]> git.saurik.com Git - apple/xnu.git/blame - bsd/kern/ubc_subr.c
xnu-3789.1.32.tar.gz
[apple/xnu.git] / bsd / kern / ubc_subr.c
CommitLineData
1c79356b 1/*
fe8ab488 2 * Copyright (c) 1999-2014 Apple Inc. All rights reserved.
1c79356b 3 *
2d21ac55 4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
1c79356b 5 *
2d21ac55
A
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
8f6c56a5 14 *
2d21ac55
A
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
8f6c56a5
A
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
2d21ac55
A
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
8f6c56a5 25 *
2d21ac55 26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
1c79356b
A
27 */
28/*
29 * File: ubc_subr.c
30 * Author: Umesh Vaishampayan [umeshv@apple.com]
31 * 05-Aug-1999 umeshv Created.
32 *
33 * Functions related to Unified Buffer cache.
34 *
0b4e3aa0
A
35 * Caller of UBC functions MUST have a valid reference on the vnode.
36 *
1c79356b
A
37 */
38
1c79356b
A
39#include <sys/types.h>
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/lock.h>
91447636
A
43#include <sys/mman.h>
44#include <sys/mount_internal.h>
45#include <sys/vnode_internal.h>
46#include <sys/ubc_internal.h>
1c79356b 47#include <sys/ucred.h>
91447636
A
48#include <sys/proc_internal.h>
49#include <sys/kauth.h>
1c79356b 50#include <sys/buf.h>
13fec989 51#include <sys/user.h>
2d21ac55 52#include <sys/codesign.h>
fe8ab488
A
53#include <sys/codedir_internal.h>
54#include <sys/fsevents.h>
c18c124e 55#include <sys/fcntl.h>
1c79356b
A
56
57#include <mach/mach_types.h>
58#include <mach/memory_object_types.h>
91447636
A
59#include <mach/memory_object_control.h>
60#include <mach/vm_map.h>
b0d623f7 61#include <mach/mach_vm.h>
91447636 62#include <mach/upl.h>
1c79356b 63
91447636 64#include <kern/kern_types.h>
2d21ac55 65#include <kern/kalloc.h>
1c79356b 66#include <kern/zalloc.h>
13fec989 67#include <kern/thread.h>
91447636
A
68#include <vm/vm_kern.h>
69#include <vm/vm_protos.h> /* last */
1c79356b 70
2d21ac55 71#include <libkern/crypto/sha1.h>
3e170ce0 72#include <libkern/crypto/sha2.h>
39236c6e
A
73#include <libkern/libkern.h>
74
593a1d5f 75#include <security/mac_framework.h>
fe8ab488 76#include <stdbool.h>
593a1d5f 77
2d21ac55
A
78/* XXX These should be in a BSD accessible Mach header, but aren't. */
79extern kern_return_t memory_object_pages_resident(memory_object_control_t,
80 boolean_t *);
81extern kern_return_t memory_object_signed(memory_object_control_t control,
82 boolean_t is_signed);
6d2010ae 83extern boolean_t memory_object_is_slid(memory_object_control_t control);
39236c6e 84extern boolean_t memory_object_is_signed(memory_object_control_t);
6d2010ae 85
2d21ac55
A
86extern void Debugger(const char *message);
87
88
89/* XXX no one uses this interface! */
90kern_return_t ubc_page_op_with_control(
91 memory_object_control_t control,
92 off_t f_offset,
93 int ops,
94 ppnum_t *phys_entryp,
95 int *flagsp);
96
97
1c79356b
A
98#if DIAGNOSTIC
99#if defined(assert)
b0d623f7 100#undef assert
1c79356b
A
101#endif
102#define assert(cond) \
2d21ac55 103 ((void) ((cond) ? 0 : panic("Assert failed: %s", # cond)))
1c79356b
A
104#else
105#include <kern/assert.h>
106#endif /* DIAGNOSTIC */
107
2d21ac55 108static int ubc_info_init_internal(struct vnode *vp, int withfsize, off_t filesize);
0c530ab8 109static int ubc_umcallback(vnode_t, void *);
0c530ab8 110static int ubc_msync_internal(vnode_t, off_t, off_t, off_t *, int, int *);
2d21ac55 111static void ubc_cs_free(struct ubc_info *uip);
b4c24cb9 112
39037602
A
113static boolean_t ubc_cs_supports_multilevel_hash(struct cs_blob *blob);
114static void ubc_cs_convert_to_multilevel_hash(struct cs_blob *blob);
115
91447636 116struct zone *ubc_info_zone;
fe8ab488 117static uint32_t cs_blob_generation_count = 1;
2d21ac55
A
118
119/*
120 * CODESIGNING
121 * Routines to navigate code signing data structures in the kernel...
122 */
b0d623f7
A
123
124extern int cs_debug;
125
fe8ab488 126#define PAGE_SHIFT_4K (12)
fe8ab488 127
2d21ac55
A
128static boolean_t
129cs_valid_range(
130 const void *start,
131 const void *end,
132 const void *lower_bound,
133 const void *upper_bound)
134{
135 if (upper_bound < lower_bound ||
136 end < start) {
137 return FALSE;
138 }
139
140 if (start < lower_bound ||
141 end > upper_bound) {
142 return FALSE;
143 }
144
145 return TRUE;
146}
147
3e170ce0
A
148typedef void (*cs_md_init)(void *ctx);
149typedef void (*cs_md_update)(void *ctx, const void *data, size_t size);
150typedef void (*cs_md_final)(void *hash, void *ctx);
151
152struct cs_hash {
490019cf
A
153 uint8_t cs_type; /* type code as per code signing */
154 size_t cs_size; /* size of effective hash (may be truncated) */
155 size_t cs_digest_size; /* size of native hash */
3e170ce0
A
156 cs_md_init cs_init;
157 cs_md_update cs_update;
158 cs_md_final cs_final;
159};
160
161static struct cs_hash cs_hash_sha1 = {
162 .cs_type = CS_HASHTYPE_SHA1,
3e170ce0
A
163 .cs_size = CS_SHA1_LEN,
164 .cs_digest_size = SHA_DIGEST_LENGTH,
165 .cs_init = (cs_md_init)SHA1Init,
166 .cs_update = (cs_md_update)SHA1Update,
167 .cs_final = (cs_md_final)SHA1Final,
168};
169#if CRYPTO_SHA2
170static struct cs_hash cs_hash_sha256 = {
171 .cs_type = CS_HASHTYPE_SHA256,
3e170ce0
A
172 .cs_size = SHA256_DIGEST_LENGTH,
173 .cs_digest_size = SHA256_DIGEST_LENGTH,
174 .cs_init = (cs_md_init)SHA256_Init,
175 .cs_update = (cs_md_update)SHA256_Update,
176 .cs_final = (cs_md_final)SHA256_Final,
177};
178static struct cs_hash cs_hash_sha256_truncate = {
179 .cs_type = CS_HASHTYPE_SHA256_TRUNCATED,
3e170ce0
A
180 .cs_size = CS_SHA256_TRUNCATED_LEN,
181 .cs_digest_size = SHA256_DIGEST_LENGTH,
182 .cs_init = (cs_md_init)SHA256_Init,
183 .cs_update = (cs_md_update)SHA256_Update,
184 .cs_final = (cs_md_final)SHA256_Final,
185};
490019cf
A
186static struct cs_hash cs_hash_sha384 = {
187 .cs_type = CS_HASHTYPE_SHA384,
188 .cs_size = SHA384_DIGEST_LENGTH,
189 .cs_digest_size = SHA384_DIGEST_LENGTH,
190 .cs_init = (cs_md_init)SHA384_Init,
191 .cs_update = (cs_md_update)SHA384_Update,
192 .cs_final = (cs_md_final)SHA384_Final,
193};
3e170ce0 194#endif
39037602 195
3e170ce0
A
196static struct cs_hash *
197cs_find_md(uint8_t type)
198{
199 if (type == CS_HASHTYPE_SHA1) {
200 return &cs_hash_sha1;
201#if CRYPTO_SHA2
202 } else if (type == CS_HASHTYPE_SHA256) {
203 return &cs_hash_sha256;
204 } else if (type == CS_HASHTYPE_SHA256_TRUNCATED) {
205 return &cs_hash_sha256_truncate;
490019cf
A
206 } else if (type == CS_HASHTYPE_SHA384) {
207 return &cs_hash_sha384;
3e170ce0
A
208#endif
209 }
210 return NULL;
211}
212
213union cs_hash_union {
214 SHA1_CTX sha1ctxt;
215 SHA256_CTX sha256ctx;
490019cf 216 SHA384_CTX sha384ctx;
3e170ce0
A
217};
218
219
2d21ac55 220/*
490019cf
A
221 * Choose among different hash algorithms.
222 * Higher is better, 0 => don't use at all.
2d21ac55 223 */
490019cf
A
224static uint32_t hashPriorities[] = {
225 CS_HASHTYPE_SHA1,
226 CS_HASHTYPE_SHA256_TRUNCATED,
227 CS_HASHTYPE_SHA256,
228 CS_HASHTYPE_SHA384,
229};
b0d623f7 230
490019cf
A
231static unsigned int
232hash_rank(const CS_CodeDirectory *cd)
233{
234 uint32_t type = cd->hashType;
235 unsigned int n;
2d21ac55 236
490019cf
A
237 for (n = 0; n < sizeof(hashPriorities) / sizeof(hashPriorities[0]); ++n)
238 if (hashPriorities[n] == type)
239 return n + 1;
240 return 0; /* not supported */
2d21ac55
A
241}
242
243
244/*
245 * Locating a page hash
246 */
247static const unsigned char *
248hashes(
249 const CS_CodeDirectory *cd,
3e170ce0
A
250 uint32_t page,
251 size_t hash_len,
252 const char *lower_bound,
253 const char *upper_bound)
2d21ac55
A
254{
255 const unsigned char *base, *top, *hash;
b0d623f7 256 uint32_t nCodeSlots = ntohl(cd->nCodeSlots);
2d21ac55
A
257
258 assert(cs_valid_range(cd, cd + 1, lower_bound, upper_bound));
259
39236c6e 260 if((ntohl(cd->version) >= CS_SUPPORTSSCATTER) && (ntohl(cd->scatterOffset))) {
b0d623f7 261 /* Get first scatter struct */
39236c6e 262 const SC_Scatter *scatter = (const SC_Scatter*)
b0d623f7
A
263 ((const char*)cd + ntohl(cd->scatterOffset));
264 uint32_t hashindex=0, scount, sbase=0;
265 /* iterate all scatter structs */
266 do {
267 if((const char*)scatter > (const char*)cd + ntohl(cd->length)) {
268 if(cs_debug) {
269 printf("CODE SIGNING: Scatter extends past Code Directory\n");
270 }
271 return NULL;
272 }
273
274 scount = ntohl(scatter->count);
275 uint32_t new_base = ntohl(scatter->base);
276
277 /* last scatter? */
278 if (scount == 0) {
279 return NULL;
280 }
281
282 if((hashindex > 0) && (new_base <= sbase)) {
283 if(cs_debug) {
284 printf("CODE SIGNING: unordered Scatter, prev base %d, cur base %d\n",
285 sbase, new_base);
286 }
287 return NULL; /* unordered scatter array */
288 }
289 sbase = new_base;
290
291 /* this scatter beyond page we're looking for? */
292 if (sbase > page) {
293 return NULL;
294 }
295
296 if (sbase+scount >= page) {
297 /* Found the scatter struct that is
298 * referencing our page */
299
300 /* base = address of first hash covered by scatter */
301 base = (const unsigned char *)cd + ntohl(cd->hashOffset) +
3e170ce0 302 hashindex * hash_len;
b0d623f7 303 /* top = address of first hash after this scatter */
3e170ce0 304 top = base + scount * hash_len;
b0d623f7
A
305 if (!cs_valid_range(base, top, lower_bound,
306 upper_bound) ||
307 hashindex > nCodeSlots) {
308 return NULL;
309 }
310
311 break;
312 }
313
314 /* this scatter struct is before the page we're looking
315 * for. Iterate. */
316 hashindex+=scount;
317 scatter++;
318 } while(1);
319
3e170ce0 320 hash = base + (page - sbase) * hash_len;
b0d623f7
A
321 } else {
322 base = (const unsigned char *)cd + ntohl(cd->hashOffset);
3e170ce0 323 top = base + nCodeSlots * hash_len;
b0d623f7
A
324 if (!cs_valid_range(base, top, lower_bound, upper_bound) ||
325 page > nCodeSlots) {
326 return NULL;
327 }
328 assert(page < nCodeSlots);
2d21ac55 329
3e170ce0 330 hash = base + page * hash_len;
b0d623f7
A
331 }
332
3e170ce0 333 if (!cs_valid_range(hash, hash + hash_len,
2d21ac55
A
334 lower_bound, upper_bound)) {
335 hash = NULL;
336 }
337
338 return hash;
339}
39236c6e
A
340
341/*
342 * cs_validate_codedirectory
343 *
344 * Validate that pointers inside the code directory to make sure that
345 * all offsets and lengths are constrained within the buffer.
346 *
347 * Parameters: cd Pointer to code directory buffer
348 * length Length of buffer
349 *
350 * Returns: 0 Success
351 * EBADEXEC Invalid code signature
352 */
353
354static int
355cs_validate_codedirectory(const CS_CodeDirectory *cd, size_t length)
356{
3e170ce0 357 struct cs_hash *hashtype;
39236c6e
A
358
359 if (length < sizeof(*cd))
360 return EBADEXEC;
361 if (ntohl(cd->magic) != CSMAGIC_CODEDIRECTORY)
362 return EBADEXEC;
39037602 363 if (cd->pageSize < PAGE_SHIFT_4K || cd->pageSize > PAGE_SHIFT)
39236c6e 364 return EBADEXEC;
3e170ce0
A
365 hashtype = cs_find_md(cd->hashType);
366 if (hashtype == NULL)
39236c6e
A
367 return EBADEXEC;
368
490019cf 369 if (cd->hashSize != hashtype->cs_size)
3e170ce0
A
370 return EBADEXEC;
371
39236c6e
A
372 if (length < ntohl(cd->hashOffset))
373 return EBADEXEC;
374
375 /* check that nSpecialSlots fits in the buffer in front of hashOffset */
3e170ce0 376 if (ntohl(cd->hashOffset) / hashtype->cs_size < ntohl(cd->nSpecialSlots))
39236c6e
A
377 return EBADEXEC;
378
379 /* check that codeslots fits in the buffer */
3e170ce0 380 if ((length - ntohl(cd->hashOffset)) / hashtype->cs_size < ntohl(cd->nCodeSlots))
39236c6e
A
381 return EBADEXEC;
382
383 if (ntohl(cd->version) >= CS_SUPPORTSSCATTER && cd->scatterOffset) {
384
385 if (length < ntohl(cd->scatterOffset))
386 return EBADEXEC;
387
3e170ce0
A
388 const SC_Scatter *scatter = (const SC_Scatter *)
389 (((const uint8_t *)cd) + ntohl(cd->scatterOffset));
39236c6e
A
390 uint32_t nPages = 0;
391
392 /*
393 * Check each scatter buffer, since we don't know the
394 * length of the scatter buffer array, we have to
395 * check each entry.
396 */
397 while(1) {
398 /* check that the end of each scatter buffer in within the length */
399 if (((const uint8_t *)scatter) + sizeof(scatter[0]) > (const uint8_t *)cd + length)
400 return EBADEXEC;
401 uint32_t scount = ntohl(scatter->count);
402 if (scount == 0)
403 break;
404 if (nPages + scount < nPages)
405 return EBADEXEC;
406 nPages += scount;
407 scatter++;
408
409 /* XXX check that basees doesn't overlap */
410 /* XXX check that targetOffset doesn't overlap */
411 }
412#if 0 /* rdar://12579439 */
413 if (nPages != ntohl(cd->nCodeSlots))
414 return EBADEXEC;
415#endif
416 }
417
418 if (length < ntohl(cd->identOffset))
419 return EBADEXEC;
420
421 /* identifier is NUL terminated string */
422 if (cd->identOffset) {
3e170ce0 423 const uint8_t *ptr = (const uint8_t *)cd + ntohl(cd->identOffset);
39236c6e
A
424 if (memchr(ptr, 0, length - ntohl(cd->identOffset)) == NULL)
425 return EBADEXEC;
426 }
427
fe8ab488
A
428 /* team identifier is NULL terminated string */
429 if (ntohl(cd->version) >= CS_SUPPORTSTEAMID && ntohl(cd->teamOffset)) {
430 if (length < ntohl(cd->teamOffset))
431 return EBADEXEC;
432
3e170ce0 433 const uint8_t *ptr = (const uint8_t *)cd + ntohl(cd->teamOffset);
fe8ab488
A
434 if (memchr(ptr, 0, length - ntohl(cd->teamOffset)) == NULL)
435 return EBADEXEC;
436 }
437
39236c6e
A
438 return 0;
439}
440
441/*
442 *
443 */
444
445static int
446cs_validate_blob(const CS_GenericBlob *blob, size_t length)
447{
448 if (length < sizeof(CS_GenericBlob) || length < ntohl(blob->length))
449 return EBADEXEC;
450 return 0;
451}
452
453/*
454 * cs_validate_csblob
455 *
456 * Validate that superblob/embedded code directory to make sure that
457 * all internal pointers are valid.
458 *
459 * Will validate both a superblob csblob and a "raw" code directory.
460 *
461 *
462 * Parameters: buffer Pointer to code signature
463 * length Length of buffer
464 * rcd returns pointer to code directory
465 *
466 * Returns: 0 Success
467 * EBADEXEC Invalid code signature
468 */
469
470static int
471cs_validate_csblob(const uint8_t *addr, size_t length,
39037602
A
472 const CS_CodeDirectory **rcd,
473 const CS_GenericBlob **rentitlements)
39236c6e 474{
3e170ce0 475 const CS_GenericBlob *blob = (const CS_GenericBlob *)(const void *)addr;
39236c6e
A
476 int error;
477
478 *rcd = NULL;
39037602 479 *rentitlements = NULL;
39236c6e
A
480
481 error = cs_validate_blob(blob, length);
482 if (error)
483 return error;
484
485 length = ntohl(blob->length);
486
487 if (ntohl(blob->magic) == CSMAGIC_EMBEDDED_SIGNATURE) {
490019cf
A
488 const CS_SuperBlob *sb;
489 uint32_t n, count;
490 const CS_CodeDirectory *best_cd = NULL;
491 unsigned int best_rank = 0;
39236c6e
A
492
493 if (length < sizeof(CS_SuperBlob))
494 return EBADEXEC;
495
490019cf
A
496 sb = (const CS_SuperBlob *)blob;
497 count = ntohl(sb->count);
498
39236c6e
A
499 /* check that the array of BlobIndex fits in the rest of the data */
500 if ((length - sizeof(CS_SuperBlob)) / sizeof(CS_BlobIndex) < count)
501 return EBADEXEC;
502
503 /* now check each BlobIndex */
504 for (n = 0; n < count; n++) {
505 const CS_BlobIndex *blobIndex = &sb->index[n];
490019cf
A
506 uint32_t type = ntohl(blobIndex->type);
507 uint32_t offset = ntohl(blobIndex->offset);
508 if (length < offset)
39236c6e
A
509 return EBADEXEC;
510
511 const CS_GenericBlob *subBlob =
490019cf 512 (const CS_GenericBlob *)(const void *)(addr + offset);
39236c6e 513
490019cf 514 size_t subLength = length - offset;
39236c6e
A
515
516 if ((error = cs_validate_blob(subBlob, subLength)) != 0)
517 return error;
518 subLength = ntohl(subBlob->length);
519
520 /* extra validation for CDs, that is also returned */
490019cf
A
521 if (type == CSSLOT_CODEDIRECTORY || (type >= CSSLOT_ALTERNATE_CODEDIRECTORIES && type < CSSLOT_ALTERNATE_CODEDIRECTORY_LIMIT)) {
522 const CS_CodeDirectory *candidate = (const CS_CodeDirectory *)subBlob;
523 if ((error = cs_validate_codedirectory(candidate, subLength)) != 0)
39236c6e 524 return error;
490019cf
A
525 unsigned int rank = hash_rank(candidate);
526 if (cs_debug > 3)
527 printf("CodeDirectory type %d rank %d at slot 0x%x index %d\n", candidate->hashType, (int)rank, (int)type, (int)n);
528 if (best_cd == NULL || rank > best_rank) {
529 best_cd = candidate;
530 best_rank = rank;
39037602
A
531
532 if (cs_debug > 2)
533 printf("using CodeDirectory type %d (rank %d)\n", (int)best_cd->hashType, best_rank);
534 *rcd = best_cd;
490019cf
A
535 } else if (best_cd != NULL && rank == best_rank) {
536 /* repeat of a hash type (1:1 mapped to ranks), illegal and suspicious */
39037602
A
537 printf("multiple hash=%d CodeDirectories in signature; rejecting\n", best_cd->hashType);
538 return EBADEXEC;
539 }
540 } else if (type == CSSLOT_ENTITLEMENTS) {
541 if (ntohl(subBlob->magic) != CSMAGIC_EMBEDDED_ENTITLEMENTS) {
542 return EBADEXEC;
543 }
544 if (*rentitlements != NULL) {
545 printf("multiple entitlements blobs\n");
490019cf
A
546 return EBADEXEC;
547 }
39037602 548 *rentitlements = subBlob;
39236c6e
A
549 }
550 }
551
552 } else if (ntohl(blob->magic) == CSMAGIC_CODEDIRECTORY) {
553
3e170ce0 554 if ((error = cs_validate_codedirectory((const CS_CodeDirectory *)(const void *)addr, length)) != 0)
39236c6e
A
555 return error;
556 *rcd = (const CS_CodeDirectory *)blob;
557 } else {
558 return EBADEXEC;
559 }
560
561 if (*rcd == NULL)
562 return EBADEXEC;
563
564 return 0;
565}
566
567/*
568 * cs_find_blob_bytes
569 *
570 * Find an blob from the superblob/code directory. The blob must have
571 * been been validated by cs_validate_csblob() before calling
3e170ce0 572 * this. Use csblob_find_blob() instead.
