdate(kn);
39236c6e 1051
b0d623f7 1052 if (kn->kn_ext[0]) {
39236c6e
A
1053 unsigned int timer_flags = 0;
1054 if (kn->kn_sfflags & NOTE_CRITICAL)
1055 timer_flags |= THREAD_CALL_DELAY_USER_CRITICAL;
1056 else if (kn->kn_sfflags & NOTE_BACKGROUND)
1057 timer_flags |= THREAD_CALL_DELAY_USER_BACKGROUND;
1058 else
1059 timer_flags |= THREAD_CALL_DELAY_USER_NORMAL;
1060
1061 if (kn->kn_sfflags & NOTE_LEEWAY)
1062 timer_flags |= THREAD_CALL_DELAY_LEEWAY;
1063
1064 thread_call_enter_delayed_with_leeway(kn->kn_hook, NULL,
1065 kn->kn_ext[0], kn->kn_ext[1], timer_flags);
1066
b0d623f7
A
1067 kn->kn_hookid |= TIMER_RUNNING;
1068 } else {
1069 /* pretend the timer has fired */
1070 kn->kn_data = 1;
91447636 1071 }
91447636 1072
b0d623f7
A
1073 break;
1074
1075 case EVENT_PROCESS:
1076 /* reset the timer pop count in kn_data */
1077 *kev = kn->kn_kevent;
1078 kev->ext[0] = 0;
1079 kn->kn_data = 0;
1080 if (kn->kn_flags & EV_CLEAR)
1081 kn->kn_fflags = 0;
1082 break;
1083 default:
39236c6e 1084 panic("%s: - invalid type (%ld)", __func__, type);
b0d623f7
A
1085 break;
1086 }
91447636 1087
91447636 1088 filt_timerunlock();
91447636
A
1089}
1090
1091static void
1092filt_timerlock(void)
1093{
1094 lck_mtx_lock(&_filt_timerlock);
1095}
1096
1097static void
1098filt_timerunlock(void)
1099{
1100 lck_mtx_unlock(&_filt_timerlock);
55e303ae 1101}
55e303ae 1102
b0d623f7
A
1103static int
1104filt_userattach(struct knote *kn)
1105{
39236c6e
A
1106 /* EVFILT_USER knotes are not attached to anything in the kernel */
1107 kn->kn_hook = NULL;
6d2010ae 1108 if (kn->kn_fflags & NOTE_TRIGGER) {
b0d623f7
A
1109 kn->kn_hookid = 1;
1110 } else {
1111 kn->kn_hookid = 0;
1112 }
39236c6e 1113 return (0);
b0d623f7
A
1114}
1115
1116static void
1117filt_userdetach(__unused struct knote *kn)
1118{
39236c6e 1119 /* EVFILT_USER knotes are not attached to anything in the kernel */
b0d623f7
A
1120}
1121
1122static int
1123filt_user(struct knote *kn, __unused long hint)
1124{
39236c6e 1125 return (kn->kn_hookid);
b0d623f7
A
1126}
1127
1128static void
3e170ce0 1129filt_usertouch(struct knote *kn, struct kevent_internal_s *kev, long type)
b0d623f7 1130{
39236c6e
A
1131 uint32_t ffctrl;
1132 switch (type) {
1133 case EVENT_REGISTER:
1134 if (kev->fflags & NOTE_TRIGGER) {
1135 kn->kn_hookid = 1;
1136 }
1137
1138 ffctrl = kev->fflags & NOTE_FFCTRLMASK;
1139 kev->fflags &= NOTE_FFLAGSMASK;
1140 switch (ffctrl) {
1141 case NOTE_FFNOP:
1142 break;
1143 case NOTE_FFAND:
1144 OSBitAndAtomic(kev->fflags, &kn->kn_sfflags);
1145 break;
1146 case NOTE_FFOR:
1147 OSBitOrAtomic(kev->fflags, &kn->kn_sfflags);
1148 break;
1149 case NOTE_FFCOPY:
1150 kn->kn_sfflags = kev->fflags;
1151 break;
1152 }
1153 kn->kn_sdata = kev->data;
1154 break;
1155 case EVENT_PROCESS:
1156 *kev = kn->kn_kevent;
1157 kev->fflags = (volatile UInt32)kn->kn_sfflags;
1158 kev->data = kn->kn_sdata;
1159 if (kn->kn_flags & EV_CLEAR) {
b0d623f7
A
1160 kn->kn_hookid = 0;
1161 kn->kn_data = 0;
1162 kn->kn_fflags = 0;
1163 }
39236c6e
A
1164 break;
1165 default:
1166 panic("%s: - invalid type (%ld)", __func__, type);
1167 break;
1168 }
b0d623f7
A
1169}
1170
55e303ae
A
1171/*
1172 * JMM - placeholder for not-yet-implemented filters
39236c6e 1173 */
55e303ae 1174static int
91447636 1175filt_badattach(__unused struct knote *kn)
55e303ae 1176{
39236c6e 1177 return (ENOTSUP);
55e303ae
A
1178}
1179
91447636
A
1180struct kqueue *
1181kqueue_alloc(struct proc *p)
1182{
1183 struct filedesc *fdp = p->p_fd;
1184 struct kqueue *kq;
1185
39236c6e
A
1186 MALLOC_ZONE(kq, struct kqueue *, sizeof (struct kqueue), M_KQUEUE,
1187 M_WAITOK);
91447636 1188 if (kq != NULL) {
3e170ce0 1189 struct waitq_set *wqs;
b0d623f7 1190
3e170ce0 1191 wqs = waitq_set_alloc(SYNC_POLICY_FIFO | SYNC_POLICY_PREPOST | SYNC_POLICY_DISABLE_IRQ);
b0d623f7 1192 if (wqs != NULL) {
39236c6e 1193 bzero(kq, sizeof (struct kqueue));
b0d623f7
A
1194 lck_spin_init(&kq->kq_lock, kq_lck_grp, kq_lck_attr);
1195 TAILQ_INIT(&kq->kq_head);
1196 kq->kq_wqs = wqs;
1197 kq->kq_p = p;
1198 } else {
39236c6e 1199 FREE_ZONE(kq, sizeof (struct kqueue), M_KQUEUE);
04b8595b 1200 kq = NULL;
b0d623f7 1201 }
91447636
A
1202 }
1203
1204 if (fdp->fd_knlistsize < 0) {
1205 proc_fdlock(p);
1206 if (fdp->fd_knlistsize < 0)
39236c6e 1207 fdp->fd_knlistsize = 0; /* this process has had a kq */
91447636
A
1208 proc_fdunlock(p);
1209 }
1210
39236c6e 1211 return (kq);
91447636
A
1212}
1213
91447636
A
1214/*
1215 * kqueue_dealloc - detach all knotes from a kqueue and free it
1216 *
1217 * We walk each list looking for knotes referencing this
1218 * this kqueue. If we find one, we try to drop it. But
1219 * if we fail to get a drop reference, that will wait
1220 * until it is dropped. So, we can just restart again
1221 * safe in the assumption that the list will eventually
1222 * not contain any more references to this kqueue (either
1223 * we dropped them all, or someone else did).
1224 *
1225 * Assumes no new events are being added to the kqueue.
1226 * Nothing locked on entry or exit.
1227 */
1228void
2d21ac55 1229kqueue_dealloc(struct kqueue *kq)
55e303ae 1230{
3e170ce0
A
1231 struct proc *p;
1232 struct filedesc *fdp;
91447636
A
1233 struct knote *kn;
1234 int i;
1235
3e170ce0
A
1236 if (kq == NULL)
1237 return;
1238
1239 p = kq->kq_p;
1240 fdp = p->p_fd;
1241
91447636
A
1242 proc_fdlock(p);
1243 for (i = 0; i < fdp->fd_knlistsize; i++) {
1244 kn = SLIST_FIRST(&fdp->fd_knlist[i]);
1245 while (kn != NULL) {
1246 if (kq == kn->kn_kq) {
1247 kqlock(kq);
1248 proc_fdunlock(p);
1249 /* drop it ourselves or wait */
1250 if (kqlock2knotedrop(kq, kn)) {
1251 kn->kn_fop->f_detach(kn);
1252 knote_drop(kn, p);
1253 }
1254 proc_fdlock(p);
1255 /* start over at beginning of list */
1256 kn = SLIST_FIRST(&fdp->fd_knlist[i]);
1257 continue;
1258 }
1259 kn = SLIST_NEXT(kn, kn_link);
1260 }
1261 }
1262 if (fdp->fd_knhashmask != 0) {
1263 for (i = 0; i < (int)fdp->fd_knhashmask + 1; i++) {
1264 kn = SLIST_FIRST(&fdp->fd_knhash[i]);
1265 while (kn != NULL) {
1266 if (kq == kn->kn_kq) {
1267 kqlock(kq);
1268 proc_fdunlock(p);
1269 /* drop it ourselves or wait */
1270 if (kqlock2knotedrop(kq, kn)) {
1271 kn->kn_fop->f_detach(kn);
1272 knote_drop(kn, p);
1273 }
1274 proc_fdlock(p);
1275 /* start over at beginning of list */
1276 kn = SLIST_FIRST(&fdp->fd_knhash[i]);
1277 continue;
1278 }
1279 kn = SLIST_NEXT(kn, kn_link);
1280 }
1281 }
1282 }
1283 proc_fdunlock(p);
b0d623f7 1284
39236c6e 1285 /*
3e170ce0
A
1286 * waitq_set_free() clears all preposts and also remove the KQ's
1287 * waitq set from any select sets to which it may belong.
b0d623f7 1288 */
3e170ce0
A
1289 waitq_set_free(kq->kq_wqs);
1290 kq->kq_wqs = NULL;
91447636 1291 lck_spin_destroy(&kq->kq_lock, kq_lck_grp);
39236c6e 1292 FREE_ZONE(kq, sizeof (struct kqueue), M_KQUEUE);
91447636
A
1293}
1294
1295int
39236c6e 1296kqueue_body(struct proc *p, fp_allocfn_t fp_zalloc, void *cra, int32_t *retval)
91447636 1297{
55e303ae 1298 struct kqueue *kq;
91447636 1299 struct fileproc *fp;
55e303ae
A
1300 int fd, error;
1301
39236c6e
A
1302 error = falloc_withalloc(p,
1303 &fp, &fd, vfs_context_current(), fp_zalloc, cra);
91447636 1304 if (error) {
55e303ae 1305 return (error);
91447636
A
1306 }
1307
1308 kq = kqueue_alloc(p);
1309 if (kq == NULL) {
1310 fp_free(p, fd, fp);
1311 return (ENOMEM);
1312 }
1313
55e303ae 1314 fp->f_flag = FREAD | FWRITE;
55e303ae 1315 fp->f_ops = &kqueueops;
39236c6e 1316 fp->f_data = kq;
91447636
A
1317
1318 proc_fdlock(p);
8a3053a0 1319 *fdflags(p, fd) |= UF_EXCLOSE;
6601e61a 1320 procfdtbl_releasefd(p, fd, NULL);
91447636
A
1321 fp_drop(p, fd, fp, 1);
1322 proc_fdunlock(p);
1323
55e303ae 1324 *retval = fd;
55e303ae
A
1325 return (error);
1326}
1327
39236c6e
A
1328int
1329kqueue(struct proc *p, __unused struct kqueue_args *uap, int32_t *retval)
1330{
1331 return (kqueue_body(p, fileproc_alloc_init, NULL, retval));
1332}
1333
91447636 1334static int
3e170ce0
A
1335kevent_copyin(user_addr_t *addrp, struct kevent_internal_s *kevp, struct proc *p,
1336 unsigned int flags)
55e303ae 1337{
91447636
A
1338 int advance;
1339 int error;
55e303ae 1340
3e170ce0
A
1341 if (flags & KEVENT_FLAG_LEGACY32) {
1342 bzero(kevp, sizeof (*kevp));
91447636 1343
3e170ce0
A
1344 if (IS_64BIT_PROCESS(p)) {
1345 struct user64_kevent kev64;
1346
1347 advance = sizeof (kev64);
1348 error = copyin(*addrp, (caddr_t)&kev64, advance);
1349 if (error)
1350 return (error);
1351 kevp->ident = kev64.ident;
1352 kevp->filter = kev64.filter;
1353 kevp->flags = kev64.flags;
1354 kevp->udata = kev64.udata;
1355 kevp->fflags = kev64.fflags;
1356 kevp->data = kev64.data;
1357 } else {
1358 struct user32_kevent kev32;
1359
1360 advance = sizeof (kev32);
1361 error = copyin(*addrp, (caddr_t)&kev32, advance);
1362 if (error)
1363 return (error);
1364 kevp->ident = (uintptr_t)kev32.ident;
1365 kevp->filter = kev32.filter;
1366 kevp->flags = kev32.flags;
1367 kevp->udata = CAST_USER_ADDR_T(kev32.udata);
1368 kevp->fflags = kev32.fflags;
1369 kevp->data = (intptr_t)kev32.data;
1370 }
1371 } else if (flags & KEVENT_FLAG_LEGACY64) {
1372 struct kevent64_s kev64;
1373
1374 bzero(kevp, sizeof (*kevp));
1375
1376 advance = sizeof (struct kevent64_s);
91447636 1377 error = copyin(*addrp, (caddr_t)&kev64, advance);
55e303ae 1378 if (error)
3e170ce0 1379 return(error);
b0d623f7 1380 kevp->ident = kev64.ident;
91447636
A
1381 kevp->filter = kev64.filter;
1382 kevp->flags = kev64.flags;
3e170ce0 1383 kevp->udata = kev64.udata;
91447636 1384 kevp->fflags = kev64.fflags;
b0d623f7 1385 kevp->data = kev64.data;
3e170ce0
A
1386 kevp->ext[0] = kev64.ext[0];
1387 kevp->ext[1] = kev64.ext[1];
1388
91447636 1389 } else {
3e170ce0 1390 struct kevent_qos_s kevqos;
b0d623f7 1391
3e170ce0
A
1392 bzero(kevp, sizeof (*kevp));
1393
1394 advance = sizeof (struct kevent_qos_s);
1395 error = copyin(*addrp, (caddr_t)&kevqos, advance);
b0d623f7 1396 if (error)
3e170ce0
A
1397 return error;
1398 kevp->ident = kevqos.ident;
1399 kevp->filter = kevqos.filter;
1400 kevp->flags = kevqos.flags;
1401 kevp->udata = kevqos.udata;
1402 kevp->fflags = kevqos.fflags;
1403 kevp->data = kevqos.data;
1404 kevp->ext[0] = kevqos.ext[0];
1405 kevp->ext[1] = kevqos.ext[1];
55e303ae 1406 }
91447636
A
1407 if (!error)
1408 *addrp += advance;
39236c6e 1409 return (error);
91447636 1410}
55e303ae 1411
91447636 1412static int
3e170ce0
A
1413kevent_copyout(struct kevent_internal_s *kevp, user_addr_t *addrp, struct proc *p,
1414 unsigned int flags)
91447636 1415{
3e170ce0 1416 user_addr_t addr = *addrp;
91447636
A
1417 int advance;
1418 int error;
1419
3e170ce0
A
1420 if (flags & KEVENT_FLAG_LEGACY32) {
1421 assert((flags & KEVENT_FLAG_STACK_EVENTS) == 0);
91447636 1422
3e170ce0
A
1423 if (IS_64BIT_PROCESS(p)) {
1424 struct user64_kevent kev64;
1425
1426 /*
1427 * deal with the special case of a user-supplied
1428 * value of (uintptr_t)-1.
