]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
b0d623f7 | 2 | * Copyright (c) 2000-2008 Apple Inc. All rights reserved. |
1c79356b | 3 | * |
2d21ac55 | 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
1c79356b | 5 | * |
2d21ac55 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
8f6c56a5 | 14 | * |
2d21ac55 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
8f6c56a5 | 25 | * |
2d21ac55 | 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
1c79356b A |
27 | */ |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | * Mach Operating System | |
33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
35 | * | |
36 | * Permission to use, copy, modify and distribute this software and its | |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
41 | * | |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
45 | * | |
46 | * Carnegie Mellon requests users of this software to return to | |
47 | * | |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
52 | * | |
53 | * any improvements or extensions that they make and grant Carnegie Mellon | |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | /* | |
57 | */ | |
58 | /* | |
59 | * File: vm/memory_object.c | |
60 | * Author: Michael Wayne Young | |
61 | * | |
62 | * External memory management interface control functions. | |
63 | */ | |
64 | ||
1c79356b A |
65 | #include <advisory_pageout.h> |
66 | ||
67 | /* | |
68 | * Interface dependencies: | |
69 | */ | |
70 | ||
71 | #include <mach/std_types.h> /* For pointer_t */ | |
72 | #include <mach/mach_types.h> | |
73 | ||
0b4e3aa0 | 74 | #include <mach/mig.h> |
1c79356b A |
75 | #include <mach/kern_return.h> |
76 | #include <mach/memory_object.h> | |
77 | #include <mach/memory_object_default.h> | |
78 | #include <mach/memory_object_control_server.h> | |
0b4e3aa0 | 79 | #include <mach/host_priv_server.h> |
1c79356b A |
80 | #include <mach/boolean.h> |
81 | #include <mach/vm_prot.h> | |
82 | #include <mach/message.h> | |
83 | ||
1c79356b A |
84 | /* |
85 | * Implementation dependencies: | |
86 | */ | |
87 | #include <string.h> /* For memcpy() */ | |
88 | ||
0b4e3aa0 A |
89 | #include <kern/xpr.h> |
90 | #include <kern/host.h> | |
91 | #include <kern/thread.h> /* For current_thread() */ | |
92 | #include <kern/ipc_mig.h> | |
93 | #include <kern/misc_protos.h> | |
94 | ||
95 | #include <vm/vm_object.h> | |
96 | #include <vm/vm_fault.h> | |
1c79356b A |
97 | #include <vm/memory_object.h> |
98 | #include <vm/vm_page.h> | |
99 | #include <vm/vm_pageout.h> | |
100 | #include <vm/pmap.h> /* For pmap_clear_modify */ | |
1c79356b A |
101 | #include <vm/vm_kern.h> /* For kernel_map, vm_move */ |
102 | #include <vm/vm_map.h> /* For vm_map_pageable */ | |
2d21ac55 | 103 | #include <vm/vm_purgeable_internal.h> /* Needed by some vm_page.h macros */ |
6d2010ae | 104 | #include <vm/vm_shared_region.h> |
1c79356b A |
105 | |
106 | #if MACH_PAGEMAP | |
107 | #include <vm/vm_external.h> | |
108 | #endif /* MACH_PAGEMAP */ | |
109 | ||
91447636 A |
110 | #include <vm/vm_protos.h> |
111 | ||
112 | ||
0b4e3aa0 | 113 | memory_object_default_t memory_manager_default = MEMORY_OBJECT_DEFAULT_NULL; |
b0d623f7 | 114 | decl_lck_mtx_data(, memory_manager_default_lock) |
1c79356b | 115 | |
1c79356b A |
116 | |
117 | /* | |
118 | * Routine: memory_object_should_return_page | |
119 | * | |
120 | * Description: | |
121 | * Determine whether the given page should be returned, | |
122 | * based on the page's state and on the given return policy. | |
123 | * | |
124 | * We should return the page if one of the following is true: | |
125 | * | |
126 | * 1. Page is dirty and should_return is not RETURN_NONE. | |
127 | * 2. Page is precious and should_return is RETURN_ALL. | |
128 | * 3. Should_return is RETURN_ANYTHING. | |
129 | * | |
130 | * As a side effect, m->dirty will be made consistent | |
131 | * with pmap_is_modified(m), if should_return is not | |
132 | * MEMORY_OBJECT_RETURN_NONE. | |
133 | */ | |
134 | ||
135 | #define memory_object_should_return_page(m, should_return) \ | |
136 | (should_return != MEMORY_OBJECT_RETURN_NONE && \ | |
55e303ae | 137 | (((m)->dirty || ((m)->dirty = pmap_is_modified((m)->phys_page))) || \ |
1c79356b A |
138 | ((m)->precious && (should_return) == MEMORY_OBJECT_RETURN_ALL) || \ |
139 | (should_return) == MEMORY_OBJECT_RETURN_ANYTHING)) | |
140 | ||
141 | typedef int memory_object_lock_result_t; | |
142 | ||
6d2010ae A |
143 | #define MEMORY_OBJECT_LOCK_RESULT_DONE 0 |
144 | #define MEMORY_OBJECT_LOCK_RESULT_MUST_BLOCK 1 | |
145 | #define MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN 2 | |
146 | #define MEMORY_OBJECT_LOCK_RESULT_MUST_FREE 3 | |
1c79356b A |
147 | |
148 | memory_object_lock_result_t memory_object_lock_page( | |
149 | vm_page_t m, | |
150 | memory_object_return_t should_return, | |
151 | boolean_t should_flush, | |
152 | vm_prot_t prot); | |
153 | ||
154 | /* | |
155 | * Routine: memory_object_lock_page | |
156 | * | |
157 | * Description: | |
158 | * Perform the appropriate lock operations on the | |
159 | * given page. See the description of | |
160 | * "memory_object_lock_request" for the meanings | |
161 | * of the arguments. | |
162 | * | |
163 | * Returns an indication that the operation | |
164 | * completed, blocked, or that the page must | |
165 | * be cleaned. | |
166 | */ | |
167 | memory_object_lock_result_t | |
168 | memory_object_lock_page( | |
169 | vm_page_t m, | |
170 | memory_object_return_t should_return, | |
171 | boolean_t should_flush, | |
172 | vm_prot_t prot) | |
173 | { | |
174 | XPR(XPR_MEMORY_OBJECT, | |
175 | "m_o_lock_page, page 0x%X rtn %d flush %d prot %d\n", | |
b0d623f7 | 176 | m, should_return, should_flush, prot, 0); |
1c79356b | 177 | |
1c79356b | 178 | |
316670eb A |
179 | if (m->busy || m->cleaning) |
180 | return (MEMORY_OBJECT_LOCK_RESULT_MUST_BLOCK); | |
b0d623f7 | 181 | |
316670eb A |
182 | if (m->laundry) |
183 | vm_pageout_steal_laundry(m, FALSE); | |
6d2010ae | 184 | |
1c79356b A |
185 | /* |
186 | * Don't worry about pages for which the kernel | |
187 | * does not have any data. | |
188 | */ | |
765c9de3 | 189 | if (m->absent || m->error || m->restart) { |
6d2010ae A |
190 | if (m->error && should_flush && !VM_PAGE_WIRED(m)) { |
191 | /* | |
192 | * dump the page, pager wants us to | |
193 | * clean it up and there is no | |
194 | * relevant data to return | |
195 | */ | |
196 | return (MEMORY_OBJECT_LOCK_RESULT_MUST_FREE); | |
765c9de3 | 197 | } |
6d2010ae | 198 | return (MEMORY_OBJECT_LOCK_RESULT_DONE); |
765c9de3 | 199 | } |
1c79356b A |
200 | assert(!m->fictitious); |
201 | ||
b0d623f7 | 202 | if (VM_PAGE_WIRED(m)) { |
6d2010ae A |
203 | /* |
204 | * The page is wired... just clean or return the page if needed. | |
205 | * Wired pages don't get flushed or disconnected from the pmap. | |
206 | */ | |
207 | if (memory_object_should_return_page(m, should_return)) | |
208 | return (MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN); | |
1c79356b | 209 | |
6d2010ae A |
210 | return (MEMORY_OBJECT_LOCK_RESULT_DONE); |
211 | } | |
1c79356b | 212 | |
6d2010ae A |
213 | if (should_flush) { |
214 | /* | |
215 | * must do the pmap_disconnect before determining the | |
216 | * need to return the page... otherwise it's possible | |
217 | * for the page to go from the clean to the dirty state | |
218 | * after we've made our decision | |
219 | */ | |
316670eb A |
220 | if (pmap_disconnect(m->phys_page) & VM_MEM_MODIFIED) { |
221 | SET_PAGE_DIRTY(m, FALSE); | |
222 | } | |
6d2010ae A |
223 | } else { |
224 | /* | |
225 | * If we are decreasing permission, do it now; | |
226 | * let the fault handler take care of increases | |
227 | * (pmap_page_protect may not increase protection). | |
228 | */ | |
229 | if (prot != VM_PROT_NO_CHANGE) | |
230 | pmap_page_protect(m->phys_page, VM_PROT_ALL & ~prot); | |
1c79356b | 231 | } |
1c79356b | 232 | /* |
6d2010ae | 233 | * Handle returning dirty or precious pages |
1c79356b | 234 | */ |
1c79356b | 235 | if (memory_object_should_return_page(m, should_return)) { |
1c79356b | 236 | /* |
6d2010ae A |
237 | * we use to do a pmap_disconnect here in support |
238 | * of memory_object_lock_request, but that routine | |
239 | * no longer requires this... in any event, in | |
240 | * our world, it would turn into a big noop since | |
241 | * we don't lock the page in any way and as soon | |
242 | * as we drop the object lock, the page can be | |
243 | * faulted back into an address space | |
244 | * | |
245 | * if (!should_flush) | |
246 | * pmap_disconnect(m->phys_page); | |
1c79356b | 247 | */ |
6d2010ae | 248 | return (MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN); |
1c79356b A |
249 | } |
250 | ||
251 | /* | |
6d2010ae | 252 | * Handle flushing clean pages |
1c79356b | 253 | */ |
6d2010ae A |
254 | if (should_flush) |
255 | return (MEMORY_OBJECT_LOCK_RESULT_MUST_FREE); | |
1c79356b | 256 | |
6d2010ae A |
257 | /* |
258 | * we use to deactivate clean pages at this point, | |
259 | * but we do not believe that an msync should change | |
260 | * the 'age' of a page in the cache... here is the | |
261 | * original comment and code concerning this... | |
262 | * | |
263 | * XXX Make clean but not flush a paging hint, | |
264 | * and deactivate the pages. This is a hack | |
265 | * because it overloads flush/clean with | |
266 | * implementation-dependent meaning. This only | |
267 | * happens to pages that are already clean. | |
268 | * | |
269 | * if (vm_page_deactivate_hint && (should_return != MEMORY_OBJECT_RETURN_NONE)) | |
270 | * return (MEMORY_OBJECT_LOCK_RESULT_MUST_DEACTIVATE); | |
271 | */ | |
1c79356b | 272 | |
6d2010ae | 273 | return (MEMORY_OBJECT_LOCK_RESULT_DONE); |
1c79356b | 274 | } |
0b4e3aa0 | 275 | |
6d2010ae | 276 | |
1c79356b | 277 | |
1c79356b A |
278 | /* |
279 | * Routine: memory_object_lock_request [user interface] | |
280 | * | |
281 | * Description: | |
282 | * Control use of the data associated with the given | |
283 | * memory object. For each page in the given range, | |
284 | * perform the following operations, in order: | |
285 | * 1) restrict access to the page (disallow | |
286 | * forms specified by "prot"); | |
287 | * 2) return data to the manager (if "should_return" | |
288 | * is RETURN_DIRTY and the page is dirty, or | |
289 | * "should_return" is RETURN_ALL and the page | |
290 | * is either dirty or precious); and, | |
