]>
Commit | Line | Data |
---|---|---|
9bccf70c | 1 | /* |
db609669 | 2 | * Copyright (c) 2002-2013 Apple Inc. All rights reserved. |
9bccf70c | 3 | * |
2d21ac55 | 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
9bccf70c | 5 | * |
2d21ac55 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
8f6c56a5 | 14 | * |
2d21ac55 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
8f6c56a5 | 25 | * |
2d21ac55 | 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
9bccf70c A |
27 | */ |
28 | #include <sys/param.h> | |
29 | #include <sys/systm.h> | |
30 | #include <sys/proc.h> | |
31 | #include <sys/vnode.h> | |
32 | #include <sys/mount.h> | |
33 | #include <sys/kernel.h> | |
34 | #include <sys/malloc.h> | |
91447636 | 35 | #include <sys/time.h> |
9bccf70c A |
36 | #include <sys/ubc.h> |
37 | #include <sys/quota.h> | |
91447636 | 38 | #include <sys/kdebug.h> |
6d2010ae | 39 | #include <libkern/OSByteOrder.h> |
316670eb | 40 | #include <sys/buf_internal.h> |
91447636 A |
41 | |
42 | #include <kern/locks.h> | |
9bccf70c A |
43 | |
44 | #include <miscfs/specfs/specdev.h> | |
45 | #include <miscfs/fifofs/fifo.h> | |
46 | ||
47 | #include <hfs/hfs.h> | |
48 | #include <hfs/hfs_catalog.h> | |
49 | #include <hfs/hfs_cnode.h> | |
50 | #include <hfs/hfs_quota.h> | |
6d2010ae | 51 | #include <hfs/hfs_format.h> |
9bccf70c A |
52 | |
53 | extern int prtactive; | |
54 | ||
91447636 A |
55 | extern lck_attr_t * hfs_lock_attr; |
56 | extern lck_grp_t * hfs_mutex_group; | |
57 | extern lck_grp_t * hfs_rwlock_group; | |
58 | ||
91447636 | 59 | static void hfs_reclaim_cnode(struct cnode *); |
6d2010ae | 60 | static int hfs_cnode_teardown (struct vnode *vp, vfs_context_t ctx, int reclaim); |
91447636 A |
61 | static int hfs_isordered(struct cnode *, struct cnode *); |
62 | ||
316670eb A |
63 | extern int hfs_removefile_callback(struct buf *bp, void *hfsmp); |
64 | ||
39236c6e | 65 | |
6d2010ae A |
66 | __inline__ int hfs_checkdeleted (struct cnode *cp) { |
67 | return ((cp->c_flag & (C_DELETED | C_NOEXISTS)) ? ENOENT : 0); | |
b7266188 A |
68 | } |
69 | ||
9bccf70c | 70 | /* |
6d2010ae A |
71 | * Function used by a special fcntl() that decorates a cnode/vnode that |
72 | * indicates it is backing another filesystem, like a disk image. | |
73 | * | |
74 | * the argument 'val' indicates whether or not to set the bit in the cnode flags | |
75 | * | |
76 | * Returns non-zero on failure. 0 on success | |
9bccf70c | 77 | */ |
6d2010ae A |
78 | int hfs_set_backingstore (struct vnode *vp, int val) { |
79 | struct cnode *cp = NULL; | |
80 | int err = 0; | |
81 | ||
91447636 | 82 | cp = VTOC(vp); |
e2d2fc5c | 83 | if (!vnode_isreg(vp) && !vnode_isdir(vp)) { |
6d2010ae | 84 | return EINVAL; |
91447636 | 85 | } |
3a60a9f5 | 86 | |
6d2010ae | 87 | /* lock the cnode */ |
39236c6e | 88 | err = hfs_lock (cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT); |
6d2010ae A |
89 | if (err) { |
90 | return err; | |
91 | } | |
b0d623f7 | 92 | |
6d2010ae A |
93 | if (val) { |
94 | cp->c_flag |= C_BACKINGSTORE; | |
95 | } | |
96 | else { | |
97 | cp->c_flag &= ~C_BACKINGSTORE; | |
91447636 A |
98 | } |
99 | ||
6d2010ae A |
100 | /* unlock everything */ |
101 | hfs_unlock (cp); | |
102 | ||
103 | return err; | |
104 | } | |
105 | ||
106 | /* | |
107 | * Function used by a special fcntl() that check to see if a cnode/vnode | |
108 | * indicates it is backing another filesystem, like a disk image. | |
109 | * | |
110 | * the argument 'val' is an output argument for whether or not the bit is set | |
111 | * | |
112 | * Returns non-zero on failure. 0 on success | |
113 | */ | |
114 | ||
115 | int hfs_is_backingstore (struct vnode *vp, int *val) { | |
116 | struct cnode *cp = NULL; | |
117 | int err = 0; | |
118 | ||
e2d2fc5c | 119 | if (!vnode_isreg(vp) && !vnode_isdir(vp)) { |
6d2010ae A |
120 | *val = 0; |
121 | return 0; | |
91447636 A |
122 | } |
123 | ||
6d2010ae A |
124 | cp = VTOC(vp); |
125 | ||
126 | /* lock the cnode */ | |
39236c6e | 127 | err = hfs_lock (cp, HFS_SHARED_LOCK, HFS_LOCK_DEFAULT); |
6d2010ae A |
128 | if (err) { |
129 | return err; | |
130 | } | |
131 | ||
132 | if (cp->c_flag & C_BACKINGSTORE) { | |
133 | *val = 1; | |
134 | } | |
135 | else { | |
136 | *val = 0; | |
137 | } | |
138 | ||
139 | /* unlock everything */ | |
140 | hfs_unlock (cp); | |
2d21ac55 | 141 | |
6d2010ae A |
142 | return err; |
143 | } | |
144 | ||
145 | ||
146 | /* | |
147 | * hfs_cnode_teardown | |
148 | * | |
149 | * This is an internal function that is invoked from both hfs_vnop_inactive | |
150 | * and hfs_vnop_reclaim. As VNOP_INACTIVE is not necessarily called from vnodes | |
151 | * being recycled and reclaimed, it is important that we do any post-processing | |
152 | * necessary for the cnode in both places. Important tasks include things such as | |
153 | * releasing the blocks from an open-unlinked file when all references to it have dropped, | |
154 | * and handling resource forks separately from data forks. | |
155 | * | |
156 | * Note that we take only the vnode as an argument here (rather than the cnode). | |
157 | * Recall that each cnode supports two forks (rsrc/data), and we can always get the right | |
158 | * cnode from either of the vnodes, but the reverse is not true -- we can't determine which | |
159 | * vnode we need to reclaim if only the cnode is supplied. | |
160 | * | |
161 | * This function is idempotent and safe to call from both hfs_vnop_inactive and hfs_vnop_reclaim | |
162 | * if both are invoked right after the other. In the second call, most of this function's if() | |
163 | * conditions will fail, since they apply generally to cnodes still marked with C_DELETED. | |
164 | * As a quick check to see if this function is necessary, determine if the cnode is already | |
165 | * marked C_NOEXISTS. If it is, then it is safe to skip this function. The only tasks that | |
166 | * remain for cnodes marked in such a fashion is to teardown their fork references and | |
167 | * release all directory hints and hardlink origins. However, both of those are done | |
168 | * in hfs_vnop_reclaim. hfs_update, by definition, is not necessary if the cnode's catalog | |
169 | * entry is no longer there. | |
170 | * | |
171 | * 'reclaim' argument specifies whether or not we were called from hfs_vnop_reclaim. If we are | |
172 | * invoked from hfs_vnop_reclaim, we can not call functions that cluster_push since the UBC info | |
173 | * is totally gone by that point. | |
174 | * | |
175 | * Assumes that both truncate and cnode locks for 'cp' are held. | |
176 | */ | |
177 | static | |
178 | int hfs_cnode_teardown (struct vnode *vp, vfs_context_t ctx, int reclaim) { | |
179 | ||
180 | int forkcount = 0; | |
181 | enum vtype v_type; | |
182 | struct cnode *cp; | |
183 | int error = 0; | |
184 | int started_tr = 0; | |
185 | struct hfsmount *hfsmp = VTOHFS(vp); | |
186 | struct proc *p = vfs_context_proc(ctx); | |
187 | int truncated = 0; | |
188 | cat_cookie_t cookie; | |
189 | int cat_reserve = 0; | |
190 | int lockflags; | |
191 | int ea_error = 0; | |
192 | ||
193 | v_type = vnode_vtype(vp); | |
194 | cp = VTOC(vp); | |
195 | ||
196 | if (cp->c_datafork) { | |
b0d623f7 | 197 | ++forkcount; |
6d2010ae A |
198 | } |
199 | if (cp->c_rsrcfork) { | |
b0d623f7 | 200 | ++forkcount; |
6d2010ae A |
201 | } |
202 | ||
203 | ||
91447636 | 204 | /* |
6d2010ae A |
205 | * Skip the call to ubc_setsize if we're being invoked on behalf of reclaim. |
206 | * The dirty regions would have already been synced to disk, so informing UBC | |
207 | * that they can toss the pages doesn't help anyone at this point. | |
208 | * | |
209 | * Note that this is a performance problem if the vnode goes straight to reclaim | |
210 | * (and skips inactive), since there would be no way for anyone to notify the UBC | |
211 | * that all pages in this file are basically useless. | |
212 | */ | |
213 | if (reclaim == 0) { | |
214 | /* | |
215 | * Check whether we are tearing down a cnode with only one remaining fork. | |
216 | * If there are blocks in its filefork, then we need to unlock the cnode | |
217 | * before calling ubc_setsize. The cluster layer may re-enter the filesystem | |
218 | * (i.e. VNOP_BLOCKMAP), and if we retain the cnode lock, we could double-lock | |
219 | * panic. | |
220 | */ | |
221 | ||
222 | if ((v_type == VREG || v_type == VLNK) && | |
b0d623f7 A |
223 | (cp->c_flag & C_DELETED) && |
224 | (VTOF(vp)->ff_blocks != 0) && (forkcount == 1)) { | |
6d2010ae A |
225 | hfs_unlock(cp); |
226 | /* ubc_setsize just fails if we were to call this from VNOP_RECLAIM */ | |
227 | ubc_setsize(vp, 0); | |
39236c6e | 228 | (void) hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS); |
6d2010ae | 229 | } |
91447636 | 230 | } |
6d2010ae A |
231 | |
232 | /* | |
233 | * Push file data out for normal files that haven't been evicted from | |
234 | * the namespace. We only do this if this function was not called from reclaim, | |
235 | * because by that point the UBC information has been totally torn down. | |
236 | * | |
237 | * There should also be no way that a normal file that has NOT been deleted from | |
238 | * the namespace to skip INACTIVE and go straight to RECLAIM. That race only happens | |
239 | * when the file becomes open-unlinked. | |
240 | */ | |
241 | if ((v_type == VREG) && | |
242 | (!ISSET(cp->c_flag, C_DELETED)) && | |
243 | (!ISSET(cp->c_flag, C_NOEXISTS)) && | |
244 | (VTOF(vp)->ff_blocks) && | |
245 | (reclaim == 0)) { | |
316670eb A |
246 | /* |
247 | * Note that if content protection is enabled, then this is where we will | |
248 | * attempt to issue IOs for all dirty regions of this file. | |
249 | * | |
250 | * If we're called from hfs_vnop_inactive, all this means is at the time | |
251 | * the logic for deciding to call this function, there were not any lingering | |
252 | * mmap/fd references for this file. However, there is nothing preventing the system | |
253 | * from creating a new reference in between the time that logic was checked | |
254 | * and we entered hfs_vnop_inactive. As a result, the only time we can guarantee | |
255 | * that there aren't any references is during vnop_reclaim. | |
256 | */ | |
6d2010ae | 257 | hfs_filedone(vp, ctx); |
91447636 | 258 | } |
316670eb | 259 | |
39236c6e | 260 | /* |
316670eb A |
261 | * We're holding the cnode lock now. Stall behind any shadow BPs that may |
262 | * be involved with this vnode if it is a symlink. We don't want to allow | |
263 | * the blocks that we're about to release to be put back into the pool if there | |
264 | * is pending I/O to them. | |
265 | */ | |
266 | if (v_type == VLNK) { | |
267 | /* | |
268 | * This will block if the asynchronous journal flush is in progress. | |
269 | * If this symlink is not being renamed over and doesn't have any open FDs, | |
270 | * then we'll remove it from the journal's bufs below in kill_block. | |
271 | */ | |
272 | buf_wait_for_shadow_io (vp, 0); | |
273 | } | |
274 | ||
91447636 | 275 | /* |
2d21ac55 | 276 | * Remove any directory hints or cached origins |
91447636 | 277 | */ |
2d21ac55 | 278 | if (v_type == VDIR) { |
91447636 | 279 | hfs_reldirhints(cp, 0); |
593a1d5f | 280 | } |
935ed37a A |
281 | if (cp->c_flag & C_HARDLINK) { |
282 | hfs_relorigins(cp); | |
2d21ac55 | 283 | } |
6d2010ae | 284 | |
b0d623f7 A |
285 | /* |
286 | * This check is slightly complicated. We should only truncate data | |
287 | * in very specific cases for open-unlinked files. This is because | |
288 | * we want to ensure that the resource fork continues to be available | |
289 | * if the caller has the data fork open. However, this is not symmetric; | |
290 | * someone who has the resource fork open need not be able to access the data | |
291 | * fork once the data fork has gone inactive. | |