39236c6e
A
573 *
574 * Will also find a "raw" code directory if its stored as well as
575 * searching the superblob.
576 *
577 * Parameters: buffer Pointer to code signature
578 * length Length of buffer
579 * type type of blob to find
580 * magic the magic number for that blob
581 *
582 * Returns: pointer Success
583 * NULL Buffer not found
584 */
585
3e170ce0
A
586const CS_GenericBlob *
587csblob_find_blob_bytes(const uint8_t *addr, size_t length, uint32_t type, uint32_t magic)
39236c6e 588{
3e170ce0 589 const CS_GenericBlob *blob = (const CS_GenericBlob *)(const void *)addr;
39236c6e
A
590
591 if (ntohl(blob->magic) == CSMAGIC_EMBEDDED_SIGNATURE) {
592 const CS_SuperBlob *sb = (const CS_SuperBlob *)blob;
593 size_t n, count = ntohl(sb->count);
594
595 for (n = 0; n < count; n++) {
596 if (ntohl(sb->index[n].type) != type)
597 continue;
598 uint32_t offset = ntohl(sb->index[n].offset);
599 if (length - sizeof(const CS_GenericBlob) < offset)
600 return NULL;
3e170ce0 601 blob = (const CS_GenericBlob *)(const void *)(addr + offset);
39236c6e
A
602 if (ntohl(blob->magic) != magic)
603 continue;
604 return blob;
605 }
606 } else if (type == CSSLOT_CODEDIRECTORY
607 && ntohl(blob->magic) == CSMAGIC_CODEDIRECTORY
608 && magic == CSMAGIC_CODEDIRECTORY)
609 return blob;
610 return NULL;
611}
612
613
fe8ab488 614const CS_GenericBlob *
3e170ce0 615csblob_find_blob(struct cs_blob *csblob, uint32_t type, uint32_t magic)
39236c6e
A
616{
617 if ((csblob->csb_flags & CS_VALID) == 0)
618 return NULL;
3e170ce0 619 return csblob_find_blob_bytes((const uint8_t *)csblob->csb_mem_kaddr, csblob->csb_mem_size, type, magic);
39236c6e
A
620}
621
622static const uint8_t *
3e170ce0 623find_special_slot(const CS_CodeDirectory *cd, size_t slotsize, uint32_t slot)
39236c6e
A
624{
625 /* there is no zero special slot since that is the first code slot */
626 if (ntohl(cd->nSpecialSlots) < slot || slot == 0)
627 return NULL;
628
3e170ce0 629 return ((const uint8_t *)cd + ntohl(cd->hashOffset) - (slotsize * slot));
39236c6e
A
630}
631
3e170ce0 632static uint8_t cshash_zero[CS_HASH_MAX_SIZE] = { 0 };
39236c6e 633
6d2010ae 634int
3e170ce0 635csblob_get_entitlements(struct cs_blob *csblob, void **out_start, size_t *out_length)
6d2010ae 636{
3e170ce0 637 uint8_t computed_hash[CS_HASH_MAX_SIZE];
39236c6e
A
638 const CS_GenericBlob *entitlements;
639 const CS_CodeDirectory *code_dir;
39236c6e 640 const uint8_t *embedded_hash;
3e170ce0 641 union cs_hash_union context;
39236c6e
A
642
643 *out_start = NULL;
644 *out_length = 0;
645
3e170ce0
A
646 if (csblob->csb_hashtype == NULL || csblob->csb_hashtype->cs_digest_size > sizeof(computed_hash))
647 return EBADEXEC;
39236c6e 648
490019cf 649 code_dir = csblob->csb_cd;
39236c6e 650
39037602
A
651 if ((csblob->csb_flags & CS_VALID) == 0) {
652 entitlements = NULL;
653 } else {
654 entitlements = csblob->csb_entitlements_blob;
655 }
3e170ce0 656 embedded_hash = find_special_slot(code_dir, csblob->csb_hashtype->cs_size, CSSLOT_ENTITLEMENTS);
39236c6e
A
657
658 if (embedded_hash == NULL) {
659 if (entitlements)
660 return EBADEXEC;
661 return 0;
490019cf
A
662 } else if (entitlements == NULL) {
663 if (memcmp(embedded_hash, cshash_zero, csblob->csb_hashtype->cs_size) != 0) {
664 return EBADEXEC;
665 } else {
666 return 0;
667 }
6d2010ae 668 }
39236c6e 669
3e170ce0
A
670 csblob->csb_hashtype->cs_init(&context);
671 csblob->csb_hashtype->cs_update(&context, entitlements, ntohl(entitlements->length));
672 csblob->csb_hashtype->cs_final(computed_hash, &context);
673
674 if (memcmp(computed_hash, embedded_hash, csblob->csb_hashtype->cs_size) != 0)
39236c6e
A
675 return EBADEXEC;
676
3e170ce0 677 *out_start = __DECONST(void *, entitlements);
39236c6e
A
678 *out_length = ntohl(entitlements->length);
679
680 return 0;
681}
682
6d2010ae 683/*
3e170ce0
A
684 * CODESIGNING
685 * End of routines to navigate code signing data structures in the kernel.
6d2010ae
A
686 */
687
688
2d21ac55 689
1c79356b 690/*
2d21ac55
A
691 * ubc_init
692 *
693 * Initialization of the zone for Unified Buffer Cache.
694 *
695 * Parameters: (void)
696 *
697 * Returns: (void)
698 *
699 * Implicit returns:
700 * ubc_info_zone(global) initialized for subsequent allocations
1c79356b 701 */
0b4e3aa0 702__private_extern__ void
2d21ac55 703ubc_init(void)
1c79356b
A
704{
705 int i;
706
707 i = (vm_size_t) sizeof (struct ubc_info);
2d21ac55 708
1c79356b 709 ubc_info_zone = zinit (i, 10000*i, 8192, "ubc_info zone");
0b4c1975
A
710
711 zone_change(ubc_info_zone, Z_NOENCRYPT, TRUE);
1c79356b
A
712}
713
2d21ac55 714
1c79356b 715/*
2d21ac55
A
716 * ubc_info_init
717 *
718 * Allocate and attach an empty ubc_info structure to a vnode
719 *
720 * Parameters: vp Pointer to the vnode
721 *
722 * Returns: 0 Success
723 * vnode_size:ENOMEM Not enough space
724 * vnode_size:??? Other error from vnode_getattr
725 *
1c79356b
A
726 */
727int
728ubc_info_init(struct vnode *vp)
91447636
A
729{
730 return(ubc_info_init_internal(vp, 0, 0));
731}
2d21ac55
A
732
733
734/*
735 * ubc_info_init_withsize
736 *
737 * Allocate and attach a sized ubc_info structure to a vnode
738 *
739 * Parameters: vp Pointer to the vnode
740 * filesize The size of the file
741 *
742 * Returns: 0 Success
743 * vnode_size:ENOMEM Not enough space
744 * vnode_size:??? Other error from vnode_getattr
745 */
91447636
A
746int
747ubc_info_init_withsize(struct vnode *vp, off_t filesize)
748{
749 return(ubc_info_init_internal(vp, 1, filesize));
750}
751
2d21ac55
A
752
753/*
754 * ubc_info_init_internal
755 *
756 * Allocate and attach a ubc_info structure to a vnode
757 *
758 * Parameters: vp Pointer to the vnode
759 * withfsize{0,1} Zero if the size should be obtained
760 * from the vnode; otherwise, use filesize
761 * filesize The size of the file, if withfsize == 1
762 *
763 * Returns: 0 Success
764 * vnode_size:ENOMEM Not enough space
765 * vnode_size:??? Other error from vnode_getattr
766 *
767 * Notes: We call a blocking zalloc(), and the zone was created as an
768 * expandable and collectable zone, so if no memory is available,
769 * it is possible for zalloc() to block indefinitely. zalloc()
770 * may also panic if the zone of zones is exhausted, since it's
771 * NOT expandable.
772 *
773 * We unconditionally call vnode_pager_setup(), even if this is
774 * a reuse of a ubc_info; in that case, we should probably assert
775 * that it does not already have a pager association, but do not.
776 *
777 * Since memory_object_create_named() can only fail from receiving
778 * an invalid pager argument, the explicit check and panic is
779 * merely precautionary.
780 */
781static int
782ubc_info_init_internal(vnode_t vp, int withfsize, off_t filesize)
1c79356b 783{
39037602 784 struct ubc_info *uip;
1c79356b 785 void * pager;
1c79356b
A
786 int error = 0;
787 kern_return_t kret;
0b4e3aa0 788 memory_object_control_t control;
1c79356b 789
91447636 790 uip = vp->v_ubcinfo;
1c79356b 791
2d21ac55
A
792 /*
793 * If there is not already a ubc_info attached to the vnode, we
794 * attach one; otherwise, we will reuse the one that's there.
795 */
91447636 796 if (uip == UBC_INFO_NULL) {
1c79356b 797
1c79356b 798 uip = (struct ubc_info *) zalloc(ubc_info_zone);
91447636
A
799 bzero((char *)uip, sizeof(struct ubc_info));
800
1c79356b 801 uip->ui_vnode = vp;
91447636 802 uip->ui_flags = UI_INITED;
1c79356b
A
803 uip->ui_ucred = NOCRED;
804 }
1c79356b
A
805 assert(uip->ui_flags != UI_NONE);
806 assert(uip->ui_vnode == vp);
807
1c79356b
A
808 /* now set this ubc_info in the vnode */
809 vp->v_ubcinfo = uip;
91447636 810
2d21ac55
A
811 /*
812 * Allocate a pager object for this vnode
813 *
814 * XXX The value of the pager parameter is currently ignored.
815 * XXX Presumably, this API changed to avoid the race between
816 * XXX setting the pager and the UI_HASPAGER flag.
817 */
1c79356b
A
818 pager = (void *)vnode_pager_setup(vp, uip->ui_pager);
819 assert(pager);
91447636 820
2d21ac55
A
821 /*
822 * Explicitly set the pager into the ubc_info, after setting the
823 * UI_HASPAGER flag.
824 */
91447636
A
825 SET(uip->ui_flags, UI_HASPAGER);
826 uip->ui_pager = pager;
1c79356b
A
827
828 /*
91447636 829 * Note: We can not use VNOP_GETATTR() to get accurate
2d21ac55
A
830 * value of ui_size because this may be an NFS vnode, and
831 * nfs_getattr() can call vinvalbuf(); if this happens,
832 * ubc_info is not set up to deal with that event.
1c79356b
A
833 * So use bogus size.
834 */
835
1c79356b 836 /*
0b4e3aa0
A
837 * create a vnode - vm_object association
838 * memory_object_create_named() creates a "named" reference on the
839 * memory object we hold this reference as long as the vnode is
840 * "alive." Since memory_object_create_named() took its own reference
841 * on the vnode pager we passed it, we can drop the reference
842 * vnode_pager_setup() returned here.
1c79356b 843 */
0b4e3aa0
A
844 kret = memory_object_create_named(pager,
845 (memory_object_size_t)uip->ui_size, &control);
846 vnode_pager_deallocate(pager);
847 if (kret != KERN_SUCCESS)
848 panic("ubc_info_init: memory_object_create_named returned %d", kret);
1c79356b 849
0b4e3aa0
A
850 assert(control);
851 uip->ui_control = control; /* cache the value of the mo control */
852 SET(uip->ui_flags, UI_HASOBJREF); /* with a named reference */
2d21ac55 853
91447636 854 if (withfsize == 0) {
91447636 855 /* initialize the size */
2d21ac55 856 error = vnode_size(vp, &uip->ui_size, vfs_context_current());
91447636
A
857 if (error)
858 uip->ui_size = 0;
859 } else {
860 uip->ui_size = filesize;
861 }
2d21ac55 862 vp->v_lflag |= VNAMED_UBC; /* vnode has a named ubc reference */
1c79356b 863
0b4e3aa0 864 return (error);
1c79356b
A
865}
866
2d21ac55
A
867
868/*
869 * ubc_info_free
870 *
871 * Free a ubc_info structure
872 *
873 * Parameters: uip A pointer to the ubc_info to free
874 *
875 * Returns: (void)
876 *
877 * Notes: If there is a credential that has subsequently been associated
878 * with the ubc_info via a call to ubc_setcred(), the reference
879 * to the credential is dropped.
880 *
881 * It's actually impossible for a ubc_info.ui_control to take the
882 * value MEMORY_OBJECT_CONTROL_NULL.
883 */
0b4e3aa0
A
884static void
885ubc_info_free(struct ubc_info *uip)
1c79356b 886{
0c530ab8
A
887 if (IS_VALID_CRED(uip->ui_ucred)) {
888 kauth_cred_unref(&uip->ui_ucred);
1c79356b 889 }
0b4e3aa0
A
890
891 if (uip->ui_control != MEMORY_OBJECT_CONTROL_NULL)
892 memory_object_control_deallocate(uip->ui_control);
91447636
A
893
894 cluster_release(uip);
2d21ac55 895 ubc_cs_free(uip);
0b4e3aa0 896
2d21ac55 897 zfree(ubc_info_zone, uip);
1c79356b
A
898 return;
899}
900
2d21ac55 901
0b4e3aa0
A
902void
903ubc_info_deallocate(struct ubc_info *uip)
904{
91447636 905 ubc_info_free(uip);
0b4e3aa0
A
906}
907
3e170ce0 908errno_t mach_to_bsd_errno(kern_return_t mach_err)
fe8ab488
A
909{
910 switch (mach_err) {
911 case KERN_SUCCESS:
912 return 0;
913
914 case KERN_INVALID_ADDRESS:
915 case KERN_INVALID_ARGUMENT:
916 case KERN_NOT_IN_SET:
917 case KERN_INVALID_NAME:
918 case KERN_INVALID_TASK:
919 case KERN_INVALID_RIGHT:
920 case KERN_INVALID_VALUE:
921 case KERN_INVALID_CAPABILITY:
922 case KERN_INVALID_HOST:
923 case KERN_MEMORY_PRESENT:
924 case KERN_INVALID_PROCESSOR_SET:
925 case KERN_INVALID_POLICY:
926 case KERN_ALREADY_WAITING:
927 case KERN_DEFAULT_SET:
928 case KERN_EXCEPTION_PROTECTED:
929 case KERN_INVALID_LEDGER:
930 case KERN_INVALID_MEMORY_CONTROL:
931 case KERN_INVALID_SECURITY:
932 case KERN_NOT_DEPRESSED:
933 case KERN_LOCK_OWNED:
934 case KERN_LOCK_OWNED_SELF:
935 return EINVAL;
936
937 case KERN_PROTECTION_FAILURE:
938 case KERN_NOT_RECEIVER:
939 case KERN_NO_ACCESS:
940 case KERN_POLICY_STATIC:
941 return EACCES;
942
943 case KERN_NO_SPACE:
944 case KERN_RESOURCE_SHORTAGE:
945 case KERN_UREFS_OVERFLOW:
946 case KERN_INVALID_OBJECT:
947 return ENOMEM;
948
949 case KERN_FAILURE:
950 return EIO;
951
952 case KERN_MEMORY_FAILURE:
953 case KERN_POLICY_LIMIT:
954 case KERN_CODESIGN_ERROR:
955 return EPERM;
956
957 case KERN_MEMORY_ERROR:
958 return EBUSY;
959
960 case KERN_ALREADY_IN_SET:
961 case KERN_NAME_EXISTS:
962 case KERN_RIGHT_EXISTS:
963 return EEXIST;
964
965 case KERN_ABORTED:
966 return EINTR;
967
968 case KERN_TERMINATED:
969 case KERN_LOCK_SET_DESTROYED:
970 case KERN_LOCK_UNSTABLE:
971 case KERN_SEMAPHORE_DESTROYED:
972 return ENOENT;
973
974 case KERN_RPC_SERVER_TERMINATED:
975 return ECONNRESET;
976
977 case KERN_NOT_SUPPORTED:
978 return ENOTSUP;
979
980 case KERN_NODE_DOWN:
981 return ENETDOWN;
982
983 case KERN_NOT_WAITING:
984 return ENOENT;
985
986 case KERN_OPERATION_TIMED_OUT:
987 return ETIMEDOUT;
988
989 default:
990 return EIO;
991 }
992}
2d21ac55 993
1c79356b 994/*
fe8ab488 995 * ubc_setsize_ex
2d21ac55 996 *
fe8ab488 997 * Tell the VM that the the size of the file represented by the vnode has
2d21ac55
A
998 * changed
999 *
fe8ab488
A
1000 * Parameters: vp The vp whose backing file size is
1001 * being changed
1002 * nsize The new size of the backing file
1003 * opts Options
1004 *
1005 * Returns: EINVAL for new size < 0
1006 * ENOENT if no UBC info exists
1007 * EAGAIN if UBC_SETSIZE_NO_FS_REENTRY option is set and new_size < old size
1008 * Other errors (mapped to errno_t) returned by VM functions
1009 *
1010 * Notes: This function will indicate success if the new size is the
1011 * same or larger than the old size (in this case, the
1012 * remainder of the file will require modification or use of
1013 * an existing upl to access successfully).
1014 *
1015 * This function will fail if the new file size is smaller,
1016 * and the memory region being invalidated was unable to
1017 * actually be invalidated and/or the last page could not be
1018 * flushed, if the new size is not aligned to a page
1019 * boundary. This is usually indicative of an I/O error.