291 | * 3) flush the cached copy (if "should_flush" | |
292 | * is asserted). | |
293 | * The set of pages is defined by a starting offset | |
294 | * ("offset") and size ("size"). Only pages with the | |
295 | * same page alignment as the starting offset are | |
296 | * considered. | |
297 | * | |
298 | * A single acknowledgement is sent (to the "reply_to" | |
299 | * port) when these actions are complete. If successful, | |
300 | * the naked send right for reply_to is consumed. | |
301 | */ | |
302 | ||
303 | kern_return_t | |
304 | memory_object_lock_request( | |
0b4e3aa0 A |
305 | memory_object_control_t control, |
306 | memory_object_offset_t offset, | |
307 | memory_object_size_t size, | |
91447636 A |
308 | memory_object_offset_t * resid_offset, |
309 | int * io_errno, | |
1c79356b A |
310 | memory_object_return_t should_return, |
311 | int flags, | |
0b4e3aa0 | 312 | vm_prot_t prot) |
1c79356b | 313 | { |
0b4e3aa0 | 314 | vm_object_t object; |
1c79356b | 315 | |
b0d623f7 | 316 | /* |
1c79356b A |
317 | * Check for bogus arguments. |
318 | */ | |
0b4e3aa0 | 319 | object = memory_object_control_to_vm_object(control); |
1c79356b A |
320 | if (object == VM_OBJECT_NULL) |
321 | return (KERN_INVALID_ARGUMENT); | |
322 | ||
0b4e3aa0 | 323 | if ((prot & ~VM_PROT_ALL) != 0 && prot != VM_PROT_NO_CHANGE) |
1c79356b | 324 | return (KERN_INVALID_ARGUMENT); |
1c79356b | 325 | |
55e303ae | 326 | size = round_page_64(size); |
1c79356b A |
327 | |
328 | /* | |
329 | * Lock the object, and acquire a paging reference to | |
0b4e3aa0 | 330 | * prevent the memory_object reference from being released. |
1c79356b | 331 | */ |
1c79356b A |
332 | vm_object_lock(object); |
333 | vm_object_paging_begin(object); | |
b0d623f7 A |
334 | |
335 | if (flags & MEMORY_OBJECT_DATA_FLUSH_ALL) { | |
336 | if ((should_return != MEMORY_OBJECT_RETURN_NONE) || offset || object->copy) { | |
337 | flags &= ~MEMORY_OBJECT_DATA_FLUSH_ALL; | |
338 | flags |= MEMORY_OBJECT_DATA_FLUSH; | |
339 | } | |
340 | } | |
1c79356b A |
341 | offset -= object->paging_offset; |
342 | ||
b0d623f7 A |
343 | if (flags & MEMORY_OBJECT_DATA_FLUSH_ALL) |
344 | vm_object_reap_pages(object, REAP_DATA_FLUSH); | |
345 | else | |
346 | (void)vm_object_update(object, offset, size, resid_offset, | |
347 | io_errno, should_return, flags, prot); | |
1c79356b | 348 | |
1c79356b A |
349 | vm_object_paging_end(object); |
350 | vm_object_unlock(object); | |
1c79356b A |
351 | |
352 | return (KERN_SUCCESS); | |
353 | } | |
354 | ||
355 | /* | |
0b4e3aa0 A |
356 | * memory_object_release_name: [interface] |
357 | * | |
358 | * Enforces name semantic on memory_object reference count decrement | |
359 | * This routine should not be called unless the caller holds a name | |
360 | * reference gained through the memory_object_named_create or the | |
361 | * memory_object_rename call. | |
362 | * If the TERMINATE_IDLE flag is set, the call will return if the | |
363 | * reference count is not 1. i.e. idle with the only remaining reference | |
364 | * being the name. | |
365 | * If the decision is made to proceed the name field flag is set to | |
366 | * false and the reference count is decremented. If the RESPECT_CACHE | |
367 | * flag is set and the reference count has gone to zero, the | |
368 | * memory_object is checked to see if it is cacheable otherwise when | |
369 | * the reference count is zero, it is simply terminated. | |
370 | */ | |
371 | ||
372 | kern_return_t | |
373 | memory_object_release_name( | |
374 | memory_object_control_t control, | |
375 | int flags) | |
376 | { | |
377 | vm_object_t object; | |
378 | ||
379 | object = memory_object_control_to_vm_object(control); | |
380 | if (object == VM_OBJECT_NULL) | |
381 | return (KERN_INVALID_ARGUMENT); | |
382 | ||
383 | return vm_object_release_name(object, flags); | |
384 | } | |
385 | ||
386 | ||
387 | ||
388 | /* | |
389 | * Routine: memory_object_destroy [user interface] | |
390 | * Purpose: | |
391 | * Shut down a memory object, despite the | |
392 | * presence of address map (or other) references | |
393 | * to the vm_object. | |
394 | */ | |
395 | kern_return_t | |
396 | memory_object_destroy( | |
397 | memory_object_control_t control, | |
398 | kern_return_t reason) | |
399 | { | |
400 | vm_object_t object; | |
401 | ||
402 | object = memory_object_control_to_vm_object(control); | |
403 | if (object == VM_OBJECT_NULL) | |
404 | return (KERN_INVALID_ARGUMENT); | |
405 | ||
406 | return (vm_object_destroy(object, reason)); | |
407 | } | |
408 | ||
409 | /* | |
410 | * Routine: vm_object_sync | |
1c79356b A |
411 | * |
412 | * Kernel internal function to synch out pages in a given | |
413 | * range within an object to its memory manager. Much the | |
414 | * same as memory_object_lock_request but page protection | |
415 | * is not changed. | |
416 | * | |
417 | * If the should_flush and should_return flags are true pages | |
418 | * are flushed, that is dirty & precious pages are written to | |
419 | * the memory manager and then discarded. If should_return | |
420 | * is false, only precious pages are returned to the memory | |
421 | * manager. | |
422 | * | |
423 | * If should flush is false and should_return true, the memory | |
424 | * manager's copy of the pages is updated. If should_return | |
425 | * is also false, only the precious pages are updated. This | |
426 | * last option is of limited utility. | |
427 | * | |
428 | * Returns: | |
429 | * FALSE if no pages were returned to the pager | |
430 | * TRUE otherwise. | |
431 | */ | |
432 | ||
433 | boolean_t | |
0b4e3aa0 | 434 | vm_object_sync( |
1c79356b A |
435 | vm_object_t object, |
436 | vm_object_offset_t offset, | |
91447636 | 437 | vm_object_size_t size, |
1c79356b | 438 | boolean_t should_flush, |
91447636 A |
439 | boolean_t should_return, |
440 | boolean_t should_iosync) | |
1c79356b A |
441 | { |
442 | boolean_t rv; | |
91447636 | 443 | int flags; |
1c79356b | 444 | |
0b4e3aa0 A |
445 | XPR(XPR_VM_OBJECT, |
446 | "vm_o_sync, object 0x%X, offset 0x%X size 0x%x flush %d rtn %d\n", | |
b0d623f7 | 447 | object, offset, size, should_flush, should_return); |
1c79356b A |
448 | |
449 | /* | |
450 | * Lock the object, and acquire a paging reference to | |
451 | * prevent the memory_object and control ports from | |
452 | * being destroyed. | |
453 | */ | |
454 | vm_object_lock(object); | |
455 | vm_object_paging_begin(object); | |
456 | ||
91447636 A |
457 | if (should_flush) |
458 | flags = MEMORY_OBJECT_DATA_FLUSH; | |
459 | else | |
460 | flags = 0; | |
461 | ||
462 | if (should_iosync) | |
463 | flags |= MEMORY_OBJECT_IO_SYNC; | |
464 | ||
465 | rv = vm_object_update(object, offset, (vm_object_size_t)size, NULL, NULL, | |
1c79356b A |
466 | (should_return) ? |
467 | MEMORY_OBJECT_RETURN_ALL : | |
468 | MEMORY_OBJECT_RETURN_NONE, | |
91447636 | 469 | flags, |
1c79356b A |
470 | VM_PROT_NO_CHANGE); |
471 | ||
472 | ||
473 | vm_object_paging_end(object); | |
474 | vm_object_unlock(object); | |
475 | return rv; | |
476 | } | |
477 | ||
91447636 A |
478 | |
479 | ||
6d2010ae A |
480 | #define LIST_REQ_PAGEOUT_PAGES(object, data_cnt, po, ro, ioerr, iosync) \ |
481 | MACRO_BEGIN \ | |
482 | \ | |
483 | int upl_flags; \ | |
484 | memory_object_t pager; \ | |
485 | \ | |
486 | if (object == slide_info.slide_object) { \ | |
487 | panic("Objects with slid pages not allowed\n"); \ | |
488 | } \ | |
489 | \ | |
490 | if ((pager = (object)->pager) != MEMORY_OBJECT_NULL) { \ | |
491 | vm_object_paging_begin(object); \ | |
492 | vm_object_unlock(object); \ | |
493 | \ | |
494 | if (iosync) \ | |
495 | upl_flags = UPL_MSYNC | UPL_IOSYNC; \ | |
496 | else \ | |
497 | upl_flags = UPL_MSYNC; \ | |
498 | \ | |
499 | (void) memory_object_data_return(pager, \ | |
500 | po, \ | |
501 | (memory_object_cluster_size_t)data_cnt, \ | |
502 | ro, \ | |
503 | ioerr, \ | |
504 | FALSE, \ | |
505 | FALSE, \ | |
506 | upl_flags); \ | |
507 | \ | |
508 | vm_object_lock(object); \ | |
509 | vm_object_paging_end(object); \ | |
510 | } \ | |
511 | MACRO_END | |
512 | ||
513 | ||
91447636 A |
514 | |
515 | static int | |
516 | vm_object_update_extent( | |
517 | vm_object_t object, | |
518 | vm_object_offset_t offset, | |
519 | vm_object_offset_t offset_end, | |
520 | vm_object_offset_t *offset_resid, | |
521 | int *io_errno, | |
522 | boolean_t should_flush, | |
523 | memory_object_return_t should_return, | |
524 | boolean_t should_iosync, | |
525 | vm_prot_t prot) | |
526 | { | |
527 | vm_page_t m; | |
528 | int retval = 0; | |
91447636 | 529 | vm_object_offset_t paging_offset = 0; |
b0d623f7 | 530 | vm_object_offset_t next_offset = offset; |
91447636 | 531 | memory_object_lock_result_t page_lock_result; |
6d2010ae A |
532 | memory_object_cluster_size_t data_cnt = 0; |
533 | struct vm_page_delayed_work dw_array[DEFAULT_DELAYED_WORK_LIMIT]; | |
534 | struct vm_page_delayed_work *dwp; | |
535 | int dw_count; | |
536 | int dw_limit; | |
537 | ||
538 | dwp = &dw_array[0]; | |
539 | dw_count = 0; | |
540 | dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT); | |
91447636 A |
541 | |
542 | for (; | |
543 | offset < offset_end && object->resident_page_count; | |
544 | offset += PAGE_SIZE_64) { | |
545 | ||
546 | /* | |
b0d623f7 A |
547 | * Limit the number of pages to be cleaned at once to a contiguous |
548 | * run, or at most MAX_UPL_TRANSFER size | |
91447636 | 549 | */ |
b0d623f7 A |
550 | if (data_cnt) { |
551 | if ((data_cnt >= PAGE_SIZE * MAX_UPL_TRANSFER) || (next_offset != offset)) { | |
6d2010ae A |
552 | |
553 | if (dw_count) { | |
554 | vm_page_do_delayed_work(object, &dw_array[0], dw_count); | |
555 | dwp = &dw_array[0]; | |
556 | dw_count = 0; | |
557 | } | |
558 | LIST_REQ_PAGEOUT_PAGES(object, data_cnt, | |
559 | paging_offset, offset_resid, io_errno, should_iosync); | |
b0d623f7 A |
560 | data_cnt = 0; |
561 | } | |
91447636 | 562 | } |
91447636 | 563 | while ((m = vm_page_lookup(object, offset)) != VM_PAGE_NULL) { |
6d2010ae A |
564 | |
565 | dwp->dw_mask = 0; | |
566 | ||
567 | page_lock_result = memory_object_lock_page(m, should_return, should_flush, prot); | |
568 | ||
569 | if (data_cnt && page_lock_result != MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN) { | |
570 | /* | |
571 | * End of a run of dirty/precious pages. | |
572 | */ | |
573 | if (dw_count) { | |
574 | vm_page_do_delayed_work(object, &dw_array[0], dw_count); | |