1429 */
1430 kev64.ident = (kevp->ident == (uintptr_t)-1) ?
1431 (uint64_t)-1LL : (uint64_t)kevp->ident;
1432
1433 kev64.filter = kevp->filter;
1434 kev64.flags = kevp->flags;
1435 kev64.fflags = kevp->fflags;
1436 kev64.data = (int64_t) kevp->data;
1437 kev64.udata = kevp->udata;
1438 advance = sizeof (kev64);
1439 error = copyout((caddr_t)&kev64, addr, advance);
1440 } else {
1441 struct user32_kevent kev32;
1442
1443 kev32.ident = (uint32_t)kevp->ident;
1444 kev32.filter = kevp->filter;
1445 kev32.flags = kevp->flags;
1446 kev32.fflags = kevp->fflags;
1447 kev32.data = (int32_t)kevp->data;
1448 kev32.udata = kevp->udata;
1449 advance = sizeof (kev32);
1450 error = copyout((caddr_t)&kev32, addr, advance);
1451 }
1452 } else if (flags & KEVENT_FLAG_LEGACY64) {
1453 struct kevent64_s kev64;
2d21ac55 1454
3e170ce0
A
1455 advance = sizeof (struct kevent64_s);
1456 if (flags & KEVENT_FLAG_STACK_EVENTS) {
1457 addr -= advance;
1458 }
1459 kev64.ident = kevp->ident;
91447636
A
1460 kev64.filter = kevp->filter;
1461 kev64.flags = kevp->flags;
1462 kev64.fflags = kevp->fflags;
1463 kev64.data = (int64_t) kevp->data;
1464 kev64.udata = kevp->udata;
3e170ce0
A
1465 kev64.ext[0] = kevp->ext[0];
1466 kev64.ext[1] = kevp->ext[1];
1467 error = copyout((caddr_t)&kev64, addr, advance);
91447636 1468 } else {
3e170ce0
A
1469 struct kevent_qos_s kevqos;
1470
1471 bzero(&kevqos, sizeof (struct kevent_qos_s));
1472 advance = sizeof (struct kevent_qos_s);
1473 if (flags & KEVENT_FLAG_STACK_EVENTS) {
1474 addr -= advance;
1475 }
1476 kevqos.ident = kevp->ident;
1477 kevqos.filter = kevp->filter;
1478 kevqos.flags = kevp->flags;
1479 kevqos.fflags = kevp->fflags;
1480 kevqos.data = (int64_t) kevp->data;
1481 kevqos.udata = kevp->udata;
1482 kevqos.ext[0] = kevp->ext[0];
1483 kevqos.ext[1] = kevp->ext[1];
1484 error = copyout((caddr_t)&kevqos, addr, advance);
1485 }
1486 if (!error) {
1487 if (flags & KEVENT_FLAG_STACK_EVENTS)
1488 *addrp = addr;
1489 else
1490 *addrp = addr + advance;
91447636 1491 }
39236c6e 1492 return (error);
91447636 1493}
55e303ae 1494
91447636
A
1495/*
1496 * kevent_continue - continue a kevent syscall after blocking
1497 *
1498 * assume we inherit a use count on the kq fileglob.
1499 */
55e303ae 1500
91447636
A
1501static void
1502kevent_continue(__unused struct kqueue *kq, void *data, int error)
1503{
1504 struct _kevent *cont_args;
1505 struct fileproc *fp;
b0d623f7 1506 int32_t *retval;
91447636
A
1507 int noutputs;
1508 int fd;
1509 struct proc *p = current_proc();
1510
1511 cont_args = (struct _kevent *)data;
1512 noutputs = cont_args->eventout;
1513 retval = cont_args->retval;
1514 fd = cont_args->fd;
1515 fp = cont_args->fp;
1516
3e170ce0
A
1517 if (fp != NULL)
1518 fp_drop(p, fd, fp, 0);
91447636
A
1519
1520 /* don't restart after signals... */
1521 if (error == ERESTART)
1522 error = EINTR;
1523 else if (error == EWOULDBLOCK)
1524 error = 0;
1525 if (error == 0)
1526 *retval = noutputs;
1527 unix_syscall_return(error);
1528}
55e303ae 1529
91447636
A
1530/*
1531 * kevent - [syscall] register and wait for kernel events
1532 *
1533 */
91447636 1534int
b0d623f7
A
1535kevent(struct proc *p, struct kevent_args *uap, int32_t *retval)
1536{
3e170ce0
A
1537 unsigned int flags = KEVENT_FLAG_LEGACY32;
1538
1539 return kevent_internal(p,
1540 uap->fd,
1541 uap->changelist, uap->nchanges,
1542 uap->eventlist, uap->nevents,
1543 0ULL, 0ULL,
1544 flags,
1545 uap->timeout,
1546 kevent_continue,
1547 retval);
39236c6e
A
1548}
1549
b0d623f7
A
1550int
1551kevent64(struct proc *p, struct kevent64_args *uap, int32_t *retval)
1552{
3e170ce0
A
1553 unsigned int flags;
1554
1555 /* restrict to user flags and set legacy64 */
1556 flags = uap->flags & KEVENT_FLAG_USER;
1557 flags |= KEVENT_FLAG_LEGACY64;
1558
1559 return kevent_internal(p,
1560 uap->fd,
1561 uap->changelist, uap->nchanges,
1562 uap->eventlist, uap->nevents,
1563 0ULL, 0ULL,
1564 flags,
1565 uap->timeout,
1566 kevent_continue,
1567 retval);
b0d623f7 1568}
91447636 1569
3e170ce0
A
1570int
1571kevent_qos(struct proc *p, struct kevent_qos_args *uap, int32_t *retval)
1572{
1573 user_size_t usize = 0;
1574 user_size_t ssize;
1575 int error;
1576
1577 /* restrict to user flags */
1578 uap->flags &= KEVENT_FLAG_USER;
1579
1580 if (uap->data_available) {
1581 if (!IS_64BIT_PROCESS(p)) {
1582 uint32_t csize;
1583
1584 error = copyin(uap->data_available, (caddr_t)&csize, sizeof(csize));
1585 if (error)
1586 return error;
1587 usize = csize;
1588 } else {
1589 uint64_t csize;
1590 error = copyin(uap->data_available, (caddr_t)&csize, sizeof(csize));
1591 if (error)
1592 return error;
1593 usize = csize;
1594 }
1595 }
1596 ssize = usize;
1597
1598 error = kevent_internal(p,
1599 uap->fd,
1600 uap->changelist, uap->nchanges,
1601 uap->eventlist, uap->nevents,
1602 uap->data_out, &usize,
1603 uap->flags,
1604 0ULL,
1605 kevent_continue,
1606 retval);
1607
1608 if (error == 0 && uap->data_available && usize != ssize) {
1609 if (!IS_64BIT_PROCESS(p)) {
1610 uint32_t csize = (uint32_t)usize;
1611
1612 error = copyout((caddr_t)&csize, uap->data_available, sizeof(csize));
1613 } else {
1614 error = copyout((caddr_t)&usize, uap->data_available, sizeof(usize));
1615 }
1616 }
1617 return error;
1618}
1619
1620int
1621kevent_qos_internal(struct proc *p, int fd,
1622 user_addr_t changelist, int nchanges,
1623 user_addr_t eventlist, int nevents,
1624 user_addr_t data_out, user_size_t *data_available,
1625 unsigned int flags,
1626 int32_t *retval)
1627{
1628 return kevent_internal(p,
1629 fd,
1630 changelist, nchanges,
1631 eventlist, nevents,
1632 data_out, data_available,
1633 flags,
1634 0ULL,
1635 NULL,
1636 retval);
1637}
1638
b0d623f7 1639static int
3e170ce0
A
1640kevent_internal(struct proc *p,
1641 int fd,
1642 user_addr_t changelist, int nchanges,
1643 user_addr_t ueventlist, int nevents,
1644 user_addr_t data_out, user_size_t *data_available,
1645 unsigned int flags,
1646 user_addr_t utimeout,
1647 kqueue_continue_t continuation,
1648 int32_t *retval)
b0d623f7 1649{
91447636
A
1650 struct _kevent *cont_args;
1651 uthread_t ut;
1652 struct kqueue *kq;
3e170ce0
A
1653 struct fileproc *fp = NULL;
1654 struct kevent_internal_s kev;
490019cf 1655 int error = 0, noutputs;
91447636
A
1656 struct timeval atv;
1657
3e170ce0
A
1658#if 1
1659 /* temporarily ignore these fields */
1660 (void)data_out;
1661 (void)data_available;
1662#endif
1663
1664 /* prepare to deal with stack-wise allocation of out events */
1665 if (flags & KEVENT_FLAG_STACK_EVENTS) {
1666 int scale = ((flags & KEVENT_FLAG_LEGACY32) ?
1667 (IS_64BIT_PROCESS(p) ? sizeof(struct user64_kevent) :
1668 sizeof(struct user32_kevent)) :
1669 ((flags & KEVENT_FLAG_LEGACY64) ? sizeof(struct kevent64_s) :
1670 sizeof(struct kevent_qos_s)));
1671 ueventlist += nevents * scale;
1672 }
1673
1674 /* convert timeout to absolute - if we have one (and not immediate) */
1675 if (flags & KEVENT_FLAG_IMMEDIATE) {
1676 getmicrouptime(&atv);
1677 } else if (utimeout != USER_ADDR_NULL) {
91447636 1678 struct timeval rtv;
b0d623f7
A
1679 if (IS_64BIT_PROCESS(p)) {
1680 struct user64_timespec ts;
1681 error = copyin(utimeout, &ts, sizeof(ts));
91447636
A
1682 if ((ts.tv_sec & 0xFFFFFFFF00000000ull) != 0)
1683 error = EINVAL;
1684 else
1685 TIMESPEC_TO_TIMEVAL(&rtv, &ts);
1686 } else {
b0d623f7
A
1687 struct user32_timespec ts;
1688 error = copyin(utimeout, &ts, sizeof(ts));
91447636
A
1689 TIMESPEC_TO_TIMEVAL(&rtv, &ts);
1690 }
55e303ae 1691 if (error)
39236c6e 1692 return (error);
91447636 1693 if (itimerfix(&rtv))
39236c6e 1694 return (EINVAL);
91447636
A
1695 getmicrouptime(&atv);
1696 timevaladd(&atv, &rtv);
1697 } else {
3e170ce0 1698 /* wait forever value */
91447636
A
1699 atv.tv_sec = 0;
1700 atv.tv_usec = 0;
1701 }
55e303ae 1702
3e170ce0
A
1703 if (flags & KEVENT_FLAG_WORKQ) {
1704 /*
1705 * use the private kq associated with the proc workq.
1706 * Just being a thread within the process (and not
1707 * being the exit/exec thread) is enough to hold a
1708 * reference on this special kq.
1709 */
1710 kq = p->p_wqkqueue;
1711 if (kq == NULL) {
1712 struct kqueue *alloc_kq = kqueue_alloc(p);
1713 if (alloc_kq == NULL)
1714 return ENOMEM;
1715
1716 proc_fdlock(p);
1717 if (p->p_wqkqueue == NULL) {
1718 /*
1719 * The kq is marked as special -
1720 * with unique interactions with
1721 * the workq for this process.
1722 */
1723 alloc_kq->kq_state |= KQ_WORKQ;
1724 kq = p->p_wqkqueue = alloc_kq;
1725 proc_fdunlock(p);
1726 } else {
1727 proc_fdunlock(p);
1728 kq = p->p_wqkqueue;
1729 kqueue_dealloc(alloc_kq);
1730 }
1731 }
1732 } else {
1733 /* get a usecount for the kq itself */
1734 if ((error = fp_getfkq(p, fd, &fp, &kq)) != 0)
1735 return (error);
1736 }
39236c6e 1737
b0d623f7
A
1738 /* each kq should only be used for events of one type */
1739 kqlock(kq);
3e170ce0
A
1740 if (kq->kq_state & (KQ_KEV32 | KQ_KEV64 | KQ_KEV_QOS)) {
1741 if (flags & KEVENT_FLAG_LEGACY32) {
1742 if ((kq->kq_state & KQ_KEV32) == 0) {
1743 error = EINVAL;
1744 kqunlock(kq);
1745 goto errorout;
1746 }
1747 } else if (kq->kq_state & KQ_KEV32) {
b0d623f7
A
1748 error = EINVAL;
1749 kqunlock(kq);
1750 goto errorout;
1751 }
3e170ce0
A
1752 } else if (flags & KEVENT_FLAG_LEGACY32) {
1753 kq->kq_state |= KQ_KEV32;
b0d623f7 1754 } else {
3e170ce0
A
1755 /* JMM - set KQ_KEVQOS when we are ready for exclusive */
1756 kq->kq_state |= KQ_KEV64;
b0d623f7
A
1757 }
1758 kqunlock(kq);
91447636
A
1759
1760 /* register all the change requests the user provided... */
1761 noutputs = 0;
3a60a9f5 1762 while (nchanges > 0 && error == 0) {
3e170ce0 1763 error = kevent_copyin(&changelist, &kev, p, flags);
91447636
A
1764 if (error)
1765 break;
39236c6e 1766
91447636
A
1767 kev.flags &= ~EV_SYSFLAGS;
1768 error = kevent_register(kq, &kev, p);
2d21ac55 1769 if ((error || (kev.flags & EV_RECEIPT)) && nevents > 0) {
91447636
A
1770 kev.flags = EV_ERROR;
1771 kev.data = error;
3e170ce0 1772 error = kevent_copyout(&kev, &ueventlist, p, flags);
3a60a9f5
A
1773 if (error == 0) {
1774 nevents--;
1775 noutputs++;
1776 }
55e303ae 1777 }
91447636 1778 nchanges--;
55e303ae
A
1779 }
1780
3e170ce0
A
1781 /* short-circuit the scan if we only want error events */
1782 if (flags & KEVENT_FLAG_ERROR_EVENTS)
1783 nevents = 0;
1784
1785 if (nevents > 0 && noutputs == 0 && error == 0) {
1786
1787 /* store the continuation/completion data in the uthread */
1788 ut = (uthread_t)get_bsdthread_info(current_thread());
1789 cont_args = &ut->uu_kevent.ss_kevent;
1790 cont_args->fp = fp;
1791 cont_args->fd = fd;
1792 cont_args->retval = retval;
1793 cont_args->eventlist = ueventlist;
1794 cont_args->eventcount = nevents;
1795 cont_args->eventout = noutputs;
1796 cont_args->eventflags = flags;
91447636 1797
b0d623f7 1798 error = kqueue_scan(kq, kevent_callback,
3e170ce0
A
1799 continuation, cont_args,
1800 &atv, p);
1801
1802 noutputs = cont_args->eventout;
1803 }
b0d623f7 1804
3e170ce0
A
1805 /* don't restart after signals... */
1806 if (error == ERESTART)
1807 error = EINTR;
1808 else if (error == EWOULDBLOCK)
1809 error = 0;
1810 if (error == 0)
1811 *retval = noutputs;
b0d623f7 1812errorout:
3e170ce0
A
1813 if (fp != NULL)
1814 fp_drop(p, fd, fp, 0);
39236c6e 1815 return (error);
91447636
A
1816}
1817
1818
1819/*
1820 * kevent_callback - callback for each individual event
1821 *
39236c6e
A
1822 * called with nothing locked
1823 * caller holds a reference on the kqueue
91447636 1824 */
91447636 1825static int
3e170ce0 1826kevent_callback(__unused struct kqueue *kq, struct kevent_internal_s *kevp,
39236c6e 1827 void *data)
91447636
A
1828{
1829 struct _kevent *cont_args;
1830 int error;
1831
1832 cont_args = (struct _kevent *)data;
2d21ac55 1833 assert(cont_args->eventout < cont_args->eventcount);
91447636
A
1834
1835 /*
1836 * Copy out the appropriate amount of event data for this user.