1c79356b 1020 */
fe8ab488 1021errno_t ubc_setsize_ex(struct vnode *vp, off_t nsize, ubc_setsize_opts_t opts)
1c79356b
A
1022{
1023 off_t osize; /* ui_size before change */
1024 off_t lastpg, olastpgend, lastoff;
1025 struct ubc_info *uip;
0b4e3aa0 1026 memory_object_control_t control;
2d21ac55 1027 kern_return_t kret = KERN_SUCCESS;
1c79356b 1028
55e303ae 1029 if (nsize < (off_t)0)
fe8ab488 1030 return EINVAL;
1c79356b 1031
1c79356b 1032 if (!UBCINFOEXISTS(vp))
fe8ab488 1033 return ENOENT;
1c79356b
A
1034
1035 uip = vp->v_ubcinfo;
2d21ac55 1036 osize = uip->ui_size;
fe8ab488
A
1037
1038 if (ISSET(opts, UBC_SETSIZE_NO_FS_REENTRY) && nsize < osize)
1039 return EAGAIN;
1040
2d21ac55
A
1041 /*
1042 * Update the size before flushing the VM
1043 */
1c79356b
A
1044 uip->ui_size = nsize;
1045
b0d623f7 1046 if (nsize >= osize) { /* Nothing more to do */
6d2010ae
A
1047 if (nsize > osize) {
1048 lock_vnode_and_post(vp, NOTE_EXTEND);
1049 }
1050
fe8ab488 1051 return 0;
b0d623f7 1052 }
1c79356b
A
1053
1054 /*
1055 * When the file shrinks, invalidate the pages beyond the
1056 * new size. Also get rid of garbage beyond nsize on the
2d21ac55
A
1057 * last page. The ui_size already has the nsize, so any
1058 * subsequent page-in will zero-fill the tail properly
1c79356b 1059 */
1c79356b
A
1060 lastpg = trunc_page_64(nsize);
1061 olastpgend = round_page_64(osize);
0b4e3aa0
A
1062 control = uip->ui_control;
1063 assert(control);
1c79356b
A
1064 lastoff = (nsize & PAGE_MASK_64);
1065
2d21ac55 1066 if (lastoff) {
fe8ab488 1067 upl_t upl;
2d21ac55
A
1068 upl_page_info_t *pl;
1069
fe8ab488 1070 /*
2d21ac55 1071 * new EOF ends up in the middle of a page
fe8ab488 1072 * zero the tail of this page if it's currently
2d21ac55
A
1073 * present in the cache
1074 */
fe8ab488
A
1075 kret = ubc_create_upl(vp, lastpg, PAGE_SIZE, &upl, &pl, UPL_SET_LITE);
1076
1c79356b 1077 if (kret != KERN_SUCCESS)
2d21ac55
A
1078 panic("ubc_setsize: ubc_create_upl (error = %d)\n", kret);
1079
1080 if (upl_valid_page(pl, 0))
1081 cluster_zero(upl, (uint32_t)lastoff, PAGE_SIZE - (uint32_t)lastoff, NULL);
1082
1083 ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY);
1c79356b 1084
2d21ac55
A
1085 lastpg += PAGE_SIZE_64;
1086 }
1087 if (olastpgend > lastpg) {
b0d623f7
A
1088 int flags;
1089
1090 if (lastpg == 0)
1091 flags = MEMORY_OBJECT_DATA_FLUSH_ALL;
1092 else
1093 flags = MEMORY_OBJECT_DATA_FLUSH;
fe8ab488 1094 /*
2d21ac55
A
1095 * invalidate the pages beyond the new EOF page
1096 *
1097 */
fe8ab488
A
1098 kret = memory_object_lock_request(control,
1099 (memory_object_offset_t)lastpg,
1100 (memory_object_size_t)(olastpgend - lastpg), NULL, NULL,
1101 MEMORY_OBJECT_RETURN_NONE, flags, VM_PROT_NO_CHANGE);
2d21ac55
A
1102 if (kret != KERN_SUCCESS)
1103 printf("ubc_setsize: invalidate failed (error = %d)\n", kret);
1104 }
fe8ab488 1105 return mach_to_bsd_errno(kret);
1c79356b
A
1106}
1107
fe8ab488
A
1108// Returns true for success
1109int ubc_setsize(vnode_t vp, off_t nsize)
1110{
1111 return ubc_setsize_ex(vp, nsize, 0) == 0;
1112}
2d21ac55 1113
1c79356b 1114/*
2d21ac55
A
1115 * ubc_getsize
1116 *
1117 * Get the size of the file assocated with the specified vnode
1118 *
1119 * Parameters: vp The vnode whose size is of interest
1120 *
1121 * Returns: 0 There is no ubc_info associated with
1122 * this vnode, or the size is zero
1123 * !0 The size of the file
1124 *
1125 * Notes: Using this routine, it is not possible for a caller to
1126 * successfully distinguish between a vnode associate with a zero
1127 * length file, and a vnode with no associated ubc_info. The
1128 * caller therefore needs to not care, or needs to ensure that
1129 * they have previously successfully called ubc_info_init() or
1130 * ubc_info_init_withsize().
1c79356b
A
1131 */
1132off_t
1133ubc_getsize(struct vnode *vp)
1134{
91447636
A
1135 /* people depend on the side effect of this working this way
1136 * as they call this for directory
1c79356b 1137 */
91447636
A
1138 if (!UBCINFOEXISTS(vp))
1139 return ((off_t)0);
1140 return (vp->v_ubcinfo->ui_size);
1c79356b
A
1141}
1142
2d21ac55 1143
1c79356b 1144/*
2d21ac55
A
1145 * ubc_umount
1146 *
fe8ab488 1147 * Call ubc_msync(vp, 0, EOF, NULL, UBC_PUSHALL) on all the vnodes for this
2d21ac55
A
1148 * mount point
1149 *
1150 * Parameters: mp The mount point
1151 *
1152 * Returns: 0 Success
1153 *
1154 * Notes: There is no failure indication for this function.
1155 *
1156 * This function is used in the unmount path; since it may block
1157 * I/O indefinitely, it should not be used in the forced unmount
1158 * path, since a device unavailability could also block that
1159 * indefinitely.
1160 *
1161 * Because there is no device ejection interlock on USB, FireWire,
1162 * or similar devices, it's possible that an ejection that begins
1163 * subsequent to the vnode_iterate() completing, either on one of
1164 * those devices, or a network mount for which the server quits
1165 * responding, etc., may cause the caller to block indefinitely.
1c79356b 1166 */
0b4e3aa0 1167__private_extern__ int
1c79356b
A
1168ubc_umount(struct mount *mp)
1169{
91447636
A
1170 vnode_iterate(mp, 0, ubc_umcallback, 0);
1171 return(0);
1c79356b
A
1172}
1173
2d21ac55
A
1174
1175/*
1176 * ubc_umcallback
1177 *
1178 * Used by ubc_umount() as an internal implementation detail; see ubc_umount()
1179 * and vnode_iterate() for details of implementation.
1180 */
91447636
A
1181static int
1182ubc_umcallback(vnode_t vp, __unused void * args)
1c79356b 1183{
1c79356b 1184
91447636
A
1185 if (UBCINFOEXISTS(vp)) {
1186
91447636 1187 (void) ubc_msync(vp, (off_t)0, ubc_getsize(vp), NULL, UBC_PUSHALL);
1c79356b 1188 }
91447636 1189 return (VNODE_RETURNED);
1c79356b
A
1190}
1191
91447636 1192
2d21ac55
A
1193/*
1194 * ubc_getcred
1195 *
1196 * Get the credentials currently active for the ubc_info associated with the
1197 * vnode.
1198 *
1199 * Parameters: vp The vnode whose ubc_info credentials
1200 * are to be retrieved
1201 *
1202 * Returns: !NOCRED The credentials
1203 * NOCRED If there is no ubc_info for the vnode,
1204 * or if there is one, but it has not had
1205 * any credentials associated with it via
1206 * a call to ubc_setcred()
1207 */
91447636 1208kauth_cred_t
1c79356b
A
1209ubc_getcred(struct vnode *vp)
1210{
91447636
A
1211 if (UBCINFOEXISTS(vp))
1212 return (vp->v_ubcinfo->ui_ucred);
1c79356b 1213
91447636 1214 return (NOCRED);
1c79356b
A
1215}
1216
2d21ac55
A
1217
1218/*
1219 * ubc_setthreadcred
1220 *
1221 * If they are not already set, set the credentials of the ubc_info structure
1222 * associated with the vnode to those of the supplied thread; otherwise leave
1223 * them alone.
1224 *
1225 * Parameters: vp The vnode whose ubc_info creds are to
1226 * be set
1227 * p The process whose credentials are to
1228 * be used, if not running on an assumed
1229 * credential
1230 * thread The thread whose credentials are to
1231 * be used
1232 *
1233 * Returns: 1 This vnode has no associated ubc_info
1234 * 0 Success
1235 *
1236 * Notes: This function takes a proc parameter to account for bootstrap
1237 * issues where a task or thread may call this routine, either
1238 * before credentials have been initialized by bsd_init(), or if
1239 * there is no BSD info asscoiate with a mach thread yet. This
1240 * is known to happen in both the initial swap and memory mapping
1241 * calls.
1242 *
1243 * This function is generally used only in the following cases:
1244 *
1245 * o a memory mapped file via the mmap() system call
2d21ac55
A
1246 * o a swap store backing file
1247 * o subsequent to a successful write via vn_write()
1248 *
1249 * The information is then used by the NFS client in order to
1250 * cons up a wire message in either the page-in or page-out path.
1251 *
1252 * There are two potential problems with the use of this API:
1253 *
1254 * o Because the write path only set it on a successful
1255 * write, there is a race window between setting the
1256 * credential and its use to evict the pages to the
1257 * remote file server
1258 *
1259 * o Because a page-in may occur prior to a write, the
1260 * credential may not be set at this time, if the page-in
fe8ab488 1261 * is not the result of a mapping established via mmap().
2d21ac55
A
1262 *
1263 * In both these cases, this will be triggered from the paging
1264 * path, which will instead use the credential of the current
1265 * process, which in this case is either the dynamic_pager or
1266 * the kernel task, both of which utilize "root" credentials.
1267 *
1268 * This may potentially permit operations to occur which should
1269 * be denied, or it may cause to be denied operations which
1270 * should be permitted, depending on the configuration of the NFS
1271 * server.
1272 */
13fec989 1273int
2d21ac55 1274ubc_setthreadcred(struct vnode *vp, proc_t p, thread_t thread)
13fec989
A
1275{
1276 struct ubc_info *uip;
1277 kauth_cred_t credp;
2d21ac55 1278 struct uthread *uthread = get_bsdthread_info(thread);
13fec989
A
1279
1280 if (!UBCINFOEXISTS(vp))
2d21ac55 1281 return (1);
13fec989
A
1282
1283 vnode_lock(vp);
1284
1285 uip = vp->v_ubcinfo;
1286 credp = uip->ui_ucred;
1287
0c530ab8 1288 if (!IS_VALID_CRED(credp)) {
13fec989
A
1289 /* use per-thread cred, if assumed identity, else proc cred */
1290 if (uthread == NULL || (uthread->uu_flag & UT_SETUID) == 0) {
1291 uip->ui_ucred = kauth_cred_proc_ref(p);
1292 } else {
1293 uip->ui_ucred = uthread->uu_ucred;
1294 kauth_cred_ref(uip->ui_ucred);
1295 }
2d21ac55 1296 }
13fec989
A
1297 vnode_unlock(vp);
1298
1299 return (0);
1300}
1301
2d21ac55 1302
1c79356b 1303/*
2d21ac55
A
1304 * ubc_setcred
1305 *
1306 * If they are not already set, set the credentials of the ubc_info structure
1307 * associated with the vnode to those of the process; otherwise leave them
1308 * alone.
1309 *
1310 * Parameters: vp The vnode whose ubc_info creds are to
1311 * be set
1312 * p The process whose credentials are to
1313 * be used
1314 *
1315 * Returns: 0 This vnode has no associated ubc_info
1316 * 1 Success
1317 *
1318 * Notes: The return values for this function are inverted from nearly
1319 * all other uses in the kernel.
1320 *
1321 * See also ubc_setthreadcred(), above.
1322 *
1323 * This function is considered deprecated, and generally should
1324 * not be used, as it is incompatible with per-thread credentials;
1325 * it exists for legacy KPI reasons.
1326 *
1327 * DEPRECATION: ubc_setcred() is being deprecated. Please use
1328 * ubc_setthreadcred() instead.
1c79356b 1329 */
1c79356b 1330int
2d21ac55 1331ubc_setcred(struct vnode *vp, proc_t p)
1c79356b
A
1332{
1333 struct ubc_info *uip;
91447636 1334 kauth_cred_t credp;
1c79356b 1335
2d21ac55
A
1336 /* If there is no ubc_info, deny the operation */
1337 if ( !UBCINFOEXISTS(vp))
1c79356b 1338 return (0);
1c79356b 1339
2d21ac55
A
1340 /*
1341 * Check to see if there is already a credential reference in the
1342 * ubc_info; if there is not, take one on the supplied credential.
1343 */
91447636 1344 vnode_lock(vp);
91447636 1345 uip = vp->v_ubcinfo;
1c79356b 1346 credp = uip->ui_ucred;
0c530ab8 1347 if (!IS_VALID_CRED(credp)) {
91447636 1348 uip->ui_ucred = kauth_cred_proc_ref(p);
1c79356b 1349 }
91447636 1350 vnode_unlock(vp);
1c79356b
A
1351
1352 return (1);
1353}
1354
2d21ac55
A
1355/*
1356 * ubc_getpager
1357 *
1358 * Get the pager associated with the ubc_info associated with the vnode.
1359 *
1360 * Parameters: vp The vnode to obtain the pager from
1361 *
1362 * Returns: !VNODE_PAGER_NULL The memory_object_t for the pager
1363 * VNODE_PAGER_NULL There is no ubc_info for this vnode
1364 *
1365 * Notes: For each vnode that has a ubc_info associated with it, that
1366 * ubc_info SHALL have a pager associated with it, so in the
1367 * normal case, it's impossible to return VNODE_PAGER_NULL for
1368 * a vnode with an associated ubc_info.
1369 */
0b4e3aa0 1370__private_extern__ memory_object_t
1c79356b
A
1371ubc_getpager(struct vnode *vp)
1372{
91447636
A
1373 if (UBCINFOEXISTS(vp))
1374 return (vp->v_ubcinfo->ui_pager);
1c79356b 1375
91447636 1376 return (0);
1c79356b
A
1377}
1378
2d21ac55 1379
1c79356b 1380/*
2d21ac55
A
1381 * ubc_getobject
1382 *
1383 * Get the memory object control associated with the ubc_info associated with
1384 * the vnode
1385 *
1386 * Parameters: vp The vnode to obtain the memory object
1387 * from
1388 * flags DEPRECATED
1389 *
1390 * Returns: !MEMORY_OBJECT_CONTROL_NULL
1391 * MEMORY_OBJECT_CONTROL_NULL
1392 *
1393 * Notes: Historically, if the flags were not "do not reactivate", this
1394 * function would look up the memory object using the pager if
1395 * it did not exist (this could be the case if the vnode had
1396 * been previously reactivated). The flags would also permit a
1397 * hold to be requested, which would have created an object
1398 * reference, if one had not already existed. This usage is
1399 * deprecated, as it would permit a race between finding and
1400 * taking the reference vs. a single reference being dropped in
1401 * another thread.
1c79356b 1402 */
0b4e3aa0 1403memory_object_control_t
91447636 1404ubc_getobject(struct vnode *vp, __unused int flags)
1c79356b 1405{
91447636
A
1406 if (UBCINFOEXISTS(vp))
1407 return((vp->v_ubcinfo->ui_control));
1c79356b 1408
2d21ac55 1409 return (MEMORY_OBJECT_CONTROL_NULL);
1c79356b
A
1410}
1411
6d2010ae
A
1412boolean_t
1413ubc_strict_uncached_IO(struct vnode *vp)
1414{
1415 boolean_t result = FALSE;
1416
1417 if (UBCINFOEXISTS(vp)) {
1418 result = memory_object_is_slid(vp->v_ubcinfo->ui_control);
1419 }
1420 return result;
1421}
1c79356b 1422
2d21ac55
A
1423/*
1424 * ubc_blktooff
1425 *
1426 * Convert a given block number to a memory backing object (file) offset for a
1427 * given vnode
1428 *
1429 * Parameters: vp The vnode in which the block is located
1430 * blkno The block number to convert
1431 *
1432 * Returns: !-1 The offset into the backing object
1433 * -1 There is no ubc_info associated with
1434 * the vnode
1435 * -1 An error occurred in the underlying VFS
1436 * while translating the block to an
1437 * offset; the most likely cause is that
1438 * the caller specified a block past the
1439 * end of the file, but this could also be
1440 * any other error from VNOP_BLKTOOFF().
1441 *
1442 * Note: Representing the error in band loses some information, but does
1443 * not occlude a valid offset, since an off_t of -1 is normally
1444 * used to represent EOF. If we had a more reliable constant in
1445 * our header files for it (i.e. explicitly cast to an off_t), we
1446 * would use it here instead.
1447 */
1c79356b 1448off_t
91447636 1449ubc_blktooff(vnode_t vp, daddr64_t blkno)
1c79356b 1450{
2d21ac55 1451 off_t file_offset = -1;
1c79356b
A
1452 int error;
1453
2d21ac55
A
1454 if (UBCINFOEXISTS(vp)) {
1455 error = VNOP_BLKTOOFF(vp, blkno, &file_offset);
1456 if (error)
1457 file_offset = -1;
1458 }
1c79356b
A
1459
1460 return (file_offset);
1461}
0b4e3aa0 1462
2d21ac55
A
1463
1464/*
1465 * ubc_offtoblk
1466 *
1467 * Convert a given offset in a memory backing object into a block number for a
1468 * given vnode
1469 *
1470 * Parameters: vp The vnode in which the offset is
1471 * located
1472 * offset The offset into the backing object
1473 *
1474 * Returns: !-1 The returned block number
1475 * -1 There is no ubc_info associated with
1476 * the vnode
1477 * -1 An error occurred in the underlying VFS
1478 * while translating the block to an
1479 * offset; the most likely cause is that
1480 * the caller specified a block past the
1481 * end of the file, but this could also be
1482 * any other error from VNOP_OFFTOBLK().
1483 *
1484 * Note: Representing the error in band loses some information, but does
1485 * not occlude a valid block number, since block numbers exceed
1486 * the valid range for offsets, due to their relative sizes. If
1487 * we had a more reliable constant than -1 in our header files
1488 * for it (i.e. explicitly cast to an daddr64_t), we would use it
1489 * here instead.
1490 */
91447636
A
1491daddr64_t
1492ubc_offtoblk(vnode_t vp, off_t offset)
1c79356b 1493{
2d21ac55 1494 daddr64_t blkno = -1;
0b4e3aa0 1495 int error = 0;
1c79356b 1496
2d21ac55
A
1497 if (UBCINFOEXISTS(vp)) {
1498 error = VNOP_OFFTOBLK(vp, offset, &blkno);
1499 if (error)
1500 blkno = -1;
1501 }
1c79356b
A
1502
1503 return (blkno);
1504}
1505
2d21ac55
A
1506
1507/*
1508 * ubc_pages_resident
1509 *
1510 * Determine whether or not a given vnode has pages resident via the memory
1511 * object control associated with the ubc_info associated with the vnode
1512 *
1513 * Parameters: vp The vnode we want to know about
1514 *
1515 * Returns: 1 Yes
1516 * 0 No
1517 */
1c79356b 1518int
91447636 1519ubc_pages_resident(vnode_t vp)
1c79356b 1520{
91447636
A
1521 kern_return_t kret;
1522 boolean_t has_pages_resident;
1523
2d21ac55 1524 if (!UBCINFOEXISTS(vp))
0b4e3aa0 1525 return (0);
91447636 1526
2d21ac55
A
1527 /*
1528 * The following call may fail if an invalid ui_control is specified,
1529 * or if there is no VM object associated with the control object. In
1530 * either case, reacting to it as if there were no pages resident will
1531 * result in correct behavior.
1532 */
91447636
A
1533 kret = memory_object_pages_resident(vp->v_ubcinfo->ui_control, &has_pages_resident);
1534
1535 if (kret != KERN_SUCCESS)
0b4e3aa0 1536 return (0);
91447636
A
1537
1538 if (has_pages_resident == TRUE)
1539 return (1);
1540
1541 return (0);
1542}
1c79356b 1543
0b4e3aa0 1544/*
2d21ac55
A
1545 * ubc_msync
1546 *
1547 * Clean and/or invalidate a range in the memory object that backs this vnode
1548 *
1549 * Parameters: vp The vnode whose associated ubc_info's
1550 * associated memory object is to have a
1551 * range invalidated within it
1552 * beg_off The start of the range, as an offset
1553 * end_off The end of the range, as an offset
1554 * resid_off The address of an off_t supplied by the
1555 * caller; may be set to NULL to ignore
1556 * flags See ubc_msync_internal()
1557 *
1558 * Returns: 0 Success
1559 * !0 Failure; an errno is returned
1560 *
1561 * Implicit Returns:
1562 * *resid_off, modified If non-NULL, the contents are ALWAYS
1563 * modified; they are initialized to the
1564 * beg_off, and in case of an I/O error,
1565 * the difference between beg_off and the
1566 * current value will reflect what was
1567 * able to be written before the error
1568 * occurred. If no error is returned, the
1569 * value of the resid_off is undefined; do
1570 * NOT use it in place of end_off if you
1571 * intend to increment from the end of the
1572 * last call and call iteratively.
