]> git.saurik.com Git - apple/xnu.git/blame - osfmk/vm/vm_map.c
xnu-3247.10.11.tar.gz
[apple/xnu.git] / osfmk / vm / vm_map.c
CommitLineData
1c79356b 1/*
39236c6e 2 * Copyright (c) 2000-2012 Apple Inc. All rights reserved.
1c79356b 3 *
2d21ac55 4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
1c79356b 5 *
2d21ac55
A
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
8f6c56a5 14 *
2d21ac55
A
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
8f6c56a5
A
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
2d21ac55
A
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
8f6c56a5 25 *
2d21ac55 26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
1c79356b
A
27 */
28/*
29 * @OSF_COPYRIGHT@
30 */
31/*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56/*
57 */
58/*
59 * File: vm/vm_map.c
60 * Author: Avadis Tevanian, Jr., Michael Wayne Young
61 * Date: 1985
62 *
63 * Virtual memory mapping module.
64 */
65
1c79356b
A
66#include <task_swapper.h>
67#include <mach_assert.h>
fe8ab488
A
68
69#include <vm/vm_options.h>
70
91447636 71#include <libkern/OSAtomic.h>
1c79356b
A
72
73#include <mach/kern_return.h>
74#include <mach/port.h>
75#include <mach/vm_attributes.h>
76#include <mach/vm_param.h>
77#include <mach/vm_behavior.h>
55e303ae 78#include <mach/vm_statistics.h>
91447636 79#include <mach/memory_object.h>
0c530ab8 80#include <mach/mach_vm.h>
91447636 81#include <machine/cpu_capabilities.h>
2d21ac55 82#include <mach/sdt.h>
91447636 83
1c79356b
A
84#include <kern/assert.h>
85#include <kern/counters.h>
91447636 86#include <kern/kalloc.h>
1c79356b 87#include <kern/zalloc.h>
91447636
A
88
89#include <vm/cpm.h>
39236c6e 90#include <vm/vm_compressor_pager.h>
1c79356b
A
91#include <vm/vm_init.h>
92#include <vm/vm_fault.h>
93#include <vm/vm_map.h>
94#include <vm/vm_object.h>
95#include <vm/vm_page.h>
b0d623f7 96#include <vm/vm_pageout.h>
1c79356b
A
97#include <vm/vm_kern.h>
98#include <ipc/ipc_port.h>
99#include <kern/sched_prim.h>
100#include <kern/misc_protos.h>
1c79356b
A
101#include <kern/xpr.h>
102
91447636
A
103#include <mach/vm_map_server.h>
104#include <mach/mach_host_server.h>
2d21ac55 105#include <vm/vm_protos.h>
b0d623f7 106#include <vm/vm_purgeable_internal.h>
91447636 107
91447636 108#include <vm/vm_protos.h>
2d21ac55 109#include <vm/vm_shared_region.h>
6d2010ae 110#include <vm/vm_map_store.h>
91447636 111
3e170ce0 112
316670eb 113extern u_int32_t random(void); /* from <libkern/libkern.h> */
1c79356b
A
114/* Internal prototypes
115 */
2d21ac55 116
91447636
A
117static void vm_map_simplify_range(
118 vm_map_t map,
119 vm_map_offset_t start,
120 vm_map_offset_t end); /* forward */
121
122static boolean_t vm_map_range_check(
2d21ac55
A
123 vm_map_t map,
124 vm_map_offset_t start,
125 vm_map_offset_t end,
126 vm_map_entry_t *entry);
1c79356b 127
91447636 128static vm_map_entry_t _vm_map_entry_create(
7ddcb079 129 struct vm_map_header *map_header, boolean_t map_locked);
1c79356b 130
91447636 131static void _vm_map_entry_dispose(
2d21ac55
A
132 struct vm_map_header *map_header,
133 vm_map_entry_t entry);
1c79356b 134
91447636 135static void vm_map_pmap_enter(
2d21ac55
A
136 vm_map_t map,
137 vm_map_offset_t addr,
138 vm_map_offset_t end_addr,
139 vm_object_t object,
140 vm_object_offset_t offset,
141 vm_prot_t protection);
1c79356b 142
91447636 143static void _vm_map_clip_end(
2d21ac55
A
144 struct vm_map_header *map_header,
145 vm_map_entry_t entry,
146 vm_map_offset_t end);
91447636
A
147
148static void _vm_map_clip_start(
2d21ac55
A
149 struct vm_map_header *map_header,
150 vm_map_entry_t entry,
151 vm_map_offset_t start);
1c79356b 152
91447636 153static void vm_map_entry_delete(
2d21ac55
A
154 vm_map_t map,
155 vm_map_entry_t entry);
1c79356b 156
91447636 157static kern_return_t vm_map_delete(
2d21ac55
A
158 vm_map_t map,
159 vm_map_offset_t start,
160 vm_map_offset_t end,
161 int flags,
162 vm_map_t zap_map);
1c79356b 163
91447636 164static kern_return_t vm_map_copy_overwrite_unaligned(
2d21ac55
A
165 vm_map_t dst_map,
166 vm_map_entry_t entry,
167 vm_map_copy_t copy,
39236c6e
A
168 vm_map_address_t start,
169 boolean_t discard_on_success);
1c79356b 170
91447636 171static kern_return_t vm_map_copy_overwrite_aligned(
2d21ac55
A
172 vm_map_t dst_map,
173 vm_map_entry_t tmp_entry,
174 vm_map_copy_t copy,
175 vm_map_offset_t start,
176 pmap_t pmap);
1c79356b 177
91447636 178static kern_return_t vm_map_copyin_kernel_buffer(
2d21ac55
A
179 vm_map_t src_map,
180 vm_map_address_t src_addr,
181 vm_map_size_t len,
182 boolean_t src_destroy,
183 vm_map_copy_t *copy_result); /* OUT */
1c79356b 184
91447636 185static kern_return_t vm_map_copyout_kernel_buffer(
2d21ac55
A
186 vm_map_t map,
187 vm_map_address_t *addr, /* IN/OUT */
188 vm_map_copy_t copy,
39236c6e
A
189 boolean_t overwrite,