575 | dwp = &dw_array[0]; | |
576 | dw_count = 0; | |
577 | } | |
578 | LIST_REQ_PAGEOUT_PAGES(object, data_cnt, | |
579 | paging_offset, offset_resid, io_errno, should_iosync); | |
580 | /* | |
581 | * LIST_REQ_PAGEOUT_PAGES will drop the object lock which will | |
582 | * allow the state of page 'm' to change... we need to re-lookup | |
583 | * the current offset | |
584 | */ | |
585 | data_cnt = 0; | |
586 | continue; | |
587 | } | |
588 | ||
589 | switch (page_lock_result) { | |
590 | ||
591 | case MEMORY_OBJECT_LOCK_RESULT_DONE: | |
592 | break; | |
593 | ||
594 | case MEMORY_OBJECT_LOCK_RESULT_MUST_FREE: | |
595 | dwp->dw_mask |= DW_vm_page_free; | |
596 | break; | |
597 | ||
598 | case MEMORY_OBJECT_LOCK_RESULT_MUST_BLOCK: | |
599 | PAGE_SLEEP(object, m, THREAD_UNINT); | |
600 | continue; | |
601 | ||
602 | case MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN: | |
603 | if (data_cnt == 0) | |
604 | paging_offset = offset; | |
605 | ||
606 | data_cnt += PAGE_SIZE; | |
607 | next_offset = offset + PAGE_SIZE_64; | |
608 | ||
6d2010ae A |
609 | /* |
610 | * wired pages shouldn't be flushed and | |
611 | * since they aren't on any queue, | |
612 | * no need to remove them | |
613 | */ | |
614 | if (!VM_PAGE_WIRED(m)) { | |
615 | ||
616 | if (should_flush) { | |
617 | /* | |
618 | * add additional state for the flush | |
619 | */ | |
6d2010ae | 620 | m->pageout = TRUE; |
6d2010ae A |
621 | } |
622 | /* | |
623 | * we use to remove the page from the queues at this | |
624 | * point, but we do not believe that an msync | |
625 | * should cause the 'age' of a page to be changed | |
626 | * | |
627 | * else | |
628 | * dwp->dw_mask |= DW_VM_PAGE_QUEUES_REMOVE; | |
629 | */ | |
630 | } | |
631 | retval = 1; | |
632 | break; | |
633 | } | |
634 | if (dwp->dw_mask) { | |
635 | VM_PAGE_ADD_DELAYED_WORK(dwp, m, dw_count); | |
636 | ||
637 | if (dw_count >= dw_limit) { | |
638 | vm_page_do_delayed_work(object, &dw_array[0], dw_count); | |
639 | dwp = &dw_array[0]; | |
640 | dw_count = 0; | |
641 | } | |
91447636 A |
642 | } |
643 | break; | |
644 | } | |
645 | } | |
646 | /* | |
647 | * We have completed the scan for applicable pages. | |
648 | * Clean any pages that have been saved. | |
649 | */ | |
6d2010ae A |
650 | if (dw_count) |
651 | vm_page_do_delayed_work(object, &dw_array[0], dw_count); | |
652 | ||
91447636 | 653 | if (data_cnt) { |
6d2010ae A |
654 | LIST_REQ_PAGEOUT_PAGES(object, data_cnt, |
655 | paging_offset, offset_resid, io_errno, should_iosync); | |
91447636 A |
656 | } |
657 | return (retval); | |
658 | } | |
659 | ||
660 | ||
661 | ||
1c79356b | 662 | /* |
0b4e3aa0 | 663 | * Routine: vm_object_update |
1c79356b | 664 | * Description: |
0b4e3aa0 | 665 | * Work function for m_o_lock_request(), vm_o_sync(). |
1c79356b A |
666 | * |
667 | * Called with object locked and paging ref taken. | |
668 | */ | |
669 | kern_return_t | |
0b4e3aa0 | 670 | vm_object_update( |
6d2010ae A |
671 | vm_object_t object, |
672 | vm_object_offset_t offset, | |
673 | vm_object_size_t size, | |
674 | vm_object_offset_t *resid_offset, | |
675 | int *io_errno, | |
676 | memory_object_return_t should_return, | |
677 | int flags, | |
678 | vm_prot_t protection) | |
1c79356b | 679 | { |
2d21ac55 | 680 | vm_object_t copy_object = VM_OBJECT_NULL; |
1c79356b A |
681 | boolean_t data_returned = FALSE; |
682 | boolean_t update_cow; | |
91447636 A |
683 | boolean_t should_flush = (flags & MEMORY_OBJECT_DATA_FLUSH) ? TRUE : FALSE; |
684 | boolean_t should_iosync = (flags & MEMORY_OBJECT_IO_SYNC) ? TRUE : FALSE; | |
b0d623f7 | 685 | vm_fault_return_t result; |
91447636 A |
686 | int num_of_extents; |
687 | int n; | |
688 | #define MAX_EXTENTS 8 | |
689 | #define EXTENT_SIZE (1024 * 1024 * 256) | |
690 | #define RESIDENT_LIMIT (1024 * 32) | |
691 | struct extent { | |
692 | vm_object_offset_t e_base; | |
693 | vm_object_offset_t e_min; | |
694 | vm_object_offset_t e_max; | |
695 | } extents[MAX_EXTENTS]; | |
1c79356b A |
696 | |
697 | /* | |
698 | * To avoid blocking while scanning for pages, save | |
699 | * dirty pages to be cleaned all at once. | |
700 | * | |
701 | * XXXO A similar strategy could be used to limit the | |
702 | * number of times that a scan must be restarted for | |
703 | * other reasons. Those pages that would require blocking | |
704 | * could be temporarily collected in another list, or | |
705 | * their offsets could be recorded in a small array. | |
706 | */ | |
707 | ||
708 | /* | |
709 | * XXX NOTE: May want to consider converting this to a page list | |
710 | * XXX vm_map_copy interface. Need to understand object | |
711 | * XXX coalescing implications before doing so. | |
712 | */ | |
713 | ||
714 | update_cow = ((flags & MEMORY_OBJECT_DATA_FLUSH) | |
715 | && (!(flags & MEMORY_OBJECT_DATA_NO_CHANGE) && | |
716 | !(flags & MEMORY_OBJECT_DATA_PURGE))) | |
717 | || (flags & MEMORY_OBJECT_COPY_SYNC); | |
718 | ||
2d21ac55 A |
719 | if (update_cow || (flags & (MEMORY_OBJECT_DATA_PURGE | MEMORY_OBJECT_DATA_SYNC))) { |
720 | int collisions = 0; | |
721 | ||
722 | while ((copy_object = object->copy) != VM_OBJECT_NULL) { | |
723 | /* | |
724 | * need to do a try here since we're swimming upstream | |
725 | * against the normal lock ordering... however, we need | |
726 | * to hold the object stable until we gain control of the | |
727 | * copy object so we have to be careful how we approach this | |
728 | */ | |
729 | if (vm_object_lock_try(copy_object)) { | |
730 | /* | |
731 | * we 'won' the lock on the copy object... | |
732 | * no need to hold the object lock any longer... | |
733 | * take a real reference on the copy object because | |
734 | * we're going to call vm_fault_page on it which may | |
735 | * under certain conditions drop the lock and the paging | |
736 | * reference we're about to take... the reference | |
737 | * will keep the copy object from going away if that happens | |
738 | */ | |
739 | vm_object_unlock(object); | |
740 | vm_object_reference_locked(copy_object); | |
741 | break; | |
742 | } | |
743 | vm_object_unlock(object); | |
1c79356b | 744 | |
2d21ac55 A |
745 | collisions++; |
746 | mutex_pause(collisions); | |
747 | ||
748 | vm_object_lock(object); | |
749 | } | |
750 | } | |
751 | if ((copy_object != VM_OBJECT_NULL && update_cow) || (flags & MEMORY_OBJECT_DATA_SYNC)) { | |
91447636 A |
752 | vm_map_size_t i; |
753 | vm_map_size_t copy_size; | |
754 | vm_map_offset_t copy_offset; | |
1c79356b A |
755 | vm_prot_t prot; |
756 | vm_page_t page; | |
757 | vm_page_t top_page; | |
758 | kern_return_t error = 0; | |
2d21ac55 A |
759 | struct vm_object_fault_info fault_info; |
760 | ||
761 | if (copy_object != VM_OBJECT_NULL) { | |
762 | /* | |
763 | * translate offset with respect to shadow's offset | |
764 | */ | |
6d2010ae A |
765 | copy_offset = (offset >= copy_object->vo_shadow_offset) ? |
766 | (vm_map_offset_t)(offset - copy_object->vo_shadow_offset) : | |
2d21ac55 A |
767 | (vm_map_offset_t) 0; |
768 | ||
6d2010ae A |
769 | if (copy_offset > copy_object->vo_size) |
770 | copy_offset = copy_object->vo_size; | |
2d21ac55 A |
771 | |
772 | /* | |
773 | * clip size with respect to shadow offset | |
774 | */ | |
6d2010ae | 775 | if (offset >= copy_object->vo_shadow_offset) { |
2d21ac55 | 776 | copy_size = size; |
6d2010ae A |
777 | } else if (size >= copy_object->vo_shadow_offset - offset) { |
778 | copy_size = size - (copy_object->vo_shadow_offset - offset); | |
2d21ac55 A |
779 | } else { |
780 | copy_size = 0; | |
781 | } | |
782 | ||
6d2010ae A |
783 | if (copy_offset + copy_size > copy_object->vo_size) { |
784 | if (copy_object->vo_size >= copy_offset) { | |
785 | copy_size = copy_object->vo_size - copy_offset; | |
2d21ac55 A |
786 | } else { |
787 | copy_size = 0; | |
788 | } | |
789 | } | |
790 | copy_size+=copy_offset; | |
1c79356b | 791 | |
1c79356b A |
792 | } else { |
793 | copy_object = object; | |
794 | ||
795 | copy_size = offset + size; | |
796 | copy_offset = offset; | |
797 | } | |
2d21ac55 A |
798 | fault_info.interruptible = THREAD_UNINT; |
799 | fault_info.behavior = VM_BEHAVIOR_SEQUENTIAL; | |
800 | fault_info.user_tag = 0; | |
801 | fault_info.lo_offset = copy_offset; | |
802 | fault_info.hi_offset = copy_size; | |
803 | fault_info.no_cache = FALSE; | |
b0d623f7 | 804 | fault_info.stealth = TRUE; |
6d2010ae A |
805 | fault_info.io_sync = FALSE; |
806 | fault_info.cs_bypass = FALSE; | |
0b4c1975 | 807 | fault_info.mark_zf_absent = FALSE; |
316670eb | 808 | fault_info.batch_pmap_op = FALSE; |
1c79356b A |
809 | |
810 | vm_object_paging_begin(copy_object); | |
2d21ac55 A |
811 | |
812 | for (i = copy_offset; i < copy_size; i += PAGE_SIZE) { | |
1c79356b | 813 | RETRY_COW_OF_LOCK_REQUEST: |
b0d623f7 A |
814 | fault_info.cluster_size = (vm_size_t) (copy_size - i); |
815 | assert(fault_info.cluster_size == copy_size - i); | |
2d21ac55 | 816 | |
1c79356b | 817 | prot = VM_PROT_WRITE|VM_PROT_READ; |
b0d623f7 A |
818 | result = vm_fault_page(copy_object, i, |
819 | VM_PROT_WRITE|VM_PROT_READ, | |
820 | FALSE, | |
821 | &prot, | |
822 | &page, | |
823 | &top_page, | |
824 | (int *)0, | |
825 | &error, | |
826 | FALSE, | |
827 | FALSE, &fault_info); | |
828 | ||
829 | switch (result) { | |
1c79356b | 830 | case VM_FAULT_SUCCESS: |
2d21ac55 | 831 | if (top_page) { |
1c79356b A |
832 | vm_fault_cleanup( |
833 | page->object, top_page); | |
1c79356b A |
834 | vm_object_lock(copy_object); |
835 | vm_object_paging_begin(copy_object); | |
1c79356b | 836 | } |
b0d623f7 A |
837 | if (!page->active && |
838 | !page->inactive && | |
839 | !page->throttled) { | |
840 | vm_page_lockspin_queues(); | |
841 | if (!page->active && | |
842 | !page->inactive && | |
843 | !page->throttled) | |
844 | vm_page_deactivate(page); | |
845 | vm_page_unlock_queues(); | |
846 | } | |
2d21ac55 | 847 | PAGE_WAKEUP_DONE(page); |
1c79356b A |
848 | break; |
849 | case VM_FAULT_RETRY: | |
850 | prot = VM_PROT_WRITE|VM_PROT_READ; | |
851 | vm_object_lock(copy_object); | |
852 | vm_object_paging_begin(copy_object); | |
853 | goto RETRY_COW_OF_LOCK_REQUEST; | |
854 | case VM_FAULT_INTERRUPTED: | |
855 | prot = VM_PROT_WRITE|VM_PROT_READ; | |
856 | vm_object_lock(copy_object); | |
857 | vm_object_paging_begin(copy_object); | |
858 | goto RETRY_COW_OF_LOCK_REQUEST; | |
859 | case VM_FAULT_MEMORY_SHORTAGE: | |
860 | VM_PAGE_WAIT(); | |