1573 *
1574 * Notes: see ubc_msync_internal() for more detailed information.
1575 *
0b4e3aa0 1576 */
91447636
A
1577errno_t
1578ubc_msync(vnode_t vp, off_t beg_off, off_t end_off, off_t *resid_off, int flags)
0b4e3aa0 1579{
91447636
A
1580 int retval;
1581 int io_errno = 0;
1582
1583 if (resid_off)
1584 *resid_off = beg_off;
0b4e3aa0 1585
91447636 1586 retval = ubc_msync_internal(vp, beg_off, end_off, resid_off, flags, &io_errno);
0b4e3aa0 1587
91447636
A
1588 if (retval == 0 && io_errno == 0)
1589 return (EINVAL);
1590 return (io_errno);
1591}
0b4e3aa0 1592
1c79356b 1593
1c79356b 1594/*
fe8ab488
A
1595 * ubc_msync_internal
1596 *
2d21ac55
A
1597 * Clean and/or invalidate a range in the memory object that backs this vnode
1598 *
1599 * Parameters: vp The vnode whose associated ubc_info's
1600 * associated memory object is to have a
1601 * range invalidated within it
1602 * beg_off The start of the range, as an offset
1603 * end_off The end of the range, as an offset
1604 * resid_off The address of an off_t supplied by the
1605 * caller; may be set to NULL to ignore
1606 * flags MUST contain at least one of the flags
1607 * UBC_INVALIDATE, UBC_PUSHDIRTY, or
1608 * UBC_PUSHALL; if UBC_PUSHDIRTY is used,
1609 * UBC_SYNC may also be specified to cause
1610 * this function to block until the
1611 * operation is complete. The behavior
1612 * of UBC_SYNC is otherwise undefined.
1613 * io_errno The address of an int to contain the
1614 * errno from a failed I/O operation, if
1615 * one occurs; may be set to NULL to
1616 * ignore
1617 *
1618 * Returns: 1 Success
1619 * 0 Failure
1620 *
1621 * Implicit Returns:
1622 * *resid_off, modified The contents of this offset MAY be
1623 * modified; in case of an I/O error, the
1624 * difference between beg_off and the
1625 * current value will reflect what was
1626 * able to be written before the error
1627 * occurred.
1628 * *io_errno, modified The contents of this offset are set to
1629 * an errno, if an error occurs; if the
1630 * caller supplies an io_errno parameter,
1631 * they should be careful to initialize it
1632 * to 0 before calling this function to
1633 * enable them to distinguish an error
1634 * with a valid *resid_off from an invalid
1635 * one, and to avoid potentially falsely
1636 * reporting an error, depending on use.
1637 *
1638 * Notes: If there is no ubc_info associated with the vnode supplied,
1639 * this function immediately returns success.
1640 *
1641 * If the value of end_off is less than or equal to beg_off, this
1642 * function immediately returns success; that is, end_off is NOT
1643 * inclusive.
1644 *
1645 * IMPORTANT: one of the flags UBC_INVALIDATE, UBC_PUSHDIRTY, or
1646 * UBC_PUSHALL MUST be specified; that is, it is NOT possible to
1647 * attempt to block on in-progress I/O by calling this function
1648 * with UBC_PUSHDIRTY, and then later call it with just UBC_SYNC
1649 * in order to block pending on the I/O already in progress.
1650 *
1651 * The start offset is truncated to the page boundary and the
1652 * size is adjusted to include the last page in the range; that
1653 * is, end_off on exactly a page boundary will not change if it
1654 * is rounded, and the range of bytes written will be from the
1655 * truncate beg_off to the rounded (end_off - 1).
1c79356b 1656 */
91447636
A
1657static int
1658ubc_msync_internal(vnode_t vp, off_t beg_off, off_t end_off, off_t *resid_off, int flags, int *io_errno)
1c79356b 1659{
91447636
A
1660 memory_object_size_t tsize;
1661 kern_return_t kret;
1662 int request_flags = 0;
1663 int flush_flags = MEMORY_OBJECT_RETURN_NONE;
1664
1665 if ( !UBCINFOEXISTS(vp))
1666 return (0);
91447636
A
1667 if ((flags & (UBC_INVALIDATE | UBC_PUSHDIRTY | UBC_PUSHALL)) == 0)
1668 return (0);
2d21ac55
A
1669 if (end_off <= beg_off)
1670 return (1);
91447636
A
1671
1672 if (flags & UBC_INVALIDATE)
1673 /*
1674 * discard the resident pages
1675 */
1676 request_flags = (MEMORY_OBJECT_DATA_FLUSH | MEMORY_OBJECT_DATA_NO_CHANGE);
1c79356b 1677
91447636
A
1678 if (flags & UBC_SYNC)
1679 /*
1680 * wait for all the I/O to complete before returning
55e303ae 1681 */
91447636 1682 request_flags |= MEMORY_OBJECT_IO_SYNC;
55e303ae 1683
91447636
A
1684 if (flags & UBC_PUSHDIRTY)
1685 /*
1686 * we only return the dirty pages in the range
1687 */
1688 flush_flags = MEMORY_OBJECT_RETURN_DIRTY;
0b4e3aa0 1689
91447636
A
1690 if (flags & UBC_PUSHALL)
1691 /*
2d21ac55
A
1692 * then return all the interesting pages in the range (both
1693 * dirty and precious) to the pager
91447636
A
1694 */
1695 flush_flags = MEMORY_OBJECT_RETURN_ALL;
0b4e3aa0 1696
91447636
A
1697 beg_off = trunc_page_64(beg_off);
1698 end_off = round_page_64(end_off);
1699 tsize = (memory_object_size_t)end_off - beg_off;
b4c24cb9 1700
91447636
A
1701 /* flush and/or invalidate pages in the range requested */
1702 kret = memory_object_lock_request(vp->v_ubcinfo->ui_control,
2d21ac55
A
1703 beg_off, tsize,
1704 (memory_object_offset_t *)resid_off,
1705 io_errno, flush_flags, request_flags,
1706 VM_PROT_NO_CHANGE);
91447636
A
1707
1708 return ((kret == KERN_SUCCESS) ? 1 : 0);
1c79356b
A
1709}
1710
1c79356b
A
1711
1712/*
fe8ab488 1713 * ubc_map
2d21ac55
A
1714 *
1715 * Explicitly map a vnode that has an associate ubc_info, and add a reference
1716 * to it for the ubc system, if there isn't one already, so it will not be
1717 * recycled while it's in use, and set flags on the ubc_info to indicate that
1718 * we have done this
1719 *
1720 * Parameters: vp The vnode to map
1721 * flags The mapping flags for the vnode; this
1722 * will be a combination of one or more of
1723 * PROT_READ, PROT_WRITE, and PROT_EXEC
1724 *
1725 * Returns: 0 Success
1726 * EPERM Permission was denied
1727 *
1728 * Notes: An I/O reference on the vnode must already be held on entry
1729 *
1730 * If there is no ubc_info associated with the vnode, this function
1731 * will return success.
1732 *
1733 * If a permission error occurs, this function will return
1734 * failure; all other failures will cause this function to return
1735 * success.
1736 *
1737 * IMPORTANT: This is an internal use function, and its symbols
1738 * are not exported, hence its error checking is not very robust.
1739 * It is primarily used by:
1740 *
1741 * o mmap(), when mapping a file
2d21ac55
A
1742 * o When mapping a shared file (a shared library in the
1743 * shared segment region)
1744 * o When loading a program image during the exec process
1745 *
1746 * ...all of these uses ignore the return code, and any fault that
1747 * results later because of a failure is handled in the fix-up path
1748 * of the fault handler. The interface exists primarily as a
1749 * performance hint.
1750 *
1751 * Given that third party implementation of the type of interfaces
1752 * that would use this function, such as alternative executable
1753 * formats, etc., are unsupported, this function is not exported
1754 * for general use.
1755 *
1756 * The extra reference is held until the VM system unmaps the
1757 * vnode from its own context to maintain a vnode reference in
1758 * cases like open()/mmap()/close(), which leave the backing
1759 * object referenced by a mapped memory region in a process
1760 * address space.
1c79356b 1761 */
91447636
A
1762__private_extern__ int
1763ubc_map(vnode_t vp, int flags)
1c79356b
A
1764{
1765 struct ubc_info *uip;
91447636
A
1766 int error = 0;
1767 int need_ref = 0;
2d21ac55 1768 int need_wakeup = 0;
1c79356b 1769
91447636 1770 if (UBCINFOEXISTS(vp)) {
1c79356b 1771
2d21ac55
A
1772 vnode_lock(vp);
1773 uip = vp->v_ubcinfo;
1774
1775 while (ISSET(uip->ui_flags, UI_MAPBUSY)) {
1776 SET(uip->ui_flags, UI_MAPWAITING);
1777 (void) msleep(&uip->ui_flags, &vp->v_lock,
1778 PRIBIO, "ubc_map", NULL);
1779 }
1780 SET(uip->ui_flags, UI_MAPBUSY);
1781 vnode_unlock(vp);
1782
1783 error = VNOP_MMAP(vp, flags, vfs_context_current());
1c79356b 1784
39037602
A
1785 /*
1786 * rdar://problem/22587101 required that we stop propagating
1787 * EPERM up the stack. Otherwise, we would have to funnel up
1788 * the error at all the call sites for memory_object_map().
1789 * The risk is in having to undo the map/object/entry state at
1790 * all these call sites. It would also affect more than just mmap()
1791 * e.g. vm_remap().
1792 *
1793 * if (error != EPERM)
1794 * error = 0;
1795 */
1796
1797 error = 0;
1c79356b 1798
2d21ac55 1799 vnode_lock_spin(vp);
1c79356b 1800
2d21ac55 1801 if (error == 0) {
91447636
A
1802 if ( !ISSET(uip->ui_flags, UI_ISMAPPED))
1803 need_ref = 1;
1804 SET(uip->ui_flags, (UI_WASMAPPED | UI_ISMAPPED));
22ba694c
A
1805 if (flags & PROT_WRITE) {
1806 SET(uip->ui_flags, UI_MAPPEDWRITE);
1807 }
2d21ac55
A
1808 }
1809 CLR(uip->ui_flags, UI_MAPBUSY);
55e303ae 1810
2d21ac55
A
1811 if (ISSET(uip->ui_flags, UI_MAPWAITING)) {
1812 CLR(uip->ui_flags, UI_MAPWAITING);
1813 need_wakeup = 1;
55e303ae 1814 }
2d21ac55 1815 vnode_unlock(vp);
b4c24cb9 1816
2d21ac55
A
1817 if (need_wakeup)
1818 wakeup(&uip->ui_flags);
1819
39037602
A
1820 if (need_ref) {
1821 /*
1822 * Make sure we get a ref as we can't unwind from here
1823 */
1824 if (vnode_ref_ext(vp, 0, VNODE_REF_FORCE))
1825 panic("%s : VNODE_REF_FORCE failed\n", __FUNCTION__);
1826 }
2d21ac55 1827 }
91447636 1828 return (error);
0b4e3aa0
A
1829}
1830
2d21ac55 1831
0b4e3aa0 1832/*
2d21ac55
A
1833 * ubc_destroy_named
1834 *
1835 * Destroy the named memory object associated with the ubc_info control object
1836 * associated with the designated vnode, if there is a ubc_info associated
1837 * with the vnode, and a control object is associated with it
1838 *
1839 * Parameters: vp The designated vnode
1840 *
1841 * Returns: (void)
1842 *
1843 * Notes: This function is called on vnode termination for all vnodes,
1844 * and must therefore not assume that there is a ubc_info that is
1845 * associated with the vnode, nor that there is a control object
1846 * associated with the ubc_info.
1847 *
1848 * If all the conditions necessary are present, this function
1849 * calls memory_object_destory(), which will in turn end up
1850 * calling ubc_unmap() to release any vnode references that were
1851 * established via ubc_map().
1852 *
1853 * IMPORTANT: This is an internal use function that is used
1854 * exclusively by the internal use function vclean().
0b4e3aa0 1855 */
2d21ac55
A
1856__private_extern__ void
1857ubc_destroy_named(vnode_t vp)
0b4e3aa0
A
1858{
1859 memory_object_control_t control;
0b4e3aa0
A
1860 struct ubc_info *uip;
1861 kern_return_t kret;
1862
2d21ac55
A
1863 if (UBCINFOEXISTS(vp)) {
1864 uip = vp->v_ubcinfo;
1865
1866 /* Terminate the memory object */
1867 control = ubc_getobject(vp, UBC_HOLDOBJECT);
1868 if (control != MEMORY_OBJECT_CONTROL_NULL) {
1869 kret = memory_object_destroy(control, 0);
1870 if (kret != KERN_SUCCESS)
1871 panic("ubc_destroy_named: memory_object_destroy failed");
0b4e3aa0
A
1872 }
1873 }
1c79356b
A
1874}
1875
0b4e3aa0 1876
1c79356b 1877/*
2d21ac55
A
1878 * ubc_isinuse
1879 *
1880 * Determine whether or not a vnode is currently in use by ubc at a level in
1881 * excess of the requested busycount
1882 *
1883 * Parameters: vp The vnode to check
1884 * busycount The threshold busy count, used to bias
1885 * the count usually already held by the
1886 * caller to avoid races
1887 *
1888 * Returns: 1 The vnode is in use over the threshold
1889 * 0 The vnode is not in use over the
1890 * threshold
1891 *
1892 * Notes: Because the vnode is only held locked while actually asking
1893 * the use count, this function only represents a snapshot of the
1894 * current state of the vnode. If more accurate information is
1895 * required, an additional busycount should be held by the caller
1896 * and a non-zero busycount used.
1897 *
1898 * If there is no ubc_info associated with the vnode, this
1899 * function will report that the vnode is not in use by ubc.
1c79356b
A
1900 */
1901int
91447636 1902ubc_isinuse(struct vnode *vp, int busycount)
1c79356b 1903{
91447636 1904 if ( !UBCINFOEXISTS(vp))
0b4e3aa0 1905 return (0);
91447636 1906 return(ubc_isinuse_locked(vp, busycount, 0));
1c79356b
A
1907}
1908
91447636 1909
2d21ac55
A
1910/*
1911 * ubc_isinuse_locked
1912 *
1913 * Determine whether or not a vnode is currently in use by ubc at a level in
1914 * excess of the requested busycount
1915 *
1916 * Parameters: vp The vnode to check
1917 * busycount The threshold busy count, used to bias
1918 * the count usually already held by the
1919 * caller to avoid races
1920 * locked True if the vnode is already locked by
1921 * the caller
1922 *
1923 * Returns: 1 The vnode is in use over the threshold
1924 * 0 The vnode is not in use over the
1925 * threshold
1926 *
1927 * Notes: If the vnode is not locked on entry, it is locked while
1928 * actually asking the use count. If this is the case, this
1929 * function only represents a snapshot of the current state of
1930 * the vnode. If more accurate information is required, the
1931 * vnode lock should be held by the caller, otherwise an
1932 * additional busycount should be held by the caller and a
1933 * non-zero busycount used.
1934 *
1935 * If there is no ubc_info associated with the vnode, this
1936 * function will report that the vnode is not in use by ubc.
1937 */
1c79356b 1938int
91447636 1939ubc_isinuse_locked(struct vnode *vp, int busycount, int locked)
1c79356b 1940{
91447636 1941 int retval = 0;
1c79356b 1942
9bccf70c 1943
91447636 1944 if (!locked)
b0d623f7 1945 vnode_lock_spin(vp);
1c79356b 1946
91447636
A
1947 if ((vp->v_usecount - vp->v_kusecount) > busycount)
1948 retval = 1;
1949
1950 if (!locked)
1951 vnode_unlock(vp);
1952 return (retval);
1c79356b
A
1953}
1954
91447636 1955
1c79356b 1956/*
2d21ac55
A
1957 * ubc_unmap
1958 *
1959 * Reverse the effects of a ubc_map() call for a given vnode
1960 *
1961 * Parameters: vp vnode to unmap from ubc
1962 *
1963 * Returns: (void)
1964 *
1965 * Notes: This is an internal use function used by vnode_pager_unmap().
1966 * It will attempt to obtain a reference on the supplied vnode,
1967 * and if it can do so, and there is an associated ubc_info, and
1968 * the flags indicate that it was mapped via ubc_map(), then the
1969 * flag is cleared, the mapping removed, and the reference taken
1970 * by ubc_map() is released.
1971 *
1972 * IMPORTANT: This MUST only be called by the VM
1973 * to prevent race conditions.
1c79356b 1974 */
0b4e3aa0 1975__private_extern__ void
1c79356b
A
1976ubc_unmap(struct vnode *vp)
1977{
1978 struct ubc_info *uip;
91447636 1979 int need_rele = 0;
2d21ac55 1980 int need_wakeup = 0;
b0d623f7 1981
91447636
A
1982 if (vnode_getwithref(vp))
1983 return;
1c79356b 1984
91447636 1985 if (UBCINFOEXISTS(vp)) {
fe8ab488
A
1986 bool want_fsevent = false;
1987
91447636 1988 vnode_lock(vp);
91447636 1989 uip = vp->v_ubcinfo;
2d21ac55
A
1990
1991 while (ISSET(uip->ui_flags, UI_MAPBUSY)) {
1992 SET(uip->ui_flags, UI_MAPWAITING);
1993 (void) msleep(&uip->ui_flags, &vp->v_lock,
1994 PRIBIO, "ubc_unmap", NULL);
1995 }
1996 SET(uip->ui_flags, UI_MAPBUSY);
1997
91447636 1998 if (ISSET(uip->ui_flags, UI_ISMAPPED)) {
fe8ab488
A
1999 if (ISSET(uip->ui_flags, UI_MAPPEDWRITE))
2000 want_fsevent = true;
2001
91447636 2002 need_rele = 1;
fe8ab488
A
2003
2004 /*
2005 * We want to clear the mapped flags after we've called
2006 * VNOP_MNOMAP to avoid certain races and allow
2007 * VNOP_MNOMAP to call ubc_is_mapped_writable.
2008 */
91447636
A
2009 }
2010 vnode_unlock(vp);
fe8ab488 2011
91447636 2012 if (need_rele) {
fe8ab488
A
2013 vfs_context_t ctx = vfs_context_current();
2014
2015 (void)VNOP_MNOMAP(vp, ctx);
2016
2017#if CONFIG_FSE
2018 /*
2019 * Why do we want an fsevent here? Normally the
2020 * content modified fsevent is posted when a file is
2021 * closed and only if it's written to via conventional
2022 * means. It's perfectly legal to close a file and
2023 * keep your mappings and we don't currently track
2024 * whether it was written to via a mapping.
2025 * Therefore, we need to post an fsevent here if the
2026 * file was mapped writable. This may result in false
2027 * events, i.e. we post a notification when nothing
2028 * has really changed.
2029 */
2030 if (want_fsevent && need_fsevent(FSE_CONTENT_MODIFIED, vp)) {
2031 add_fsevent(FSE_CONTENT_MODIFIED, ctx,
2032 FSE_ARG_VNODE, vp,
2033 FSE_ARG_DONE);
2034 }
2035#endif
2036
b0d623f7 2037 vnode_rele(vp);
91447636 2038 }
2d21ac55
A
2039
2040 vnode_lock_spin(vp);
2041
fe8ab488
A
2042 if (need_rele)
2043 CLR(uip->ui_flags, UI_ISMAPPED | UI_MAPPEDWRITE);
2044
2d21ac55 2045 CLR(uip->ui_flags, UI_MAPBUSY);
fe8ab488 2046
2d21ac55
A
2047 if (ISSET(uip->ui_flags, UI_MAPWAITING)) {
2048 CLR(uip->ui_flags, UI_MAPWAITING);
2049 need_wakeup = 1;
2050 }
2051 vnode_unlock(vp);
2052
2053 if (need_wakeup)
b0d623f7 2054 wakeup(&uip->ui_flags);
2d21ac55 2055
91447636
A
2056 }
2057 /*
2058 * the drop of the vnode ref will cleanup
2059 */
2060 vnode_put(vp);
0b4e3aa0
A
2061}
2062
2d21ac55
A
2063
2064/*
2065 * ubc_page_op
2066 *
2067 * Manipulate individual page state for a vnode with an associated ubc_info
2068 * with an associated memory object control.