190 boolean_t consume_on_success);
1c79356b 191
91447636 192static void vm_map_fork_share(
2d21ac55
A
193 vm_map_t old_map,
194 vm_map_entry_t old_entry,
195 vm_map_t new_map);
1c79356b 196
91447636 197static boolean_t vm_map_fork_copy(
2d21ac55
A
198 vm_map_t old_map,
199 vm_map_entry_t *old_entry_p,
200 vm_map_t new_map);
1c79356b 201
0c530ab8 202void vm_map_region_top_walk(
2d21ac55
A
203 vm_map_entry_t entry,
204 vm_region_top_info_t top);
1c79356b 205
0c530ab8 206void vm_map_region_walk(
2d21ac55
A
207 vm_map_t map,
208 vm_map_offset_t va,
209 vm_map_entry_t entry,
210 vm_object_offset_t offset,
211 vm_object_size_t range,
212 vm_region_extended_info_t extended,
39236c6e
A
213 boolean_t look_for_pages,
214 mach_msg_type_number_t count);
91447636
A
215
216static kern_return_t vm_map_wire_nested(
2d21ac55
A
217 vm_map_t map,
218 vm_map_offset_t start,
219 vm_map_offset_t end,
3e170ce0 220 vm_prot_t caller_prot,
2d21ac55
A
221 boolean_t user_wire,
222 pmap_t map_pmap,
fe8ab488
A
223 vm_map_offset_t pmap_addr,
224 ppnum_t *physpage_p);
91447636
A
225
226static kern_return_t vm_map_unwire_nested(
2d21ac55
A
227 vm_map_t map,
228 vm_map_offset_t start,
229 vm_map_offset_t end,
230 boolean_t user_wire,
231 pmap_t map_pmap,
232 vm_map_offset_t pmap_addr);
91447636
A
233
234static kern_return_t vm_map_overwrite_submap_recurse(
2d21ac55
A
235 vm_map_t dst_map,
236 vm_map_offset_t dst_addr,
237 vm_map_size_t dst_size);
91447636
A
238
239static kern_return_t vm_map_copy_overwrite_nested(
2d21ac55
A
240 vm_map_t dst_map,
241 vm_map_offset_t dst_addr,
242 vm_map_copy_t copy,
243 boolean_t interruptible,
6d2010ae
A
244 pmap_t pmap,
245 boolean_t discard_on_success);
91447636
A
246
247static kern_return_t vm_map_remap_extract(
2d21ac55
A
248 vm_map_t map,
249 vm_map_offset_t addr,
250 vm_map_size_t size,
251 boolean_t copy,
252 struct vm_map_header *map_header,
253 vm_prot_t *cur_protection,
254 vm_prot_t *max_protection,
255 vm_inherit_t inheritance,
256 boolean_t pageable);
91447636
A
257
258static kern_return_t vm_map_remap_range_allocate(
2d21ac55
A
259 vm_map_t map,
260 vm_map_address_t *address,
261 vm_map_size_t size,
262 vm_map_offset_t mask,
060df5ea 263 int flags,
2d21ac55 264 vm_map_entry_t *map_entry);
91447636
A
265
266static void vm_map_region_look_for_page(
2d21ac55
A
267 vm_map_t map,
268 vm_map_offset_t va,
269 vm_object_t object,
270 vm_object_offset_t offset,
271 int max_refcnt,
272 int depth,
39236c6e
A
273 vm_region_extended_info_t extended,
274 mach_msg_type_number_t count);
91447636
A
275
276static int vm_map_region_count_obj_refs(
2d21ac55
A
277 vm_map_entry_t entry,
278 vm_object_t object);
1c79356b 279
b0d623f7
A
280
281static kern_return_t vm_map_willneed(
282 vm_map_t map,
283 vm_map_offset_t start,
284 vm_map_offset_t end);
285
286static kern_return_t vm_map_reuse_pages(
287 vm_map_t map,
288 vm_map_offset_t start,
289 vm_map_offset_t end);
290
291static kern_return_t vm_map_reusable_pages(
292 vm_map_t map,
293 vm_map_offset_t start,
294 vm_map_offset_t end);
295
296static kern_return_t vm_map_can_reuse(
297 vm_map_t map,
298 vm_map_offset_t start,
299 vm_map_offset_t end);
300
3e170ce0
A
301#if MACH_ASSERT
302static kern_return_t vm_map_pageout(
303 vm_map_t map,
304 vm_map_offset_t start,
305 vm_map_offset_t end);
306#endif /* MACH_ASSERT */
6d2010ae 307
1c79356b
A
308/*
309 * Macros to copy a vm_map_entry. We must be careful to correctly
310 * manage the wired page count. vm_map_entry_copy() creates a new
311 * map entry to the same memory - the wired count in the new entry
312 * must be set to zero. vm_map_entry_copy_full() creates a new
313 * entry that is identical to the old entry. This preserves the
314 * wire count; it's used for map splitting and zone changing in
315 * vm_map_copyout.
316 */
316670eb 317
7ddcb079
A
318#define vm_map_entry_copy(NEW,OLD) \
319MACRO_BEGIN \
320boolean_t _vmec_reserved = (NEW)->from_reserved_zone; \
2d21ac55
A
321 *(NEW) = *(OLD); \
322 (NEW)->is_shared = FALSE; \
323 (NEW)->needs_wakeup = FALSE; \
324 (NEW)->in_transition = FALSE; \
325 (NEW)->wired_count = 0; \
326 (NEW)->user_wired_count = 0; \
b0d623f7 327 (NEW)->permanent = FALSE; \
316670eb 328 (NEW)->used_for_jit = FALSE; \
fe8ab488
A
329 (NEW)->from_reserved_zone = _vmec_reserved; \
330 (NEW)->iokit_acct = FALSE; \
3e170ce0
A
331 (NEW)->vme_resilient_codesign = FALSE; \
332 (NEW)->vme_resilient_media = FALSE; \
1c79356b
A
333MACRO_END
334
7ddcb079
A
335#define vm_map_entry_copy_full(NEW,OLD) \
336MACRO_BEGIN \
337boolean_t _vmecf_reserved = (NEW)->from_reserved_zone; \
338(*(NEW) = *(OLD)); \
339(NEW)->from_reserved_zone = _vmecf_reserved; \
340MACRO_END
1c79356b 341
2d21ac55
A
342/*
343 * Decide if we want to allow processes to execute from their data or stack areas.
