]> git.saurik.com Git - apple/xnu.git/blame - tools/tests/affinity/pool.c
xnu-3789.1.32.tar.gz
[apple/xnu.git] / tools / tests / affinity / pool.c
CommitLineData
2d21ac55 1#include <AvailabilityMacros.h>
fe8ab488 2#include <mach/thread_policy.h>
2d21ac55
A
3#include <mach/mach.h>
4#include <mach/mach_error.h>
5#include <mach/mach_time.h>
6#include <pthread.h>
7#include <sys/queue.h>
8#include <stdio.h>
9#include <stdlib.h>
10#include <string.h>
11#include <unistd.h>
12#include <err.h>
13
14/*
15 * Pool is another multithreaded test/benchmarking program to evaluate
16 * affinity set placement in Leopard.
17 *
18 * The basic picture is:
19 *
20 * -> producer -- -> consumer --
21 * free / \ work / \
22 * -> queue -- ... --> queue -- --
23 * | \ / \ / |
24 * | -> producer -- -> consumer -- |
25 * ---------------------------------------------------------------
26 *
27 * <---------- "stage" ---------> <---------- "stage" --------->
28 *
29 * There are a series of work stages. Each stage has an input and an output
30 * queue and multiple threads. The first stage is the producer and subsequent
31 * stages are consumers. By defuaut there are 2 stages. There are N producer
32 * and M consumer threads. The are B buffers per producer threads circulating
33 * through the system.
34 *
35 * When affinity is enabled, each producer thread is tagged with an affinity tag
36 * 1 .. N - so each runs on a different L2 cache. When a buffer is queued to
37 * the work queue it is tagged with this affinity. When a consumer dequeues a
38 * work item, it sets its affinity to this tag. Hence consumer threads migrate
39 * to the same affinity set where the data was produced.
40 *
41 * Buffer management uses pthread mutex/condition variables. A thread blocks
42 * when no buffer is available on a queue and it is signaled when a buffer
43 * is placed on an empty queue. Queues are tailq'a a la <sys/queue.h>.
44 * The queue management is centralized in a single routine: what queues to
45 * use as input and output and what function to call for processing is
46 * data-driven.
47 */
48
49pthread_mutex_t funnel;
50pthread_cond_t barrier;
51
52uint64_t timer;
53int threads;
54int threads_ready = 0;
55
56int iterations = 10000;
57boolean_t affinity = FALSE;
58boolean_t halting = FALSE;
59int verbosity = 1;
60
61typedef struct work {
62 TAILQ_ENTRY(work) link;
63 int *data;
64 int isize;
65 int tag;
66 int number;
67} work_t;
68
69/*
70 * A work queue, complete with pthread objects for its management
71 */
72typedef struct work_queue {
73 pthread_mutex_t mtx;
74 pthread_cond_t cnd;
75 TAILQ_HEAD(, work) queue;
76 unsigned int waiters;
77} work_queue_t;
78
79/* Worker functions take a integer array and size */
80typedef void (worker_fn_t)(int *, int);
81
82/* This struct controls the function of a stage */
83#define WORKERS_MAX 10
84typedef struct {
85 int stagenum;
86 char *name;
87 worker_fn_t *fn;
88 work_queue_t *input;
89 work_queue_t *output;
90 work_queue_t bufq;
91 int work_todo;
92} stage_info_t;
93
94/* This defines a worker thread */
95typedef struct worker_info {
96 int setnum;
97 stage_info_t *stage;
98 pthread_t thread;
99} worker_info_t;
100
101#define DBG(x...) do { \
102 if (verbosity > 1) { \
103 pthread_mutex_lock(&funnel); \
104 printf(x); \
105 pthread_mutex_unlock(&funnel); \
106 } \
107} while (0)
108