861 | prot = VM_PROT_WRITE|VM_PROT_READ; | |
862 | vm_object_lock(copy_object); | |
863 | vm_object_paging_begin(copy_object); | |
864 | goto RETRY_COW_OF_LOCK_REQUEST; | |
b0d623f7 A |
865 | case VM_FAULT_SUCCESS_NO_VM_PAGE: |
866 | /* success but no VM page: fail */ | |
867 | vm_object_paging_end(copy_object); | |
868 | vm_object_unlock(copy_object); | |
869 | /*FALLTHROUGH*/ | |
1c79356b | 870 | case VM_FAULT_MEMORY_ERROR: |
2d21ac55 A |
871 | if (object != copy_object) |
872 | vm_object_deallocate(copy_object); | |
1c79356b A |
873 | vm_object_lock(object); |
874 | goto BYPASS_COW_COPYIN; | |
b0d623f7 A |
875 | default: |
876 | panic("vm_object_update: unexpected error 0x%x" | |
877 | " from vm_fault_page()\n", result); | |
1c79356b A |
878 | } |
879 | ||
880 | } | |
881 | vm_object_paging_end(copy_object); | |
2d21ac55 A |
882 | } |
883 | if ((flags & (MEMORY_OBJECT_DATA_SYNC | MEMORY_OBJECT_COPY_SYNC))) { | |
884 | if (copy_object != VM_OBJECT_NULL && copy_object != object) { | |
1c79356b | 885 | vm_object_unlock(copy_object); |
2d21ac55 | 886 | vm_object_deallocate(copy_object); |
1c79356b A |
887 | vm_object_lock(object); |
888 | } | |
2d21ac55 | 889 | return KERN_SUCCESS; |
1c79356b | 890 | } |
2d21ac55 A |
891 | if (copy_object != VM_OBJECT_NULL && copy_object != object) { |
892 | if ((flags & MEMORY_OBJECT_DATA_PURGE)) { | |
893 | copy_object->shadow_severed = TRUE; | |
894 | copy_object->shadowed = FALSE; | |
895 | copy_object->shadow = NULL; | |
896 | /* | |
897 | * delete the ref the COW was holding on the target object | |
898 | */ | |
899 | vm_object_deallocate(object); | |
900 | } | |
901 | vm_object_unlock(copy_object); | |
902 | vm_object_deallocate(copy_object); | |
903 | vm_object_lock(object); | |
1c79356b A |
904 | } |
905 | BYPASS_COW_COPYIN: | |
906 | ||
91447636 A |
907 | /* |
908 | * when we have a really large range to check relative | |
909 | * to the number of actual resident pages, we'd like | |
910 | * to use the resident page list to drive our checks | |
911 | * however, the object lock will get dropped while processing | |
912 | * the page which means the resident queue can change which | |
913 | * means we can't walk the queue as we process the pages | |
914 | * we also want to do the processing in offset order to allow | |
915 | * 'runs' of pages to be collected if we're being told to | |
916 | * flush to disk... the resident page queue is NOT ordered. | |
917 | * | |
918 | * a temporary solution (until we figure out how to deal with | |
919 | * large address spaces more generically) is to pre-flight | |
920 | * the resident page queue (if it's small enough) and develop | |
921 | * a collection of extents (that encompass actual resident pages) | |
922 | * to visit. This will at least allow us to deal with some of the | |
923 | * more pathological cases in a more efficient manner. The current | |
924 | * worst case (a single resident page at the end of an extremely large | |
925 | * range) can take minutes to complete for ranges in the terrabyte | |
926 | * category... since this routine is called when truncating a file, | |
927 | * and we currently support files up to 16 Tbytes in size, this | |
928 | * is not a theoretical problem | |
929 | */ | |
1c79356b | 930 | |
91447636 A |
931 | if ((object->resident_page_count < RESIDENT_LIMIT) && |
932 | (atop_64(size) > (unsigned)(object->resident_page_count/(8 * MAX_EXTENTS)))) { | |
933 | vm_page_t next; | |
934 | vm_object_offset_t start; | |
935 | vm_object_offset_t end; | |
936 | vm_object_size_t e_mask; | |
937 | vm_page_t m; | |
1c79356b | 938 | |
91447636 A |
939 | start = offset; |
940 | end = offset + size; | |
941 | num_of_extents = 0; | |
942 | e_mask = ~((vm_object_size_t)(EXTENT_SIZE - 1)); | |
1c79356b | 943 | |
91447636 | 944 | m = (vm_page_t) queue_first(&object->memq); |
1c79356b | 945 | |
91447636 A |
946 | while (!queue_end(&object->memq, (queue_entry_t) m)) { |
947 | next = (vm_page_t) queue_next(&m->listq); | |
1c79356b | 948 | |
91447636 A |
949 | if ((m->offset >= start) && (m->offset < end)) { |
950 | /* | |
951 | * this is a page we're interested in | |
952 | * try to fit it into a current extent | |
1c79356b | 953 | */ |
91447636 A |
954 | for (n = 0; n < num_of_extents; n++) { |
955 | if ((m->offset & e_mask) == extents[n].e_base) { | |
956 | /* | |
957 | * use (PAGE_SIZE - 1) to determine the | |
958 | * max offset so that we don't wrap if | |
959 | * we're at the last page of the space | |
960 | */ | |
961 | if (m->offset < extents[n].e_min) | |
962 | extents[n].e_min = m->offset; | |
963 | else if ((m->offset + (PAGE_SIZE - 1)) > extents[n].e_max) | |
964 | extents[n].e_max = m->offset + (PAGE_SIZE - 1); | |
965 | break; | |
966 | } | |
967 | } | |
968 | if (n == num_of_extents) { | |
969 | /* | |
970 | * didn't find a current extent that can encompass | |
971 | * this page | |
972 | */ | |
973 | if (n < MAX_EXTENTS) { | |
974 | /* | |
975 | * if we still have room, | |
976 | * create a new extent | |
977 | */ | |
978 | extents[n].e_base = m->offset & e_mask; | |
979 | extents[n].e_min = m->offset; | |
980 | extents[n].e_max = m->offset + (PAGE_SIZE - 1); | |
981 | ||
982 | num_of_extents++; | |
983 | } else { | |
984 | /* | |
985 | * no room to create a new extent... | |
986 | * fall back to a single extent based | |
987 | * on the min and max page offsets | |
988 | * we find in the range we're interested in... | |
989 | * first, look through the extent list and | |
990 | * develop the overall min and max for the | |
991 | * pages we've looked at up to this point | |
992 | */ | |
993 | for (n = 1; n < num_of_extents; n++) { | |
994 | if (extents[n].e_min < extents[0].e_min) | |
995 | extents[0].e_min = extents[n].e_min; | |
996 | if (extents[n].e_max > extents[0].e_max) | |
997 | extents[0].e_max = extents[n].e_max; | |
998 | } | |
999 | /* | |
1000 | * now setup to run through the remaining pages | |
1001 | * to determine the overall min and max | |
1002 | * offset for the specified range | |
1003 | */ | |
1004 | extents[0].e_base = 0; | |
1005 | e_mask = 0; | |
1006 | num_of_extents = 1; | |
1007 | ||
1008 | /* | |
1009 | * by continuing, we'll reprocess the | |
1010 | * page that forced us to abandon trying | |
1011 | * to develop multiple extents | |
1012 | */ | |
1013 | continue; | |
1014 | } | |
1015 | } | |
1c79356b | 1016 | } |
91447636 | 1017 | m = next; |
1c79356b | 1018 | } |
91447636 A |
1019 | } else { |
1020 | extents[0].e_min = offset; | |
1021 | extents[0].e_max = offset + (size - 1); | |
1c79356b | 1022 | |
91447636 A |
1023 | num_of_extents = 1; |
1024 | } | |
1025 | for (n = 0; n < num_of_extents; n++) { | |
1026 | if (vm_object_update_extent(object, extents[n].e_min, extents[n].e_max, resid_offset, io_errno, | |
1027 | should_flush, should_return, should_iosync, protection)) | |
1028 | data_returned = TRUE; | |
1c79356b | 1029 | } |
1c79356b A |
1030 | return (data_returned); |
1031 | } | |
1032 | ||
91447636 | 1033 | |
1c79356b A |
1034 | /* |
1035 | * Routine: memory_object_synchronize_completed [user interface] | |
1036 | * | |
1037 | * Tell kernel that previously synchronized data | |
1038 | * (memory_object_synchronize) has been queue or placed on the | |
1039 | * backing storage. | |
1040 | * | |
1041 | * Note: there may be multiple synchronize requests for a given | |
1042 | * memory object outstanding but they will not overlap. | |
1043 | */ | |
1044 | ||
1045 | kern_return_t | |
1046 | memory_object_synchronize_completed( | |
0b4e3aa0 A |
1047 | memory_object_control_t control, |
1048 | memory_object_offset_t offset, | |
b0d623f7 | 1049 | memory_object_size_t length) |
1c79356b | 1050 | { |
0b4e3aa0 A |
1051 | vm_object_t object; |
1052 | msync_req_t msr; | |
1c79356b | 1053 | |
91447636 A |
1054 | object = memory_object_control_to_vm_object(control); |
1055 | ||
1c79356b A |
1056 | XPR(XPR_MEMORY_OBJECT, |
1057 | "m_o_sync_completed, object 0x%X, offset 0x%X length 0x%X\n", | |
b0d623f7 | 1058 | object, offset, length, 0, 0); |
1c79356b A |
1059 | |
1060 | /* | |
1061 | * Look for bogus arguments | |
1062 | */ | |
1063 | ||
0b4e3aa0 A |
1064 | if (object == VM_OBJECT_NULL) |
1065 | return (KERN_INVALID_ARGUMENT); | |
1c79356b A |
1066 | |
1067 | vm_object_lock(object); | |
1068 | ||
1069 | /* | |
1070 | * search for sync request structure | |
1071 | */ | |
1072 | queue_iterate(&object->msr_q, msr, msync_req_t, msr_q) { | |
1073 | if (msr->offset == offset && msr->length == length) { | |
1074 | queue_remove(&object->msr_q, msr, msync_req_t, msr_q); | |
1075 | break; | |
1076 | } | |
1077 | }/* queue_iterate */ | |
1078 | ||
1079 | if (queue_end(&object->msr_q, (queue_entry_t)msr)) { | |
1080 | vm_object_unlock(object); | |
1c79356b A |
1081 | return KERN_INVALID_ARGUMENT; |
1082 | } | |
1083 | ||
1084 | msr_lock(msr); | |
1085 | vm_object_unlock(object); | |
1086 | msr->flag = VM_MSYNC_DONE; | |
1087 | msr_unlock(msr); | |
1088 | thread_wakeup((event_t) msr); | |
1c79356b A |
1089 | |
1090 | return KERN_SUCCESS; | |
1091 | }/* memory_object_synchronize_completed */ | |
0b4e3aa0 A |
1092 | |
1093 | static kern_return_t | |
1094 | vm_object_set_attributes_common( | |
1c79356b A |
1095 | vm_object_t object, |
1096 | boolean_t may_cache, | |
1097 | memory_object_copy_strategy_t copy_strategy, | |
1098 | boolean_t temporary, | |
1c79356b A |
1099 | boolean_t silent_overwrite, |
1100 | boolean_t advisory_pageout) | |
1101 | { | |
1102 | boolean_t object_became_ready; | |
1103 | ||
1104 | XPR(XPR_MEMORY_OBJECT, | |
1105 | "m_o_set_attr_com, object 0x%X flg %x strat %d\n", | |
b0d623f7 | 1106 | object, (may_cache&1)|((temporary&1)<1), copy_strategy, 0, 0); |
1c79356b A |
1107 | |
1108 | if (object == VM_OBJECT_NULL) | |
1109 | return(KERN_INVALID_ARGUMENT); | |
1110 | ||
1111 | /* | |
1112 | * Verify the attributes of importance | |
1113 | */ | |
1114 | ||
1115 | switch(copy_strategy) { | |
1116 | case MEMORY_OBJECT_COPY_NONE: | |
1117 | case MEMORY_OBJECT_COPY_DELAY: | |
1118 | break; | |
1119 | default: | |
1c79356b A |
1120 | return(KERN_INVALID_ARGUMENT); |
1121 | } | |
1122 | ||
1123 | #if !ADVISORY_PAGEOUT | |
0b4e3aa0 | 1124 | if (silent_overwrite || advisory_pageout) |
1c79356b | 1125 | return(KERN_INVALID_ARGUMENT); |
0b4e3aa0 | 1126 | |
1c79356b A |
1127 | #endif /* !ADVISORY_PAGEOUT */ |
1128 | if (may_cache) | |
1129 | may_cache = TRUE; | |