344 * override_nx() returns true if we do. Data/stack execution can be enabled independently
345 * for 32 and 64 bit processes. Set the VM_ABI_32 or VM_ABI_64 flags in allow_data_exec
346 * or allow_stack_exec to enable data execution for that type of data area for that particular
347 * ABI (or both by or'ing the flags together). These are initialized in the architecture
348 * specific pmap files since the default behavior varies according to architecture. The
349 * main reason it varies is because of the need to provide binary compatibility with old
350 * applications that were written before these restrictions came into being. In the old
351 * days, an app could execute anything it could read, but this has slowly been tightened
352 * up over time. The default behavior is:
353 *
354 * 32-bit PPC apps may execute from both stack and data areas
355 * 32-bit Intel apps may exeucte from data areas but not stack
356 * 64-bit PPC/Intel apps may not execute from either data or stack
357 *
358 * An application on any architecture may override these defaults by explicitly
359 * adding PROT_EXEC permission to the page in question with the mprotect(2)
360 * system call. This code here just determines what happens when an app tries to
361 * execute from a page that lacks execute permission.
362 *
363 * Note that allow_data_exec or allow_stack_exec may also be modified by sysctl to change the
6d2010ae
A
364 * default behavior for both 32 and 64 bit apps on a system-wide basis. Furthermore,
365 * a Mach-O header flag bit (MH_NO_HEAP_EXECUTION) can be used to forcibly disallow
366 * execution from data areas for a particular binary even if the arch normally permits it. As
367 * a final wrinkle, a posix_spawn attribute flag can be used to negate this opt-in header bit
368 * to support some complicated use cases, notably browsers with out-of-process plugins that
369 * are not all NX-safe.
2d21ac55
A
370 */
371
372extern int allow_data_exec, allow_stack_exec;
373
374int
375override_nx(vm_map_t map, uint32_t user_tag) /* map unused on arm */
376{
377 int current_abi;
378
3e170ce0
A
379 if (map->pmap == kernel_pmap) return FALSE;
380
2d21ac55
A
381 /*
382 * Determine if the app is running in 32 or 64 bit mode.
383 */
384
385 if (vm_map_is_64bit(map))
386 current_abi = VM_ABI_64;
387 else
388 current_abi = VM_ABI_32;
389
390 /*
391 * Determine if we should allow the execution based on whether it's a
392 * stack or data area and the current architecture.
393 */
394
395 if (user_tag == VM_MEMORY_STACK)
396 return allow_stack_exec & current_abi;
397
6d2010ae 398 return (allow_data_exec & current_abi) && (map->map_disallow_data_exec == FALSE);
2d21ac55
A
399}
400
401
1c79356b
A
402/*
403 * Virtual memory maps provide for the mapping, protection,
404 * and sharing of virtual memory objects. In addition,
405 * this module provides for an efficient virtual copy of
406 * memory from one map to another.
407 *
408 * Synchronization is required prior to most operations.
409 *
410 * Maps consist of an ordered doubly-linked list of simple
411 * entries; a single hint is used to speed up lookups.
412 *
413 * Sharing maps have been deleted from this version of Mach.
414 * All shared objects are now mapped directly into the respective
415 * maps. This requires a change in the copy on write strategy;
416 * the asymmetric (delayed) strategy is used for shared temporary
417 * objects instead of the symmetric (shadow) strategy. All maps
418 * are now "top level" maps (either task map, kernel map or submap
419 * of the kernel map).
420 *
421 * Since portions of maps are specified by start/end addreses,
422 * which may not align with existing map entries, all
423 * routines merely "clip" entries to these start/end values.
424 * [That is, an entry is split into two, bordering at a
425 * start or end value.] Note that these clippings may not
426 * always be necessary (as the two resulting entries are then
427 * not changed); however, the clipping is done for convenience.
428 * No attempt is currently made to "glue back together" two
429 * abutting entries.
430 *
431 * The symmetric (shadow) copy strategy implements virtual copy
432 * by copying VM object references from one map to
433 * another, and then marking both regions as copy-on-write.
434 * It is important to note that only one writeable reference
435 * to a VM object region exists in any map when this strategy
436 * is used -- this means that shadow object creation can be
437 * delayed until a write operation occurs. The symmetric (delayed)
438 * strategy allows multiple maps to have writeable references to
439 * the same region of a vm object, and hence cannot delay creating
440 * its copy objects. See vm_object_copy_quickly() in vm_object.c.
441 * Copying of permanent objects is completely different; see
442 * vm_object_copy_strategically() in vm_object.c.
443 */
444
91447636
A
445static zone_t vm_map_zone; /* zone for vm_map structures */
446static zone_t vm_map_entry_zone; /* zone for vm_map_entry structures */
7ddcb079
A
447static zone_t vm_map_entry_reserved_zone; /* zone with reserve for non-blocking
448 * allocations */
91447636 449static zone_t vm_map_copy_zone; /* zone for vm_map_copy structures */
3e170ce0 450zone_t vm_map_holes_zone; /* zone for vm map holes (vm_map_links) structures */
1c79356b
A
451
452
453/*
454 * Placeholder object for submap operations. This object is dropped
455 * into the range by a call to vm_map_find, and removed when
456 * vm_map_submap creates the submap.
