]> git.saurik.com Git - apple/xnu.git/blame - bsd/kern/sys_pipe.c
xnu-792.6.61.tar.gz
[apple/xnu.git] / bsd / kern / sys_pipe.c
CommitLineData
91447636
A
1/*
2 * Copyright (c) 1996 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice immediately at the beginning of the file, without modification,
10 * this list of conditions, and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. Absolutely no warranty of function or purpose is made by the author
15 * John S. Dyson.
16 * 4. Modifications may be freely made to this file if the above conditions
17 * are met.
18 */
19/*
20 * Copyright (c) 2003-2004 Apple Computer, Inc. All rights reserved.
21 *
22 * @APPLE_LICENSE_HEADER_START@
23 *
37839358
A
24 * The contents of this file constitute Original Code as defined in and
25 * are subject to the Apple Public Source License Version 1.1 (the
26 * "License"). You may not use this file except in compliance with the
27 * License. Please obtain a copy of the License at
28 * http://www.apple.com/publicsource and read it before using this file.
91447636 29 *
37839358
A
30 * This Original Code and all software distributed under the License are
31 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
91447636
A
32 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
33 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
37839358
A
34 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
35 * License for the specific language governing rights and limitations
36 * under the License.
91447636
A
37 *
38 * @APPLE_LICENSE_HEADER_END@
39 */
40
41/*
42 * This file contains a high-performance replacement for the socket-based
43 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
44 * all features of sockets, but does do everything that pipes normally
45 * do.
46 */
47
48/*
49 * This code has two modes of operation, a small write mode and a large
50 * write mode. The small write mode acts like conventional pipes with
51 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
52 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
53 * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and
54 * the receiving process can copy it directly from the pages in the sending
55 * process.
56 *
57 * If the sending process receives a signal, it is possible that it will
58 * go away, and certainly its address space can change, because control
59 * is returned back to the user-mode side. In that case, the pipe code
60 * arranges to copy the buffer supplied by the user process, to a pageable
61 * kernel buffer, and the receiving process will grab the data from the
62 * pageable kernel buffer. Since signals don't happen all that often,
63 * the copy operation is normally eliminated.
64 *
65 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
66 * happen for small transfers so that the system will not spend all of
67 * its time context switching.
68 *
69 * In order to limit the resource use of pipes, two sysctls exist:
70 *
71 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
72 * address space available to us in pipe_map. Whenever the amount in use
73 * exceeds half of this value, all new pipes will be created with size
74 * SMALL_PIPE_SIZE, rather than PIPE_SIZE. Big pipe creation will be limited
75 * as well. This value is loader tunable only.
76 *
77 * kern.ipc.maxpipekvawired - This value limits the amount of memory that may
78 * be wired in order to facilitate direct copies using page flipping.
79 * Whenever this value is exceeded, pipes will fall back to using regular
80 * copies. This value is sysctl controllable at all times.
81 *
82 * These values are autotuned in subr_param.c.
83 *
84 * Memory usage may be monitored through the sysctls
85 * kern.ipc.pipes, kern.ipc.pipekva and kern.ipc.pipekvawired.
86 *
87 */
88
89#include <sys/param.h>
90#include <sys/systm.h>
91#include <sys/filedesc.h>
92#include <sys/kernel.h>
93#include <sys/vnode.h>
94#include <sys/proc_internal.h>
95#include <sys/kauth.h>
96#include <sys/file_internal.h>
97#include <sys/stat.h>
98#include <sys/ioctl.h>
99#include <sys/fcntl.h>
100#include <sys/malloc.h>
101#include <sys/syslog.h>
102#include <sys/unistd.h>
103#include <sys/resourcevar.h>
104#include <sys/aio_kern.h>
105#include <sys/signalvar.h>
106#include <sys/pipe.h>
107#include <sys/sysproto.h>
108
109#include <bsm/audit_kernel.h>
110
111#include <sys/kdebug.h>
112
113#include <kern/zalloc.h>
114#include <vm/vm_kern.h>
115#include <libkern/OSAtomic.h>
116
117#define f_flag f_fglob->fg_flag
118#define f_type f_fglob->fg_type
119#define f_msgcount f_fglob->fg_msgcount
120#define f_cred f_fglob->fg_cred
121#define f_ops f_fglob->fg_ops
122#define f_offset f_fglob->fg_offset
123#define f_data f_fglob->fg_data
124/*
125 * Use this define if you want to disable *fancy* VM things. Expect an
126 * approx 30% decrease in transfer rate. This could be useful for
127 * NetBSD or OpenBSD.
128 *
129 * this needs to be ported to X and the performance measured
130 * before committing to supporting it
131 */
132#define PIPE_NODIRECT 1
133
134#ifndef PIPE_NODIRECT
135
136#include <vm/vm.h>
137#include <vm/vm_param.h>
138#include <vm/vm_object.h>
139#include <vm/vm_kern.h>
140#include <vm/vm_extern.h>
141#include <vm/pmap.h>
142#include <vm/vm_map.h>
143#include <vm/vm_page.h>
144#include <vm/uma.h>
145
146#endif
147
148
149/*
150 * interfaces to the outside world
151 */
152static int pipe_read(struct fileproc *fp, struct uio *uio,
153 kauth_cred_t cred, int flags, struct proc *p);
154
155static int pipe_write(struct fileproc *fp, struct uio *uio,
156 kauth_cred_t cred, int flags, struct proc *p);
157
158static int pipe_close(struct fileglob *fg, struct proc *p);
159
160static int pipe_select(struct fileproc *fp, int which, void * wql, struct proc *p);
161
162static int pipe_kqfilter(struct fileproc *fp, struct knote *kn, struct proc *p);
163
164static int pipe_ioctl(struct fileproc *fp, u_long cmd, caddr_t data, struct proc *p);
165
166
167struct fileops pipeops =
168 { pipe_read,
169 pipe_write,
170 pipe_ioctl,
171 pipe_select,
172 pipe_close,
173 pipe_kqfilter,
174 0 };
175
176
177static void filt_pipedetach(struct knote *kn);
178static int filt_piperead(struct knote *kn, long hint);
179static int filt_pipewrite(struct knote *kn, long hint);
180
181static struct filterops pipe_rfiltops =
182 { 1, NULL, filt_pipedetach, filt_piperead };
183static struct filterops pipe_wfiltops =
184 { 1, NULL, filt_pipedetach, filt_pipewrite };
185
186/*
187 * Default pipe buffer size(s), this can be kind-of large now because pipe
188 * space is pageable. The pipe code will try to maintain locality of
189 * reference for performance reasons, so small amounts of outstanding I/O
190 * will not wipe the cache.