1130 | if (temporary) | |
1131 | temporary = TRUE; | |
1c79356b A |
1132 | |
1133 | vm_object_lock(object); | |
1134 | ||
1135 | /* | |
1136 | * Copy the attributes | |
1137 | */ | |
1138 | assert(!object->internal); | |
1139 | object_became_ready = !object->pager_ready; | |
1140 | object->copy_strategy = copy_strategy; | |
1141 | object->can_persist = may_cache; | |
1142 | object->temporary = temporary; | |
1143 | object->silent_overwrite = silent_overwrite; | |
1144 | object->advisory_pageout = advisory_pageout; | |
1c79356b A |
1145 | |
1146 | /* | |
1147 | * Wake up anyone waiting for the ready attribute | |
1148 | * to become asserted. | |
1149 | */ | |
1150 | ||
1151 | if (object_became_ready) { | |
1152 | object->pager_ready = TRUE; | |
1153 | vm_object_wakeup(object, VM_OBJECT_EVENT_PAGER_READY); | |
1154 | } | |
1155 | ||
1156 | vm_object_unlock(object); | |
1157 | ||
1c79356b A |
1158 | return(KERN_SUCCESS); |
1159 | } | |
1160 | ||
1161 | /* | |
1162 | * Set the memory object attribute as provided. | |
1163 | * | |
1164 | * XXX This routine cannot be completed until the vm_msync, clean | |
1165 | * in place, and cluster work is completed. See ifdef notyet | |
0b4e3aa0 | 1166 | * below and note that vm_object_set_attributes_common() |
1c79356b A |
1167 | * may have to be expanded. |
1168 | */ | |
1169 | kern_return_t | |
1170 | memory_object_change_attributes( | |
0b4e3aa0 A |
1171 | memory_object_control_t control, |
1172 | memory_object_flavor_t flavor, | |
1173 | memory_object_info_t attributes, | |
1174 | mach_msg_type_number_t count) | |
1c79356b | 1175 | { |
0b4e3aa0 A |
1176 | vm_object_t object; |
1177 | kern_return_t result = KERN_SUCCESS; | |
1178 | boolean_t temporary; | |
1179 | boolean_t may_cache; | |
1180 | boolean_t invalidate; | |
1c79356b | 1181 | memory_object_copy_strategy_t copy_strategy; |
0b4e3aa0 | 1182 | boolean_t silent_overwrite; |
1c79356b A |
1183 | boolean_t advisory_pageout; |
1184 | ||
0b4e3aa0 | 1185 | object = memory_object_control_to_vm_object(control); |
1c79356b | 1186 | if (object == VM_OBJECT_NULL) |
0b4e3aa0 | 1187 | return (KERN_INVALID_ARGUMENT); |
1c79356b A |
1188 | |
1189 | vm_object_lock(object); | |
0b4e3aa0 | 1190 | |
1c79356b A |
1191 | temporary = object->temporary; |
1192 | may_cache = object->can_persist; | |
1193 | copy_strategy = object->copy_strategy; | |
1194 | silent_overwrite = object->silent_overwrite; | |
1195 | advisory_pageout = object->advisory_pageout; | |
1196 | #if notyet | |
1197 | invalidate = object->invalidate; | |
1198 | #endif | |
1c79356b A |
1199 | vm_object_unlock(object); |
1200 | ||
1201 | switch (flavor) { | |
1202 | case OLD_MEMORY_OBJECT_BEHAVIOR_INFO: | |
1203 | { | |
1204 | old_memory_object_behave_info_t behave; | |
1205 | ||
1206 | if (count != OLD_MEMORY_OBJECT_BEHAVE_INFO_COUNT) { | |
1207 | result = KERN_INVALID_ARGUMENT; | |
1208 | break; | |
1209 | } | |
1210 | ||
1211 | behave = (old_memory_object_behave_info_t) attributes; | |
1212 | ||
1213 | temporary = behave->temporary; | |
1214 | invalidate = behave->invalidate; | |
1215 | copy_strategy = behave->copy_strategy; | |
1216 | ||
1217 | break; | |
1218 | } | |
1219 | ||
1220 | case MEMORY_OBJECT_BEHAVIOR_INFO: | |
1221 | { | |
1222 | memory_object_behave_info_t behave; | |
1223 | ||
1224 | if (count != MEMORY_OBJECT_BEHAVE_INFO_COUNT) { | |
1225 | result = KERN_INVALID_ARGUMENT; | |
1226 | break; | |
1227 | } | |
1228 | ||
1229 | behave = (memory_object_behave_info_t) attributes; | |
1230 | ||
1231 | temporary = behave->temporary; | |
1232 | invalidate = behave->invalidate; | |
1233 | copy_strategy = behave->copy_strategy; | |
1234 | silent_overwrite = behave->silent_overwrite; | |
1235 | advisory_pageout = behave->advisory_pageout; | |
1236 | break; | |
1237 | } | |
1238 | ||
1239 | case MEMORY_OBJECT_PERFORMANCE_INFO: | |
1240 | { | |
1241 | memory_object_perf_info_t perf; | |
1242 | ||
1243 | if (count != MEMORY_OBJECT_PERF_INFO_COUNT) { | |
1244 | result = KERN_INVALID_ARGUMENT; | |
1245 | break; | |
1246 | } | |
1247 | ||
1248 | perf = (memory_object_perf_info_t) attributes; | |
1249 | ||
1250 | may_cache = perf->may_cache; | |
1c79356b A |
1251 | |
1252 | break; | |
1253 | } | |
1254 | ||
1255 | case OLD_MEMORY_OBJECT_ATTRIBUTE_INFO: | |
1256 | { | |
1257 | old_memory_object_attr_info_t attr; | |
1258 | ||
1259 | if (count != OLD_MEMORY_OBJECT_ATTR_INFO_COUNT) { | |
1260 | result = KERN_INVALID_ARGUMENT; | |
1261 | break; | |
1262 | } | |
1263 | ||
1264 | attr = (old_memory_object_attr_info_t) attributes; | |
1265 | ||
1266 | may_cache = attr->may_cache; | |
1267 | copy_strategy = attr->copy_strategy; | |
1c79356b A |
1268 | |
1269 | break; | |
1270 | } | |
1271 | ||
1272 | case MEMORY_OBJECT_ATTRIBUTE_INFO: | |
1273 | { | |
1274 | memory_object_attr_info_t attr; | |
1275 | ||
1276 | if (count != MEMORY_OBJECT_ATTR_INFO_COUNT) { | |
1277 | result = KERN_INVALID_ARGUMENT; | |
1278 | break; | |
1279 | } | |
1280 | ||
1281 | attr = (memory_object_attr_info_t) attributes; | |
1282 | ||
1283 | copy_strategy = attr->copy_strategy; | |
1284 | may_cache = attr->may_cache_object; | |
1c79356b A |
1285 | temporary = attr->temporary; |
1286 | ||
1287 | break; | |
1288 | } | |
1289 | ||
1290 | default: | |
1291 | result = KERN_INVALID_ARGUMENT; | |
1292 | break; | |
1293 | } | |
1294 | ||
0b4e3aa0 | 1295 | if (result != KERN_SUCCESS) |
1c79356b | 1296 | return(result); |
1c79356b A |
1297 | |
1298 | if (copy_strategy == MEMORY_OBJECT_COPY_TEMPORARY) { | |
1299 | copy_strategy = MEMORY_OBJECT_COPY_DELAY; | |
1300 | temporary = TRUE; | |
1301 | } else { | |
1302 | temporary = FALSE; | |
1303 | } | |
1304 | ||
1305 | /* | |
1c79356b A |
1306 | * XXX may_cache may become a tri-valued variable to handle |
1307 | * XXX uncache if not in use. | |
1308 | */ | |
0b4e3aa0 | 1309 | return (vm_object_set_attributes_common(object, |
1c79356b A |
1310 | may_cache, |
1311 | copy_strategy, | |
1312 | temporary, | |
1c79356b | 1313 | silent_overwrite, |
0b4e3aa0 | 1314 | advisory_pageout)); |
1c79356b A |
1315 | } |
1316 | ||
1317 | kern_return_t | |
1318 | memory_object_get_attributes( | |
0b4e3aa0 | 1319 | memory_object_control_t control, |
1c79356b A |
1320 | memory_object_flavor_t flavor, |
1321 | memory_object_info_t attributes, /* pointer to OUT array */ | |
1322 | mach_msg_type_number_t *count) /* IN/OUT */ | |
1323 | { | |
0b4e3aa0 A |
1324 | kern_return_t ret = KERN_SUCCESS; |
1325 | vm_object_t object; | |
1c79356b | 1326 | |
0b4e3aa0 A |
1327 | object = memory_object_control_to_vm_object(control); |
1328 | if (object == VM_OBJECT_NULL) | |
1329 | return (KERN_INVALID_ARGUMENT); | |
1c79356b A |
1330 | |
1331 | vm_object_lock(object); | |
1332 | ||
1333 | switch (flavor) { | |
1334 | case OLD_MEMORY_OBJECT_BEHAVIOR_INFO: | |
1335 | { | |
1336 | old_memory_object_behave_info_t behave; | |
1337 | ||
1338 | if (*count < OLD_MEMORY_OBJECT_BEHAVE_INFO_COUNT) { | |
1339 | ret = KERN_INVALID_ARGUMENT; | |
1340 | break; | |
1341 | } | |
1342 | ||
1343 | behave = (old_memory_object_behave_info_t) attributes; | |
1344 | behave->copy_strategy = object->copy_strategy; | |
1345 | behave->temporary = object->temporary; | |
1346 | #if notyet /* remove when vm_msync complies and clean in place fini */ | |
1347 | behave->invalidate = object->invalidate; | |
1348 | #else | |
1349 | behave->invalidate = FALSE; | |
1350 | #endif | |
1351 | ||
1352 | *count = OLD_MEMORY_OBJECT_BEHAVE_INFO_COUNT; | |
1353 | break; | |
1354 | } | |
1355 | ||
1356 | case MEMORY_OBJECT_BEHAVIOR_INFO: | |
1357 | { | |
1358 | memory_object_behave_info_t behave; | |
1359 | ||
1360 | if (*count < MEMORY_OBJECT_BEHAVE_INFO_COUNT) { | |
1361 | ret = KERN_INVALID_ARGUMENT; | |
1362 | break; | |
1363 | } | |
1364 | ||
1365 | behave = (memory_object_behave_info_t) attributes; | |
1366 | behave->copy_strategy = object->copy_strategy; | |
1367 | behave->temporary = object->temporary; | |
1368 | #if notyet /* remove when vm_msync complies and clean in place fini */ | |
1369 | behave->invalidate = object->invalidate; | |
1370 | #else | |
1371 | behave->invalidate = FALSE; | |
1372 | #endif | |
1373 | behave->advisory_pageout = object->advisory_pageout; | |
1374 | behave->silent_overwrite = object->silent_overwrite; | |
1375 | *count = MEMORY_OBJECT_BEHAVE_INFO_COUNT; | |
1376 | break; | |
1377 | } | |
1378 | ||
1379 | case MEMORY_OBJECT_PERFORMANCE_INFO: | |
1380 | { | |
1381 | memory_object_perf_info_t perf; | |
1382 | ||
1383 | if (*count < MEMORY_OBJECT_PERF_INFO_COUNT) { | |
1384 | ret = KERN_INVALID_ARGUMENT; | |
1385 | break; | |
1386 | } | |
1387 | ||
1388 | perf = (memory_object_perf_info_t) attributes; | |
2d21ac55 | 1389 | perf->cluster_size = PAGE_SIZE; |
1c79356b A |
1390 | perf->may_cache = object->can_persist; |
1391 | ||
1392 | *count = MEMORY_OBJECT_PERF_INFO_COUNT; | |
1393 | break; | |
1394 | } | |
1395 | ||
1396 | case OLD_MEMORY_OBJECT_ATTRIBUTE_INFO: | |
1397 | { | |
1398 | old_memory_object_attr_info_t attr; | |
1399 | ||
1400 | if (*count < OLD_MEMORY_OBJECT_ATTR_INFO_COUNT) { | |
1401 | ret = KERN_INVALID_ARGUMENT; | |
1402 | break; | |
1403 | } | |
1404 | ||
1405 | attr = (old_memory_object_attr_info_t) attributes; | |
1406 | attr->may_cache = object->can_persist; | |
1407 | attr->copy_strategy = object->copy_strategy; | |
1408 | ||
1409 | *count = OLD_MEMORY_OBJECT_ATTR_INFO_COUNT; | |
1410 | break; | |
1411 | } | |
1412 | ||
1413 | case MEMORY_OBJECT_ATTRIBUTE_INFO: | |
1414 | { | |
1415 | memory_object_attr_info_t attr; | |
1416 | ||
1417 | if (*count < MEMORY_OBJECT_ATTR_INFO_COUNT) { | |
1418 | ret = KERN_INVALID_ARGUMENT; | |
1419 | break; | |
1420 | } | |
1421 | ||
1422 | attr = (memory_object_attr_info_t) attributes; | |
1423 | attr->copy_strategy = object->copy_strategy; | |
2d21ac55 | 1424 | attr->cluster_size = PAGE_SIZE; |
1c79356b A |
1425 | attr->may_cache_object = object->can_persist; |
1426 | attr->temporary = object->temporary; | |
1427 | ||
1428 | *count = MEMORY_OBJECT_ATTR_INFO_COUNT; | |
1429 | break; | |
1430 | } | |
1431 | ||
1432 | default: | |
1433 | ret = KERN_INVALID_ARGUMENT; | |
1434 | break; | |
1435 | } | |
1436 | ||
1437 | vm_object_unlock(object); | |
1438 | ||
1c79356b A |
1439 | return(ret); |
1440 | } | |
1441 | ||
1c79356b | 1442 | |
55e303ae A |
1443 | kern_return_t |
1444 | memory_object_iopl_request( | |
