]>
Commit | Line | Data |
---|---|---|
91447636 A |
1 | /* |
2 | * Copyright (c) 2000-2004 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
37839358 A |
6 | * The contents of this file constitute Original Code as defined in and |
7 | * are subject to the Apple Public Source License Version 1.1 (the | |
8 | * "License"). You may not use this file except in compliance with the | |
9 | * License. Please obtain a copy of the License at | |
10 | * http://www.apple.com/publicsource and read it before using this file. | |
91447636 | 11 | * |
37839358 A |
12 | * This Original Code and all software distributed under the License are |
13 | * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
91447636 A |
14 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
15 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
37839358 A |
16 | * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the |
17 | * License for the specific language governing rights and limitations | |
18 | * under the License. | |
91447636 A |
19 | * |
20 | * @APPLE_LICENSE_HEADER_END@ | |
21 | */ | |
22 | /* | |
23 | * @OSF_COPYRIGHT@ | |
24 | */ | |
25 | /* | |
26 | * Mach Operating System | |
27 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
28 | * All Rights Reserved. | |
29 | * | |
30 | * Permission to use, copy, modify and distribute this software and its | |
31 | * documentation is hereby granted, provided that both the copyright | |
32 | * notice and this permission notice appear in all copies of the | |
33 | * software, derivative works or modified versions, and any portions | |
34 | * thereof, and that both notices appear in supporting documentation. | |
35 | * | |
36 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
37 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
38 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
39 | * | |
40 | * Carnegie Mellon requests users of this software to return to | |
41 | * | |
42 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
43 | * School of Computer Science | |
44 | * Carnegie Mellon University | |
45 | * Pittsburgh PA 15213-3890 | |
46 | * | |
47 | * any improvements or extensions that they make and grant Carnegie Mellon | |
48 | * the rights to redistribute these changes. | |
49 | */ | |
50 | /* | |
51 | * File: kern/lock.c | |
52 | * Author: Avadis Tevanian, Jr., Michael Wayne Young | |
53 | * Date: 1985 | |
54 | * | |
55 | * Locking primitives implementation | |
56 | */ | |
57 | ||
58 | #include <mach_kdb.h> | |
59 | #include <mach_ldebug.h> | |
60 | ||
61 | #include <kern/lock.h> | |
62 | #include <kern/locks.h> | |
63 | #include <kern/kalloc.h> | |
64 | #include <kern/misc_protos.h> | |
65 | #include <kern/thread.h> | |
66 | #include <kern/processor.h> | |
67 | #include <kern/cpu_data.h> | |
68 | #include <kern/cpu_number.h> | |
69 | #include <kern/sched_prim.h> | |
70 | #include <kern/xpr.h> | |
71 | #include <kern/debug.h> | |
72 | #include <string.h> | |
73 | ||
74 | #if MACH_KDB | |
75 | #include <ddb/db_command.h> | |
76 | #include <ddb/db_output.h> | |
77 | #include <ddb/db_sym.h> | |
78 | #include <ddb/db_print.h> | |
79 | #endif /* MACH_KDB */ | |
80 | ||
81 | #ifdef __ppc__ | |
82 | #include <ppc/Firmware.h> | |
83 | #endif | |
84 | ||
85 | #include <sys/kdebug.h> | |
86 | ||
87 | #define LCK_RW_LCK_EXCLUSIVE_CODE 0x100 | |
88 | #define LCK_RW_LCK_EXCLUSIVE1_CODE 0x101 | |
89 | #define LCK_RW_LCK_SHARED_CODE 0x102 | |
90 | #define LCK_RW_LCK_SH_TO_EX_CODE 0x103 | |
91 | #define LCK_RW_LCK_SH_TO_EX1_CODE 0x104 | |
92 | #define LCK_RW_LCK_EX_TO_SH_CODE 0x105 | |
93 | ||
94 | ||
95 | #define ANY_LOCK_DEBUG (USLOCK_DEBUG || LOCK_DEBUG || MUTEX_DEBUG) | |
96 | ||
97 | unsigned int LcksOpts=0; | |
98 | unsigned int lock_wait_time[2] = { (unsigned int)-1, 100 } ; | |
99 | ||
100 | /* Forwards */ | |
101 | ||
102 | #if MACH_KDB | |
103 | void db_print_simple_lock( | |
104 | simple_lock_t addr); | |
105 | ||
106 | void db_print_mutex( | |
107 | mutex_t * addr); | |
108 | #endif /* MACH_KDB */ | |
109 | ||
110 | ||
111 | #if USLOCK_DEBUG | |
112 | /* | |
113 | * Perform simple lock checks. | |
114 | */ | |
115 | int uslock_check = 1; | |
116 | int max_lock_loops = 100000000; | |
117 | decl_simple_lock_data(extern , printf_lock) | |
118 | decl_simple_lock_data(extern , panic_lock) | |
119 | #if MACH_KDB | |
120 | decl_simple_lock_data(extern , kdb_lock) | |
121 | #endif /* MACH_KDB */ | |
122 | #endif /* USLOCK_DEBUG */ | |
123 | ||
124 | ||
125 | /* | |
126 | * We often want to know the addresses of the callers | |
127 | * of the various lock routines. However, this information | |
128 | * is only used for debugging and statistics. | |
129 | */ | |
130 | typedef void *pc_t; | |
131 | #define INVALID_PC ((void *) VM_MAX_KERNEL_ADDRESS) | |
132 | #define INVALID_THREAD ((void *) VM_MAX_KERNEL_ADDRESS) | |
133 | #if ANY_LOCK_DEBUG | |
134 | #define OBTAIN_PC(pc,l) ((pc) = (void *) GET_RETURN_PC(&(l))) | |
135 | #define DECL_PC(pc) pc_t pc; | |
136 | #else /* ANY_LOCK_DEBUG */ | |
137 | #define DECL_PC(pc) | |
138 | #ifdef lint | |
139 | /* | |
140 | * Eliminate lint complaints about unused local pc variables. | |
141 | */ | |
142 | #define OBTAIN_PC(pc,l) ++pc | |
143 | #else /* lint */ | |
144 | #define OBTAIN_PC(pc,l) | |
145 | #endif /* lint */ | |
146 | #endif /* USLOCK_DEBUG */ | |
147 | ||
148 | ||
149 | /* | |
150 | * Portable lock package implementation of usimple_locks. | |
151 | */ | |
152 | ||
153 | #if USLOCK_DEBUG | |
154 | #define USLDBG(stmt) stmt | |
155 | void usld_lock_init(usimple_lock_t, unsigned short); | |
156 | void usld_lock_pre(usimple_lock_t, pc_t); | |
157 | void usld_lock_post(usimple_lock_t, pc_t); | |
158 | void usld_unlock(usimple_lock_t, pc_t); | |
159 | void usld_lock_try_pre(usimple_lock_t, pc_t); | |
160 | void usld_lock_try_post(usimple_lock_t, pc_t); | |
161 | int usld_lock_common_checks(usimple_lock_t, char *); | |
162 | #else /* USLOCK_DEBUG */ | |
163 | #define USLDBG(stmt) | |
164 | #endif /* USLOCK_DEBUG */ | |
165 | ||
166 | /* | |
167 | * Routine: lck_spin_alloc_init | |
168 | */ | |
169 | lck_spin_t * | |
170 | lck_spin_alloc_init( | |
171 | lck_grp_t *grp, | |
172 | lck_attr_t *attr) | |
173 | { | |
174 | lck_spin_t *lck; | |
175 | ||
176 | if ((lck = (lck_spin_t *)kalloc(sizeof(lck_spin_t))) != 0) | |
177 | lck_spin_init(lck, grp, attr); | |
178 | ||
179 | return(lck); | |
180 | } | |
181 | ||
182 | /* | |
183 | * Routine: lck_spin_free | |
184 | */ | |
185 | void | |
186 | lck_spin_free( | |
187 | lck_spin_t *lck, | |
188 | lck_grp_t *grp) | |
189 | { | |
190 | lck_spin_destroy(lck, grp); | |
191 | kfree(lck, sizeof(lck_spin_t)); | |
192 | } | |
193 | ||
194 | /* | |
195 | * Routine: lck_spin_init | |
196 | */ | |
197 | void | |
198 | lck_spin_init( | |
199 | lck_spin_t *lck, | |
200 | lck_grp_t *grp, | |
201 | __unused lck_attr_t *attr) | |
202 | { | |
203 | usimple_lock_init((usimple_lock_t) lck, 0); | |
204 | lck_grp_reference(grp); | |
205 | lck_grp_lckcnt_incr(grp, LCK_TYPE_SPIN); | |