191 */
192#define MINPIPESIZE (PIPE_SIZE/3)
193
194/*
195 * Limit the number of "big" pipes
196 */
197#define LIMITBIGPIPES 32
198static int nbigpipe;
199
200static int amountpipes;
201static int amountpipekva;
202
203#ifndef PIPE_NODIRECT
204static int amountpipekvawired;
205#endif
206int maxpipekva = 1024 * 1024 * 16;
207
208#if PIPE_SYSCTLS
209SYSCTL_DECL(_kern_ipc);
210
211SYSCTL_INT(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RD,
212 &maxpipekva, 0, "Pipe KVA limit");
213SYSCTL_INT(_kern_ipc, OID_AUTO, maxpipekvawired, CTLFLAG_RW,
214 &maxpipekvawired, 0, "Pipe KVA wired limit");
215SYSCTL_INT(_kern_ipc, OID_AUTO, pipes, CTLFLAG_RD,
216 &amountpipes, 0, "Current # of pipes");
217SYSCTL_INT(_kern_ipc, OID_AUTO, bigpipes, CTLFLAG_RD,
218 &nbigpipe, 0, "Current # of big pipes");
219SYSCTL_INT(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
220 &amountpipekva, 0, "Pipe KVA usage");
221SYSCTL_INT(_kern_ipc, OID_AUTO, pipekvawired, CTLFLAG_RD,
222 &amountpipekvawired, 0, "Pipe wired KVA usage");
223#endif
224
225void pipeinit(void *dummy __unused);
226static void pipeclose(struct pipe *cpipe);
227static void pipe_free_kmem(struct pipe *cpipe);
228static int pipe_create(struct pipe **cpipep);
229static void pipeselwakeup(struct pipe *cpipe, struct pipe *spipe);
230static __inline int pipelock(struct pipe *cpipe, int catch);
231static __inline void pipeunlock(struct pipe *cpipe);
232
233#ifndef PIPE_NODIRECT
234static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
235static void pipe_destroy_write_buffer(struct pipe *wpipe);
236static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
237static void pipe_clone_write_buffer(struct pipe *wpipe);
238#endif
239
240extern int postpipeevent(struct pipe *, int);
241extern void evpipefree(struct pipe *cpipe);
242
243
244static int pipespace(struct pipe *cpipe, int size);
245
246static lck_grp_t *pipe_mtx_grp;
247static lck_attr_t *pipe_mtx_attr;
248static lck_grp_attr_t *pipe_mtx_grp_attr;
249
250static zone_t pipe_zone;
251
252SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
253
254void
255pipeinit(void *dummy __unused)
256{
257 pipe_zone = (zone_t)zinit(sizeof(struct pipe), 8192 * sizeof(struct pipe), 4096, "pipe zone");
258
259 /*
260 * allocate lock group attribute and group for pipe mutexes
261 */
262 pipe_mtx_grp_attr = lck_grp_attr_alloc_init();
263 //lck_grp_attr_setstat(pipe_mtx_grp_attr);
264 pipe_mtx_grp = lck_grp_alloc_init("pipe", pipe_mtx_grp_attr);
265
266 /*
267 * allocate the lock attribute for pipe mutexes
268 */
269 pipe_mtx_attr = lck_attr_alloc_init();
270 //lck_attr_setdebug(pipe_mtx_attr);
271}
272
273
274
275/*
276 * The pipe system call for the DTYPE_PIPE type of pipes
277 */
278
279/* ARGSUSED */
280int
281pipe(struct proc *p, __unused struct pipe_args *uap, register_t *retval)
282{
283 struct fileproc *rf, *wf;
284 struct pipe *rpipe, *wpipe;
285 lck_mtx_t *pmtx;
286 int fd, error;
287
288 if ((pmtx = lck_mtx_alloc_init(pipe_mtx_grp, pipe_mtx_attr)) == NULL)
289 return (ENOMEM);
290
291 rpipe = wpipe = NULL;
292 if (pipe_create(&rpipe) || pipe_create(&wpipe)) {
293 error = ENFILE;
294 goto freepipes;
295 }
296 /*
297 * allocate the space for the normal I/O direction up
298 * front... we'll delay the allocation for the other
299 * direction until a write actually occurs (most
300 * likely it won't)...
301 *
302 * Reduce to 1/4th pipe size if we're over our global max.
303 */
304 if (amountpipekva > maxpipekva / 2)
305 error = pipespace(rpipe, SMALL_PIPE_SIZE);
306 else
307 error = pipespace(rpipe, PIPE_SIZE);
308 if (error)
309 goto freepipes;
310
311#ifndef PIPE_NODIRECT
312 rpipe->pipe_state |= PIPE_DIRECTOK;
313 wpipe->pipe_state |= PIPE_DIRECTOK;
314#endif
315 TAILQ_INIT(&rpipe->pipe_evlist);
316 TAILQ_INIT(&wpipe->pipe_evlist);
317
318 error = falloc(p, &rf, &fd);
319 if (error) {
320 goto freepipes;
321 }
322 retval[0] = fd;
323
324 /*
325 * for now we'll create half-duplex
326 * pipes... this is what we've always
327 * supported..
328 */
329 rf->f_flag = FREAD;
330 rf->f_type = DTYPE_PIPE;
331 rf->f_data = (caddr_t)rpipe;
332 rf->f_ops = &pipeops;
333
334 error = falloc(p, &wf, &fd);
335 if (error) {
336 fp_free(p, retval[0], rf);
337 goto freepipes;
338 }
339 wf->f_flag = FWRITE;
340 wf->f_type = DTYPE_PIPE;
341 wf->f_data = (caddr_t)wpipe;
342 wf->f_ops = &pipeops;
343
344 retval[1] = fd;
345#ifdef MAC
346 /*
347 * XXXXXXXX SHOULD NOT HOLD FILE_LOCK() XXXXXXXXXXXX
348 *
349 * struct pipe represents a pipe endpoint. The MAC label is shared
350 * between the connected endpoints. As a result mac_init_pipe() and
351 * mac_create_pipe() should only be called on one of the endpoints
352 * after they have been connected.