1445 | ipc_port_t port, | |
1446 | memory_object_offset_t offset, | |
91447636 | 1447 | upl_size_t *upl_size, |
55e303ae A |
1448 | upl_t *upl_ptr, |
1449 | upl_page_info_array_t user_page_list, | |
1450 | unsigned int *page_list_count, | |
1451 | int *flags) | |
1452 | { | |
1453 | vm_object_t object; | |
1454 | kern_return_t ret; | |
1455 | int caller_flags; | |
1456 | ||
1457 | caller_flags = *flags; | |
1458 | ||
91447636 A |
1459 | if (caller_flags & ~UPL_VALID_FLAGS) { |
1460 | /* | |
1461 | * For forward compatibility's sake, | |
1462 | * reject any unknown flag. | |
1463 | */ | |
1464 | return KERN_INVALID_VALUE; | |
1465 | } | |
1466 | ||
55e303ae A |
1467 | if (ip_kotype(port) == IKOT_NAMED_ENTRY) { |
1468 | vm_named_entry_t named_entry; | |
1469 | ||
1470 | named_entry = (vm_named_entry_t)port->ip_kobject; | |
1471 | /* a few checks to make sure user is obeying rules */ | |
1472 | if(*upl_size == 0) { | |
1473 | if(offset >= named_entry->size) | |
1474 | return(KERN_INVALID_RIGHT); | |
b0d623f7 A |
1475 | *upl_size = (upl_size_t)(named_entry->size - offset); |
1476 | if (*upl_size != named_entry->size - offset) | |
1477 | return KERN_INVALID_ARGUMENT; | |
55e303ae A |
1478 | } |
1479 | if(caller_flags & UPL_COPYOUT_FROM) { | |
1480 | if((named_entry->protection & VM_PROT_READ) | |
1481 | != VM_PROT_READ) { | |
1482 | return(KERN_INVALID_RIGHT); | |
1483 | } | |
1484 | } else { | |
1485 | if((named_entry->protection & | |
1486 | (VM_PROT_READ | VM_PROT_WRITE)) | |
1487 | != (VM_PROT_READ | VM_PROT_WRITE)) { | |
1488 | return(KERN_INVALID_RIGHT); | |
1489 | } | |
1490 | } | |
1491 | if(named_entry->size < (offset + *upl_size)) | |
1492 | return(KERN_INVALID_ARGUMENT); | |
1493 | ||
1494 | /* the callers parameter offset is defined to be the */ | |
1495 | /* offset from beginning of named entry offset in object */ | |
1496 | offset = offset + named_entry->offset; | |
1497 | ||
1498 | if(named_entry->is_sub_map) | |
1499 | return (KERN_INVALID_ARGUMENT); | |
1500 | ||
1501 | named_entry_lock(named_entry); | |
1502 | ||
91447636 | 1503 | if (named_entry->is_pager) { |
55e303ae A |
1504 | object = vm_object_enter(named_entry->backing.pager, |
1505 | named_entry->offset + named_entry->size, | |
1506 | named_entry->internal, | |
1507 | FALSE, | |
1508 | FALSE); | |
1509 | if (object == VM_OBJECT_NULL) { | |
1510 | named_entry_unlock(named_entry); | |
1511 | return(KERN_INVALID_OBJECT); | |
1512 | } | |
91447636 A |
1513 | |
1514 | /* JMM - drop reference on pager here? */ | |
55e303ae A |
1515 | |
1516 | /* create an extra reference for the named entry */ | |
91447636 | 1517 | vm_object_lock(object); |
55e303ae | 1518 | vm_object_reference_locked(object); |
91447636 A |
1519 | named_entry->backing.object = object; |
1520 | named_entry->is_pager = FALSE; | |
55e303ae A |
1521 | named_entry_unlock(named_entry); |
1522 | ||
1523 | /* wait for object to be ready */ | |
1524 | while (!object->pager_ready) { | |
1525 | vm_object_wait(object, | |
1526 | VM_OBJECT_EVENT_PAGER_READY, | |
1527 | THREAD_UNINT); | |
1528 | vm_object_lock(object); | |
1529 | } | |
1530 | vm_object_unlock(object); | |
91447636 A |
1531 | } else { |
1532 | /* This is the case where we are going to map */ | |
1533 | /* an already mapped object. If the object is */ | |
1534 | /* not ready it is internal. An external */ | |
1535 | /* object cannot be mapped until it is ready */ | |
1536 | /* we can therefore avoid the ready check */ | |
1537 | /* in this case. */ | |
1538 | object = named_entry->backing.object; | |
1539 | vm_object_reference(object); | |
1540 | named_entry_unlock(named_entry); | |
55e303ae | 1541 | } |
0c530ab8 | 1542 | } else if (ip_kotype(port) == IKOT_MEM_OBJ_CONTROL) { |
55e303ae | 1543 | memory_object_control_t control; |
0c530ab8 | 1544 | control = (memory_object_control_t) port; |
55e303ae A |
1545 | if (control == NULL) |
1546 | return (KERN_INVALID_ARGUMENT); | |
1547 | object = memory_object_control_to_vm_object(control); | |
1548 | if (object == VM_OBJECT_NULL) | |
1549 | return (KERN_INVALID_ARGUMENT); | |
1550 | vm_object_reference(object); | |
0c530ab8 A |
1551 | } else { |
1552 | return KERN_INVALID_ARGUMENT; | |
55e303ae A |
1553 | } |
1554 | if (object == VM_OBJECT_NULL) | |
1555 | return (KERN_INVALID_ARGUMENT); | |
1556 | ||
1557 | if (!object->private) { | |
1558 | if (*upl_size > (MAX_UPL_TRANSFER*PAGE_SIZE)) | |
1559 | *upl_size = (MAX_UPL_TRANSFER*PAGE_SIZE); | |
1560 | if (object->phys_contiguous) { | |
1561 | *flags = UPL_PHYS_CONTIG; | |
1562 | } else { | |
1563 | *flags = 0; | |
1564 | } | |
1565 | } else { | |
1566 | *flags = UPL_DEV_MEMORY | UPL_PHYS_CONTIG; | |
1567 | } | |
1568 | ||
1569 | ret = vm_object_iopl_request(object, | |
1570 | offset, | |
1571 | *upl_size, | |
1572 | upl_ptr, | |
1573 | user_page_list, | |
1574 | page_list_count, | |
1575 | caller_flags); | |
1576 | vm_object_deallocate(object); | |
1577 | return ret; | |
1578 | } | |
1579 | ||
0b4e3aa0 A |
1580 | /* |
1581 | * Routine: memory_object_upl_request [interface] | |
1582 | * Purpose: | |
1583 | * Cause the population of a portion of a vm_object. | |
1584 | * Depending on the nature of the request, the pages | |
1585 | * returned may be contain valid data or be uninitialized. | |
1586 | * | |
1587 | */ | |
1c79356b | 1588 | |
0b4e3aa0 A |
1589 | kern_return_t |
1590 | memory_object_upl_request( | |
1591 | memory_object_control_t control, | |
1592 | memory_object_offset_t offset, | |
91447636 | 1593 | upl_size_t size, |
0b4e3aa0 A |
1594 | upl_t *upl_ptr, |
1595 | upl_page_info_array_t user_page_list, | |
1596 | unsigned int *page_list_count, | |
1597 | int cntrl_flags) | |
1598 | { | |
1599 | vm_object_t object; | |
1600 | ||
1601 | object = memory_object_control_to_vm_object(control); | |
1602 | if (object == VM_OBJECT_NULL) | |
b0d623f7 | 1603 | return (KERN_TERMINATED); |
0b4e3aa0 A |
1604 | |
1605 | return vm_object_upl_request(object, | |
1606 | offset, | |
1607 | size, | |
1608 | upl_ptr, | |
1609 | user_page_list, | |
1610 | page_list_count, | |
1611 | cntrl_flags); | |
1612 | } | |
1613 | ||
1614 | /* | |
1615 | * Routine: memory_object_super_upl_request [interface] | |
1616 | * Purpose: | |
1617 | * Cause the population of a portion of a vm_object | |
1618 | * in much the same way as memory_object_upl_request. | |
1619 | * Depending on the nature of the request, the pages | |
1620 | * returned may be contain valid data or be uninitialized. | |
1621 | * However, the region may be expanded up to the super | |
1622 | * cluster size provided. | |
1c79356b | 1623 | */ |
0b4e3aa0 | 1624 | |
1c79356b | 1625 | kern_return_t |
0b4e3aa0 A |
1626 | memory_object_super_upl_request( |
1627 | memory_object_control_t control, | |
1628 | memory_object_offset_t offset, | |
91447636 A |
1629 | upl_size_t size, |
1630 | upl_size_t super_cluster, | |
0b4e3aa0 A |
1631 | upl_t *upl, |
1632 | upl_page_info_t *user_page_list, | |
1633 | unsigned int *page_list_count, | |
1634 | int cntrl_flags) | |
1c79356b | 1635 | { |
0b4e3aa0 A |
1636 | vm_object_t object; |
1637 | ||
1638 | object = memory_object_control_to_vm_object(control); | |
1639 | if (object == VM_OBJECT_NULL) | |
1640 | return (KERN_INVALID_ARGUMENT); | |
1641 | ||
1642 | return vm_object_super_upl_request(object, | |
1643 | offset, | |
1644 | size, | |
1645 | super_cluster, | |
1646 | upl, | |
1647 | user_page_list, | |
1648 | page_list_count, | |
1649 | cntrl_flags); | |
1c79356b A |
1650 | } |
1651 | ||
2d21ac55 A |
1652 | kern_return_t |
1653 | memory_object_cluster_size(memory_object_control_t control, memory_object_offset_t *start, | |
b0d623f7 | 1654 | vm_size_t *length, uint32_t *io_streaming, memory_object_fault_info_t fault_info) |
2d21ac55 A |
1655 | { |
1656 | vm_object_t object; | |
1657 | ||
1658 | object = memory_object_control_to_vm_object(control); | |
1659 | ||
1660 | if (object == VM_OBJECT_NULL || object->paging_offset > *start) | |
1661 | return (KERN_INVALID_ARGUMENT); | |
1662 | ||
1663 | *start -= object->paging_offset; | |
1664 | ||
b0d623f7 | 1665 | vm_object_cluster_size(object, (vm_object_offset_t *)start, length, (vm_object_fault_info_t)fault_info, io_streaming); |
2d21ac55 A |
1666 | |
1667 | *start += object->paging_offset; | |
1668 | ||
1669 | return (KERN_SUCCESS); | |
1670 | } | |
1671 | ||
1672 | ||
0b4e3aa0 A |
1673 | int vm_stat_discard_cleared_reply = 0; |
1674 | int vm_stat_discard_cleared_unset = 0; | |
1675 | int vm_stat_discard_cleared_too_late = 0; | |
1676 | ||
1677 | ||
1678 | ||
1c79356b | 1679 | /* |
0b4e3aa0 | 1680 | * Routine: host_default_memory_manager [interface] |
1c79356b A |
1681 | * Purpose: |
1682 | * set/get the default memory manager port and default cluster | |
1683 | * size. | |
1684 | * | |
1685 | * If successful, consumes the supplied naked send right. | |
1686 | */ | |
1687 | kern_return_t | |
1688 | host_default_memory_manager( | |
0b4e3aa0 A |
1689 | host_priv_t host_priv, |
1690 | memory_object_default_t *default_manager, | |
2d21ac55 | 1691 | __unused memory_object_cluster_size_t cluster_size) |
1c79356b | 1692 | { |
0b4e3aa0 A |
1693 | memory_object_default_t current_manager; |
1694 | memory_object_default_t new_manager; | |
1695 | memory_object_default_t returned_manager; | |
2d21ac55 | 1696 | kern_return_t result = KERN_SUCCESS; |
1c79356b A |
1697 | |
1698 | if (host_priv == HOST_PRIV_NULL) | |
1699 | return(KERN_INVALID_HOST); | |
1700 | ||
1701 | assert(host_priv == &realhost); | |
1702 | ||
1703 | new_manager = *default_manager; | |
b0d623f7 | 1704 | lck_mtx_lock(&memory_manager_default_lock); |
1c79356b | 1705 | current_manager = memory_manager_default; |
2d21ac55 | 1706 | returned_manager = MEMORY_OBJECT_DEFAULT_NULL; |
1c79356b | 1707 | |
0b4e3aa0 | 1708 | if (new_manager == MEMORY_OBJECT_DEFAULT_NULL) { |
1c79356b A |
1709 | /* |
1710 | * Retrieve the current value. | |
1711 | */ | |
0b4e3aa0 | 1712 | returned_manager = current_manager; |
2d21ac55 | 1713 | memory_object_default_reference(returned_manager); |
1c79356b | 1714 | } else { |
2d21ac55 A |
1715 | |
1716 | /* | |
1717 | * If this is the first non-null manager, start | |
1718 | * up the internal pager support. | |
1719 | */ | |
1720 | if (current_manager == MEMORY_OBJECT_DEFAULT_NULL) { | |
1721 | result = vm_pageout_internal_start(); | |
1722 | if (result != KERN_SUCCESS) | |
1723 | goto out; | |
