]>
Commit | Line | Data |
---|---|---|
2d21ac55 A |
1 | /* |
2 | * Copyright (c) 2005-2006 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | ||
29 | ||
30 | /* | |
31 | * APPLE NOTE: This file is compiled even if dtrace is unconfig'd. A symbol | |
32 | * from this file (_dtrace_register_anon_DOF) always needs to be exported for | |
33 | * an external kext to link against. | |
34 | */ | |
35 | ||
36 | #if CONFIG_DTRACE | |
37 | ||
38 | #define MACH__POSIX_C_SOURCE_PRIVATE 1 /* pulls in suitable savearea from mach/ppc/thread_status.h */ | |
39 | #include <kern/thread.h> | |
40 | #include <mach/thread_status.h> | |
41 | ||
42 | #include <stdarg.h> | |
43 | #include <string.h> | |
44 | #include <sys/malloc.h> | |
45 | #include <sys/time.h> | |
46 | #include <sys/proc.h> | |
47 | #include <sys/proc_internal.h> | |
48 | #include <sys/kauth.h> | |
49 | #include <sys/user.h> | |
50 | #include <sys/systm.h> | |
51 | #include <sys/dtrace.h> | |
52 | #include <sys/dtrace_impl.h> | |
53 | #include <libkern/OSAtomic.h> | |
39236c6e A |
54 | #include <kern/kern_types.h> |
55 | #include <kern/timer_call.h> | |
2d21ac55 A |
56 | #include <kern/thread_call.h> |
57 | #include <kern/task.h> | |
58 | #include <kern/sched_prim.h> | |
59 | #include <kern/queue.h> | |
60 | #include <miscfs/devfs/devfs.h> | |
61 | #include <kern/kalloc.h> | |
62 | ||
63 | #include <mach/vm_param.h> | |
64 | #include <mach/mach_vm.h> | |
65 | #include <mach/task.h> | |
66 | #include <vm/pmap.h> | |
67 | #include <vm/vm_map.h> /* All the bits we care about are guarded by MACH_KERNEL_PRIVATE :-( */ | |
68 | ||
69 | /* | |
70 | * pid/proc | |
71 | */ | |
b0d623f7 A |
72 | /* Solaris proc_t is the struct. Darwin's proc_t is a pointer to it. */ |
73 | #define proc_t struct proc /* Steer clear of the Darwin typedef for proc_t */ | |
2d21ac55 A |
74 | |
75 | /* Not called from probe context */ | |
76 | proc_t * | |
77 | sprlock(pid_t pid) | |
78 | { | |
79 | proc_t* p; | |
80 | ||
81 | if ((p = proc_find(pid)) == PROC_NULL) { | |
82 | return PROC_NULL; | |
83 | } | |
84 | ||
fe8ab488 | 85 | task_suspend_internal(p->task); |
2d21ac55 A |
86 | |
87 | proc_lock(p); | |
88 | ||
89 | lck_mtx_lock(&p->p_dtrace_sprlock); | |
90 | ||
91 | return p; | |
92 | } | |
93 | ||
94 | /* Not called from probe context */ | |
95 | void | |
96 | sprunlock(proc_t *p) | |
97 | { | |
98 | if (p != PROC_NULL) { | |
99 | lck_mtx_unlock(&p->p_dtrace_sprlock); | |
100 | ||
101 | proc_unlock(p); | |
102 | ||
fe8ab488 | 103 | task_resume_internal(p->task); |
2d21ac55 A |
104 | |
105 | proc_rele(p); | |
106 | } | |
107 | } | |
108 | ||
109 | /* | |
110 | * uread/uwrite | |
111 | */ | |
112 | ||
113 | // These are not exported from vm_map.h. | |
114 | extern kern_return_t vm_map_read_user(vm_map_t map, vm_map_address_t src_addr, void *dst_p, vm_size_t size); | |
115 | extern kern_return_t vm_map_write_user(vm_map_t map, void *src_p, vm_map_address_t dst_addr, vm_size_t size); | |
116 | ||
117 | /* Not called from probe context */ | |
118 | int | |
119 | uread(proc_t *p, void *buf, user_size_t len, user_addr_t a) | |
120 | { | |
121 | kern_return_t ret; | |
122 | ||
123 | ASSERT(p != PROC_NULL); | |
124 | ASSERT(p->task != NULL); | |
125 | ||
126 | task_t task = p->task; | |
127 | ||
128 | /* | |
129 | * Grab a reference to the task vm_map_t to make sure | |
130 | * the map isn't pulled out from under us. | |
131 | * | |
132 | * Because the proc_lock is not held at all times on all code | |
133 | * paths leading here, it is possible for the proc to have | |
134 | * exited. If the map is null, fail. | |
135 | */ | |
136 | vm_map_t map = get_task_map_reference(task); | |
137 | if (map) { | |
138 | ret = vm_map_read_user( map, (vm_map_address_t)a, buf, (vm_size_t)len); | |
139 | vm_map_deallocate(map); | |
140 | } else | |
141 | ret = KERN_TERMINATED; | |
142 | ||
143 | return (int)ret; | |
144 | } | |
145 | ||
146 | ||
147 | /* Not called from probe context */ | |
148 | int | |
149 | uwrite(proc_t *p, void *buf, user_size_t len, user_addr_t a) | |
150 | { | |
151 | kern_return_t ret; | |
152 | ||
153 | ASSERT(p != NULL); | |
154 | ASSERT(p->task != NULL); | |
155 | ||
156 | task_t task = p->task; | |
157 | ||
158 | /* | |
159 | * Grab a reference to the task vm_map_t to make sure | |
160 | * the map isn't pulled out from under us. | |
161 | * | |
162 | * Because the proc_lock is not held at all times on all code | |
163 | * paths leading here, it is possible for the proc to have | |
164 | * exited. If the map is null, fail. | |
165 | */ | |
166 | vm_map_t map = get_task_map_reference(task); | |
167 | if (map) { | |
168 | /* Find the memory permissions. */ | |
169 | uint32_t nestingDepth=999999; | |
170 | vm_region_submap_short_info_data_64_t info; | |
171 | mach_msg_type_number_t count = VM_REGION_SUBMAP_SHORT_INFO_COUNT_64; | |
172 | mach_vm_address_t address = (mach_vm_address_t)a; | |
173 | mach_vm_size_t sizeOfRegion = (mach_vm_size_t)len; | |
174 | ||
175 | ret = mach_vm_region_recurse(map, &address, &sizeOfRegion, &nestingDepth, (vm_region_recurse_info_t)&info, &count); | |
176 | if (ret != KERN_SUCCESS) | |
177 | goto done; | |
178 | ||
179 | vm_prot_t reprotect; | |
180 | ||
181 | if (!(info.protection & VM_PROT_WRITE)) { | |
182 | /* Save the original protection values for restoration later */ | |
183 | reprotect = info.protection; | |
184 | ||
185 | if (info.max_protection & VM_PROT_WRITE) { | |
186 | /* The memory is not currently writable, but can be made writable. */ | |
187 | ret = mach_vm_protect (map, (mach_vm_offset_t)a, (mach_vm_size_t)len, 0, reprotect | VM_PROT_WRITE); | |
188 | } else { | |
189 | /* | |
190 | * The memory is not currently writable, and cannot be made writable. We need to COW this memory. | |
191 | * | |
192 | * Strange, we can't just say "reprotect | VM_PROT_COPY", that fails. | |
193 | */ | |
194 | ret = mach_vm_protect (map, (mach_vm_offset_t)a, (mach_vm_size_t)len, 0, VM_PROT_COPY | VM_PROT_READ | VM_PROT_WRITE); | |
195 | } | |
196 | ||
197 | if (ret != KERN_SUCCESS) | |
198 | goto done; | |
199 | ||
200 | } else { | |
201 | /* The memory was already writable. */ | |
202 | reprotect = VM_PROT_NONE; | |
203 | } | |
204 | ||
205 | ret = vm_map_write_user( map, | |
206 | buf, | |
207 | (vm_map_address_t)a, | |
208 | (vm_size_t)len); | |
209 | ||
210 | if (ret != KERN_SUCCESS) | |
211 | goto done; | |
212 | ||
213 | if (reprotect != VM_PROT_NONE) { | |
214 | ASSERT(reprotect & VM_PROT_EXECUTE); | |
215 | ret = mach_vm_protect (map, (mach_vm_offset_t)a, (mach_vm_size_t)len, 0, reprotect); | |
216 | } | |
217 | ||
218 | done: | |
219 | vm_map_deallocate(map); | |
220 | } else | |
221 | ret = KERN_TERMINATED; | |
222 | ||
223 | return (int)ret; | |
224 | } | |
225 | ||
226 | /* | |
227 | * cpuvar | |
228 | */ | |
229 | lck_mtx_t cpu_lock; | |