109#define mutter(x...) do { \
110 if (verbosity > 0) { \
111 printf(x); \
112 } \
113} while (0)
114
115#define s_if_plural(x) (((x) > 1) ? "s" : "")
116
117static void
118usage()
119{
120 fprintf(stderr,
2d21ac55
A
121 "usage: pool [-a] Turn affinity on (off)\n"
122 " [-b B] Number of buffers per producer (2)\n"
2d21ac55
A
123 " [-i I] Number of buffers to produce (10000)\n"
124 " [-s S] Number of stages (2)\n"
125 " [-p P] Number of pages per buffer (256=1MB)]\n"
126 " [-w] Consumer writes data\n"
127 " [-v V] Verbosity level 0..2 (1)\n"
128 " [N [M]] Number of producer and consumers (2)\n"
129 );
130 exit(1);
131}
132
133/* Trivial producer: write to each byte */
134void
135writer_fn(int *data, int isize)
136{
137 int i;
138
139 for (i = 0; i < isize; i++) {
140 data[i] = i;
141 }
142}
143
144/* Trivial consumer: read each byte */
145void
146reader_fn(int *data, int isize)
147{
148 int i;
149 int datum;
150
151 for (i = 0; i < isize; i++) {
152 datum = data[i];
153 }
154}
155
156/* Consumer reading and writing the buffer */
157void
158reader_writer_fn(int *data, int isize)
159{
160 int i;
161
162 for (i = 0; i < isize; i++) {
163 data[i] += 1;
164 }
165}
166
167void
168affinity_set(int tag)
169{
2d21ac55
A
170 kern_return_t ret;
171 thread_affinity_policy_data_t policy;
172 if (affinity) {
173 policy.affinity_tag = tag;
174 ret = thread_policy_set(
175 mach_thread_self(), THREAD_AFFINITY_POLICY,
176 (thread_policy_t) &policy,
177 THREAD_AFFINITY_POLICY_COUNT);
178 if (ret != KERN_SUCCESS)
179 printf("thread_policy_set(THREAD_AFFINITY_POLICY) returned %d\n", ret);
180 }
2d21ac55
A
181}
182
183/*
184 * This is the central function for every thread.
185 * For each invocation, its role is ets by (a pointer to) a stage_info_t.
186 */
187void *
188manager_fn(void *arg)
189{
190 worker_info_t *wp = (worker_info_t *) arg;
191 stage_info_t *sp = wp->stage;
192 boolean_t is_producer = (sp->stagenum == 0);
193 long iteration = 0;
194 int current_tag = 0;
195
2d21ac55
A
196 kern_return_t ret;
197 thread_extended_policy_data_t epolicy;
198 epolicy.timeshare = FALSE;
199 ret = thread_policy_set(
200 mach_thread_self(), THREAD_EXTENDED_POLICY,
201 (thread_policy_t) &epolicy,
202 THREAD_EXTENDED_POLICY_COUNT);
203 if (ret != KERN_SUCCESS)
204 printf("thread_policy_set(THREAD_EXTENDED_POLICY) returned %d\n", ret);
205
2d21ac55
A
206 /*
207 * If we're using affinity sets and we're a producer
208 * set our tag to by our thread set number.
209 */
210 if (affinity && is_producer) {
211 affinity_set(wp->setnum);
212 current_tag = wp->setnum;
213 }
214
215 DBG("Starting %s %d, stage: %d\n", sp->name, wp->setnum, sp->stagenum);
216
217 /*
218 * Start barrier.
219 * The tets thread to get here releases everyone and starts the timer.
220 */
221 pthread_mutex_lock(&funnel);
222 threads_ready++;
223 if (threads_ready == threads) {
224 pthread_mutex_unlock(&funnel);
225 if (halting) {
226 printf(" all threads ready for process %d, "
227 "hit any key to start", getpid());
228 fflush(stdout);
229 (void) getchar();
230 }
231 pthread_cond_broadcast(&barrier);
232 timer = mach_absolute_time();
233 } else {
234 pthread_cond_wait(&barrier, &funnel);
235 pthread_mutex_unlock(&funnel);
236 }
237
238 do {
239 work_t *workp;
240
241 /*
242 * Get a buffer from the input queue.
243 * Block if none.
244 * Quit if all work done.