1837 */
39236c6e 1838 error = kevent_copyout(kevp, &cont_args->eventlist, current_proc(),
3e170ce0 1839 cont_args->eventflags);
91447636
A
1840
1841 /*
1842 * If there isn't space for additional events, return
1843 * a harmless error to stop the processing here
1844 */
1845 if (error == 0 && ++cont_args->eventout == cont_args->eventcount)
39236c6e
A
1846 error = EWOULDBLOCK;
1847 return (error);
55e303ae
A
1848}
1849
b0d623f7
A
1850/*
1851 * kevent_description - format a description of a kevent for diagnostic output
1852 *
3e170ce0 1853 * called with a 256-byte string buffer
b0d623f7
A
1854 */
1855
1856char *
3e170ce0 1857kevent_description(struct kevent_internal_s *kevp, char *s, size_t n)
b0d623f7 1858{
39236c6e
A
1859 snprintf(s, n,
1860 "kevent="
3e170ce0 1861 "{.ident=%#llx, .filter=%d, .flags=%#x, .udata=%#llx, .fflags=%#x, .data=%#llx, .ext[0]=%#llx, .ext[1]=%#llx}",
39236c6e
A
1862 kevp->ident,
1863 kevp->filter,
1864 kevp->flags,
3e170ce0 1865 kevp->udata,
39236c6e
A
1866 kevp->fflags,
1867 kevp->data,
39236c6e 1868 kevp->ext[0],
3e170ce0 1869 kevp->ext[1] );
39236c6e
A
1870
1871 return (s);
b0d623f7
A
1872}
1873
91447636
A
1874/*
1875 * kevent_register - add a new event to a kqueue
1876 *
1877 * Creates a mapping between the event source and
1878 * the kqueue via a knote data structure.
1879 *
1880 * Because many/most the event sources are file
1881 * descriptor related, the knote is linked off
1882 * the filedescriptor table for quick access.
1883 *
1884 * called with nothing locked
1885 * caller holds a reference on the kqueue
1886 */
1887
55e303ae 1888int
3e170ce0 1889kevent_register(struct kqueue *kq, struct kevent_internal_s *kev,
39236c6e 1890 __unused struct proc *ctxp)
55e303ae 1891{
2d21ac55
A
1892 struct proc *p = kq->kq_p;
1893 struct filedesc *fdp = p->p_fd;
55e303ae 1894 struct filterops *fops;
91447636 1895 struct fileproc *fp = NULL;
55e303ae 1896 struct knote *kn = NULL;
3e170ce0 1897 struct klist *list;
91447636 1898 int error = 0;
55e303ae
A
1899
1900 if (kev->filter < 0) {
1901 if (kev->filter + EVFILT_SYSCOUNT < 0)
1902 return (EINVAL);
1903 fops = sysfilt_ops[~kev->filter]; /* to 0-base index */
1904 } else {
55e303ae
A
1905 return (EINVAL);
1906 }
1907
39236c6e 1908restart:
91447636 1909 /* this iocount needs to be dropped if it is not registered */
3e170ce0 1910 list = NULL;
b0d623f7 1911 proc_fdlock(p);
55e303ae 1912
3e170ce0
A
1913 /*
1914 * determine where to look for the knote
1915 */
91447636 1916 if (fops->f_isfd) {
3e170ce0
A
1917 if ((error = fp_lookup(p, kev->ident, &fp, 1)) != 0) {
1918 proc_fdunlock(p);
1919 return (error);
1920 }
91447636
A
1921 /* fd-based knotes are linked off the fd table */
1922 if (kev->ident < (u_int)fdp->fd_knlistsize) {
3e170ce0 1923 list = &fdp->fd_knlist[kev->ident];
55e303ae 1924 }
3e170ce0 1925 } else if (fdp->fd_knhashmask != 0) {
91447636 1926 /* hash non-fd knotes here too */
3e170ce0
A
1927 list = &fdp->fd_knhash[KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
1928 }
1929
1930 /*
1931 * scan the selected list looking for a match
1932 */
1933 if (list != NULL) {
1934 SLIST_FOREACH(kn, list, kn_link) {
1935 if (kq == kn->kn_kq &&
1936 kev->ident == kn->kn_id &&
1937 kev->filter == kn->kn_filter) {
1938 if (kev->flags & EV_UDATA_SPECIFIC) {
1939 if ((kn->kn_flags & EV_UDATA_SPECIFIC) &&
1940 kev->udata == kn->kn_udata) {
1941 break; /* matching udata-specific knote */
1942 }
1943 } else if ((kn->kn_flags & EV_UDATA_SPECIFIC) == 0) {
1944 break; /* matching non-udata-specific knote */
1945 }
1946 }
55e303ae
A
1947 }
1948 }
1949
91447636
A
1950 /*
1951 * kn now contains the matching knote, or NULL if no match
1952 */
1953 if (kn == NULL) {
1954 if ((kev->flags & (EV_ADD|EV_DELETE)) == EV_ADD) {
1955 kn = knote_alloc();
1956 if (kn == NULL) {
1957 proc_fdunlock(p);
1958 error = ENOMEM;
1959 goto done;
1960 }
1961 kn->kn_fp = fp;
1962 kn->kn_kq = kq;
1963 kn->kn_tq = &kq->kq_head;
1964 kn->kn_fop = fops;
1965 kn->kn_sfflags = kev->fflags;
1966 kn->kn_sdata = kev->data;
1967 kev->fflags = 0;
1968 kev->data = 0;
1969 kn->kn_kevent = *kev;
1970 kn->kn_inuse = 1; /* for f_attach() */
b0d623f7 1971 kn->kn_status = KN_ATTACHING;
91447636
A
1972
1973 /* before anyone can find it */
1974 if (kev->flags & EV_DISABLE)
1975 kn->kn_status |= KN_DISABLED;
1976
1977 error = knote_fdpattach(kn, fdp, p);
1978 proc_fdunlock(p);
1979
1980 if (error) {
1981 knote_free(kn);
1982 goto done;
1983 }
1984
1985 /*
1986 * apply reference count to knote structure, and
1987 * do not release it at the end of this routine.
1988 */
1989 fp = NULL;
1990
b0d623f7
A
1991 error = fops->f_attach(kn);
1992
b0d623f7 1993 kqlock(kq);
6d2010ae 1994
7e4a7d39
A
1995 if (error != 0) {
1996 /*
1997 * Failed to attach correctly, so drop.
1998 * All other possible users/droppers
1999 * have deferred to us.
2000 */
b0d623f7
A
2001 kn->kn_status |= KN_DROPPING;
2002 kqunlock(kq);
91447636
A
2003 knote_drop(kn, p);
2004 goto done;
7e4a7d39
A
2005 } else if (kn->kn_status & KN_DROPPING) {
2006 /*
2007 * Attach succeeded, but someone else
2008 * deferred their drop - now we have
2009 * to do it for them (after detaching).
2010 */
2011 kqunlock(kq);
2012 kn->kn_fop->f_detach(kn);
2013 knote_drop(kn, p);
2014 goto done;
91447636 2015 }
b0d623f7
A
2016 kn->kn_status &= ~KN_ATTACHING;
2017 kqunlock(kq);
91447636
A
2018 } else {
2019 proc_fdunlock(p);
2020 error = ENOENT;
2021 goto done;
2022 }
2023 } else {
2024 /* existing knote - get kqueue lock */
2025 kqlock(kq);
2026 proc_fdunlock(p);
39236c6e 2027
91447636 2028 if (kev->flags & EV_DELETE) {
3e170ce0
A
2029 if ((kev->flags & EV_ENABLE) == 0 &&
2030 (kev->flags & EV_DISPATCH2) == EV_DISPATCH2 &&
2031 (kn->kn_status & KN_DISABLED) == KN_DISABLED) {
2032 /* mark for deferred drop */
2033 kn->kn_status |= KN_DEFERDROP;
2034 kqunlock(kq);
2035 error = EINPROGRESS;
2036 } else {
2037 knote_dequeue(kn);
2038 kn->kn_status |= KN_DISABLED;
2039 if (kqlock2knotedrop(kq, kn)) {
2040 kn->kn_fop->f_detach(kn);
2041 knote_drop(kn, p);
2042 } else {
2043 /* pretend we didn't find it */
2044 error = ENOENT;
2045 }
91447636
A
2046 }
2047 goto done;
2048 }
39236c6e 2049
91447636
A
2050 /* update status flags for existing knote */
2051 if (kev->flags & EV_DISABLE) {
2052 knote_dequeue(kn);
2053 kn->kn_status |= KN_DISABLED;
3e170ce0
A
2054
2055 } else if ((kev->flags & EV_ENABLE) &&
2056 (kn->kn_status & KN_DISABLED)) {
91447636 2057 kn->kn_status &= ~KN_DISABLED;
3e170ce0
A
2058
2059 /* handle deferred drop */
2060 if (kn->kn_status & KN_DEFERDROP) {
2061 kn->kn_status &= ~KN_DEFERDROP;
2062 kn->kn_flags |= (EV_DELETE | EV_ONESHOT);
2063 knote_activate(kn, 0);
2064 kqunlock(kq);
2065 goto done;
2066 }
2067
2068 if (kn->kn_status & KN_ACTIVE) {
2069 /* force re-activate if previously active */
2070 knote_activate(kn, 1);
2071 }
91447636
A
2072 }
2073
b7266188
A
2074 /*
2075 * The user may change some filter values after the
39236c6e 2076 * initial EV_ADD, but doing so will not reset any
b7266188
A
2077 * filter which have already been triggered.
2078 */
2079 kn->kn_kevent.udata = kev->udata;
2080 if (fops->f_isfd || fops->f_touch == NULL) {
39236c6e
A
2081 kn->kn_sfflags = kev->fflags;
2082 kn->kn_sdata = kev->data;
b7266188
A
2083 }
2084
91447636
A
2085 /*
2086 * If somebody is in the middle of dropping this
2087 * knote - go find/insert a new one. But we have
b0d623f7
A
2088 * wait for this one to go away first. Attaches
2089 * running in parallel may also drop/modify the
2090 * knote. Wait for those to complete as well and
2091 * then start over if we encounter one.
91447636 2092 */
b0d623f7
A
2093 if (!kqlock2knoteusewait(kq, kn)) {
2094 /* kqueue, proc_fdlock both unlocked */
91447636 2095 goto restart;
b0d623f7 2096 }
91447636
A
2097
2098 /*
b7266188
A
2099 * Call touch routine to notify filter of changes
2100 * in filter values.
91447636 2101 */
b0d623f7 2102 if (!fops->f_isfd && fops->f_touch != NULL)
39236c6e 2103 fops->f_touch(kn, kev, EVENT_REGISTER);
91447636 2104 }
91447636 2105 /* still have use ref on knote */
b0d623f7
A
2106
2107 /*
3e170ce0
A
2108 * Invoke the filter routine to see if it should be enqueued now.
2109 */
2110#if 0
2111 if (kn->kn_fop->f_event(kn, 0)) {
2112#else
2113 /*
2114 * JMM - temporary workaround until rdar://problem/19986199
2115 * This potentially results in extra wakeups for KN_STAYQUEUED event types,
2116 * but waking up only truly active ones (yet trying below to determine
2117 * active status, by invoking the filter routine, is having side-effects).
b0d623f7 2118 */
3e170ce0
A
2119 if ((kn->kn_status & KN_STAYQUEUED) || kn->kn_fop->f_event(kn, 0)) {
2120#endif
91447636 2121 if (knoteuse2kqlock(kq, kn))
3e170ce0 2122 knote_activate(kn, (kn->kn_status & KN_STAYQUEUED));
91447636
A
2123 kqunlock(kq);
2124 } else {
2125 knote_put(kn);
2126 }
2127
2128done:
2129 if (fp != NULL)
2130 fp_drop(p, kev->ident, fp, 0);
2131 return (error);
2132}
2133
b0d623f7
A
2134
2135/*
2136 * knote_process - process a triggered event
2137 *
2138 * Validate that it is really still a triggered event
2139 * by calling the filter routines (if necessary). Hold
2140 * a use reference on the knote to avoid it being detached.
2141 * If it is still considered triggered, invoke the callback
2142 * routine provided and move it to the provided inprocess
2143 * queue.
2144 *
2145 * caller holds a reference on the kqueue.
2146 * kqueue locked on entry and exit - but may be dropped
2147 */
2148static int
39236c6e
A
2149knote_process(struct knote *kn,
2150 kevent_callback_t callback,
2151 void *data,
2152 struct kqtailq *inprocessp,
2153 struct proc *p)
b0d623f7
A
2154{
2155 struct kqueue *kq = kn->kn_kq;
3e170ce0 2156 struct kevent_internal_s kev;
b0d623f7
A
2157 int touch;
2158 int result;
2159 int error;
2160
2161 /*
2162 * Determine the kevent state we want to return.
2163 *
2164 * Some event states need to be revalidated before returning
2165 * them, others we take the snapshot at the time the event
2166 * was enqueued.
2167 *
2168 * Events with non-NULL f_touch operations must be touched.
2169 * Triggered events must fill in kev for the callback.
2170 *
2171 * Convert our lock to a use-count and call the event's
2172 * filter routine(s) to update.