fe8ab488 | 230 | lck_mtx_t cyc_lock; |
2d21ac55 A |
231 | lck_mtx_t mod_lock; |
232 | ||
6d2010ae | 233 | dtrace_cpu_t *cpu_list; |
2d21ac55 A |
234 | cpu_core_t *cpu_core; /* XXX TLB lockdown? */ |
235 | ||
236 | /* | |
237 | * cred_t | |
238 | */ | |
239 | ||
240 | /* | |
241 | * dtrace_CRED() can be called from probe context. We cannot simply call kauth_cred_get() since | |
242 | * that function may try to resolve a lazy credential binding, which entails taking the proc_lock. | |
243 | */ | |
244 | cred_t * | |
245 | dtrace_CRED(void) | |
246 | { | |
247 | struct uthread *uthread = get_bsdthread_info(current_thread()); | |
248 | ||
249 | if (uthread == NULL) | |
250 | return NULL; | |
251 | else | |
252 | return uthread->uu_ucred; /* May return NOCRED which is defined to be 0 */ | |
253 | } | |
254 | ||
255 | #define HAS_ALLPRIVS(cr) priv_isfullset(&CR_OEPRIV(cr)) | |
256 | #define HAS_PRIVILEGE(cr, pr) ((pr) == PRIV_ALL ? \ | |
257 | HAS_ALLPRIVS(cr) : \ | |
258 | PRIV_ISASSERT(&CR_OEPRIV(cr), pr)) | |
259 | ||
260 | int PRIV_POLICY_CHOICE(void* cred, int priv, int all) | |
261 | { | |
262 | #pragma unused(priv, all) | |
263 | return kauth_cred_issuser(cred); /* XXX TODO: How is this different from PRIV_POLICY_ONLY? */ | |
264 | } | |
265 | ||
266 | int | |
267 | PRIV_POLICY_ONLY(void *cr, int priv, int boolean) | |
268 | { | |
269 | #pragma unused(priv, boolean) | |
270 | return kauth_cred_issuser(cr); /* XXX TODO: HAS_PRIVILEGE(cr, priv); */ | |
271 | } | |
272 | ||
6d2010ae | 273 | /* XXX Get around const poisoning using structure assigns */ |
2d21ac55 | 274 | gid_t |
6d2010ae | 275 | crgetgid(const cred_t *cr) { cred_t copy_cr = *cr; return kauth_cred_getgid(©_cr); } |
2d21ac55 A |
276 | |
277 | uid_t | |
6d2010ae | 278 | crgetuid(const cred_t *cr) { cred_t copy_cr = *cr; return kauth_cred_getuid(©_cr); } |
2d21ac55 A |
279 | |
280 | /* | |
281 | * "cyclic" | |
282 | */ | |
283 | ||
2d21ac55 | 284 | typedef struct wrap_timer_call { |
fe8ab488 A |
285 | /* node attributes */ |
286 | cyc_handler_t hdlr; | |
287 | cyc_time_t when; | |
288 | uint64_t deadline; | |
289 | int cpuid; | |
290 | boolean_t suspended; | |
291 | struct timer_call call; | |
292 | ||
293 | /* next item in the linked list */ | |
294 | LIST_ENTRY(wrap_timer_call) entries; | |
2d21ac55 A |
295 | } wrap_timer_call_t; |
296 | ||
fe8ab488 A |
297 | #define WAKEUP_REAPER 0x7FFFFFFFFFFFFFFFLL |
298 | #define NEARLY_FOREVER 0x7FFFFFFFFFFFFFFELL | |
299 | ||
300 | /* CPU going online/offline notifications */ | |
301 | void (*dtrace_cpu_state_changed_hook)(int, boolean_t) = NULL; | |
302 | void dtrace_cpu_state_changed(int, boolean_t); | |
303 | ||
304 | void | |
305 | dtrace_install_cpu_hooks(void) { | |
306 | dtrace_cpu_state_changed_hook = dtrace_cpu_state_changed; | |
307 | } | |
308 | ||
309 | void | |
310 | dtrace_cpu_state_changed(int cpuid, boolean_t is_running) { | |
311 | #pragma unused(cpuid) | |
312 | wrap_timer_call_t *wrapTC = NULL; | |
313 | boolean_t suspend = (is_running ? FALSE : TRUE); | |
314 | dtrace_icookie_t s; | |
315 | ||
316 | /* Ensure that we're not going to leave the CPU */ | |
317 | s = dtrace_interrupt_disable(); | |
318 | assert(cpuid == cpu_number()); | |
319 | ||
320 | LIST_FOREACH(wrapTC, &(cpu_list[cpu_number()].cpu_cyc_list), entries) { | |
321 | assert(wrapTC->cpuid == cpu_number()); | |
322 | if (suspend) { | |
323 | assert(!wrapTC->suspended); | |
324 | /* If this fails, we'll panic anyway, so let's do this now. */ | |
325 | if (!timer_call_cancel(&wrapTC->call)) | |
326 | panic("timer_call_set_suspend() failed to cancel a timer call"); | |
327 | wrapTC->suspended = TRUE; | |
328 | } else { | |
329 | /* Rearm the timer, but ensure it was suspended first. */ | |
330 | assert(wrapTC->suspended); | |
331 | clock_deadline_for_periodic_event(wrapTC->when.cyt_interval, mach_absolute_time(), | |
332 | &wrapTC->deadline); | |
333 | timer_call_enter1(&wrapTC->call, (void*) wrapTC, wrapTC->deadline, | |
334 | TIMER_CALL_SYS_CRITICAL | TIMER_CALL_LOCAL); | |
335 | wrapTC->suspended = FALSE; | |
336 | } | |
337 | ||
338 | } | |
339 | ||
340 | /* Restore the previous interrupt state. */ | |
341 | dtrace_interrupt_enable(s); | |
342 | } | |
2d21ac55 A |
343 | |
344 | static void | |
345 | _timer_call_apply_cyclic( void *ignore, void *vTChdl ) | |
346 | { | |
347 | #pragma unused(ignore) | |
348 | wrap_timer_call_t *wrapTC = (wrap_timer_call_t *)vTChdl; | |
349 | ||
350 | (*(wrapTC->hdlr.cyh_func))( wrapTC->hdlr.cyh_arg ); | |
351 | ||
352 | clock_deadline_for_periodic_event( wrapTC->when.cyt_interval, mach_absolute_time(), &(wrapTC->deadline) ); | |
39236c6e | 353 | timer_call_enter1( &(wrapTC->call), (void *)wrapTC, wrapTC->deadline, TIMER_CALL_SYS_CRITICAL | TIMER_CALL_LOCAL ); |
2d21ac55 A |
354 | } |
355 | ||
356 | static cyclic_id_t | |
357 | timer_call_add_cyclic(wrap_timer_call_t *wrapTC, cyc_handler_t *handler, cyc_time_t *when) | |
358 | { | |
359 | uint64_t now; | |
fe8ab488 | 360 | dtrace_icookie_t s; |
2d21ac55 A |
361 | |
362 | timer_call_setup( &(wrapTC->call), _timer_call_apply_cyclic, NULL ); | |
363 | wrapTC->hdlr = *handler; | |
364 | wrapTC->when = *when; | |
365 | ||
366 | nanoseconds_to_absolutetime( wrapTC->when.cyt_interval, (uint64_t *)&wrapTC->when.cyt_interval ); | |
367 | ||
368 | now = mach_absolute_time(); | |
369 | wrapTC->deadline = now; | |
370 | ||
371 | clock_deadline_for_periodic_event( wrapTC->when.cyt_interval, now, &(wrapTC->deadline) ); | |
fe8ab488 A |
372 | |
373 | /* Insert the timer to the list of the running timers on this CPU, and start it. */ | |
374 | s = dtrace_interrupt_disable(); | |
375 | wrapTC->cpuid = cpu_number(); | |
376 | LIST_INSERT_HEAD(&cpu_list[wrapTC->cpuid].cpu_cyc_list, wrapTC, entries); | |
377 | timer_call_enter1(&wrapTC->call, (void*) wrapTC, wrapTC->deadline, | |
378 | TIMER_CALL_SYS_CRITICAL | TIMER_CALL_LOCAL); | |
379 | wrapTC->suspended = FALSE; | |
380 | dtrace_interrupt_enable(s); | |
2d21ac55 A |
381 | |
382 | return (cyclic_id_t)wrapTC; | |
383 | } | |
384 | ||
fe8ab488 A |
385 | /* |
386 | * Executed on the CPU the timer is running on. | |
387 | */ | |
2d21ac55 A |
388 | static void |
389 | timer_call_remove_cyclic(cyclic_id_t cyclic) | |
390 | { | |
391 | wrap_timer_call_t *wrapTC = (wrap_timer_call_t *)cyclic; | |
392 | ||
fe8ab488 A |
393 | assert(wrapTC); |
394 | assert(cpu_number() == wrapTC->cpuid); | |
2d21ac55 | 395 | |
fe8ab488 A |
396 | if (!timer_call_cancel(&wrapTC->call)) |
397 | panic("timer_call_remove_cyclic() failed to cancel a timer call"); | |
2d21ac55 | 398 | |
fe8ab488 | 399 | LIST_REMOVE(wrapTC, entries); |
2d21ac55 A |
400 | } |
401 | ||
402 | static void * | |
403 | timer_call_get_cyclic_arg(cyclic_id_t cyclic) | |
404 | { | |
405 | wrap_timer_call_t *wrapTC = (wrap_timer_call_t *)cyclic; | |
406 | ||