292 | * | |
293 | * If we're the last fork, then we have cleaning up to do. | |
294 | * | |
295 | * A) last fork, and vp == c_vp | |
6d2010ae | 296 | * Truncate away own fork data. If rsrc fork is not in core, truncate it too. |
b0d623f7 A |
297 | * |
298 | * B) last fork, and vp == c_rsrc_vp | |
299 | * Truncate ourselves, assume data fork has been cleaned due to C). | |
300 | * | |
301 | * If we're not the last fork, then things are a little different: | |
302 | * | |
303 | * C) not the last fork, vp == c_vp | |
304 | * Truncate ourselves. Once the file has gone out of the namespace, | |
305 | * it cannot be further opened. Further access to the rsrc fork may | |
306 | * continue, however. | |
307 | * | |
308 | * D) not the last fork, vp == c_rsrc_vp | |
309 | * Don't enter the block below, just clean up vnode and push it out of core. | |
310 | */ | |
6d2010ae A |
311 | |
312 | if ((v_type == VREG || v_type == VLNK) && | |
39236c6e A |
313 | (cp->c_flag & C_DELETED) && |
314 | ((forkcount == 1) || (!VNODE_IS_RSRC(vp)))) { | |
315 | ||
6d2010ae | 316 | /* Truncate away our own fork data. (Case A, B, C above) */ |
55e303ae | 317 | if (VTOF(vp)->ff_blocks != 0) { |
bd504ef0 A |
318 | |
319 | /* | |
320 | * SYMLINKS only: | |
321 | * | |
322 | * Encapsulate the entire change (including truncating the link) in | |
323 | * nested transactions if we are modifying a symlink, because we know that its | |
324 | * file length will be at most 4k, and we can fit both the truncation and | |
325 | * any relevant bitmap changes into a single journal transaction. We also want | |
326 | * the kill_block code to execute in the same transaction so that any dirty symlink | |
327 | * blocks will not be written. Otherwise, rely on | |
328 | * hfs_truncate doing its own transactions to ensure that we don't blow up | |
329 | * the journal. | |
330 | */ | |
331 | if ((started_tr == 0) && (v_type == VLNK)) { | |
332 | if (hfs_start_transaction(hfsmp) != 0) { | |
333 | error = EINVAL; | |
334 | goto out; | |
335 | } | |
336 | else { | |
337 | started_tr = 1; | |
338 | } | |
339 | } | |
340 | ||
39236c6e | 341 | /* |
316670eb A |
342 | * At this point, we have decided that this cnode is |
343 | * suitable for full removal. We are about to deallocate | |
344 | * its blocks and remove its entry from the catalog. | |
345 | * If it was a symlink, then it's possible that the operation | |
346 | * which created it is still in the current transaction group | |
347 | * due to coalescing. Take action here to kill the data blocks | |
348 | * of the symlink out of the journal before moving to | |
349 | * deallocate the blocks. We need to be in the middle of | |
350 | * a transaction before calling buf_iterate like this. | |
351 | * | |
352 | * Note: we have to kill any potential symlink buffers out of | |
353 | * the journal prior to deallocating their blocks. This is so | |
354 | * that we don't race with another thread that may be doing an | |
355 | * an allocation concurrently and pick up these blocks. It could | |
356 | * generate I/O against them which could go out ahead of our journal | |
357 | * transaction. | |
358 | */ | |
359 | ||
360 | if (hfsmp->jnl && vnode_islnk(vp)) { | |
361 | buf_iterate(vp, hfs_removefile_callback, BUF_SKIP_NONLOCKED, (void *)hfsmp); | |
362 | } | |
39236c6e A |
363 | |
364 | ||
91447636 | 365 | /* |
6d2010ae A |
366 | * This truncate call (and the one below) is fine from VNOP_RECLAIM's |
367 | * context because we're only removing blocks, not zero-filling new | |
368 | * ones. The C_DELETED check above makes things much simpler. | |
91447636 | 369 | */ |
bd504ef0 | 370 | error = hfs_truncate(vp, (off_t)0, IO_NDELAY, 0, 0, ctx); |
6d2010ae | 371 | if (error) { |
55e303ae | 372 | goto out; |
6d2010ae | 373 | } |
55e303ae | 374 | truncated = 1; |
bd504ef0 A |
375 | |
376 | /* (SYMLINKS ONLY): Close/End our transaction after truncating the file record */ | |
377 | if (started_tr) { | |
378 | hfs_end_transaction(hfsmp); | |
379 | started_tr = 0; | |
380 | } | |
39236c6e | 381 | |
55e303ae | 382 | } |
6d2010ae | 383 | |
b0d623f7 | 384 | /* |
6d2010ae A |
385 | * Truncate away the resource fork, if we represent the data fork and |
386 | * it is the last fork. That means, by definition, the rsrc fork is not in | |
316670eb A |
387 | * core. To avoid bringing a vnode into core for the sole purpose of deleting the |
388 | * data in the resource fork, we call cat_lookup directly, then hfs_release_storage | |
bd504ef0 A |
389 | * to get rid of the resource fork's data. Note that because we are holding the |
390 | * cnode lock, it is impossible for a competing thread to create the resource fork | |
391 | * vnode from underneath us while we do this. | |
6d2010ae A |
392 | * |
393 | * This is invoked via case A above only. | |
2d21ac55 A |
394 | */ |
395 | if ((cp->c_blocks > 0) && (forkcount == 1) && (vp != cp->c_rsrc_vp)) { | |
316670eb A |
396 | struct cat_lookup_buffer *lookup_rsrc = NULL; |
397 | struct cat_desc *desc_ptr = NULL; | |
398 | lockflags = 0; | |
399 | ||
400 | MALLOC(lookup_rsrc, struct cat_lookup_buffer*, sizeof (struct cat_lookup_buffer), M_TEMP, M_WAITOK); | |
401 | if (lookup_rsrc == NULL) { | |
402 | printf("hfs_cnode_teardown: ENOMEM from MALLOC\n"); | |
403 | error = ENOMEM; | |
404 | goto out; | |
405 | } | |
406 | else { | |
407 | bzero (lookup_rsrc, sizeof (struct cat_lookup_buffer)); | |
408 | } | |
409 | ||
410 | if (cp->c_desc.cd_namelen == 0) { | |
411 | /* Initialize the rsrc descriptor for lookup if necessary*/ | |
412 | MAKE_DELETED_NAME (lookup_rsrc->lookup_name, HFS_TEMPLOOKUP_NAMELEN, cp->c_fileid); | |
413 | ||
414 | lookup_rsrc->lookup_desc.cd_nameptr = (const uint8_t*) lookup_rsrc->lookup_name; | |
415 | lookup_rsrc->lookup_desc.cd_namelen = strlen (lookup_rsrc->lookup_name); | |
416 | lookup_rsrc->lookup_desc.cd_parentcnid = hfsmp->hfs_private_desc[FILE_HARDLINKS].cd_cnid; | |
417 | lookup_rsrc->lookup_desc.cd_cnid = cp->c_cnid; | |
418 | ||
419 | desc_ptr = &lookup_rsrc->lookup_desc; | |
420 | } | |
421 | else { | |
422 | desc_ptr = &cp->c_desc; | |
423 | } | |
424 | ||
425 | lockflags = hfs_systemfile_lock (hfsmp, SFL_CATALOG, HFS_SHARED_LOCK); | |
426 | ||
39236c6e | 427 | error = cat_lookup (hfsmp, desc_ptr, 1, 0, (struct cat_desc *) NULL, |
316670eb A |
428 | (struct cat_attr*) NULL, &lookup_rsrc->lookup_fork.ff_data, NULL); |
429 | ||
430 | hfs_systemfile_unlock (hfsmp, lockflags); | |
6d2010ae | 431 | |
6d2010ae | 432 | if (error) { |
316670eb | 433 | FREE (lookup_rsrc, M_TEMP); |
2d21ac55 | 434 | goto out; |
6d2010ae | 435 | } |
316670eb | 436 | |
2d21ac55 | 437 | /* |
316670eb A |
438 | * Make the filefork in our temporary struct look like a real |
439 | * filefork. Fill in the cp, sysfileinfo and rangelist fields.. | |
440 | */ | |
441 | rl_init (&lookup_rsrc->lookup_fork.ff_invalidranges); | |
442 | lookup_rsrc->lookup_fork.ff_cp = cp; | |
443 | ||
444 | /* | |
445 | * If there were no errors, then we have the catalog's fork information | |
446 | * for the resource fork in question. Go ahead and delete the data in it now. | |
2d21ac55 | 447 | */ |
316670eb A |
448 | |
449 | error = hfs_release_storage (hfsmp, NULL, &lookup_rsrc->lookup_fork, cp->c_fileid); | |
450 | FREE(lookup_rsrc, M_TEMP); | |
451 | ||
6d2010ae | 452 | if (error) { |
2d21ac55 | 453 | goto out; |
6d2010ae | 454 | } |
316670eb A |
455 | |
456 | /* | |
457 | * This fileid's resource fork extents have now been fully deleted on-disk | |
458 | * and this CNID is no longer valid. At this point, we should be able to | |
459 | * zero out cp->c_blocks to indicate there is no data left in this file. | |
6d2010ae | 460 | */ |
316670eb A |
461 | cp->c_blocks = 0; |
462 | } | |
2d21ac55 | 463 | } |
6d2010ae | 464 | |
9bccf70c | 465 | /* |
6d2010ae A |
466 | * If we represent the last fork (or none in the case of a dir), |
467 | * and the cnode has become open-unlinked, | |
468 | * AND it has EA's, then we need to get rid of them. | |
469 | * | |
470 | * Note that this must happen outside of any other transactions | |
471 | * because it starts/ends its own transactions and grabs its | |
472 | * own locks. This is to prevent a file with a lot of attributes | |
473 | * from creating a transaction that is too large (which panics). | |
9bccf70c | 474 | */ |
6d2010ae A |
475 | if ((cp->c_attr.ca_recflags & kHFSHasAttributesMask) != 0 && |
476 | (cp->c_flag & C_DELETED) && | |
477 | (forkcount <= 1)) { | |
91447636 | 478 | |
6d2010ae A |
479 | ea_error = hfs_removeallattr(hfsmp, cp->c_fileid); |
480 | } | |
481 | ||
482 | ||
483 | /* | |
484 | * If the cnode represented an open-unlinked file, then now | |
485 | * actually remove the cnode's catalog entry and release all blocks | |
486 | * it may have been using. | |
487 | */ | |
488 | if ((cp->c_flag & C_DELETED) && (forkcount <= 1)) { | |
489 | /* | |
490 | * Mark cnode in transit so that no one can get this | |
491 | * cnode from cnode hash. | |
492 | */ | |
493 | // hfs_chash_mark_in_transit(hfsmp, cp); | |
494 | // XXXdbg - remove the cnode from the hash table since it's deleted | |
495 | // otherwise someone could go to sleep on the cnode and not | |
496 | // be woken up until this vnode gets recycled which could be | |
497 | // a very long time... | |
498 | hfs_chashremove(hfsmp, cp); | |
499 | ||
500 | cp->c_flag |= C_NOEXISTS; // XXXdbg | |
501 | cp->c_rdev = 0; | |
502 | ||
503 | if (started_tr == 0) { | |
504 | if (hfs_start_transaction(hfsmp) != 0) { | |
505 | error = EINVAL; | |
506 | goto out; | |
507 | } | |
508 | started_tr = 1; | |
509 | } | |
510 | ||
511 | /* | |
512 | * Reserve some space in the Catalog file. | |
513 | */ | |
514 | if ((error = cat_preflight(hfsmp, CAT_DELETE, &cookie, p))) { | |
515 | goto out; | |
516 | } | |
517 | cat_reserve = 1; | |
518 | ||
519 | lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG | SFL_ATTRIBUTE, HFS_EXCLUSIVE_LOCK); | |
520 | ||
521 | if (cp->c_blocks > 0) { | |
522 | printf("hfs_inactive: deleting non-empty%sfile %d, " | |
523 | "blks %d\n", VNODE_IS_RSRC(vp) ? " rsrc " : " ", | |
524 | (int)cp->c_fileid, (int)cp->c_blocks); | |
525 | } | |
526 | ||
527 | // | |
528 | // release the name pointer in the descriptor so that | |
529 | // cat_delete() will use the file-id to do the deletion. | |
530 | // in the case of hard links this is imperative (in the | |
531 | // case of regular files the fileid and cnid are the | |
532 | // same so it doesn't matter). | |
533 | // | |
534 | cat_releasedesc(&cp->c_desc); | |
535 | ||
536 | /* | |
537 | * The descriptor name may be zero, | |
538 | * in which case the fileid is used. | |
539 | */ | |
540 | error = cat_delete(hfsmp, &cp->c_desc, &cp->c_attr); | |
541 | ||
39236c6e | 542 | if (error && truncated && (error != ENXIO)) { |
6d2010ae | 543 | printf("hfs_inactive: couldn't delete a truncated file!"); |
39236c6e | 544 | } |
6d2010ae A |
545 | |
546 | /* Update HFS Private Data dir */ | |
547 | if (error == 0) { | |
548 | hfsmp->hfs_private_attr[FILE_HARDLINKS].ca_entries--; | |
549 | if (vnode_isdir(vp)) { | |
550 | DEC_FOLDERCOUNT(hfsmp, hfsmp->hfs_private_attr[FILE_HARDLINKS]); | |
551 | } | |
552 | (void)cat_update(hfsmp, &hfsmp->hfs_private_desc[FILE_HARDLINKS], | |
553 | &hfsmp->hfs_private_attr[FILE_HARDLINKS], NULL, NULL); | |
554 | } | |
555 | ||
556 | hfs_systemfile_unlock(hfsmp, lockflags); | |
557 | ||
558 | if (error) { | |
55e303ae A |
559 | goto out; |
560 | } | |
91447636 | 561 | |
6d2010ae A |
562 | #if QUOTA |
563 | if (hfsmp->hfs_flags & HFS_QUOTAS) | |
564 | (void)hfs_chkiq(cp, -1, NOCRED, 0); | |
565 | #endif /* QUOTA */ | |
9bccf70c | 566 | |
6d2010ae A |
567 | /* Already set C_NOEXISTS at the beginning of this block */ |
568 | cp->c_flag &= ~C_DELETED; | |