206 | } | |
207 | ||
208 | /* | |
209 | * Routine: lck_spin_destroy | |
210 | */ | |
211 | void | |
212 | lck_spin_destroy( | |
213 | lck_spin_t *lck, | |
214 | lck_grp_t *grp) | |
215 | { | |
216 | if (lck->lck_spin_data[0] == LCK_SPIN_TAG_DESTROYED) | |
217 | return; | |
218 | lck->lck_spin_data[0] = LCK_SPIN_TAG_DESTROYED; | |
219 | lck_grp_lckcnt_decr(grp, LCK_TYPE_SPIN); | |
220 | lck_grp_deallocate(grp); | |
221 | return; | |
222 | } | |
223 | ||
224 | /* | |
225 | * Routine: lck_spin_lock | |
226 | */ | |
227 | void | |
228 | lck_spin_lock( | |
229 | lck_spin_t *lck) | |
230 | { | |
231 | usimple_lock((usimple_lock_t) lck); | |
232 | } | |
233 | ||
234 | /* | |
235 | * Routine: lck_spin_unlock | |
236 | */ | |
237 | void | |
238 | lck_spin_unlock( | |
239 | lck_spin_t *lck) | |
240 | { | |
241 | usimple_unlock((usimple_lock_t) lck); | |
242 | } | |
243 | ||
244 | ||
245 | /* | |
246 | * Routine: lck_spin_try_lock | |
247 | */ | |
248 | boolean_t | |
249 | lck_spin_try_lock( | |
250 | lck_spin_t *lck) | |
251 | { | |
252 | usimple_lock_try((usimple_lock_t) lck); | |
253 | } | |
254 | ||
255 | /* | |
256 | * Initialize a usimple_lock. | |
257 | * | |
258 | * No change in preemption state. | |
259 | */ | |
260 | void | |
261 | usimple_lock_init( | |
262 | usimple_lock_t l, | |
263 | __unused unsigned short tag) | |
264 | { | |
265 | #ifndef MACHINE_SIMPLE_LOCK | |
266 | USLDBG(usld_lock_init(l, tag)); | |
267 | hw_lock_init(&l->interlock); | |
268 | #else | |
269 | simple_lock_init((simple_lock_t)l,tag); | |
270 | #endif | |
271 | } | |
272 | ||
273 | ||
274 | /* | |
275 | * Acquire a usimple_lock. | |
276 | * | |
277 | * Returns with preemption disabled. Note | |
278 | * that the hw_lock routines are responsible for | |
279 | * maintaining preemption state. | |
280 | */ | |
281 | void | |
282 | usimple_lock( | |
283 | usimple_lock_t l) | |
284 | { | |
285 | #ifndef MACHINE_SIMPLE_LOCK | |
286 | pc_t pc = NULL; | |
287 | ||
288 | OBTAIN_PC(pc, l); | |
289 | USLDBG(usld_lock_pre(l, pc)); | |
290 | ||
291 | if(!hw_lock_to(&l->interlock, LockTimeOut)) /* Try to get the lock with a timeout */ | |
292 | panic("simple lock deadlock detection - l=%08X, cpu=%d, ret=%08X", l, cpu_number(), pc); | |
293 | ||
294 | USLDBG(usld_lock_post(l, pc)); | |
295 | #else | |
296 | simple_lock((simple_lock_t)l); | |
297 | #endif | |
298 | } | |
299 | ||
300 | ||
301 | /* | |
302 | * Release a usimple_lock. | |
303 | * | |
304 | * Returns with preemption enabled. Note | |
305 | * that the hw_lock routines are responsible for | |
306 | * maintaining preemption state. | |
307 | */ | |
308 | void | |
309 | usimple_unlock( | |
310 | usimple_lock_t l) | |
311 | { | |
312 | #ifndef MACHINE_SIMPLE_LOCK | |
313 | DECL_PC(pc); | |
314 | ||
315 | OBTAIN_PC(pc, l); | |
316 | USLDBG(usld_unlock(l, pc)); | |
317 | hw_lock_unlock(&l->interlock); | |
318 | #else | |
319 | simple_unlock_rwmb((simple_lock_t)l); | |
320 | #endif | |
321 | } | |
322 | ||
323 | ||
324 | /* | |
325 | * Conditionally acquire a usimple_lock. | |
326 | * | |
327 | * On success, returns with preemption disabled. | |
328 | * On failure, returns with preemption in the same state | |
329 | * as when first invoked. Note that the hw_lock routines | |
330 | * are responsible for maintaining preemption state. | |
331 | * | |
332 | * XXX No stats are gathered on a miss; I preserved this | |
333 | * behavior from the original assembly-language code, but | |
334 | * doesn't it make sense to log misses? XXX | |
335 | */ | |
336 | unsigned int | |
337 | usimple_lock_try( | |
338 | usimple_lock_t l) | |
339 | { | |
340 | #ifndef MACHINE_SIMPLE_LOCK | |
341 | DECL_PC(pc); | |
342 | unsigned int success; | |
343 | ||
344 | OBTAIN_PC(pc, l); | |
345 | USLDBG(usld_lock_try_pre(l, pc)); | |
346 | if ((success = hw_lock_try(&l->interlock))) { | |
347 | USLDBG(usld_lock_try_post(l, pc)); | |
348 | } | |
349 | return success; | |
350 | #else | |
351 | return(simple_lock_try((simple_lock_t)l)); | |
352 | #endif | |
353 | } | |
354 | ||
355 | #if USLOCK_DEBUG | |
356 | /* | |
357 | * States of a usimple_lock. The default when initializing | |
358 | * a usimple_lock is setting it up for debug checking. | |
359 | */ | |
360 | #define USLOCK_CHECKED 0x0001 /* lock is being checked */ | |
361 | #define USLOCK_TAKEN 0x0002 /* lock has been taken */ | |
362 | #define USLOCK_INIT 0xBAA0 /* lock has been initialized */ | |
363 | #define USLOCK_INITIALIZED (USLOCK_INIT|USLOCK_CHECKED) | |
364 | #define USLOCK_CHECKING(l) (uslock_check && \ | |
365 | ((l)->debug.state & USLOCK_CHECKED)) | |
366 | ||
367 | /* | |
368 | * Trace activities of a particularly interesting lock. | |
369 | */ | |
370 | void usl_trace(usimple_lock_t, int, pc_t, const char *); | |
371 | ||
372 | ||
373 | /* | |
374 | * Initialize the debugging information contained | |
375 | * in a usimple_lock. | |
376 | */ | |
377 | void | |
378 | usld_lock_init( | |
379 | usimple_lock_t l, | |
380 | __unused unsigned short tag) | |
381 | { | |
382 | if (l == USIMPLE_LOCK_NULL) | |
383 | panic("lock initialization: null lock pointer"); | |
384 | l->lock_type = USLOCK_TAG; | |
385 | l->debug.state = uslock_check ? USLOCK_INITIALIZED : 0; | |
386 | l->debug.lock_cpu = l->debug.unlock_cpu = 0; | |
387 | l->debug.lock_pc = l->debug.unlock_pc = INVALID_PC; | |
388 | l->debug.lock_thread = l->debug.unlock_thread = INVALID_THREAD; | |
389 | l->debug.duration[0] = l->debug.duration[1] = 0; | |
390 | l->debug.unlock_cpu = l->debug.unlock_cpu = 0; | |
391 | l->debug.unlock_pc = l->debug.unlock_pc = INVALID_PC; | |
392 | l->debug.unlock_thread = l->debug.unlock_thread = INVALID_THREAD; | |
393 | } | |
394 | ||
395 | ||
396 | /* | |
397 | * These checks apply to all usimple_locks, not just | |
398 | * those with USLOCK_CHECKED turned on. | |
399 | */ | |
400 | int | |
401 | usld_lock_common_checks( | |
402 | usimple_lock_t l, | |
403 | char *caller) | |
404 | { | |
405 | if (l == USIMPLE_LOCK_NULL) | |
406 | panic("%s: null lock pointer", caller); | |
407 | if (l->lock_type != USLOCK_TAG) | |
408 | panic("%s: 0x%x is not a usimple lock", caller, (integer_t) l); | |
409 | if (!(l->debug.state & USLOCK_INIT)) | |
410 | panic("%s: 0x%x is not an initialized lock", | |
411 | caller, (integer_t) l); | |
412 | return USLOCK_CHECKING(l); | |
413 | } | |
414 | ||
415 | ||
416 | /* | |
417 | * Debug checks on a usimple_lock just before attempting | |
418 | * to acquire it. | |
419 | */ | |
420 | /* ARGSUSED */ | |
421 | void | |
422 | usld_lock_pre( | |
423 | usimple_lock_t l, | |
424 | pc_t pc) | |
425 | { | |
426 | char caller[] = "usimple_lock"; | |
427 | ||
428 | ||
429 | if (!usld_lock_common_checks(l, caller)) | |
430 | return; | |
431 | ||
432 | /* | |
433 | * Note that we have a weird case where we are getting a lock when we are] | |
434 | * in the process of putting the system to sleep. We are running with no | |
435 | * current threads, therefore we can't tell if we are trying to retake a lock | |