2069 *
2070 * Parameters: vp The vnode backing the page
2071 * f_offset A file offset interior to the page
2072 * ops The operations to perform, as a bitmap
2073 * (see below for more information)
2074 * phys_entryp The address of a ppnum_t; may be NULL
2075 * to ignore
2076 * flagsp A pointer to an int to contain flags;
2077 * may be NULL to ignore
2078 *
2079 * Returns: KERN_SUCCESS Success
2080 * KERN_INVALID_ARGUMENT If the memory object control has no VM
2081 * object associated
2082 * KERN_INVALID_OBJECT If UPL_POP_PHYSICAL and the object is
2083 * not physically contiguous
2084 * KERN_INVALID_OBJECT If !UPL_POP_PHYSICAL and the object is
2085 * physically contiguous
2086 * KERN_FAILURE If the page cannot be looked up
2087 *
2088 * Implicit Returns:
2089 * *phys_entryp (modified) If phys_entryp is non-NULL and
2090 * UPL_POP_PHYSICAL
2091 * *flagsp (modified) If flagsp is non-NULL and there was
2092 * !UPL_POP_PHYSICAL and a KERN_SUCCESS
2093 *
2094 * Notes: For object boundaries, it is considerably more efficient to
2095 * ensure that f_offset is in fact on a page boundary, as this
2096 * will avoid internal use of the hash table to identify the
2097 * page, and would therefore skip a number of early optimizations.
2098 * Since this is a page operation anyway, the caller should try
2099 * to pass only a page aligned offset because of this.
2100 *
2101 * *flagsp may be modified even if this function fails. If it is
2102 * modified, it will contain the condition of the page before the
2103 * requested operation was attempted; these will only include the
2104 * bitmap flags, and not the PL_POP_PHYSICAL, UPL_POP_DUMP,
2105 * UPL_POP_SET, or UPL_POP_CLR bits.
2106 *
2107 * The flags field may contain a specific operation, such as
2108 * UPL_POP_PHYSICAL or UPL_POP_DUMP:
2109 *
2110 * o UPL_POP_PHYSICAL Fail if not contiguous; if
2111 * *phys_entryp and successful, set
2112 * *phys_entryp
2113 * o UPL_POP_DUMP Dump the specified page
2114 *
2115 * Otherwise, it is treated as a bitmap of one or more page
2116 * operations to perform on the final memory object; allowable
2117 * bit values are:
2118 *
2119 * o UPL_POP_DIRTY The page is dirty
2120 * o UPL_POP_PAGEOUT The page is paged out
2121 * o UPL_POP_PRECIOUS The page is precious
2122 * o UPL_POP_ABSENT The page is absent
2123 * o UPL_POP_BUSY The page is busy
2124 *
2125 * If the page status is only being queried and not modified, then
2126 * not other bits should be specified. However, if it is being
2127 * modified, exactly ONE of the following bits should be set:
2128 *
2129 * o UPL_POP_SET Set the current bitmap bits
2130 * o UPL_POP_CLR Clear the current bitmap bits
2131 *
2132 * Thus to effect a combination of setting an clearing, it may be
2133 * necessary to call this function twice. If this is done, the
2134 * set should be used before the clear, since clearing may trigger
2135 * a wakeup on the destination page, and if the page is backed by
2136 * an encrypted swap file, setting will trigger the decryption
2137 * needed before the wakeup occurs.
2138 */
0b4e3aa0
A
2139kern_return_t
2140ubc_page_op(
2141 struct vnode *vp,
2142 off_t f_offset,
2143 int ops,
55e303ae 2144 ppnum_t *phys_entryp,
0b4e3aa0
A
2145 int *flagsp)
2146{
2147 memory_object_control_t control;
2148
2149 control = ubc_getobject(vp, UBC_FLAGS_NONE);
2150 if (control == MEMORY_OBJECT_CONTROL_NULL)
2151 return KERN_INVALID_ARGUMENT;
2152
2153 return (memory_object_page_op(control,
2154 (memory_object_offset_t)f_offset,
2155 ops,
2156 phys_entryp,
2157 flagsp));
2158}
2d21ac55
A
2159
2160
2161/*
2162 * ubc_range_op
2163 *
2164 * Manipulate page state for a range of memory for a vnode with an associated
2165 * ubc_info with an associated memory object control, when page level state is
2166 * not required to be returned from the call (i.e. there are no phys_entryp or
2167 * flagsp parameters to this call, and it takes a range which may contain
2168 * multiple pages, rather than an offset interior to a single page).
2169 *
2170 * Parameters: vp The vnode backing the page
2171 * f_offset_beg A file offset interior to the start page
2172 * f_offset_end A file offset interior to the end page
2173 * ops The operations to perform, as a bitmap
2174 * (see below for more information)
2175 * range The address of an int; may be NULL to
2176 * ignore
2177 *
2178 * Returns: KERN_SUCCESS Success
2179 * KERN_INVALID_ARGUMENT If the memory object control has no VM
2180 * object associated
2181 * KERN_INVALID_OBJECT If the object is physically contiguous
2182 *
2183 * Implicit Returns:
2184 * *range (modified) If range is non-NULL, its contents will
2185 * be modified to contain the number of
2186 * bytes successfully operated upon.
2187 *
2188 * Notes: IMPORTANT: This function cannot be used on a range that
2189 * consists of physically contiguous pages.
2190 *
2191 * For object boundaries, it is considerably more efficient to
2192 * ensure that f_offset_beg and f_offset_end are in fact on page
2193 * boundaries, as this will avoid internal use of the hash table
2194 * to identify the page, and would therefore skip a number of
2195 * early optimizations. Since this is an operation on a set of
2196 * pages anyway, the caller should try to pass only a page aligned
2197 * offsets because of this.
2198 *
2199 * *range will be modified only if this function succeeds.
2200 *
2201 * The flags field MUST contain a specific operation; allowable
2202 * values are:
2203 *
2204 * o UPL_ROP_ABSENT Returns the extent of the range
2205 * presented which is absent, starting
2206 * with the start address presented
2207 *
2208 * o UPL_ROP_PRESENT Returns the extent of the range
2209 * presented which is present (resident),
2210 * starting with the start address
2211 * presented
2212 * o UPL_ROP_DUMP Dump the pages which are found in the
2213 * target object for the target range.
2214 *
2215 * IMPORTANT: For UPL_ROP_ABSENT and UPL_ROP_PRESENT; if there are
2216 * multiple regions in the range, only the first matching region
2217 * is returned.
2218 */
55e303ae
A
2219kern_return_t
2220ubc_range_op(
2221 struct vnode *vp,
2222 off_t f_offset_beg,
2223 off_t f_offset_end,
2224 int ops,
2225 int *range)
2226{
2227 memory_object_control_t control;
2228
2229 control = ubc_getobject(vp, UBC_FLAGS_NONE);
2230 if (control == MEMORY_OBJECT_CONTROL_NULL)
2231 return KERN_INVALID_ARGUMENT;
2232
2233 return (memory_object_range_op(control,
2234 (memory_object_offset_t)f_offset_beg,
2235 (memory_object_offset_t)f_offset_end,
2236 ops,
2237 range));
2238}
2d21ac55
A
2239
2240
2241/*
2242 * ubc_create_upl
2243 *
2244 * Given a vnode, cause the population of a portion of the vm_object; based on
2245 * the nature of the request, the pages returned may contain valid data, or
2246 * they may be uninitialized.
2247 *
2248 * Parameters: vp The vnode from which to create the upl
2249 * f_offset The start offset into the backing store
2250 * represented by the vnode
2251 * bufsize The size of the upl to create
2252 * uplp Pointer to the upl_t to receive the
2253 * created upl; MUST NOT be NULL
2254 * plp Pointer to receive the internal page
2255 * list for the created upl; MAY be NULL
2256 * to ignore
2257 *
2258 * Returns: KERN_SUCCESS The requested upl has been created
2259 * KERN_INVALID_ARGUMENT The bufsize argument is not an even
2260 * multiple of the page size
2261 * KERN_INVALID_ARGUMENT There is no ubc_info associated with
2262 * the vnode, or there is no memory object
2263 * control associated with the ubc_info
2264 * memory_object_upl_request:KERN_INVALID_VALUE
2265 * The supplied upl_flags argument is
2266 * invalid
2267 * Implicit Returns:
2268 * *uplp (modified)
2269 * *plp (modified) If non-NULL, the value of *plp will be
2270 * modified to point to the internal page
2271 * list; this modification may occur even
2272 * if this function is unsuccessful, in
2273 * which case the contents may be invalid
2274 *
2275 * Note: If successful, the returned *uplp MUST subsequently be freed
2276 * via a call to ubc_upl_commit(), ubc_upl_commit_range(),
2277 * ubc_upl_abort(), or ubc_upl_abort_range().
2278 */
0b4e3aa0
A
2279kern_return_t
2280ubc_create_upl(
2281 struct vnode *vp,
2d21ac55 2282 off_t f_offset,
b0d623f7 2283 int bufsize,
2d21ac55 2284 upl_t *uplp,
0b4e3aa0 2285 upl_page_info_t **plp,
2d21ac55 2286 int uplflags)
0b4e3aa0
A
2287{
2288 memory_object_control_t control;
55e303ae 2289 kern_return_t kr;
b0d623f7
A
2290
2291 if (plp != NULL)
2292 *plp = NULL;
2293 *uplp = NULL;
0b4e3aa0
A
2294
2295 if (bufsize & 0xfff)
2296 return KERN_INVALID_ARGUMENT;
2297
fe8ab488 2298 if (bufsize > MAX_UPL_SIZE_BYTES)
6d2010ae
A
2299 return KERN_INVALID_ARGUMENT;
2300
b0d623f7
A
2301 if (uplflags & (UPL_UBC_MSYNC | UPL_UBC_PAGEOUT | UPL_UBC_PAGEIN)) {
2302
2303 if (uplflags & UPL_UBC_MSYNC) {
2304 uplflags &= UPL_RET_ONLY_DIRTY;
2305
2306 uplflags |= UPL_COPYOUT_FROM | UPL_CLEAN_IN_PLACE |
2307 UPL_SET_INTERNAL | UPL_SET_LITE;
2308
2309 } else if (uplflags & UPL_UBC_PAGEOUT) {
2310 uplflags &= UPL_RET_ONLY_DIRTY;
2311
2312 if (uplflags & UPL_RET_ONLY_DIRTY)
2313 uplflags |= UPL_NOBLOCK;
2314
2315 uplflags |= UPL_FOR_PAGEOUT | UPL_CLEAN_IN_PLACE |
2316 UPL_COPYOUT_FROM | UPL_SET_INTERNAL | UPL_SET_LITE;
2317 } else {
316670eb 2318 uplflags |= UPL_RET_ONLY_ABSENT |
b0d623f7
A
2319 UPL_NO_SYNC | UPL_CLEAN_IN_PLACE |
2320 UPL_SET_INTERNAL | UPL_SET_LITE;
316670eb
A
2321
2322 /*
2323 * if the requested size == PAGE_SIZE, we don't want to set
2324 * the UPL_NOBLOCK since we may be trying to recover from a
2325 * previous partial pagein I/O that occurred because we were low
2326 * on memory and bailed early in order to honor the UPL_NOBLOCK...
2327 * since we're only asking for a single page, we can block w/o fear
2328 * of tying up pages while waiting for more to become available
2329 */
2330 if (bufsize > PAGE_SIZE)
2331 uplflags |= UPL_NOBLOCK;
b0d623f7
A
2332 }
2333 } else {
55e303ae 2334 uplflags &= ~UPL_FOR_PAGEOUT;
55e303ae 2335
b0d623f7
A
2336 if (uplflags & UPL_WILL_BE_DUMPED) {
2337 uplflags &= ~UPL_WILL_BE_DUMPED;
2338 uplflags |= (UPL_NO_SYNC|UPL_SET_INTERNAL);
2339 } else
2340 uplflags |= (UPL_NO_SYNC|UPL_CLEAN_IN_PLACE|UPL_SET_INTERNAL);
2341 }
2342 control = ubc_getobject(vp, UBC_FLAGS_NONE);
0b4e3aa0
A
2343 if (control == MEMORY_OBJECT_CONTROL_NULL)
2344 return KERN_INVALID_ARGUMENT;
2345
b0d623f7
A
2346 kr = memory_object_upl_request(control, f_offset, bufsize, uplp, NULL, NULL, uplflags);
2347 if (kr == KERN_SUCCESS && plp != NULL)
2348 *plp = UPL_GET_INTERNAL_PAGE_LIST(*uplp);
0b4e3aa0
A
2349 return kr;
2350}
2d21ac55
A
2351
2352
2353/*
2354 * ubc_upl_maxbufsize
2355 *
2356 * Return the maximum bufsize ubc_create_upl( ) will take.
2357 *
2358 * Parameters: none
2359 *
2360 * Returns: maximum size buffer (in bytes) ubc_create_upl( ) will take.
2361 */
2362upl_size_t
2363ubc_upl_maxbufsize(
2364 void)
2365{
fe8ab488 2366 return(MAX_UPL_SIZE_BYTES);
2d21ac55 2367}
0b4e3aa0 2368
2d21ac55
A
2369/*
2370 * ubc_upl_map
2371 *
2372 * Map the page list assocated with the supplied upl into the kernel virtual
2373 * address space at the virtual address indicated by the dst_addr argument;
2374 * the entire upl is mapped
2375 *
2376 * Parameters: upl The upl to map
2377 * dst_addr The address at which to map the upl
2378 *
2379 * Returns: KERN_SUCCESS The upl has been mapped
2380 * KERN_INVALID_ARGUMENT The upl is UPL_NULL
2381 * KERN_FAILURE The upl is already mapped
2382 * vm_map_enter:KERN_INVALID_ARGUMENT
2383 * A failure code from vm_map_enter() due
2384 * to an invalid argument
2385 */
0b4e3aa0
A
2386kern_return_t
2387ubc_upl_map(
2388 upl_t upl,
2389 vm_offset_t *dst_addr)
2390{
2391 return (vm_upl_map(kernel_map, upl, dst_addr));
2392}
2393
2394
2d21ac55
A
2395/*
2396 * ubc_upl_unmap
2397 *
2398 * Unmap the page list assocated with the supplied upl from the kernel virtual
2399 * address space; the entire upl is unmapped.
2400 *
2401 * Parameters: upl The upl to unmap
2402 *
2403 * Returns: KERN_SUCCESS The upl has been unmapped
2404 * KERN_FAILURE The upl is not currently mapped
2405 * KERN_INVALID_ARGUMENT If the upl is UPL_NULL
2406 */
0b4e3aa0
A
2407kern_return_t
2408ubc_upl_unmap(
2409 upl_t upl)
2410{
2411 return(vm_upl_unmap(kernel_map, upl));
2412}
2413
2d21ac55
A
2414
2415/*
2416 * ubc_upl_commit
2417 *
2418 * Commit the contents of the upl to the backing store
2419 *
2420 * Parameters: upl The upl to commit
2421 *
2422 * Returns: KERN_SUCCESS The upl has been committed
2423 * KERN_INVALID_ARGUMENT The supplied upl was UPL_NULL
2424 * KERN_FAILURE The supplied upl does not represent
2425 * device memory, and the offset plus the
2426 * size would exceed the actual size of
2427 * the upl
2428 *
2429 * Notes: In practice, the only return value for this function should be
2430 * KERN_SUCCESS, unless there has been data structure corruption;
2431 * since the upl is deallocated regardless of success or failure,
2432 * there's really nothing to do about this other than panic.
2433 *
2434 * IMPORTANT: Use of this function should not be mixed with use of
2435 * ubc_upl_commit_range(), due to the unconditional deallocation
2436 * by this function.
2437 */
0b4e3aa0
A
2438kern_return_t
2439ubc_upl_commit(
2440 upl_t upl)
2441{
2442 upl_page_info_t *pl;
2443 kern_return_t kr;
2444
2445 pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
fe8ab488 2446 kr = upl_commit(upl, pl, MAX_UPL_SIZE_BYTES >> PAGE_SHIFT);
0b4e3aa0
A
2447 upl_deallocate(upl);
2448 return kr;
1c79356b
A
2449}
2450
0b4e3aa0 2451
2d21ac55
A
2452/*
2453 * ubc_upl_commit
2454 *
2455 * Commit the contents of the specified range of the upl to the backing store
2456 *
2457 * Parameters: upl The upl to commit
2458 * offset The offset into the upl
2459 * size The size of the region to be committed,
2460 * starting at the specified offset
2461 * flags commit type (see below)
2462 *
2463 * Returns: KERN_SUCCESS The range has been committed
2464 * KERN_INVALID_ARGUMENT The supplied upl was UPL_NULL
2465 * KERN_FAILURE The supplied upl does not represent
2466 * device memory, and the offset plus the
2467 * size would exceed the actual size of
2468 * the upl
2469 *
2470 * Notes: IMPORTANT: If the commit is successful, and the object is now
2471 * empty, the upl will be deallocated. Since the caller cannot
2472 * check that this is the case, the UPL_COMMIT_FREE_ON_EMPTY flag
2473 * should generally only be used when the offset is 0 and the size
2474 * is equal to the upl size.
2475 *
2476 * The flags argument is a bitmap of flags on the rage of pages in
2477 * the upl to be committed; allowable flags are:
2478 *
2479 * o UPL_COMMIT_FREE_ON_EMPTY Free the upl when it is
2480 * both empty and has been
2481 * successfully committed
2482 * o UPL_COMMIT_CLEAR_DIRTY Clear each pages dirty
2483 * bit; will prevent a
2484 * later pageout
2485 * o UPL_COMMIT_SET_DIRTY Set each pages dirty
2486 * bit; will cause a later
2487 * pageout
2488 * o UPL_COMMIT_INACTIVATE Clear each pages
2489 * reference bit; the page
2490 * will not be accessed
2491 * o UPL_COMMIT_ALLOW_ACCESS Unbusy each page; pages
2492 * become busy when an
2493 * IOMemoryDescriptor is
2494 * mapped or redirected,
2495 * and we have to wait for
2496 * an IOKit driver
2497 *
2498 * The flag UPL_COMMIT_NOTIFY_EMPTY is used internally, and should
2499 * not be specified by the caller.
2500 *
2501 * The UPL_COMMIT_CLEAR_DIRTY and UPL_COMMIT_SET_DIRTY flags are
2502 * mutually exclusive, and should not be combined.
2503 */
0b4e3aa0
A
2504kern_return_t
2505ubc_upl_commit_range(
2506 upl_t upl,
b0d623f7
A
2507 upl_offset_t offset,
2508 upl_size_t size,
0b4e3aa0
A
2509 int flags)
2510{
2511 upl_page_info_t *pl;
2512 boolean_t empty;
2513 kern_return_t kr;
2514
2515 if (flags & UPL_COMMIT_FREE_ON_EMPTY)
2516 flags |= UPL_COMMIT_NOTIFY_EMPTY;
2517
593a1d5f
A
2518 if (flags & UPL_COMMIT_KERNEL_ONLY_FLAGS) {
2519 return KERN_INVALID_ARGUMENT;
2520 }
2521
0b4e3aa0
A
2522 pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
2523
2524 kr = upl_commit_range(upl, offset, size, flags,
fe8ab488 2525 pl, MAX_UPL_SIZE_BYTES >> PAGE_SHIFT, &empty);
0b4e3aa0
A
2526
2527 if((flags & UPL_COMMIT_FREE_ON_EMPTY) && empty)
2528 upl_deallocate(upl);
2529
2530 return kr;
2531}
2d21ac55
A
2532
2533
2534/*
2535 * ubc_upl_abort_range
2536 *
2537 * Abort the contents of the specified range of the specified upl
2538 *
2539 * Parameters: upl The upl to abort
2540 * offset The offset into the upl
2541 * size The size of the region to be aborted,
2542 * starting at the specified offset
2543 * abort_flags abort type (see below)
2544 *
2545 * Returns: KERN_SUCCESS The range has been aborted
2546 * KERN_INVALID_ARGUMENT The supplied upl was UPL_NULL
2547 * KERN_FAILURE The supplied upl does not represent
2548 * device memory, and the offset plus the
2549 * size would exceed the actual size of
2550 * the upl
2551 *
2552 * Notes: IMPORTANT: If the abort is successful, and the object is now
2553 * empty, the upl will be deallocated. Since the caller cannot
2554 * check that this is the case, the UPL_ABORT_FREE_ON_EMPTY flag
2555 * should generally only be used when the offset is 0 and the size
2556 * is equal to the upl size.