569 | cp->c_touch_chgtime = TRUE; | |
570 | cp->c_touch_modtime = TRUE; | |
571 | ||
572 | if (error == 0) | |
573 | hfs_volupdate(hfsmp, (v_type == VDIR) ? VOL_RMDIR : VOL_RMFILE, 0); | |
574 | } | |
575 | ||
576 | /* | |
577 | * A file may have had delayed allocations, in which case hfs_update | |
578 | * would not have updated the catalog record (cat_update). We need | |
579 | * to do that now, before we lose our fork data. We also need to | |
580 | * force the update, or hfs_update will again skip the cat_update. | |
581 | * | |
582 | * If the file has C_NOEXISTS set, then we can skip the hfs_update call | |
583 | * because the catalog entry has already been removed. There would be no point | |
584 | * to looking up the entry in the catalog to modify it when we already know it's gone | |
585 | */ | |
586 | if ((!ISSET(cp->c_flag, C_NOEXISTS)) && | |
587 | ((cp->c_flag & C_MODIFIED) || cp->c_touch_acctime || | |
588 | cp->c_touch_chgtime || cp->c_touch_modtime)) { | |
589 | ||
590 | if ((cp->c_flag & C_MODIFIED) || cp->c_touch_modtime){ | |
591 | cp->c_flag |= C_FORCEUPDATE; | |
2d21ac55 | 592 | } |
6d2010ae | 593 | hfs_update(vp, 0); |
91447636 | 594 | } |
6d2010ae A |
595 | |
596 | out: | |
597 | if (cat_reserve) | |
598 | cat_postflight(hfsmp, &cookie, p); | |
599 | ||
600 | // XXXdbg - have to do this because a goto could have come here | |
601 | if (started_tr) { | |
602 | hfs_end_transaction(hfsmp); | |
603 | started_tr = 0; | |
604 | } | |
316670eb A |
605 | |
606 | #if 0 | |
607 | #if CONFIG_PROTECT | |
608 | /* | |
609 | * cnode truncate lock and cnode lock are both held exclusive here. | |
610 | * | |
611 | * Go ahead and flush the keys out if this cnode is the last fork | |
612 | * and it is not class F. Class F keys should not be purged because they only | |
613 | * exist in memory and have no persistent keys. Only do this | |
614 | * if we haven't already done it yet (maybe a vnode skipped inactive | |
615 | * and went straight to reclaim). This function gets called from both reclaim and | |
616 | * inactive, so it will happen first in inactive if possible. | |
617 | * | |
618 | * We need to be mindful that all pending IO for this file has already been | |
619 | * issued and completed before we bzero out the key. This is because | |
620 | * if it isn't, tossing the key here could result in garbage IO being | |
621 | * written (by using the bzero'd key) if the writes are happening asynchronously. | |
622 | * | |
623 | * In addition, class A files may have already been purged due to the | |
624 | * lock event occurring. | |
625 | */ | |
626 | if (forkcount == 1) { | |
627 | struct cprotect *entry = cp->c_cpentry; | |
628 | if ((entry) && (entry->cp_pclass != PROTECTION_CLASS_F)) { | |
629 | if ((cp->c_cpentry->cp_flags & CP_KEY_FLUSHED) == 0) { | |
630 | cp->c_cpentry->cp_flags |= CP_KEY_FLUSHED; | |
631 | bzero (cp->c_cpentry->cp_cache_key, cp->c_cpentry->cp_cache_key_len); | |
632 | bzero (cp->c_cpentry->cp_cache_iv_ctx, sizeof(aes_encrypt_ctx)); | |
633 | } | |
634 | } | |
635 | } | |
636 | #endif | |
637 | #endif | |
6d2010ae A |
638 | |
639 | return error; | |
640 | } | |
91447636 | 641 | |
9bccf70c | 642 | |
6d2010ae A |
643 | /* |
644 | * hfs_vnop_inactive | |
645 | * | |
646 | * The last usecount on the vnode has gone away, so we need to tear down | |
647 | * any remaining data still residing in the cnode. If necessary, write out | |
648 | * remaining blocks or delete the cnode's entry in the catalog. | |
649 | */ | |
650 | int | |
651 | hfs_vnop_inactive(struct vnop_inactive_args *ap) | |
652 | { | |
653 | struct vnode *vp = ap->a_vp; | |
654 | struct cnode *cp; | |
655 | struct hfsmount *hfsmp = VTOHFS(vp); | |
656 | struct proc *p = vfs_context_proc(ap->a_context); | |
657 | int error = 0; | |
658 | int took_trunc_lock = 0; | |
659 | enum vtype v_type; | |
660 | ||
661 | v_type = vnode_vtype(vp); | |
662 | cp = VTOC(vp); | |
9bccf70c | 663 | |
6d2010ae A |
664 | if ((hfsmp->hfs_flags & HFS_READ_ONLY) || vnode_issystem(vp) || |
665 | (hfsmp->hfs_freezing_proc == p)) { | |
666 | error = 0; | |
667 | goto inactive_done; | |
668 | } | |
669 | ||
4a3eedf9 | 670 | /* |
6d2010ae A |
671 | * For safety, do NOT call vnode_recycle from inside this function. This can cause |
672 | * problems in the following scenario: | |
673 | * | |
674 | * vnode_create -> vnode_reclaim_internal -> vclean -> VNOP_INACTIVE | |
675 | * | |
676 | * If we're being invoked as a result of a reclaim that was already in-flight, then we | |
677 | * cannot call vnode_recycle again. Being in reclaim means that there are no usecounts or | |
678 | * iocounts by definition. As a result, if we were to call vnode_recycle, it would immediately | |
679 | * try to re-enter reclaim again and panic. | |
680 | * | |
681 | * Currently, there are three things that can cause us (VNOP_INACTIVE) to get called. | |
682 | * 1) last usecount goes away on the vnode (vnode_rele) | |
683 | * 2) last iocount goes away on a vnode that previously had usecounts but didn't have | |
684 | * vnode_recycle called (vnode_put) | |
685 | * 3) vclean by way of reclaim | |
686 | * | |
687 | * In this function we would generally want to call vnode_recycle to speed things | |
688 | * along to ensure that we don't leak blocks due to open-unlinked files. However, by | |
689 | * virtue of being in this function already, we can call hfs_cnode_teardown, which | |
690 | * will release blocks held by open-unlinked files, and mark them C_NOEXISTS so that | |
691 | * there's no entry in the catalog and no backing store anymore. If that's the case, | |
692 | * then we really don't care all that much when the vnode actually goes through reclaim. | |
693 | * Further, the HFS VNOPs that manipulated the namespace in order to create the open- | |
694 | * unlinked file in the first place should have already called vnode_recycle on the vnode | |
695 | * to guarantee that it would go through reclaim in a speedy way. | |
4a3eedf9 | 696 | */ |
6d2010ae A |
697 | |
698 | if (cp->c_flag & C_NOEXISTS) { | |
699 | /* | |
700 | * If the cnode has already had its cat entry removed, then | |
701 | * just skip to the end. We don't need to do anything here. | |
702 | */ | |
703 | error = 0; | |
704 | goto inactive_done; | |
b4c24cb9 | 705 | } |
6d2010ae A |
706 | |
707 | if ((v_type == VREG || v_type == VLNK)) { | |
39236c6e | 708 | hfs_lock_truncate(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT); |
6d2010ae | 709 | took_trunc_lock = 1; |
b4c24cb9 | 710 | } |
6d2010ae | 711 | |
39236c6e | 712 | (void) hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS); |
6d2010ae | 713 | |
b0d623f7 | 714 | /* |
6d2010ae A |
715 | * Call cnode_teardown to push out dirty blocks to disk, release open-unlinked |
716 | * files' blocks from being in use, and move the cnode from C_DELETED to C_NOEXISTS. | |
b0d623f7 | 717 | */ |
6d2010ae | 718 | error = hfs_cnode_teardown (vp, ap->a_context, 0); |
b4c24cb9 | 719 | |
6d2010ae A |
720 | /* |
721 | * Drop the truncate lock before unlocking the cnode | |
722 | * (which can potentially perform a vnode_put and | |
723 | * recycle the vnode which in turn might require the | |
724 | * truncate lock) | |
725 | */ | |
726 | if (took_trunc_lock) { | |
39236c6e | 727 | hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT); |
6d2010ae A |
728 | } |
729 | ||
91447636 | 730 | hfs_unlock(cp); |
6d2010ae A |
731 | |
732 | inactive_done: | |
733 | ||
734 | return error; | |
9bccf70c A |
735 | } |
736 | ||
6d2010ae | 737 | |
91447636 A |
738 | /* |
739 | * File clean-up (zero fill and shrink peof). | |
740 | */ | |
6d2010ae A |
741 | |
742 | int | |
91447636 A |
743 | hfs_filedone(struct vnode *vp, vfs_context_t context) |
744 | { | |
745 | struct cnode *cp; | |
746 | struct filefork *fp; | |
747 | struct hfsmount *hfsmp; | |
b0d623f7 | 748 | struct rl_entry *invalid_range; |
91447636 | 749 | off_t leof; |
b0d623f7 | 750 | u_int32_t blks, blocksize; |
316670eb | 751 | /* flags for zero-filling sparse ranges */ |
6d2010ae A |
752 | int cluster_flags = IO_CLOSE; |
753 | int cluster_zero_flags = IO_HEADZEROFILL | IO_NOZERODIRTY | IO_NOCACHE; | |
91447636 A |
754 | |
755 | cp = VTOC(vp); | |
756 | fp = VTOF(vp); | |
757 | hfsmp = VTOHFS(vp); | |
758 | leof = fp->ff_size; | |
759 | ||
760 | if ((hfsmp->hfs_flags & HFS_READ_ONLY) || (fp->ff_blocks == 0)) | |
761 | return (0); | |
762 | ||
316670eb A |
763 | #if CONFIG_PROTECT |
764 | /* | |
765 | * Figure out if we need to do synchronous IO. | |
766 | * | |
767 | * If the file represents a content-protected file, we may need | |
768 | * to issue synchronous IO when we dispatch to the cluster layer. | |
769 | * If we didn't, then the IO would go out to the disk asynchronously. | |
770 | * If the vnode hits the end of inactive before getting reclaimed, the | |
771 | * content protection keys would be wiped/bzeroed out, and we'd end up | |
772 | * trying to issue the IO with an invalid key. This will lead to file | |
773 | * corruption. IO_SYNC will force the cluster_push to wait until all IOs | |
774 | * have completed (though they may be in the track cache). | |
775 | */ | |
776 | if (cp_fs_protected(VTOVFS(vp))) { | |
777 | cluster_flags |= IO_SYNC; | |
778 | cluster_zero_flags |= IO_SYNC; | |
779 | } | |
780 | #endif | |
781 | ||
6d2010ae A |
782 | /* |
783 | * If we are being invoked from F_SWAPDATAEXTENTS, then we | |
784 | * need to issue synchronous IO; Unless we are sure that all | |
785 | * of the data has been written to the disk, we won't know | |
786 | * that all of the blocks have been allocated properly. | |
787 | */ | |
788 | if (cp->c_flag & C_SWAPINPROGRESS) { | |
789 | cluster_flags |= IO_SYNC; | |
790 | } | |
791 | ||
91447636 | 792 | hfs_unlock(cp); |
6d2010ae | 793 | (void) cluster_push(vp, cluster_flags); |
39236c6e | 794 | hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS); |
91447636 A |
795 | |
796 | /* | |
797 | * Explicitly zero out the areas of file | |
798 | * that are currently marked invalid. | |
799 | */ | |
b0d623f7 | 800 | while ((invalid_range = TAILQ_FIRST(&fp->ff_invalidranges))) { |
91447636 A |
801 | off_t start = invalid_range->rl_start; |
802 | off_t end = invalid_range->rl_end; | |
803 | ||
804 | /* The range about to be written must be validated | |
805 | * first, so that VNOP_BLOCKMAP() will return the | |
806 | * appropriate mapping for the cluster code: | |
807 | */ | |
808 | rl_remove(start, end, &fp->ff_invalidranges); | |
809 | ||
810 | hfs_unlock(cp); | |
811 | (void) cluster_write(vp, (struct uio *) 0, | |
6d2010ae | 812 | leof, end + 1, start, (off_t)0, cluster_zero_flags); |
39236c6e | 813 | hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS); |
91447636 A |
814 | cp->c_flag |= C_MODIFIED; |
815 | } | |
816 | cp->c_flag &= ~C_ZFWANTSYNC; | |
817 | cp->c_zftimeout = 0; | |
818 | blocksize = VTOVCB(vp)->blockSize; | |
819 | blks = leof / blocksize; | |
820 | if (((off_t)blks * (off_t)blocksize) != leof) | |
821 | blks++; | |
822 | /* | |
823 | * Shrink the peof to the smallest size neccessary to contain the leof. | |
824 | */ | |
316670eb | 825 | if (blks < fp->ff_blocks) { |
b0d623f7 | 826 | (void) hfs_truncate(vp, leof, IO_NDELAY, 0, 0, context); |
316670eb A |
827 | } |
828 | ||
91447636 | 829 | hfs_unlock(cp); |
6d2010ae | 830 | (void) cluster_push(vp, cluster_flags); |
39236c6e | 831 | hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS); |
91447636 A |
832 | |
833 | /* | |
834 | * If the hfs_truncate didn't happen to flush the vnode's | |
835 | * information out to disk, force it to be updated now that | |
836 | * all invalid ranges have been zero-filled and validated: | |
837 | */ | |
838 | if (cp->c_flag & C_MODIFIED) { | |
839 | hfs_update(vp, 0); | |
840 | } | |