353 */
354 mac_init_pipe(rpipe);
355 mac_create_pipe(td->td_ucred, rpipe);
356#endif
357 proc_fdlock(p);
358 *fdflags(p, retval[0]) &= ~UF_RESERVED;
359 *fdflags(p, retval[1]) &= ~UF_RESERVED;
360 fp_drop(p, retval[0], rf, 1);
361 fp_drop(p, retval[1], wf, 1);
362 proc_fdunlock(p);
363
364 rpipe->pipe_peer = wpipe;
365 wpipe->pipe_peer = rpipe;
366
367 rpipe->pipe_mtxp = wpipe->pipe_mtxp = pmtx;
368
369 return (0);
370
371freepipes:
372 pipeclose(rpipe);
373 pipeclose(wpipe);
374 lck_mtx_free(pmtx, pipe_mtx_grp);
375
376 return (error);
377}
378
379
380int
381pipe_stat(struct pipe *cpipe, struct stat *ub)
382{
383#ifdef MAC
384 int error;
385#endif
386 struct timeval now;
387
388 if (cpipe == NULL)
389 return (EBADF);
390#ifdef MAC
391 PIPE_LOCK(cpipe);
392 error = mac_check_pipe_stat(active_cred, cpipe);
393 PIPE_UNLOCK(cpipe);
394 if (error)
395 return (error);
396#endif
397 if (cpipe->pipe_buffer.buffer == 0) {
398 /*
399 * must be stat'ing the write fd
400 */
401 cpipe = cpipe->pipe_peer;
402
403 if (cpipe == NULL)
404 return (EBADF);
405 }
406 bzero(ub, sizeof(*ub));
407 ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP;
408 ub->st_blksize = cpipe->pipe_buffer.size;
409 ub->st_size = cpipe->pipe_buffer.cnt;
410 ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
411 ub->st_nlink = 1;
412
413 ub->st_uid = kauth_getuid();
414 ub->st_gid = kauth_getgid();
415
416 microtime(&now);
417 ub->st_atimespec.tv_sec = now.tv_sec;
418 ub->st_atimespec.tv_nsec = now.tv_usec * 1000;
419
420 ub->st_mtimespec.tv_sec = now.tv_sec;
421 ub->st_mtimespec.tv_nsec = now.tv_usec * 1000;
422
423 ub->st_ctimespec.tv_sec = now.tv_sec;
424 ub->st_ctimespec.tv_nsec = now.tv_usec * 1000;
425
426 /*
427 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen, st_uid, st_gid.
428 * XXX (st_dev, st_ino) should be unique.
429 */
430 return (0);
431}
432
433
434/*
435 * Allocate kva for pipe circular buffer, the space is pageable
436 * This routine will 'realloc' the size of a pipe safely, if it fails
437 * it will retain the old buffer.
438 * If it fails it will return ENOMEM.
439 */
440static int
441pipespace(struct pipe *cpipe, int size)
442{
443 vm_offset_t buffer;
444
445 size = round_page(size);
446
447 if (kmem_alloc(kernel_map, &buffer, size) != KERN_SUCCESS)
448 return(ENOMEM);
449
450 /* free old resources if we're resizing */
451 pipe_free_kmem(cpipe);
452 cpipe->pipe_buffer.buffer = (caddr_t)buffer;
453 cpipe->pipe_buffer.size = size;
454 cpipe->pipe_buffer.in = 0;
455 cpipe->pipe_buffer.out = 0;
456 cpipe->pipe_buffer.cnt = 0;
457
458 OSAddAtomic(1, (SInt32 *)&amountpipes);
459 OSAddAtomic(cpipe->pipe_buffer.size, (SInt32 *)&amountpipekva);
460
461 return (0);
462}
463
464/*
465 * initialize and allocate VM and memory for pipe
466 */
467static int
468pipe_create(struct pipe **cpipep)
469{
470 struct pipe *cpipe;
471
472 cpipe = (struct pipe *)zalloc(pipe_zone);
473
474 if ((*cpipep = cpipe) == NULL)
475 return (ENOMEM);
476
477 /*
478 * protect so pipespace or pipeclose don't follow a junk pointer
479 * if pipespace() fails.
480 */
481 bzero(cpipe, sizeof *cpipe);
482
483 return (0);
484}
485
486
487/*
488 * lock a pipe for I/O, blocking other access
489 */
490static __inline int
491pipelock(cpipe, catch)
492 struct pipe *cpipe;
493 int catch;
494{
495 int error;
496
497 while (cpipe->pipe_state & PIPE_LOCKFL) {
498 cpipe->pipe_state |= PIPE_LWANT;
499
500 error = msleep(cpipe, PIPE_MTX(cpipe), catch ? (PRIBIO | PCATCH) : PRIBIO,
501 "pipelk", 0);
502 if (error != 0)
503 return (error);
504 }
505 cpipe->pipe_state |= PIPE_LOCKFL;
506
507 return (0);
508}
509
510/*
511 * unlock a pipe I/O lock
512 */
513static __inline void
514pipeunlock(cpipe)
515 struct pipe *cpipe;
516{
517
518 cpipe->pipe_state &= ~PIPE_LOCKFL;
519
520 if (cpipe->pipe_state & PIPE_LWANT) {
521 cpipe->pipe_state &= ~PIPE_LWANT;
522 wakeup(cpipe);
523 }
524}
525
526static void
527pipeselwakeup(cpipe, spipe)
528 struct pipe *cpipe;
529 struct pipe *spipe;
530{
531
532 if (cpipe->pipe_state & PIPE_SEL) {
533 cpipe->pipe_state &= ~PIPE_SEL;
534 selwakeup(&cpipe->pipe_sel);
535 }
536 if (cpipe->pipe_state & PIPE_KNOTE)
537 KNOTE(&cpipe->pipe_sel.si_note, 1);
538
539 postpipeevent(cpipe, EV_RWBYTES);
540
541 if (spipe && (spipe->pipe_state & PIPE_ASYNC) && spipe->pipe_pgid) {
542 struct proc *p;
543
544 if (spipe->pipe_pgid < 0)
545 gsignal(-spipe->pipe_pgid, SIGIO);
546 else if ((p = pfind(spipe->pipe_pgid)) != (struct proc *)0)
547 psignal(p, SIGIO);
548 }
549}
550
551/* ARGSUSED */
552static int
553pipe_read(struct fileproc *fp, struct uio *uio, __unused kauth_cred_t active_cred, __unused int flags, __unused struct proc *p)
554{
555 struct pipe *rpipe = (struct pipe *)fp->f_data;
556 int error;
557 int nread = 0;
558 u_int size;
559
560 PIPE_LOCK(rpipe);
561 ++rpipe->pipe_busy;
562
563 error = pipelock(rpipe, 1);
564 if (error)
565 goto unlocked_error;
566
567#ifdef MAC
568 error = mac_check_pipe_read(active_cred, rpipe);
569 if (error)
570 goto locked_error;
571#endif
572
573 while (uio_resid(uio)) {
574 /*
575 * normal pipe buffer receive
576 */
577 if (rpipe->pipe_buffer.cnt > 0) {
578 size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
579 if (size > rpipe->pipe_buffer.cnt)
580 size = rpipe->pipe_buffer.cnt;
581 // LP64todo - fix this!
582 if (size > (u_int) uio_resid(uio))
583 size = (u_int) uio_resid(uio);
584
585 PIPE_UNLOCK(rpipe);
586 error = uiomove(
587 &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
588 size, uio);
589 PIPE_LOCK(rpipe);
590 if (error)
591 break;
592
593 rpipe->pipe_buffer.out += size;
594 if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
595 rpipe->pipe_buffer.out = 0;
596
597 rpipe->pipe_buffer.cnt -= size;
598
599 /*
600 * If there is no more to read in the pipe, reset
601 * its pointers to the beginning. This improves
602 * cache hit stats.