2557 *
2558 * The abort_flags argument is a bitmap of flags on the range of
2559 * pages in the upl to be aborted; allowable flags are:
2560 *
2561 * o UPL_ABORT_FREE_ON_EMPTY Free the upl when it is both
2562 * empty and has been successfully
2563 * aborted
2564 * o UPL_ABORT_RESTART The operation must be restarted
2565 * o UPL_ABORT_UNAVAILABLE The pages are unavailable
2566 * o UPL_ABORT_ERROR An I/O error occurred
2567 * o UPL_ABORT_DUMP_PAGES Just free the pages
2568 * o UPL_ABORT_NOTIFY_EMPTY RESERVED
2569 * o UPL_ABORT_ALLOW_ACCESS RESERVED
2570 *
2571 * The UPL_ABORT_NOTIFY_EMPTY is an internal use flag and should
2572 * not be specified by the caller. It is intended to fulfill the
2573 * same role as UPL_COMMIT_NOTIFY_EMPTY does in the function
2574 * ubc_upl_commit_range(), but is never referenced internally.
2575 *
2576 * The UPL_ABORT_ALLOW_ACCESS is defined, but neither set nor
2577 * referenced; do not use it.
2578 */
0b4e3aa0
A
2579kern_return_t
2580ubc_upl_abort_range(
2581 upl_t upl,
b0d623f7
A
2582 upl_offset_t offset,
2583 upl_size_t size,
0b4e3aa0
A
2584 int abort_flags)
2585{
2586 kern_return_t kr;
2587 boolean_t empty = FALSE;
2588
2589 if (abort_flags & UPL_ABORT_FREE_ON_EMPTY)
2590 abort_flags |= UPL_ABORT_NOTIFY_EMPTY;
2591
2592 kr = upl_abort_range(upl, offset, size, abort_flags, &empty);
2593
2594 if((abort_flags & UPL_ABORT_FREE_ON_EMPTY) && empty)
2595 upl_deallocate(upl);
2596
2597 return kr;
2598}
2599
2d21ac55
A
2600
2601/*
2602 * ubc_upl_abort
2603 *
2604 * Abort the contents of the specified upl
2605 *
2606 * Parameters: upl The upl to abort
2607 * abort_type abort type (see below)
2608 *
2609 * Returns: KERN_SUCCESS The range has been aborted
2610 * KERN_INVALID_ARGUMENT The supplied upl was UPL_NULL
2611 * KERN_FAILURE The supplied upl does not represent
2612 * device memory, and the offset plus the
2613 * size would exceed the actual size of
2614 * the upl
2615 *
2616 * Notes: IMPORTANT: If the abort is successful, and the object is now
2617 * empty, the upl will be deallocated. Since the caller cannot
2618 * check that this is the case, the UPL_ABORT_FREE_ON_EMPTY flag
2619 * should generally only be used when the offset is 0 and the size
2620 * is equal to the upl size.
2621 *
2622 * The abort_type is a bitmap of flags on the range of
2623 * pages in the upl to be aborted; allowable flags are:
2624 *
2625 * o UPL_ABORT_FREE_ON_EMPTY Free the upl when it is both
2626 * empty and has been successfully
2627 * aborted
2628 * o UPL_ABORT_RESTART The operation must be restarted
2629 * o UPL_ABORT_UNAVAILABLE The pages are unavailable
2630 * o UPL_ABORT_ERROR An I/O error occurred
2631 * o UPL_ABORT_DUMP_PAGES Just free the pages
2632 * o UPL_ABORT_NOTIFY_EMPTY RESERVED
2633 * o UPL_ABORT_ALLOW_ACCESS RESERVED
2634 *
2635 * The UPL_ABORT_NOTIFY_EMPTY is an internal use flag and should
2636 * not be specified by the caller. It is intended to fulfill the
2637 * same role as UPL_COMMIT_NOTIFY_EMPTY does in the function
2638 * ubc_upl_commit_range(), but is never referenced internally.
2639 *
2640 * The UPL_ABORT_ALLOW_ACCESS is defined, but neither set nor
2641 * referenced; do not use it.
2642 */
0b4e3aa0
A
2643kern_return_t
2644ubc_upl_abort(
2645 upl_t upl,
2646 int abort_type)
2647{
2648 kern_return_t kr;
2649
2650 kr = upl_abort(upl, abort_type);
2651 upl_deallocate(upl);
2652 return kr;
2653}
2654
2d21ac55
A
2655
2656/*
2657 * ubc_upl_pageinfo
2658 *
2659 * Retrieve the internal page list for the specified upl
2660 *
2661 * Parameters: upl The upl to obtain the page list from
2662 *
2663 * Returns: !NULL The (upl_page_info_t *) for the page
2664 * list internal to the upl
2665 * NULL Error/no page list associated
2666 *
2667 * Notes: IMPORTANT: The function is only valid on internal objects
2668 * where the list request was made with the UPL_INTERNAL flag.
2669 *
2670 * This function is a utility helper function, since some callers
2671 * may not have direct access to the header defining the macro,
2672 * due to abstraction layering constraints.
2673 */
0b4e3aa0
A
2674upl_page_info_t *
2675ubc_upl_pageinfo(
2676 upl_t upl)
2677{
2678 return (UPL_GET_INTERNAL_PAGE_LIST(upl));
2679}
91447636 2680
91447636
A
2681
2682int
fe8ab488 2683UBCINFOEXISTS(const struct vnode * vp)
91447636 2684{
2d21ac55 2685 return((vp) && ((vp)->v_type == VREG) && ((vp)->v_ubcinfo != UBC_INFO_NULL));
91447636
A
2686}
2687
2d21ac55 2688
316670eb
A
2689void
2690ubc_upl_range_needed(
2691 upl_t upl,
2692 int index,
2693 int count)
2694{
2695 upl_range_needed(upl, index, count);
2696}
2697
fe8ab488
A
2698boolean_t ubc_is_mapped(const struct vnode *vp, boolean_t *writable)
2699{
2700 if (!UBCINFOEXISTS(vp) || !ISSET(vp->v_ubcinfo->ui_flags, UI_ISMAPPED))
2701 return FALSE;
2702 if (writable)
2703 *writable = ISSET(vp->v_ubcinfo->ui_flags, UI_MAPPEDWRITE);
2704 return TRUE;
2705}
2706
2707boolean_t ubc_is_mapped_writable(const struct vnode *vp)
2708{
2709 boolean_t writable;
2710 return ubc_is_mapped(vp, &writable) && writable;
2711}
2712
316670eb 2713
2d21ac55
A
2714/*
2715 * CODE SIGNING
2716 */
2d21ac55
A
2717static volatile SInt32 cs_blob_size = 0;
2718static volatile SInt32 cs_blob_count = 0;
2719static SInt32 cs_blob_size_peak = 0;
2720static UInt32 cs_blob_size_max = 0;
2721static SInt32 cs_blob_count_peak = 0;
2d21ac55 2722
6d2010ae
A
2723SYSCTL_INT(_vm, OID_AUTO, cs_blob_count, CTLFLAG_RD | CTLFLAG_LOCKED, (int *)(uintptr_t)&cs_blob_count, 0, "Current number of code signature blobs");
2724SYSCTL_INT(_vm, OID_AUTO, cs_blob_size, CTLFLAG_RD | CTLFLAG_LOCKED, (int *)(uintptr_t)&cs_blob_size, 0, "Current size of all code signature blobs");
2725SYSCTL_INT(_vm, OID_AUTO, cs_blob_count_peak, CTLFLAG_RD | CTLFLAG_LOCKED, &cs_blob_count_peak, 0, "Peak number of code signature blobs");
2726SYSCTL_INT(_vm, OID_AUTO, cs_blob_size_peak, CTLFLAG_RD | CTLFLAG_LOCKED, &cs_blob_size_peak, 0, "Peak size of code signature blobs");
2727SYSCTL_INT(_vm, OID_AUTO, cs_blob_size_max, CTLFLAG_RD | CTLFLAG_LOCKED, &cs_blob_size_max, 0, "Size of biggest code signature blob");
2d21ac55 2728
3e170ce0
A
2729/*
2730 * Function: csblob_parse_teamid
2731 *
2732 * Description: This function returns a pointer to the team id
2733 stored within the codedirectory of the csblob.
2734 If the codedirectory predates team-ids, it returns
2735 NULL.
2736 This does not copy the name but returns a pointer to
2737 it within the CD. Subsequently, the CD must be
2738 available when this is used.
2739*/
2740
2741static const char *
2742csblob_parse_teamid(struct cs_blob *csblob)
2743{
2744 const CS_CodeDirectory *cd;
2745
490019cf 2746 cd = csblob->csb_cd;
3e170ce0
A
2747
2748 if (ntohl(cd->version) < CS_SUPPORTSTEAMID)
2749 return NULL;
2750
2751 if (cd->teamOffset == 0)
2752 return NULL;
2753
2754 const char *name = ((const char *)cd) + ntohl(cd->teamOffset);
2755 if (cs_debug > 1)
2756 printf("found team-id %s in cdblob\n", name);
2757
2758 return name;
2759}
2760
39236c6e 2761
593a1d5f
A
2762kern_return_t
2763ubc_cs_blob_allocate(
2764 vm_offset_t *blob_addr_p,
2765 vm_size_t *blob_size_p)
2766{
2767 kern_return_t kr;
2768
3e170ce0 2769 *blob_addr_p = (vm_offset_t) kalloc_tag(*blob_size_p, VM_KERN_MEMORY_SECURITY);
593a1d5f
A
2770 if (*blob_addr_p == 0) {
2771 kr = KERN_NO_SPACE;
2772 } else {
2773 kr = KERN_SUCCESS;
2774 }
593a1d5f
A
2775 return kr;
2776}
2777
2778void
2779ubc_cs_blob_deallocate(
2780 vm_offset_t blob_addr,
2781 vm_size_t blob_size)
2782{
593a1d5f 2783 kfree((void *) blob_addr, blob_size);
39037602
A
2784}
2785
2786/*
2787 * Some codesigned files use a lowest common denominator page size of
2788 * 4KiB, but can be used on systems that have a runtime page size of
2789 * 16KiB. Since faults will only occur on 16KiB ranges in
2790 * cs_validate_range(), we can convert the original Code Directory to
2791 * a multi-level scheme where groups of 4 hashes are combined to form
2792 * a new hash, which represents 16KiB in the on-disk file. This can
2793 * reduce the wired memory requirement for the Code Directory by
2794 * 75%. Care must be taken for binaries that use the "fourk" VM pager
2795 * for unaligned access, which may still attempt to validate on
2796 * non-16KiB multiples for compatibility with 3rd party binaries.
2797 */
2798static boolean_t
2799ubc_cs_supports_multilevel_hash(struct cs_blob *blob)
2800{
2801 const CS_CodeDirectory *cd;
2802
2803 /*
2804 * Only applies to binaries that ship as part of the OS,
2805 * primarily the shared cache.
2806 */
2807 if (!blob->csb_platform_binary || blob->csb_teamid != NULL) {
2808 return FALSE;
2809 }
2810
2811 /*
2812 * If the runtime page size matches the code signing page
2813 * size, there is no work to do.
2814 */
2815 if (PAGE_SHIFT <= blob->csb_hash_pageshift) {
2816 return FALSE;
2817 }
2818
2819 cd = blob->csb_cd;
2820
2821 /*
2822 * There must be a valid integral multiple of hashes
2823 */
2824 if (ntohl(cd->nCodeSlots) & (PAGE_MASK >> blob->csb_hash_pageshift)) {
2825 return FALSE;
2826 }
2827
2828 /*
2829 * Scatter lists must also have ranges that have an integral number of hashes
2830 */
2831 if ((ntohl(cd->version) >= CS_SUPPORTSSCATTER) && (ntohl(cd->scatterOffset))) {
2832
2833 const SC_Scatter *scatter = (const SC_Scatter*)
2834 ((const char*)cd + ntohl(cd->scatterOffset));
2835 /* iterate all scatter structs to make sure they are all aligned */
2836 do {
2837 uint32_t sbase = ntohl(scatter->base);
2838 uint32_t scount = ntohl(scatter->count);
2839
2840 /* last scatter? */
2841 if (scount == 0) {
2842 break;
2843 }
2844
2845 if (sbase & (PAGE_MASK >> blob->csb_hash_pageshift)) {
2846 return FALSE;
2847 }
2848
2849 if (scount & (PAGE_MASK >> blob->csb_hash_pageshift)) {
2850 return FALSE;
2851 }
2852
2853 scatter++;
2854 } while(1);
2855 }
2856
2857 /* Covered range must be a multiple of the new page size */
2858 if (ntohl(cd->codeLimit) & PAGE_MASK) {
2859 return FALSE;
2860 }
2861
2862 /* All checks pass */
2863 return TRUE;
2864}
2865
2866/*
2867 * All state and preconditions were checked before, so this
2868 * function cannot fail.
2869 */
2870static void
2871ubc_cs_convert_to_multilevel_hash(struct cs_blob *blob)
2872{
2873 const CS_CodeDirectory *old_cd, *cd;
2874 CS_CodeDirectory *new_cd;
2875 const CS_GenericBlob *entitlements;
2876 vm_offset_t new_blob_addr;
2877 vm_size_t new_blob_size;
2878 vm_size_t new_cdsize;
2879 kern_return_t kr;
2880 int error;
2881
2882 uint32_t hashes_per_new_hash_shift = (uint32_t)(PAGE_SHIFT - blob->csb_hash_pageshift);
2883
2884 if (cs_debug > 1) {
2885 printf("CODE SIGNING: Attempting to convert Code Directory for %lu -> %lu page shift\n",
2886 (unsigned long)blob->csb_hash_pageshift, (unsigned long)PAGE_SHIFT);
2887 }
2888
2889 old_cd = blob->csb_cd;
2890
2891 /* Up to the hashes, we can copy all data */
2892 new_cdsize = ntohl(old_cd->hashOffset);
2893 new_cdsize += (ntohl(old_cd->nCodeSlots) >> hashes_per_new_hash_shift) * old_cd->hashSize;
2894
2895 new_blob_size = sizeof(CS_SuperBlob);
2896 new_blob_size += sizeof(CS_BlobIndex);
2897 new_blob_size += new_cdsize;
2898
2899 if (blob->csb_entitlements_blob) {
2900 /* We need to add a slot for the entitlements */
2901 new_blob_size += sizeof(CS_BlobIndex);
2902 new_blob_size += ntohl(blob->csb_entitlements_blob->length);
2903 }
2904
2905 kr = ubc_cs_blob_allocate(&new_blob_addr, &new_blob_size);
2906 if (kr != KERN_SUCCESS) {
2907 if (cs_debug > 1) {
2908 printf("CODE SIGNING: Failed to allocate memory for new Code Signing Blob: %d\n",
2909 kr);
2910 }
2911 return;
2912 }
2913
2914 CS_SuperBlob *new_superblob;
2915
2916 new_superblob = (CS_SuperBlob *)new_blob_addr;
2917 new_superblob->magic = htonl(CSMAGIC_EMBEDDED_SIGNATURE);
2918 new_superblob->length = htonl((uint32_t)new_blob_size);
2919 if (blob->csb_entitlements_blob) {
2920 vm_size_t ent_offset, cd_offset;
2921
2922 cd_offset = sizeof(CS_SuperBlob) + 2 * sizeof(CS_BlobIndex);
2923 ent_offset = cd_offset + new_cdsize;
2924
2925 new_superblob->count = htonl(2);
2926 new_superblob->index[0].type = htonl(CSSLOT_CODEDIRECTORY);
2927 new_superblob->index[0].offset = htonl((uint32_t)cd_offset);
2928 new_superblob->index[1].type = htonl(CSSLOT_ENTITLEMENTS);
2929 new_superblob->index[1].offset = htonl((uint32_t)ent_offset);
2930
2931 memcpy((void *)(new_blob_addr + ent_offset), blob->csb_entitlements_blob, ntohl(blob->csb_entitlements_blob->length));
2932
2933 new_cd = (CS_CodeDirectory *)(new_blob_addr + cd_offset);
2934 } else {
2935 vm_size_t cd_offset;
2936
2937 cd_offset = sizeof(CS_SuperBlob) + 1 * sizeof(CS_BlobIndex);
2938
2939 new_superblob->count = htonl(1);
2940 new_superblob->index[0].type = htonl(CSSLOT_CODEDIRECTORY);
2941 new_superblob->index[0].offset = htonl((uint32_t)cd_offset);
2942
2943 new_cd = (CS_CodeDirectory *)new_blob_addr;
2944 }
2945
2946 memcpy(new_cd, old_cd, ntohl(old_cd->hashOffset));
2947
2948 /* Update fields in the Code Directory structure */
2949 new_cd->length = htonl((uint32_t)new_cdsize);
2950
2951 uint32_t nCodeSlots = ntohl(new_cd->nCodeSlots);
2952 nCodeSlots >>= hashes_per_new_hash_shift;
2953 new_cd->nCodeSlots = htonl(nCodeSlots);
2954
2955 new_cd->pageSize = PAGE_SHIFT; /* Not byte-swapped */
2956
2957 if ((ntohl(new_cd->version) >= CS_SUPPORTSSCATTER) && (ntohl(new_cd->scatterOffset))) {
2958 SC_Scatter *scatter = (SC_Scatter*)
2959 ((char *)new_cd + ntohl(new_cd->scatterOffset));
2960 /* iterate all scatter structs to scale their counts */
2961 do {
2962 uint32_t scount = ntohl(scatter->count);
2963 uint32_t sbase = ntohl(scatter->base);
2964
2965 /* last scatter? */
2966 if (scount == 0) {
2967 break;
2968 }
2969
2970 scount >>= hashes_per_new_hash_shift;
2971 scatter->count = htonl(scount);
2972
2973 sbase >>= hashes_per_new_hash_shift;
2974 scatter->base = htonl(sbase);
2975
2976 scatter++;
2977 } while(1);
2978 }
2979
2980 /* For each group of hashes, hash them together */
2981 const unsigned char *src_base = (const unsigned char *)old_cd + ntohl(old_cd->hashOffset);
2982 unsigned char *dst_base = (unsigned char *)new_cd + ntohl(new_cd->hashOffset);
2983
2984 uint32_t hash_index;
2985 for (hash_index = 0; hash_index < nCodeSlots; hash_index++) {
2986 union cs_hash_union mdctx;
2987
2988 uint32_t source_hash_len = old_cd->hashSize << hashes_per_new_hash_shift;
2989 const unsigned char *src = src_base + hash_index * source_hash_len;
2990 unsigned char *dst = dst_base + hash_index * new_cd->hashSize;
2991
2992 blob->csb_hashtype->cs_init(&mdctx);
2993 blob->csb_hashtype->cs_update(&mdctx, src, source_hash_len);
2994 blob->csb_hashtype->cs_final(dst, &mdctx);
2995 }
2996
2997 error = cs_validate_csblob((const uint8_t *)new_blob_addr, new_blob_size, &cd, &entitlements);
2998 if (error) {
2999
3000 if (cs_debug > 1) {
3001 printf("CODE SIGNING: Failed to validate new Code Signing Blob: %d\n",
3002 error);
3003 }
3004
3005 ubc_cs_blob_deallocate(new_blob_addr, new_blob_size);
3006 return;
3007 }
3008
3009 /* New Code Directory is ready for use, swap it out in the blob structure */
3010 ubc_cs_blob_deallocate(blob->csb_mem_kaddr, blob->csb_mem_size);
3011
3012 blob->csb_mem_size = new_blob_size;
3013 blob->csb_mem_kaddr = new_blob_addr;
3014 blob->csb_cd = cd;
3015 blob->csb_entitlements_blob = entitlements;
3016
3017 /* The blob has some cached attributes of the Code Directory, so update those */
3018
3019 blob->csb_hash_firstlevel_pagesize = blob->csb_hash_pagesize; /* Save the original page size */
3020
3021 blob->csb_hash_pagesize = PAGE_SIZE;
3022 blob->csb_hash_pagemask = PAGE_MASK;
3023 blob->csb_hash_pageshift = PAGE_SHIFT;
3024 blob->csb_end_offset = ntohl(cd->codeLimit);
3025 if((ntohl(cd->version) >= CS_SUPPORTSSCATTER) && (ntohl(cd->scatterOffset))) {
3026 const SC_Scatter *scatter = (const SC_Scatter*)
3027 ((const char*)cd + ntohl(cd->scatterOffset));
3028 blob->csb_start_offset = ((off_t)ntohl(scatter->base)) * PAGE_SIZE;
3029 } else {
3030 blob->csb_start_offset = 0;
3031 }
593a1d5f 3032}
39236c6e 3033
2d21ac55
A
3034int
3035ubc_cs_blob_add(
3036 struct vnode *vp,
3037 cpu_type_t cputype,
3038 off_t base_offset,
39037602 3039 vm_address_t *addr,
c18c124e 3040 vm_size_t size,
39037602 3041 struct image_params *imgp,
3e170ce0
A
3042 __unused int flags,
3043 struct cs_blob **ret_blob)
91447636 3044{
2d21ac55
A
3045 kern_return_t kr;
3046 struct ubc_info *uip;
3047 struct cs_blob *blob, *oblob;
3048 int error;
2d21ac55 3049 const CS_CodeDirectory *cd;
39037602 3050 const CS_GenericBlob *entitlements;
2d21ac55 3051 off_t blob_start_offset, blob_end_offset;
3e170ce0 3052 union cs_hash_union mdctx;
15129b1c
A
3053 boolean_t record_mtime;
3054
3055 record_mtime = FALSE;
3e170ce0
A
3056 if (ret_blob)
3057 *ret_blob = NULL;
2d21ac55 3058
2d21ac55
A
3059 blob = (struct cs_blob *) kalloc(sizeof (struct cs_blob));
3060 if (blob == NULL) {
3061 return ENOMEM;
3062 }
3063
2d21ac55
A
3064 /* fill in the new blob */
3065 blob->csb_cpu_type = cputype;
3066 blob->csb_base_offset = base_offset;
3067 blob->csb_mem_size = size;
3068 blob->csb_mem_offset = 0;
39037602 3069 blob->csb_mem_kaddr = *addr;
39236c6e 3070 blob->csb_flags = 0;
fe8ab488 3071 blob->csb_platform_binary = 0;
3e170ce0 3072 blob->csb_platform_path = 0;
fe8ab488 3073 blob->csb_teamid = NULL;
39037602
A
3074 blob->csb_entitlements_blob = NULL;
3075 blob->csb_entitlements = NULL;
2d21ac55 3076
39037602
A
3077 /* Transfer ownership. Even on error, this function will deallocate */
3078 *addr = 0;
3079
2d21ac55
A
3080 /*
3081 * Validate the blob's contents
3082 */
39236c6e 3083
39037602 3084 error = cs_validate_csblob((const uint8_t *)blob->csb_mem_kaddr, size, &cd, &entitlements);
39236c6e 3085 if (error) {
4bd07ac2
A
3086
3087 if (cs_debug)
39236c6e 3088 printf("CODESIGNING: csblob invalid: %d\n", error);
4bd07ac2
A
3089 /* The vnode checker can't make the rest of this function succeed if csblob validation failed, so bail */
3090 goto out;
3091
2d21ac55 3092 } else {
3e170ce0
A
3093 const unsigned char *md_base;
3094 uint8_t hash[CS_HASH_MAX_SIZE];
3095 int md_size;
3096
490019cf 3097 blob->csb_cd = cd;
39037602 3098 blob->csb_entitlements_blob = entitlements; /* may be NULL, not yet validated */
3e170ce0
A
3099 blob->csb_hashtype = cs_find_md(cd->hashType);
3100 if (blob->csb_hashtype == NULL || blob->csb_hashtype->cs_digest_size > sizeof(hash))
3101 panic("validated CodeDirectory but unsupported type");
39037602
A
3102
3103 blob->csb_hash_pageshift = cd->pageSize;
3104 blob->csb_hash_pagesize = (1U << cd->pageSize);
3105 blob->csb_hash_pagemask = blob->csb_hash_pagesize - 1;
3106 blob->csb_hash_firstlevel_pagesize = 0;
39236c6e 3107 blob->csb_flags = (ntohl(cd->flags) & CS_ALLOWED_MACHO) | CS_VALID;
39037602 3108 blob->csb_end_offset = (((vm_offset_t)ntohl(cd->codeLimit) + blob->csb_hash_pagemask) & ~((vm_offset_t)blob->csb_hash_pagemask));
39236c6e
A
3109 if((ntohl(cd->version) >= CS_SUPPORTSSCATTER) && (ntohl(cd->scatterOffset))) {
3110 const SC_Scatter *scatter = (const SC_Scatter*)
b0d623f7 3111 ((const char*)cd + ntohl(cd->scatterOffset));
39037602 3112 blob->csb_start_offset = ((off_t)ntohl(scatter->base)) * blob->csb_hash_pagesize;
b0d623f7 3113 } else {
3e170ce0 3114 blob->csb_start_offset = 0;
b0d623f7 3115 }
3e170ce0
A
3116 /* compute the blob's cdhash */
3117 md_base = (const unsigned char *) cd;
3118 md_size = ntohl(cd->length);
3119
3120 blob->csb_hashtype->cs_init(&mdctx);
3121 blob->csb_hashtype->cs_update(&mdctx, md_base, md_size);
3122 blob->csb_hashtype->cs_final(hash, &mdctx);
3123
3124 memcpy(blob->csb_cdhash, hash, CS_CDHASH_LEN);
2d21ac55
A
3125 }
3126
593a1d5f
A
3127 /*
3128 * Let policy module check whether the blob's signature is accepted.