436 | * we have or someone on the other processor has it. Therefore we just | |
437 | * ignore this test if the locking thread is 0. | |
438 | */ | |
439 | ||
440 | if ((l->debug.state & USLOCK_TAKEN) && l->debug.lock_thread && | |
441 | l->debug.lock_thread == (void *) current_thread()) { | |
442 | printf("%s: lock 0x%x already locked (at 0x%x) by", | |
443 | caller, (integer_t) l, l->debug.lock_pc); | |
444 | printf(" current thread 0x%x (new attempt at pc 0x%x)\n", | |
445 | l->debug.lock_thread, pc); | |
446 | panic(caller); | |
447 | } | |
448 | mp_disable_preemption(); | |
449 | usl_trace(l, cpu_number(), pc, caller); | |
450 | mp_enable_preemption(); | |
451 | } | |
452 | ||
453 | ||
454 | /* | |
455 | * Debug checks on a usimple_lock just after acquiring it. | |
456 | * | |
457 | * Pre-emption has been disabled at this point, | |
458 | * so we are safe in using cpu_number. | |
459 | */ | |
460 | void | |
461 | usld_lock_post( | |
462 | usimple_lock_t l, | |
463 | pc_t pc) | |
464 | { | |
465 | register int mycpu; | |
466 | char caller[] = "successful usimple_lock"; | |
467 | ||
468 | ||
469 | if (!usld_lock_common_checks(l, caller)) | |
470 | return; | |
471 | ||
472 | if (!((l->debug.state & ~USLOCK_TAKEN) == USLOCK_INITIALIZED)) | |
473 | panic("%s: lock 0x%x became uninitialized", | |
474 | caller, (integer_t) l); | |
475 | if ((l->debug.state & USLOCK_TAKEN)) | |
476 | panic("%s: lock 0x%x became TAKEN by someone else", | |
477 | caller, (integer_t) l); | |
478 | ||
479 | mycpu = cpu_number(); | |
480 | l->debug.lock_thread = (void *)current_thread(); | |
481 | l->debug.state |= USLOCK_TAKEN; | |
482 | l->debug.lock_pc = pc; | |
483 | l->debug.lock_cpu = mycpu; | |
484 | ||
485 | usl_trace(l, mycpu, pc, caller); | |
486 | } | |
487 | ||
488 | ||
489 | /* | |
490 | * Debug checks on a usimple_lock just before | |
491 | * releasing it. Note that the caller has not | |
492 | * yet released the hardware lock. | |
493 | * | |
494 | * Preemption is still disabled, so there's | |
495 | * no problem using cpu_number. | |
496 | */ | |
497 | void | |
498 | usld_unlock( | |
499 | usimple_lock_t l, | |
500 | pc_t pc) | |
501 | { | |
502 | register int mycpu; | |
503 | char caller[] = "usimple_unlock"; | |
504 | ||
505 | ||
506 | if (!usld_lock_common_checks(l, caller)) | |
507 | return; | |
508 | ||
509 | mycpu = cpu_number(); | |
510 | ||
511 | if (!(l->debug.state & USLOCK_TAKEN)) | |
512 | panic("%s: lock 0x%x hasn't been taken", | |
513 | caller, (integer_t) l); | |
514 | if (l->debug.lock_thread != (void *) current_thread()) | |
515 | panic("%s: unlocking lock 0x%x, owned by thread 0x%x", | |
516 | caller, (integer_t) l, l->debug.lock_thread); | |
517 | if (l->debug.lock_cpu != mycpu) { | |
518 | printf("%s: unlocking lock 0x%x on cpu 0x%x", | |
519 | caller, (integer_t) l, mycpu); | |
520 | printf(" (acquired on cpu 0x%x)\n", l->debug.lock_cpu); | |
521 | panic(caller); | |
522 | } | |
523 | usl_trace(l, mycpu, pc, caller); | |
524 | ||
525 | l->debug.unlock_thread = l->debug.lock_thread; | |
526 | l->debug.lock_thread = INVALID_PC; | |
527 | l->debug.state &= ~USLOCK_TAKEN; | |
528 | l->debug.unlock_pc = pc; | |
529 | l->debug.unlock_cpu = mycpu; | |
530 | } | |
531 | ||
532 | ||
533 | /* | |
534 | * Debug checks on a usimple_lock just before | |
535 | * attempting to acquire it. | |
536 | * | |
537 | * Preemption isn't guaranteed to be disabled. | |
538 | */ | |
539 | void | |
540 | usld_lock_try_pre( | |
541 | usimple_lock_t l, | |
542 | pc_t pc) | |
543 | { | |
544 | char caller[] = "usimple_lock_try"; | |
545 | ||
546 | if (!usld_lock_common_checks(l, caller)) | |
547 | return; | |
548 | mp_disable_preemption(); | |
549 | usl_trace(l, cpu_number(), pc, caller); | |
550 | mp_enable_preemption(); | |
551 | } | |
552 | ||
553 | ||
554 | /* | |
555 | * Debug checks on a usimple_lock just after | |
556 | * successfully attempting to acquire it. | |
557 | * | |
558 | * Preemption has been disabled by the | |
559 | * lock acquisition attempt, so it's safe | |
560 | * to use cpu_number. | |
561 | */ | |
562 | void | |
563 | usld_lock_try_post( | |
564 | usimple_lock_t l, | |
565 | pc_t pc) | |
566 | { | |
567 | register int mycpu; | |
568 | char caller[] = "successful usimple_lock_try"; | |
569 | ||
570 | if (!usld_lock_common_checks(l, caller)) | |
571 | return; | |
572 | ||
573 | if (!((l->debug.state & ~USLOCK_TAKEN) == USLOCK_INITIALIZED)) | |
574 | panic("%s: lock 0x%x became uninitialized", | |
575 | caller, (integer_t) l); | |
576 | if ((l->debug.state & USLOCK_TAKEN)) | |
577 | panic("%s: lock 0x%x became TAKEN by someone else", | |
578 | caller, (integer_t) l); | |
579 | ||
580 | mycpu = cpu_number(); | |
581 | l->debug.lock_thread = (void *) current_thread(); | |
582 | l->debug.state |= USLOCK_TAKEN; | |
583 | l->debug.lock_pc = pc; | |
584 | l->debug.lock_cpu = mycpu; | |
585 | ||
586 | usl_trace(l, mycpu, pc, caller); | |
587 | } | |
588 | ||
589 | ||
590 | /* | |
591 | * For very special cases, set traced_lock to point to a | |
592 | * specific lock of interest. The result is a series of | |
593 | * XPRs showing lock operations on that lock. The lock_seq | |
594 | * value is used to show the order of those operations. | |
595 | */ | |
596 | usimple_lock_t traced_lock; | |
597 | unsigned int lock_seq; | |
598 | ||
599 | void | |
600 | usl_trace( | |
601 | usimple_lock_t l, | |
602 | int mycpu, | |
603 | pc_t pc, | |
604 | const char * op_name) | |
605 | { | |
606 | if (traced_lock == l) { | |
607 | XPR(XPR_SLOCK, | |
608 | "seq %d, cpu %d, %s @ %x\n", | |
609 | (integer_t) lock_seq, (integer_t) mycpu, | |
610 | (integer_t) op_name, (integer_t) pc, 0); | |
611 | lock_seq++; | |
612 | } | |
613 | } | |
614 | ||
615 | ||
616 | #endif /* USLOCK_DEBUG */ | |
617 | ||
618 | /* | |
619 | * Routine: lock_alloc | |
620 | * Function: | |
621 | * Allocate a lock for external users who cannot | |
622 | * hard-code the structure definition into their | |
623 | * objects. | |
624 | * For now just use kalloc, but a zone is probably | |
625 | * warranted. | |
626 | */ | |
627 | lock_t * | |
628 | lock_alloc( | |
629 | boolean_t can_sleep, | |
630 | unsigned short tag, | |
631 | unsigned short tag1) | |
632 | { | |
633 | lock_t *l; | |
634 | ||
635 | if ((l = (lock_t *)kalloc(sizeof(lock_t))) != 0) | |
636 | lock_init(l, can_sleep, tag, tag1); | |
637 | return(l); | |
638 | } | |
639 | ||
640 | /* | |
641 | * Routine: lock_free | |
642 | * Function: | |
643 | * Free a lock allocated for external users. | |
644 | * For now just use kfree, but a zone is probably | |
645 | * warranted. | |
646 | */ | |
647 | void | |
648 | lock_free( | |
649 | lock_t *l) | |
650 | { | |
651 | kfree(l, sizeof(lock_t)); | |
652 | } | |
653 | ||
654 | ||
655 | /* | |
656 | * Routine: lock_init | |
657 | * Function: | |
658 | * Initialize a lock; required before use. | |
659 | * Note that clients declare the "struct lock" | |
660 | * variables and then initialize them, rather | |