841 | return (0); | |
842 | } | |
843 | ||
9bccf70c A |
844 | |
845 | /* | |
846 | * Reclaim a cnode so that it can be used for other purposes. | |
847 | */ | |
9bccf70c | 848 | int |
91447636 | 849 | hfs_vnop_reclaim(struct vnop_reclaim_args *ap) |
9bccf70c A |
850 | { |
851 | struct vnode *vp = ap->a_vp; | |
91447636 | 852 | struct cnode *cp; |
9bccf70c A |
853 | struct filefork *fp = NULL; |
854 | struct filefork *altfp = NULL; | |
b0d623f7 | 855 | struct hfsmount *hfsmp = VTOHFS(vp); |
6d2010ae | 856 | vfs_context_t ctx = ap->a_context; |
91447636 | 857 | int reclaim_cnode = 0; |
6d2010ae A |
858 | int err = 0; |
859 | enum vtype v_type; | |
860 | ||
861 | v_type = vnode_vtype(vp); | |
91447636 | 862 | cp = VTOC(vp); |
b0d623f7 | 863 | |
6d2010ae A |
864 | /* |
865 | * We don't take the truncate lock since by the time reclaim comes along, | |
866 | * all dirty pages have been synced and nobody should be competing | |
867 | * with us for this thread. | |
4a3eedf9 | 868 | */ |
39236c6e | 869 | (void) hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS); |
6d2010ae A |
870 | |
871 | /* | |
872 | * Sync to disk any remaining data in the cnode/vnode. This includes | |
873 | * a call to hfs_update if the cnode has outbound data. | |
874 | * | |
875 | * If C_NOEXISTS is set on the cnode, then there's nothing teardown needs to do | |
876 | * because the catalog entry for this cnode is already gone. | |
877 | */ | |
878 | if (!ISSET(cp->c_flag, C_NOEXISTS)) { | |
879 | err = hfs_cnode_teardown(vp, ctx, 1); | |
4a3eedf9 A |
880 | } |
881 | ||
55e303ae A |
882 | /* |
883 | * Keep track of an inactive hot file. | |
884 | */ | |
2d21ac55 A |
885 | if (!vnode_isdir(vp) && |
886 | !vnode_issystem(vp) && | |
887 | !(cp->c_flag & (C_DELETED | C_NOEXISTS)) ) { | |
91447636 | 888 | (void) hfs_addhotfile(vp); |
2d21ac55 | 889 | } |
91447636 | 890 | vnode_removefsref(vp); |
9bccf70c A |
891 | |
892 | /* | |
893 | * Find file fork for this vnode (if any) | |
894 | * Also check if another fork is active | |
895 | */ | |
91447636 A |
896 | if (cp->c_vp == vp) { |
897 | fp = cp->c_datafork; | |
898 | altfp = cp->c_rsrcfork; | |
899 | ||
9bccf70c A |
900 | cp->c_datafork = NULL; |
901 | cp->c_vp = NULL; | |
91447636 A |
902 | } else if (cp->c_rsrc_vp == vp) { |
903 | fp = cp->c_rsrcfork; | |
904 | altfp = cp->c_datafork; | |
905 | ||
9bccf70c A |
906 | cp->c_rsrcfork = NULL; |
907 | cp->c_rsrc_vp = NULL; | |
9bccf70c | 908 | } else { |
b0d623f7 | 909 | panic("hfs_vnop_reclaim: vp points to wrong cnode (vp=%p cp->c_vp=%p cp->c_rsrc_vp=%p)\n", vp, cp->c_vp, cp->c_rsrc_vp); |
9bccf70c | 910 | } |
9bccf70c A |
911 | /* |
912 | * On the last fork, remove the cnode from its hash chain. | |
913 | */ | |
91447636 A |
914 | if (altfp == NULL) { |
915 | /* If we can't remove it then the cnode must persist! */ | |
b0d623f7 | 916 | if (hfs_chashremove(hfsmp, cp) == 0) |
91447636 A |
917 | reclaim_cnode = 1; |
918 | /* | |
919 | * Remove any directory hints | |
920 | */ | |
921 | if (vnode_isdir(vp)) { | |
922 | hfs_reldirhints(cp, 0); | |
923 | } | |
b0d623f7 A |
924 | |
925 | if(cp->c_flag & C_HARDLINK) { | |
935ed37a A |
926 | hfs_relorigins(cp); |
927 | } | |
91447636 A |
928 | } |
929 | /* Release the file fork and related data */ | |
9bccf70c | 930 | if (fp) { |
9bccf70c | 931 | /* Dump cached symlink data */ |
91447636 | 932 | if (vnode_islnk(vp) && (fp->ff_symlinkptr != NULL)) { |
9bccf70c | 933 | FREE(fp->ff_symlinkptr, M_TEMP); |
91447636 | 934 | } |
9bccf70c | 935 | FREE_ZONE(fp, sizeof(struct filefork), M_HFSFORK); |
9bccf70c A |
936 | } |
937 | ||
9bccf70c A |
938 | /* |
939 | * If there was only one active fork then we can release the cnode. | |
940 | */ | |
91447636 | 941 | if (reclaim_cnode) { |
b0d623f7 | 942 | hfs_chashwakeup(hfsmp, cp, H_ALLOC | H_TRANSIT); |
39236c6e | 943 | hfs_unlock(cp); |
91447636 | 944 | hfs_reclaim_cnode(cp); |
6d2010ae A |
945 | } |
946 | else { | |
947 | /* | |
948 | * cnode in use. If it is a directory, it could have | |
949 | * no live forks. Just release the lock. | |
950 | */ | |
91447636 | 951 | hfs_unlock(cp); |
9bccf70c A |
952 | } |
953 | ||
91447636 | 954 | vnode_clearfsnode(vp); |
9bccf70c A |
955 | return (0); |
956 | } | |
957 | ||
958 | ||
91447636 A |
959 | extern int (**hfs_vnodeop_p) (void *); |
960 | extern int (**hfs_specop_p) (void *); | |
2d21ac55 | 961 | #if FIFO |
91447636 | 962 | extern int (**hfs_fifoop_p) (void *); |
2d21ac55 | 963 | #endif |
9bccf70c | 964 | |
39236c6e A |
965 | #if CONFIG_HFS_STD |
966 | extern int (**hfs_std_vnodeop_p) (void *); | |
967 | #endif | |
968 | ||
9bccf70c A |
969 | /* |
970 | * hfs_getnewvnode - get new default vnode | |
971 | * | |
91447636 | 972 | * The vnode is returned with an iocount and the cnode locked |
9bccf70c | 973 | */ |
9bccf70c | 974 | int |
91447636 A |
975 | hfs_getnewvnode( |
976 | struct hfsmount *hfsmp, | |
977 | struct vnode *dvp, | |
978 | struct componentname *cnp, | |
979 | struct cat_desc *descp, | |
2d21ac55 | 980 | int flags, |
91447636 A |
981 | struct cat_attr *attrp, |
982 | struct cat_fork *forkp, | |
6d2010ae A |
983 | struct vnode **vpp, |
984 | int *out_flags) | |
9bccf70c A |
985 | { |
986 | struct mount *mp = HFSTOVFS(hfsmp); | |
987 | struct vnode *vp = NULL; | |
91447636 A |
988 | struct vnode **cvpp; |
989 | struct vnode *tvp = NULLVP; | |
990 | struct cnode *cp = NULL; | |
9bccf70c | 991 | struct filefork *fp = NULL; |
b0d623f7 | 992 | int hfs_standard = 0; |
9bccf70c | 993 | int retval; |
91447636 | 994 | int issystemfile; |
2d21ac55 | 995 | int wantrsrc; |
6d2010ae | 996 | int hflags = 0; |
91447636 A |
997 | struct vnode_fsparam vfsp; |
998 | enum vtype vtype; | |
2d21ac55 A |
999 | #if QUOTA |
1000 | int i; | |
1001 | #endif /* QUOTA */ | |
6d2010ae | 1002 | |
b0d623f7 A |
1003 | hfs_standard = (hfsmp->hfs_flags & HFS_STANDARD); |
1004 | ||
91447636 | 1005 | if (attrp->ca_fileid == 0) { |
9bccf70c | 1006 | *vpp = NULL; |
91447636 | 1007 | return (ENOENT); |
9bccf70c A |
1008 | } |
1009 | ||
1010 | #if !FIFO | |
1011 | if (IFTOVT(attrp->ca_mode) == VFIFO) { | |
1012 | *vpp = NULL; | |
91447636 | 1013 | return (ENOTSUP); |
9bccf70c | 1014 | } |
2d21ac55 | 1015 | #endif /* !FIFO */ |
91447636 A |
1016 | vtype = IFTOVT(attrp->ca_mode); |
1017 | issystemfile = (descp->cd_flags & CD_ISMETA) && (vtype == VREG); | |
2d21ac55 A |
1018 | wantrsrc = flags & GNV_WANTRSRC; |
1019 | ||
db609669 A |
1020 | /* Sanity check the vtype and mode */ |
1021 | if (vtype == VBAD) { | |
1022 | /* Mark the FS as corrupt and bail out */ | |
1023 | hfs_mark_volume_inconsistent(hfsmp); | |
39236c6e | 1024 | return EINVAL; |
db609669 A |
1025 | } |
1026 | ||
6d2010ae A |
1027 | /* Zero out the out_flags */ |
1028 | *out_flags = 0; | |
1029 | ||
2d21ac55 A |
1030 | #ifdef HFS_CHECK_LOCK_ORDER |
1031 | /* | |
1032 | * The only case were its permissible to hold the parent cnode | |
1033 | * lock is during a create operation (hfs_makenode) or when | |
1034 | * we don't need the cnode lock (GNV_SKIPLOCK). | |
1035 | */ | |
1036 | if ((dvp != NULL) && | |
1037 | (flags & (GNV_CREATE | GNV_SKIPLOCK)) == 0 && | |
1038 | VTOC(dvp)->c_lockowner == current_thread()) { | |
1039 | panic("hfs_getnewvnode: unexpected hold of parent cnode %p", VTOC(dvp)); | |
1040 | } | |
1041 | #endif /* HFS_CHECK_LOCK_ORDER */ | |
91447636 A |
1042 | |
1043 | /* | |
1044 | * Get a cnode (new or existing) | |
91447636 | 1045 | */ |
6d2010ae A |
1046 | cp = hfs_chash_getcnode(hfsmp, attrp->ca_fileid, vpp, wantrsrc, |
1047 | (flags & GNV_SKIPLOCK), out_flags, &hflags); | |
2d21ac55 A |
1048 | |
1049 | /* | |
1050 | * If the id is no longer valid for lookups we'll get back a NULL cp. | |
1051 | */ | |
1052 | if (cp == NULL) { | |
1053 | return (ENOENT); | |
1054 | } | |
316670eb | 1055 | |
b7266188 | 1056 | /* |
6d2010ae A |
1057 | * If we get a cnode/vnode pair out of hfs_chash_getcnode, then update the |
1058 | * descriptor in the cnode as needed if the cnode represents a hardlink. | |
1059 | * We want the caller to get the most up-to-date copy of the descriptor | |
1060 | * as possible. However, we only do anything here if there was a valid vnode. | |
1061 | * If there isn't a vnode, then the cnode is brand new and needs to be initialized | |
1062 | * as it doesn't have a descriptor or cat_attr yet. | |
1063 | * | |
1064 | * If we are about to replace the descriptor with the user-supplied one, then validate | |
1065 | * that the descriptor correctly acknowledges this item is a hardlink. We could be | |
1066 | * subject to a race where the calling thread invoked cat_lookup, got a valid lookup | |
1067 | * result but the file was not yet a hardlink. With sufficient delay between there | |
1068 | * and here, we might accidentally copy in the raw inode ID into the descriptor in the | |
1069 | * call below. If the descriptor's CNID is the same as the fileID then it must | |
1070 | * not yet have been a hardlink when the lookup occurred. | |
b7266188 | 1071 | */ |
6d2010ae | 1072 | |
b7266188 A |
1073 | if (!(hfs_checkdeleted(cp))) { |
1074 | if ((cp->c_flag & C_HARDLINK) && descp->cd_nameptr && descp->cd_namelen > 0) { | |
6d2010ae A |
1075 | /* If cnode is uninitialized, its c_attr will be zeroed out; cnids wont match. */ |
1076 | if ((descp->cd_cnid == cp->c_attr.ca_fileid) && | |
1077 | (attrp->ca_linkcount != cp->c_attr.ca_linkcount)){ | |
1078 | if ((flags & GNV_SKIPLOCK) == 0) { | |
1079 | /* | |
1080 | * Then we took the lock. Drop it before calling | |
1081 | * vnode_put, which may invoke hfs_vnop_inactive and need to take | |
1082 | * the cnode lock again. | |
1083 | */ | |
1084 | hfs_unlock(cp); | |
1085 | } | |
1086 | ||
1087 | /* | |
1088 | * Emit ERECYCLE and GNV_CAT_ATTRCHANGED to | |
1089 | * force a re-drive in the lookup routine. | |
1090 | * Drop the iocount on the vnode obtained from | |
1091 | * chash_getcnode if needed. | |
1092 | */ | |
1093 | if (*vpp != NULL) { | |
1094 | vnode_put (*vpp); | |
1095 | *vpp = NULL; | |
1096 | } | |
316670eb | 1097 | |
6d2010ae A |
1098 | /* |
1099 | * If we raced with VNOP_RECLAIM for this vnode, the hash code could | |
1100 | * have observed it after the c_vp or c_rsrc_vp fields had been torn down; | |
1101 | * the hash code peeks at those fields without holding the cnode lock because | |
1102 | * it needs to be fast. As a result, we may have set H_ATTACH in the chash | |
1103 | * call above. Since we're bailing out, unset whatever flags we just set, and | |
1104 | * wake up all waiters for this cnode. | |
1105 | */ | |
1106 | if (hflags) { | |
1107 | hfs_chashwakeup(hfsmp, cp, hflags); | |
1108 | } | |
316670eb | 1109 | |
6d2010ae A |
1110 | *out_flags = GNV_CAT_ATTRCHANGED; |
1111 | return ERECYCLE; | |
1112 | } | |
1113 | else { | |
316670eb A |
1114 | /* |
1115 | * Otherwise, CNID != fileid. Go ahead and copy in the new descriptor. | |
1116 | * | |
1117 | * Replacing the descriptor here is fine because we looked up the item without | |
1118 | * a vnode in hand before. If a vnode existed, its identity must be attached to this | |
1119 | * item. We are not susceptible to the lookup fastpath issue at this point. | |
1120 | */ | |
6d2010ae | 1121 | replace_desc(cp, descp); |
39236c6e A |
1122 | |
1123 | /* | |
1124 | * This item was a hardlink, and its name needed to be updated. By replacing the | |
1125 | * descriptor above, we've now updated the cnode's internal representation of | |
1126 | * its link ID/CNID, parent ID, and its name. However, VFS must now be alerted | |
1127 | * to the fact that this vnode now has a new parent, since we cannot guarantee | |
1128 | * that the new link lived in the same directory as the alternative name for | |
1129 | * this item. | |
1130 | */ | |
1131 | if ((*vpp != NULL) && (cnp)) { | |