245 */
246 pthread_mutex_lock(&sp->input->mtx);
247 while (1) {
248 if (sp->work_todo == 0) {
249 pthread_mutex_unlock(&sp->input->mtx);
250 goto out;
251 }
252 workp = TAILQ_FIRST(&(sp->input->queue));
253 if (workp != NULL)
254 break;
255 DBG(" %s[%d,%d] todo %d waiting for buffer\n",
256 sp->name, wp->setnum, sp->stagenum, sp->work_todo);
257 sp->input->waiters++;
258 pthread_cond_wait(&sp->input->cnd, &sp->input->mtx);
259 sp->input->waiters--;
260 }
261 TAILQ_REMOVE(&(sp->input->queue), workp, link);
262 iteration = sp->work_todo--;
263 pthread_mutex_unlock(&sp->input->mtx);
264
265 if (is_producer) {
266 workp->number = iteration;
267 workp->tag = wp->setnum;
268 } else {
269 if (affinity && current_tag != workp->tag) {
270 affinity_set(workp->tag);
271 current_tag = workp->tag;
272 }
273 }
274
275 DBG(" %s[%d,%d] todo %d work %p data %p\n",
276 sp->name, wp->setnum, sp->stagenum, iteration, workp, workp->data);
277
278 /* Do our stuff with the buffer */
279 (void) sp->fn(workp->data, workp->isize);
280
281 /*
282 * Place the buffer on the input queue of the next stage.
283 * Signal waiters if required.
284 */
285 pthread_mutex_lock(&sp->output->mtx);
286 TAILQ_INSERT_TAIL(&(sp->output->queue), workp, link);
287 if (sp->output->waiters) {
288 DBG(" %s[%d,%d] todo %d signaling work\n",
289 sp->name, wp->setnum, sp->stagenum, iteration);
290 pthread_cond_signal(&sp->output->cnd);
291 }
292 pthread_mutex_unlock(&sp->output->mtx);
293
294 } while (1);
295
296out:
297 pthread_cond_broadcast(&sp->output->cnd);
298
299 DBG("Ending %s[%d,%d]\n", sp->name, wp->setnum, sp->stagenum);
300
301 return (void *) iteration;
302}
303
304void (*producer_fnp)(int *data, int isize) = &writer_fn;
305void (*consumer_fnp)(int *data, int isize) = &reader_fn;
306
307int
308main(int argc, char *argv[])
309{
310 int i;
311 int j;
312 int k;
313 int pages = 256; /* 1MB */
314 int buffers = 2;
315 int producers = 2;
316 int consumers = 2;
317 int stages = 2;
318 int *status;
319 stage_info_t *stage_info;
320 stage_info_t *sp;
321 worker_info_t *worker_info;
322 worker_info_t *wp;
323 kern_return_t ret;
324 int c;
325
326 /* Do switch parsing: */
327 while ((c = getopt (argc, argv, "ab:i:p:s:twv:")) != -1) {
328 switch (c) {
329 case 'a':
2d21ac55
A
330 affinity = !affinity;
331 break;
2d21ac55
A
332 case 'b':
333 buffers = atoi(optarg);
334 break;
335 case 'i':
336 iterations = atoi(optarg);
337 break;
338 case 'p':
339 pages = atoi(optarg);
340 break;
341 case 's':
342 stages = atoi(optarg);
343 if (stages >= WORKERS_MAX)
344 usage();
345 break;
346 case 't':
347 halting = TRUE;
348 break;
349 case 'w':
350 consumer_fnp = &reader_writer_fn;
351 break;
352 case 'v':
353 verbosity = atoi(optarg);
354 break;
355 case 'h':
356 case '?':
357 default:
358 usage();
359 }
360 }
361 argc -= optind; argv += optind;
362 if (argc > 0)
363 producers = atoi(*argv);
364 argc--; argv++;
365 if (argc > 0)
366 consumers = atoi(*argv);
367
368 pthread_mutex_init(&funnel, NULL);
369 pthread_cond_init(&barrier, NULL);
370
371 /*
372 * Fire up the worker threads.