407 | return (wrapTC ? wrapTC->hdlr.cyh_arg : NULL); | |
408 | } | |
409 | ||
410 | cyclic_id_t | |
411 | cyclic_timer_add(cyc_handler_t *handler, cyc_time_t *when) | |
412 | { | |
413 | wrap_timer_call_t *wrapTC = _MALLOC(sizeof(wrap_timer_call_t), M_TEMP, M_ZERO | M_WAITOK); | |
414 | if (NULL == wrapTC) | |
415 | return CYCLIC_NONE; | |
416 | else | |
417 | return timer_call_add_cyclic( wrapTC, handler, when ); | |
418 | } | |
419 | ||
420 | void | |
421 | cyclic_timer_remove(cyclic_id_t cyclic) | |
422 | { | |
423 | ASSERT( cyclic != CYCLIC_NONE ); | |
424 | ||
fe8ab488 A |
425 | /* Removing a timer call must be done on the CPU the timer is running on. */ |
426 | wrap_timer_call_t *wrapTC = (wrap_timer_call_t *) cyclic; | |
427 | dtrace_xcall(wrapTC->cpuid, (dtrace_xcall_t) timer_call_remove_cyclic, (void*) cyclic); | |
428 | ||
2d21ac55 A |
429 | _FREE((void *)cyclic, M_TEMP); |
430 | } | |
431 | ||
432 | static void | |
433 | _cyclic_add_omni(cyclic_id_list_t cyc_list) | |
434 | { | |
435 | cyc_time_t cT; | |
436 | cyc_handler_t cH; | |
437 | wrap_timer_call_t *wrapTC; | |
438 | cyc_omni_handler_t *omni = (cyc_omni_handler_t *)cyc_list; | |
439 | char *t; | |
440 | ||
441 | (omni->cyo_online)(omni->cyo_arg, CPU, &cH, &cT); | |
442 | ||
443 | t = (char *)cyc_list; | |
444 | t += sizeof(cyc_omni_handler_t); | |
b0d623f7 | 445 | cyc_list = (cyclic_id_list_t)(uintptr_t)t; |
2d21ac55 A |
446 | |
447 | t += sizeof(cyclic_id_t)*NCPU; | |
448 | t += (sizeof(wrap_timer_call_t))*cpu_number(); | |
b0d623f7 | 449 | wrapTC = (wrap_timer_call_t *)(uintptr_t)t; |
2d21ac55 A |
450 | |
451 | cyc_list[cpu_number()] = timer_call_add_cyclic(wrapTC, &cH, &cT); | |
452 | } | |
453 | ||
454 | cyclic_id_list_t | |
455 | cyclic_add_omni(cyc_omni_handler_t *omni) | |
456 | { | |
457 | cyclic_id_list_t cyc_list = | |
458 | _MALLOC( (sizeof(wrap_timer_call_t))*NCPU + | |
459 | sizeof(cyclic_id_t)*NCPU + | |
460 | sizeof(cyc_omni_handler_t), M_TEMP, M_ZERO | M_WAITOK); | |
461 | if (NULL == cyc_list) | |
462 | return (cyclic_id_list_t)CYCLIC_NONE; | |
463 | ||
464 | *(cyc_omni_handler_t *)cyc_list = *omni; | |
465 | dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)_cyclic_add_omni, (void *)cyc_list); | |
466 | ||
467 | return cyc_list; | |
468 | } | |
469 | ||
470 | static void | |
471 | _cyclic_remove_omni(cyclic_id_list_t cyc_list) | |
472 | { | |
473 | cyc_omni_handler_t *omni = (cyc_omni_handler_t *)cyc_list; | |
474 | void *oarg; | |
475 | cyclic_id_t cid; | |
476 | char *t; | |
477 | ||
478 | t = (char *)cyc_list; | |
479 | t += sizeof(cyc_omni_handler_t); | |
b0d623f7 | 480 | cyc_list = (cyclic_id_list_t)(uintptr_t)t; |
2d21ac55 | 481 | |
fe8ab488 A |
482 | /* |
483 | * If the processor was offline when dtrace started, we did not allocate | |
484 | * a cyclic timer for this CPU. | |
485 | */ | |
486 | if ((cid = cyc_list[cpu_number()]) != CYCLIC_NONE) { | |
487 | oarg = timer_call_get_cyclic_arg(cid); | |
488 | timer_call_remove_cyclic(cid); | |
489 | (omni->cyo_offline)(omni->cyo_arg, CPU, oarg); | |
490 | } | |
2d21ac55 A |
491 | } |
492 | ||
493 | void | |
494 | cyclic_remove_omni(cyclic_id_list_t cyc_list) | |
495 | { | |
496 | ASSERT( cyc_list != (cyclic_id_list_t)CYCLIC_NONE ); | |
497 | ||
498 | dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)_cyclic_remove_omni, (void *)cyc_list); | |
499 | _FREE(cyc_list, M_TEMP); | |
500 | } | |
501 | ||
502 | typedef struct wrap_thread_call { | |
503 | thread_call_t TChdl; | |
504 | cyc_handler_t hdlr; | |
505 | cyc_time_t when; | |
506 | uint64_t deadline; | |
507 | } wrap_thread_call_t; | |
508 | ||
509 | /* | |
510 | * _cyclic_apply will run on some thread under kernel_task. That's OK for the | |
511 | * cleaner and the deadman, but too distant in time and place for the profile provider. | |
512 | */ | |
513 | static void | |
514 | _cyclic_apply( void *ignore, void *vTChdl ) | |
515 | { | |
516 | #pragma unused(ignore) | |
517 | wrap_thread_call_t *wrapTC = (wrap_thread_call_t *)vTChdl; | |
518 | ||
519 | (*(wrapTC->hdlr.cyh_func))( wrapTC->hdlr.cyh_arg ); | |
520 | ||
521 | clock_deadline_for_periodic_event( wrapTC->when.cyt_interval, mach_absolute_time(), &(wrapTC->deadline) ); | |
522 | (void)thread_call_enter1_delayed( wrapTC->TChdl, (void *)wrapTC, wrapTC->deadline ); | |
523 | ||
524 | /* Did cyclic_remove request a wakeup call when this thread call was re-armed? */ | |
525 | if (wrapTC->when.cyt_interval == WAKEUP_REAPER) | |
526 | thread_wakeup((event_t)wrapTC); | |
527 | } | |
528 | ||
529 | cyclic_id_t | |
530 | cyclic_add(cyc_handler_t *handler, cyc_time_t *when) | |
531 | { | |
532 | uint64_t now; | |
533 | ||
534 | wrap_thread_call_t *wrapTC = _MALLOC(sizeof(wrap_thread_call_t), M_TEMP, M_ZERO | M_WAITOK); | |
535 | if (NULL == wrapTC) | |
536 | return CYCLIC_NONE; | |
537 | ||
538 | wrapTC->TChdl = thread_call_allocate( _cyclic_apply, NULL ); | |
539 | wrapTC->hdlr = *handler; | |
540 | wrapTC->when = *when; | |
541 | ||
542 | ASSERT(when->cyt_when == 0); | |
543 | ASSERT(when->cyt_interval < WAKEUP_REAPER); | |
544 | ||
545 | nanoseconds_to_absolutetime(wrapTC->when.cyt_interval, (uint64_t *)&wrapTC->when.cyt_interval); | |
546 | ||
547 | now = mach_absolute_time(); | |
548 | wrapTC->deadline = now; | |
549 | ||
550 | clock_deadline_for_periodic_event( wrapTC->when.cyt_interval, now, &(wrapTC->deadline) ); | |
551 | (void)thread_call_enter1_delayed( wrapTC->TChdl, (void *)wrapTC, wrapTC->deadline ); | |
552 | ||
553 | return (cyclic_id_t)wrapTC; | |
554 | } | |
555 | ||
556 | static void | |
557 | noop_cyh_func(void * ignore) | |
558 | { | |
559 | #pragma unused(ignore) | |
560 | } | |
561 | ||
562 | void | |
563 | cyclic_remove(cyclic_id_t cyclic) | |
564 | { | |
565 | wrap_thread_call_t *wrapTC = (wrap_thread_call_t *)cyclic; | |
566 | ||
567 | ASSERT(cyclic != CYCLIC_NONE); | |
568 | ||
569 | while (!thread_call_cancel(wrapTC->TChdl)) { | |
570 | int ret = assert_wait(wrapTC, THREAD_UNINT); | |
571 | ASSERT(ret == THREAD_WAITING); | |
572 | ||
573 | wrapTC->when.cyt_interval = WAKEUP_REAPER; | |
574 | ||
575 | ret = thread_block(THREAD_CONTINUE_NULL); | |
576 | ASSERT(ret == THREAD_AWAKENED); | |
577 | } | |
578 | ||
579 | if (thread_call_free(wrapTC->TChdl)) | |
580 | _FREE(wrapTC, M_TEMP); | |
581 | else { | |
582 | /* Gut this cyclic and move on ... */ | |
583 | wrapTC->hdlr.cyh_func = noop_cyh_func; | |
584 | wrapTC->when.cyt_interval = NEARLY_FOREVER; | |
585 | } | |
586 | } | |
587 | ||
588 | /* | |
589 | * timeout / untimeout (converted to dtrace_timeout / dtrace_untimeout due to name collision) | |
590 | */ | |
591 | ||
592 | thread_call_t | |
593 | dtrace_timeout(void (*func)(void *, void *), void* arg, uint64_t nanos) | |
594 | { | |
595 | #pragma unused(arg) | |
596 | thread_call_t call = thread_call_allocate(func, NULL); | |
597 | ||