603 */
604 if (rpipe->pipe_buffer.cnt == 0) {
605 rpipe->pipe_buffer.in = 0;
606 rpipe->pipe_buffer.out = 0;
607 }
608 nread += size;
609#ifndef PIPE_NODIRECT
610 /*
611 * Direct copy, bypassing a kernel buffer.
612 */
613 } else if ((size = rpipe->pipe_map.cnt) &&
614 (rpipe->pipe_state & PIPE_DIRECTW)) {
615 caddr_t va;
616 // LP64todo - fix this!
617 if (size > (u_int) uio_resid(uio))
618 size = (u_int) uio_resid(uio);
619
620 va = (caddr_t) rpipe->pipe_map.kva +
621 rpipe->pipe_map.pos;
622 PIPE_UNLOCK(rpipe);
623 error = uiomove(va, size, uio);
624 PIPE_LOCK(rpipe);
625 if (error)
626 break;
627 nread += size;
628 rpipe->pipe_map.pos += size;
629 rpipe->pipe_map.cnt -= size;
630 if (rpipe->pipe_map.cnt == 0) {
631 rpipe->pipe_state &= ~PIPE_DIRECTW;
632 wakeup(rpipe);
633 }
634#endif
635 } else {
636 /*
637 * detect EOF condition
638 * read returns 0 on EOF, no need to set error
639 */
640 if (rpipe->pipe_state & PIPE_EOF)
641 break;
642
643 /*
644 * If the "write-side" has been blocked, wake it up now.
645 */
646 if (rpipe->pipe_state & PIPE_WANTW) {
647 rpipe->pipe_state &= ~PIPE_WANTW;
648 wakeup(rpipe);
649 }
650
651 /*
652 * Break if some data was read.
653 */
654 if (nread > 0)
655 break;
656
657 /*
658 * Unlock the pipe buffer for our remaining processing.
659 * We will either break out with an error or we will
660 * sleep and relock to loop.
661 */
662 pipeunlock(rpipe);
663
664 /*
665 * Handle non-blocking mode operation or
666 * wait for more data.
667 */
668 if (fp->f_flag & FNONBLOCK) {
669 error = EAGAIN;
670 } else {
671 rpipe->pipe_state |= PIPE_WANTR;
672
673 error = msleep(rpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH, "piperd", 0);
674
675 if (error == 0)
676 error = pipelock(rpipe, 1);
677 }
678 if (error)
679 goto unlocked_error;
680 }
681 }
682#ifdef MAC
683locked_error:
684#endif
685 pipeunlock(rpipe);
686
687unlocked_error:
688 --rpipe->pipe_busy;
689
690 /*
691 * PIPE_WANT processing only makes sense if pipe_busy is 0.
692 */
693 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
694 rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
695 wakeup(rpipe);
696 } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
697 /*
698 * Handle write blocking hysteresis.
699 */
700 if (rpipe->pipe_state & PIPE_WANTW) {
701 rpipe->pipe_state &= ~PIPE_WANTW;
702 wakeup(rpipe);
703 }
704 }
705
706 if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
707 pipeselwakeup(rpipe, rpipe->pipe_peer);
708
709 PIPE_UNLOCK(rpipe);
710
711 return (error);
712}
713
714
715
716#ifndef PIPE_NODIRECT
717/*
718 * Map the sending processes' buffer into kernel space and wire it.
719 * This is similar to a physical write operation.
720 */
721static int
722pipe_build_write_buffer(wpipe, uio)
723 struct pipe *wpipe;
724 struct uio *uio;
725{
726 pmap_t pmap;
727 u_int size;
728 int i, j;
729 vm_offset_t addr, endaddr;
730
731
732 size = (u_int) uio->uio_iov->iov_len;
733 if (size > wpipe->pipe_buffer.size)
734 size = wpipe->pipe_buffer.size;
735
736 pmap = vmspace_pmap(curproc->p_vmspace);
737 endaddr = round_page((vm_offset_t)uio->uio_iov->iov_base + size);
738 addr = trunc_page((vm_offset_t)uio->uio_iov->iov_base);
739 for (i = 0; addr < endaddr; addr += PAGE_SIZE, i++) {
740 /*
741 * vm_fault_quick() can sleep. Consequently,
742 * vm_page_lock_queue() and vm_page_unlock_queue()
743 * should not be performed outside of this loop.
744 */
745 race:
746 if (vm_fault_quick((caddr_t)addr, VM_PROT_READ) < 0) {
747 vm_page_lock_queues();
748 for (j = 0; j < i; j++)
749 vm_page_unhold(wpipe->pipe_map.ms[j]);
750 vm_page_unlock_queues();
751 return (EFAULT);
752 }
753 wpipe->pipe_map.ms[i] = pmap_extract_and_hold(pmap, addr,
754 VM_PROT_READ);
755 if (wpipe->pipe_map.ms[i] == NULL)
756 goto race;
757 }
758
759/*
760 * set up the control block
761 */
762 wpipe->pipe_map.npages = i;
763 wpipe->pipe_map.pos =
764 ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
765 wpipe->pipe_map.cnt = size;
766
767/*
768 * and map the buffer
769 */
770 if (wpipe->pipe_map.kva == 0) {
771 /*
772 * We need to allocate space for an extra page because the
773 * address range might (will) span pages at times.
774 */
775 wpipe->pipe_map.kva = kmem_alloc_nofault(kernel_map,
776 wpipe->pipe_buffer.size + PAGE_SIZE);
777 atomic_add_int(&amountpipekvawired,
778 wpipe->pipe_buffer.size + PAGE_SIZE);
779 }
780 pmap_qenter(wpipe->pipe_map.kva, wpipe->pipe_map.ms,
781 wpipe->pipe_map.npages);
782
783/*
784 * and update the uio data
785 */
786
787 uio->uio_iov->iov_len -= size;
788 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
789 if (uio->uio_iov->iov_len == 0)
790 uio->uio_iov++;
791 uio_setresid(uio, (uio_resid(uio) - size));
792 uio->uio_offset += size;
793 return (0);
794}
795
796/*
797 * unmap and unwire the process buffer
798 */
799static void
800pipe_destroy_write_buffer(wpipe)
801 struct pipe *wpipe;
802{
803 int i;
804
805 if (wpipe->pipe_map.kva) {
806 pmap_qremove(wpipe->pipe_map.kva, wpipe->pipe_map.npages);
807
808 if (amountpipekvawired > maxpipekvawired / 2) {
809 /* Conserve address space */
810 vm_offset_t kva = wpipe->pipe_map.kva;
811 wpipe->pipe_map.kva = 0;
812 kmem_free(kernel_map, kva,
813 wpipe->pipe_buffer.size + PAGE_SIZE);
814 atomic_subtract_int(&amountpipekvawired,
815 wpipe->pipe_buffer.size + PAGE_SIZE);
816 }
817 }
818 vm_page_lock_queues();
819 for (i = 0; i < wpipe->pipe_map.npages; i++) {
820 vm_page_unhold(wpipe->pipe_map.ms[i]);
821 }
822 vm_page_unlock_queues();
823 wpipe->pipe_map.npages = 0;
824}
825
826/*
827 * In the case of a signal, the writing process might go away. This
828 * code copies the data into the circular buffer so that the source
829 * pages can be freed without loss of data.