3129 */
3130#if CONFIG_MACF
39037602
A
3131 unsigned int cs_flags = blob->csb_flags;
3132 error = mac_vnode_check_signature(vp, blob, imgp, &cs_flags, flags);
3133 blob->csb_flags = cs_flags;
3134
fe8ab488
A
3135 if (error) {
3136 if (cs_debug)
3137 printf("check_signature[pid: %d], error = %d\n", current_proc()->p_pid, error);
593a1d5f 3138 goto out;
fe8ab488 3139 }
39037602 3140 if ((flags & MAC_VNODE_CHECK_DYLD_SIM) && !(blob->csb_flags & CS_PLATFORM_BINARY)) {
c18c124e
A
3141 if (cs_debug)
3142 printf("check_signature[pid: %d], is not apple signed\n", current_proc()->p_pid);
3143 error = EPERM;
3144 goto out;
3145 }
593a1d5f
A
3146#endif
3147
39037602 3148 if (blob->csb_flags & CS_PLATFORM_BINARY) {
fe8ab488
A
3149 if (cs_debug > 1)
3150 printf("check_signature[pid: %d]: platform binary\n", current_proc()->p_pid);
3151 blob->csb_platform_binary = 1;
39037602 3152 blob->csb_platform_path = !!(blob->csb_flags & CS_PLATFORM_PATH);
fe8ab488
A
3153 } else {
3154 blob->csb_platform_binary = 0;
3e170ce0
A
3155 blob->csb_platform_path = 0;
3156 blob->csb_teamid = csblob_parse_teamid(blob);
fe8ab488
A
3157 if (cs_debug > 1) {
3158 if (blob->csb_teamid)
3159 printf("check_signature[pid: %d]: team-id is %s\n", current_proc()->p_pid, blob->csb_teamid);
3160 else
3161 printf("check_signature[pid: %d]: no team-id\n", current_proc()->p_pid);
3162 }
3163 }
39037602 3164
2d21ac55
A
3165 /*
3166 * Validate the blob's coverage
3167 */
3168 blob_start_offset = blob->csb_base_offset + blob->csb_start_offset;
3169 blob_end_offset = blob->csb_base_offset + blob->csb_end_offset;
3170
cf7d32b8
A
3171 if (blob_start_offset >= blob_end_offset ||
3172 blob_start_offset < 0 ||
3173 blob_end_offset <= 0) {
2d21ac55
A
3174 /* reject empty or backwards blob */
3175 error = EINVAL;
3176 goto out;
3177 }
3178
39037602
A
3179 if (ubc_cs_supports_multilevel_hash(blob)) {
3180 ubc_cs_convert_to_multilevel_hash(blob);
3181 }
3182
2d21ac55
A
3183 vnode_lock(vp);
3184 if (! UBCINFOEXISTS(vp)) {
3185 vnode_unlock(vp);
3186 error = ENOENT;
3187 goto out;
3188 }
3189 uip = vp->v_ubcinfo;
3190
3191 /* check if this new blob overlaps with an existing blob */
3192 for (oblob = uip->cs_blobs;
3193 oblob != NULL;
3194 oblob = oblob->csb_next) {
3195 off_t oblob_start_offset, oblob_end_offset;
3196
fe8ab488
A
3197 /* check for conflicting teamid */
3198 if (blob->csb_platform_binary) { //platform binary needs to be the same for app slices
3199 if (!oblob->csb_platform_binary) {
3200 vnode_unlock(vp);
3201 error = EALREADY;
3202 goto out;
3203 }
3204 } else if (blob->csb_teamid) { //teamid binary needs to be the same for app slices
3205 if (oblob->csb_platform_binary ||
3206 oblob->csb_teamid == NULL ||
3207 strcmp(oblob->csb_teamid, blob->csb_teamid) != 0) {
3208 vnode_unlock(vp);
3209 error = EALREADY;
3210 goto out;
3211 }
3212 } else { // non teamid binary needs to be the same for app slices
3213 if (oblob->csb_platform_binary ||
3214 oblob->csb_teamid != NULL) {
3215 vnode_unlock(vp);
3216 error = EALREADY;
3217 goto out;
3218 }
3219 }
3220
2d21ac55
A
3221 oblob_start_offset = (oblob->csb_base_offset +
3222 oblob->csb_start_offset);
3223 oblob_end_offset = (oblob->csb_base_offset +
3224 oblob->csb_end_offset);
3225 if (blob_start_offset >= oblob_end_offset ||
3226 blob_end_offset <= oblob_start_offset) {
3227 /* no conflict with this existing blob */
3228 } else {
3229 /* conflict ! */
3230 if (blob_start_offset == oblob_start_offset &&
3231 blob_end_offset == oblob_end_offset &&
3232 blob->csb_mem_size == oblob->csb_mem_size &&
3233 blob->csb_flags == oblob->csb_flags &&
3234 (blob->csb_cpu_type == CPU_TYPE_ANY ||
3235 oblob->csb_cpu_type == CPU_TYPE_ANY ||
3236 blob->csb_cpu_type == oblob->csb_cpu_type) &&
3e170ce0
A
3237 !bcmp(blob->csb_cdhash,
3238 oblob->csb_cdhash,
3239 CS_CDHASH_LEN)) {
2d21ac55
A
3240 /*
3241 * We already have this blob:
3242 * we'll return success but
3243 * throw away the new blob.
3244 */
3245 if (oblob->csb_cpu_type == CPU_TYPE_ANY) {
3246 /*
3247 * The old blob matches this one
3248 * but doesn't have any CPU type.
3249 * Update it with whatever the caller
3250 * provided this time.
3251 */
3252 oblob->csb_cpu_type = cputype;
3253 }
3254 vnode_unlock(vp);
3e170ce0
A
3255 if (ret_blob)
3256 *ret_blob = oblob;
2d21ac55
A
3257 error = EAGAIN;
3258 goto out;
3259 } else {
3260 /* different blob: reject the new one */
3261 vnode_unlock(vp);
3262 error = EALREADY;
3263 goto out;
3264 }
3265 }
3266
3267 }
3268
fe8ab488 3269
2d21ac55
A
3270 /* mark this vnode's VM object as having "signed pages" */
3271 kr = memory_object_signed(uip->ui_control, TRUE);
3272 if (kr != KERN_SUCCESS) {
3273 vnode_unlock(vp);
3274 error = ENOENT;
3275 goto out;
3276 }
3277
15129b1c
A
3278 if (uip->cs_blobs == NULL) {
3279 /* loading 1st blob: record the file's current "modify time" */
3280 record_mtime = TRUE;
3281 }
3282
fe8ab488
A
3283 /* set the generation count for cs_blobs */
3284 uip->cs_add_gen = cs_blob_generation_count;
3285
2d21ac55
A
3286 /*
3287 * Add this blob to the list of blobs for this vnode.
3288 * We always add at the front of the list and we never remove a
3289 * blob from the list, so ubc_cs_get_blobs() can return whatever
3290 * the top of the list was and that list will remain valid
3291 * while we validate a page, even after we release the vnode's lock.
3292 */
3293 blob->csb_next = uip->cs_blobs;
3294 uip->cs_blobs = blob;
3295
3296 OSAddAtomic(+1, &cs_blob_count);
3297 if (cs_blob_count > cs_blob_count_peak) {
3298 cs_blob_count_peak = cs_blob_count; /* XXX atomic ? */
3299 }
b0d623f7
A
3300 OSAddAtomic((SInt32) +blob->csb_mem_size, &cs_blob_size);
3301 if ((SInt32) cs_blob_size > cs_blob_size_peak) {
3302 cs_blob_size_peak = (SInt32) cs_blob_size; /* XXX atomic ? */
2d21ac55 3303 }
b0d623f7
A
3304 if ((UInt32) blob->csb_mem_size > cs_blob_size_max) {
3305 cs_blob_size_max = (UInt32) blob->csb_mem_size;
2d21ac55
A
3306 }
3307
c331a0be 3308 if (cs_debug > 1) {
2d21ac55 3309 proc_t p;
39236c6e 3310 const char *name = vnode_getname_printable(vp);
2d21ac55
A
3311 p = current_proc();
3312 printf("CODE SIGNING: proc %d(%s) "
3313 "loaded %s signatures for file (%s) "
3314 "range 0x%llx:0x%llx flags 0x%x\n",
3315 p->p_pid, p->p_comm,
3316 blob->csb_cpu_type == -1 ? "detached" : "embedded",
39236c6e 3317 name,
2d21ac55
A
3318 blob->csb_base_offset + blob->csb_start_offset,
3319 blob->csb_base_offset + blob->csb_end_offset,
3320 blob->csb_flags);
39236c6e 3321 vnode_putname_printable(name);
2d21ac55
A
3322 }
3323
2d21ac55
A
3324 vnode_unlock(vp);
3325
15129b1c
A
3326 if (record_mtime) {
3327 vnode_mtime(vp, &uip->cs_mtime, vfs_context_current());
3328 }
3329
3e170ce0
A
3330 if (ret_blob)
3331 *ret_blob = blob;
3332
2d21ac55
A
3333 error = 0; /* success ! */
3334
3335out:
3336 if (error) {
fe8ab488
A
3337 if (cs_debug)
3338 printf("check_signature[pid: %d]: error = %d\n", current_proc()->p_pid, error);
3339
2d21ac55
A
3340 /* we failed; release what we allocated */
3341 if (blob) {
39037602
A
3342 if (blob->csb_mem_kaddr) {
3343 ubc_cs_blob_deallocate(blob->csb_mem_kaddr, blob->csb_mem_size);
3344 blob->csb_mem_kaddr = 0;
3345 }
3346 if (blob->csb_entitlements != NULL) {
3347 osobject_release(blob->csb_entitlements);
3348 blob->csb_entitlements = NULL;
3349 }
2d21ac55
A
3350 kfree(blob, sizeof (*blob));
3351 blob = NULL;
3352 }
2d21ac55
A
3353 }
3354
3355 if (error == EAGAIN) {
3356 /*
3357 * See above: error is EAGAIN if we were asked
3358 * to add an existing blob again. We cleaned the new
3359 * blob and we want to return success.
3360 */
3361 error = 0;
2d21ac55
A
3362 }
3363
3364 return error;
91447636
A
3365}
3366
3e170ce0
A
3367void
3368csvnode_print_debug(struct vnode *vp)
3369{
3370 const char *name = NULL;
3371 struct ubc_info *uip;
3372 struct cs_blob *blob;
3373
3374 name = vnode_getname_printable(vp);
3375 if (name) {
3376 printf("csvnode: name: %s\n", name);
3377 vnode_putname_printable(name);
3378 }
3379
3380 vnode_lock_spin(vp);
3381
3382 if (! UBCINFOEXISTS(vp)) {
3383 blob = NULL;
3384 goto out;
3385 }
3386
3387 uip = vp->v_ubcinfo;
3388 for (blob = uip->cs_blobs; blob != NULL; blob = blob->csb_next) {
3389 printf("csvnode: range: %lu -> %lu flags: 0x%08x platform: %s path: %s team: %s\n",
3390 (unsigned long)blob->csb_start_offset,
3391 (unsigned long)blob->csb_end_offset,
3392 blob->csb_flags,
3393 blob->csb_platform_binary ? "yes" : "no",
3394 blob->csb_platform_path ? "yes" : "no",
3395 blob->csb_teamid ? blob->csb_teamid : "<NO-TEAM>");
3396 }
3397
3398out:
3399 vnode_unlock(vp);
3400
3401}
3402
2d21ac55
A
3403struct cs_blob *
3404ubc_cs_blob_get(
3405 struct vnode *vp,
3406 cpu_type_t cputype,
3407 off_t offset)
91447636 3408{
2d21ac55
A
3409 struct ubc_info *uip;
3410 struct cs_blob *blob;
3411 off_t offset_in_blob;
3412
3413 vnode_lock_spin(vp);
3414
3415 if (! UBCINFOEXISTS(vp)) {
3416 blob = NULL;
3417 goto out;
3418 }
3419
3420 uip = vp->v_ubcinfo;
3421 for (blob = uip->cs_blobs;
3422 blob != NULL;
3423 blob = blob->csb_next) {
3424 if (cputype != -1 && blob->csb_cpu_type == cputype) {
3425 break;
3426 }
3427 if (offset != -1) {
3428 offset_in_blob = offset - blob->csb_base_offset;
3429 if (offset_in_blob >= blob->csb_start_offset &&
3430 offset_in_blob < blob->csb_end_offset) {
3431 /* our offset is covered by this blob */
3432 break;
3433 }
3434 }
3435 }
3436
3437out:
3438 vnode_unlock(vp);
3439
3440 return blob;
91447636 3441}
2d21ac55
A
3442
3443static void
3444ubc_cs_free(
3445 struct ubc_info *uip)
91447636 3446{
2d21ac55
A
3447 struct cs_blob *blob, *next_blob;
3448
3449 for (blob = uip->cs_blobs;
3450 blob != NULL;
3451 blob = next_blob) {
3452 next_blob = blob->csb_next;
3e170ce0 3453 if (blob->csb_mem_kaddr != 0) {
593a1d5f
A
3454 ubc_cs_blob_deallocate(blob->csb_mem_kaddr,
3455 blob->csb_mem_size);
2d21ac55
A
3456 blob->csb_mem_kaddr = 0;
3457 }
39037602
A
3458 if (blob->csb_entitlements != NULL) {
3459 osobject_release(blob->csb_entitlements);
3460 blob->csb_entitlements = NULL;
593a1d5f 3461 }
2d21ac55 3462 OSAddAtomic(-1, &cs_blob_count);
b0d623f7 3463 OSAddAtomic((SInt32) -blob->csb_mem_size, &cs_blob_size);
2d21ac55
A
3464 kfree(blob, sizeof (*blob));
3465 }
6d2010ae
A
3466#if CHECK_CS_VALIDATION_BITMAP
3467 ubc_cs_validation_bitmap_deallocate( uip->ui_vnode );
3468#endif
2d21ac55 3469 uip->cs_blobs = NULL;
91447636 3470}
2d21ac55 3471
fe8ab488
A
3472/* check cs blob generation on vnode
3473 * returns:
3474 * 0 : Success, the cs_blob attached is current
3475 * ENEEDAUTH : Generation count mismatch. Needs authentication again.