661 | * than getting a new one from this module. | |
662 | */ | |
663 | void | |
664 | lock_init( | |
665 | lock_t *l, | |
666 | boolean_t can_sleep, | |
667 | __unused unsigned short tag, | |
668 | unsigned short tag1) | |
669 | { | |
670 | (void) memset((void *) l, 0, sizeof(lock_t)); | |
671 | ||
672 | simple_lock_init(&l->interlock, tag1); | |
673 | l->want_write = FALSE; | |
674 | l->want_upgrade = FALSE; | |
675 | l->read_count = 0; | |
676 | l->can_sleep = can_sleep; | |
677 | } | |
678 | ||
679 | ||
680 | /* | |
681 | * Sleep locks. These use the same data structure and algorithm | |
682 | * as the spin locks, but the process sleeps while it is waiting | |
683 | * for the lock. These work on uniprocessor systems. | |
684 | */ | |
685 | ||
686 | #define DECREMENTER_TIMEOUT 1000000 | |
687 | ||
688 | void | |
689 | lock_write( | |
690 | register lock_t * l) | |
691 | { | |
692 | register int i; | |
693 | boolean_t lock_miss = FALSE; | |
694 | #if MACH_LDEBUG | |
695 | int decrementer; | |
696 | #endif /* MACH_LDEBUG */ | |
697 | ||
698 | simple_lock(&l->interlock); | |
699 | ||
700 | #if MACH_LDEBUG | |
701 | decrementer = DECREMENTER_TIMEOUT; | |
702 | #endif /* MACH_LDEBUG */ | |
703 | ||
704 | /* | |
705 | * Try to acquire the want_write bit. | |
706 | */ | |
707 | while (l->want_write) { | |
708 | if (!lock_miss) { | |
709 | lock_miss = TRUE; | |
710 | } | |
711 | ||
712 | i = lock_wait_time[l->can_sleep ? 1 : 0]; | |
713 | if (i != 0) { | |
714 | simple_unlock(&l->interlock); | |
715 | #if MACH_LDEBUG | |
716 | if (!--decrementer) | |
717 | Debugger("timeout - want_write"); | |
718 | #endif /* MACH_LDEBUG */ | |
719 | while (--i != 0 && l->want_write) | |
720 | continue; | |
721 | simple_lock(&l->interlock); | |
722 | } | |
723 | ||
724 | if (l->can_sleep && l->want_write) { | |
725 | l->waiting = TRUE; | |
726 | thread_sleep_simple_lock((event_t) l, | |
727 | simple_lock_addr(l->interlock), | |
728 | THREAD_UNINT); | |
729 | /* interlock relocked */ | |
730 | } | |
731 | } | |
732 | l->want_write = TRUE; | |
733 | ||
734 | /* Wait for readers (and upgrades) to finish */ | |
735 | ||
736 | #if MACH_LDEBUG | |
737 | decrementer = DECREMENTER_TIMEOUT; | |
738 | #endif /* MACH_LDEBUG */ | |
739 | while ((l->read_count != 0) || l->want_upgrade) { | |
740 | if (!lock_miss) { | |
741 | lock_miss = TRUE; | |
742 | } | |
743 | ||
744 | i = lock_wait_time[l->can_sleep ? 1 : 0]; | |
745 | if (i != 0) { | |
746 | simple_unlock(&l->interlock); | |
747 | #if MACH_LDEBUG | |
748 | if (!--decrementer) | |
749 | Debugger("timeout - wait for readers"); | |
750 | #endif /* MACH_LDEBUG */ | |
751 | while (--i != 0 && (l->read_count != 0 || | |
752 | l->want_upgrade)) | |
753 | continue; | |
754 | simple_lock(&l->interlock); | |
755 | } | |
756 | ||
757 | if (l->can_sleep && (l->read_count != 0 || l->want_upgrade)) { | |
758 | l->waiting = TRUE; | |
759 | thread_sleep_simple_lock((event_t) l, | |
760 | simple_lock_addr(l->interlock), | |
761 | THREAD_UNINT); | |
762 | /* interlock relocked */ | |
763 | } | |
764 | } | |
765 | ||
766 | simple_unlock(&l->interlock); | |
767 | } | |
768 | ||
769 | void | |
770 | lock_done( | |
771 | register lock_t * l) | |
772 | { | |
773 | boolean_t do_wakeup = FALSE; | |
774 | ||
775 | ||
776 | simple_lock(&l->interlock); | |
777 | ||
778 | if (l->read_count != 0) { | |
779 | l->read_count--; | |
780 | } | |
781 | else | |
782 | if (l->want_upgrade) { | |
783 | l->want_upgrade = FALSE; | |
784 | } | |
785 | else { | |
786 | l->want_write = FALSE; | |
787 | } | |
788 | ||
789 | /* | |
790 | * There is no reason to wakeup a waiting thread | |
791 | * if the read-count is non-zero. Consider: | |
792 | * we must be dropping a read lock | |
793 | * threads are waiting only if one wants a write lock | |
794 | * if there are still readers, they can't proceed | |
795 | */ | |
796 | ||
797 | if (l->waiting && (l->read_count == 0)) { | |
798 | l->waiting = FALSE; | |
799 | do_wakeup = TRUE; | |
800 | } | |
801 | ||
802 | simple_unlock(&l->interlock); | |
803 | ||
804 | if (do_wakeup) | |
805 | thread_wakeup((event_t) l); | |
806 | } | |
807 | ||
808 | void | |
809 | lock_read( | |
810 | register lock_t * l) | |
811 | { | |
812 | register int i; | |
813 | #if MACH_LDEBUG | |
814 | int decrementer; | |
815 | #endif /* MACH_LDEBUG */ | |
816 | ||
817 | simple_lock(&l->interlock); | |
818 | ||
819 | #if MACH_LDEBUG | |
820 | decrementer = DECREMENTER_TIMEOUT; | |
821 | #endif /* MACH_LDEBUG */ | |
822 | while (l->want_write || l->want_upgrade) { | |
823 | i = lock_wait_time[l->can_sleep ? 1 : 0]; | |
824 | ||
825 | if (i != 0) { | |
826 | simple_unlock(&l->interlock); | |
827 | #if MACH_LDEBUG | |
828 | if (!--decrementer) | |
829 | Debugger("timeout - wait no writers"); | |
830 | #endif /* MACH_LDEBUG */ | |
831 | while (--i != 0 && (l->want_write || l->want_upgrade)) | |
832 | continue; | |
833 | simple_lock(&l->interlock); | |
834 | } | |
835 | ||
836 | if (l->can_sleep && (l->want_write || l->want_upgrade)) { | |
837 | l->waiting = TRUE; | |
838 | thread_sleep_simple_lock((event_t) l, | |
839 | simple_lock_addr(l->interlock), | |
840 | THREAD_UNINT); | |
841 | /* interlock relocked */ | |
842 | } | |
843 | } | |
844 | ||
845 | l->read_count++; | |
846 | ||
847 | simple_unlock(&l->interlock); | |
848 | } | |
849 | ||
850 | ||
851 | /* | |
852 | * Routine: lock_read_to_write | |
853 | * Function: | |
854 | * Improves a read-only lock to one with | |
855 | * write permission. If another reader has | |
856 | * already requested an upgrade to a write lock, | |
857 | * no lock is held upon return. | |
858 | * | |
859 | * Returns TRUE if the upgrade *failed*. | |
860 | */ | |
861 | ||
862 | boolean_t | |
863 | lock_read_to_write( | |
864 | register lock_t * l) | |
865 | { | |
866 | register int i; | |
867 | boolean_t do_wakeup = FALSE; | |
868 | #if MACH_LDEBUG | |
869 | int decrementer; | |
870 | #endif /* MACH_LDEBUG */ | |
871 | ||
872 | simple_lock(&l->interlock); | |
873 | ||
874 | l->read_count--; | |
875 | ||
876 | if (l->want_upgrade) { | |
877 | /* | |
878 | * Someone else has requested upgrade. | |
879 | * Since we've released a read lock, wake | |
880 | * him up. | |
881 | */ | |
882 | if (l->waiting && (l->read_count == 0)) { | |
883 | l->waiting = FALSE; | |
884 | do_wakeup = TRUE; | |
885 | } | |
886 | ||
887 | simple_unlock(&l->interlock); | |
888 | ||
889 | if (do_wakeup) | |
890 | thread_wakeup((event_t) l); | |
891 | return (TRUE); | |
892 | } | |
893 | ||
894 | l->want_upgrade = TRUE; | |
895 | ||
896 | #if MACH_LDEBUG | |
897 | decrementer = DECREMENTER_TIMEOUT; | |
898 | #endif /* MACH_LDEBUG */ | |
899 | while (l->read_count != 0) { | |
900 | i = lock_wait_time[l->can_sleep ? 1 : 0]; | |
901 | ||
902 | if (i != 0) { | |
903 | simple_unlock(&l->interlock); | |
904 | #if MACH_LDEBUG | |
905 | if (!--decrementer) | |
906 | Debugger("timeout - read_count"); | |
907 | #endif /* MACH_LDEBUG */ | |
908 | while (--i != 0 && l->read_count != 0) | |