830 */
831static void
832pipe_clone_write_buffer(wpipe)
833 struct pipe *wpipe;
834{
835 int size;
836 int pos;
837
838 size = wpipe->pipe_map.cnt;
839 pos = wpipe->pipe_map.pos;
840
841 wpipe->pipe_buffer.in = size;
842 wpipe->pipe_buffer.out = 0;
843 wpipe->pipe_buffer.cnt = size;
844 wpipe->pipe_state &= ~PIPE_DIRECTW;
845
846 PIPE_UNLOCK(wpipe);
847 bcopy((caddr_t) wpipe->pipe_map.kva + pos,
848 wpipe->pipe_buffer.buffer, size);
849 pipe_destroy_write_buffer(wpipe);
850 PIPE_LOCK(wpipe);
851}
852
853/*
854 * This implements the pipe buffer write mechanism. Note that only
855 * a direct write OR a normal pipe write can be pending at any given time.
856 * If there are any characters in the pipe buffer, the direct write will
857 * be deferred until the receiving process grabs all of the bytes from
858 * the pipe buffer. Then the direct mapping write is set-up.
859 */
860static int
861pipe_direct_write(wpipe, uio)
862 struct pipe *wpipe;
863 struct uio *uio;
864{
865 int error;
866
867retry:
868 while (wpipe->pipe_state & PIPE_DIRECTW) {
869 if (wpipe->pipe_state & PIPE_WANTR) {
870 wpipe->pipe_state &= ~PIPE_WANTR;
871 wakeup(wpipe);
872 }
873 wpipe->pipe_state |= PIPE_WANTW;
874 error = msleep(wpipe, PIPE_MTX(wpipe),
875 PRIBIO | PCATCH, "pipdww", 0);
876 if (error)
877 goto error1;
878 if (wpipe->pipe_state & PIPE_EOF) {
879 error = EPIPE;
880 goto error1;
881 }
882 }
883 wpipe->pipe_map.cnt = 0; /* transfer not ready yet */
884 if (wpipe->pipe_buffer.cnt > 0) {
885 if (wpipe->pipe_state & PIPE_WANTR) {
886 wpipe->pipe_state &= ~PIPE_WANTR;
887 wakeup(wpipe);
888 }
889
890 wpipe->pipe_state |= PIPE_WANTW;
891 error = msleep(wpipe, PIPE_MTX(wpipe),
892 PRIBIO | PCATCH, "pipdwc", 0);
893 if (error)
894 goto error1;
895 if (wpipe->pipe_state & PIPE_EOF) {
896 error = EPIPE;
897 goto error1;
898 }
899 goto retry;
900 }
901
902 wpipe->pipe_state |= PIPE_DIRECTW;
903
904 pipelock(wpipe, 0);
905 PIPE_UNLOCK(wpipe);
906 error = pipe_build_write_buffer(wpipe, uio);
907 PIPE_LOCK(wpipe);
908 pipeunlock(wpipe);
909 if (error) {
910 wpipe->pipe_state &= ~PIPE_DIRECTW;
911 goto error1;
912 }
913
914 error = 0;
915 while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
916 if (wpipe->pipe_state & PIPE_EOF) {
917 pipelock(wpipe, 0);
918 PIPE_UNLOCK(wpipe);
919 pipe_destroy_write_buffer(wpipe);
920 PIPE_LOCK(wpipe);
921 pipeselwakeup(wpipe, wpipe);
922 pipeunlock(wpipe);
923 error = EPIPE;
924 goto error1;
925 }
926 if (wpipe->pipe_state & PIPE_WANTR) {
927 wpipe->pipe_state &= ~PIPE_WANTR;
928 wakeup(wpipe);
929 }
930 pipeselwakeup(wpipe, wpipe);
931 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
932 "pipdwt", 0);
933 }
934
935 pipelock(wpipe,0);
936 if (wpipe->pipe_state & PIPE_DIRECTW) {
937 /*
938 * this bit of trickery substitutes a kernel buffer for
939 * the process that might be going away.
940 */
941 pipe_clone_write_buffer(wpipe);
942 } else {
943 PIPE_UNLOCK(wpipe);
944 pipe_destroy_write_buffer(wpipe);
945 PIPE_LOCK(wpipe);
946 }
947 pipeunlock(wpipe);
948 return (error);
949
950error1:
951 wakeup(wpipe);
952 return (error);
953}
954#endif
955
956
957
958static int
959pipe_write(struct fileproc *fp, struct uio *uio, __unused kauth_cred_t active_cred, __unused int flags, __unused struct proc *p)
960{
961 int error = 0;
962 int orig_resid;
963 int pipe_size;
964 struct pipe *wpipe, *rpipe;
965
966 rpipe = (struct pipe *)fp->f_data;
967
968 PIPE_LOCK(rpipe);
969 wpipe = rpipe->pipe_peer;
970
971 /*
972 * detect loss of pipe read side, issue SIGPIPE if lost.
973 */
974 if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF)) {
975 PIPE_UNLOCK(rpipe);
976 return (EPIPE);
977 }
978#ifdef MAC
979 error = mac_check_pipe_write(active_cred, wpipe);
980 if (error) {
981 PIPE_UNLOCK(rpipe);
982 return (error);
983 }
984#endif
985 ++wpipe->pipe_busy;
986
987 pipe_size = 0;
988
989 if (wpipe->pipe_buffer.buffer == 0) {
990 /*
991 * need to allocate some storage... we delay the allocation
992 * until the first write on fd[0] to avoid allocating storage for both
993 * 'pipe ends'... most pipes are half-duplex with the writes targeting
994 * fd[1], so allocating space for both ends is a waste...
995 *
996 * Reduce to 1/4th pipe size if we're over our global max.
997 */
998 if (amountpipekva > maxpipekva / 2)
999 pipe_size = SMALL_PIPE_SIZE;
1000 else
1001 pipe_size = PIPE_SIZE;
1002 }
1003
1004 /*
1005 * If it is advantageous to resize the pipe buffer, do
1006 * so.