457 */
458
459vm_object_t vm_submap_object;
460
91447636 461static void *map_data;
b0d623f7 462static vm_size_t map_data_size;
91447636 463static void *kentry_data;
b0d623f7 464static vm_size_t kentry_data_size;
3e170ce0
A
465static void *map_holes_data;
466static vm_size_t map_holes_data_size;
1c79356b 467
b0d623f7 468#define NO_COALESCE_LIMIT ((1024 * 128) - 1)
1c79356b 469
55e303ae 470/* Skip acquiring locks if we're in the midst of a kernel core dump */
b0d623f7 471unsigned int not_in_kdp = 1;
55e303ae 472
6d2010ae
A
473unsigned int vm_map_set_cache_attr_count = 0;
474
475kern_return_t
476vm_map_set_cache_attr(
477 vm_map_t map,
478 vm_map_offset_t va)
479{
480 vm_map_entry_t map_entry;
481 vm_object_t object;
482 kern_return_t kr = KERN_SUCCESS;
483
484 vm_map_lock_read(map);
485
486 if (!vm_map_lookup_entry(map, va, &map_entry) ||
487 map_entry->is_sub_map) {
488 /*
489 * that memory is not properly mapped
490 */
491 kr = KERN_INVALID_ARGUMENT;
492 goto done;
493 }
3e170ce0 494 object = VME_OBJECT(map_entry);
6d2010ae
A
495
496 if (object == VM_OBJECT_NULL) {
497 /*
498 * there should be a VM object here at this point
499 */
500 kr = KERN_INVALID_ARGUMENT;
501 goto done;
502 }
503 vm_object_lock(object);
504 object->set_cache_attr = TRUE;
505 vm_object_unlock(object);
506
507 vm_map_set_cache_attr_count++;
508done:
509 vm_map_unlock_read(map);
510
511 return kr;
512}
513
514
593a1d5f
A
515#if CONFIG_CODE_DECRYPTION
516/*
517 * vm_map_apple_protected:
518 * This remaps the requested part of the object with an object backed by
519 * the decrypting pager.
520 * crypt_info contains entry points and session data for the crypt module.
521 * The crypt_info block will be copied by vm_map_apple_protected. The data structures
522 * referenced in crypt_info must remain valid until crypt_info->crypt_end() is called.
523 */
0c530ab8
A
524kern_return_t
525vm_map_apple_protected(
3e170ce0
A
526 vm_map_t map,
527 vm_map_offset_t start,
528 vm_map_offset_t end,
529 vm_object_offset_t crypto_backing_offset,
593a1d5f 530 struct pager_crypt_info *crypt_info)
0c530ab8
A
531{
532 boolean_t map_locked;
533 kern_return_t kr;
534 vm_map_entry_t map_entry;
3e170ce0
A
535 struct vm_map_entry tmp_entry;
536 memory_object_t unprotected_mem_obj;
0c530ab8
A
537 vm_object_t protected_object;
538 vm_map_offset_t map_addr;
3e170ce0
A
539 vm_map_offset_t start_aligned, end_aligned;
540 vm_object_offset_t crypto_start, crypto_end;
541 int vm_flags;
0c530ab8 542
3e170ce0
A
543 map_locked = FALSE;
544 unprotected_mem_obj = MEMORY_OBJECT_NULL;
0c530ab8 545
3e170ce0
A
546 start_aligned = vm_map_trunc_page(start, PAGE_MASK_64);
547 end_aligned = vm_map_round_page(end, PAGE_MASK_64);
548 start_aligned = vm_map_trunc_page(start_aligned, VM_MAP_PAGE_MASK(map));
549 end_aligned = vm_map_round_page(end_aligned, VM_MAP_PAGE_MASK(map));
b0d623f7 550
3e170ce0
A
551 assert(start_aligned == start);
552 assert(end_aligned == end);
b0d623f7 553
3e170ce0
A
554 map_addr = start_aligned;
555 for (map_addr = start_aligned;
556 map_addr < end;
557 map_addr = tmp_entry.vme_end) {
558 vm_map_lock(map);
559 map_locked = TRUE;
b0d623f7 560
3e170ce0
A
561 /* lookup the protected VM object */
562 if (!vm_map_lookup_entry(map,
563 map_addr,
564 &map_entry) ||
565 map_entry->is_sub_map ||
566 VME_OBJECT(map_entry) == VM_OBJECT_NULL ||
567 !(map_entry->protection & VM_PROT_EXECUTE)) {
568 /* that memory is not properly mapped */
569 kr = KERN_INVALID_ARGUMENT;
570 goto done;
571 }
b0d623f7 572
3e170ce0
A
573 /* get the protected object to be decrypted */
574 protected_object = VME_OBJECT(map_entry);
575 if (protected_object == VM_OBJECT_NULL) {
576 /* there should be a VM object here at this point */
577 kr = KERN_INVALID_ARGUMENT;
578 goto done;
579 }
580 /* ensure protected object stays alive while map is unlocked */
581 vm_object_reference(protected_object);
582
583 /* limit the map entry to the area we want to cover */
584 vm_map_clip_start(map, map_entry, start_aligned);
585 vm_map_clip_end(map, map_entry, end_aligned);
586
587 tmp_entry = *map_entry;
588 map_entry = VM_MAP_ENTRY_NULL; /* not valid after unlocking map */
589 vm_map_unlock(map);
590 map_locked = FALSE;
591
592 /*
593 * This map entry might be only partially encrypted
594 * (if not fully "page-aligned").
595 */
596 crypto_start = 0;
597 crypto_end = tmp_entry.vme_end - tmp_entry.vme_start;
598 if (tmp_entry.vme_start < start) {
599 if (tmp_entry.vme_start != start_aligned) {
600 kr = KERN_INVALID_ADDRESS;
601 }
602 crypto_start += (start - tmp_entry.vme_start);
603 }
604 if (tmp_entry.vme_end > end) {
605 if (tmp_entry.vme_end != end_aligned) {
606 kr = KERN_INVALID_ADDRESS;
607 }
608 crypto_end -= (tmp_entry.vme_end - end);
609 }
610
611 /*
612 * This "extra backing offset" is needed to get the decryption
613 * routine to use the right key. It adjusts for the possibly
614 * relative offset of an interposed "4K" pager...