909 | continue; | |
910 | simple_lock(&l->interlock); | |
911 | } | |
912 | ||
913 | if (l->can_sleep && l->read_count != 0) { | |
914 | l->waiting = TRUE; | |
915 | thread_sleep_simple_lock((event_t) l, | |
916 | simple_lock_addr(l->interlock), | |
917 | THREAD_UNINT); | |
918 | /* interlock relocked */ | |
919 | } | |
920 | } | |
921 | ||
922 | simple_unlock(&l->interlock); | |
923 | ||
924 | return (FALSE); | |
925 | } | |
926 | ||
927 | void | |
928 | lock_write_to_read( | |
929 | register lock_t * l) | |
930 | { | |
931 | boolean_t do_wakeup = FALSE; | |
932 | ||
933 | simple_lock(&l->interlock); | |
934 | ||
935 | l->read_count++; | |
936 | if (l->want_upgrade) | |
937 | l->want_upgrade = FALSE; | |
938 | else | |
939 | l->want_write = FALSE; | |
940 | ||
941 | if (l->waiting) { | |
942 | l->waiting = FALSE; | |
943 | do_wakeup = TRUE; | |
944 | } | |
945 | ||
946 | simple_unlock(&l->interlock); | |
947 | ||
948 | if (do_wakeup) | |
949 | thread_wakeup((event_t) l); | |
950 | } | |
951 | ||
952 | ||
953 | #if 0 /* Unused */ | |
954 | /* | |
955 | * Routine: lock_try_write | |
956 | * Function: | |
957 | * Tries to get a write lock. | |
958 | * | |
959 | * Returns FALSE if the lock is not held on return. | |
960 | */ | |
961 | ||
962 | boolean_t | |
963 | lock_try_write( | |
964 | register lock_t * l) | |
965 | { | |
966 | pc_t pc; | |
967 | ||
968 | simple_lock(&l->interlock); | |
969 | ||
970 | if (l->want_write || l->want_upgrade || l->read_count) { | |
971 | /* | |
972 | * Can't get lock. | |
973 | */ | |
974 | simple_unlock(&l->interlock); | |
975 | return(FALSE); | |
976 | } | |
977 | ||
978 | /* | |
979 | * Have lock. | |
980 | */ | |
981 | ||
982 | l->want_write = TRUE; | |
983 | ||
984 | simple_unlock(&l->interlock); | |
985 | ||
986 | return(TRUE); | |
987 | } | |
988 | ||
989 | /* | |
990 | * Routine: lock_try_read | |
991 | * Function: | |
992 | * Tries to get a read lock. | |
993 | * | |
994 | * Returns FALSE if the lock is not held on return. | |
995 | */ | |
996 | ||
997 | boolean_t | |
998 | lock_try_read( | |
999 | register lock_t * l) | |
1000 | { | |
1001 | pc_t pc; | |
1002 | ||
1003 | simple_lock(&l->interlock); | |
1004 | ||
1005 | if (l->want_write || l->want_upgrade) { | |
1006 | simple_unlock(&l->interlock); | |
1007 | return(FALSE); | |
1008 | } | |
1009 | ||
1010 | l->read_count++; | |
1011 | ||
1012 | simple_unlock(&l->interlock); | |
1013 | ||
1014 | return(TRUE); | |
1015 | } | |
1016 | #endif /* Unused */ | |
1017 | ||
1018 | ||
1019 | /* | |
1020 | * Routine: lck_rw_alloc_init | |
1021 | */ | |
1022 | lck_rw_t * | |
1023 | lck_rw_alloc_init( | |
1024 | lck_grp_t *grp, | |
1025 | lck_attr_t *attr) { | |
1026 | lck_rw_t *lck; | |
1027 | ||
1028 | if ((lck = (lck_rw_t *)kalloc(sizeof(lck_rw_t))) != 0) | |
1029 | lck_rw_init(lck, grp, attr); | |
1030 | ||
1031 | return(lck); | |
1032 | } | |
1033 | ||
1034 | /* | |
1035 | * Routine: lck_rw_free | |
1036 | */ | |
1037 | void | |
1038 | lck_rw_free( | |
1039 | lck_rw_t *lck, | |
1040 | lck_grp_t *grp) { | |
1041 | lck_rw_destroy(lck, grp); | |
1042 | kfree(lck, sizeof(lck_rw_t)); | |
1043 | } | |
1044 | ||
1045 | /* | |
1046 | * Routine: lck_rw_init | |
1047 | */ | |
1048 | void | |
1049 | lck_rw_init( | |
1050 | lck_rw_t *lck, | |
1051 | lck_grp_t *grp, | |
1052 | __unused lck_attr_t *attr) { | |
1053 | ||
1054 | hw_lock_init(&lck->interlock); | |
1055 | lck->want_write = FALSE; | |
1056 | lck->want_upgrade = FALSE; | |
1057 | lck->read_count = 0; | |
1058 | lck->can_sleep = TRUE; | |
1059 | lck->lck_rw_tag = 0; | |
1060 | ||
1061 | lck_grp_reference(grp); | |
1062 | lck_grp_lckcnt_incr(grp, LCK_TYPE_RW); | |
1063 | } | |
1064 | ||
1065 | /* | |
1066 | * Routine: lck_rw_destroy | |
1067 | */ | |
1068 | void | |
1069 | lck_rw_destroy( | |
1070 | lck_rw_t *lck, | |
1071 | lck_grp_t *grp) { | |
1072 | if (lck->lck_rw_tag == LCK_RW_TAG_DESTROYED) | |
1073 | return; | |
1074 | lck->lck_rw_tag = LCK_RW_TAG_DESTROYED; | |
1075 | lck_grp_lckcnt_decr(grp, LCK_TYPE_RW); | |
1076 | lck_grp_deallocate(grp); | |
1077 | return; | |
1078 | } | |
1079 | ||
1080 | /* | |
1081 | * Sleep locks. These use the same data structure and algorithm | |
1082 | * as the spin locks, but the process sleeps while it is waiting | |
1083 | * for the lock. These work on uniprocessor systems. | |
1084 | */ | |
1085 | ||
1086 | #define DECREMENTER_TIMEOUT 1000000 | |
1087 | ||
1088 | ||
1089 | /* | |
1090 | * We need to disable interrupts while holding the mutex interlock | |
1091 | * to prevent an IPI intervening. | |
1092 | * Hence, local helper functions lck_interlock_lock()/lck_interlock_unlock(). | |
1093 | */ | |
1094 | static boolean_t | |
1095 | lck_interlock_lock(lck_rw_t *lck) | |
1096 | { | |
1097 | boolean_t istate; | |
1098 | ||
1099 | istate = ml_set_interrupts_enabled(FALSE); | |
1100 | hw_lock_lock(&lck->interlock); | |
1101 | ||
1102 | return istate; | |
1103 | } | |
1104 | ||
1105 | static void | |
1106 | lck_interlock_unlock(lck_rw_t *lck, boolean_t istate) | |
1107 | { | |
1108 | hw_lock_unlock(&lck->interlock); | |
1109 | ml_set_interrupts_enabled(istate); | |
1110 | } | |
1111 | ||
1112 | /* | |
1113 | * Routine: lck_rw_lock_exclusive | |
1114 | */ | |
1115 | void | |
1116 | lck_rw_lock_exclusive( | |
1117 | lck_rw_t *lck) | |
1118 | { | |
1119 | int i; | |
1120 | boolean_t lock_miss = FALSE; | |
1121 | wait_result_t res; | |
1122 | #if MACH_LDEBUG | |
1123 | int decrementer; | |
1124 | #endif /* MACH_LDEBUG */ | |
1125 | boolean_t istate; | |
1126 | ||
1127 | istate = lck_interlock_lock(lck); | |
1128 | ||
1129 | #if MACH_LDEBUG | |
1130 | decrementer = DECREMENTER_TIMEOUT; | |
1131 | #endif /* MACH_LDEBUG */ | |
1132 | ||
1133 | /* | |
1134 | * Try to acquire the want_write bit. | |
1135 | */ | |
1136 | while (lck->want_write) { | |
1137 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_RW_LCK_EXCLUSIVE_CODE) | DBG_FUNC_START, (int)lck, 0, 0, 0, 0); | |
1138 | ||
1139 | if (!lock_miss) { | |
1140 | lock_miss = TRUE; | |
1141 | } | |
1142 | ||
1143 | i = lock_wait_time[lck->can_sleep ? 1 : 0]; | |
1144 | if (i != 0) { | |
1145 | lck_interlock_unlock(lck, istate); | |
1146 | #if MACH_LDEBUG | |
1147 | if (!--decrementer) | |
1148 | Debugger("timeout - want_write"); | |
1149 | #endif /* MACH_LDEBUG */ | |
1150 | while (--i != 0 && lck->want_write) | |
1151 | continue; | |
1152 | istate = lck_interlock_lock(lck); | |
1153 | } | |
1154 | ||
1155 | if (lck->can_sleep && lck->want_write) { | |
1156 | lck->waiting = TRUE; | |
1157 | res = assert_wait((event_t) lck, THREAD_UNINT); | |
1158 | if (res == THREAD_WAITING) { | |
1159 | lck_interlock_unlock(lck, istate); | |
1160 | res = thread_block(THREAD_CONTINUE_NULL); | |
1161 | istate = lck_interlock_lock(lck); | |
1162 | } | |
1163 | } | |
1164 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_RW_LCK_EXCLUSIVE_CODE) | DBG_FUNC_END, (int)lck, res, 0, 0, 0); | |
1165 | } | |
1166 | lck->want_write = TRUE; | |
1167 | ||