1007 */
1008 if ((uio_resid(uio) > PIPE_SIZE) &&
1009 (wpipe->pipe_buffer.size <= PIPE_SIZE) &&
1010 (amountpipekva < maxpipekva / 2) &&
1011 (nbigpipe < LIMITBIGPIPES) &&
1012#ifndef PIPE_NODIRECT
1013 (wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
1014#endif
1015 (wpipe->pipe_buffer.cnt == 0)) {
1016
1017 pipe_size = BIG_PIPE_SIZE;
1018
1019 }
1020 if (pipe_size) {
1021 /*
1022 * need to do initial allocation or resizing of pipe
1023 */
1024 if ((error = pipelock(wpipe, 1)) == 0) {
1025 PIPE_UNLOCK(wpipe);
1026 if (pipespace(wpipe, pipe_size) == 0)
1027 OSAddAtomic(1, (SInt32 *)&nbigpipe);
1028 PIPE_LOCK(wpipe);
1029 pipeunlock(wpipe);
1030
1031 if (wpipe->pipe_buffer.buffer == 0) {
1032 /*
1033 * initial allocation failed
1034 */
1035 error = ENOMEM;
1036 }
1037 }
1038 if (error) {
1039 /*
1040 * If an error occurred unbusy and return, waking up any pending
1041 * readers.
1042 */
1043 --wpipe->pipe_busy;
1044 if ((wpipe->pipe_busy == 0) &&
1045 (wpipe->pipe_state & PIPE_WANT)) {
1046 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1047 wakeup(wpipe);
1048 }
1049 PIPE_UNLOCK(rpipe);
1050 return(error);
1051 }
1052 }
1053 // LP64todo - fix this!
1054 orig_resid = uio_resid(uio);
1055
1056 while (uio_resid(uio)) {
1057 int space;
1058
1059#ifndef PIPE_NODIRECT
1060 /*
1061 * If the transfer is large, we can gain performance if
1062 * we do process-to-process copies directly.
1063 * If the write is non-blocking, we don't use the
1064 * direct write mechanism.
1065 *
1066 * The direct write mechanism will detect the reader going
1067 * away on us.
1068 */
1069 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
1070 (fp->f_flag & FNONBLOCK) == 0 &&
1071 amountpipekvawired + uio->uio_resid < maxpipekvawired) {
1072 error = pipe_direct_write(wpipe, uio);
1073 if (error)
1074 break;
1075 continue;
1076 }
1077
1078 /*
1079 * Pipe buffered writes cannot be coincidental with
1080 * direct writes. We wait until the currently executing
1081 * direct write is completed before we start filling the
1082 * pipe buffer. We break out if a signal occurs or the
1083 * reader goes away.
1084 */
1085 retrywrite:
1086 while (wpipe->pipe_state & PIPE_DIRECTW) {
1087 if (wpipe->pipe_state & PIPE_WANTR) {
1088 wpipe->pipe_state &= ~PIPE_WANTR;
1089 wakeup(wpipe);
1090 }
1091 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH, "pipbww", 0);
1092
1093 if (wpipe->pipe_state & PIPE_EOF)
1094 break;
1095 if (error)
1096 break;
1097 }
1098#else
1099 retrywrite:
1100#endif
1101 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1102
1103 /*
1104 * Writes of size <= PIPE_BUF must be atomic.
1105 */
1106 if ((space < uio_resid(uio)) && (orig_resid <= PIPE_BUF))
1107 space = 0;
1108
1109 if (space > 0) {
1110
1111 if ((error = pipelock(wpipe,1)) == 0) {
1112 int size; /* Transfer size */
1113 int segsize; /* first segment to transfer */
1114
1115 if (wpipe->pipe_state & PIPE_EOF) {
1116 pipeunlock(wpipe);
1117 error = EPIPE;
1118 break;
1119 }
1120#ifndef PIPE_NODIRECT
1121 /*
1122 * It is possible for a direct write to
1123 * slip in on us... handle it here...
1124 */
1125 if (wpipe->pipe_state & PIPE_DIRECTW) {
1126 pipeunlock(wpipe);
1127 goto retrywrite;
1128 }
1129#endif
1130 /*
1131 * If a process blocked in pipelock, our
1132 * value for space might be bad... the mutex
1133 * is dropped while we're blocked
1134 */
1135 if (space > (int)(wpipe->pipe_buffer.size -
1136 wpipe->pipe_buffer.cnt)) {
1137 pipeunlock(wpipe);
1138 goto retrywrite;
1139 }
1140
1141 /*
1142 * Transfer size is minimum of uio transfer
1143 * and free space in pipe buffer.
1144 */
1145 // LP64todo - fix this!
1146 if (space > uio_resid(uio))
1147 size = uio_resid(uio);
1148 else
1149 size = space;
1150 /*
1151 * First segment to transfer is minimum of
1152 * transfer size and contiguous space in
1153 * pipe buffer. If first segment to transfer
1154 * is less than the transfer size, we've got
1155 * a wraparound in the buffer.
1156 */
1157 segsize = wpipe->pipe_buffer.size -
1158 wpipe->pipe_buffer.in;
1159 if (segsize > size)
1160 segsize = size;
1161
1162 /* Transfer first segment */
1163
1164 PIPE_UNLOCK(rpipe);
1165 error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1166 segsize, uio);
1167 PIPE_LOCK(rpipe);
1168
1169 if (error == 0 && segsize < size) {
1170 /*
1171 * Transfer remaining part now, to
1172 * support atomic writes. Wraparound
1173 * happened.
1174 */
1175 if (wpipe->pipe_buffer.in + segsize !=
1176 wpipe->pipe_buffer.size)
1177 panic("Expected pipe buffer "
1178 "wraparound disappeared");
1179
1180 PIPE_UNLOCK(rpipe);
1181 error = uiomove(
1182 &wpipe->pipe_buffer.buffer[0],
1183 size - segsize, uio);
1184 PIPE_LOCK(rpipe);
1185 }
1186 if (error == 0) {
1187 wpipe->pipe_buffer.in += size;
1188 if (wpipe->pipe_buffer.in >=
1189 wpipe->pipe_buffer.size) {
1190 if (wpipe->pipe_buffer.in !=
1191 size - segsize +
1192 wpipe->pipe_buffer.size)
1193 panic("Expected "
1194 "wraparound bad");
1195 wpipe->pipe_buffer.in = size -
1196 segsize;
1197 }
1198
1199 wpipe->pipe_buffer.cnt += size;
1200 if (wpipe->pipe_buffer.cnt >
1201 wpipe->pipe_buffer.size)
1202 panic("Pipe buffer overflow");
1203
1204 }
1205 pipeunlock(wpipe);
1206 }
1207 if (error)
1208 break;
1209
1210 } else {
1211 /*
1212 * If the "read-side" has been blocked, wake it up now.
1213 */
1214 if (wpipe->pipe_state & PIPE_WANTR) {
1215 wpipe->pipe_state &= ~PIPE_WANTR;
1216 wakeup(wpipe);
1217 }
1218 /*
1219 * don't block on non-blocking I/O
1220 * we'll do the pipeselwakeup on the way out
1221 */
1222 if (fp->f_flag & FNONBLOCK) {
1223 error = EAGAIN;
1224 break;
1225 }
1226 /*
1227 * We have no more space and have something to offer,
1228 * wake up select/poll.