2173 */
2174 if ((kn->kn_status & KN_DISABLED) != 0) {
2175 result = 0;
2176 touch = 0;
2177 } else {
2178 int revalidate;
2179
2180 result = 1;
2181 revalidate = ((kn->kn_status & KN_STAYQUEUED) != 0 ||
39236c6e
A
2182 (kn->kn_flags & EV_ONESHOT) == 0);
2183 touch = (!kn->kn_fop->f_isfd && kn->kn_fop->f_touch != NULL);
b0d623f7
A
2184
2185 if (revalidate || touch) {
2186 if (revalidate)
2187 knote_deactivate(kn);
39236c6e 2188
b0d623f7
A
2189 /* call the filter/touch routines with just a ref */
2190 if (kqlock2knoteuse(kq, kn)) {
b0d623f7
A
2191 /* if we have to revalidate, call the filter */
2192 if (revalidate) {
2193 result = kn->kn_fop->f_event(kn, 0);
2194 }
2195
39236c6e
A
2196 /*
2197 * capture the kevent data - using touch if
2198 * specified
2199 */
b7266188 2200 if (result && touch) {
39236c6e
A
2201 kn->kn_fop->f_touch(kn, &kev,
2202 EVENT_PROCESS);
b0d623f7 2203 }
3e170ce0
A
2204 if (result && (kn->kn_status & KN_TOUCH))
2205 kn->kn_fop->f_touch(kn, &kev,
2206 EVENT_PROCESS);
b7266188 2207
39236c6e
A
2208 /*
2209 * convert back to a kqlock - bail if the knote
2210 * went away
2211 */
b0d623f7 2212 if (!knoteuse2kqlock(kq, kn)) {
39236c6e 2213 return (EJUSTRETURN);
b0d623f7 2214 } else if (result) {
39236c6e
A
2215 /*
2216 * if revalidated as alive, make sure
2217 * it's active
2218 */
3e170ce0 2219 knote_activate(kn, 0);
b7266188 2220
39236c6e
A
2221 /*
2222 * capture all events that occurred
2223 * during filter
2224 */
b7266188
A
2225 if (!touch) {
2226 kev = kn->kn_kevent;
2227 }
2228
b0d623f7 2229 } else if ((kn->kn_status & KN_STAYQUEUED) == 0) {
39236c6e
A
2230 /*
2231 * was already dequeued, so just bail on
2232 * this one
2233 */
2234 return (EJUSTRETURN);
b0d623f7
A
2235 }
2236 } else {
39236c6e 2237 return (EJUSTRETURN);
b0d623f7
A
2238 }
2239 } else {
2240 kev = kn->kn_kevent;
2241 }
2242 }
39236c6e 2243
b0d623f7
A
2244 /* move knote onto inprocess queue */
2245 assert(kn->kn_tq == &kq->kq_head);
2246 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
2247 kn->kn_tq = inprocessp;
2248 TAILQ_INSERT_TAIL(inprocessp, kn, kn_tqe);
2249
2250 /*
2251 * Determine how to dispatch the knote for future event handling.
2252 * not-fired: just return (do not callout).
3e170ce0
A
2253 * One-shot: If dispatch2, enter deferred-delete mode (unless this is
2254 * is the deferred delete event delivery itself). Otherwise,
2255 * deactivate and drop it.
b0d623f7
A
2256 * Clear: deactivate and clear the state.
2257 * Dispatch: don't clear state, just deactivate it and mark it disabled.
2258 * All others: just leave where they are.
2259 */
2260
2261 if (result == 0) {
39236c6e 2262 return (EJUSTRETURN);
b7266188 2263 } else if ((kn->kn_flags & EV_ONESHOT) != 0) {
b0d623f7 2264 knote_deactivate(kn);
3e170ce0
A
2265 if ((kn->kn_flags & (EV_DISPATCH2|EV_DELETE)) == EV_DISPATCH2) {
2266 /* defer dropping non-delete oneshot dispatch2 events */
2267 kn->kn_status |= (KN_DISABLED | KN_DEFERDROP);
2268 kqunlock(kq);
2269 } else if (kqlock2knotedrop(kq, kn)) {
b0d623f7
A
2270 kn->kn_fop->f_detach(kn);
2271 knote_drop(kn, p);
2272 }
b7266188
A
2273 } else if ((kn->kn_flags & (EV_CLEAR | EV_DISPATCH)) != 0) {
2274 if ((kn->kn_flags & EV_DISPATCH) != 0) {
2275 /* deactivate and disable all dispatch knotes */
2276 knote_deactivate(kn);
2277 kn->kn_status |= KN_DISABLED;
2278 } else if (!touch || kn->kn_fflags == 0) {
2279 /* only deactivate if nothing since the touch */
2280 knote_deactivate(kn);
2281 }
2282 if (!touch && (kn->kn_flags & EV_CLEAR) != 0) {
2283 /* manually clear non-touch knotes */
b0d623f7
A
2284 kn->kn_data = 0;
2285 kn->kn_fflags = 0;
2286 }
b0d623f7
A
2287 kqunlock(kq);
2288 } else {
2289 /*
2290 * leave on inprocess queue. We'll
2291 * move all the remaining ones back
2292 * the kq queue and wakeup any
2293 * waiters when we are done.
2294 */
2295 kqunlock(kq);
2296 }
2297
2298 /* callback to handle each event as we find it */
2299 error = (callback)(kq, &kev, data);
39236c6e 2300
b0d623f7 2301 kqlock(kq);
39236c6e 2302 return (error);
b0d623f7
A
2303}
2304
6d2010ae
A
2305/*
2306 * Return 0 to indicate that processing should proceed,
2307 * -1 if there is nothing to process.
2308 *
2309 * Called with kqueue locked and returns the same way,
2310 * but may drop lock temporarily.
2311 */
2312static int
2313kqueue_begin_processing(struct kqueue *kq)
2314{
2315 for (;;) {
2316 if (kq->kq_count == 0) {
39236c6e 2317 return (-1);
6d2010ae
A
2318 }
2319
2320 /* if someone else is processing the queue, wait */
2321 if (kq->kq_nprocess != 0) {
3e170ce0
A
2322 waitq_assert_wait64((struct waitq *)kq->kq_wqs,
2323 CAST_EVENT64_T(&kq->kq_nprocess),
2324 THREAD_UNINT, TIMEOUT_WAIT_FOREVER);
6d2010ae
A
2325 kq->kq_state |= KQ_PROCWAIT;
2326 kqunlock(kq);
2327 thread_block(THREAD_CONTINUE_NULL);
2328 kqlock(kq);
2329 } else {
2330 kq->kq_nprocess = 1;
39236c6e 2331 return (0);
6d2010ae
A
2332 }
2333 }
2334}
2335
2336/*
2337 * Called with kqueue lock held.
2338 */
2339static void
2340kqueue_end_processing(struct kqueue *kq)
2341{
2342 kq->kq_nprocess = 0;
2343 if (kq->kq_state & KQ_PROCWAIT) {
2344 kq->kq_state &= ~KQ_PROCWAIT;
3e170ce0
A
2345 waitq_wakeup64_all((struct waitq *)kq->kq_wqs,
2346 CAST_EVENT64_T(&kq->kq_nprocess),
2347 THREAD_AWAKENED,
2348 WAITQ_ALL_PRIORITIES);
6d2010ae
A
2349 }
2350}
b0d623f7 2351
91447636 2352/*
b0d623f7 2353 * kqueue_process - process the triggered events in a kqueue
91447636
A
2354 *
2355 * Walk the queued knotes and validate that they are
2356 * really still triggered events by calling the filter
2357 * routines (if necessary). Hold a use reference on
2358 * the knote to avoid it being detached. For each event
2359 * that is still considered triggered, invoke the
2360 * callback routine provided.
2361 *
2362 * caller holds a reference on the kqueue.
2363 * kqueue locked on entry and exit - but may be dropped
b0d623f7 2364 * kqueue list locked (held for duration of call)
91447636
A
2365 */
2366
2367static int
b0d623f7 2368kqueue_process(struct kqueue *kq,
39236c6e
A
2369 kevent_callback_t callback,
2370 void *data,
2371 int *countp,
2372 struct proc *p)
91447636 2373{
39236c6e 2374 struct kqtailq inprocess;
91447636 2375 struct knote *kn;
91447636
A
2376 int nevents;
2377 int error;
2378
39236c6e 2379 TAILQ_INIT(&inprocess);
6d2010ae
A
2380
2381 if (kqueue_begin_processing(kq) == -1) {
91447636 2382 *countp = 0;
6d2010ae 2383 /* Nothing to process */
39236c6e 2384 return (0);
91447636
A
2385 }
2386
b0d623f7 2387 /*
39236c6e
A
2388 * Clear any pre-posted status from previous runs, so we
2389 * only detect events that occur during this run.
b0d623f7 2390 */
3e170ce0 2391 waitq_set_clear_preposts(kq->kq_wqs);
b0d623f7
A
2392
2393 /*
2394 * loop through the enqueued knotes, processing each one and
2395 * revalidating those that need it. As they are processed,
2396 * they get moved to the inprocess queue (so the loop can end).
2397 */
91447636
A
2398 error = 0;
2399 nevents = 0;
b0d623f7 2400
91447636 2401 while (error == 0 &&
39236c6e 2402 (kn = TAILQ_FIRST(&kq->kq_head)) != NULL) {
b0d623f7
A
2403 error = knote_process(kn, callback, data, &inprocess, p);
2404 if (error == EJUSTRETURN)
2405 error = 0;
2406 else
2407 nevents++;
55e303ae
A
2408 }
2409
91447636
A
2410 /*
2411 * With the kqueue still locked, move any knotes
b0d623f7 2412 * remaining on the inprocess queue back to the
91447636
A
2413 * kq's queue and wake up any waiters.
2414 */
b0d623f7
A
2415 while ((kn = TAILQ_FIRST(&inprocess)) != NULL) {
2416 assert(kn->kn_tq == &inprocess);
2417 TAILQ_REMOVE(&inprocess, kn, kn_tqe);
91447636
A
2418 kn->kn_tq = &kq->kq_head;
2419 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
55e303ae 2420 }
6d2010ae
A
2421
2422 kqueue_end_processing(kq);
55e303ae 2423
91447636 2424 *countp = nevents;
39236c6e 2425 return (error);
55e303ae
A
2426}
2427
91447636
A
2428
2429static void
b0d623f7 2430kqueue_scan_continue(void *data, wait_result_t wait_result)
55e303ae 2431{
b0d623f7
A
2432 thread_t self = current_thread();
2433 uthread_t ut = (uthread_t)get_bsdthread_info(self);
2434 struct _kqueue_scan * cont_args = &ut->uu_kevent.ss_kqueue_scan;
91447636
A
2435 struct kqueue *kq = (struct kqueue *)data;
2436 int error;
2437 int count;
2438
2439 /* convert the (previous) wait_result to a proper error */
2440 switch (wait_result) {
2441 case THREAD_AWAKENED:
2442 kqlock(kq);
39236c6e
A
2443 error = kqueue_process(kq, cont_args->call, cont_args, &count,
2444 current_proc());
91447636 2445 if (error == 0 && count == 0) {
3e170ce0
A
2446 waitq_assert_wait64((struct waitq *)kq->kq_wqs,
2447 KQ_EVENT, THREAD_ABORTSAFE,
2448 cont_args->deadline);
91447636
A
2449 kq->kq_state |= KQ_SLEEP;
2450 kqunlock(kq);
b0d623f7 2451 thread_block_parameter(kqueue_scan_continue, kq);
91447636 2452 /* NOTREACHED */
55e303ae 2453 }
91447636
A
2454 kqunlock(kq);
2455 break;
2456 case THREAD_TIMED_OUT:
39236c6e 2457 error = EWOULDBLOCK;
91447636
A
2458 break;
2459 case THREAD_INTERRUPTED:
2460 error = EINTR;
2461 break;
2462 default:
39236c6e
A
2463 panic("%s: - invalid wait_result (%d)", __func__,
2464 wait_result);
91447636 2465 error = 0;
55e303ae 2466 }
39236c6e 2467
91447636
A
2468 /* call the continuation with the results */
2469 assert(cont_args->cont != NULL);
2470 (cont_args->cont)(kq, cont_args->data, error);
2471}
55e303ae 2472
55e303ae 2473
91447636 2474/*
b0d623f7 2475 * kqueue_scan - scan and wait for events in a kqueue
91447636
A
2476 *
2477 * Process the triggered events in a kqueue.
2478 *
2479 * If there are no events triggered arrange to
2480 * wait for them. If the caller provided a
2481 * continuation routine, then kevent_scan will
2482 * also.
2483 *
2484 * The callback routine must be valid.
2485 * The caller must hold a use-count reference on the kq.
2486 */
55e303ae 2487
91447636 2488int
39236c6e 2489kqueue_scan(struct kqueue *kq,
91447636 2490 kevent_callback_t callback,
b0d623f7 2491 kqueue_continue_t continuation,
91447636
A
2492 void *data,
2493 struct timeval *atvp,
2494 struct proc *p)
2495{
2496 thread_continue_t cont = THREAD_CONTINUE_NULL;
2497 uint64_t deadline;
2498 int error;
2499 int first;
55e303ae 2500
91447636 2501 assert(callback != NULL);
55e303ae 2502
91447636
A
2503 first = 1;
2504 for (;;) {
2505 wait_result_t wait_result;
2506 int count;
2507
2508 /*
2509 * Make a pass through the kq to find events already
39236c6e 2510 * triggered.
91447636
A
2511 */
2512 kqlock(kq);
b0d623f7 2513 error = kqueue_process(kq, callback, data, &count, p);
91447636
A
2514 if (error || count)
2515 break; /* lock still held */
2516
2517 /* looks like we have to consider blocking */
2518 if (first) {
2519 first = 0;
2520 /* convert the timeout to a deadline once */
2521 if (atvp->tv_sec || atvp->tv_usec) {
91447636 2522 uint64_t now;
39236c6e 2523
91447636
A
2524 clock_get_uptime(&now);
2525 nanoseconds_to_absolutetime((uint64_t)atvp->tv_sec * NSEC_PER_SEC +
39236c6e 2526 atvp->tv_usec * (long)NSEC_PER_USEC,
91447636
A
2527 &deadline);
2528 if (now >= deadline) {
2529 /* non-blocking call */
2530 error = EWOULDBLOCK;
2531 break; /* lock still held */
2532 }
2533 deadline -= now;
2534 clock_absolutetime_interval_to_deadline(deadline, &deadline);
55e303ae 2535 } else {
91447636
A
2536 deadline = 0; /* block forever */
2537 }
2538
2539 if (continuation) {
2540 uthread_t ut = (uthread_t)get_bsdthread_info(current_thread());
b0d623f7 2541 struct _kqueue_scan *cont_args = &ut->uu_kevent.ss_kqueue_scan;
39236c6e 2542
91447636
A
2543 cont_args->call = callback;
2544 cont_args->cont = continuation;
2545 cont_args->deadline = deadline;
2546 cont_args->data = data;
b0d623f7 2547 cont = kqueue_scan_continue;
55e303ae
A
2548 }
2549 }
91447636
A
2550
2551 /* go ahead and wait */
3e170ce0
A
2552 waitq_assert_wait64_leeway((struct waitq *)kq->kq_wqs,
2553 KQ_EVENT, THREAD_ABORTSAFE,
2554 TIMEOUT_URGENCY_USER_NORMAL,
2555 deadline, TIMEOUT_NO_LEEWAY);
91447636
A
2556 kq->kq_state |= KQ_SLEEP;
2557 kqunlock(kq);
2558 wait_result = thread_block_parameter(cont, kq);
2559 /* NOTREACHED if (continuation != NULL) */
2560
2561 switch (wait_result) {
2562 case THREAD_AWAKENED:
2563 continue;
2564 case THREAD_TIMED_OUT:
39236c6e 2565 return (EWOULDBLOCK);
91447636 2566 case THREAD_INTERRUPTED:
39236c6e 2567 return (EINTR);
91447636 2568 default:
39236c6e
A
2569 panic("%s: - bad wait_result (%d)", __func__,
2570 wait_result);
91447636
A
2571 error = 0;
2572 }
55e303ae 2573 }
91447636 2574 kqunlock(kq);
39236c6e 2575 return (error);
55e303ae
A
2576}
2577
91447636 2578
55e303ae
A
2579/*
2580 * XXX
2581 * This could be expanded to call kqueue_scan, if desired.