615 */
616 if (crypto_backing_offset == (vm_object_offset_t) -1) {
617 crypto_backing_offset = VME_OFFSET(&tmp_entry);
618 }
0c530ab8 619
3e170ce0
A
620 /*
621 * Lookup (and create if necessary) the protected memory object
622 * matching that VM object.
623 * If successful, this also grabs a reference on the memory object,
624 * to guarantee that it doesn't go away before we get a chance to map
625 * it.
626 */
627 unprotected_mem_obj = apple_protect_pager_setup(
628 protected_object,
629 VME_OFFSET(&tmp_entry),
630 crypto_backing_offset,
631 crypt_info,
632 crypto_start,
633 crypto_end);
634
635 /* release extra ref on protected object */
636 vm_object_deallocate(protected_object);
637
638 if (unprotected_mem_obj == NULL) {
639 kr = KERN_FAILURE;
640 goto done;
641 }
642
643 vm_flags = VM_FLAGS_FIXED | VM_FLAGS_OVERWRITE;
644
645 /* map this memory object in place of the current one */
646 map_addr = tmp_entry.vme_start;
647 kr = vm_map_enter_mem_object(map,
648 &map_addr,
649 (tmp_entry.vme_end -
650 tmp_entry.vme_start),
651 (mach_vm_offset_t) 0,
652 vm_flags,
653 (ipc_port_t) unprotected_mem_obj,
654 0,
655 TRUE,
656 tmp_entry.protection,
657 tmp_entry.max_protection,
658 tmp_entry.inheritance);
659 assert(kr == KERN_SUCCESS);
660 assert(map_addr == tmp_entry.vme_start);
661
662#if VM_MAP_DEBUG_APPLE_PROTECT
663 printf("APPLE_PROTECT: map %p [0x%llx:0x%llx] pager %p: "
664 "backing:[object:%p,offset:0x%llx,"
665 "crypto_backing_offset:0x%llx,"
666 "crypto_start:0x%llx,crypto_end:0x%llx]\n",
667 map,
668 (uint64_t) map_addr,
669 (uint64_t) (map_addr + (tmp_entry.vme_end -
670 tmp_entry.vme_start)),
671 unprotected_mem_obj,
672 protected_object,
673 VME_OFFSET(&tmp_entry),
674 crypto_backing_offset,
675 crypto_start,
676 crypto_end);
677#endif /* VM_MAP_DEBUG_APPLE_PROTECT */
678
679 /*
680 * Release the reference obtained by
681 * apple_protect_pager_setup().
682 * The mapping (if it succeeded) is now holding a reference on
683 * the memory object.
684 */
685 memory_object_deallocate(unprotected_mem_obj);
686 unprotected_mem_obj = MEMORY_OBJECT_NULL;
687
688 /* continue with next map entry */
689 crypto_backing_offset += (tmp_entry.vme_end -
690 tmp_entry.vme_start);
691 crypto_backing_offset -= crypto_start;
692 }
693 kr = KERN_SUCCESS;
0c530ab8
A
694
695done:
696 if (map_locked) {
3e170ce0 697 vm_map_unlock(map);
0c530ab8
A
698 }
699 return kr;
700}
593a1d5f 701#endif /* CONFIG_CODE_DECRYPTION */
0c530ab8
A
702
703
b0d623f7
A
704lck_grp_t vm_map_lck_grp;
705lck_grp_attr_t vm_map_lck_grp_attr;
706lck_attr_t vm_map_lck_attr;
fe8ab488 707lck_attr_t vm_map_lck_rw_attr;
b0d623f7
A
708
709
593a1d5f
A
710/*
711 * vm_map_init:
712 *
713 * Initialize the vm_map module. Must be called before
714 * any other vm_map routines.
715 *
716 * Map and entry structures are allocated from zones -- we must
717 * initialize those zones.
718 *
719 * There are three zones of interest:
720 *
721 * vm_map_zone: used to allocate maps.
722 * vm_map_entry_zone: used to allocate map entries.
7ddcb079 723 * vm_map_entry_reserved_zone: fallback zone for kernel map entries
593a1d5f
A
724 *
725 * The kernel allocates map entries from a special zone that is initially
726 * "crammed" with memory. It would be difficult (perhaps impossible) for
727 * the kernel to allocate more memory to a entry zone when it became
728 * empty since the very act of allocating memory implies the creation
729 * of a new entry.
730 */
1c79356b
A
731void
732vm_map_init(
733 void)
734{
7ddcb079 735 vm_size_t entry_zone_alloc_size;
316670eb
A
736 const char *mez_name = "VM map entries";
737
2d21ac55
A
738 vm_map_zone = zinit((vm_map_size_t) sizeof(struct _vm_map), 40*1024,
739 PAGE_SIZE, "maps");
0b4c1975 740 zone_change(vm_map_zone, Z_NOENCRYPT, TRUE);
7ddcb079
A
741#if defined(__LP64__)
742 entry_zone_alloc_size = PAGE_SIZE * 5;
743#else
744 entry_zone_alloc_size = PAGE_SIZE * 6;
745#endif
91447636 746 vm_map_entry_zone = zinit((vm_map_size_t) sizeof(struct vm_map_entry),
7ddcb079 747 1024*1024, entry_zone_alloc_size,
316670eb 748 mez_name);
0b4c1975 749 zone_change(vm_map_entry_zone, Z_NOENCRYPT, TRUE);
7ddcb079 750 zone_change(vm_map_entry_zone, Z_NOCALLOUT, TRUE);
316670eb 751 zone_change(vm_map_entry_zone, Z_GZALLOC_EXEMPT, TRUE);
1c79356b 752
7ddcb079
A
753 vm_map_entry_reserved_zone = zinit((vm_map_size_t) sizeof(struct vm_map_entry),
754 kentry_data_size * 64, kentry_data_size,
755 "Reserved VM map entries");
756 zone_change(vm_map_entry_reserved_zone, Z_NOENCRYPT, TRUE);
1c79356b 757
91447636 758 vm_map_copy_zone = zinit((vm_map_size_t) sizeof(struct vm_map_copy),
7ddcb079 759 16*1024, PAGE_SIZE, "VM map copies");
0b4c1975 760 zone_change(vm_map_copy_zone, Z_NOENCRYPT, TRUE);
1c79356b 761
3e170ce0
A
762 vm_map_holes_zone = zinit((vm_map_size_t) sizeof(struct vm_map_links),
763 16*1024, PAGE_SIZE, "VM map holes");
764 zone_change(vm_map_holes_zone, Z_NOENCRYPT, TRUE);
765
1c79356b
A
766 /*
767 * Cram the map and kentry zones with initial data.