1132 | /* we could be requesting the rsrc of a hardlink file... */ | |
1133 | vnode_update_identity (*vpp, dvp, cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_hash, | |
1134 | (VNODE_UPDATE_PARENT | VNODE_UPDATE_NAME)); | |
1135 | } | |
6d2010ae | 1136 | } |
b7266188 | 1137 | } |
9bccf70c | 1138 | } |
6d2010ae | 1139 | |
91447636 | 1140 | /* Check if we found a matching vnode */ |
6d2010ae | 1141 | if (*vpp != NULL) { |
91447636 | 1142 | return (0); |
6d2010ae | 1143 | } |
9bccf70c | 1144 | |
91447636 A |
1145 | /* |
1146 | * If this is a new cnode then initialize it. | |
1147 | */ | |
1148 | if (ISSET(cp->c_hflag, H_ALLOC)) { | |
1149 | lck_rw_init(&cp->c_truncatelock, hfs_rwlock_group, hfs_lock_attr); | |
b0d623f7 A |
1150 | #if HFS_COMPRESSION |
1151 | cp->c_decmp = NULL; | |
1152 | #endif | |
91447636 A |
1153 | |
1154 | /* Make sure its still valid (ie exists on disk). */ | |
6d2010ae A |
1155 | if (!(flags & GNV_CREATE)) { |
1156 | int error = 0; | |
1157 | if (!hfs_valid_cnode (hfsmp, dvp, (wantrsrc ? NULL : cnp), cp->c_fileid, attrp, &error)) { | |
1158 | hfs_chash_abort(hfsmp, cp); | |
39236c6e A |
1159 | if ((flags & GNV_SKIPLOCK) == 0) { |
1160 | hfs_unlock(cp); | |
1161 | } | |
6d2010ae A |
1162 | hfs_reclaim_cnode(cp); |
1163 | *vpp = NULL; | |
1164 | /* | |
1165 | * If we hit this case, that means that the entry was there in the catalog when | |
1166 | * we did a cat_lookup earlier. Think hfs_lookup. However, in between the time | |
1167 | * that we checked the catalog and the time we went to get a vnode/cnode for it, | |
1168 | * it had been removed from the namespace and the vnode totally reclaimed. As a result, | |
1169 | * it's not there in the catalog during the check in hfs_valid_cnode and we bubble out | |
1170 | * an ENOENT. To indicate to the caller that they should really double-check the | |
1171 | * entry (it could have been renamed over and gotten a new fileid), we mark a bit | |
1172 | * in the output flags. | |
1173 | */ | |
1174 | if (error == ENOENT) { | |
1175 | *out_flags = GNV_CAT_DELETED; | |
1176 | return ENOENT; | |
1177 | } | |
1178 | ||
1179 | /* | |
1180 | * Also, we need to protect the cat_attr acquired during hfs_lookup and passed into | |
1181 | * this function as an argument because the catalog may have changed w.r.t hardlink | |
1182 | * link counts and the firstlink field. If that validation check fails, then let | |
1183 | * lookup re-drive itself to get valid/consistent data with the same failure condition below. | |
1184 | */ | |
1185 | if (error == ERECYCLE) { | |
1186 | *out_flags = GNV_CAT_ATTRCHANGED; | |
1187 | return (ERECYCLE); | |
1188 | } | |
1189 | } | |
9bccf70c | 1190 | } |
9bccf70c A |
1191 | bcopy(attrp, &cp->c_attr, sizeof(struct cat_attr)); |
1192 | bcopy(descp, &cp->c_desc, sizeof(struct cat_desc)); | |
9bccf70c | 1193 | |
9bccf70c A |
1194 | /* The name was inherited so clear descriptor state... */ |
1195 | descp->cd_namelen = 0; | |
1196 | descp->cd_nameptr = NULL; | |
1197 | descp->cd_flags &= ~CD_HASBUF; | |
1198 | ||
1199 | /* Tag hardlinks */ | |
2d21ac55 A |
1200 | if ((vtype == VREG || vtype == VDIR) && |
1201 | ((descp->cd_cnid != attrp->ca_fileid) || | |
1202 | (attrp->ca_recflags & kHFSHasLinkChainMask))) { | |
9bccf70c A |
1203 | cp->c_flag |= C_HARDLINK; |
1204 | } | |
2d21ac55 A |
1205 | /* |
1206 | * Fix-up dir link counts. | |
1207 | * | |
1208 | * Earlier versions of Leopard used ca_linkcount for posix | |
1209 | * nlink support (effectively the sub-directory count + 2). | |
1210 | * That is now accomplished using the ca_dircount field with | |
1211 | * the corresponding kHFSHasFolderCountMask flag. | |
1212 | * | |
1213 | * For directories the ca_linkcount is the true link count, | |
1214 | * tracking the number of actual hardlinks to a directory. | |
1215 | * | |
1216 | * We only do this if the mount has HFS_FOLDERCOUNT set; | |
1217 | * at the moment, we only set that for HFSX volumes. | |
1218 | */ | |
1219 | if ((hfsmp->hfs_flags & HFS_FOLDERCOUNT) && | |
1220 | (vtype == VDIR) && | |
1221 | !(attrp->ca_recflags & kHFSHasFolderCountMask) && | |
1222 | (cp->c_attr.ca_linkcount > 1)) { | |
1223 | if (cp->c_attr.ca_entries == 0) | |
1224 | cp->c_attr.ca_dircount = 0; | |
1225 | else | |
1226 | cp->c_attr.ca_dircount = cp->c_attr.ca_linkcount - 2; | |
9bccf70c | 1227 | |
2d21ac55 A |
1228 | cp->c_attr.ca_linkcount = 1; |
1229 | cp->c_attr.ca_recflags |= kHFSHasFolderCountMask; | |
1230 | if ( !(hfsmp->hfs_flags & HFS_READ_ONLY) ) | |
1231 | cp->c_flag |= C_MODIFIED; | |
9bccf70c A |
1232 | } |
1233 | #if QUOTA | |
2d21ac55 A |
1234 | if (hfsmp->hfs_flags & HFS_QUOTAS) { |
1235 | for (i = 0; i < MAXQUOTAS; i++) | |
1236 | cp->c_dquot[i] = NODQUOT; | |
1237 | } | |
9bccf70c | 1238 | #endif /* QUOTA */ |
6d2010ae A |
1239 | /* Mark the output flag that we're vending a new cnode */ |
1240 | *out_flags |= GNV_NEW_CNODE; | |
9bccf70c A |
1241 | } |
1242 | ||
2d21ac55 | 1243 | if (vtype == VDIR) { |
91447636 A |
1244 | if (cp->c_vp != NULL) |
1245 | panic("hfs_getnewvnode: orphaned vnode (data)"); | |
1246 | cvpp = &cp->c_vp; | |
1247 | } else { | |
9bccf70c A |
1248 | if (forkp && attrp->ca_blocks < forkp->cf_blocks) |
1249 | panic("hfs_getnewvnode: bad ca_blocks (too small)"); | |
1250 | /* | |
1251 | * Allocate and initialize a file fork... | |
1252 | */ | |
1253 | MALLOC_ZONE(fp, struct filefork *, sizeof(struct filefork), | |
1254 | M_HFSFORK, M_WAITOK); | |
9bccf70c A |
1255 | fp->ff_cp = cp; |
1256 | if (forkp) | |
55e303ae | 1257 | bcopy(forkp, &fp->ff_data, sizeof(struct cat_fork)); |
91447636 A |
1258 | else |
1259 | bzero(&fp->ff_data, sizeof(struct cat_fork)); | |
9bccf70c | 1260 | rl_init(&fp->ff_invalidranges); |
91447636 A |
1261 | fp->ff_sysfileinfo = 0; |
1262 | ||
9bccf70c A |
1263 | if (wantrsrc) { |
1264 | if (cp->c_rsrcfork != NULL) | |
91447636 A |
1265 | panic("hfs_getnewvnode: orphaned rsrc fork"); |
1266 | if (cp->c_rsrc_vp != NULL) | |
1267 | panic("hfs_getnewvnode: orphaned vnode (rsrc)"); | |
9bccf70c | 1268 | cp->c_rsrcfork = fp; |
91447636 A |
1269 | cvpp = &cp->c_rsrc_vp; |
1270 | if ( (tvp = cp->c_vp) != NULLVP ) | |
1271 | cp->c_flag |= C_NEED_DVNODE_PUT; | |
9bccf70c A |
1272 | } else { |
1273 | if (cp->c_datafork != NULL) | |
91447636 A |
1274 | panic("hfs_getnewvnode: orphaned data fork"); |
1275 | if (cp->c_vp != NULL) | |
1276 | panic("hfs_getnewvnode: orphaned vnode (data)"); | |
9bccf70c | 1277 | cp->c_datafork = fp; |
91447636 A |
1278 | cvpp = &cp->c_vp; |
1279 | if ( (tvp = cp->c_rsrc_vp) != NULLVP) | |
1280 | cp->c_flag |= C_NEED_RVNODE_PUT; | |
9bccf70c A |
1281 | } |
1282 | } | |
91447636 A |
1283 | if (tvp != NULLVP) { |
1284 | /* | |
1285 | * grab an iocount on the vnode we weren't | |
1286 | * interested in (i.e. we want the resource fork | |
1287 | * but the cnode already has the data fork) | |
1288 | * to prevent it from being | |
1289 | * recycled by us when we call vnode_create | |
1290 | * which will result in a deadlock when we | |
1291 | * try to take the cnode lock in hfs_vnop_fsync or | |
1292 | * hfs_vnop_reclaim... vnode_get can be called here | |
1293 | * because we already hold the cnode lock which will | |
1294 | * prevent the vnode from changing identity until | |
1295 | * we drop it.. vnode_get will not block waiting for | |
1296 | * a change of state... however, it will return an | |
1297 | * error if the current iocount == 0 and we've already | |
1298 | * started to terminate the vnode... we don't need/want to | |
1299 | * grab an iocount in the case since we can't cause | |
1300 | * the fileystem to be re-entered on this thread for this vp | |
1301 | * | |
1302 | * the matching vnode_put will happen in hfs_unlock | |
1303 | * after we've dropped the cnode lock | |
1304 | */ | |
1305 | if ( vnode_get(tvp) != 0) | |
1306 | cp->c_flag &= ~(C_NEED_RVNODE_PUT | C_NEED_DVNODE_PUT); | |
1307 | } | |
1308 | vfsp.vnfs_mp = mp; | |
1309 | vfsp.vnfs_vtype = vtype; | |
1310 | vfsp.vnfs_str = "hfs"; | |
2d21ac55 A |
1311 | if ((cp->c_flag & C_HARDLINK) && (vtype == VDIR)) { |
1312 | vfsp.vnfs_dvp = NULL; /* no parent for me! */ | |
1313 | vfsp.vnfs_cnp = NULL; /* no name for me! */ | |
1314 | } else { | |
1315 | vfsp.vnfs_dvp = dvp; | |
1316 | vfsp.vnfs_cnp = cnp; | |
1317 | } | |
91447636 | 1318 | vfsp.vnfs_fsnode = cp; |
b0d623f7 A |
1319 | |
1320 | /* | |
1321 | * Special Case HFS Standard VNOPs from HFS+, since | |
1322 | * HFS standard is readonly/deprecated as of 10.6 | |
1323 | */ | |
1324 | ||
2d21ac55 | 1325 | #if FIFO |
b0d623f7 | 1326 | if (vtype == VFIFO ) |
91447636 | 1327 | vfsp.vnfs_vops = hfs_fifoop_p; |
2d21ac55 A |
1328 | else |
1329 | #endif | |
1330 | if (vtype == VBLK || vtype == VCHR) | |
91447636 | 1331 | vfsp.vnfs_vops = hfs_specop_p; |
39236c6e | 1332 | #if CONFIG_HFS_STD |
b0d623f7 A |
1333 | else if (hfs_standard) |
1334 | vfsp.vnfs_vops = hfs_std_vnodeop_p; | |
39236c6e | 1335 | #endif |
b0d623f7 | 1336 | else |
91447636 | 1337 | vfsp.vnfs_vops = hfs_vnodeop_p; |
b0d623f7 | 1338 | |
91447636 A |
1339 | if (vtype == VBLK || vtype == VCHR) |
1340 | vfsp.vnfs_rdev = attrp->ca_rdev; | |
1341 | else | |
1342 | vfsp.vnfs_rdev = 0; | |
9bccf70c | 1343 | |
91447636 A |
1344 | if (forkp) |
1345 | vfsp.vnfs_filesize = forkp->cf_size; | |
1346 | else | |
1347 | vfsp.vnfs_filesize = 0; | |
1348 | ||
2d21ac55 | 1349 | vfsp.vnfs_flags = VNFS_ADDFSREF; |
6d2010ae | 1350 | if (dvp == NULLVP || cnp == NULL || !(cnp->cn_flags & MAKEENTRY) || (flags & GNV_NOCACHE)) |
2d21ac55 | 1351 | vfsp.vnfs_flags |= VNFS_NOCACHE; |
9bccf70c A |
1352 | |
1353 | /* Tag system files */ | |
91447636 A |
1354 | vfsp.vnfs_marksystem = issystemfile; |
1355 | ||
9bccf70c | 1356 | /* Tag root directory */ |
91447636 A |
1357 | if (descp->cd_cnid == kHFSRootFolderID) |
1358 | vfsp.vnfs_markroot = 1; | |
1359 | else | |
1360 | vfsp.vnfs_markroot = 0; | |
1361 | ||
1362 | if ((retval = vnode_create(VNCREATE_FLAVOR, VCREATESIZE, &vfsp, cvpp))) { | |
1363 | if (fp) { | |
1364 | if (fp == cp->c_datafork) | |
1365 | cp->c_datafork = NULL; | |
1366 | else | |
1367 | cp->c_rsrcfork = NULL; | |
1368 | ||
1369 | FREE_ZONE(fp, sizeof(struct filefork), M_HFSFORK); | |
1370 | } | |
1371 | /* | |
1372 | * If this is a newly created cnode or a vnode reclaim | |
1373 | * occurred during the attachment, then cleanup the cnode. | |
1374 | */ | |
1375 | if ((cp->c_vp == NULL) && (cp->c_rsrc_vp == NULL)) { | |
b0d623f7 | 1376 | hfs_chash_abort(hfsmp, cp); |
91447636 | 1377 | hfs_reclaim_cnode(cp); |
cf7d32b8 A |
1378 | } |
1379 | else { | |
b0d623f7 | 1380 | hfs_chashwakeup(hfsmp, cp, H_ALLOC | H_ATTACH); |
cf7d32b8 A |
1381 | if ((flags & GNV_SKIPLOCK) == 0){ |
1382 | hfs_unlock(cp); | |
1383 | } | |
91447636 A |
1384 | } |
1385 | *vpp = NULL; | |
1386 | return (retval); | |
1387 | } | |
1388 | vp = *cvpp; | |
91447636 | 1389 | vnode_settag(vp, VT_HFS); |
2d21ac55 A |
1390 | if (cp->c_flag & C_HARDLINK) { |
1391 | vnode_setmultipath(vp); | |
1392 | } | |
4a3eedf9 A |
1393 | /* |
1394 | * Tag resource fork vnodes as needing an VNOP_INACTIVE | |
1395 | * so that any deferred removes (open unlinked files) | |
1396 | * have the chance to process the resource fork. | |
1397 | */ | |
1398 | if (VNODE_IS_RSRC(vp)) { | |
b0d623f7 A |
1399 | int err; |
1400 | KERNEL_DEBUG_CONSTANT((FSDBG_CODE(DBG_FSRW, 37)), cp->c_vp, cp->c_rsrc_vp, 0, 0, 0); | |
1401 | ||
4a3eedf9 | 1402 | /* Force VL_NEEDINACTIVE on this vnode */ |
b0d623f7 A |
1403 | err = vnode_ref(vp); |
1404 | if (err == 0) { | |
1405 | vnode_rele(vp); | |
1406 | } | |
4a3eedf9 | 1407 | } |
b0d623f7 | 1408 | hfs_chashwakeup(hfsmp, cp, H_ALLOC | H_ATTACH); |
91447636 A |
1409 | |
1410 | /* | |
1411 | * Stop tracking an active hot file. | |
1412 | */ | |