2582 */
2583/*ARGSUSED*/
2584static int
39236c6e
A
2585kqueue_read(__unused struct fileproc *fp,
2586 __unused struct uio *uio,
2587 __unused int flags,
2588 __unused vfs_context_t ctx)
55e303ae
A
2589{
2590 return (ENXIO);
2591}
2592
2593/*ARGSUSED*/
2594static int
39236c6e
A
2595kqueue_write(__unused struct fileproc *fp,
2596 __unused struct uio *uio,
2597 __unused int flags,
2598 __unused vfs_context_t ctx)
55e303ae
A
2599{
2600 return (ENXIO);
2601}
2602
2603/*ARGSUSED*/
2604static int
39236c6e
A
2605kqueue_ioctl(__unused struct fileproc *fp,
2606 __unused u_long com,
2607 __unused caddr_t data,
2608 __unused vfs_context_t ctx)
55e303ae
A
2609{
2610 return (ENOTTY);
2611}
2612
2613/*ARGSUSED*/
2614static int
3e170ce0 2615kqueue_select(struct fileproc *fp, int which, void *wq_link_id,
39236c6e 2616 __unused vfs_context_t ctx)
55e303ae
A
2617{
2618 struct kqueue *kq = (struct kqueue *)fp->f_data;
6d2010ae
A
2619 struct knote *kn;
2620 struct kqtailq inprocessq;
2621 int retnum = 0;
39236c6e 2622
b0d623f7 2623 if (which != FREAD)
39236c6e 2624 return (0);
b0d623f7 2625
6d2010ae
A
2626 TAILQ_INIT(&inprocessq);
2627
b0d623f7 2628 kqlock(kq);
39236c6e 2629 /*
b0d623f7
A
2630 * If this is the first pass, link the wait queue associated with the
2631 * the kqueue onto the wait queue set for the select(). Normally we
2632 * use selrecord() for this, but it uses the wait queue within the
2633 * selinfo structure and we need to use the main one for the kqueue to
2634 * catch events from KN_STAYQUEUED sources. So we do the linkage manually.
2635 * (The select() call will unlink them when it ends).
2636 */
3e170ce0 2637 if (wq_link_id != NULL) {
39236c6e 2638 thread_t cur_act = current_thread();
b0d623f7
A
2639 struct uthread * ut = get_bsdthread_info(cur_act);
2640
2641 kq->kq_state |= KQ_SEL;
3e170ce0
A
2642 waitq_link((struct waitq *)kq->kq_wqs, ut->uu_wqset,
2643 WAITQ_SHOULD_LOCK, (uint64_t *)wq_link_id);
2644
2645 /* always consume the reserved link object */
2646 waitq_link_release(*(uint64_t *)wq_link_id);
2647 *(uint64_t *)wq_link_id = 0;
2648
2649 /*
2650 * selprocess() is expecting that we send it back the waitq
2651 * that was just added to the thread's waitq set. In order
2652 * to not change the selrecord() API (which is exported to
2653 * kexts), we pass this value back through the
2654 * void *wq_link_id pointer we were passed. We need to use
2655 * memcpy here because the pointer may not be properly aligned
2656 * on 32-bit systems.
2657 */
2658 memcpy(wq_link_id, (void *)&(kq->kq_wqs), sizeof(void *));
b0d623f7
A
2659 }
2660
6d2010ae
A
2661 if (kqueue_begin_processing(kq) == -1) {
2662 kqunlock(kq);
39236c6e 2663 return (0);
6d2010ae 2664 }
b0d623f7 2665
6d2010ae 2666 if (kq->kq_count != 0) {
b0d623f7
A
2667 /*
2668 * there is something queued - but it might be a
2669 * KN_STAYQUEUED knote, which may or may not have
2670 * any events pending. So, we have to walk the
2671 * list of knotes to see, and peek at the stay-
2672 * queued ones to be really sure.
2673 */
39236c6e 2674 while ((kn = (struct knote *)TAILQ_FIRST(&kq->kq_head)) != NULL) {
6d2010ae
A
2675 if ((kn->kn_status & KN_STAYQUEUED) == 0) {
2676 retnum = 1;
2677 goto out;
b0d623f7 2678 }
6d2010ae
A
2679
2680 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
2681 TAILQ_INSERT_TAIL(&inprocessq, kn, kn_tqe);
2682
2683 if (kqlock2knoteuse(kq, kn)) {
2684 unsigned peek;
2685
2686 peek = kn->kn_fop->f_peek(kn);
2687 if (knoteuse2kqlock(kq, kn)) {
2688 if (peek > 0) {
2689 retnum = 1;
2690 goto out;
2691 }
2692 } else {
2693 retnum = 0;
2694 }
39236c6e 2695 }
55e303ae 2696 }
b0d623f7
A
2697 }
2698
6d2010ae
A
2699out:
2700 /* Return knotes to active queue */
2701 while ((kn = TAILQ_FIRST(&inprocessq)) != NULL) {
2702 TAILQ_REMOVE(&inprocessq, kn, kn_tqe);
2703 kn->kn_tq = &kq->kq_head;
2704 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
55e303ae 2705 }
b0d623f7 2706
6d2010ae 2707 kqueue_end_processing(kq);
b0d623f7 2708 kqunlock(kq);
39236c6e 2709 return (retnum);
55e303ae
A
2710}
2711
91447636
A
2712/*
2713 * kqueue_close -
2714 */
55e303ae
A
2715/*ARGSUSED*/
2716static int
2d21ac55 2717kqueue_close(struct fileglob *fg, __unused vfs_context_t ctx)
55e303ae 2718{
91447636 2719 struct kqueue *kq = (struct kqueue *)fg->fg_data;
55e303ae 2720
2d21ac55 2721 kqueue_dealloc(kq);
91447636 2722 fg->fg_data = NULL;
55e303ae
A
2723 return (0);
2724}
2725
2726/*ARGSUSED*/
91447636
A
2727/*
2728 * The callers has taken a use-count reference on this kqueue and will donate it
2729 * to the kqueue we are being added to. This keeps the kqueue from closing until
2730 * that relationship is torn down.
2731 */
55e303ae 2732static int
2d21ac55 2733kqueue_kqfilter(__unused struct fileproc *fp, struct knote *kn, __unused vfs_context_t ctx)
55e303ae
A
2734{
2735 struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
2d21ac55 2736 struct kqueue *parentkq = kn->kn_kq;
55e303ae 2737
2d21ac55
A
2738 if (parentkq == kq ||
2739 kn->kn_filter != EVFILT_READ)
55e303ae
A
2740 return (1);
2741
2d21ac55
A
2742 /*
2743 * We have to avoid creating a cycle when nesting kqueues
2744 * inside another. Rather than trying to walk the whole
2745 * potential DAG of nested kqueues, we just use a simple
2746 * ceiling protocol. When a kqueue is inserted into another,
2747 * we check that the (future) parent is not already nested
2748 * into another kqueue at a lower level than the potenial
2749 * child (because it could indicate a cycle). If that test
2750 * passes, we just mark the nesting levels accordingly.
2751 */
2752
2753 kqlock(parentkq);
39236c6e 2754 if (parentkq->kq_level > 0 &&
2d21ac55
A
2755 parentkq->kq_level < kq->kq_level)
2756 {
2757 kqunlock(parentkq);
2758 return (1);
2759 } else {
2760 /* set parent level appropriately */
2761 if (parentkq->kq_level == 0)
2762 parentkq->kq_level = 2;
2763 if (parentkq->kq_level < kq->kq_level + 1)
2764 parentkq->kq_level = kq->kq_level + 1;
2765 kqunlock(parentkq);
2766
2767 kn->kn_fop = &kqread_filtops;
2768 kqlock(kq);
2769 KNOTE_ATTACH(&kq->kq_sel.si_note, kn);
2770 /* indicate nesting in child, if needed */
2771 if (kq->kq_level == 0)
2772 kq->kq_level = 1;
2773 kqunlock(kq);
2774 return (0);
2775 }
55e303ae
A
2776}
2777
b0d623f7
A
2778/*
2779 * kqueue_drain - called when kq is closed
2780 */
2781/*ARGSUSED*/
2782static int
2783kqueue_drain(struct fileproc *fp, __unused vfs_context_t ctx)
2784{
2785 struct kqueue *kq = (struct kqueue *)fp->f_fglob->fg_data;
2786 kqlock(kq);
2787 kqueue_wakeup(kq, 1);
2788 kqunlock(kq);
39236c6e 2789 return (0);
b0d623f7
A
2790}
2791
55e303ae
A
2792/*ARGSUSED*/
2793int
fe8ab488 2794kqueue_stat(struct kqueue *kq, void *ub, int isstat64, proc_t p)
55e303ae 2795{
fe8ab488 2796 kqlock(kq);
2d21ac55 2797 if (isstat64 != 0) {
b0d623f7
A
2798 struct stat64 *sb64 = (struct stat64 *)ub;
2799
2d21ac55
A
2800 bzero((void *)sb64, sizeof(*sb64));
2801 sb64->st_size = kq->kq_count;
3e170ce0
A
2802 if (kq->kq_state & KQ_KEV_QOS)
2803 sb64->st_blksize = sizeof(struct kevent_qos_s);
2804 else if (kq->kq_state & KQ_KEV64)
b0d623f7 2805 sb64->st_blksize = sizeof(struct kevent64_s);
3e170ce0
A
2806 else if (IS_64BIT_PROCESS(p))
2807 sb64->st_blksize = sizeof(struct user64_kevent);
b0d623f7 2808 else
3e170ce0 2809 sb64->st_blksize = sizeof(struct user32_kevent);
2d21ac55
A
2810 sb64->st_mode = S_IFIFO;
2811 } else {
b0d623f7
A
2812 struct stat *sb = (struct stat *)ub;
2813
2d21ac55
A
2814 bzero((void *)sb, sizeof(*sb));
2815 sb->st_size = kq->kq_count;
3e170ce0
A
2816 if (kq->kq_state & KQ_KEV_QOS)
2817 sb->st_blksize = sizeof(struct kevent_qos_s);
2818 else if (kq->kq_state & KQ_KEV64)
b0d623f7 2819 sb->st_blksize = sizeof(struct kevent64_s);
3e170ce0
A
2820 else if (IS_64BIT_PROCESS(p))
2821 sb->st_blksize = sizeof(struct user64_kevent);
b0d623f7 2822 else
3e170ce0 2823 sb->st_blksize = sizeof(struct user32_kevent);
2d21ac55
A
2824 sb->st_mode = S_IFIFO;
2825 }
fe8ab488 2826 kqunlock(kq);
55e303ae
A
2827 return (0);
2828}
2829
91447636
A
2830/*
2831 * Called with the kqueue locked
2832 */
55e303ae 2833static void
b0d623f7 2834kqueue_wakeup(struct kqueue *kq, int closed)
55e303ae 2835{
3e170ce0
A
2836 wait_result_t res = THREAD_NOT_WAITING;
2837
b0d623f7
A
2838 if ((kq->kq_state & (KQ_SLEEP | KQ_SEL)) != 0 || kq->kq_nprocess > 0) {
2839 kq->kq_state &= ~(KQ_SLEEP | KQ_SEL);
3e170ce0
A
2840 res = waitq_wakeup64_all((struct waitq *)kq->kq_wqs, KQ_EVENT,
2841 (closed) ? THREAD_INTERRUPTED : THREAD_AWAKENED,
2842 WAITQ_ALL_PRIORITIES);
2843 }
2844
2845 /* request additional workq threads if appropriate */
2846 if (res == THREAD_NOT_WAITING && (kq->kq_state & KQ_WORKQ) &&
2847 pthread_functions != NULL && pthread_functions->workq_reqthreads != NULL) {
2848 /*
2849 * The special workq kq should be accumulating the counts of
2850 * queued sources on a pthread_priority_t basis and we should
2851 * be providing that here. For now, just hard-code a single
2852 * entry request at a fixed (default) QOS.
2853 */
2854 struct workq_reqthreads_req_s request = {
2855 .priority = 0x020004ff, /* legacy event manager */
2856 .count = kq->kq_count };
2857 thread_t wqthread;
2858
2859 wqthread = (*pthread_functions->workq_reqthreads)(kq->kq_p, 1, &request);
2860 assert(wqthread == THREAD_NULL);
91447636 2861 }
55e303ae
A
2862}
2863
2864void
2865klist_init(struct klist *list)
2866{
2867 SLIST_INIT(list);
2868}
2869
91447636 2870
55e303ae 2871/*
91447636
A
2872 * Query/Post each knote in the object's list
2873 *
2874 * The object lock protects the list. It is assumed
2875 * that the filter/event routine for the object can
2876 * determine that the object is already locked (via
b0d623f7 2877 * the hint) and not deadlock itself.
91447636
A
2878 *
2879 * The object lock should also hold off pending
2880 * detach/drop operations. But we'll prevent it here
2881 * too - just in case.
55e303ae
A
2882 */
2883void
2884knote(struct klist *list, long hint)
2885{
2886 struct knote *kn;
2887
91447636
A
2888 SLIST_FOREACH(kn, list, kn_selnext) {
2889 struct kqueue *kq = kn->kn_kq;
2890
2891 kqlock(kq);
2892 if (kqlock2knoteuse(kq, kn)) {
2893 int result;
2894
2895 /* call the event with only a use count */
2896 result = kn->kn_fop->f_event(kn, hint);
2897
2898 /* if its not going away and triggered */
2899 if (knoteuse2kqlock(kq, kn) && result)
3e170ce0 2900 knote_activate(kn, 0);
91447636
A
2901 /* lock held again */
2902 }
2903 kqunlock(kq);
2904 }
55e303ae
A
2905}
2906
2907/*
2908 * attach a knote to the specified list. Return true if this is the first entry.
91447636 2909 * The list is protected by whatever lock the object it is associated with uses.
55e303ae
A
2910 */
2911int
2912knote_attach(struct klist *list, struct knote *kn)
2913{
2914 int ret = SLIST_EMPTY(list);
2915 SLIST_INSERT_HEAD(list, kn, kn_selnext);
39236c6e 2916 return (ret);
55e303ae
A
2917}
2918
2919/*
2920 * detach a knote from the specified list. Return true if that was the last entry.
91447636 2921 * The list is protected by whatever lock the object it is associated with uses.
55e303ae
A
2922 */
2923int
2924knote_detach(struct klist *list, struct knote *kn)
2925{
2926 SLIST_REMOVE(list, kn, knote, kn_selnext);
39236c6e 2927 return (SLIST_EMPTY(list));
55e303ae
A
2928}
2929
b0d623f7
A
2930/*
2931 * For a given knote, link a provided wait queue directly with the kqueue.