1168 | /* Wait for readers (and upgrades) to finish */ | |
1169 | ||
1170 | #if MACH_LDEBUG | |
1171 | decrementer = DECREMENTER_TIMEOUT; | |
1172 | #endif /* MACH_LDEBUG */ | |
1173 | while ((lck->read_count != 0) || lck->want_upgrade) { | |
1174 | if (!lock_miss) { | |
1175 | lock_miss = TRUE; | |
1176 | } | |
1177 | ||
1178 | i = lock_wait_time[lck->can_sleep ? 1 : 0]; | |
1179 | ||
1180 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_RW_LCK_EXCLUSIVE1_CODE) | DBG_FUNC_START, | |
1181 | (int)lck, lck->read_count, lck->want_upgrade, i, 0); | |
1182 | ||
1183 | if (i != 0) { | |
1184 | lck_interlock_unlock(lck, istate); | |
1185 | #if MACH_LDEBUG | |
1186 | if (!--decrementer) | |
1187 | Debugger("timeout - wait for readers"); | |
1188 | #endif /* MACH_LDEBUG */ | |
1189 | while (--i != 0 && (lck->read_count != 0 || | |
1190 | lck->want_upgrade)) | |
1191 | continue; | |
1192 | istate = lck_interlock_lock(lck); | |
1193 | } | |
1194 | ||
1195 | if (lck->can_sleep && (lck->read_count != 0 || lck->want_upgrade)) { | |
1196 | lck->waiting = TRUE; | |
1197 | res = assert_wait((event_t) lck, THREAD_UNINT); | |
1198 | if (res == THREAD_WAITING) { | |
1199 | lck_interlock_unlock(lck, istate); | |
1200 | res = thread_block(THREAD_CONTINUE_NULL); | |
1201 | istate = lck_interlock_lock(lck); | |
1202 | } | |
1203 | } | |
1204 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_RW_LCK_EXCLUSIVE1_CODE) | DBG_FUNC_END, | |
1205 | (int)lck, lck->read_count, lck->want_upgrade, res, 0); | |
1206 | } | |
1207 | ||
1208 | lck_interlock_unlock(lck, istate); | |
1209 | } | |
1210 | ||
1211 | ||
1212 | /* | |
1213 | * Routine: lck_rw_done | |
1214 | */ | |
1215 | lck_rw_type_t | |
1216 | lck_rw_done( | |
1217 | lck_rw_t *lck) | |
1218 | { | |
1219 | boolean_t do_wakeup = FALSE; | |
1220 | lck_rw_type_t lck_rw_type; | |
1221 | boolean_t istate; | |
1222 | ||
1223 | ||
1224 | istate = lck_interlock_lock(lck); | |
1225 | ||
1226 | if (lck->read_count != 0) { | |
1227 | lck_rw_type = LCK_RW_TYPE_SHARED; | |
1228 | lck->read_count--; | |
1229 | } | |
1230 | else { | |
1231 | lck_rw_type = LCK_RW_TYPE_EXCLUSIVE; | |
1232 | if (lck->want_upgrade) | |
1233 | lck->want_upgrade = FALSE; | |
1234 | else | |
1235 | lck->want_write = FALSE; | |
1236 | } | |
1237 | ||
1238 | /* | |
1239 | * There is no reason to wakeup a waiting thread | |
1240 | * if the read-count is non-zero. Consider: | |
1241 | * we must be dropping a read lock | |
1242 | * threads are waiting only if one wants a write lock | |
1243 | * if there are still readers, they can't proceed | |
1244 | */ | |
1245 | ||
1246 | if (lck->waiting && (lck->read_count == 0)) { | |
1247 | lck->waiting = FALSE; | |
1248 | do_wakeup = TRUE; | |
1249 | } | |
1250 | ||
1251 | lck_interlock_unlock(lck, istate); | |
1252 | ||
1253 | if (do_wakeup) | |
1254 | thread_wakeup((event_t) lck); | |
1255 | return(lck_rw_type); | |
1256 | } | |
1257 | ||
1258 | ||
1259 | ||
1260 | ||
1261 | /* | |
1262 | * Routine: lck_rw_unlock | |
1263 | */ | |
1264 | void | |
1265 | lck_rw_unlock( | |
1266 | lck_rw_t *lck, | |
1267 | lck_rw_type_t lck_rw_type) | |
1268 | { | |
1269 | if (lck_rw_type == LCK_RW_TYPE_SHARED) | |
1270 | lck_rw_unlock_shared(lck); | |
1271 | else if (lck_rw_type == LCK_RW_TYPE_EXCLUSIVE) | |
1272 | lck_rw_unlock_exclusive(lck); | |
1273 | else | |
1274 | panic("lck_rw_unlock(): Invalid RW lock type: %d\n", lck_rw_type); | |
1275 | } | |
1276 | ||
1277 | ||
1278 | /* | |
1279 | * Routine: lck_rw_unlock_shared | |
1280 | */ | |
1281 | void | |
1282 | lck_rw_unlock_shared( | |
1283 | lck_rw_t *lck) | |
1284 | { | |
1285 | lck_rw_type_t ret; | |
1286 | ||
1287 | ret = lck_rw_done(lck); | |
1288 | ||
1289 | if (ret != LCK_RW_TYPE_SHARED) | |
1290 | panic("lck_rw_unlock(): lock held in mode: %d\n", ret); | |
1291 | } | |
1292 | ||
1293 | ||
1294 | /* | |
1295 | * Routine: lck_rw_unlock_exclusive | |
1296 | */ | |
1297 | void | |
1298 | lck_rw_unlock_exclusive( | |
1299 | lck_rw_t *lck) | |
1300 | { | |
1301 | lck_rw_type_t ret; | |
1302 | ||
1303 | ret = lck_rw_done(lck); | |
1304 | ||
1305 | if (ret != LCK_RW_TYPE_EXCLUSIVE) | |
1306 | panic("lck_rw_unlock_exclusive(): lock held in mode: %d\n", ret); | |
1307 | } | |
1308 | ||
1309 | ||
1310 | /* | |
1311 | * Routine: lck_rw_lock | |
1312 | */ | |
1313 | void | |
1314 | lck_rw_lock( | |
1315 | lck_rw_t *lck, | |
1316 | lck_rw_type_t lck_rw_type) | |
1317 | { | |
1318 | if (lck_rw_type == LCK_RW_TYPE_SHARED) | |
1319 | lck_rw_lock_shared(lck); | |
1320 | else if (lck_rw_type == LCK_RW_TYPE_EXCLUSIVE) | |
1321 | lck_rw_lock_exclusive(lck); | |
1322 | else | |
1323 | panic("lck_rw_lock(): Invalid RW lock type: %x\n", lck_rw_type); | |
1324 | } | |
1325 | ||
1326 | ||
1327 | /* | |
1328 | * Routine: lck_rw_lock_shared | |
1329 | */ | |
1330 | void | |
1331 | lck_rw_lock_shared( | |
1332 | lck_rw_t *lck) | |
1333 | { | |
1334 | int i; | |
1335 | wait_result_t res; | |
1336 | #if MACH_LDEBUG | |
1337 | int decrementer; | |
1338 | #endif /* MACH_LDEBUG */ | |
1339 | boolean_t istate; | |
1340 | ||
1341 | istate = lck_interlock_lock(lck); | |
1342 | ||
1343 | #if MACH_LDEBUG | |
1344 | decrementer = DECREMENTER_TIMEOUT; | |
1345 | #endif /* MACH_LDEBUG */ | |
1346 | while (lck->want_write || lck->want_upgrade) { | |
1347 | i = lock_wait_time[lck->can_sleep ? 1 : 0]; | |
1348 | ||
1349 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_RW_LCK_SHARED_CODE) | DBG_FUNC_START, | |
1350 | (int)lck, lck->want_write, lck->want_upgrade, i, 0); | |
1351 | ||
1352 | if (i != 0) { | |
1353 | lck_interlock_unlock(lck, istate); | |
1354 | #if MACH_LDEBUG | |
1355 | if (!--decrementer) | |
1356 | Debugger("timeout - wait no writers"); | |
1357 | #endif /* MACH_LDEBUG */ | |
1358 | while (--i != 0 && (lck->want_write || lck->want_upgrade)) | |
1359 | continue; | |
1360 | istate = lck_interlock_lock(lck); | |
1361 | } | |
1362 | ||
1363 | if (lck->can_sleep && (lck->want_write || lck->want_upgrade)) { | |
1364 | lck->waiting = TRUE; | |
1365 | res = assert_wait((event_t) lck, THREAD_UNINT); | |
1366 | if (res == THREAD_WAITING) { | |
1367 | lck_interlock_unlock(lck, istate); | |
1368 | res = thread_block(THREAD_CONTINUE_NULL); | |
1369 | istate = lck_interlock_lock(lck); | |
1370 | } | |
1371 | } | |
1372 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_RW_LCK_SHARED_CODE) | DBG_FUNC_END, | |
1373 | (int)lck, lck->want_write, lck->want_upgrade, res, 0); | |
1374 | } | |
1375 | ||
1376 | lck->read_count++; | |
1377 | ||
1378 | lck_interlock_unlock(lck, istate); | |
1379 | } | |
1380 | ||
1381 | ||
1382 | /* | |
1383 | * Routine: lck_rw_lock_shared_to_exclusive | |
1384 | * Function: | |
1385 | * Improves a read-only lock to one with | |
1386 | * write permission. If another reader has | |
1387 | * already requested an upgrade to a write lock, | |
1388 | * no lock is held upon return. | |
1389 | * | |
1390 | * Returns TRUE if the upgrade *failed*. | |
1391 | */ | |
1392 | ||
1393 | boolean_t | |
1394 | lck_rw_lock_shared_to_exclusive( | |