2d21ac55 | 1413 | if (!(flags & GNV_CREATE) && (vtype != VDIR) && !issystemfile) { |
91447636 | 1414 | (void) hfs_removehotfile(vp); |
2d21ac55 | 1415 | } |
6d2010ae A |
1416 | |
1417 | #if CONFIG_PROTECT | |
316670eb A |
1418 | /* Initialize the cp data structures. The key should be in place now. */ |
1419 | if (!issystemfile && (*out_flags & GNV_NEW_CNODE)) { | |
6d2010ae | 1420 | cp_entry_init(cp, mp); |
316670eb | 1421 | } |
6d2010ae | 1422 | #endif |
91447636 A |
1423 | |
1424 | *vpp = vp; | |
1425 | return (0); | |
1426 | } | |
1427 | ||
1428 | ||
1429 | static void | |
1430 | hfs_reclaim_cnode(struct cnode *cp) | |
1431 | { | |
1432 | #if QUOTA | |
1433 | int i; | |
1434 | ||
1435 | for (i = 0; i < MAXQUOTAS; i++) { | |
1436 | if (cp->c_dquot[i] != NODQUOT) { | |
1437 | dqreclaim(cp->c_dquot[i]); | |
1438 | cp->c_dquot[i] = NODQUOT; | |
1439 | } | |
1440 | } | |
1441 | #endif /* QUOTA */ | |
1442 | ||
91447636 A |
1443 | /* |
1444 | * If the descriptor has a name then release it | |
1445 | */ | |
2d21ac55 A |
1446 | if ((cp->c_desc.cd_flags & CD_HASBUF) && (cp->c_desc.cd_nameptr != 0)) { |
1447 | const char *nameptr; | |
91447636 | 1448 | |
2d21ac55 | 1449 | nameptr = (const char *) cp->c_desc.cd_nameptr; |
91447636 A |
1450 | cp->c_desc.cd_nameptr = 0; |
1451 | cp->c_desc.cd_flags &= ~CD_HASBUF; | |
1452 | cp->c_desc.cd_namelen = 0; | |
1453 | vfs_removename(nameptr); | |
1454 | } | |
6d2010ae A |
1455 | |
1456 | /* | |
1457 | * We only call this function if we are in hfs_vnop_reclaim and | |
1458 | * attempting to reclaim a cnode with only one live fork. Because the vnode | |
1459 | * went through reclaim, any future attempts to use this item will have to | |
1460 | * go through lookup again, which will need to create a new vnode. Thus, | |
39236c6e | 1461 | * destroying the locks below is safe. |
6d2010ae A |
1462 | */ |
1463 | ||
91447636 A |
1464 | lck_rw_destroy(&cp->c_rwlock, hfs_rwlock_group); |
1465 | lck_rw_destroy(&cp->c_truncatelock, hfs_rwlock_group); | |
b0d623f7 A |
1466 | #if HFS_COMPRESSION |
1467 | if (cp->c_decmp) { | |
1468 | decmpfs_cnode_destroy(cp->c_decmp); | |
1469 | FREE_ZONE(cp->c_decmp, sizeof(*(cp->c_decmp)), M_DECMPFS_CNODE); | |
1470 | } | |
1471 | #endif | |
6d2010ae | 1472 | #if CONFIG_PROTECT |
39236c6e A |
1473 | cp_entry_destroy(cp->c_cpentry); |
1474 | cp->c_cpentry = NULL; | |
6d2010ae A |
1475 | #endif |
1476 | ||
1477 | ||
91447636 A |
1478 | bzero(cp, sizeof(struct cnode)); |
1479 | FREE_ZONE(cp, sizeof(struct cnode), M_HFSNODE); | |
1480 | } | |
1481 | ||
1482 | ||
6d2010ae A |
1483 | /* |
1484 | * hfs_valid_cnode | |
1485 | * | |
1486 | * This function is used to validate data that is stored in-core against what is contained | |
1487 | * in the catalog. Common uses include validating that the parent-child relationship still exist | |
1488 | * for a specific directory entry (guaranteeing it has not been renamed into a different spot) at | |
1489 | * the point of the check. | |
1490 | */ | |
2d21ac55 | 1491 | int |
6d2010ae A |
1492 | hfs_valid_cnode(struct hfsmount *hfsmp, struct vnode *dvp, struct componentname *cnp, |
1493 | cnid_t cnid, struct cat_attr *cattr, int *error) | |
91447636 A |
1494 | { |
1495 | struct cat_attr attr; | |
1496 | struct cat_desc cndesc; | |
1497 | int stillvalid = 0; | |
1498 | int lockflags; | |
9bccf70c | 1499 | |
91447636 | 1500 | /* System files are always valid */ |
6d2010ae A |
1501 | if (cnid < kHFSFirstUserCatalogNodeID) { |
1502 | *error = 0; | |
91447636 | 1503 | return (1); |
6d2010ae | 1504 | } |
91447636 A |
1505 | |
1506 | /* XXX optimization: check write count in dvp */ | |
1507 | ||
1508 | lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK); | |
1509 | ||
1510 | if (dvp && cnp) { | |
6d2010ae A |
1511 | int lookup = 0; |
1512 | struct cat_fork fork; | |
91447636 | 1513 | bzero(&cndesc, sizeof(cndesc)); |
2d21ac55 | 1514 | cndesc.cd_nameptr = (const u_int8_t *)cnp->cn_nameptr; |
91447636 | 1515 | cndesc.cd_namelen = cnp->cn_namelen; |
2d21ac55 | 1516 | cndesc.cd_parentcnid = VTOC(dvp)->c_fileid; |
91447636 A |
1517 | cndesc.cd_hint = VTOC(dvp)->c_childhint; |
1518 | ||
6d2010ae A |
1519 | /* |
1520 | * We have to be careful when calling cat_lookup. The result argument | |
1521 | * 'attr' may get different results based on whether or not you ask | |
1522 | * for the filefork to be supplied as output. This is because cat_lookupbykey | |
1523 | * will attempt to do basic validation/smoke tests against the resident | |
1524 | * extents if there are no overflow extent records, but it needs someplace | |
1525 | * in memory to store the on-disk fork structures. | |
1526 | * | |
1527 | * Since hfs_lookup calls cat_lookup with a filefork argument, we should | |
1528 | * do the same here, to verify that block count differences are not | |
1529 | * due to calling the function with different styles. cat_lookupbykey | |
1530 | * will request the volume be fsck'd if there is true on-disk corruption | |
1531 | * where the number of blocks does not match the number generated by | |
1532 | * summing the number of blocks in the resident extents. | |
1533 | */ | |
1534 | ||
39236c6e | 1535 | lookup = cat_lookup (hfsmp, &cndesc, 0, 0, NULL, &attr, &fork, NULL); |
316670eb | 1536 | |
6d2010ae | 1537 | if ((lookup == 0) && (cnid == attr.ca_fileid)) { |
91447636 | 1538 | stillvalid = 1; |
6d2010ae A |
1539 | *error = 0; |
1540 | } | |
1541 | else { | |
1542 | *error = ENOENT; | |
1543 | } | |
1544 | ||
1545 | /* | |
1546 | * In hfs_getnewvnode, we may encounter a time-of-check vs. time-of-vnode creation | |
1547 | * race. Specifically, if there is no vnode/cnode pair for the directory entry | |
1548 | * being looked up, we have to go to the catalog. But since we don't hold any locks (aside | |
1549 | * from the dvp in 'shared' mode) there is nothing to protect us against the catalog record | |
1550 | * changing in between the time we do the cat_lookup there and the time we re-grab the | |
1551 | * catalog lock above to do another cat_lookup. | |
1552 | * | |
1553 | * However, we need to check more than just the CNID and parent-child name relationships above. | |
1554 | * Hardlinks can suffer the same race in the following scenario: Suppose we do a | |
1555 | * cat_lookup, and find a leaf record and a raw inode for a hardlink. Now, we have | |
1556 | * the cat_attr in hand (passed in above). But in between then and now, the vnode was | |
1557 | * created by a competing hfs_getnewvnode call, and is manipulated and reclaimed before we get | |
1558 | * a chance to do anything. This is possible if there are a lot of threads thrashing around | |
1559 | * with the cnode hash. In this case, if we don't check/validate the cat_attr in-hand, we will | |
1560 | * blindly stuff it into the cnode, which will make the in-core data inconsistent with what is | |
1561 | * on disk. So validate the cat_attr below, if required. This race cannot happen if the cnode/vnode | |
1562 | * already exists, as it does in the case of rename and delete. | |
1563 | */ | |
1564 | if (stillvalid && cattr != NULL) { | |
1565 | if (cattr->ca_linkcount != attr.ca_linkcount) { | |
1566 | stillvalid = 0; | |
1567 | *error = ERECYCLE; | |
1568 | goto notvalid; | |
1569 | } | |
1570 | ||
1571 | if (cattr->ca_union1.cau_linkref != attr.ca_union1.cau_linkref) { | |
1572 | stillvalid = 0; | |
1573 | *error = ERECYCLE; | |
1574 | goto notvalid; | |
1575 | } | |
1576 | ||
1577 | if (cattr->ca_union3.cau_firstlink != attr.ca_union3.cau_firstlink) { | |
1578 | stillvalid = 0; | |
1579 | *error = ERECYCLE; | |
1580 | goto notvalid; | |
1581 | } | |
1582 | ||
1583 | if (cattr->ca_union2.cau_blocks != attr.ca_union2.cau_blocks) { | |
1584 | stillvalid = 0; | |
1585 | *error = ERECYCLE; | |
1586 | goto notvalid; | |
1587 | } | |
91447636 | 1588 | } |
9bccf70c | 1589 | } else { |
db609669 | 1590 | if (cat_idlookup(hfsmp, cnid, 0, 0, NULL, NULL, NULL) == 0) { |
91447636 | 1591 | stillvalid = 1; |
6d2010ae A |
1592 | *error = 0; |
1593 | } | |
1594 | else { | |
1595 | *error = ENOENT; | |
91447636 A |
1596 | } |
1597 | } | |
6d2010ae | 1598 | notvalid: |
91447636 A |
1599 | hfs_systemfile_unlock(hfsmp, lockflags); |
1600 | ||
1601 | return (stillvalid); | |
1602 | } | |
1603 | ||
316670eb | 1604 | |
6d2010ae A |
1605 | /* |
1606 | * Per HI and Finder requirements, HFS should add in the | |
1607 | * date/time that a particular directory entry was added | |
1608 | * to the containing directory. | |
1609 | * This is stored in the extended Finder Info for the | |
1610 | * item in question. | |
1611 | * | |
1612 | * Note that this field is also set explicitly in the hfs_vnop_setxattr code. | |
1613 | * We must ignore user attempts to set this part of the finderinfo, and | |
1614 | * so we need to save a local copy of the date added, write in the user | |
1615 | * finderinfo, then stuff the value back in. | |
1616 | */ | |
1617 | void hfs_write_dateadded (struct cat_attr *attrp, u_int32_t dateadded) { | |
1618 | u_int8_t *finfo = NULL; | |
316670eb | 1619 | |
6d2010ae A |
1620 | /* overlay the FinderInfo to the correct pointer, and advance */ |
1621 | finfo = (u_int8_t*)attrp->ca_finderinfo; | |
1622 | finfo = finfo + 16; | |
316670eb | 1623 | |
6d2010ae A |
1624 | /* |
1625 | * Make sure to write it out as big endian, since that's how | |
1626 | * finder info is defined. | |
1627 | * | |
1628 | * NOTE: This is a Unix-epoch timestamp, not a HFS/Traditional Mac timestamp. | |
1629 | */ | |
1630 | if (S_ISREG(attrp->ca_mode)) { | |
1631 | struct FndrExtendedFileInfo *extinfo = (struct FndrExtendedFileInfo *)finfo; | |
1632 | extinfo->date_added = OSSwapHostToBigInt32(dateadded); | |
1633 | attrp->ca_recflags |= kHFSHasDateAddedMask; | |
1634 | } | |
1635 | else if (S_ISDIR(attrp->ca_mode)) { | |
1636 | struct FndrExtendedDirInfo *extinfo = (struct FndrExtendedDirInfo *)finfo; | |
1637 | extinfo->date_added = OSSwapHostToBigInt32(dateadded); | |
316670eb | 1638 | attrp->ca_recflags |= kHFSHasDateAddedMask; |
6d2010ae | 1639 | } |
6d2010ae A |
1640 | /* If it were neither directory/file, then we'd bail out */ |
1641 | return; | |
1642 | } | |
1643 | ||
316670eb | 1644 | |
6d2010ae A |
1645 | u_int32_t hfs_get_dateadded (struct cnode *cp) { |
1646 | u_int8_t *finfo = NULL; | |
1647 | u_int32_t dateadded = 0; | |
316670eb | 1648 | |
6d2010ae A |
1649 | if ((cp->c_attr.ca_recflags & kHFSHasDateAddedMask) == 0) { |
1650 | /* Date added was never set. Return 0. */ | |
1651 | return dateadded; | |
1652 | } | |
316670eb A |
1653 | |
1654 | ||
6d2010ae A |
1655 | /* overlay the FinderInfo to the correct pointer, and advance */ |
1656 | finfo = (u_int8_t*)cp->c_finderinfo; | |
1657 | finfo = finfo + 16; | |
316670eb | 1658 | |
6d2010ae A |
1659 | /* |
1660 | * FinderInfo is written out in big endian... make sure to convert it to host | |
1661 | * native before we use it. | |
1662 | */ | |
1663 | if (S_ISREG(cp->c_attr.ca_mode)) { | |
1664 | struct FndrExtendedFileInfo *extinfo = (struct FndrExtendedFileInfo *)finfo; | |
1665 | dateadded = OSSwapBigToHostInt32 (extinfo->date_added); | |
1666 | } | |
1667 | else if (S_ISDIR(cp->c_attr.ca_mode)) { | |
1668 | struct FndrExtendedDirInfo *extinfo = (struct FndrExtendedDirInfo *)finfo; | |
1669 | dateadded = OSSwapBigToHostInt32 (extinfo->date_added); | |
1670 | } | |
316670eb | 1671 | |
6d2010ae A |
1672 | return dateadded; |
1673 | } | |
1674 | ||
39236c6e A |
1675 | /* |
1676 | * Per HI and Finder requirements, HFS maintains a "write/generation count" | |
1677 | * for each file that is incremented on any write & pageout. It should start | |
1678 | * at 1 to reserve "0" as a special value. If it should ever wrap around, | |
1679 | * it will skip using 0. | |
1680 | * | |
1681 | * Note that this field is also set explicitly in the hfs_vnop_setxattr code. | |