7ddcb079 768 * Set reserved_zone non-collectible to aid zone_gc().
1c79356b
A
769 */
770 zone_change(vm_map_zone, Z_COLLECT, FALSE);
7ddcb079
A
771
772 zone_change(vm_map_entry_reserved_zone, Z_COLLECT, FALSE);
773 zone_change(vm_map_entry_reserved_zone, Z_EXPAND, FALSE);
774 zone_change(vm_map_entry_reserved_zone, Z_FOREIGN, TRUE);
775 zone_change(vm_map_entry_reserved_zone, Z_NOCALLOUT, TRUE);
776 zone_change(vm_map_entry_reserved_zone, Z_CALLERACCT, FALSE); /* don't charge caller */
6d2010ae 777 zone_change(vm_map_copy_zone, Z_CALLERACCT, FALSE); /* don't charge caller */
316670eb 778 zone_change(vm_map_entry_reserved_zone, Z_GZALLOC_EXEMPT, TRUE);
6d2010ae 779
3e170ce0
A
780 zone_change(vm_map_holes_zone, Z_COLLECT, TRUE);
781 zone_change(vm_map_holes_zone, Z_EXPAND, TRUE);
782 zone_change(vm_map_holes_zone, Z_FOREIGN, TRUE);
783 zone_change(vm_map_holes_zone, Z_NOCALLOUT, TRUE);
784 zone_change(vm_map_holes_zone, Z_CALLERACCT, TRUE);
785 zone_change(vm_map_holes_zone, Z_GZALLOC_EXEMPT, TRUE);
786
787 /*
788 * Add the stolen memory to zones, adjust zone size and stolen counts.
789 */
7ddcb079
A
790 zcram(vm_map_zone, (vm_offset_t)map_data, map_data_size);
791 zcram(vm_map_entry_reserved_zone, (vm_offset_t)kentry_data, kentry_data_size);
3e170ce0
A
792 zcram(vm_map_holes_zone, (vm_offset_t)map_holes_data, map_holes_data_size);
793 VM_PAGE_MOVE_STOLEN(atop_64(map_data_size) + atop_64(kentry_data_size) + atop_64(map_holes_data_size));
794
b0d623f7
A
795 lck_grp_attr_setdefault(&vm_map_lck_grp_attr);
796 lck_grp_init(&vm_map_lck_grp, "vm_map", &vm_map_lck_grp_attr);
797 lck_attr_setdefault(&vm_map_lck_attr);
316670eb 798
fe8ab488
A
799 lck_attr_setdefault(&vm_map_lck_rw_attr);
800 lck_attr_cleardebug(&vm_map_lck_rw_attr);
801
316670eb
A
802#if CONFIG_FREEZE
803 default_freezer_init();
804#endif /* CONFIG_FREEZE */
1c79356b
A
805}
806
807void
808vm_map_steal_memory(
809 void)
810{
7ddcb079
A
811 uint32_t kentry_initial_pages;
812
b0d623f7 813 map_data_size = round_page(10 * sizeof(struct _vm_map));
1c79356b
A
814 map_data = pmap_steal_memory(map_data_size);
815
1c79356b 816 /*
7ddcb079
A
817 * kentry_initial_pages corresponds to the number of kernel map entries
818 * required during bootstrap until the asynchronous replenishment
819 * scheme is activated and/or entries are available from the general
820 * map entry pool.
1c79356b 821 */
7ddcb079
A
822#if defined(__LP64__)
823 kentry_initial_pages = 10;
824#else
825 kentry_initial_pages = 6;
1c79356b 826#endif
316670eb
A
827
828#if CONFIG_GZALLOC
829 /* If using the guard allocator, reserve more memory for the kernel
830 * reserved map entry pool.
831 */
832 if (gzalloc_enabled())
833 kentry_initial_pages *= 1024;
834#endif
835
7ddcb079 836 kentry_data_size = kentry_initial_pages * PAGE_SIZE;
1c79356b 837 kentry_data = pmap_steal_memory(kentry_data_size);
3e170ce0
A
838
839 map_holes_data_size = kentry_data_size;
840 map_holes_data = pmap_steal_memory(map_holes_data_size);
1c79356b
A
841}
842
3e170ce0
A
843void
844vm_kernel_reserved_entry_init(void) {
7ddcb079 845 zone_prio_refill_configure(vm_map_entry_reserved_zone, (6*PAGE_SIZE)/sizeof(struct vm_map_entry));
3e170ce0
A
846 zone_prio_refill_configure(vm_map_holes_zone, (6*PAGE_SIZE)/sizeof(struct vm_map_links));
847}
848
849void
850vm_map_disable_hole_optimization(vm_map_t map)
851{
852 vm_map_entry_t head_entry, hole_entry, next_hole_entry;
853
854 if (map->holelistenabled) {
855
856 head_entry = hole_entry = (vm_map_entry_t) map->holes_list;
857
858 while (hole_entry != NULL) {
859
860 next_hole_entry = hole_entry->vme_next;
861
862 hole_entry->vme_next = NULL;
863 hole_entry->vme_prev = NULL;
864 zfree(vm_map_holes_zone, hole_entry);
865
866 if (next_hole_entry == head_entry) {
867 hole_entry = NULL;
868 } else {
869 hole_entry = next_hole_entry;
870 }
871 }
872
873 map->holes_list = NULL;
874 map->holelistenabled = FALSE;
875
876 map->first_free = vm_map_first_entry(map);
877 SAVE_HINT_HOLE_WRITE(map, NULL);
878 }
879}
880
881boolean_t
882vm_kernel_map_is_kernel(vm_map_t map) {
883 return (map->pmap == kernel_pmap);
7ddcb079
A
884}
885
1c79356b
A
886/*
887 * vm_map_create:
888 *
889 * Creates and returns a new empty VM map with
890 * the given physical map structure, and having
891 * the given lower and upper address bounds.