598 | nanoseconds_to_absolutetime(nanos, &nanos); | |
599 | ||
600 | /* | |
601 | * This method does not use clock_deadline_for_periodic_event() because it is a one-shot, | |
602 | * and clock drift on later invocations is not a worry. | |
603 | */ | |
604 | uint64_t deadline = mach_absolute_time() + nanos; | |
39236c6e | 605 | /* DRK: consider using a lower priority callout here */ |
2d21ac55 A |
606 | thread_call_enter_delayed(call, deadline); |
607 | ||
608 | return call; | |
609 | } | |
610 | ||
611 | /* | |
612 | * ddi | |
613 | */ | |
614 | void | |
615 | ddi_report_dev(dev_info_t *devi) | |
616 | { | |
617 | #pragma unused(devi) | |
618 | } | |
619 | ||
620 | #define NSOFT_STATES 32 /* XXX No more than 32 clients at a time, please. */ | |
621 | static void *soft[NSOFT_STATES]; | |
622 | ||
623 | int | |
624 | ddi_soft_state_init(void **state_p, size_t size, size_t n_items) | |
625 | { | |
626 | #pragma unused(n_items) | |
627 | int i; | |
628 | ||
629 | for (i = 0; i < NSOFT_STATES; ++i) soft[i] = _MALLOC(size, M_TEMP, M_ZERO | M_WAITOK); | |
630 | *(size_t *)state_p = size; | |
631 | return 0; | |
632 | } | |
633 | ||
634 | int | |
635 | ddi_soft_state_zalloc(void *state, int item) | |
636 | { | |
637 | #pragma unused(state) | |
638 | if (item < NSOFT_STATES) | |
639 | return DDI_SUCCESS; | |
640 | else | |
641 | return DDI_FAILURE; | |
642 | } | |
643 | ||
644 | void * | |
645 | ddi_get_soft_state(void *state, int item) | |
646 | { | |
647 | #pragma unused(state) | |
648 | ASSERT(item < NSOFT_STATES); | |
649 | return soft[item]; | |
650 | } | |
651 | ||
652 | int | |
653 | ddi_soft_state_free(void *state, int item) | |
654 | { | |
655 | ASSERT(item < NSOFT_STATES); | |
656 | bzero( soft[item], (size_t)state ); | |
657 | return DDI_SUCCESS; | |
658 | } | |
659 | ||
660 | void | |
661 | ddi_soft_state_fini(void **state_p) | |
662 | { | |
663 | #pragma unused(state_p) | |
664 | int i; | |
665 | ||
666 | for (i = 0; i < NSOFT_STATES; ++i) _FREE( soft[i], M_TEMP ); | |
667 | } | |
668 | ||
669 | static unsigned int gRegisteredProps = 0; | |
670 | static struct { | |
671 | char name[32]; /* enough for "dof-data-" + digits */ | |
672 | int *data; | |
673 | uint_t nelements; | |
674 | } gPropTable[16]; | |
675 | ||
676 | kern_return_t _dtrace_register_anon_DOF(char *, uchar_t *, uint_t); | |
677 | ||
678 | kern_return_t | |
679 | _dtrace_register_anon_DOF(char *name, uchar_t *data, uint_t nelements) | |
680 | { | |
681 | if (gRegisteredProps < sizeof(gPropTable)/sizeof(gPropTable[0])) { | |
682 | int *p = (int *)_MALLOC(nelements*sizeof(int), M_TEMP, M_WAITOK); | |
683 | ||
684 | if (NULL == p) | |
685 | return KERN_FAILURE; | |
686 | ||
687 | strlcpy(gPropTable[gRegisteredProps].name, name, sizeof(gPropTable[0].name)); | |
688 | gPropTable[gRegisteredProps].nelements = nelements; | |
689 | gPropTable[gRegisteredProps].data = p; | |
690 | ||
691 | while (nelements-- > 0) { | |
692 | *p++ = (int)(*data++); | |
693 | } | |
694 | ||
695 | gRegisteredProps++; | |
696 | return KERN_SUCCESS; | |
697 | } | |
698 | else | |
699 | return KERN_FAILURE; | |
700 | } | |
701 | ||
702 | int | |
703 | ddi_prop_lookup_int_array(dev_t match_dev, dev_info_t *dip, uint_t flags, | |
b0d623f7 | 704 | const char *name, int **data, uint_t *nelements) |
2d21ac55 A |
705 | { |
706 | #pragma unused(match_dev,dip,flags) | |
707 | unsigned int i; | |
708 | for (i = 0; i < gRegisteredProps; ++i) | |
709 | { | |
710 | if (0 == strncmp(name, gPropTable[i].name, | |
711 | sizeof(gPropTable[i].name))) { | |
712 | *data = gPropTable[i].data; | |
713 | *nelements = gPropTable[i].nelements; | |
714 | return DDI_SUCCESS; | |
715 | } | |
716 | } | |
717 | return DDI_FAILURE; | |
718 | } | |
719 | ||
720 | int | |
721 | ddi_prop_free(void *buf) | |
722 | { | |
723 | _FREE(buf, M_TEMP); | |
724 | return DDI_SUCCESS; | |
725 | } | |
726 | ||
727 | int | |
b0d623f7 | 728 | ddi_driver_major(dev_info_t *devi) { return (int)major(CAST_DOWN_EXPLICIT(int,devi)); } |
2d21ac55 A |
729 | |
730 | int | |
731 | ddi_create_minor_node(dev_info_t *dip, const char *name, int spec_type, | |
732 | minor_t minor_num, const char *node_type, int flag) | |
733 | { | |
734 | #pragma unused(spec_type,node_type,flag) | |
b0d623f7 | 735 | dev_t dev = makedev( ddi_driver_major(dip), minor_num ); |
2d21ac55 A |
736 | |
737 | if (NULL == devfs_make_node( dev, DEVFS_CHAR, UID_ROOT, GID_WHEEL, 0666, name, 0 )) | |
738 | return DDI_FAILURE; | |
739 | else | |
740 | return DDI_SUCCESS; | |
741 | } | |
742 | ||
743 | void | |
744 | ddi_remove_minor_node(dev_info_t *dip, char *name) | |
745 | { | |
746 | #pragma unused(dip,name) | |
747 | /* XXX called from dtrace_detach, so NOTREACHED for now. */ | |
748 | } | |
749 | ||
750 | major_t | |
751 | getemajor( dev_t d ) | |
752 | { | |
753 | return (major_t) major(d); | |
754 | } | |
755 | ||
756 | minor_t | |
757 | getminor ( dev_t d ) | |
758 | { | |
759 | return (minor_t) minor(d); | |
760 | } | |
761 | ||
762 | dev_t | |
763 | makedevice(major_t major, minor_t minor) | |
764 | { | |
765 | return makedev( major, minor ); | |
766 | } | |
767 | ||
768 | int ddi_getprop(dev_t dev, dev_info_t *dip, int flags, const char *name, int defvalue) | |
769 | { | |
770 | #pragma unused(dev, dip, flags, name) | |
771 | ||
772 | return defvalue; | |
773 | } | |
774 | ||
775 | /* | |
776 | * Kernel Debug Interface | |
777 | */ | |
778 | int | |
779 | kdi_dtrace_set(kdi_dtrace_set_t ignore) | |
780 | { | |
781 | #pragma unused(ignore) | |
782 | return 0; /* Success */ | |
783 | } | |
784 | ||
785 | extern void Debugger(const char*); | |
786 | ||
787 | void | |
788 | debug_enter(char *c) { Debugger(c); } | |
789 | ||
790 | /* | |
791 | * kmem | |
792 | */ | |
793 | ||
794 | void * | |
795 | dt_kmem_alloc(size_t size, int kmflag) | |
796 | { | |
797 | #pragma unused(kmflag) | |
798 | ||
799 | /* | |
800 | * We ignore the M_NOWAIT bit in kmflag (all of kmflag, in fact). | |
801 | * Requests larger than 8K with M_NOWAIT fail in kalloc_canblock. | |
802 | */ | |
803 | #if defined(DTRACE_MEMORY_ZONES) | |
804 | return dtrace_alloc(size); | |
805 | #else | |
806 | return kalloc(size); | |
807 | #endif | |
808 | } | |
809 | ||
810 | void * | |
811 | dt_kmem_zalloc(size_t size, int kmflag) | |
812 | { | |
813 | #pragma unused(kmflag) | |
814 | ||
815 | /* | |
816 | * We ignore the M_NOWAIT bit in kmflag (all of kmflag, in fact). | |
817 | * Requests larger than 8K with M_NOWAIT fail in kalloc_canblock. | |
818 | */ | |
819 | #if defined(DTRACE_MEMORY_ZONES) | |
820 | void* buf = dtrace_alloc(size); | |
821 | #else | |
822 | void* buf = kalloc(size); | |
823 | #endif | |
824 | ||
825 | if(!buf) | |
826 | return NULL; | |
827 | ||
828 | bzero(buf, size); | |
829 | ||
830 | return buf; | |
831 | } | |
832 | ||
833 | void | |
834 | dt_kmem_free(void *buf, size_t size) | |