39236c6e 2932 * Wakeups will happen via recursive wait queue support. But nothing will move
b0d623f7
A
2933 * the knote to the active list at wakeup (nothing calls knote()). Instead,
2934 * we permanently enqueue them here.
2935 *
2936 * kqueue and knote references are held by caller.
316670eb
A
2937 *
2938 * caller provides the wait queue link structure.
b0d623f7
A
2939 */
2940int
3e170ce0 2941knote_link_waitq(struct knote *kn, struct waitq *wq, uint64_t *reserved_link)
b0d623f7
A
2942{
2943 struct kqueue *kq = kn->kn_kq;
2944 kern_return_t kr;
2945
3e170ce0 2946 kr = waitq_link(wq, kq->kq_wqs, WAITQ_SHOULD_LOCK, reserved_link);
b0d623f7 2947 if (kr == KERN_SUCCESS) {
6d2010ae 2948 knote_markstayqueued(kn);
39236c6e 2949 return (0);
b0d623f7 2950 } else {
39236c6e 2951 return (EINVAL);
b0d623f7
A
2952 }
2953}
2954
2955/*
2956 * Unlink the provided wait queue from the kqueue associated with a knote.
2957 * Also remove it from the magic list of directly attached knotes.
2958 *
2959 * Note that the unlink may have already happened from the other side, so
2960 * ignore any failures to unlink and just remove it from the kqueue list.
316670eb
A
2961 *
2962 * On success, caller is responsible for the link structure
b0d623f7 2963 */
316670eb 2964int
3e170ce0 2965knote_unlink_waitq(struct knote *kn, struct waitq *wq)
b0d623f7
A
2966{
2967 struct kqueue *kq = kn->kn_kq;
316670eb 2968 kern_return_t kr;
b0d623f7 2969
3e170ce0 2970 kr = waitq_unlink(wq, kq->kq_wqs);
04b8595b 2971 knote_clearstayqueued(kn);
39236c6e 2972 return ((kr != KERN_SUCCESS) ? EINVAL : 0);
b0d623f7
A
2973}
2974
55e303ae 2975/*
91447636
A
2976 * remove all knotes referencing a specified fd
2977 *
2978 * Essentially an inlined knote_remove & knote_drop
2979 * when we know for sure that the thing is a file
39236c6e 2980 *
91447636
A
2981 * Entered with the proc_fd lock already held.
2982 * It returns the same way, but may drop it temporarily.
55e303ae
A
2983 */
2984void
91447636 2985knote_fdclose(struct proc *p, int fd)
55e303ae 2986{
91447636
A
2987 struct filedesc *fdp = p->p_fd;
2988 struct klist *list;
55e303ae
A
2989 struct knote *kn;
2990
91447636 2991 list = &fdp->fd_knlist[fd];
55e303ae 2992 while ((kn = SLIST_FIRST(list)) != NULL) {
91447636 2993 struct kqueue *kq = kn->kn_kq;
55e303ae 2994
2d21ac55 2995 if (kq->kq_p != p)
39236c6e
A
2996 panic("%s: proc mismatch (kq->kq_p=%p != p=%p)",
2997 __func__, kq->kq_p, p);
2d21ac55 2998
91447636
A
2999 kqlock(kq);
3000 proc_fdunlock(p);
3001
3002 /*
3003 * Convert the lock to a drop ref.
3004 * If we get it, go ahead and drop it.
3005 * Otherwise, we waited for it to
3006 * be dropped by the other guy, so
3007 * it is safe to move on in the list.
3008 */
3009 if (kqlock2knotedrop(kq, kn)) {
3010 kn->kn_fop->f_detach(kn);
3011 knote_drop(kn, p);
3012 }
39236c6e 3013
91447636 3014 proc_fdlock(p);
55e303ae 3015
91447636
A
3016 /* the fd tables may have changed - start over */
3017 list = &fdp->fd_knlist[fd];
3018 }
55e303ae
A
3019}
3020
91447636
A
3021/* proc_fdlock held on entry (and exit) */
3022static int
316670eb 3023knote_fdpattach(struct knote *kn, struct filedesc *fdp, struct proc *p)
55e303ae 3024{
91447636 3025 struct klist *list = NULL;
55e303ae
A
3026
3027 if (! kn->kn_fop->f_isfd) {
3028 if (fdp->fd_knhashmask == 0)
2d21ac55 3029 fdp->fd_knhash = hashinit(CONFIG_KN_HASHSIZE, M_KQUEUE,
55e303ae
A
3030 &fdp->fd_knhashmask);
3031 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
91447636
A
3032 } else {
3033 if ((u_int)fdp->fd_knlistsize <= kn->kn_id) {
3034 u_int size = 0;
3035
39236c6e 3036 if (kn->kn_id >= (uint64_t)p->p_rlimit[RLIMIT_NOFILE].rlim_cur
316670eb
A
3037 || kn->kn_id >= (uint64_t)maxfiles)
3038 return (EINVAL);
39236c6e 3039
91447636
A
3040 /* have to grow the fd_knlist */
3041 size = fdp->fd_knlistsize;
3042 while (size <= kn->kn_id)
3043 size += KQEXTENT;
316670eb
A
3044
3045 if (size >= (UINT_MAX/sizeof(struct klist *)))
3046 return (EINVAL);
3047
91447636 3048 MALLOC(list, struct klist *,
39236c6e 3049 size * sizeof(struct klist *), M_KQUEUE, M_WAITOK);
91447636
A
3050 if (list == NULL)
3051 return (ENOMEM);
39236c6e 3052
91447636 3053 bcopy((caddr_t)fdp->fd_knlist, (caddr_t)list,
39236c6e 3054 fdp->fd_knlistsize * sizeof(struct klist *));
91447636 3055 bzero((caddr_t)list +
39236c6e
A
3056 fdp->fd_knlistsize * sizeof(struct klist *),
3057 (size - fdp->fd_knlistsize) * sizeof(struct klist *));
55e303ae 3058 FREE(fdp->fd_knlist, M_KQUEUE);
91447636
A
3059 fdp->fd_knlist = list;
3060 fdp->fd_knlistsize = size;
3061 }
3062 list = &fdp->fd_knlist[kn->kn_id];
55e303ae 3063 }
55e303ae 3064 SLIST_INSERT_HEAD(list, kn, kn_link);
91447636 3065 return (0);
55e303ae
A
3066}
3067
91447636
A
3068
3069
55e303ae
A
3070/*
3071 * should be called at spl == 0, since we don't want to hold spl
3072 * while calling fdrop and free.
3073 */
3074static void
2d21ac55 3075knote_drop(struct knote *kn, __unused struct proc *ctxp)
55e303ae 3076{
91447636 3077 struct kqueue *kq = kn->kn_kq;
2d21ac55 3078 struct proc *p = kq->kq_p;
39236c6e 3079 struct filedesc *fdp = p->p_fd;
55e303ae 3080 struct klist *list;
b0d623f7 3081 int needswakeup;
55e303ae 3082
91447636 3083 proc_fdlock(p);
55e303ae
A
3084 if (kn->kn_fop->f_isfd)
3085 list = &fdp->fd_knlist[kn->kn_id];
3086 else
3087 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
3088
3089 SLIST_REMOVE(list, kn, knote, kn_link);
91447636
A
3090 kqlock(kq);
3091 knote_dequeue(kn);
b0d623f7 3092 needswakeup = (kn->kn_status & KN_USEWAIT);
91447636
A
3093 kqunlock(kq);
3094 proc_fdunlock(p);
3095
b0d623f7 3096 if (needswakeup)
3e170ce0
A
3097 waitq_wakeup64_all((struct waitq *)kq->kq_wqs,
3098 CAST_EVENT64_T(&kn->kn_status),
3099 THREAD_AWAKENED,
3100 WAITQ_ALL_PRIORITIES);
b0d623f7 3101
55e303ae 3102 if (kn->kn_fop->f_isfd)
91447636
A
3103 fp_drop(p, kn->kn_id, kn->kn_fp, 0);
3104
55e303ae
A
3105 knote_free(kn);
3106}
3107
91447636
A
3108/* called with kqueue lock held */
3109static void
3e170ce0 3110knote_activate(struct knote *kn, int force)
91447636
A
3111{
3112 struct kqueue *kq = kn->kn_kq;
3113
3e170ce0
A
3114 if (!force && (kn->kn_status & KN_ACTIVE))
3115 return;
3116
91447636
A
3117 kn->kn_status |= KN_ACTIVE;
3118 knote_enqueue(kn);
b0d623f7
A
3119 kqueue_wakeup(kq, 0);
3120
3e170ce0
A
3121 /* wake up the parent kq, too */
3122 KNOTE(&kq->kq_sel.si_note, 0);
b0d623f7 3123}
91447636
A
3124
3125/* called with kqueue lock held */
3126static void
3127knote_deactivate(struct knote *kn)
39236c6e 3128{
91447636
A
3129 kn->kn_status &= ~KN_ACTIVE;
3130 knote_dequeue(kn);
3131}
55e303ae 3132
91447636 3133/* called with kqueue lock held */
55e303ae
A
3134static void
3135knote_enqueue(struct knote *kn)
3136{
b0d623f7
A
3137 if ((kn->kn_status & (KN_QUEUED | KN_STAYQUEUED)) == KN_STAYQUEUED ||
3138 (kn->kn_status & (KN_QUEUED | KN_STAYQUEUED | KN_DISABLED)) == 0) {
91447636 3139 struct kqtailq *tq = kn->kn_tq;
b0d623f7 3140 struct kqueue *kq = kn->kn_kq;
55e303ae 3141
39236c6e 3142 TAILQ_INSERT_TAIL(tq, kn, kn_tqe);
91447636
A
3143 kn->kn_status |= KN_QUEUED;
3144 kq->kq_count++;
3145 }
55e303ae
A
3146}
3147
91447636 3148/* called with kqueue lock held */
55e303ae
A
3149static void
3150knote_dequeue(struct knote *kn)
3151{
3152 struct kqueue *kq = kn->kn_kq;
55e303ae 3153
b0d623f7 3154 if ((kn->kn_status & (KN_QUEUED | KN_STAYQUEUED)) == KN_QUEUED) {
91447636 3155 struct kqtailq *tq = kn->kn_tq;
55e303ae 3156
39236c6e 3157 TAILQ_REMOVE(tq, kn, kn_tqe);
91447636
A
3158 kn->kn_tq = &kq->kq_head;
3159 kn->kn_status &= ~KN_QUEUED;
3160 kq->kq_count--;
3161 }
55e303ae
A
3162}
3163
3164void
3165knote_init(void)
3166{
39236c6e
A
3167 knote_zone = zinit(sizeof(struct knote), 8192*sizeof(struct knote),
3168 8192, "knote zone");
91447636
A
3169
3170 /* allocate kq lock group attribute and group */
39236c6e 3171 kq_lck_grp_attr = lck_grp_attr_alloc_init();
91447636
A
3172
3173 kq_lck_grp = lck_grp_alloc_init("kqueue", kq_lck_grp_attr);
3174
3175 /* Allocate kq lock attribute */
3176 kq_lck_attr = lck_attr_alloc_init();
91447636
A
3177
3178 /* Initialize the timer filter lock */
3179 lck_mtx_init(&_filt_timerlock, kq_lck_grp, kq_lck_attr);
39236c6e 3180
316670eb
A
3181#if VM_PRESSURE_EVENTS
3182 /* Initialize the vm pressure list lock */
3183 vm_pressure_init(kq_lck_grp, kq_lck_attr);
3184#endif
39236c6e
A
3185
3186#if CONFIG_MEMORYSTATUS
3187 /* Initialize the memorystatus list lock */
3188 memorystatus_kevent_init(kq_lck_grp, kq_lck_attr);
3189#endif
55e303ae
A
3190}
3191SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL)
3192
3193static struct knote *
3194knote_alloc(void)
3195{
3196 return ((struct knote *)zalloc(knote_zone));
3197}
3198
3199static void
3200knote_free(struct knote *kn)
3201{
91447636 3202 zfree(knote_zone, kn);
55e303ae
A
3203}
3204
2d21ac55 3205#if SOCKETS
1c79356b
A
3206#include <sys/param.h>
3207#include <sys/socket.h>
3208#include <sys/protosw.h>
3209#include <sys/domain.h>
3210#include <sys/mbuf.h>
3211#include <sys/kern_event.h>
3212#include <sys/malloc.h>
9bccf70c
A
3213#include <sys/sys_domain.h>
3214#include <sys/syslog.h>
1c79356b 3215
fe8ab488
A
3216#ifndef ROUNDUP64
3217#define ROUNDUP64(x) P2ROUNDUP((x), sizeof (u_int64_t))
3218#endif
3219
3220#ifndef ADVANCE64
3221#define ADVANCE64(p, n) (void*)((char *)(p) + ROUNDUP64(n))
3222#endif
3223
39236c6e
A
3224static lck_grp_attr_t *kev_lck_grp_attr;
3225static lck_attr_t *kev_lck_attr;
3226static lck_grp_t *kev_lck_grp;
3227static decl_lck_rw_data(,kev_lck_data);
3228static lck_rw_t *kev_rwlock = &kev_lck_data;
1c79356b 3229
91447636
A
3230static int kev_attach(struct socket *so, int proto, struct proc *p);
3231static int kev_detach(struct socket *so);
39236c6e
A
3232static int kev_control(struct socket *so, u_long cmd, caddr_t data,
3233 struct ifnet *ifp, struct proc *p);
3234static lck_mtx_t * event_getlock(struct socket *, int);
3235static int event_lock(struct socket *, int, void *);
3236static int event_unlock(struct socket *, int, void *);
3237
3238static int event_sofreelastref(struct socket *);
3239static void kev_delete(struct kern_event_pcb *);
3240
3241static struct pr_usrreqs event_usrreqs = {
3242 .pru_attach = kev_attach,
3243 .pru_control = kev_control,
3244 .pru_detach = kev_detach,
3245 .pru_soreceive = soreceive,
91447636 3246};
1c79356b 3247
39236c6e
A
3248static struct protosw eventsw[] = {
3249{
3250 .pr_type = SOCK_RAW,
3251 .pr_protocol = SYSPROTO_EVENT,
3252 .pr_flags = PR_ATOMIC,
3253 .pr_usrreqs = &event_usrreqs,
3254 .pr_lock = event_lock,
3255 .pr_unlock = event_unlock,
3256 .pr_getlock = event_getlock,
3257}
1c79356b
A
3258};
3259
fe8ab488
A
3260__private_extern__ int kevt_getstat SYSCTL_HANDLER_ARGS;
3261__private_extern__ int kevt_pcblist SYSCTL_HANDLER_ARGS;
3262
3263SYSCTL_NODE(_net_systm, OID_AUTO, kevt,
3264 CTLFLAG_RW|CTLFLAG_LOCKED, 0, "Kernel event family");
3265
3266struct kevtstat kevtstat;
3267SYSCTL_PROC(_net_systm_kevt, OID_AUTO, stats,
3268 CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0,
3269 kevt_getstat, "S,kevtstat", "");
3270
3271SYSCTL_PROC(_net_systm_kevt, OID_AUTO, pcblist,
3272 CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0,
3273 kevt_pcblist, "S,xkevtpcb", "");
3274
39236c6e
A
3275static lck_mtx_t *
3276event_getlock(struct socket *so, int locktype)
3277{
3278#pragma unused(locktype)
3279 struct kern_event_pcb *ev_pcb = (struct kern_event_pcb *)so->so_pcb;
3280
3281 if (so->so_pcb != NULL) {
3282 if (so->so_usecount < 0)
3283 panic("%s: so=%p usecount=%d lrh= %s\n", __func__,
3284 so, so->so_usecount, solockhistory_nr(so));
3285 /* NOTREACHED */
3286 } else {
3287 panic("%s: so=%p NULL NO so_pcb %s\n", __func__,
3288 so, solockhistory_nr(so));
3289 /* NOTREACHED */
3290 }
3291 return (&ev_pcb->evp_mtx);
3292}
3293
3294static int
3295event_lock(struct socket *so, int refcount, void *lr)
3296{
3297 void *lr_saved;
3298
3299 if (lr == NULL)
3300 lr_saved = __builtin_return_address(0);
3301 else
3302 lr_saved = lr;
3303
3304 if (so->so_pcb != NULL) {
3305 lck_mtx_lock(&((struct kern_event_pcb *)so->so_pcb)->evp_mtx);
3306 } else {
3307 panic("%s: so=%p NO PCB! lr=%p lrh= %s\n", __func__,
3308 so, lr_saved, solockhistory_nr(so));
3309 /* NOTREACHED */
3310 }
3311
3312 if (so->so_usecount < 0) {
3313 panic("%s: so=%p so_pcb=%p lr=%p ref=%d lrh= %s\n", __func__,
3314 so, so->so_pcb, lr_saved, so->so_usecount,
3315 solockhistory_nr(so));
3316 /* NOTREACHED */
3317 }
3318
3319 if (refcount)
3320 so->so_usecount++;
3321
3322 so->lock_lr[so->next_lock_lr] = lr_saved;
3323 so->next_lock_lr = (so->next_lock_lr+1) % SO_LCKDBG_MAX;
3324 return (0);
3325}
3326
3327static int
3328event_unlock(struct socket *so, int refcount, void *lr)
3329{
3330 void *lr_saved;
3331 lck_mtx_t *mutex_held;
3332
3333 if (lr == NULL)
3334 lr_saved = __builtin_return_address(0);
3335 else
3336 lr_saved = lr;
3337
3338 if (refcount)
3339 so->so_usecount--;
3340
3341 if (so->so_usecount < 0) {
3342 panic("%s: so=%p usecount=%d lrh= %s\n", __func__,
3343 so, so->so_usecount, solockhistory_nr(so));
3344 /* NOTREACHED */
3345 }
3346 if (so->so_pcb == NULL) {
3347 panic("%s: so=%p NO PCB usecount=%d lr=%p lrh= %s\n", __func__,
3348 so, so->so_usecount, (void *)lr_saved,
3349 solockhistory_nr(so));
3350 /* NOTREACHED */
3351 }
3352 mutex_held = (&((struct kern_event_pcb *)so->so_pcb)->evp_mtx);
3353
3354 lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED);
3355 so->unlock_lr[so->next_unlock_lr] = lr_saved;
3356 so->next_unlock_lr = (so->next_unlock_lr+1) % SO_LCKDBG_MAX;
3357
3358 if (so->so_usecount == 0) {
3359 VERIFY(so->so_flags & SOF_PCBCLEARING);
3360 event_sofreelastref(so);
3361 } else {
3362 lck_mtx_unlock(mutex_held);
3363 }
3364
3365 return (0);
3366}
3367
3368static int
3369event_sofreelastref(struct socket *so)
3370{
3371 struct kern_event_pcb *ev_pcb = (struct kern_event_pcb *)so->so_pcb;
3372
3373 lck_mtx_assert(&(ev_pcb->evp_mtx), LCK_MTX_ASSERT_OWNED);
3374
3375 so->so_pcb = NULL;
3376
3377 /*
3378 * Disable upcall in the event another thread is in kev_post_msg()
3379 * appending record to the receive socket buffer, since sbwakeup()
3380 * may release the socket lock otherwise.