1395 | lck_rw_t *lck) | |
1396 | { | |
1397 | int i; | |
1398 | boolean_t do_wakeup = FALSE; | |
1399 | wait_result_t res; | |
1400 | #if MACH_LDEBUG | |
1401 | int decrementer; | |
1402 | #endif /* MACH_LDEBUG */ | |
1403 | boolean_t istate; | |
1404 | ||
1405 | istate = lck_interlock_lock(lck); | |
1406 | ||
1407 | lck->read_count--; | |
1408 | ||
1409 | if (lck->want_upgrade) { | |
1410 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_RW_LCK_SH_TO_EX_CODE) | DBG_FUNC_START, | |
1411 | (int)lck, lck->read_count, lck->want_upgrade, 0, 0); | |
1412 | ||
1413 | /* | |
1414 | * Someone else has requested upgrade. | |
1415 | * Since we've released a read lock, wake | |
1416 | * him up. | |
1417 | */ | |
1418 | if (lck->waiting && (lck->read_count == 0)) { | |
1419 | lck->waiting = FALSE; | |
1420 | do_wakeup = TRUE; | |
1421 | } | |
1422 | ||
1423 | lck_interlock_unlock(lck, istate); | |
1424 | ||
1425 | if (do_wakeup) | |
1426 | thread_wakeup((event_t) lck); | |
1427 | ||
1428 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_RW_LCK_SH_TO_EX_CODE) | DBG_FUNC_END, | |
1429 | (int)lck, lck->read_count, lck->want_upgrade, 0, 0); | |
1430 | ||
1431 | return (TRUE); | |
1432 | } | |
1433 | ||
1434 | lck->want_upgrade = TRUE; | |
1435 | ||
1436 | #if MACH_LDEBUG | |
1437 | decrementer = DECREMENTER_TIMEOUT; | |
1438 | #endif /* MACH_LDEBUG */ | |
1439 | while (lck->read_count != 0) { | |
1440 | i = lock_wait_time[lck->can_sleep ? 1 : 0]; | |
1441 | ||
1442 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_RW_LCK_SH_TO_EX1_CODE) | DBG_FUNC_START, | |
1443 | (int)lck, lck->read_count, i, 0, 0); | |
1444 | ||
1445 | if (i != 0) { | |
1446 | lck_interlock_unlock(lck, istate); | |
1447 | #if MACH_LDEBUG | |
1448 | if (!--decrementer) | |
1449 | Debugger("timeout - read_count"); | |
1450 | #endif /* MACH_LDEBUG */ | |
1451 | while (--i != 0 && lck->read_count != 0) | |
1452 | continue; | |
1453 | istate = lck_interlock_lock(lck); | |
1454 | } | |
1455 | ||
1456 | if (lck->can_sleep && lck->read_count != 0) { | |
1457 | lck->waiting = TRUE; | |
1458 | res = assert_wait((event_t) lck, THREAD_UNINT); | |
1459 | if (res == THREAD_WAITING) { | |
1460 | lck_interlock_unlock(lck, istate); | |
1461 | res = thread_block(THREAD_CONTINUE_NULL); | |
1462 | istate = lck_interlock_lock(lck); | |
1463 | } | |
1464 | } | |
1465 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_RW_LCK_SH_TO_EX1_CODE) | DBG_FUNC_END, | |
1466 | (int)lck, lck->read_count, 0, 0, 0); | |
1467 | } | |
1468 | ||
1469 | lck_interlock_unlock(lck, istate); | |
1470 | ||
1471 | return (FALSE); | |
1472 | } | |
1473 | ||
1474 | /* | |
1475 | * Routine: lck_rw_lock_exclusive_to_shared | |
1476 | */ | |
1477 | void | |
1478 | lck_rw_lock_exclusive_to_shared( | |
1479 | lck_rw_t *lck) | |
1480 | { | |
1481 | boolean_t do_wakeup = FALSE; | |
1482 | boolean_t istate; | |
1483 | ||
1484 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_RW_LCK_EX_TO_SH_CODE) | DBG_FUNC_START, | |
1485 | (int)lck, lck->want_write, lck->want_upgrade, 0, 0); | |
1486 | ||
1487 | istate = lck_interlock_lock(lck); | |
1488 | ||
1489 | lck->read_count++; | |
1490 | if (lck->want_upgrade) | |
1491 | lck->want_upgrade = FALSE; | |
1492 | else | |
1493 | lck->want_write = FALSE; | |
1494 | ||
1495 | if (lck->waiting) { | |
1496 | lck->waiting = FALSE; | |
1497 | do_wakeup = TRUE; | |
1498 | } | |
1499 | ||
1500 | lck_interlock_unlock(lck, istate); | |
1501 | ||
1502 | if (do_wakeup) | |
1503 | thread_wakeup((event_t) lck); | |
1504 | ||
1505 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_RW_LCK_EX_TO_SH_CODE) | DBG_FUNC_END, | |
1506 | (int)lck, lck->want_write, lck->want_upgrade, lck->read_count, 0); | |
1507 | ||
1508 | } | |
1509 | ||
1510 | ||
1511 | /* | |
1512 | * Routine: lck_rw_try_lock | |
1513 | */ | |
1514 | boolean_t | |
1515 | lck_rw_try_lock( | |
1516 | lck_rw_t *lck, | |
1517 | lck_rw_type_t lck_rw_type) | |
1518 | { | |
1519 | if (lck_rw_type == LCK_RW_TYPE_SHARED) | |
1520 | return(lck_rw_try_lock_shared(lck)); | |
1521 | else if (lck_rw_type == LCK_RW_TYPE_EXCLUSIVE) | |
1522 | return(lck_rw_try_lock_exclusive(lck)); | |
1523 | else | |
1524 | panic("lck_rw_try_lock(): Invalid rw lock type: %x\n", lck_rw_type); | |
1525 | return(FALSE); | |
1526 | } | |
1527 | ||
1528 | /* | |
1529 | * Routine: lck_rw_try_lock_exclusive | |
1530 | * Function: | |
1531 | * Tries to get a write lock. | |
1532 | * | |
1533 | * Returns FALSE if the lock is not held on return. | |
1534 | */ | |
1535 | ||
1536 | boolean_t | |
1537 | lck_rw_try_lock_exclusive( | |
1538 | lck_rw_t *lck) | |
1539 | { | |
1540 | boolean_t istate; | |
1541 | ||
1542 | istate = lck_interlock_lock(lck); | |
1543 | ||
1544 | if (lck->want_write || lck->want_upgrade || lck->read_count) { | |
1545 | /* | |
1546 | * Can't get lock. | |
1547 | */ | |
1548 | lck_interlock_unlock(lck, istate); | |
1549 | return(FALSE); | |
1550 | } | |
1551 | ||
1552 | /* | |
1553 | * Have lock. | |
1554 | */ | |
1555 | ||
1556 | lck->want_write = TRUE; | |
1557 | ||
1558 | lck_interlock_unlock(lck, istate); | |
1559 | ||
1560 | return(TRUE); | |
1561 | } | |
1562 | ||
1563 | /* | |
1564 | * Routine: lck_rw_try_lock_shared | |
1565 | * Function: | |
1566 | * Tries to get a read lock. | |
1567 | * | |
1568 | * Returns FALSE if the lock is not held on return. | |
1569 | */ | |
1570 | ||
1571 | boolean_t | |
1572 | lck_rw_try_lock_shared( | |
1573 | lck_rw_t *lck) | |
1574 | { | |
1575 | boolean_t istate; | |
1576 | ||
1577 | istate = lck_interlock_lock(lck); | |
1578 | ||
1579 | if (lck->want_write || lck->want_upgrade) { | |
1580 | lck_interlock_unlock(lck, istate); | |
1581 | return(FALSE); | |
1582 | } | |
1583 | ||
1584 | lck->read_count++; | |
1585 | ||
1586 | lck_interlock_unlock(lck, istate); | |
1587 | ||
1588 | return(TRUE); | |
1589 | } | |
1590 | ||
1591 | /* | |
1592 | * Routine: lck_mtx_alloc_init | |
1593 | */ | |
1594 | lck_mtx_t * | |
1595 | lck_mtx_alloc_init( | |
1596 | lck_grp_t *grp, | |
1597 | lck_attr_t *attr) | |
1598 | { | |
1599 | lck_mtx_t *lck; | |
1600 | ||
1601 | if ((lck = (lck_mtx_t *)kalloc(sizeof(lck_mtx_t))) != 0) | |
1602 | lck_mtx_init(lck, grp, attr); | |
1603 | ||
1604 | return(lck); | |
1605 | } | |
1606 | ||
1607 | /* | |
1608 | * Routine: lck_mtx_free | |
1609 | */ | |
1610 | void | |
1611 | lck_mtx_free( | |
1612 | lck_mtx_t *lck, | |
1613 | lck_grp_t *grp) | |
1614 | { | |
1615 | lck_mtx_destroy(lck, grp); | |
1616 | kfree(lck, sizeof(lck_mtx_t)); | |
1617 | } | |
1618 | ||
1619 | /* | |
1620 | * Routine: lck_mtx_ext_init | |
1621 | */ | |
1622 | static void | |
1623 | lck_mtx_ext_init( | |
1624 | lck_mtx_ext_t *lck, | |
1625 | lck_grp_t *grp, | |
1626 | lck_attr_t *attr) | |
1627 | { | |
1628 | lck->lck_mtx.lck_mtx_ilk = 0; | |
1629 | lck->lck_mtx.lck_mtx_locked = 0; | |
1630 | lck->lck_mtx.lck_mtx_waiters = 0; | |
1631 | lck->lck_mtx.lck_mtx_pri = 0; | |
1632 | lck->lck_mtx_attr = 0; | |
1633 | ||