835 | { | |
836 | #pragma unused(size) | |
837 | /* | |
838 | * DTrace relies on this, its doing a lot of NULL frees. | |
839 | * A null free causes the debug builds to panic. | |
840 | */ | |
841 | if (buf == NULL) return; | |
842 | ||
843 | ASSERT(size > 0); | |
844 | ||
845 | #if defined(DTRACE_MEMORY_ZONES) | |
846 | dtrace_free(buf, size); | |
847 | #else | |
848 | kfree(buf, size); | |
849 | #endif | |
850 | } | |
851 | ||
852 | ||
853 | ||
854 | /* | |
855 | * aligned kmem allocator | |
856 | * align should be a power of two | |
857 | */ | |
858 | ||
859 | void* dt_kmem_alloc_aligned(size_t size, size_t align, int kmflag) | |
860 | { | |
fe8ab488 A |
861 | void *mem, **addr_to_free; |
862 | intptr_t mem_aligned; | |
863 | size_t *size_to_free, hdr_size; | |
2d21ac55 | 864 | |
fe8ab488 A |
865 | /* Must be a power of two. */ |
866 | assert(align != 0); | |
867 | assert((align & (align - 1)) == 0); | |
2d21ac55 | 868 | |
fe8ab488 A |
869 | /* |
870 | * We are going to add a header to the allocation. It contains | |
871 | * the address to free and the total size of the buffer. | |
872 | */ | |
873 | hdr_size = sizeof(size_t) + sizeof(void*); | |
874 | mem = dt_kmem_alloc(size + align + hdr_size, kmflag); | |
875 | if (mem == NULL) | |
2d21ac55 A |
876 | return NULL; |
877 | ||
fe8ab488 A |
878 | mem_aligned = (intptr_t) (((intptr_t) mem + align + hdr_size) & ~(align - 1)); |
879 | ||
880 | /* Write the address to free in the header. */ | |
881 | addr_to_free = (void**) (mem_aligned - sizeof(void*)); | |
882 | *addr_to_free = mem; | |
2d21ac55 | 883 | |
fe8ab488 A |
884 | /* Write the size to free in the header. */ |
885 | size_to_free = (size_t*) (mem_aligned - hdr_size); | |
886 | *size_to_free = size + align + hdr_size; | |
2d21ac55 | 887 | |
fe8ab488 | 888 | return (void*) mem_aligned; |
2d21ac55 A |
889 | } |
890 | ||
891 | void* dt_kmem_zalloc_aligned(size_t size, size_t align, int kmflag) | |
892 | { | |
893 | void* buf; | |
894 | ||
895 | buf = dt_kmem_alloc_aligned(size, align, kmflag); | |
896 | ||
897 | if(!buf) | |
898 | return NULL; | |
899 | ||
900 | bzero(buf, size); | |
901 | ||
902 | return buf; | |
903 | } | |
904 | ||
905 | void dt_kmem_free_aligned(void* buf, size_t size) | |
906 | { | |
907 | #pragma unused(size) | |
fe8ab488 A |
908 | intptr_t ptr = (intptr_t) buf; |
909 | void **addr_to_free = (void**) (ptr - sizeof(void*)); | |
910 | size_t *size_to_free = (size_t*) (ptr - (sizeof(size_t) + sizeof(void*))); | |
2d21ac55 | 911 | |
fe8ab488 A |
912 | if (buf == NULL) |
913 | return; | |
2d21ac55 | 914 | |
fe8ab488 | 915 | dt_kmem_free(*addr_to_free, *size_to_free); |
2d21ac55 A |
916 | } |
917 | ||
918 | /* | |
919 | * dtrace wants to manage just a single block: dtrace_state_percpu_t * NCPU, and | |
920 | * doesn't specify constructor, destructor, or reclaim methods. | |
921 | * At present, it always zeroes the block it obtains from kmem_cache_alloc(). | |
922 | * We'll manage this constricted use of kmem_cache with ordinary _MALLOC and _FREE. | |
923 | */ | |
924 | kmem_cache_t * | |
925 | kmem_cache_create( | |
b0d623f7 | 926 | const char *name, /* descriptive name for this cache */ |
2d21ac55 A |
927 | size_t bufsize, /* size of the objects it manages */ |
928 | size_t align, /* required object alignment */ | |
929 | int (*constructor)(void *, void *, int), /* object constructor */ | |
930 | void (*destructor)(void *, void *), /* object destructor */ | |
931 | void (*reclaim)(void *), /* memory reclaim callback */ | |
932 | void *private, /* pass-thru arg for constr/destr/reclaim */ | |
933 | vmem_t *vmp, /* vmem source for slab allocation */ | |
934 | int cflags) /* cache creation flags */ | |
935 | { | |
936 | #pragma unused(name,align,constructor,destructor,reclaim,private,vmp,cflags) | |
937 | return (kmem_cache_t *)bufsize; /* A cookie that tracks the single object size. */ | |
938 | } | |
939 | ||
940 | void * | |
941 | kmem_cache_alloc(kmem_cache_t *cp, int kmflag) | |
942 | { | |
943 | #pragma unused(kmflag) | |
944 | size_t bufsize = (size_t)cp; | |
945 | return (void *)_MALLOC(bufsize, M_TEMP, M_WAITOK); | |
946 | } | |
947 | ||
948 | void | |
949 | kmem_cache_free(kmem_cache_t *cp, void *buf) | |
950 | { | |
951 | #pragma unused(cp) | |
952 | _FREE(buf, M_TEMP); | |
953 | } | |
954 | ||
955 | void | |
956 | kmem_cache_destroy(kmem_cache_t *cp) | |
957 | { | |
958 | #pragma unused(cp) | |
959 | } | |
960 | ||
961 | /* | |
962 | * taskq | |
963 | */ | |
964 | extern void thread_call_setup(thread_call_t, thread_call_func_t, thread_call_param_t); /* XXX MACH_KERNEL_PRIVATE */ | |
965 | ||
966 | static void | |
967 | _taskq_apply( task_func_t func, thread_call_param_t arg ) | |
968 | { | |
969 | func( (void *)arg ); | |
970 | } | |
971 | ||
972 | taskq_t * | |
973 | taskq_create(const char *name, int nthreads, pri_t pri, int minalloc, | |
974 | int maxalloc, uint_t flags) | |
975 | { | |
976 | #pragma unused(name,nthreads,pri,minalloc,maxalloc,flags) | |
977 | ||
978 | return (taskq_t *)thread_call_allocate( (thread_call_func_t)_taskq_apply, NULL ); | |
979 | } | |
980 | ||
981 | taskqid_t | |
982 | taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t flags) | |
983 | { | |
984 | #pragma unused(flags) | |
985 | thread_call_setup( (thread_call_t) tq, (thread_call_func_t)_taskq_apply, (thread_call_param_t)func ); | |
986 | thread_call_enter1( (thread_call_t) tq, (thread_call_param_t)arg ); | |
987 | return (taskqid_t) tq /* for lack of anything better */; | |
988 | } | |
989 | ||
990 | void | |
991 | taskq_destroy(taskq_t *tq) | |
992 | { | |
993 | thread_call_cancel( (thread_call_t) tq ); | |
994 | thread_call_free( (thread_call_t) tq ); | |
995 | } | |
996 | ||
997 | pri_t maxclsyspri; | |
998 | ||
999 | /* | |
1000 | * vmem (Solaris "slab" allocator) used by DTrace solely to hand out resource ids | |
1001 | */ | |
1002 | typedef unsigned int u_daddr_t; | |
1003 | #include "blist.h" | |
1004 | ||
1005 | /* By passing around blist *handles*, the underlying blist can be resized as needed. */ | |
1006 | struct blist_hdl { | |
1007 | blist_t blist; | |
1008 | }; | |
1009 | ||
1010 | vmem_t * | |
1011 | vmem_create(const char *name, void *base, size_t size, size_t quantum, void *ignore5, | |
1012 | void *ignore6, vmem_t *source, size_t qcache_max, int vmflag) | |
1013 | { | |
1014 | #pragma unused(name,quantum,ignore5,ignore6,source,qcache_max,vmflag) | |
1015 | blist_t bl; | |
1016 | struct blist_hdl *p = _MALLOC(sizeof(struct blist_hdl), M_TEMP, M_WAITOK); | |
1017 | ||
1018 | ASSERT(quantum == 1); | |
1019 | ASSERT(NULL == ignore5); | |
1020 | ASSERT(NULL == ignore6); | |
1021 | ASSERT(NULL == source); | |
1022 | ASSERT(0 == qcache_max); | |
1023 | ASSERT(vmflag & VMC_IDENTIFIER); | |
1024 | ||
1025 | size = MIN(128, size); /* Clamp to 128 initially, since the underlying data structure is pre-allocated */ | |