1682 | * We must ignore user attempts to set this part of the finderinfo, and | |
1683 | * so we need to save a local copy of the date added, write in the user | |
1684 | * finderinfo, then stuff the value back in. | |
1685 | */ | |
1686 | void hfs_write_gencount (struct cat_attr *attrp, uint32_t gencount) { | |
1687 | u_int8_t *finfo = NULL; | |
1688 | ||
1689 | /* overlay the FinderInfo to the correct pointer, and advance */ | |
1690 | finfo = (u_int8_t*)attrp->ca_finderinfo; | |
1691 | finfo = finfo + 16; | |
1692 | ||
1693 | /* | |
1694 | * Make sure to write it out as big endian, since that's how | |
1695 | * finder info is defined. | |
1696 | * | |
1697 | * Generation count is only supported for files. | |
1698 | */ | |
1699 | if (S_ISREG(attrp->ca_mode)) { | |
1700 | struct FndrExtendedFileInfo *extinfo = (struct FndrExtendedFileInfo *)finfo; | |
1701 | extinfo->write_gen_counter = OSSwapHostToBigInt32(gencount); | |
1702 | } | |
1703 | ||
1704 | /* If it were neither directory/file, then we'd bail out */ | |
1705 | return; | |
1706 | } | |
1707 | ||
1708 | /* Increase the gen count by 1; if it wraps around to 0, increment by two */ | |
1709 | uint32_t hfs_incr_gencount (struct cnode *cp) { | |
1710 | u_int8_t *finfo = NULL; | |
1711 | u_int32_t gcount = 0; | |
1712 | ||
1713 | /* overlay the FinderInfo to the correct pointer, and advance */ | |
1714 | finfo = (u_int8_t*)cp->c_finderinfo; | |
1715 | finfo = finfo + 16; | |
1716 | ||
1717 | /* | |
1718 | * FinderInfo is written out in big endian... make sure to convert it to host | |
1719 | * native before we use it. | |
1720 | */ | |
1721 | if (S_ISREG(cp->c_attr.ca_mode)) { | |
1722 | struct FndrExtendedFileInfo *extinfo = (struct FndrExtendedFileInfo *)finfo; | |
1723 | gcount = OSSwapBigToHostInt32 (extinfo->write_gen_counter); | |
1724 | ||
1725 | /* Was it zero to begin with (file originated in 10.8 or earlier?) */ | |
1726 | if (gcount == 0) { | |
1727 | gcount++; | |
1728 | } | |
1729 | ||
1730 | /* now bump it */ | |
1731 | gcount++; | |
1732 | ||
1733 | /* Did it wrap around ? */ | |
1734 | if (gcount == 0) { | |
1735 | gcount++; | |
1736 | } | |
1737 | extinfo->write_gen_counter = OSSwapHostToBigInt32 (gcount); | |
1738 | } | |
1739 | else { | |
1740 | gcount = 0; | |
1741 | } | |
1742 | ||
1743 | return gcount; | |
1744 | } | |
1745 | ||
1746 | /* Getter for the gen count */ | |
1747 | u_int32_t hfs_get_gencount (struct cnode *cp) { | |
1748 | u_int8_t *finfo = NULL; | |
1749 | u_int32_t gcount = 0; | |
1750 | ||
1751 | /* overlay the FinderInfo to the correct pointer, and advance */ | |
1752 | finfo = (u_int8_t*)cp->c_finderinfo; | |
1753 | finfo = finfo + 16; | |
1754 | ||
1755 | /* | |
1756 | * FinderInfo is written out in big endian... make sure to convert it to host | |
1757 | * native before we use it. | |
1758 | */ | |
1759 | if (S_ISREG(cp->c_attr.ca_mode)) { | |
1760 | struct FndrExtendedFileInfo *extinfo = (struct FndrExtendedFileInfo *)finfo; | |
1761 | gcount = OSSwapBigToHostInt32 (extinfo->write_gen_counter); | |
1762 | ||
1763 | /* | |
1764 | * Is it zero? File might originate in 10.8 or earlier. We lie and bump it to 1, | |
1765 | * since the incrementer code is able to handle this case and will double-increment | |
1766 | * for us. | |
1767 | */ | |
1768 | if (gcount == 0) { | |
1769 | gcount++; | |
1770 | } | |
1771 | } | |
1772 | else { | |
1773 | gcount = 0; | |
1774 | } | |
1775 | ||
1776 | return gcount; | |
1777 | } | |
1778 | ||
91447636 A |
1779 | /* |
1780 | * Touch cnode times based on c_touch_xxx flags | |
1781 | * | |
1782 | * cnode must be locked exclusive | |
1783 | * | |
1784 | * This will also update the volume modify time | |
1785 | */ | |
91447636 A |
1786 | void |
1787 | hfs_touchtimes(struct hfsmount *hfsmp, struct cnode* cp) | |
1788 | { | |
6d2010ae | 1789 | vfs_context_t ctx; |
2d21ac55 A |
1790 | /* don't modify times if volume is read-only */ |
1791 | if (hfsmp->hfs_flags & HFS_READ_ONLY) { | |
1792 | cp->c_touch_acctime = FALSE; | |
1793 | cp->c_touch_chgtime = FALSE; | |
1794 | cp->c_touch_modtime = FALSE; | |
6d2010ae | 1795 | return; |
2d21ac55 | 1796 | } |
39236c6e | 1797 | #if CONFIG_HFS_STD |
2d21ac55 | 1798 | else if (hfsmp->hfs_flags & HFS_STANDARD) { |
91447636 | 1799 | /* HFS Standard doesn't support access times */ |
91447636 | 1800 | cp->c_touch_acctime = FALSE; |
9bccf70c | 1801 | } |
39236c6e | 1802 | #endif |
9bccf70c | 1803 | |
6d2010ae | 1804 | ctx = vfs_context_current(); |
2d21ac55 A |
1805 | /* |
1806 | * Skip access time updates if: | |
1807 | * . MNT_NOATIME is set | |
1808 | * . a file system freeze is in progress | |
1809 | * . a file system resize is in progress | |
b0d623f7 | 1810 | * . the vnode associated with this cnode is marked for rapid aging |
2d21ac55 A |
1811 | */ |
1812 | if (cp->c_touch_acctime) { | |
1813 | if ((vfs_flags(hfsmp->hfs_mp) & MNT_NOATIME) || | |
1814 | (hfsmp->hfs_freezing_proc != NULL) || | |
b0d623f7 | 1815 | (hfsmp->hfs_flags & HFS_RESIZE_IN_PROGRESS) || |
6d2010ae A |
1816 | (cp->c_vp && ((vnode_israge(cp->c_vp) || (vfs_ctx_skipatime(ctx)))))) { |
1817 | ||
2d21ac55 | 1818 | cp->c_touch_acctime = FALSE; |
6d2010ae | 1819 | } |
2d21ac55 | 1820 | } |
6d2010ae A |
1821 | if (cp->c_touch_acctime || cp->c_touch_chgtime || |
1822 | cp->c_touch_modtime || (cp->c_flag & C_NEEDS_DATEADDED)) { | |
91447636 A |
1823 | struct timeval tv; |
1824 | int touchvol = 0; | |
9bccf70c | 1825 | |
91447636 A |
1826 | microtime(&tv); |
1827 | ||
1828 | if (cp->c_touch_acctime) { | |
1829 | cp->c_atime = tv.tv_sec; | |
9bccf70c | 1830 | /* |
91447636 A |
1831 | * When the access time is the only thing changing |
1832 | * then make sure its sufficiently newer before | |
1833 | * committing it to disk. | |
9bccf70c | 1834 | */ |
91447636 A |
1835 | if ((((u_int32_t)cp->c_atime - (u_int32_t)(cp)->c_attr.ca_atimeondisk) > |
1836 | ATIME_ONDISK_ACCURACY)) { | |
1837 | cp->c_flag |= C_MODIFIED; | |
1838 | } | |
1839 | cp->c_touch_acctime = FALSE; | |
1840 | } | |
1841 | if (cp->c_touch_modtime) { | |
1842 | cp->c_mtime = tv.tv_sec; | |
1843 | cp->c_touch_modtime = FALSE; | |
1844 | cp->c_flag |= C_MODIFIED; | |
1845 | touchvol = 1; | |
39236c6e | 1846 | #if CONFIG_HFS_STD |
9bccf70c | 1847 | /* |
91447636 | 1848 | * HFS dates that WE set must be adjusted for DST |
9bccf70c | 1849 | */ |
91447636 A |
1850 | if ((hfsmp->hfs_flags & HFS_STANDARD) && gTimeZone.tz_dsttime) { |
1851 | cp->c_mtime += 3600; | |
1852 | } | |
9bccf70c | 1853 | #endif |
91447636 A |
1854 | } |
1855 | if (cp->c_touch_chgtime) { | |
1856 | cp->c_ctime = tv.tv_sec; | |
1857 | cp->c_touch_chgtime = FALSE; | |
1858 | cp->c_flag |= C_MODIFIED; | |
1859 | touchvol = 1; | |
1860 | } | |
316670eb | 1861 | |
6d2010ae A |
1862 | if (cp->c_flag & C_NEEDS_DATEADDED) { |
1863 | hfs_write_dateadded (&(cp->c_attr), tv.tv_sec); | |
1864 | cp->c_flag |= C_MODIFIED; | |
1865 | /* untwiddle the bit */ | |
1866 | cp->c_flag &= ~C_NEEDS_DATEADDED; | |
1867 | touchvol = 1; | |
1868 | } | |
91447636 A |
1869 | |
1870 | /* Touch the volume modtime if needed */ | |
1871 | if (touchvol) { | |
2d21ac55 | 1872 | MarkVCBDirty(hfsmp); |
91447636 A |
1873 | HFSTOVCB(hfsmp)->vcbLsMod = tv.tv_sec; |
1874 | } | |
9bccf70c | 1875 | } |
91447636 A |
1876 | } |
1877 | ||
1878 | /* | |
1879 | * Lock a cnode. | |
1880 | */ | |
91447636 | 1881 | int |
39236c6e | 1882 | hfs_lock(struct cnode *cp, enum hfs_locktype locktype, enum hfs_lockflags flags) |
91447636 A |
1883 | { |
1884 | void * thread = current_thread(); | |
1885 | ||
2d21ac55 | 1886 | if (cp->c_lockowner == thread) { |
39236c6e | 1887 | /* Only the extents and bitmap files support lock recursion. */ |
2d21ac55 A |
1888 | if ((cp->c_fileid == kHFSExtentsFileID) || |
1889 | (cp->c_fileid == kHFSAllocationFileID)) { | |
1890 | cp->c_syslockcount++; | |
91447636 | 1891 | } else { |
2d21ac55 | 1892 | panic("hfs_lock: locking against myself!"); |
91447636 A |
1893 | } |
1894 | } else if (locktype == HFS_SHARED_LOCK) { | |
1895 | lck_rw_lock_shared(&cp->c_rwlock); | |
1896 | cp->c_lockowner = HFS_SHARED_OWNER; | |
2d21ac55 | 1897 | |
39236c6e | 1898 | } else { /* HFS_EXCLUSIVE_LOCK */ |
91447636 A |
1899 | lck_rw_lock_exclusive(&cp->c_rwlock); |
1900 | cp->c_lockowner = thread; | |
2d21ac55 | 1901 | |
39236c6e | 1902 | /* Only the extents and bitmap files support lock recursion. */ |
2d21ac55 A |
1903 | if ((cp->c_fileid == kHFSExtentsFileID) || |
1904 | (cp->c_fileid == kHFSAllocationFileID)) { | |
1905 | cp->c_syslockcount = 1; | |
1906 | } | |
1907 | } | |
1908 | ||
1909 | #ifdef HFS_CHECK_LOCK_ORDER | |
1910 | /* | |
1911 | * Regular cnodes (non-system files) cannot be locked | |
1912 | * while holding the journal lock or a system file lock. | |
1913 | */ | |
1914 | if (!(cp->c_desc.cd_flags & CD_ISMETA) && | |
1915 | ((cp->c_fileid > kHFSFirstUserCatalogNodeID) || (cp->c_fileid == kHFSRootFolderID))) { | |
1916 | vnode_t vp = NULLVP; | |
1917 | ||
1918 | /* Find corresponding vnode. */ | |
1919 | if (cp->c_vp != NULLVP && VTOC(cp->c_vp) == cp) { | |
1920 | vp = cp->c_vp; | |
1921 | } else if (cp->c_rsrc_vp != NULLVP && VTOC(cp->c_rsrc_vp) == cp) { | |
1922 | vp = cp->c_rsrc_vp; | |
1923 | } | |
1924 | if (vp != NULLVP) { | |
1925 | struct hfsmount *hfsmp = VTOHFS(vp); | |
1926 | ||
1927 | if (hfsmp->jnl && (journal_owner(hfsmp->jnl) == thread)) { | |
1928 | /* This will eventually be a panic here. */ | |
1929 | printf("hfs_lock: bad lock order (cnode after journal)\n"); | |
1930 | } | |
1931 | if (hfsmp->hfs_catalog_cp && hfsmp->hfs_catalog_cp->c_lockowner == thread) { | |
1932 | panic("hfs_lock: bad lock order (cnode after catalog)"); | |
1933 | } | |
1934 | if (hfsmp->hfs_attribute_cp && hfsmp->hfs_attribute_cp->c_lockowner == thread) { | |
1935 | panic("hfs_lock: bad lock order (cnode after attribute)"); | |
1936 | } | |
1937 | if (hfsmp->hfs_extents_cp && hfsmp->hfs_extents_cp->c_lockowner == thread) { | |
1938 | panic("hfs_lock: bad lock order (cnode after extents)"); | |
1939 | } | |
1940 | } | |
91447636 | 1941 | } |
2d21ac55 A |
1942 | #endif /* HFS_CHECK_LOCK_ORDER */ |
1943 | ||
55e303ae | 1944 | /* |
39236c6e A |
1945 | * Skip cnodes for regular files that no longer exist |
1946 | * (marked deleted, catalog entry gone). | |
55e303ae | 1947 | */ |
39236c6e | 1948 | if (((flags & HFS_LOCK_ALLOW_NOEXISTS) == 0) && |
91447636 A |
1949 | ((cp->c_desc.cd_flags & CD_ISMETA) == 0) && |
1950 | (cp->c_flag & C_NOEXISTS)) { | |
1951 | hfs_unlock(cp); | |
1952 | return (ENOENT); | |
1953 | } | |
1954 | return (0); | |
1955 | } | |
55e303ae | 1956 | |
91447636 A |
1957 | /* |
1958 | * Lock a pair of cnodes. | |
1959 | */ | |
91447636 | 1960 | int |
39236c6e | 1961 | hfs_lockpair(struct cnode *cp1, struct cnode *cp2, enum hfs_locktype locktype) |
91447636 A |
1962 | { |
1963 | struct cnode *first, *last; | |
1964 | int error; | |
1965 | ||
1966 | /* | |
1967 | * If cnodes match then just lock one. | |
1968 | */ | |
1969 | if (cp1 == cp2) { | |
39236c6e | 1970 | return hfs_lock(cp1, locktype, HFS_LOCK_DEFAULT); |
9bccf70c A |
1971 | } |
1972 | ||
91447636 | 1973 | /* |
2d21ac55 | 1974 | * Lock in cnode address order. |
91447636 | 1975 | */ |
2d21ac55 | 1976 | if (cp1 < cp2) { |
91447636 A |
1977 | first = cp1; |
1978 | last = cp2; | |
1979 | } else { | |
1980 | first = cp2; | |
1981 | last = cp1; | |
1982 | } | |
1983 | ||
39236c6e | 1984 | if ( (error = hfs_lock(first, locktype, HFS_LOCK_DEFAULT))) { |
91447636 A |
1985 | return (error); |
1986 | } | |
39236c6e | 1987 | if ( (error = hfs_lock(last, locktype, HFS_LOCK_DEFAULT))) { |
91447636 A |
1988 | hfs_unlock(first); |
1989 | return (error); | |
1990 | } | |
9bccf70c A |
1991 | return (0); |
1992 | } | |
1993 | ||