3381 */
3382 so->so_rcv.sb_flags &= ~SB_UPCALL;
3383 so->so_snd.sb_flags &= ~SB_UPCALL;
fe8ab488 3384 so->so_event = sonullevent;
39236c6e
A
3385 lck_mtx_unlock(&(ev_pcb->evp_mtx));
3386
3387 lck_mtx_assert(&(ev_pcb->evp_mtx), LCK_MTX_ASSERT_NOTOWNED);
3388 lck_rw_lock_exclusive(kev_rwlock);
3389 LIST_REMOVE(ev_pcb, evp_link);
fe8ab488
A
3390 kevtstat.kes_pcbcount--;
3391 kevtstat.kes_gencnt++;
39236c6e
A
3392 lck_rw_done(kev_rwlock);
3393 kev_delete(ev_pcb);
3394
3395 sofreelastref(so, 1);
3396 return (0);
3397}
3398
3399static int event_proto_count = (sizeof (eventsw) / sizeof (struct protosw));
3400
1c79356b
A
3401static
3402struct kern_event_head kern_event_head;
3403
b0d623f7 3404static u_int32_t static_event_id = 0;
39236c6e
A
3405
3406#define EVPCB_ZONE_MAX 65536
3407#define EVPCB_ZONE_NAME "kerneventpcb"
3408static struct zone *ev_pcb_zone;
1c79356b 3409
9bccf70c 3410/*
39236c6e 3411 * Install the protosw's for the NKE manager. Invoked at extension load time
9bccf70c 3412 */
39236c6e
A
3413void
3414kern_event_init(struct domain *dp)
9bccf70c 3415{
39236c6e
A
3416 struct protosw *pr;
3417 int i;
3418
3419 VERIFY(!(dp->dom_flags & DOM_INITIALIZED));
3420 VERIFY(dp == systemdomain);
3421
3422 kev_lck_grp_attr = lck_grp_attr_alloc_init();
3423 if (kev_lck_grp_attr == NULL) {
3424 panic("%s: lck_grp_attr_alloc_init failed\n", __func__);
3425 /* NOTREACHED */
3426 }
3427
3428 kev_lck_grp = lck_grp_alloc_init("Kernel Event Protocol",
3429 kev_lck_grp_attr);
3430 if (kev_lck_grp == NULL) {
3431 panic("%s: lck_grp_alloc_init failed\n", __func__);
3432 /* NOTREACHED */
3433 }
3434
3435 kev_lck_attr = lck_attr_alloc_init();
3436 if (kev_lck_attr == NULL) {
3437 panic("%s: lck_attr_alloc_init failed\n", __func__);
3438 /* NOTREACHED */
3439 }
9bccf70c 3440
39236c6e
A
3441 lck_rw_init(kev_rwlock, kev_lck_grp, kev_lck_attr);
3442 if (kev_rwlock == NULL) {
3443 panic("%s: lck_mtx_alloc_init failed\n", __func__);
3444 /* NOTREACHED */
91447636 3445 }
39236c6e
A
3446
3447 for (i = 0, pr = &eventsw[0]; i < event_proto_count; i++, pr++)
3448 net_add_proto(pr, dp, 1);
3449
3450 ev_pcb_zone = zinit(sizeof(struct kern_event_pcb),
3451 EVPCB_ZONE_MAX * sizeof(struct kern_event_pcb), 0, EVPCB_ZONE_NAME);
3452 if (ev_pcb_zone == NULL) {
3453 panic("%s: failed allocating ev_pcb_zone", __func__);
3454 /* NOTREACHED */
3455 }
3456 zone_change(ev_pcb_zone, Z_EXPAND, TRUE);
3457 zone_change(ev_pcb_zone, Z_CALLERACCT, TRUE);
9bccf70c
A
3458}
3459
91447636
A
3460static int
3461kev_attach(struct socket *so, __unused int proto, __unused struct proc *p)
1c79356b 3462{
39236c6e
A
3463 int error = 0;
3464 struct kern_event_pcb *ev_pcb;
1c79356b 3465
39236c6e
A
3466 error = soreserve(so, KEV_SNDSPACE, KEV_RECVSPACE);
3467 if (error != 0)
3468 return (error);
55e303ae 3469
39236c6e
A
3470 if ((ev_pcb = (struct kern_event_pcb *)zalloc(ev_pcb_zone)) == NULL) {
3471 return (ENOBUFS);
3472 }
3473 bzero(ev_pcb, sizeof(struct kern_event_pcb));
3474 lck_mtx_init(&ev_pcb->evp_mtx, kev_lck_grp, kev_lck_attr);
1c79356b 3475
39236c6e
A
3476 ev_pcb->evp_socket = so;
3477 ev_pcb->evp_vendor_code_filter = 0xffffffff;
1c79356b 3478
39236c6e
A
3479 so->so_pcb = (caddr_t) ev_pcb;
3480 lck_rw_lock_exclusive(kev_rwlock);
3481 LIST_INSERT_HEAD(&kern_event_head, ev_pcb, evp_link);
fe8ab488
A
3482 kevtstat.kes_pcbcount++;
3483 kevtstat.kes_gencnt++;
39236c6e 3484 lck_rw_done(kev_rwlock);
1c79356b 3485
39236c6e 3486 return (error);
1c79356b
A
3487}
3488
39236c6e
A
3489static void
3490kev_delete(struct kern_event_pcb *ev_pcb)
3491{
3492 VERIFY(ev_pcb != NULL);
3493 lck_mtx_destroy(&ev_pcb->evp_mtx, kev_lck_grp);
3494 zfree(ev_pcb_zone, ev_pcb);
3495}
1c79356b 3496
91447636
A
3497static int
3498kev_detach(struct socket *so)
1c79356b 3499{
39236c6e 3500 struct kern_event_pcb *ev_pcb = (struct kern_event_pcb *) so->so_pcb;
1c79356b 3501
39236c6e
A
3502 if (ev_pcb != NULL) {
3503 soisdisconnected(so);
91447636 3504 so->so_flags |= SOF_PCBCLEARING;
39236c6e 3505 }
1c79356b 3506
39236c6e 3507 return (0);
1c79356b
A
3508}
3509
91447636 3510/*
2d21ac55 3511 * For now, kev_vendor_code and mbuf_tags use the same
91447636
A
3512 * mechanism.
3513 */
91447636
A
3514errno_t kev_vendor_code_find(
3515 const char *string,
2d21ac55 3516 u_int32_t *out_vendor_code)
91447636
A
3517{
3518 if (strlen(string) >= KEV_VENDOR_CODE_MAX_STR_LEN) {
39236c6e 3519 return (EINVAL);
91447636 3520 }
39236c6e
A
3521 return (net_str_id_find_internal(string, out_vendor_code,
3522 NSI_VENDOR_CODE, 1));
91447636
A
3523}
3524
39236c6e
A
3525errno_t
3526kev_msg_post(struct kev_msg *event_msg)
91447636 3527{
39236c6e
A
3528 mbuf_tag_id_t min_vendor, max_vendor;
3529
b0d623f7 3530 net_str_id_first_last(&min_vendor, &max_vendor, NSI_VENDOR_CODE);
39236c6e 3531
91447636 3532 if (event_msg == NULL)
39236c6e
A
3533 return (EINVAL);
3534
3535 /*
3536 * Limit third parties to posting events for registered vendor codes
3537 * only
3538 */
91447636 3539 if (event_msg->vendor_code < min_vendor ||
fe8ab488
A
3540 event_msg->vendor_code > max_vendor) {
3541 OSIncrementAtomic64((SInt64 *)&kevtstat.kes_badvendor);
39236c6e 3542 return (EINVAL);
fe8ab488 3543 }
39236c6e 3544 return (kev_post_msg(event_msg));
91447636 3545}
1c79356b 3546
39236c6e
A
3547int
3548kev_post_msg(struct kev_msg *event_msg)
1c79356b 3549{
39236c6e
A
3550 struct mbuf *m, *m2;
3551 struct kern_event_pcb *ev_pcb;
3552 struct kern_event_msg *ev;
3553 char *tmp;
3554 u_int32_t total_size;
3555 int i;
1c79356b 3556
91447636
A
3557 /* Verify the message is small enough to fit in one mbuf w/o cluster */
3558 total_size = KEV_MSG_HEADER_SIZE;
39236c6e 3559
91447636
A
3560 for (i = 0; i < 5; i++) {
3561 if (event_msg->dv[i].data_length == 0)
3562 break;
3563 total_size += event_msg->dv[i].data_length;
3564 }
39236c6e 3565
91447636 3566 if (total_size > MLEN) {
fe8ab488 3567 OSIncrementAtomic64((SInt64 *)&kevtstat.kes_toobig);
39236c6e
A
3568 return (EMSGSIZE);
3569 }
3570
3571 m = m_get(M_DONTWAIT, MT_DATA);
fe8ab488
A
3572 if (m == 0) {
3573 OSIncrementAtomic64((SInt64 *)&kevtstat.kes_nomem);
3574 return (ENOMEM);
3575 }
39236c6e
A
3576 ev = mtod(m, struct kern_event_msg *);
3577 total_size = KEV_MSG_HEADER_SIZE;
3578
3579 tmp = (char *) &ev->event_data[0];
3580 for (i = 0; i < 5; i++) {
3581 if (event_msg->dv[i].data_length == 0)
3582 break;
3583
3584 total_size += event_msg->dv[i].data_length;
3585 bcopy(event_msg->dv[i].data_ptr, tmp,
3586 event_msg->dv[i].data_length);
3587 tmp += event_msg->dv[i].data_length;
3588 }
3589
3590 ev->id = ++static_event_id;
3591 ev->total_size = total_size;
3592 ev->vendor_code = event_msg->vendor_code;
3593 ev->kev_class = event_msg->kev_class;
3594 ev->kev_subclass = event_msg->kev_subclass;
3595 ev->event_code = event_msg->event_code;
3596
3597 m->m_len = total_size;
3598 lck_rw_lock_shared(kev_rwlock);
3599 for (ev_pcb = LIST_FIRST(&kern_event_head);
3600 ev_pcb;
3601 ev_pcb = LIST_NEXT(ev_pcb, evp_link)) {
3602 lck_mtx_lock(&ev_pcb->evp_mtx);
3603 if (ev_pcb->evp_socket->so_pcb == NULL) {
3604 lck_mtx_unlock(&ev_pcb->evp_mtx);
3605 continue;
3606 }
3607 if (ev_pcb->evp_vendor_code_filter != KEV_ANY_VENDOR) {
3608 if (ev_pcb->evp_vendor_code_filter != ev->vendor_code) {
3609 lck_mtx_unlock(&ev_pcb->evp_mtx);
3610 continue;
3611 }
3612
3613 if (ev_pcb->evp_class_filter != KEV_ANY_CLASS) {
3614 if (ev_pcb->evp_class_filter != ev->kev_class) {
3615 lck_mtx_unlock(&ev_pcb->evp_mtx);
3616 continue;
3617 }
3618
fe8ab488
A
3619 if ((ev_pcb->evp_subclass_filter !=
3620 KEV_ANY_SUBCLASS) &&
3621 (ev_pcb->evp_subclass_filter !=
3622 ev->kev_subclass)) {
39236c6e
A
3623 lck_mtx_unlock(&ev_pcb->evp_mtx);
3624 continue;
3625 }
3626 }
3627 }
3628
3629 m2 = m_copym(m, 0, m->m_len, M_NOWAIT);
3630 if (m2 == 0) {
fe8ab488 3631 OSIncrementAtomic64((SInt64 *)&kevtstat.kes_nomem);
39236c6e
A
3632 m_free(m);
3633 lck_mtx_unlock(&ev_pcb->evp_mtx);
3634 lck_rw_done(kev_rwlock);
fe8ab488 3635 return (ENOMEM);
39236c6e 3636 }
fe8ab488
A
3637 if (sbappendrecord(&ev_pcb->evp_socket->so_rcv, m2)) {
3638 /*
3639 * We use "m" for the socket stats as it would be
3640 * unsafe to use "m2"
3641 */
3642 so_inc_recv_data_stat(ev_pcb->evp_socket,
3643 1, m->m_len, SO_TC_BE);
3644
39236c6e 3645 sorwakeup(ev_pcb->evp_socket);
fe8ab488
A
3646 OSIncrementAtomic64((SInt64 *)&kevtstat.kes_posted);
3647 } else {
3648 OSIncrementAtomic64((SInt64 *)&kevtstat.kes_fullsock);
3649 }
39236c6e
A
3650 lck_mtx_unlock(&ev_pcb->evp_mtx);
3651 }
3652 m_free(m);
3653 lck_rw_done(kev_rwlock);
3654
3655 return (0);
1c79356b
A
3656}
3657
91447636 3658static int
39236c6e
A
3659kev_control(struct socket *so,
3660 u_long cmd,
3661 caddr_t data,
3662 __unused struct ifnet *ifp,
3663 __unused struct proc *p)
1c79356b 3664{
91447636
A
3665 struct kev_request *kev_req = (struct kev_request *) data;
3666 struct kern_event_pcb *ev_pcb;