3476 */
3477int
3478ubc_cs_generation_check(
3479 struct vnode *vp)
3480{
3481 int retval = ENEEDAUTH;
3482
3483 vnode_lock_spin(vp);
3484
3485 if (UBCINFOEXISTS(vp) && vp->v_ubcinfo->cs_add_gen == cs_blob_generation_count) {
3486 retval = 0;
3487 }
3488
3489 vnode_unlock(vp);
3490 return retval;
3491}
3492
3493int
3494ubc_cs_blob_revalidate(
3495 struct vnode *vp,
c18c124e 3496 struct cs_blob *blob,
39037602
A
3497 struct image_params *imgp,
3498 int flags
fe8ab488
A
3499 )
3500{
3501 int error = 0;
fe8ab488 3502 const CS_CodeDirectory *cd = NULL;
39037602 3503 const CS_GenericBlob *entitlements = NULL;
fe8ab488
A
3504 assert(vp != NULL);
3505 assert(blob != NULL);
3506
39037602 3507 error = cs_validate_csblob((const uint8_t *)blob->csb_mem_kaddr, blob->csb_mem_size, &cd, &entitlements);
fe8ab488
A
3508 if (error) {
3509 if (cs_debug) {
3510 printf("CODESIGNING: csblob invalid: %d\n", error);
3511 }
3512 goto out;
3513 }
3514
39037602
A
3515 unsigned int cs_flags = (ntohl(cd->flags) & CS_ALLOWED_MACHO) | CS_VALID;
3516
fe8ab488
A
3517 /* callout to mac_vnode_check_signature */
3518#if CONFIG_MACF
39037602 3519 error = mac_vnode_check_signature(vp, blob, imgp, &cs_flags, flags);
fe8ab488
A
3520 if (cs_debug && error) {
3521 printf("revalidate: check_signature[pid: %d], error = %d\n", current_proc()->p_pid, error);
3522 }
39037602
A
3523#else
3524 (void)flags;
fe8ab488
A
3525#endif
3526
3527 /* update generation number if success */
3528 vnode_lock_spin(vp);
39037602 3529 blob->csb_flags = cs_flags;
fe8ab488
A
3530 if (UBCINFOEXISTS(vp)) {
3531 if (error == 0)
3532 vp->v_ubcinfo->cs_add_gen = cs_blob_generation_count;
3533 else
3534 vp->v_ubcinfo->cs_add_gen = 0;
3535 }
3536
3537 vnode_unlock(vp);
3538
3539out:
3540 return error;
3541}
3542
3543void
3544cs_blob_reset_cache()
3545{
3546 /* incrementing odd no by 2 makes sure '0' is never reached. */
3547 OSAddAtomic(+2, &cs_blob_generation_count);
3548 printf("Reseting cs_blob cache from all vnodes. \n");
3549}
3550
2d21ac55
A
3551struct cs_blob *
3552ubc_get_cs_blobs(
3553 struct vnode *vp)
91447636 3554{
2d21ac55
A
3555 struct ubc_info *uip;
3556 struct cs_blob *blobs;
3557
b0d623f7
A
3558 /*
3559 * No need to take the vnode lock here. The caller must be holding
3560 * a reference on the vnode (via a VM mapping or open file descriptor),
3561 * so the vnode will not go away. The ubc_info stays until the vnode
3562 * goes away. And we only modify "blobs" by adding to the head of the
3563 * list.
3564 * The ubc_info could go away entirely if the vnode gets reclaimed as
3565 * part of a forced unmount. In the case of a code-signature validation
3566 * during a page fault, the "paging_in_progress" reference on the VM
3567 * object guarantess that the vnode pager (and the ubc_info) won't go
3568 * away during the fault.
3569 * Other callers need to protect against vnode reclaim by holding the
3570 * vnode lock, for example.
3571 */
2d21ac55
A
3572
3573 if (! UBCINFOEXISTS(vp)) {
3574 blobs = NULL;
3575 goto out;
3576 }
3577
3578 uip = vp->v_ubcinfo;
3579 blobs = uip->cs_blobs;
3580
3581out:
2d21ac55 3582 return blobs;
91447636 3583}
2d21ac55 3584
15129b1c
A
3585void
3586ubc_get_cs_mtime(
3587 struct vnode *vp,
3588 struct timespec *cs_mtime)
3589{
3590 struct ubc_info *uip;
3591
3592 if (! UBCINFOEXISTS(vp)) {
3593 cs_mtime->tv_sec = 0;
3594 cs_mtime->tv_nsec = 0;
3595 return;
3596 }
3597
3598 uip = vp->v_ubcinfo;
3599 cs_mtime->tv_sec = uip->cs_mtime.tv_sec;
3600 cs_mtime->tv_nsec = uip->cs_mtime.tv_nsec;
3601}
3602
2d21ac55
A
3603unsigned long cs_validate_page_no_hash = 0;
3604unsigned long cs_validate_page_bad_hash = 0;
39037602
A
3605static boolean_t
3606cs_validate_hash(
3607 struct cs_blob *blobs,
316670eb 3608 memory_object_t pager,
2d21ac55
A
3609 memory_object_offset_t page_offset,
3610 const void *data,
39037602 3611 vm_size_t *bytes_processed,
c18c124e 3612 unsigned *tainted)
91447636 3613{
3e170ce0
A
3614 union cs_hash_union mdctx;
3615 struct cs_hash *hashtype = NULL;
3616 unsigned char actual_hash[CS_HASH_MAX_SIZE];
490019cf 3617 unsigned char expected_hash[CS_HASH_MAX_SIZE];
2d21ac55 3618 boolean_t found_hash;
39037602 3619 struct cs_blob *blob;
2d21ac55 3620 const CS_CodeDirectory *cd;
2d21ac55
A
3621 const unsigned char *hash;
3622 boolean_t validated;
3623 off_t offset; /* page offset in the file */
3624 size_t size;
3625 off_t codeLimit = 0;
3e170ce0 3626 const char *lower_bound, *upper_bound;
2d21ac55 3627 vm_offset_t kaddr, blob_addr;
2d21ac55
A
3628
3629 /* retrieve the expected hash */
3630 found_hash = FALSE;
2d21ac55
A
3631
3632 for (blob = blobs;
3633 blob != NULL;
3634 blob = blob->csb_next) {
3635 offset = page_offset - blob->csb_base_offset;
3636 if (offset < blob->csb_start_offset ||
3637 offset >= blob->csb_end_offset) {
3638 /* our page is not covered by this blob */
3639 continue;
3640 }
3641
39037602 3642 /* blob data has been released */
2d21ac55
A
3643 kaddr = blob->csb_mem_kaddr;
3644 if (kaddr == 0) {
39037602 3645 continue;
2d21ac55 3646 }
39236c6e 3647
2d21ac55 3648 blob_addr = kaddr + blob->csb_mem_offset;
2d21ac55
A
3649 lower_bound = CAST_DOWN(char *, blob_addr);
3650 upper_bound = lower_bound + blob->csb_mem_size;
490019cf
A
3651
3652 cd = blob->csb_cd;
2d21ac55 3653 if (cd != NULL) {
3e170ce0 3654 /* all CD's that have been injected is already validated */
b0d623f7 3655
3e170ce0
A
3656 hashtype = blob->csb_hashtype;
3657 if (hashtype == NULL)
3658 panic("unknown hash type ?");
3659 if (hashtype->cs_digest_size > sizeof(actual_hash))
3660 panic("hash size too large");
39037602
A
3661 if (offset & blob->csb_hash_pagemask)
3662 panic("offset not aligned to cshash boundary");
3e170ce0 3663
2d21ac55 3664 codeLimit = ntohl(cd->codeLimit);
39236c6e 3665
39037602 3666 hash = hashes(cd, (uint32_t)(offset>>blob->csb_hash_pageshift),
3e170ce0 3667 hashtype->cs_size,
2d21ac55 3668 lower_bound, upper_bound);
cf7d32b8 3669 if (hash != NULL) {
490019cf 3670 bcopy(hash, expected_hash, hashtype->cs_size);
cf7d32b8
A
3671 found_hash = TRUE;
3672 }
2d21ac55 3673
2d21ac55
A
3674 break;
3675 }
3676 }
3677
3678 if (found_hash == FALSE) {
3679 /*
3680 * We can't verify this page because there is no signature
3681 * for it (yet). It's possible that this part of the object
3682 * is not signed, or that signatures for that part have not
3683 * been loaded yet.
3684 * Report that the page has not been validated and let the
3685 * caller decide if it wants to accept it or not.
3686 */
3687 cs_validate_page_no_hash++;
3688 if (cs_debug > 1) {
3689 printf("CODE SIGNING: cs_validate_page: "
316670eb
A
3690 "mobj %p off 0x%llx: no hash to validate !?\n",
3691 pager, page_offset);
2d21ac55
A
3692 }
3693 validated = FALSE;
c18c124e 3694 *tainted = 0;
2d21ac55 3695 } else {
2d21ac55 3696
c18c124e
A
3697 *tainted = 0;
3698
39037602
A
3699 size = blob->csb_hash_pagesize;
3700 *bytes_processed = size;
3701
fe8ab488 3702 const uint32_t *asha1, *esha1;
b0d623f7 3703 if ((off_t)(offset + size) > codeLimit) {
2d21ac55
A
3704 /* partial page at end of segment */
3705 assert(offset < codeLimit);
39037602 3706 size = (size_t) (codeLimit & blob->csb_hash_pagemask);
c18c124e 3707 *tainted |= CS_VALIDATE_NX;
2d21ac55 3708 }
3e170ce0
A
3709
3710 hashtype->cs_init(&mdctx);
39037602
A
3711
3712 if (blob->csb_hash_firstlevel_pagesize) {
3713 const unsigned char *partial_data = (const unsigned char *)data;
3714 size_t i;
3715 for (i=0; i < size;) {
3716 union cs_hash_union partialctx;
3717 unsigned char partial_digest[CS_HASH_MAX_SIZE];
3718 size_t partial_size = MIN(size-i, blob->csb_hash_firstlevel_pagesize);
3719
3720 hashtype->cs_init(&partialctx);
3721 hashtype->cs_update(&partialctx, partial_data, partial_size);
3722 hashtype->cs_final(partial_digest, &partialctx);
3723
3724 /* Update cumulative multi-level hash */
3725 hashtype->cs_update(&mdctx, partial_digest, hashtype->cs_size);
3726 partial_data = partial_data + partial_size;
3727 i += partial_size;
3728 }
3729 } else {
3730 hashtype->cs_update(&mdctx, data, size);
3731 }
3e170ce0 3732 hashtype->cs_final(actual_hash, &mdctx);
2d21ac55 3733
fe8ab488
A
3734 asha1 = (const uint32_t *) actual_hash;
3735 esha1 = (const uint32_t *) expected_hash;
3736
490019cf 3737 if (bcmp(expected_hash, actual_hash, hashtype->cs_size) != 0) {
2d21ac55
A
3738 if (cs_debug) {
3739 printf("CODE SIGNING: cs_validate_page: "
fe8ab488
A
3740 "mobj %p off 0x%llx size 0x%lx: "
3741 "actual [0x%x 0x%x 0x%x 0x%x 0x%x] != "
3742 "expected [0x%x 0x%x 0x%x 0x%x 0x%x]\n",
3743 pager, page_offset, size,
3744 asha1[0], asha1[1], asha1[2],
3745 asha1[3], asha1[4],
3746 esha1[0], esha1[1], esha1[2],
3747 esha1[3], esha1[4]);
2d21ac55
A
3748 }
3749 cs_validate_page_bad_hash++;
c18c124e 3750 *tainted |= CS_VALIDATE_TAINTED;
2d21ac55 3751 } else {
39236c6e 3752 if (cs_debug > 10) {
2d21ac55 3753 printf("CODE SIGNING: cs_validate_page: "
316670eb
A
3754 "mobj %p off 0x%llx size 0x%lx: "
3755 "SHA1 OK\n",
3756 pager, page_offset, size);
2d21ac55 3757 }
2d21ac55
A
3758 }
3759 validated = TRUE;
3760 }
3761
3762 return validated;
91447636
A
3763}
3764
39037602
A
3765boolean_t
3766cs_validate_range(
3767 struct vnode *vp,
3768 memory_object_t pager,
3769 memory_object_offset_t page_offset,
3770 const void *data,
3771 vm_size_t dsize,
3772 unsigned *tainted)
3773{
3774 vm_size_t offset_in_range;
3775 boolean_t all_subranges_validated = TRUE; /* turn false if any subrange fails */
3776
3777 struct cs_blob *blobs = ubc_get_cs_blobs(vp);
3778
3779 *tainted = 0;
3780
3781 for (offset_in_range = 0;
3782 offset_in_range < dsize;
3783 /* offset_in_range updated based on bytes processed */) {
3784 unsigned subrange_tainted = 0;
3785 boolean_t subrange_validated;
3786 vm_size_t bytes_processed = 0;
3787
3788 subrange_validated = cs_validate_hash(blobs,
3789 pager,
3790 page_offset + offset_in_range,
3791 (const void *)((const char *)data + offset_in_range),
3792 &bytes_processed,
3793 &subrange_tainted);
3794
3795 *tainted |= subrange_tainted;
3796
3797 if (bytes_processed == 0) {
3798 /* Cannote make forward progress, so return an error */
3799 all_subranges_validated = FALSE;
3800 break;
3801 } else if (subrange_validated == FALSE) {
3802 all_subranges_validated = FALSE;
3803 /* Keep going to detect other types of failures in subranges */
3804 }
3805
3806 offset_in_range += bytes_processed;
3807 }
3808
3809 return all_subranges_validated;
3810}
3811
2d21ac55
A
3812int
3813ubc_cs_getcdhash(
3814 vnode_t vp,
3815 off_t offset,
3816 unsigned char *cdhash)
3817{
b0d623f7
A
3818 struct cs_blob *blobs, *blob;
3819 off_t rel_offset;
3820 int ret;
3821
3822 vnode_lock(vp);
2d21ac55
A
3823
3824 blobs = ubc_get_cs_blobs(vp);
3825 for (blob = blobs;
3826 blob != NULL;
3827 blob = blob->csb_next) {
3828 /* compute offset relative to this blob */
3829 rel_offset = offset - blob->csb_base_offset;
3830 if (rel_offset >= blob->csb_start_offset &&
3831 rel_offset < blob->csb_end_offset) {
3832 /* this blob does cover our "offset" ! */
3833 break;
3834 }
3835 }
3836
3837 if (blob == NULL) {
3838 /* we didn't find a blob covering "offset" */
b0d623f7
A
3839 ret = EBADEXEC; /* XXX any better error ? */
3840 } else {
3841 /* get the SHA1 hash of that blob */
3e170ce0 3842 bcopy(blob->csb_cdhash, cdhash, sizeof (blob->csb_cdhash));
b0d623f7 3843 ret = 0;
2d21ac55
A
3844 }
3845
b0d623f7 3846 vnode_unlock(vp);
2d21ac55 3847
b0d623f7 3848 return ret;
2d21ac55 3849}
6d2010ae 3850
39037602
A
3851boolean_t
3852ubc_cs_is_range_codesigned(
3853 vnode_t vp,
3854 mach_vm_offset_t start,
3855 mach_vm_size_t size)
3856{
3857 struct cs_blob *csblob;
3858 mach_vm_offset_t blob_start;
3859 mach_vm_offset_t blob_end;
3860
3861 if (vp == NULL) {
3862 /* no file: no code signature */
3863 return FALSE;
3864 }
3865 if (size == 0) {
3866 /* no range: no code signature */
3867 return FALSE;
3868 }
3869 if (start + size < start) {
3870 /* overflow */
3871 return FALSE;
3872 }
3873
3874 csblob = ubc_cs_blob_get(vp, -1, start);
3875 if (csblob == NULL) {
3876 return FALSE;
3877 }
3878
3879 /*
3880 * We currently check if the range is covered by a single blob,
3881 * which should always be the case for the dyld shared cache.
3882 * If we ever want to make this routine handle other cases, we
3883 * would have to iterate if the blob does not cover the full range.
3884 */
3885 blob_start = (mach_vm_offset_t) (csblob->csb_base_offset +
3886 csblob->csb_start_offset);
3887 blob_end = (mach_vm_offset_t) (csblob->csb_base_offset +
3888 csblob->csb_end_offset);
3889 if (blob_start > start || blob_end < (start + size)) {
3890 /* range not fully covered by this code-signing blob */
3891 return FALSE;
3892 }
3893
3894 return TRUE;
3895}
3896
6d2010ae
A
3897#if CHECK_CS_VALIDATION_BITMAP
3898#define stob(s) ((atop_64((s)) + 07) >> 3)
3899extern boolean_t root_fs_upgrade_try;
3900
3901/*
3902 * Should we use the code-sign bitmap to avoid repeated code-sign validation?
3903 * Depends:
3904 * a) Is the target vnode on the root filesystem?
3905 * b) Has someone tried to mount the root filesystem read-write?
3906 * If answers are (a) yes AND (b) no, then we can use the bitmap.
3907 */
3908#define USE_CODE_SIGN_BITMAP(vp) ( (vp != NULL) && (vp->v_mount != NULL) && (vp->v_mount->mnt_flag & MNT_ROOTFS) && !root_fs_upgrade_try)
3909kern_return_t
3910ubc_cs_validation_bitmap_allocate(
3911 vnode_t vp)
3912{
3913 kern_return_t kr = KERN_SUCCESS;
3914 struct ubc_info *uip;
3915 char *target_bitmap;
3916 vm_object_size_t bitmap_size;
3917
3918 if ( ! USE_CODE_SIGN_BITMAP(vp) || (! UBCINFOEXISTS(vp))) {
3919 kr = KERN_INVALID_ARGUMENT;
3920 } else {
3921 uip = vp->v_ubcinfo;
3922
3923 if ( uip->cs_valid_bitmap == NULL ) {
3924 bitmap_size = stob(uip->ui_size);
3925 target_bitmap = (char*) kalloc( (vm_size_t)bitmap_size );
3926 if (target_bitmap == 0) {
3927 kr = KERN_NO_SPACE;
3928 } else {
3929 kr = KERN_SUCCESS;
3930 }
3931 if( kr == KERN_SUCCESS ) {
3932 memset( target_bitmap, 0, (size_t)bitmap_size);
3933 uip->cs_valid_bitmap = (void*)target_bitmap;
3934 uip->cs_valid_bitmap_size = bitmap_size;
3935 }
3936 }
3937 }
3938 return kr;
3939}
3940
3941kern_return_t
3942ubc_cs_check_validation_bitmap (
3943 vnode_t vp,
3944 memory_object_offset_t offset,
3945 int optype)
3946{
3947 kern_return_t kr = KERN_SUCCESS;
3948
3949 if ( ! USE_CODE_SIGN_BITMAP(vp) || ! UBCINFOEXISTS(vp)) {
3950 kr = KERN_INVALID_ARGUMENT;
3951 } else {
3952 struct ubc_info *uip = vp->v_ubcinfo;
3953 char *target_bitmap = uip->cs_valid_bitmap;
3954
3955 if ( target_bitmap == NULL ) {
3956 kr = KERN_INVALID_ARGUMENT;
3957 } else {
3958 uint64_t bit, byte;
3959 bit = atop_64( offset );
3960 byte = bit >> 3;
3961
3962 if ( byte > uip->cs_valid_bitmap_size ) {
3963 kr = KERN_INVALID_ARGUMENT;
3964 } else {
3965
3966 if (optype == CS_BITMAP_SET) {
3967 target_bitmap[byte] |= (1 << (bit & 07));
3968 kr = KERN_SUCCESS;
3969 } else if (optype == CS_BITMAP_CLEAR) {
3970 target_bitmap[byte] &= ~(1 << (bit & 07));
3971 kr = KERN_SUCCESS;
3972 } else if (optype == CS_BITMAP_CHECK) {
3973 if ( target_bitmap[byte] & (1 << (bit & 07))) {
3974 kr = KERN_SUCCESS;
3975 } else {
3976 kr = KERN_FAILURE;
3977 }
3978 }
3979 }
3980 }
3981 }
3982 return kr;
3983}
3984
3985void
3986ubc_cs_validation_bitmap_deallocate(
3987 vnode_t vp)
3988{
3989 struct ubc_info *uip;
3990 void *target_bitmap;
3991 vm_object_size_t bitmap_size;
3992
3993 if ( UBCINFOEXISTS(vp)) {
3994 uip = vp->v_ubcinfo;
3995
3996 if ( (target_bitmap = uip->cs_valid_bitmap) != NULL ) {
3997 bitmap_size = uip->cs_valid_bitmap_size;
3998 kfree( target_bitmap, (vm_size_t) bitmap_size );
3999 uip->cs_valid_bitmap = NULL;
4000 }
4001 }
4002}
4003#else
4004kern_return_t ubc_cs_validation_bitmap_allocate(__unused vnode_t vp){
4005 return KERN_INVALID_ARGUMENT;
4006}
4007
4008kern_return_t ubc_cs_check_validation_bitmap(
4009 __unused struct vnode *vp,
4010 __unused memory_object_offset_t offset,
4011 __unused int optype){
4012
4013 return KERN_INVALID_ARGUMENT;
4014}
4015
4016void ubc_cs_validation_bitmap_deallocate(__unused vnode_t vp){
4017 return;
4018}
4019#endif /* CHECK_CS_VALIDATION_BITMAP */