892 */
3e170ce0
A
893
894boolean_t vm_map_supports_hole_optimization = TRUE;
895
1c79356b
A
896vm_map_t
897vm_map_create(
91447636
A
898 pmap_t pmap,
899 vm_map_offset_t min,
900 vm_map_offset_t max,
901 boolean_t pageable)
1c79356b 902{
2d21ac55 903 static int color_seed = 0;
1c79356b 904 register vm_map_t result;
3e170ce0 905 struct vm_map_links *hole_entry = NULL;
1c79356b
A
906
907 result = (vm_map_t) zalloc(vm_map_zone);
908 if (result == VM_MAP_NULL)
909 panic("vm_map_create");
910
911 vm_map_first_entry(result) = vm_map_to_entry(result);
912 vm_map_last_entry(result) = vm_map_to_entry(result);
913 result->hdr.nentries = 0;
914 result->hdr.entries_pageable = pageable;
915
6d2010ae
A
916 vm_map_store_init( &(result->hdr) );
917
39236c6e
A
918 result->hdr.page_shift = PAGE_SHIFT;
919
1c79356b 920 result->size = 0;
2d21ac55
A
921 result->user_wire_limit = MACH_VM_MAX_ADDRESS; /* default limit is unlimited */
922 result->user_wire_size = 0;
1c79356b
A
923 result->ref_count = 1;
924#if TASK_SWAPPER
925 result->res_count = 1;
926 result->sw_state = MAP_SW_IN;
927#endif /* TASK_SWAPPER */
928 result->pmap = pmap;
929 result->min_offset = min;
930 result->max_offset = max;
931 result->wiring_required = FALSE;
932 result->no_zero_fill = FALSE;
316670eb 933 result->mapped_in_other_pmaps = FALSE;
1c79356b 934 result->wait_for_space = FALSE;
b0d623f7 935 result->switch_protect = FALSE;
6d2010ae
A
936 result->disable_vmentry_reuse = FALSE;
937 result->map_disallow_data_exec = FALSE;
938 result->highest_entry_end = 0;
1c79356b
A
939 result->first_free = vm_map_to_entry(result);
940 result->hint = vm_map_to_entry(result);
2d21ac55 941 result->color_rr = (color_seed++) & vm_color_mask;
6d2010ae 942 result->jit_entry_exists = FALSE;
3e170ce0
A
943
944 if (vm_map_supports_hole_optimization && pmap != kernel_pmap) {
945 hole_entry = zalloc(vm_map_holes_zone);
946
947 hole_entry->start = min;
948 hole_entry->end = (max > (vm_map_offset_t)MACH_VM_MAX_ADDRESS) ? max : (vm_map_offset_t)MACH_VM_MAX_ADDRESS;
949 result->holes_list = result->hole_hint = hole_entry;
950 hole_entry->prev = hole_entry->next = (vm_map_entry_t) hole_entry;
951 result->holelistenabled = TRUE;
952
953 } else {
954
955 result->holelistenabled = FALSE;
956 }
957
6d2010ae 958#if CONFIG_FREEZE
316670eb 959 result->default_freezer_handle = NULL;
6d2010ae 960#endif
1c79356b 961 vm_map_lock_init(result);
b0d623f7
A
962 lck_mtx_init_ext(&result->s_lock, &result->s_lock_ext, &vm_map_lck_grp, &vm_map_lck_attr);
963
1c79356b
A
964 return(result);
965}
966
967/*
968 * vm_map_entry_create: [ internal use only ]
969 *
970 * Allocates a VM map entry for insertion in the
971 * given map (or map copy). No fields are filled.
972 */
7ddcb079 973#define vm_map_entry_create(map, map_locked) _vm_map_entry_create(&(map)->hdr, map_locked)
1c79356b 974
7ddcb079
A
975#define vm_map_copy_entry_create(copy, map_locked) \
976 _vm_map_entry_create(&(copy)->cpy_hdr, map_locked)
977unsigned reserved_zalloc_count, nonreserved_zalloc_count;
1c79356b 978
91447636 979static vm_map_entry_t
1c79356b 980_vm_map_entry_create(
7ddcb079 981 struct vm_map_header *map_header, boolean_t __unused map_locked)
1c79356b 982{
7ddcb079
A
983 zone_t zone;
984 vm_map_entry_t entry;
1c79356b 985
7ddcb079
A
986 zone = vm_map_entry_zone;
987
988 assert(map_header->entries_pageable ? !map_locked : TRUE);
989
990 if (map_header->entries_pageable) {
991 entry = (vm_map_entry_t) zalloc(zone);
992 }
993 else {
994 entry = (vm_map_entry_t) zalloc_canblock(zone, FALSE);
995
996 if (entry == VM_MAP_ENTRY_NULL) {
997 zone = vm_map_entry_reserved_zone;
998 entry = (vm_map_entry_t) zalloc(zone);
999 OSAddAtomic(1, &reserved_zalloc_count);
1000 } else
1001 OSAddAtomic(1, &nonreserved_zalloc_count);
1002 }
1c79356b 1003
1c79356b
A
1004 if (entry == VM_MAP_ENTRY_NULL)
1005 panic("vm_map_entry_create");
7ddcb079
A
1006 entry->from_reserved_zone = (zone == vm_map_entry_reserved_zone);
1007
6d2010ae 1008 vm_map_store_update( (vm_map_t) NULL, entry, VM_MAP_ENTRY_CREATE);
316670eb 1009#if MAP_ENTRY_CREATION_DEBUG
39236c6e
A
1010 entry->vme_creation_maphdr = map_header;
1011 fastbacktrace(&entry->vme_creation_bt[0],
1012 (sizeof(entry->vme_creation_bt)/sizeof(uintptr_t)));
316670eb 1013#endif
1c79356b
A
1014 return(entry);
1015}
1016
1017/*
1018 * vm_map_entry_dispose: [ internal use only ]
1019 *
1020 * Inverse of vm_map_entry_create.