3667 struct kev_vendor_code *kev_vendor;
b0d623f7 3668 u_int32_t *id_value = (u_int32_t *) data;
39236c6e 3669
91447636 3670 switch (cmd) {
91447636
A
3671 case SIOCGKEVID:
3672 *id_value = static_event_id;
3673 break;
91447636
A
3674 case SIOCSKEVFILT:
3675 ev_pcb = (struct kern_event_pcb *) so->so_pcb;
39236c6e
A
3676 ev_pcb->evp_vendor_code_filter = kev_req->vendor_code;
3677 ev_pcb->evp_class_filter = kev_req->kev_class;
3678 ev_pcb->evp_subclass_filter = kev_req->kev_subclass;
91447636 3679 break;
91447636
A
3680 case SIOCGKEVFILT:
3681 ev_pcb = (struct kern_event_pcb *) so->so_pcb;
39236c6e
A
3682 kev_req->vendor_code = ev_pcb->evp_vendor_code_filter;
3683 kev_req->kev_class = ev_pcb->evp_class_filter;
3684 kev_req->kev_subclass = ev_pcb->evp_subclass_filter;
91447636 3685 break;
91447636 3686 case SIOCGKEVVENDOR:
39236c6e 3687 kev_vendor = (struct kev_vendor_code *)data;
91447636
A
3688 /* Make sure string is NULL terminated */
3689 kev_vendor->vendor_string[KEV_VENDOR_CODE_MAX_STR_LEN-1] = 0;
39236c6e
A
3690 return (net_str_id_find_internal(kev_vendor->vendor_string,
3691 &kev_vendor->vendor_code, NSI_VENDOR_CODE, 0));
91447636 3692 default:
39236c6e 3693 return (ENOTSUP);
91447636 3694 }
39236c6e
A
3695
3696 return (0);
1c79356b
A
3697}
3698
fe8ab488
A
3699int
3700kevt_getstat SYSCTL_HANDLER_ARGS
3701{
3702#pragma unused(oidp, arg1, arg2)
3703 int error = 0;
3704
3705 lck_rw_lock_shared(kev_rwlock);
3706
3707 if (req->newptr != USER_ADDR_NULL) {
3708 error = EPERM;
3709 goto done;
3710 }
3711 if (req->oldptr == USER_ADDR_NULL) {
3712 req->oldidx = sizeof(struct kevtstat);
3713 goto done;
3714 }
3715
3716 error = SYSCTL_OUT(req, &kevtstat,
3717 MIN(sizeof(struct kevtstat), req->oldlen));
3718done:
3719 lck_rw_done(kev_rwlock);
3720
3721 return (error);
3722}
3723
3724__private_extern__ int
3725kevt_pcblist SYSCTL_HANDLER_ARGS
3726{
3727#pragma unused(oidp, arg1, arg2)
3728 int error = 0;
3729 int n, i;
3730 struct xsystmgen xsg;
3731 void *buf = NULL;
3732 size_t item_size = ROUNDUP64(sizeof (struct xkevtpcb)) +
3733 ROUNDUP64(sizeof (struct xsocket_n)) +
3734 2 * ROUNDUP64(sizeof (struct xsockbuf_n)) +
3735 ROUNDUP64(sizeof (struct xsockstat_n));
3736 struct kern_event_pcb *ev_pcb;
3737
3738 buf = _MALLOC(item_size, M_TEMP, M_WAITOK | M_ZERO);
3739 if (buf == NULL)
3740 return (ENOMEM);
3741
3742 lck_rw_lock_shared(kev_rwlock);
3743
3744 n = kevtstat.kes_pcbcount;
3745
3746 if (req->oldptr == USER_ADDR_NULL) {
3747 req->oldidx = (n + n/8) * item_size;
3748 goto done;
3749 }
3750 if (req->newptr != USER_ADDR_NULL) {
3751 error = EPERM;
3752 goto done;
3753 }
3754 bzero(&xsg, sizeof (xsg));
3755 xsg.xg_len = sizeof (xsg);
3756 xsg.xg_count = n;
3757 xsg.xg_gen = kevtstat.kes_gencnt;
3758 xsg.xg_sogen = so_gencnt;
3759 error = SYSCTL_OUT(req, &xsg, sizeof (xsg));
3760 if (error) {
3761 goto done;
3762 }
3763 /*
3764 * We are done if there is no pcb
3765 */
3766 if (n == 0) {
3767 goto done;
3768 }
3769
3770 i = 0;
3771 for (i = 0, ev_pcb = LIST_FIRST(&kern_event_head);
3772 i < n && ev_pcb != NULL;
3773 i++, ev_pcb = LIST_NEXT(ev_pcb, evp_link)) {
3774 struct xkevtpcb *xk = (struct xkevtpcb *)buf;
3775 struct xsocket_n *xso = (struct xsocket_n *)
3776 ADVANCE64(xk, sizeof (*xk));
3777 struct xsockbuf_n *xsbrcv = (struct xsockbuf_n *)
3778 ADVANCE64(xso, sizeof (*xso));
3779 struct xsockbuf_n *xsbsnd = (struct xsockbuf_n *)
3780 ADVANCE64(xsbrcv, sizeof (*xsbrcv));
3781 struct xsockstat_n *xsostats = (struct xsockstat_n *)
3782 ADVANCE64(xsbsnd, sizeof (*xsbsnd));
3783
3784 bzero(buf, item_size);
3785
3786 lck_mtx_lock(&ev_pcb->evp_mtx);
3787
3788 xk->kep_len = sizeof(struct xkevtpcb);
3789 xk->kep_kind = XSO_EVT;
3790 xk->kep_evtpcb = (uint64_t)VM_KERNEL_ADDRPERM(ev_pcb);
3791 xk->kep_vendor_code_filter = ev_pcb->evp_vendor_code_filter;
3792 xk->kep_class_filter = ev_pcb->evp_class_filter;
3793 xk->kep_subclass_filter = ev_pcb->evp_subclass_filter;
3794
3795 sotoxsocket_n(ev_pcb->evp_socket, xso);
3796 sbtoxsockbuf_n(ev_pcb->evp_socket ?
3797 &ev_pcb->evp_socket->so_rcv : NULL, xsbrcv);
3798 sbtoxsockbuf_n(ev_pcb->evp_socket ?
3799 &ev_pcb->evp_socket->so_snd : NULL, xsbsnd);
3800 sbtoxsockstat_n(ev_pcb->evp_socket, xsostats);
3801
3802 lck_mtx_unlock(&ev_pcb->evp_mtx);
3803
3804 error = SYSCTL_OUT(req, buf, item_size);
3805 }
3806
3807 if (error == 0) {
3808 /*
3809 * Give the user an updated idea of our state.
3810 * If the generation differs from what we told
3811 * her before, she knows that something happened
3812 * while we were processing this request, and it
3813 * might be necessary to retry.
3814 */
3815 bzero(&xsg, sizeof (xsg));
3816 xsg.xg_len = sizeof (xsg);
3817 xsg.xg_count = n;
3818 xsg.xg_gen = kevtstat.kes_gencnt;
3819 xsg.xg_sogen = so_gencnt;
3820 error = SYSCTL_OUT(req, &xsg, sizeof (xsg));
3821 if (error) {
3822 goto done;
3823 }
3824 }
3825
3826done:
3827 lck_rw_done(kev_rwlock);
3828
3829 return (error);
3830}
3831
2d21ac55 3832#endif /* SOCKETS */
1c79356b 3833
1c79356b 3834
0c530ab8
A
3835int
3836fill_kqueueinfo(struct kqueue *kq, struct kqueue_info * kinfo)
3837{
2d21ac55 3838 struct vinfo_stat * st;
0c530ab8 3839
0c530ab8
A
3840 st = &kinfo->kq_stat;
3841
2d21ac55 3842 st->vst_size = kq->kq_count;
3e170ce0
A
3843 if (kq->kq_state & KQ_KEV_QOS)
3844 st->vst_blksize = sizeof(struct kevent_qos_s);
3845 else if (kq->kq_state & KQ_KEV64)
b0d623f7
A
3846 st->vst_blksize = sizeof(struct kevent64_s);
3847 else
3848 st->vst_blksize = sizeof(struct kevent);
2d21ac55 3849 st->vst_mode = S_IFIFO;
3e170ce0
A
3850
3851 /* flags exported to libproc as PROC_KQUEUE_* (sys/proc_info.h) */
3852#define PROC_KQUEUE_MASK (KQ_SEL|KQ_SLEEP|KQ_KEV32|KQ_KEV64|KQ_KEV_QOS)
3853 kinfo->kq_state = kq->kq_state & PROC_KQUEUE_MASK;
0c530ab8 3854
39236c6e 3855 return (0);
0c530ab8 3856}
1c79356b 3857
6d2010ae
A
3858
3859void
3860knote_markstayqueued(struct knote *kn)
3861{
3862 kqlock(kn->kn_kq);
3863 kn->kn_status |= KN_STAYQUEUED;
3864 knote_enqueue(kn);
3865 kqunlock(kn->kn_kq);
3866}
04b8595b
A
3867
3868void
3869knote_clearstayqueued(struct knote *kn)
3870{
3871 kqlock(kn->kn_kq);
3872 kn->kn_status &= ~KN_STAYQUEUED;
3873 knote_dequeue(kn);
3874 kqunlock(kn->kn_kq);
3875}
3e170ce0
A
3876
3877static unsigned long
3878kevent_extinfo_emit(struct kqueue *kq, struct knote *kn, struct kevent_extinfo *buf,
3879 unsigned long buflen, unsigned long nknotes)
3880{
3881 struct kevent_qos_s kevqos;
3882 struct kevent_internal_s *kevp;
3883 for (; kn; kn = SLIST_NEXT(kn, kn_link)) {
3884 if (kq == kn->kn_kq) {
3885 if (nknotes < buflen) {
3886 struct kevent_extinfo *info = &buf[nknotes];
3887
3888 kqlock(kq);
3889 bzero(&kevqos, sizeof(kevqos));
3890 kevp = &(kn->kn_kevent);
3891
3892 kevqos.ident = kevp->ident;
3893 kevqos.filter = kevp->filter;
3894 kevqos.flags = kevp->flags;
3895 kevqos.fflags = kevp->fflags;
3896 kevqos.data = (int64_t) kevp->data;
3897 kevqos.udata = kevp->udata;
3898 kevqos.ext[0] = kevp->ext[0];
3899 kevqos.ext[1] = kevp->ext[1];
3900
3901 memcpy(&info->kqext_kev, &kevqos, sizeof(info->kqext_kev));
3902 info->kqext_sdata = kn->kn_sdata;
3903
3904 /* status flags exported to userspace/libproc */
3905#define KQEXT_STATUS_MASK (KN_ACTIVE|KN_QUEUED|KN_DISABLED|KN_STAYQUEUED)
3906 info->kqext_status = kn->kn_status & KQEXT_STATUS_MASK;
3907 info->kqext_sfflags = kn->kn_sfflags;
3908
3909 kqunlock(kq);
3910 }
3911
3912 /* we return total number of knotes, which may be more than requested */
3913 nknotes++;
3914 }
3915 }
3916
3917 return nknotes;
3918}
3919
3920int
3921pid_kqueue_extinfo(proc_t p, struct kqueue *kq, user_addr_t ubuf,
3922 uint32_t bufsize, int32_t *retval)
3923{
3924 struct knote *kn;
3925 int i;
3926 int err = 0;
3927 struct filedesc *fdp = p->p_fd;
3928 unsigned long nknotes = 0;
3929 unsigned long buflen = bufsize / sizeof(struct kevent_extinfo);
3930 struct kevent_extinfo *kqext = NULL;
3931
3932 kqext = kalloc(buflen * sizeof(struct kevent_extinfo));
3933 if (kqext == NULL) {
3934 err = ENOMEM;
3935 goto out;
3936 }
3937 bzero(kqext, buflen * sizeof(struct kevent_extinfo));
3938
3939 proc_fdlock(p);
3940
3941 for (i = 0; i < fdp->fd_knlistsize; i++) {
3942 kn = SLIST_FIRST(&fdp->fd_knlist[i]);
3943 nknotes = kevent_extinfo_emit(kq, kn, kqext, buflen, nknotes);
3944 }
3945
3946 if (fdp->fd_knhashmask != 0) {
3947 for (i = 0; i < (int)fdp->fd_knhashmask + 1; i++) {
3948 kn = SLIST_FIRST(&fdp->fd_knhash[i]);
3949 nknotes = kevent_extinfo_emit(kq, kn, kqext, buflen, nknotes);
3950 }
3951 }
3952
3953 proc_fdunlock(p);
3954
3955 assert(bufsize >= sizeof(struct kevent_extinfo) * min(buflen, nknotes));
3956 err = copyout(kqext, ubuf, sizeof(struct kevent_extinfo) * min(buflen, nknotes));
3957
3958 out:
3959 if (kqext) {
3960 kfree(kqext, buflen * sizeof(struct kevent_extinfo));
3961 kqext = NULL;
3962 }
3963
3964 if (!err)
3965 *retval = nknotes;
3966 return err;
3967}