1229 */
1230 pipeselwakeup(wpipe, wpipe);
1231
1232 wpipe->pipe_state |= PIPE_WANTW;
1233
1234 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH, "pipewr", 0);
1235
1236 if (error != 0)
1237 break;
1238 /*
1239 * If read side wants to go away, we just issue a signal
1240 * to ourselves.
1241 */
1242 if (wpipe->pipe_state & PIPE_EOF) {
1243 error = EPIPE;
1244 break;
1245 }
1246 }
1247 }
1248 --wpipe->pipe_busy;
1249
1250 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1251 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1252 wakeup(wpipe);
1253 }
1254 if (wpipe->pipe_buffer.cnt > 0) {
1255 /*
1256 * If there are any characters in the buffer, we wake up
1257 * the reader if it was blocked waiting for data.
1258 */
1259 if (wpipe->pipe_state & PIPE_WANTR) {
1260 wpipe->pipe_state &= ~PIPE_WANTR;
1261 wakeup(wpipe);
1262 }
1263 /*
1264 * wake up thread blocked in select/poll or post the notification
1265 */
1266 pipeselwakeup(wpipe, wpipe);
1267 }
1268 PIPE_UNLOCK(rpipe);
1269
1270 return (error);
1271}
1272
1273/*
1274 * we implement a very minimal set of ioctls for compatibility with sockets.
1275 */
1276/* ARGSUSED 3 */
1277static int
1278pipe_ioctl(struct fileproc *fp, u_long cmd, caddr_t data, __unused struct proc *p)
1279{
1280 struct pipe *mpipe = (struct pipe *)fp->f_data;
1281#ifdef MAC
1282 int error;
1283#endif
1284
1285 PIPE_LOCK(mpipe);
1286
1287#ifdef MAC
1288 error = mac_check_pipe_ioctl(active_cred, mpipe, cmd, data);
1289 if (error) {
1290 PIPE_UNLOCK(mpipe);
1291
1292 return (error);
1293 }
1294#endif
1295
1296 switch (cmd) {
1297
1298 case FIONBIO:
1299 PIPE_UNLOCK(mpipe);
1300 return (0);
1301
1302 case FIOASYNC:
1303 if (*(int *)data) {
1304 mpipe->pipe_state |= PIPE_ASYNC;
1305 } else {
1306 mpipe->pipe_state &= ~PIPE_ASYNC;
1307 }
1308 PIPE_UNLOCK(mpipe);
1309 return (0);
1310
1311 case FIONREAD:
1312#ifndef PIPE_NODIRECT
1313 if (mpipe->pipe_state & PIPE_DIRECTW)
1314 *(int *)data = mpipe->pipe_map.cnt;
1315 else
1316#endif
1317 *(int *)data = mpipe->pipe_buffer.cnt;
1318 PIPE_UNLOCK(mpipe);
1319 return (0);
1320
1321 case TIOCSPGRP:
1322 mpipe->pipe_pgid = *(int *)data;
1323
1324 PIPE_UNLOCK(mpipe);
1325 return (0);
1326
1327 case TIOCGPGRP:
1328 *(int *)data = mpipe->pipe_pgid;
1329
1330 PIPE_UNLOCK(mpipe);
1331 return (0);
1332
1333 }
1334 PIPE_UNLOCK(mpipe);
1335 return (ENOTTY);
1336}
1337
1338
1339static int
1340pipe_select(struct fileproc *fp, int which, void *wql, struct proc *p)
1341{
1342 struct pipe *rpipe = (struct pipe *)fp->f_data;
1343 struct pipe *wpipe;
1344 int retnum = 0;
1345
1346 if (rpipe == NULL || rpipe == (struct pipe *)-1)
1347 return (retnum);
1348
1349 PIPE_LOCK(rpipe);
1350
1351 wpipe = rpipe->pipe_peer;
1352
1353 switch (which) {
1354
1355 case FREAD:
1356 if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1357 (rpipe->pipe_buffer.cnt > 0) ||
1358 (rpipe->pipe_state & PIPE_EOF)) {
1359
1360 retnum = 1;
1361 } else {
1362 rpipe->pipe_state |= PIPE_SEL;
1363 selrecord(p, &rpipe->pipe_sel, wql);
1364 }
1365 break;
1366
1367 case FWRITE:
1368 if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) ||
1369 (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1370 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF)) {
1371
1372 retnum = 1;
1373 } else {
1374 wpipe->pipe_state |= PIPE_SEL;
1375 selrecord(p, &wpipe->pipe_sel, wql);
1376 }
1377 break;
1378 case 0:
1379 rpipe->pipe_state |= PIPE_SEL;
1380 selrecord(p, &rpipe->pipe_sel, wql);
1381 break;
1382 }
1383 PIPE_UNLOCK(rpipe);
1384
1385 return (retnum);
1386}
1387
1388
1389/* ARGSUSED 1 */
1390static int
1391pipe_close(struct fileglob *fg, __unused struct proc *p)
1392{
1393 struct pipe *cpipe;
1394
1395 proc_fdlock(p);
1396 cpipe = (struct pipe *)fg->fg_data;
1397 fg->fg_data = NULL;
1398 proc_fdunlock(p);
1399
1400 if (cpipe)
1401 pipeclose(cpipe);
1402
1403 return (0);
1404}
1405
1406static void
1407pipe_free_kmem(struct pipe *cpipe)
1408{
1409
1410 if (cpipe->pipe_buffer.buffer != NULL) {
1411 if (cpipe->pipe_buffer.size > PIPE_SIZE)
1412 OSAddAtomic(-1, (SInt32 *)&nbigpipe);
1413 OSAddAtomic(cpipe->pipe_buffer.size, (SInt32 *)&amountpipekva);
1414 OSAddAtomic(-1, (SInt32 *)&amountpipes);
1415
1416 kmem_free(kernel_map, (vm_offset_t)cpipe->pipe_buffer.buffer,
1417 cpipe->pipe_buffer.size);
1418 cpipe->pipe_buffer.buffer = NULL;
1419 }
1420#ifndef PIPE_NODIRECT
1421 if (cpipe->pipe_map.kva != 0) {
1422 atomic_subtract_int(&amountpipekvawired,
1423 cpipe->pipe_buffer.size + PAGE_SIZE);
1424 kmem_free(kernel_map,
1425 cpipe->pipe_map.kva,
1426 cpipe->pipe_buffer.size + PAGE_SIZE);
1427 cpipe->pipe_map.cnt = 0;
1428 cpipe->pipe_map.kva = 0;
1429 cpipe->pipe_map.pos = 0;
1430 cpipe->pipe_map.npages = 0;
1431 }
1432#endif
1433}
1434
1435/*
1436 * shutdown the pipe
1437 */
1438static void
1439pipeclose(struct pipe *cpipe)
1440{
1441 struct pipe *ppipe;
1442
1443 if (cpipe == NULL)
1444 return;
1445
1446 /* partially created pipes won't have a valid mutex. */
1447 if (PIPE_MTX(cpipe) != NULL)
1448 PIPE_LOCK(cpipe);
1449
1450 pipeselwakeup(cpipe, cpipe);
1451
1452 /*
1453 * If the other side is blocked, wake it up saying that
1454 * we want to close it down.