1026 | ||
1027 | p->blist = bl = blist_create( size ); | |
1028 | blist_free(bl, 0, size); | |
b0d623f7 | 1029 | if (base) blist_alloc( bl, (daddr_t)(uintptr_t)base ); /* Chomp off initial ID(s) */ |
2d21ac55 A |
1030 | |
1031 | return (vmem_t *)p; | |
1032 | } | |
1033 | ||
1034 | void * | |
1035 | vmem_alloc(vmem_t *vmp, size_t size, int vmflag) | |
1036 | { | |
1037 | #pragma unused(vmflag) | |
1038 | struct blist_hdl *q = (struct blist_hdl *)vmp; | |
1039 | blist_t bl = q->blist; | |
1040 | daddr_t p; | |
1041 | ||
1042 | p = blist_alloc(bl, (daddr_t)size); | |
1043 | ||
1044 | if ((daddr_t)-1 == p) { | |
1045 | blist_resize(&bl, (bl->bl_blocks) << 1, 1); | |
1046 | q->blist = bl; | |
1047 | p = blist_alloc(bl, (daddr_t)size); | |
1048 | if ((daddr_t)-1 == p) | |
1049 | panic("vmem_alloc: failure after blist_resize!"); | |
1050 | } | |
1051 | ||
b0d623f7 | 1052 | return (void *)(uintptr_t)p; |
2d21ac55 A |
1053 | } |
1054 | ||
1055 | void | |
1056 | vmem_free(vmem_t *vmp, void *vaddr, size_t size) | |
1057 | { | |
1058 | struct blist_hdl *p = (struct blist_hdl *)vmp; | |
1059 | ||
b0d623f7 | 1060 | blist_free( p->blist, (daddr_t)(uintptr_t)vaddr, (daddr_t)size ); |
2d21ac55 A |
1061 | } |
1062 | ||
1063 | void | |
1064 | vmem_destroy(vmem_t *vmp) | |
1065 | { | |
1066 | struct blist_hdl *p = (struct blist_hdl *)vmp; | |
1067 | ||
1068 | blist_destroy( p->blist ); | |
1069 | _FREE( p, sizeof(struct blist_hdl) ); | |
1070 | } | |
1071 | ||
1072 | /* | |
1073 | * Timing | |
1074 | */ | |
1075 | ||
1076 | /* | |
1077 | * dtrace_gethrestime() provides the "walltimestamp", a value that is anchored at | |
1078 | * January 1, 1970. Because it can be called from probe context, it must take no locks. | |
1079 | */ | |
1080 | ||
1081 | hrtime_t | |
1082 | dtrace_gethrestime(void) | |
1083 | { | |
b0d623f7 A |
1084 | clock_sec_t secs; |
1085 | clock_nsec_t nanosecs; | |
2d21ac55 A |
1086 | uint64_t secs64, ns64; |
1087 | ||
1088 | clock_get_calendar_nanotime_nowait(&secs, &nanosecs); | |
1089 | secs64 = (uint64_t)secs; | |
1090 | ns64 = (uint64_t)nanosecs; | |
1091 | ||
1092 | ns64 = ns64 + (secs64 * 1000000000LL); | |
1093 | return ns64; | |
1094 | } | |
1095 | ||
1096 | /* | |
1097 | * dtrace_gethrtime() provides high-resolution timestamps with machine-dependent origin. | |
1098 | * Hence its primary use is to specify intervals. | |
1099 | */ | |
1100 | ||
1101 | hrtime_t | |
1102 | dtrace_abs_to_nano(uint64_t elapsed) | |
1103 | { | |
1104 | static mach_timebase_info_data_t sTimebaseInfo = { 0, 0 }; | |
1105 | ||
1106 | /* | |
1107 | * If this is the first time we've run, get the timebase. | |
1108 | * We can use denom == 0 to indicate that sTimebaseInfo is | |
1109 | * uninitialised because it makes no sense to have a zero | |
1110 | * denominator in a fraction. | |
1111 | */ | |
1112 | ||
1113 | if ( sTimebaseInfo.denom == 0 ) { | |
1114 | (void) clock_timebase_info(&sTimebaseInfo); | |
1115 | } | |
1116 | ||
1117 | /* | |
1118 | * Convert to nanoseconds. | |
1119 | * return (elapsed * (uint64_t)sTimebaseInfo.numer)/(uint64_t)sTimebaseInfo.denom; | |
1120 | * | |
1121 | * Provided the final result is representable in 64 bits the following maneuver will | |
1122 | * deliver that result without intermediate overflow. | |
1123 | */ | |
1124 | if (sTimebaseInfo.denom == sTimebaseInfo.numer) | |
1125 | return elapsed; | |
1126 | else if (sTimebaseInfo.denom == 1) | |
1127 | return elapsed * (uint64_t)sTimebaseInfo.numer; | |
1128 | else { | |
1129 | /* Decompose elapsed = eta32 * 2^32 + eps32: */ | |
1130 | uint64_t eta32 = elapsed >> 32; | |
1131 | uint64_t eps32 = elapsed & 0x00000000ffffffffLL; | |
1132 | ||
1133 | uint32_t numer = sTimebaseInfo.numer, denom = sTimebaseInfo.denom; | |
1134 | ||
1135 | /* Form product of elapsed64 (decomposed) and numer: */ | |
1136 | uint64_t mu64 = numer * eta32; | |
1137 | uint64_t lambda64 = numer * eps32; | |
1138 | ||
1139 | /* Divide the constituents by denom: */ | |
1140 | uint64_t q32 = mu64/denom; | |
1141 | uint64_t r32 = mu64 - (q32 * denom); /* mu64 % denom */ | |
1142 | ||
1143 | return (q32 << 32) + ((r32 << 32) + lambda64)/denom; | |
1144 | } | |
1145 | } | |
1146 | ||
1147 | hrtime_t | |
1148 | dtrace_gethrtime(void) | |
1149 | { | |
1150 | static uint64_t start = 0; | |
1151 | ||
1152 | if (start == 0) | |
1153 | start = mach_absolute_time(); | |
1154 | ||
1155 | return dtrace_abs_to_nano(mach_absolute_time() - start); | |
1156 | } | |
1157 | ||
1158 | /* | |
1159 | * Atomicity and synchronization | |
1160 | */ | |
1161 | uint32_t | |
1162 | dtrace_cas32(uint32_t *target, uint32_t cmp, uint32_t new) | |
1163 | { | |
b0d623f7 | 1164 | if (OSCompareAndSwap( (UInt32)cmp, (UInt32)new, (volatile UInt32 *)target )) |
2d21ac55 A |
1165 | return cmp; |
1166 | else | |
1167 | return ~cmp; /* Must return something *other* than cmp */ | |
1168 | } | |
1169 | ||
1170 | void * | |
1171 | dtrace_casptr(void *target, void *cmp, void *new) | |
1172 | { | |
b0d623f7 | 1173 | if (OSCompareAndSwapPtr( cmp, new, (void**)target )) |
2d21ac55 A |
1174 | return cmp; |
1175 | else | |
1176 | return (void *)(~(uintptr_t)cmp); /* Must return something *other* than cmp */ | |
2d21ac55 A |
1177 | } |
1178 | ||
1179 | /* | |
1180 | * Interrupt manipulation | |
1181 | */ | |
1182 | dtrace_icookie_t | |
1183 | dtrace_interrupt_disable(void) | |
1184 | { | |
1185 | return (dtrace_icookie_t)ml_set_interrupts_enabled(FALSE); | |
1186 | } | |
1187 | ||
1188 | void | |
1189 | dtrace_interrupt_enable(dtrace_icookie_t reenable) | |
1190 | { | |
1191 | (void)ml_set_interrupts_enabled((boolean_t)reenable); | |
1192 | } | |
1193 | ||
1194 | /* | |
1195 | * MP coordination | |
1196 | */ | |
1197 | static void | |
1198 | dtrace_sync_func(void) {} | |
1199 | ||
1200 | /* | |
1201 | * dtrace_sync() is not called from probe context. | |
1202 | */ | |
1203 | void | |
1204 | dtrace_sync(void) | |
1205 | { | |
1206 | dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_sync_func, NULL); | |
1207 | } | |
1208 | ||
1209 | /* | |
1210 | * The dtrace_copyin/out/instr and dtrace_fuword* routines can be called from probe context. | |
1211 | */ | |
1212 | ||
1213 | extern kern_return_t dtrace_copyio_preflight(addr64_t); | |
1214 | extern kern_return_t dtrace_copyio_postflight(addr64_t); | |
1215 | ||
1216 | static int | |
1217 | dtrace_copycheck(user_addr_t uaddr, uintptr_t kaddr, size_t size) | |
1218 | { | |
1219 | #pragma unused(kaddr) | |
1220 | ||
1221 | vm_offset_t recover = dtrace_set_thread_recover( current_thread(), 0 ); /* Snare any extant recovery point. */ | |
1222 | dtrace_set_thread_recover( current_thread(), recover ); /* Put it back. We *must not* re-enter and overwrite. */ | |
1223 | ||
1224 | ASSERT(kaddr + size >= kaddr); | |
1225 | ||