91447636 A |
1994 | /* |
1995 | * Check ordering of two cnodes. Return true if they are are in-order. | |
1996 | */ | |
1997 | static int | |
1998 | hfs_isordered(struct cnode *cp1, struct cnode *cp2) | |
1999 | { | |
2000 | if (cp1 == cp2) | |
2001 | return (0); | |
2002 | if (cp1 == NULL || cp2 == (struct cnode *)0xffffffff) | |
2003 | return (1); | |
2004 | if (cp2 == NULL || cp1 == (struct cnode *)0xffffffff) | |
2005 | return (0); | |
2d21ac55 A |
2006 | /* |
2007 | * Locking order is cnode address order. | |
2008 | */ | |
2009 | return (cp1 < cp2); | |
91447636 A |
2010 | } |
2011 | ||
2012 | /* | |
2013 | * Acquire 4 cnode locks. | |
2d21ac55 | 2014 | * - locked in cnode address order (lesser address first). |
91447636 A |
2015 | * - all or none of the locks are taken |
2016 | * - only one lock taken per cnode (dup cnodes are skipped) | |
2017 | * - some of the cnode pointers may be null | |
2018 | */ | |
91447636 A |
2019 | int |
2020 | hfs_lockfour(struct cnode *cp1, struct cnode *cp2, struct cnode *cp3, | |
39236c6e | 2021 | struct cnode *cp4, enum hfs_locktype locktype, struct cnode **error_cnode) |
91447636 A |
2022 | { |
2023 | struct cnode * a[3]; | |
2024 | struct cnode * b[3]; | |
2025 | struct cnode * list[4]; | |
2026 | struct cnode * tmp; | |
2027 | int i, j, k; | |
2028 | int error; | |
b0d623f7 A |
2029 | if (error_cnode) { |
2030 | *error_cnode = NULL; | |
2031 | } | |
91447636 A |
2032 | |
2033 | if (hfs_isordered(cp1, cp2)) { | |
2034 | a[0] = cp1; a[1] = cp2; | |
2035 | } else { | |
2036 | a[0] = cp2; a[1] = cp1; | |
2037 | } | |
2038 | if (hfs_isordered(cp3, cp4)) { | |
2039 | b[0] = cp3; b[1] = cp4; | |
2040 | } else { | |
2041 | b[0] = cp4; b[1] = cp3; | |
2042 | } | |
2043 | a[2] = (struct cnode *)0xffffffff; /* sentinel value */ | |
2044 | b[2] = (struct cnode *)0xffffffff; /* sentinel value */ | |
2045 | ||
2046 | /* | |
2047 | * Build the lock list, skipping over duplicates | |
2048 | */ | |
2049 | for (i = 0, j = 0, k = 0; (i < 2 || j < 2); ) { | |
2050 | tmp = hfs_isordered(a[i], b[j]) ? a[i++] : b[j++]; | |
2051 | if (k == 0 || tmp != list[k-1]) | |
2052 | list[k++] = tmp; | |
2053 | } | |
2054 | ||
2055 | /* | |
2056 | * Now we can lock using list[0 - k]. | |
2057 | * Skip over NULL entries. | |
2058 | */ | |
2059 | for (i = 0; i < k; ++i) { | |
2060 | if (list[i]) | |
39236c6e | 2061 | if ((error = hfs_lock(list[i], locktype, HFS_LOCK_DEFAULT))) { |
b0d623f7 A |
2062 | /* Only stuff error_cnode if requested */ |
2063 | if (error_cnode) { | |
2064 | *error_cnode = list[i]; | |
2065 | } | |
91447636 A |
2066 | /* Drop any locks we acquired. */ |
2067 | while (--i >= 0) { | |
2068 | if (list[i]) | |
2069 | hfs_unlock(list[i]); | |
2070 | } | |
2071 | return (error); | |
2072 | } | |
2073 | } | |
2074 | return (0); | |
2075 | } | |
2076 | ||
2077 | ||
2078 | /* | |
2079 | * Unlock a cnode. | |
2080 | */ | |
91447636 A |
2081 | void |
2082 | hfs_unlock(struct cnode *cp) | |
2083 | { | |
2084 | vnode_t rvp = NULLVP; | |
0c530ab8 | 2085 | vnode_t vp = NULLVP; |
2d21ac55 A |
2086 | u_int32_t c_flag; |
2087 | void *lockowner; | |
91447636 | 2088 | |
2d21ac55 A |
2089 | /* |
2090 | * Only the extents and bitmap file's support lock recursion. | |
2091 | */ | |
2092 | if ((cp->c_fileid == kHFSExtentsFileID) || | |
2093 | (cp->c_fileid == kHFSAllocationFileID)) { | |
2094 | if (--cp->c_syslockcount > 0) { | |
2095 | return; | |
91447636 A |
2096 | } |
2097 | } | |
0c530ab8 A |
2098 | c_flag = cp->c_flag; |
2099 | cp->c_flag &= ~(C_NEED_DVNODE_PUT | C_NEED_RVNODE_PUT | C_NEED_DATA_SETSIZE | C_NEED_RSRC_SETSIZE); | |
2d21ac55 | 2100 | |
0c530ab8 | 2101 | if (c_flag & (C_NEED_DVNODE_PUT | C_NEED_DATA_SETSIZE)) { |
2d21ac55 | 2102 | vp = cp->c_vp; |
0c530ab8 A |
2103 | } |
2104 | if (c_flag & (C_NEED_RVNODE_PUT | C_NEED_RSRC_SETSIZE)) { | |
2d21ac55 | 2105 | rvp = cp->c_rsrc_vp; |
0c530ab8 | 2106 | } |
6601e61a | 2107 | |
2d21ac55 A |
2108 | lockowner = cp->c_lockowner; |
2109 | if (lockowner == current_thread()) { | |
2110 | cp->c_lockowner = NULL; | |
2111 | lck_rw_unlock_exclusive(&cp->c_rwlock); | |
2112 | } else { | |
2113 | lck_rw_unlock_shared(&cp->c_rwlock); | |
2114 | } | |
91447636 | 2115 | |
0c530ab8 A |
2116 | /* Perform any vnode post processing after cnode lock is dropped. */ |
2117 | if (vp) { | |
2118 | if (c_flag & C_NEED_DATA_SETSIZE) | |
2119 | ubc_setsize(vp, 0); | |
2120 | if (c_flag & C_NEED_DVNODE_PUT) | |
2121 | vnode_put(vp); | |
2122 | } | |
2123 | if (rvp) { | |
2124 | if (c_flag & C_NEED_RSRC_SETSIZE) | |
2125 | ubc_setsize(rvp, 0); | |
2126 | if (c_flag & C_NEED_RVNODE_PUT) | |
2d21ac55 | 2127 | vnode_put(rvp); |
0c530ab8 | 2128 | } |
91447636 A |
2129 | } |
2130 | ||
2131 | /* | |
2132 | * Unlock a pair of cnodes. | |
2133 | */ | |
91447636 A |
2134 | void |
2135 | hfs_unlockpair(struct cnode *cp1, struct cnode *cp2) | |
2136 | { | |
2137 | hfs_unlock(cp1); | |
2138 | if (cp2 != cp1) | |
2139 | hfs_unlock(cp2); | |
2140 | } | |
2141 | ||
2142 | /* | |
2143 | * Unlock a group of cnodes. | |
2144 | */ | |
91447636 A |
2145 | void |
2146 | hfs_unlockfour(struct cnode *cp1, struct cnode *cp2, struct cnode *cp3, struct cnode *cp4) | |
2147 | { | |
2148 | struct cnode * list[4]; | |
2149 | int i, k = 0; | |
2150 | ||
2151 | if (cp1) { | |
2152 | hfs_unlock(cp1); | |
2153 | list[k++] = cp1; | |
2154 | } | |
2155 | if (cp2) { | |
2156 | for (i = 0; i < k; ++i) { | |
2157 | if (list[i] == cp2) | |
2158 | goto skip1; | |
2159 | } | |
2160 | hfs_unlock(cp2); | |
2161 | list[k++] = cp2; | |
2162 | } | |
2163 | skip1: | |
2164 | if (cp3) { | |
2165 | for (i = 0; i < k; ++i) { | |
2166 | if (list[i] == cp3) | |
2167 | goto skip2; | |
2168 | } | |
2169 | hfs_unlock(cp3); | |
2170 | list[k++] = cp3; | |
2171 | } | |
2172 | skip2: | |
2173 | if (cp4) { | |
2174 | for (i = 0; i < k; ++i) { | |
2175 | if (list[i] == cp4) | |
2176 | return; | |
2177 | } | |
2178 | hfs_unlock(cp4); | |
2179 | } | |
2180 | } | |
2181 | ||
2182 | ||
2183 | /* | |
2184 | * Protect a cnode against a truncation. | |
2185 | * | |
2186 | * Used mainly by read/write since they don't hold the | |
2187 | * cnode lock across calls to the cluster layer. | |
2188 | * | |
2189 | * The process doing a truncation must take the lock | |
2190 | * exclusive. The read/write processes can take it | |
6d2010ae A |
2191 | * shared. The locktype argument is the same as supplied to |
2192 | * hfs_lock. | |
91447636 | 2193 | */ |
91447636 | 2194 | void |
39236c6e | 2195 | hfs_lock_truncate(struct cnode *cp, enum hfs_locktype locktype, enum hfs_lockflags flags) |
91447636 | 2196 | { |
6d2010ae | 2197 | void * thread = current_thread(); |
91447636 | 2198 | |
6d2010ae A |
2199 | if (cp->c_truncatelockowner == thread) { |
2200 | /* | |
39236c6e A |
2201 | * Ignore grabbing the lock if it the current thread already |
2202 | * holds exclusive lock. | |
6d2010ae A |
2203 | * |
2204 | * This is needed on the hfs_vnop_pagein path where we need to ensure | |
2205 | * the file does not change sizes while we are paging in. However, | |
2206 | * we may already hold the lock exclusive due to another | |
2207 | * VNOP from earlier in the call stack. So if we already hold | |
2208 | * the truncate lock exclusive, allow it to proceed, but ONLY if | |
2209 | * it's in the recursive case. | |
2210 | */ | |
39236c6e | 2211 | if ((flags & HFS_LOCK_SKIP_IF_EXCLUSIVE) == 0) { |
6d2010ae A |
2212 | panic("hfs_lock_truncate: cnode %p locked!", cp); |
2213 | } | |
39236c6e | 2214 | } else if (locktype == HFS_SHARED_LOCK) { |
91447636 | 2215 | lck_rw_lock_shared(&cp->c_truncatelock); |
6d2010ae | 2216 | cp->c_truncatelockowner = HFS_SHARED_OWNER; |
39236c6e | 2217 | } else { /* HFS_EXCLUSIVE_LOCK */ |
6d2010ae A |
2218 | lck_rw_lock_exclusive(&cp->c_truncatelock); |
2219 | cp->c_truncatelockowner = thread; | |
2220 | } | |
91447636 A |
2221 | } |
2222 | ||
6d2010ae A |
2223 | |
2224 | /* | |
2225 | * Attempt to get the truncate lock. If it cannot be acquired, error out. | |
2226 | * This function is needed in the degenerate hfs_vnop_pagein during force unmount | |
2227 | * case. To prevent deadlocks while a VM copy object is moving pages, HFS vnop pagein will | |
2228 | * temporarily need to disable V2 semantics. | |
2229 | */ | |
39236c6e A |
2230 | int hfs_try_trunclock (struct cnode *cp, enum hfs_locktype locktype, enum hfs_lockflags flags) |
2231 | { | |
6d2010ae A |
2232 | void * thread = current_thread(); |
2233 | boolean_t didlock = false; | |
2234 | ||
2235 | if (cp->c_truncatelockowner == thread) { | |
2236 | /* | |
39236c6e A |
2237 | * Ignore grabbing the lock if the current thread already |
2238 | * holds exclusive lock. | |
6d2010ae A |
2239 | * |
2240 | * This is needed on the hfs_vnop_pagein path where we need to ensure | |
2241 | * the file does not change sizes while we are paging in. However, | |
2242 | * we may already hold the lock exclusive due to another | |
2243 | * VNOP from earlier in the call stack. So if we already hold | |
2244 | * the truncate lock exclusive, allow it to proceed, but ONLY if | |
2245 | * it's in the recursive case. | |
2246 | */ | |
39236c6e | 2247 | if ((flags & HFS_LOCK_SKIP_IF_EXCLUSIVE) == 0) { |
6d2010ae A |
2248 | panic("hfs_lock_truncate: cnode %p locked!", cp); |
2249 | } | |
39236c6e | 2250 | } else if (locktype == HFS_SHARED_LOCK) { |
6d2010ae A |
2251 | didlock = lck_rw_try_lock(&cp->c_truncatelock, LCK_RW_TYPE_SHARED); |
2252 | if (didlock) { | |
2253 | cp->c_truncatelockowner = HFS_SHARED_OWNER; | |
2254 | } | |
39236c6e | 2255 | } else { /* HFS_EXCLUSIVE_LOCK */ |
6d2010ae A |
2256 | didlock = lck_rw_try_lock (&cp->c_truncatelock, LCK_RW_TYPE_EXCLUSIVE); |
2257 | if (didlock) { | |
2258 | cp->c_truncatelockowner = thread; | |
2259 | } | |
2260 | } | |
2261 | ||
2262 | return didlock; | |
91447636 A |
2263 | } |
2264 | ||
2265 | ||
6d2010ae A |
2266 | /* |
2267 | * Unlock the truncate lock, which protects against size changes. | |
2268 | * | |
39236c6e A |
2269 | * If HFS_LOCK_SKIP_IF_EXCLUSIVE flag was set, it means that a previous |
2270 | * hfs_lock_truncate() might have skipped grabbing a lock because | |
2271 | * the current thread was already holding the lock exclusive and | |
2272 | * we may need to return from this function without actually unlocking | |
2273 | * the truncate lock. | |
6d2010ae A |
2274 | */ |
2275 | void | |
39236c6e | 2276 | hfs_unlock_truncate(struct cnode *cp, enum hfs_lockflags flags) |
6d2010ae A |
2277 | { |
2278 | void *thread = current_thread(); | |
91447636 | 2279 | |
6d2010ae | 2280 | /* |
39236c6e A |
2281 | * If HFS_LOCK_SKIP_IF_EXCLUSIVE is set in the flags AND the current |
2282 | * lock owner of the truncate lock is our current thread, then | |
2283 | * we must have skipped taking the lock earlier by in | |
2284 | * hfs_lock_truncate() by setting HFS_LOCK_SKIP_IF_EXCLUSIVE in the | |
2285 | * flags (as the current thread was current lock owner). | |
6d2010ae | 2286 | * |
39236c6e A |
2287 | * If HFS_LOCK_SKIP_IF_EXCLUSIVE is not set (most of the time) then |
2288 | * we check the lockowner field to infer whether the lock was taken | |
2289 | * exclusively or shared in order to know what underlying lock | |
2290 | * routine to call. | |
6d2010ae | 2291 | */ |
39236c6e | 2292 | if (flags & HFS_LOCK_SKIP_IF_EXCLUSIVE) { |
6d2010ae A |
2293 | if (cp->c_truncatelockowner == thread) { |
2294 | return; | |
2295 | } | |
2296 | } | |
91447636 | 2297 | |
6d2010ae A |
2298 | /* HFS_LOCK_EXCLUSIVE */ |
2299 | if (thread == cp->c_truncatelockowner) { | |
2300 | cp->c_truncatelockowner = NULL; | |
2301 | lck_rw_unlock_exclusive(&cp->c_truncatelock); | |
39236c6e | 2302 | } else { /* HFS_LOCK_SHARED */ |
6d2010ae A |
2303 | lck_rw_unlock_shared(&cp->c_truncatelock); |
2304 | } | |
2305 | } |