1634 | if ((attr->lck_attr_val) & LCK_ATTR_DEBUG) { | |
1635 | lck->lck_mtx_deb.pc = 0; | |
1636 | lck->lck_mtx_deb.thread = 0; | |
1637 | lck->lck_mtx_deb.type = MUTEX_TAG; | |
1638 | lck->lck_mtx_attr |= LCK_MTX_ATTR_DEBUG; | |
1639 | } | |
1640 | ||
1641 | lck->lck_mtx_grp = grp; | |
1642 | } | |
1643 | ||
1644 | /* | |
1645 | * Routine: lck_mtx_init | |
1646 | */ | |
1647 | void | |
1648 | lck_mtx_init( | |
1649 | lck_mtx_t *lck, | |
1650 | lck_grp_t *grp, | |
1651 | lck_attr_t *attr) | |
1652 | { | |
1653 | lck_mtx_ext_t *lck_ext; | |
1654 | ||
1655 | if ((attr != LCK_ATTR_NULL) && ((attr->lck_attr_val) & LCK_ATTR_DEBUG)) { | |
1656 | if ((lck_ext = (lck_mtx_ext_t *)kalloc(sizeof(lck_mtx_ext_t))) != 0) { | |
1657 | lck_mtx_ext_init(lck_ext, grp, attr); | |
1658 | lck->lck_mtx_tag = LCK_MTX_TAG_INDIRECT; | |
1659 | lck->lck_mtx_ptr = lck_ext; | |
1660 | } | |
1661 | } else { | |
1662 | lck->lck_mtx_ilk = 0; | |
1663 | lck->lck_mtx_locked = 0; | |
1664 | lck->lck_mtx_waiters = 0; | |
1665 | lck->lck_mtx_pri = 0; | |
1666 | } | |
1667 | lck_grp_reference(grp); | |
1668 | lck_grp_lckcnt_incr(grp, LCK_TYPE_MTX); | |
1669 | } | |
1670 | ||
1671 | /* | |
1672 | * Routine: lck_mtx_destroy | |
1673 | */ | |
1674 | void | |
1675 | lck_mtx_destroy( | |
1676 | lck_mtx_t *lck, | |
1677 | lck_grp_t *grp) | |
1678 | { | |
1679 | boolean_t lck_is_indirect; | |
1680 | ||
1681 | if (lck->lck_mtx_tag == LCK_MTX_TAG_DESTROYED) | |
1682 | return; | |
1683 | lck_is_indirect = (lck->lck_mtx_tag == LCK_MTX_TAG_INDIRECT); | |
1684 | lck->lck_mtx_tag = LCK_MTX_TAG_DESTROYED; | |
1685 | if (lck_is_indirect) | |
1686 | kfree(lck->lck_mtx_ptr, sizeof(lck_mtx_ext_t)); | |
1687 | lck_grp_lckcnt_decr(grp, LCK_TYPE_MTX); | |
1688 | lck_grp_deallocate(grp); | |
1689 | return; | |
1690 | } | |
1691 | ||
1692 | /* | |
1693 | * Routine: lck_mtx_assert | |
1694 | */ | |
1695 | void | |
1696 | lck_mtx_assert( | |
1697 | __unused lck_mtx_t *lck, | |
1698 | __unused unsigned int type) | |
1699 | { | |
1700 | } | |
1701 | ||
1702 | #if MACH_KDB | |
1703 | ||
1704 | void db_show_one_lock(lock_t *); | |
1705 | ||
1706 | void | |
1707 | db_show_one_lock( | |
1708 | lock_t *lock) | |
1709 | { | |
1710 | db_printf("Read_count = 0x%x, %swant_upgrade, %swant_write, ", | |
1711 | lock->read_count, | |
1712 | lock->want_upgrade ? "" : "!", | |
1713 | lock->want_write ? "" : "!"); | |
1714 | db_printf("%swaiting, %scan_sleep\n", | |
1715 | lock->waiting ? "" : "!", lock->can_sleep ? "" : "!"); | |
1716 | db_printf("Interlock:\n"); | |
1717 | db_show_one_simple_lock((db_expr_t)simple_lock_addr(lock->interlock), | |
1718 | TRUE, (db_expr_t)0, (char *)0); | |
1719 | } | |
1720 | ||
1721 | #endif /* MACH_KDB */ | |
1722 | ||
1723 | /* | |
1724 | * The C portion of the mutex package. These routines are only invoked | |
1725 | * if the optimized assembler routines can't do the work. | |
1726 | */ | |
1727 | ||
1728 | /* | |
1729 | * Routine: lock_alloc | |
1730 | * Function: | |
1731 | * Allocate a mutex for external users who cannot | |
1732 | * hard-code the structure definition into their | |
1733 | * objects. | |
1734 | * For now just use kalloc, but a zone is probably | |
1735 | * warranted. | |
1736 | */ | |
1737 | mutex_t * | |
1738 | mutex_alloc( | |
1739 | unsigned short tag) | |
1740 | { | |
1741 | mutex_t *m; | |
1742 | ||
1743 | if ((m = (mutex_t *)kalloc(sizeof(mutex_t))) != 0) | |
1744 | mutex_init(m, tag); | |
1745 | return(m); | |
1746 | } | |
1747 | ||
1748 | /* | |
1749 | * Routine: mutex_free | |
1750 | * Function: | |
1751 | * Free a mutex allocated for external users. | |
1752 | * For now just use kfree, but a zone is probably | |
1753 | * warranted. | |
1754 | */ | |
1755 | void | |
1756 | mutex_free( | |
1757 | mutex_t *m) | |
1758 | { | |
1759 | kfree(m, sizeof(mutex_t)); | |
1760 | } | |
1761 | ||
1762 | /* | |
1763 | * Routine: _mutex_assert | |
1764 | */ | |
1765 | void | |
1766 | _mutex_assert ( | |
1767 | mutex_t *mutex, | |
1768 | unsigned int what) | |
1769 | { | |
1770 | ||
1771 | thread_t thread = current_thread(); | |
1772 | thread_t holder; | |
1773 | ||
1774 | if (panicstr != NULL) | |
1775 | return; | |
1776 | ||
1777 | holder = (thread_t) mutex->lck_mtx.lck_mtx_locked; | |
1778 | ||
1779 | switch (what) { | |
1780 | case MA_OWNED: | |
1781 | if (thread != holder) | |
1782 | panic("mutex %x not owned\n", mutex); | |
1783 | break; | |
1784 | ||
1785 | case MA_NOTOWNED: | |
1786 | if (thread == holder) | |
1787 | panic("mutex %x owned\n", mutex); | |
1788 | break; | |
1789 | } | |
1790 | ||
1791 | } | |
1792 | ||
1793 | #if MACH_KDB | |
1794 | /* | |
1795 | * Routines to print out simple_locks and mutexes in a nicely-formatted | |
1796 | * fashion. | |
1797 | */ | |
1798 | ||
1799 | char *simple_lock_labels = "ENTRY ILK THREAD DURATION CALLER"; | |
1800 | char *mutex_labels = "ENTRY LOCKED WAITERS THREAD CALLER"; | |
1801 | ||
1802 | void | |
1803 | db_show_one_simple_lock ( | |
1804 | db_expr_t addr, | |
1805 | boolean_t have_addr, | |
1806 | db_expr_t count, | |
1807 | char * modif) | |
1808 | { | |
1809 | simple_lock_t saddr = (simple_lock_t)addr; | |
1810 | ||
1811 | if (saddr == (simple_lock_t)0 || !have_addr) { | |
1812 | db_error ("No simple_lock\n"); | |
1813 | } | |
1814 | #if USLOCK_DEBUG | |
1815 | else if (saddr->lock_type != USLOCK_TAG) | |
1816 | db_error ("Not a simple_lock\n"); | |
1817 | #endif /* USLOCK_DEBUG */ | |
1818 | ||
1819 | db_printf ("%s\n", simple_lock_labels); | |
1820 | db_print_simple_lock (saddr); | |
1821 | } | |
1822 | ||
1823 | void | |
1824 | db_print_simple_lock ( | |
1825 | simple_lock_t addr) | |
1826 | { | |
1827 | ||
1828 | db_printf ("%08x %3d", addr, *hw_lock_addr(addr->interlock)); | |
1829 | #if USLOCK_DEBUG | |
1830 | db_printf (" %08x", addr->debug.lock_thread); | |
1831 | db_printf (" %08x ", addr->debug.duration[1]); | |
1832 | db_printsym ((int)addr->debug.lock_pc, DB_STGY_ANY); | |
1833 | #endif /* USLOCK_DEBUG */ | |
1834 | db_printf ("\n"); | |
1835 | } | |
1836 | ||
1837 | void | |
1838 | db_show_one_mutex ( | |
1839 | db_expr_t addr, | |
1840 | boolean_t have_addr, | |
1841 | db_expr_t count, | |
1842 | char * modif) | |
1843 | { | |
1844 | mutex_t * maddr = (mutex_t *)addr; | |
1845 | ||
1846 | if (maddr == (mutex_t *)0 || !have_addr) | |
1847 | db_error ("No mutex\n"); | |
1848 | #if MACH_LDEBUG | |
1849 | else if (maddr->type != MUTEX_TAG) | |
1850 | db_error ("Not a mutex\n"); | |
1851 | #endif /* MACH_LDEBUG */ | |
1852 | ||
1853 | db_printf ("%s\n", mutex_labels); | |
1854 | db_print_mutex (maddr); | |
1855 | } | |
1856 | ||
1857 | void | |
1858 | db_print_mutex ( | |
1859 | mutex_t * addr) | |
1860 | { | |
1861 | db_printf ("%08x %6d %7d", | |
1862 | addr, *addr, addr->lck_mtx.lck_mtx_waiters); | |
1863 | #if MACH_LDEBUG | |
1864 | db_printf (" %08x ", addr->thread); | |
1865 | db_printsym (addr->pc, DB_STGY_ANY); | |
1866 | #endif /* MACH_LDEBUG */ | |
1867 | db_printf ("\n"); | |
1868 | } | |
1869 | ||
1870 | #endif /* MACH_KDB */ |