39236c6e | 1226 | if ( uaddr + size < uaddr || /* Avoid address wrap. */ |
2d21ac55 A |
1227 | KERN_FAILURE == dtrace_copyio_preflight(uaddr)) /* Machine specific setup/constraints. */ |
1228 | { | |
1229 | DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); | |
1230 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr; | |
1231 | return (0); | |
1232 | } | |
1233 | return (1); | |
1234 | } | |
1235 | ||
1236 | void | |
b0d623f7 | 1237 | dtrace_copyin(user_addr_t src, uintptr_t dst, size_t len, volatile uint16_t *flags) |
2d21ac55 | 1238 | { |
b0d623f7 A |
1239 | #pragma unused(flags) |
1240 | ||
2d21ac55 A |
1241 | if (dtrace_copycheck( src, dst, len )) { |
1242 | if (copyin((const user_addr_t)src, (char *)dst, (vm_size_t)len)) { | |
1243 | DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); | |
1244 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = src; | |
1245 | } | |
1246 | dtrace_copyio_postflight(src); | |
1247 | } | |
1248 | } | |
1249 | ||
1250 | void | |
b0d623f7 | 1251 | dtrace_copyinstr(user_addr_t src, uintptr_t dst, size_t len, volatile uint16_t *flags) |
2d21ac55 | 1252 | { |
b0d623f7 A |
1253 | #pragma unused(flags) |
1254 | ||
2d21ac55 A |
1255 | size_t actual; |
1256 | ||
1257 | if (dtrace_copycheck( src, dst, len )) { | |
4a3eedf9 A |
1258 | /* copyin as many as 'len' bytes. */ |
1259 | int error = copyinstr((const user_addr_t)src, (char *)dst, (vm_size_t)len, &actual); | |
1260 | ||
1261 | /* | |
1262 | * ENAMETOOLONG is returned when 'len' bytes have been copied in but the NUL terminator was | |
1263 | * not encountered. That does not require raising CPU_DTRACE_BADADDR, and we press on. | |
1264 | * Note that we do *not* stuff a NUL terminator when returning ENAMETOOLONG, that's left | |
1265 | * to the caller. | |
1266 | */ | |
1267 | if (error && error != ENAMETOOLONG) { | |
2d21ac55 A |
1268 | DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); |
1269 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = src; | |
1270 | } | |
1271 | dtrace_copyio_postflight(src); | |
1272 | } | |
1273 | } | |
1274 | ||
1275 | void | |
b0d623f7 | 1276 | dtrace_copyout(uintptr_t src, user_addr_t dst, size_t len, volatile uint16_t *flags) |
2d21ac55 | 1277 | { |
b0d623f7 A |
1278 | #pragma unused(flags) |
1279 | ||
2d21ac55 A |
1280 | if (dtrace_copycheck( dst, src, len )) { |
1281 | if (copyout((const void *)src, dst, (vm_size_t)len)) { | |
1282 | DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); | |
1283 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = dst; | |
1284 | } | |
1285 | dtrace_copyio_postflight(dst); | |
1286 | } | |
1287 | } | |
1288 | ||
1289 | void | |
b0d623f7 | 1290 | dtrace_copyoutstr(uintptr_t src, user_addr_t dst, size_t len, volatile uint16_t *flags) |
2d21ac55 | 1291 | { |
b0d623f7 A |
1292 | #pragma unused(flags) |
1293 | ||
2d21ac55 A |
1294 | size_t actual; |
1295 | ||
1296 | if (dtrace_copycheck( dst, src, len )) { | |
4a3eedf9 A |
1297 | |
1298 | /* | |
1299 | * ENAMETOOLONG is returned when 'len' bytes have been copied out but the NUL terminator was | |
1300 | * not encountered. We raise CPU_DTRACE_BADADDR in that case. | |
1301 | * Note that we do *not* stuff a NUL terminator when returning ENAMETOOLONG, that's left | |
1302 | * to the caller. | |
1303 | */ | |
2d21ac55 A |
1304 | if (copyoutstr((const void *)src, dst, (size_t)len, &actual)) { |
1305 | DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); | |
1306 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = dst; | |
1307 | } | |
1308 | dtrace_copyio_postflight(dst); | |
1309 | } | |
1310 | } | |
1311 | ||
1312 | uint8_t | |
1313 | dtrace_fuword8(user_addr_t uaddr) | |
1314 | { | |
1315 | uint8_t ret = 0; | |
1316 | ||
1317 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); | |
1318 | if (dtrace_copycheck( uaddr, (uintptr_t)&ret, sizeof(ret))) { | |
1319 | if (copyin((const user_addr_t)uaddr, (char *)&ret, sizeof(ret))) { | |
1320 | DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); | |
1321 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr; | |
1322 | } | |
1323 | dtrace_copyio_postflight(uaddr); | |
1324 | } | |
1325 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); | |
1326 | ||
1327 | return(ret); | |
1328 | } | |
1329 | ||
1330 | uint16_t | |
1331 | dtrace_fuword16(user_addr_t uaddr) | |
1332 | { | |
1333 | uint16_t ret = 0; | |
1334 | ||
1335 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); | |
1336 | if (dtrace_copycheck( uaddr, (uintptr_t)&ret, sizeof(ret))) { | |
1337 | if (copyin((const user_addr_t)uaddr, (char *)&ret, sizeof(ret))) { | |
1338 | DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); | |
1339 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr; | |
1340 | } | |
1341 | dtrace_copyio_postflight(uaddr); | |
1342 | } | |
1343 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); | |
1344 | ||
1345 | return(ret); | |
1346 | } | |
1347 | ||
1348 | uint32_t | |
1349 | dtrace_fuword32(user_addr_t uaddr) | |
1350 | { | |
1351 | uint32_t ret = 0; | |
1352 | ||
1353 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); | |
1354 | if (dtrace_copycheck( uaddr, (uintptr_t)&ret, sizeof(ret))) { | |
1355 | if (copyin((const user_addr_t)uaddr, (char *)&ret, sizeof(ret))) { | |
1356 | DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); | |
1357 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr; | |
1358 | } | |
1359 | dtrace_copyio_postflight(uaddr); | |
1360 | } | |
1361 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); | |
1362 | ||
1363 | return(ret); | |
1364 | } | |
1365 | ||
1366 | uint64_t | |
1367 | dtrace_fuword64(user_addr_t uaddr) | |
1368 | { | |
1369 | uint64_t ret = 0; | |
1370 | ||
1371 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); | |
1372 | if (dtrace_copycheck( uaddr, (uintptr_t)&ret, sizeof(ret))) { | |
1373 | if (copyin((const user_addr_t)uaddr, (char *)&ret, sizeof(ret))) { | |
1374 | DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); | |
1375 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr; | |
1376 | } | |
1377 | dtrace_copyio_postflight(uaddr); | |
1378 | } | |
1379 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); | |
1380 | ||
1381 | return(ret); | |
1382 | } | |
1383 | ||
1384 | /* | |
1385 | * Emulation of Solaris fuword / suword | |
1386 | * Called from the fasttrap provider, so the use of copyin/out requires fewer safegaurds. | |
1387 | */ | |
1388 | ||
1389 | int | |
1390 | fuword8(user_addr_t uaddr, uint8_t *value) | |
1391 | { | |
1392 | if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint8_t)) != 0) { | |
1393 | return -1; | |
1394 | } | |
1395 | ||
1396 | return 0; | |
1397 | } | |
1398 | ||
1399 | int | |
1400 | fuword16(user_addr_t uaddr, uint16_t *value) | |
1401 | { | |
1402 | if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint16_t)) != 0) { | |