1455 */
1456 while (cpipe->pipe_busy) {
1457 cpipe->pipe_state |= PIPE_WANT | PIPE_EOF;
1458
1459 wakeup(cpipe);
1460
1461 msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1462 }
1463
1464#ifdef MAC
1465 if (cpipe->pipe_label != NULL && cpipe->pipe_peer == NULL)
1466 mac_destroy_pipe(cpipe);
1467#endif
1468
1469 /*
1470 * Disconnect from peer
1471 */
1472 if ((ppipe = cpipe->pipe_peer) != NULL) {
1473
1474 ppipe->pipe_state |= PIPE_EOF;
1475
1476 pipeselwakeup(ppipe, ppipe);
1477 wakeup(ppipe);
1478
1479 if (cpipe->pipe_state & PIPE_KNOTE)
1480 KNOTE(&ppipe->pipe_sel.si_note, 1);
1481
1482 postpipeevent(ppipe, EV_RCLOSED);
1483
1484 ppipe->pipe_peer = NULL;
1485 }
1486 evpipefree(cpipe);
1487
1488 /*
1489 * free resources
1490 */
1491 if (PIPE_MTX(cpipe) != NULL) {
1492 if (ppipe != NULL) {
1493 /*
1494 * since the mutex is shared and the peer is still
1495 * alive, we need to release the mutex, not free it
1496 */
1497 PIPE_UNLOCK(cpipe);
1498 } else {
1499 /*
1500 * peer is gone, so we're the sole party left with
1501 * interest in this mutex... we can just free it
1502 */
1503 lck_mtx_free(PIPE_MTX(cpipe), pipe_mtx_grp);
1504 }
1505 }
1506 pipe_free_kmem(cpipe);
1507
1508 zfree(pipe_zone, cpipe);
1509}
1510
1511
1512/*ARGSUSED*/
1513static int
1514pipe_kqfilter(__unused struct fileproc *fp, struct knote *kn, __unused struct proc *p)
1515{
1516 struct pipe *cpipe;
1517
1518 cpipe = (struct pipe *)kn->kn_fp->f_data;
1519
1520 PIPE_LOCK(cpipe);
1521
1522 switch (kn->kn_filter) {
1523 case EVFILT_READ:
1524 kn->kn_fop = &pipe_rfiltops;
1525 break;
1526 case EVFILT_WRITE:
1527 kn->kn_fop = &pipe_wfiltops;
1528
1529 if (cpipe->pipe_peer == NULL) {
1530 /*
1531 * other end of pipe has been closed
1532 */
1533 PIPE_UNLOCK(cpipe);
1534 return (EPIPE);
1535 }
1536 cpipe = cpipe->pipe_peer;
1537 break;
1538 default:
1539 PIPE_UNLOCK(cpipe);
1540 return (1);
1541 }
1542
1543 if (KNOTE_ATTACH(&cpipe->pipe_sel.si_note, kn))
1544 cpipe->pipe_state |= PIPE_KNOTE;
1545
1546 PIPE_UNLOCK(cpipe);
1547 return (0);
1548}
1549
1550static void
1551filt_pipedetach(struct knote *kn)
1552{
1553 struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data;
1554
1555 PIPE_LOCK(cpipe);
1556
1557 if (kn->kn_filter == EVFILT_WRITE) {
1558 if (cpipe->pipe_peer == NULL) {
1559 PIPE_UNLOCK(cpipe);
1560 return;
1561 }
1562 cpipe = cpipe->pipe_peer;
1563 }
1564 if (cpipe->pipe_state & PIPE_KNOTE) {
1565 if (KNOTE_DETACH(&cpipe->pipe_sel.si_note, kn))
1566 cpipe->pipe_state &= ~PIPE_KNOTE;
1567 }
1568 PIPE_UNLOCK(cpipe);
1569}
1570
1571/*ARGSUSED*/
1572static int
1573filt_piperead(struct knote *kn, long hint)
1574{
1575 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1576 struct pipe *wpipe;
1577 int retval;
1578
1579 /*
1580 * if hint == 0, then we've been called from the kevent
1581 * world directly and do not currently hold the pipe mutex...
1582 * if hint == 1, we're being called back via the KNOTE post
1583 * we made in pipeselwakeup, and we already hold the mutex...
1584 */
1585 if (hint == 0)
1586 PIPE_LOCK(rpipe);
1587
1588 wpipe = rpipe->pipe_peer;
1589 kn->kn_data = rpipe->pipe_buffer.cnt;
1590
1591#ifndef PIPE_NODIRECT
1592 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1593 kn->kn_data = rpipe->pipe_map.cnt;
1594#endif
1595 if ((rpipe->pipe_state & PIPE_EOF) ||
1596 (wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1597 kn->kn_flags |= EV_EOF;
1598 retval = 1;
1599 } else
1600 retval = (kn->kn_sfflags & NOTE_LOWAT) ?
1601 (kn->kn_data >= kn->kn_sdata) : (kn->kn_data > 0);
1602
1603 if (hint == 0)
1604 PIPE_UNLOCK(rpipe);
1605
1606 return (retval);
1607}
1608
1609/*ARGSUSED*/
1610static int
1611filt_pipewrite(struct knote *kn, long hint)
1612{
1613 struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1614 struct pipe *wpipe;
1615
1616 /*
1617 * if hint == 0, then we've been called from the kevent
1618 * world directly and do not currently hold the pipe mutex...
1619 * if hint == 1, we're being called back via the KNOTE post
1620 * we made in pipeselwakeup, and we already hold the mutex...
1621 */
1622 if (hint == 0)
1623 PIPE_LOCK(rpipe);
1624
1625 wpipe = rpipe->pipe_peer;
1626
1627 if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
1628 kn->kn_data = 0;
1629 kn->kn_flags |= EV_EOF;
1630
1631 if (hint == 0)
1632 PIPE_UNLOCK(rpipe);
1633 return (1);
1634 }
1635 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1636
1637#ifndef PIPE_NODIRECT
1638 if (wpipe->pipe_state & PIPE_DIRECTW)
1639 kn->kn_data = 0;
1640#endif
1641 if (hint == 0)
1642 PIPE_UNLOCK(rpipe);
1643
1644 return (kn->kn_data >= ((kn->kn_sfflags & NOTE_LOWAT) ?
1645 kn->kn_sdata : PIPE_BUF));
1646}