1724 | } | |
1725 | ||
1c79356b A |
1726 | /* |
1727 | * Retrieve the current value, | |
1728 | * and replace it with the supplied value. | |
0b4e3aa0 A |
1729 | * We return the old reference to the caller |
1730 | * but we have to take a reference on the new | |
1731 | * one. | |
1c79356b | 1732 | */ |
1c79356b A |
1733 | returned_manager = current_manager; |
1734 | memory_manager_default = new_manager; | |
0b4e3aa0 A |
1735 | memory_object_default_reference(new_manager); |
1736 | ||
1c79356b A |
1737 | /* |
1738 | * In case anyone's been waiting for a memory | |
1739 | * manager to be established, wake them up. | |
1740 | */ | |
1741 | ||
1742 | thread_wakeup((event_t) &memory_manager_default); | |
b0d623f7 A |
1743 | |
1744 | /* | |
1745 | * Now that we have a default pager for anonymous memory, | |
1746 | * reactivate all the throttled pages (i.e. dirty pages with | |
1747 | * no pager). | |
1748 | */ | |
6d2010ae A |
1749 | if (current_manager == MEMORY_OBJECT_DEFAULT_NULL) |
1750 | { | |
b0d623f7 A |
1751 | vm_page_reactivate_all_throttled(); |
1752 | } | |
1c79356b | 1753 | } |
2d21ac55 | 1754 | out: |
b0d623f7 | 1755 | lck_mtx_unlock(&memory_manager_default_lock); |
1c79356b A |
1756 | |
1757 | *default_manager = returned_manager; | |
2d21ac55 | 1758 | return(result); |
1c79356b A |
1759 | } |
1760 | ||
1761 | /* | |
1762 | * Routine: memory_manager_default_reference | |
1763 | * Purpose: | |
1764 | * Returns a naked send right for the default | |
1765 | * memory manager. The returned right is always | |
1766 | * valid (not IP_NULL or IP_DEAD). | |
1767 | */ | |
1768 | ||
0b4e3aa0 | 1769 | __private_extern__ memory_object_default_t |
2d21ac55 | 1770 | memory_manager_default_reference(void) |
1c79356b | 1771 | { |
0b4e3aa0 | 1772 | memory_object_default_t current_manager; |
1c79356b | 1773 | |
b0d623f7 | 1774 | lck_mtx_lock(&memory_manager_default_lock); |
0b4e3aa0 A |
1775 | current_manager = memory_manager_default; |
1776 | while (current_manager == MEMORY_OBJECT_DEFAULT_NULL) { | |
9bccf70c A |
1777 | wait_result_t res; |
1778 | ||
b0d623f7 A |
1779 | res = lck_mtx_sleep(&memory_manager_default_lock, |
1780 | LCK_SLEEP_DEFAULT, | |
1781 | (event_t) &memory_manager_default, | |
1782 | THREAD_UNINT); | |
9bccf70c | 1783 | assert(res == THREAD_AWAKENED); |
0b4e3aa0 | 1784 | current_manager = memory_manager_default; |
1c79356b | 1785 | } |
0b4e3aa0 | 1786 | memory_object_default_reference(current_manager); |
b0d623f7 | 1787 | lck_mtx_unlock(&memory_manager_default_lock); |
1c79356b A |
1788 | |
1789 | return current_manager; | |
1790 | } | |
1791 | ||
1c79356b A |
1792 | /* |
1793 | * Routine: memory_manager_default_check | |
1794 | * | |
1795 | * Purpose: | |
1796 | * Check whether a default memory manager has been set | |
1797 | * up yet, or not. Returns KERN_SUCCESS if dmm exists, | |
1798 | * and KERN_FAILURE if dmm does not exist. | |
1799 | * | |
1800 | * If there is no default memory manager, log an error, | |
1801 | * but only the first time. | |
1802 | * | |
1803 | */ | |
0b4e3aa0 | 1804 | __private_extern__ kern_return_t |
1c79356b A |
1805 | memory_manager_default_check(void) |
1806 | { | |
0b4e3aa0 | 1807 | memory_object_default_t current; |
1c79356b | 1808 | |
b0d623f7 | 1809 | lck_mtx_lock(&memory_manager_default_lock); |
1c79356b | 1810 | current = memory_manager_default; |
0b4e3aa0 | 1811 | if (current == MEMORY_OBJECT_DEFAULT_NULL) { |
1c79356b A |
1812 | static boolean_t logged; /* initialized to 0 */ |
1813 | boolean_t complain = !logged; | |
1814 | logged = TRUE; | |
b0d623f7 | 1815 | lck_mtx_unlock(&memory_manager_default_lock); |
1c79356b A |
1816 | if (complain) |
1817 | printf("Warning: No default memory manager\n"); | |
1818 | return(KERN_FAILURE); | |
1819 | } else { | |
b0d623f7 | 1820 | lck_mtx_unlock(&memory_manager_default_lock); |
1c79356b A |
1821 | return(KERN_SUCCESS); |
1822 | } | |
1823 | } | |
1824 | ||
0b4e3aa0 | 1825 | __private_extern__ void |
1c79356b A |
1826 | memory_manager_default_init(void) |
1827 | { | |
0b4e3aa0 | 1828 | memory_manager_default = MEMORY_OBJECT_DEFAULT_NULL; |
b0d623f7 | 1829 | lck_mtx_init(&memory_manager_default_lock, &vm_object_lck_grp, &vm_object_lck_attr); |
1c79356b A |
1830 | } |
1831 | ||
1832 | ||
1c79356b A |
1833 | |
1834 | /* Allow manipulation of individual page state. This is actually part of */ | |
1835 | /* the UPL regimen but takes place on the object rather than on a UPL */ | |
1836 | ||
1837 | kern_return_t | |
1838 | memory_object_page_op( | |
0b4e3aa0 A |
1839 | memory_object_control_t control, |
1840 | memory_object_offset_t offset, | |
1841 | int ops, | |
55e303ae | 1842 | ppnum_t *phys_entry, |
0b4e3aa0 | 1843 | int *flags) |
1c79356b | 1844 | { |
0b4e3aa0 | 1845 | vm_object_t object; |
0b4e3aa0 A |
1846 | |
1847 | object = memory_object_control_to_vm_object(control); | |
1848 | if (object == VM_OBJECT_NULL) | |
1849 | return (KERN_INVALID_ARGUMENT); | |
1c79356b | 1850 | |
0c530ab8 | 1851 | return vm_object_page_op(object, offset, ops, phys_entry, flags); |
1c79356b A |
1852 | } |
1853 | ||
55e303ae A |
1854 | /* |
1855 | * memory_object_range_op offers performance enhancement over | |
1856 | * memory_object_page_op for page_op functions which do not require page | |
1857 | * level state to be returned from the call. Page_op was created to provide | |
1858 | * a low-cost alternative to page manipulation via UPLs when only a single | |
1859 | * page was involved. The range_op call establishes the ability in the _op | |
1860 | * family of functions to work on multiple pages where the lack of page level | |
1861 | * state handling allows the caller to avoid the overhead of the upl structures. | |
1862 | */ | |
1863 | ||
1864 | kern_return_t | |
1865 | memory_object_range_op( | |
1866 | memory_object_control_t control, | |
1867 | memory_object_offset_t offset_beg, | |
1868 | memory_object_offset_t offset_end, | |
1869 | int ops, | |
1870 | int *range) | |
1871 | { | |
55e303ae | 1872 | vm_object_t object; |
55e303ae A |
1873 | |
1874 | object = memory_object_control_to_vm_object(control); | |
1875 | if (object == VM_OBJECT_NULL) | |
1876 | return (KERN_INVALID_ARGUMENT); | |
1877 | ||
0c530ab8 A |
1878 | return vm_object_range_op(object, |
1879 | offset_beg, | |
1880 | offset_end, | |
1881 | ops, | |
b0d623f7 | 1882 | (uint32_t *) range); |
55e303ae A |
1883 | } |
1884 | ||
91447636 | 1885 | |
6d2010ae A |
1886 | void |
1887 | memory_object_mark_used( | |
1888 | memory_object_control_t control) | |
1889 | { | |
1890 | vm_object_t object; | |
1891 | ||
1892 | if (control == NULL) | |
1893 | return; | |
1894 | ||
1895 | object = memory_object_control_to_vm_object(control); | |
1896 | ||
1897 | if (object != VM_OBJECT_NULL) | |
1898 | vm_object_cache_remove(object); | |
1899 | } | |
1900 | ||
1901 | ||
1902 | void | |
1903 | memory_object_mark_unused( | |
1904 | memory_object_control_t control, | |
1905 | __unused boolean_t rage) | |
1906 | { | |
1907 | vm_object_t object; | |
1908 | ||
1909 | if (control == NULL) | |
1910 | return; | |
1911 | ||
1912 | object = memory_object_control_to_vm_object(control); | |
1913 | ||
1914 | if (object != VM_OBJECT_NULL) | |
1915 | vm_object_cache_add(object); | |
1916 | } | |
1917 | ||
1918 | ||
91447636 A |
1919 | kern_return_t |
1920 | memory_object_pages_resident( | |
1921 | memory_object_control_t control, | |
1922 | boolean_t * has_pages_resident) | |
1923 | { | |
1924 | vm_object_t object; | |
1925 | ||
1926 | *has_pages_resident = FALSE; | |
1927 | ||
1928 | object = memory_object_control_to_vm_object(control); | |
1929 | if (object == VM_OBJECT_NULL) | |
1930 | return (KERN_INVALID_ARGUMENT); | |
1931 | ||
1932 | if (object->resident_page_count) | |
1933 | *has_pages_resident = TRUE; | |
1934 | ||
1935 | return (KERN_SUCCESS); | |
1936 | } | |
1937 | ||
2d21ac55 A |
1938 | kern_return_t |
1939 | memory_object_signed( | |
1940 | memory_object_control_t control, | |
1941 | boolean_t is_signed) | |
1942 | { | |
1943 | vm_object_t object; | |
1944 | ||
1945 | object = memory_object_control_to_vm_object(control); | |
1946 | if (object == VM_OBJECT_NULL) | |
1947 | return KERN_INVALID_ARGUMENT; | |
1948 | ||
1949 | vm_object_lock(object); | |
1950 | object->code_signed = is_signed; | |
1951 | vm_object_unlock(object); | |
1952 | ||
1953 | return KERN_SUCCESS; | |
1954 | } | |
91447636 | 1955 | |
6d2010ae A |
1956 | boolean_t |
1957 | memory_object_is_slid( | |
1958 | memory_object_control_t control) | |
1959 | { | |
1960 | vm_object_t object = VM_OBJECT_NULL; | |
1961 | vm_object_t slide_object = slide_info.slide_object; | |
1962 | ||
1963 | object = memory_object_control_to_vm_object(control); | |
1964 | if (object == VM_OBJECT_NULL) | |
1965 | return FALSE; | |
1966 | ||
1967 | return (object == slide_object); | |
1968 | } | |
1969 | ||
0b4e3aa0 A |
1970 | static zone_t mem_obj_control_zone; |
1971 | ||
1972 | __private_extern__ void | |
1973 | memory_object_control_bootstrap(void) | |
1974 | { | |
1975 | int i; | |
1976 | ||
1977 | i = (vm_size_t) sizeof (struct memory_object_control); | |
1978 | mem_obj_control_zone = zinit (i, 8192*i, 4096, "mem_obj_control"); | |
6d2010ae | 1979 | zone_change(mem_obj_control_zone, Z_CALLERACCT, FALSE); |
0b4c1975 | 1980 | zone_change(mem_obj_control_zone, Z_NOENCRYPT, TRUE); |
0b4e3aa0 A |
1981 | return; |
1982 | } | |
1983 | ||
1984 | __private_extern__ memory_object_control_t | |
1985 | memory_object_control_allocate( | |
1986 | vm_object_t object) | |
1987 | { | |
1988 | memory_object_control_t control; | |
1989 | ||
1990 | control = (memory_object_control_t)zalloc(mem_obj_control_zone); | |
0c530ab8 A |
1991 | if (control != MEMORY_OBJECT_CONTROL_NULL) { |
1992 | control->moc_object = object; | |
1993 | control->moc_ikot = IKOT_MEM_OBJ_CONTROL; /* fake ip_kotype */ | |
1994 | } | |
0b4e3aa0 A |
1995 | return (control); |
1996 | } | |
1997 | ||
1998 | __private_extern__ void | |
1999 | memory_object_control_collapse( | |
2000 | memory_object_control_t control, | |
2001 | vm_object_t object) | |
2002 | { | |
0c530ab8 A |
2003 | assert((control->moc_object != VM_OBJECT_NULL) && |
2004 | (control->moc_object != object)); | |
2005 | control->moc_object = object; | |
0b4e3aa0 A |
2006 | } |
2007 | ||
2008 | __private_extern__ vm_object_t | |
2009 | memory_object_control_to_vm_object( | |