1403 | return -1; | |
1404 | } | |
1405 | ||
1406 | return 0; | |
1407 | } | |
1408 | ||
1409 | int | |
1410 | fuword32(user_addr_t uaddr, uint32_t *value) | |
1411 | { | |
1412 | if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint32_t)) != 0) { | |
1413 | return -1; | |
1414 | } | |
1415 | ||
1416 | return 0; | |
1417 | } | |
1418 | ||
1419 | int | |
1420 | fuword64(user_addr_t uaddr, uint64_t *value) | |
1421 | { | |
1422 | if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint64_t)) != 0) { | |
1423 | return -1; | |
1424 | } | |
1425 | ||
1426 | return 0; | |
1427 | } | |
1428 | ||
1429 | void | |
1430 | fuword8_noerr(user_addr_t uaddr, uint8_t *value) | |
1431 | { | |
1432 | if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint8_t))) { | |
1433 | *value = 0; | |
1434 | } | |
1435 | } | |
1436 | ||
1437 | void | |
1438 | fuword16_noerr(user_addr_t uaddr, uint16_t *value) | |
1439 | { | |
1440 | if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint16_t))) { | |
1441 | *value = 0; | |
1442 | } | |
1443 | } | |
1444 | ||
1445 | void | |
1446 | fuword32_noerr(user_addr_t uaddr, uint32_t *value) | |
1447 | { | |
1448 | if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint32_t))) { | |
1449 | *value = 0; | |
1450 | } | |
1451 | } | |
1452 | ||
1453 | void | |
1454 | fuword64_noerr(user_addr_t uaddr, uint64_t *value) | |
1455 | { | |
1456 | if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint64_t))) { | |
1457 | *value = 0; | |
1458 | } | |
1459 | } | |
1460 | ||
1461 | int | |
1462 | suword64(user_addr_t addr, uint64_t value) | |
1463 | { | |
1464 | if (copyout((const void *)&value, addr, sizeof(value)) != 0) { | |
1465 | return -1; | |
1466 | } | |
1467 | ||
1468 | return 0; | |
1469 | } | |
1470 | ||
1471 | int | |
1472 | suword32(user_addr_t addr, uint32_t value) | |
1473 | { | |
1474 | if (copyout((const void *)&value, addr, sizeof(value)) != 0) { | |
1475 | return -1; | |
1476 | } | |
1477 | ||
1478 | return 0; | |
1479 | } | |
1480 | ||
1481 | int | |
1482 | suword16(user_addr_t addr, uint16_t value) | |
1483 | { | |
1484 | if (copyout((const void *)&value, addr, sizeof(value)) != 0) { | |
1485 | return -1; | |
1486 | } | |
1487 | ||
1488 | return 0; | |
1489 | } | |
1490 | ||
1491 | int | |
1492 | suword8(user_addr_t addr, uint8_t value) | |
1493 | { | |
1494 | if (copyout((const void *)&value, addr, sizeof(value)) != 0) { | |
1495 | return -1; | |
1496 | } | |
1497 | ||
1498 | return 0; | |
1499 | } | |
1500 | ||
1501 | ||
1502 | /* | |
1503 | * Miscellaneous | |
1504 | */ | |
1505 | extern boolean_t dtrace_tally_fault(user_addr_t); | |
1506 | ||
1507 | boolean_t | |
1508 | dtrace_tally_fault(user_addr_t uaddr) | |
1509 | { | |
1510 | DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); | |
1511 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr; | |
1512 | return( DTRACE_CPUFLAG_ISSET(CPU_DTRACE_NOFAULT) ? TRUE : FALSE ); | |
1513 | } | |
1514 | ||
2d21ac55 A |
1515 | #define TOTTY 0x02 |
1516 | extern int prf(const char *, va_list, int, struct tty *); /* bsd/kern/subr_prf.h */ | |
1517 | ||
1518 | int | |
1519 | vuprintf(const char *format, va_list ap) | |
1520 | { | |
1521 | return prf(format, ap, TOTTY, NULL); | |
1522 | } | |
1523 | ||
1524 | /* Not called from probe context */ | |
1525 | void cmn_err( int level, const char *format, ... ) | |
1526 | { | |
1527 | #pragma unused(level) | |
1528 | va_list alist; | |
1529 | ||
1530 | va_start(alist, format); | |
1531 | vuprintf(format, alist); | |
1532 | va_end(alist); | |
1533 | uprintf("\n"); | |
1534 | } | |
1535 | ||
1536 | /* | |
1537 | * History: | |
1538 | * 2002-01-24 gvdl Initial implementation of strstr | |
1539 | */ | |
1540 | ||
b0d623f7 | 1541 | __private_extern__ const char * |
2d21ac55 A |
1542 | strstr(const char *in, const char *str) |
1543 | { | |
1544 | char c; | |
1545 | size_t len; | |
1546 | ||
1547 | c = *str++; | |
1548 | if (!c) | |
b0d623f7 | 1549 | return (const char *) in; // Trivial empty string case |
2d21ac55 A |
1550 | |
1551 | len = strlen(str); | |
1552 | do { | |
1553 | char sc; | |
1554 | ||
1555 | do { | |
1556 | sc = *in++; | |
1557 | if (!sc) | |
1558 | return (char *) 0; | |
1559 | } while (sc != c); | |
1560 | } while (strncmp(in, str, len) != 0); | |
1561 | ||
b0d623f7 | 1562 | return (const char *) (in - 1); |
2d21ac55 A |
1563 | } |
1564 | ||
1565 | /* | |
1566 | * Runtime and ABI | |
1567 | */ | |
1568 | uintptr_t | |
1569 | dtrace_caller(int ignore) | |
1570 | { | |
1571 | #pragma unused(ignore) | |
1572 | return -1; /* Just as in Solaris dtrace_asm.s */ | |
1573 | } | |
1574 | ||
1575 | int | |
1576 | dtrace_getstackdepth(int aframes) | |
1577 | { | |
b0d623f7 | 1578 | struct frame *fp = (struct frame *)__builtin_frame_address(0); |
2d21ac55 A |
1579 | struct frame *nextfp, *minfp, *stacktop; |
1580 | int depth = 0; | |
1581 | int on_intr; | |
1582 | ||
1583 | if ((on_intr = CPU_ON_INTR(CPU)) != 0) | |
1584 | stacktop = (struct frame *)dtrace_get_cpu_int_stack_top(); | |
1585 | else | |
b0d623f7 | 1586 | stacktop = (struct frame *)(dtrace_get_kernel_stack(current_thread()) + kernel_stack_size); |
2d21ac55 A |
1587 | |
1588 | minfp = fp; | |
1589 | ||
1590 | aframes++; | |
1591 | ||
1592 | for (;;) { | |
1593 | depth++; | |
1594 | ||
1595 | nextfp = *(struct frame **)fp; | |
1596 | ||
1597 | if (nextfp <= minfp || nextfp >= stacktop) { | |
1598 | if (on_intr) { | |
1599 | /* | |
1600 | * Hop from interrupt stack to thread stack. | |
1601 | */ | |
1602 | vm_offset_t kstack_base = dtrace_get_kernel_stack(current_thread()); | |
1603 | ||
1604 | minfp = (struct frame *)kstack_base; | |
b0d623f7 | 1605 | stacktop = (struct frame *)(kstack_base + kernel_stack_size); |
2d21ac55 A |
1606 | |
1607 | on_intr = 0; | |
1608 | continue; | |
1609 | } | |
1610 | break; | |
1611 | } | |
1612 | ||
1613 | fp = nextfp; | |
1614 | minfp = fp; | |
1615 | } | |
1616 | ||
1617 | if (depth <= aframes) | |
1618 | return (0); | |
1619 | ||
1620 | return (depth - aframes); | |
1621 | } | |
1622 | ||
1623 | /* | |
1624 | * Unconsidered | |
1625 | */ | |
1626 | void | |
1627 | dtrace_vtime_enable(void) {} | |
1628 | ||
1629 | void | |
1630 | dtrace_vtime_disable(void) {} | |
1631 | ||
1632 | #else /* else ! CONFIG_DTRACE */ | |
1633 | ||
1634 | #include <sys/types.h> | |
1635 | #include <mach/vm_types.h> | |
1636 | #include <mach/kmod.h> | |
1637 | ||
1638 | /* | |
1639 | * This exists to prevent build errors when dtrace is unconfigured. | |
1640 | */ | |
1641 | ||
1642 | kern_return_t _dtrace_register_anon_DOF(char *, unsigned char *, uint32_t); | |
1643 | ||
1644 | kern_return_t _dtrace_register_anon_DOF(char *arg1, unsigned char *arg2, uint32_t arg3) { | |
1645 | #pragma unused(arg1, arg2, arg3) | |
1646 | ||
1647 | return KERN_FAILURE; | |
1648 | } | |
1649 | ||
1650 | #endif /* CONFIG_DTRACE */ |