373 */
374 threads = consumers * (stages - 1) + producers;
375 mutter("Launching %d producer%s with %d stage%s of %d consumer%s\n"
376 " with %saffinity, consumer reads%s data\n",
377 producers, s_if_plural(producers),
378 stages - 1, s_if_plural(stages - 1),
379 consumers, s_if_plural(consumers),
380 affinity? "": "no ",
381 (consumer_fnp == &reader_writer_fn)? " and writes" : "");
382 if (pages < 256)
383 mutter(" %dkB bytes per buffer, ", pages * 4);
384 else
385 mutter(" %dMB bytes per buffer, ", pages / 256);
386 mutter("%d buffer%s per producer ",
387 buffers, s_if_plural(buffers));
388 if (buffers * pages < 256)
389 mutter("(total %dkB)\n", buffers * pages * 4);
390 else
391 mutter("(total %dMB)\n", buffers * pages / 256);
392 mutter(" processing %d buffer%s...\n",
393 iterations, s_if_plural(iterations));
394
395 stage_info = (stage_info_t *) malloc(stages * sizeof(stage_info_t));
396 worker_info = (worker_info_t *) malloc(threads * sizeof(worker_info_t));
397
398 /* Set up the queue for the workers of this thread set: */
399 for (i = 0; i < stages; i++) {
400 sp = &stage_info[i];
401 sp->stagenum = i;
402 pthread_mutex_init(&sp->bufq.mtx, NULL);
403 pthread_cond_init(&sp->bufq.cnd, NULL);
404 TAILQ_INIT(&sp->bufq.queue);
405 sp->bufq.waiters = 0;
406 if (i == 0) {
407 sp->fn = producer_fnp;
408 sp->name = "producer";
409 } else {
410 sp->fn = consumer_fnp;
411 sp->name = "consumer";
412 }
413 sp->input = &sp->bufq;
414 sp->output = &stage_info[(i + 1) % stages].bufq;
415 stage_info[i].work_todo = iterations;
416 }
417
418 /* Create the producers */
419 for (i = 0; i < producers; i++) {
420 work_t *work_array;
421 int *data;
422 int isize;
423
424 isize = pages * 4096 / sizeof(int);
425 data = (int *) malloc(buffers * pages * 4096);
426
427 /* Set up the empty work buffers */
428 work_array = (work_t *) malloc(buffers * sizeof(work_t));
429 for (j = 0; j < buffers; j++) {
430 work_array[j].data = data + (isize * j);
431 work_array[j].isize = isize;
432 work_array[j].tag = 0;
433 TAILQ_INSERT_TAIL(&stage_info[0].bufq.queue, &work_array[j], link);
434 DBG(" empty work item %p for data %p\n",
435 &work_array[j], work_array[j].data);
436 }
437 wp = &worker_info[i];
438 wp->setnum = i + 1;
439 wp->stage = &stage_info[0];
440 if (ret = pthread_create(&wp->thread,
441 NULL,
442 &manager_fn,
443 (void *) wp))
444 err(1, "pthread_create %d,%d", 0, i);
445 }
446
447 /* Create consumers */
448 for (i = 1; i < stages; i++) {
449 for (j = 0; j < consumers; j++) {
450 wp = &worker_info[producers + (consumers*(i-1)) + j];
451 wp->setnum = j + 1;
452 wp->stage = &stage_info[i];
453 if (ret = pthread_create(&wp->thread,
454 NULL,
455 &manager_fn,
456 (void *) wp))
457 err(1, "pthread_create %d,%d", i, j);
458 }
459 }
460
461 /*
462 * We sit back anf wait for the slaves to finish.
463 */
464 for (k = 0; k < threads; k++) {
465 int i;
466 int j;
467
468 wp = &worker_info[k];
469 if (k < producers) {
470 i = 0;
471 j = k;
472 } else {
473 i = (k - producers) / consumers;
474 j = (k - producers) % consumers;
475 }
476 if(ret = pthread_join(wp->thread, (void **)&status))
477 err(1, "pthread_join %d,%d", i, j);
478 DBG("Thread %d,%d status %d\n", i, j, status);
479 }
480
481 /*
482 * See how long the work took.
483 */
484 timer = mach_absolute_time() - timer;
485 timer = timer / 1000000ULL;
486 printf("%d.%03d seconds elapsed.\n",
487 (int) (timer/1000ULL), (int) (timer % 1000ULL));
488
489 return 0;
490}