2010 | memory_object_control_t control) | |
2011 | { | |
0c530ab8 A |
2012 | if (control == MEMORY_OBJECT_CONTROL_NULL || |
2013 | control->moc_ikot != IKOT_MEM_OBJ_CONTROL) | |
0b4e3aa0 A |
2014 | return VM_OBJECT_NULL; |
2015 | ||
0c530ab8 | 2016 | return (control->moc_object); |
0b4e3aa0 A |
2017 | } |
2018 | ||
2019 | memory_object_control_t | |
2020 | convert_port_to_mo_control( | |
91447636 | 2021 | __unused mach_port_t port) |
0b4e3aa0 A |
2022 | { |
2023 | return MEMORY_OBJECT_CONTROL_NULL; | |
2024 | } | |
2025 | ||
2026 | ||
2027 | mach_port_t | |
2028 | convert_mo_control_to_port( | |
91447636 | 2029 | __unused memory_object_control_t control) |
0b4e3aa0 A |
2030 | { |
2031 | return MACH_PORT_NULL; | |
2032 | } | |
2033 | ||
2034 | void | |
2035 | memory_object_control_reference( | |
91447636 | 2036 | __unused memory_object_control_t control) |
0b4e3aa0 A |
2037 | { |
2038 | return; | |
2039 | } | |
2040 | ||
2041 | /* | |
2042 | * We only every issue one of these references, so kill it | |
2043 | * when that gets released (should switch the real reference | |
2044 | * counting in true port-less EMMI). | |
2045 | */ | |
2046 | void | |
2047 | memory_object_control_deallocate( | |
2048 | memory_object_control_t control) | |
2049 | { | |
91447636 | 2050 | zfree(mem_obj_control_zone, control); |
0b4e3aa0 A |
2051 | } |
2052 | ||
2053 | void | |
2054 | memory_object_control_disable( | |
2055 | memory_object_control_t control) | |
2056 | { | |
0c530ab8 A |
2057 | assert(control->moc_object != VM_OBJECT_NULL); |
2058 | control->moc_object = VM_OBJECT_NULL; | |
0b4e3aa0 A |
2059 | } |
2060 | ||
2061 | void | |
2062 | memory_object_default_reference( | |
2063 | memory_object_default_t dmm) | |
2064 | { | |
2065 | ipc_port_make_send(dmm); | |
2066 | } | |
2067 | ||
2068 | void | |
2069 | memory_object_default_deallocate( | |
2070 | memory_object_default_t dmm) | |
2071 | { | |
2072 | ipc_port_release_send(dmm); | |
2073 | } | |
2074 | ||
2075 | memory_object_t | |
2076 | convert_port_to_memory_object( | |
91447636 | 2077 | __unused mach_port_t port) |
0b4e3aa0 A |
2078 | { |
2079 | return (MEMORY_OBJECT_NULL); | |
2080 | } | |
2081 | ||
2082 | ||
2083 | mach_port_t | |
2084 | convert_memory_object_to_port( | |
91447636 | 2085 | __unused memory_object_t object) |
0b4e3aa0 A |
2086 | { |
2087 | return (MACH_PORT_NULL); | |
2088 | } | |
2089 | ||
0b4e3aa0 A |
2090 | |
2091 | /* Routine memory_object_reference */ | |
2092 | void memory_object_reference( | |
2093 | memory_object_t memory_object) | |
2094 | { | |
0c530ab8 A |
2095 | (memory_object->mo_pager_ops->memory_object_reference)( |
2096 | memory_object); | |
0b4e3aa0 A |
2097 | } |
2098 | ||
2099 | /* Routine memory_object_deallocate */ | |
2100 | void memory_object_deallocate( | |
2101 | memory_object_t memory_object) | |
2102 | { | |
0c530ab8 A |
2103 | (memory_object->mo_pager_ops->memory_object_deallocate)( |
2104 | memory_object); | |
0b4e3aa0 A |
2105 | } |
2106 | ||
2107 | ||
2108 | /* Routine memory_object_init */ | |
2109 | kern_return_t memory_object_init | |
2110 | ( | |
2111 | memory_object_t memory_object, | |
2112 | memory_object_control_t memory_control, | |
91447636 | 2113 | memory_object_cluster_size_t memory_object_page_size |
0b4e3aa0 A |
2114 | ) |
2115 | { | |
0c530ab8 A |
2116 | return (memory_object->mo_pager_ops->memory_object_init)( |
2117 | memory_object, | |
2118 | memory_control, | |
2119 | memory_object_page_size); | |
0b4e3aa0 A |
2120 | } |
2121 | ||
2122 | /* Routine memory_object_terminate */ | |
2123 | kern_return_t memory_object_terminate | |
2124 | ( | |
2125 | memory_object_t memory_object | |
2126 | ) | |
2127 | { | |
0c530ab8 A |
2128 | return (memory_object->mo_pager_ops->memory_object_terminate)( |
2129 | memory_object); | |
0b4e3aa0 A |
2130 | } |
2131 | ||
2132 | /* Routine memory_object_data_request */ | |
2133 | kern_return_t memory_object_data_request | |
2134 | ( | |
2135 | memory_object_t memory_object, | |
2136 | memory_object_offset_t offset, | |
91447636 | 2137 | memory_object_cluster_size_t length, |
2d21ac55 A |
2138 | vm_prot_t desired_access, |
2139 | memory_object_fault_info_t fault_info | |
0b4e3aa0 A |
2140 | ) |
2141 | { | |
0c530ab8 A |
2142 | return (memory_object->mo_pager_ops->memory_object_data_request)( |
2143 | memory_object, | |
2144 | offset, | |
2145 | length, | |
2d21ac55 A |
2146 | desired_access, |
2147 | fault_info); | |
0b4e3aa0 A |
2148 | } |
2149 | ||
2150 | /* Routine memory_object_data_return */ | |
2151 | kern_return_t memory_object_data_return | |
2152 | ( | |
2153 | memory_object_t memory_object, | |
2154 | memory_object_offset_t offset, | |
b0d623f7 | 2155 | memory_object_cluster_size_t size, |
91447636 A |
2156 | memory_object_offset_t *resid_offset, |
2157 | int *io_error, | |
0b4e3aa0 | 2158 | boolean_t dirty, |
91447636 A |
2159 | boolean_t kernel_copy, |
2160 | int upl_flags | |
0b4e3aa0 A |
2161 | ) |
2162 | { | |
0c530ab8 A |
2163 | return (memory_object->mo_pager_ops->memory_object_data_return)( |
2164 | memory_object, | |
2165 | offset, | |
2166 | size, | |
2167 | resid_offset, | |
2168 | io_error, | |
2169 | dirty, | |
2170 | kernel_copy, | |
2171 | upl_flags); | |
0b4e3aa0 A |
2172 | } |
2173 | ||
2174 | /* Routine memory_object_data_initialize */ | |
2175 | kern_return_t memory_object_data_initialize | |
2176 | ( | |
2177 | memory_object_t memory_object, | |
2178 | memory_object_offset_t offset, | |
b0d623f7 | 2179 | memory_object_cluster_size_t size |
0b4e3aa0 A |
2180 | ) |
2181 | { | |
0c530ab8 A |
2182 | return (memory_object->mo_pager_ops->memory_object_data_initialize)( |
2183 | memory_object, | |
2184 | offset, | |
2185 | size); | |
0b4e3aa0 A |
2186 | } |
2187 | ||
2188 | /* Routine memory_object_data_unlock */ | |
2189 | kern_return_t memory_object_data_unlock | |
2190 | ( | |
2191 | memory_object_t memory_object, | |
2192 | memory_object_offset_t offset, | |
b0d623f7 | 2193 | memory_object_size_t size, |
0b4e3aa0 A |
2194 | vm_prot_t desired_access |
2195 | ) | |
2196 | { | |
0c530ab8 A |
2197 | return (memory_object->mo_pager_ops->memory_object_data_unlock)( |
2198 | memory_object, | |
2199 | offset, | |
2200 | size, | |
2201 | desired_access); | |
0b4e3aa0 A |
2202 | } |
2203 | ||
2204 | /* Routine memory_object_synchronize */ | |
2205 | kern_return_t memory_object_synchronize | |
2206 | ( | |
2207 | memory_object_t memory_object, | |
2208 | memory_object_offset_t offset, | |
b0d623f7 | 2209 | memory_object_size_t size, |
0b4e3aa0 A |
2210 | vm_sync_t sync_flags |
2211 | ) | |
2212 | { | |
0c530ab8 A |
2213 | return (memory_object->mo_pager_ops->memory_object_synchronize)( |
2214 | memory_object, | |
2215 | offset, | |
2216 | size, | |
2217 | sync_flags); | |
0b4e3aa0 A |
2218 | } |
2219 | ||
593a1d5f A |
2220 | |
2221 | /* | |
2222 | * memory_object_map() is called by VM (in vm_map_enter() and its variants) | |
2223 | * each time a "named" VM object gets mapped directly or indirectly | |
2224 | * (copy-on-write mapping). A "named" VM object has an extra reference held | |
2225 | * by the pager to keep it alive until the pager decides that the | |
2226 | * memory object (and its VM object) can be reclaimed. | |
2227 | * VM calls memory_object_last_unmap() (in vm_object_deallocate()) when all | |
2228 | * the mappings of that memory object have been removed. | |
2229 | * | |
2230 | * For a given VM object, calls to memory_object_map() and memory_object_unmap() | |
2231 | * are serialized (through object->mapping_in_progress), to ensure that the | |
2232 | * pager gets a consistent view of the mapping status of the memory object. | |
2233 | * | |
2234 | * This allows the pager to keep track of how many times a memory object | |
2235 | * has been mapped and with which protections, to decide when it can be | |
2236 | * reclaimed. | |
2237 | */ | |
2238 | ||
2239 | /* Routine memory_object_map */ | |
2240 | kern_return_t memory_object_map | |
2241 | ( | |
2242 | memory_object_t memory_object, | |
2243 | vm_prot_t prot | |
2244 | ) | |
2245 | { | |
2246 | return (memory_object->mo_pager_ops->memory_object_map)( | |
2247 | memory_object, | |
2248 | prot); | |
2249 | } | |
2250 | ||
2251 | /* Routine memory_object_last_unmap */ | |
2252 | kern_return_t memory_object_last_unmap | |
0b4e3aa0 A |
2253 | ( |
2254 | memory_object_t memory_object | |
2255 | ) | |
2256 | { | |
593a1d5f | 2257 | return (memory_object->mo_pager_ops->memory_object_last_unmap)( |
0c530ab8 | 2258 | memory_object); |
0b4e3aa0 A |
2259 | } |
2260 | ||
6d2010ae A |
2261 | /* Routine memory_object_data_reclaim */ |
2262 | kern_return_t memory_object_data_reclaim | |
2263 | ( | |
2264 | memory_object_t memory_object, | |
2265 | boolean_t reclaim_backing_store | |
2266 | ) | |
2267 | { | |
2268 | if (memory_object->mo_pager_ops->memory_object_data_reclaim == NULL) | |
2269 | return KERN_NOT_SUPPORTED; | |
2270 | return (memory_object->mo_pager_ops->memory_object_data_reclaim)( | |
2271 | memory_object, | |
2272 | reclaim_backing_store); | |
2273 | } | |
2274 | ||
0b4e3aa0 A |
2275 | /* Routine memory_object_create */ |
2276 | kern_return_t memory_object_create | |
2277 | ( | |
2278 | memory_object_default_t default_memory_manager, | |
2279 | vm_size_t new_memory_object_size, | |
2280 | memory_object_t *new_memory_object | |
2281 | ) | |
2282 | { | |
0b4e3aa0 A |
2283 | return default_pager_memory_object_create(default_memory_manager, |
2284 | new_memory_object_size, | |
2285 | new_memory_object); | |
2286 | } | |
1c79356b | 2287 | |
91447636 A |
2288 | upl_t |
2289 | convert_port_to_upl( | |
2290 | ipc_port_t port) | |
2291 | { | |
2292 | upl_t upl; | |
2293 | ||
2294 | ip_lock(port); | |
2295 | if (!ip_active(port) || (ip_kotype(port) != IKOT_UPL)) { | |
2296 | ip_unlock(port); | |
2297 | return (upl_t)NULL; | |
2298 | } | |
2299 | upl = (upl_t) port->ip_kobject; | |
2300 | ip_unlock(port); | |
2301 | upl_lock(upl); | |
2302 | upl->ref_count+=1; | |
2303 | upl_unlock(upl); | |
2304 | return upl; | |
2305 | } | |
2306 | ||
2307 | mach_port_t | |
2308 | convert_upl_to_port( | |
2309 | __unused upl_t upl) | |
2310 | { | |
2311 | return MACH_PORT_NULL; | |
2312 | } | |
2313 | ||
2314 | __private_extern__ void | |
2315 | upl_no_senders( | |
2316 | __unused ipc_port_t port, | |
2317 | __unused mach_port_mscount_t mscount) | |
2318 | { | |
2319 | return; | |
2320 | } |