2d21ac55
A
1021 *
1022 * write map lock held so no need to
1023 * do anything special to insure correctness
1024 * of the stores
1c79356b
A
1025 */
1026#define vm_map_entry_dispose(map, entry) \
6d2010ae 1027 _vm_map_entry_dispose(&(map)->hdr, (entry))
1c79356b
A
1028
1029#define vm_map_copy_entry_dispose(map, entry) \
1030 _vm_map_entry_dispose(&(copy)->cpy_hdr, (entry))
1031
91447636 1032static void
1c79356b
A
1033_vm_map_entry_dispose(
1034 register struct vm_map_header *map_header,
1035 register vm_map_entry_t entry)
1036{
1037 register zone_t zone;
1038
7ddcb079 1039 if (map_header->entries_pageable || !(entry->from_reserved_zone))
2d21ac55 1040 zone = vm_map_entry_zone;
1c79356b 1041 else
7ddcb079
A
1042 zone = vm_map_entry_reserved_zone;
1043
1044 if (!map_header->entries_pageable) {
1045 if (zone == vm_map_entry_zone)
1046 OSAddAtomic(-1, &nonreserved_zalloc_count);
1047 else
1048 OSAddAtomic(-1, &reserved_zalloc_count);
1049 }
1c79356b 1050
91447636 1051 zfree(zone, entry);
1c79356b
A
1052}
1053
91447636 1054#if MACH_ASSERT
91447636 1055static boolean_t first_free_check = FALSE;
6d2010ae 1056boolean_t
1c79356b
A
1057first_free_is_valid(
1058 vm_map_t map)
1059{
1c79356b
A
1060 if (!first_free_check)
1061 return TRUE;
2d21ac55 1062
6d2010ae 1063 return( first_free_is_valid_store( map ));
1c79356b 1064}
91447636 1065#endif /* MACH_ASSERT */
1c79356b 1066
1c79356b
A
1067
1068#define vm_map_copy_entry_link(copy, after_where, entry) \
6d2010ae 1069 _vm_map_store_entry_link(&(copy)->cpy_hdr, after_where, (entry))
1c79356b
A
1070
1071#define vm_map_copy_entry_unlink(copy, entry) \
6d2010ae 1072 _vm_map_store_entry_unlink(&(copy)->cpy_hdr, (entry))
1c79356b 1073
1c79356b 1074#if MACH_ASSERT && TASK_SWAPPER
1c79356b
A
1075/*
1076 * vm_map_res_reference:
1077 *
1078 * Adds another valid residence count to the given map.
1079 *
1080 * Map is locked so this function can be called from
1081 * vm_map_swapin.
1082 *
1083 */
1084void vm_map_res_reference(register vm_map_t map)
1085{
1086 /* assert map is locked */
1087 assert(map->res_count >= 0);
1088 assert(map->ref_count >= map->res_count);
1089 if (map->res_count == 0) {
b0d623f7 1090 lck_mtx_unlock(&map->s_lock);
1c79356b
A
1091 vm_map_lock(map);
1092 vm_map_swapin(map);
b0d623f7 1093 lck_mtx_lock(&map->s_lock);
1c79356b
A
1094 ++map->res_count;
1095 vm_map_unlock(map);
1096 } else
1097 ++map->res_count;
1098}
1099
1100/*
1101 * vm_map_reference_swap:
1102 *
1103 * Adds valid reference and residence counts to the given map.
1104 *
1105 * The map may not be in memory (i.e. zero residence count).
1106 *
1107 */
1108void vm_map_reference_swap(register vm_map_t map)
1109{
1110 assert(map != VM_MAP_NULL);
b0d623f7 1111 lck_mtx_lock(&map->s_lock);
1c79356b
A
1112 assert(map->res_count >= 0);
1113 assert(map->ref_count >= map->res_count);
1114 map->ref_count++;
1115 vm_map_res_reference(map);
b0d623f7 1116 lck_mtx_unlock(&map->s_lock);
1c79356b
A
1117}
1118
1119/*
1120 * vm_map_res_deallocate:
1121 *
1122 * Decrement residence count on a map; possibly causing swapout.
1123 *
1124 * The map must be in memory (i.e. non-zero residence count).
1125 *
1126 * The map is locked, so this function is callable from vm_map_deallocate.
1127 *
1128 */
1129void vm_map_res_deallocate(register vm_map_t map)
1130{
1131 assert(map->res_count > 0);
1132 if (--map->res_count == 0) {
b0d623f7 1133 lck_mtx_unlock(&map->s_lock);
1c79356b
A
1134 vm_map_lock(map);
1135 vm_map_swapout(map);
1136 vm_map_unlock(map);
b0d623f7 1137 lck_mtx_lock(&map->s_lock);
1c79356b
A
1138 }
1139 assert(map->ref_count >= map->res_count);
1140}
1141#endif /* MACH_ASSERT && TASK_SWAPPER */
1142
1c79356b
A
1143/*
1144 * vm_map_destroy:
1145 *
1146 * Actually destroy a map.
1147 */
1148void
1149vm_map_destroy(
2d21ac55
A
1150 vm_map_t map,
1151 int flags)
91447636 1152{
1c79356b 1153 vm_map_lock(map);
2d21ac55 1154
3e170ce0
A
1155 /* final cleanup: no need to unnest shared region */
1156 flags |= VM_MAP_REMOVE_NO_UNNESTING;
1157
2d21ac55
A
1158 /* clean up regular map entries */
1159 (void) vm_map_delete(map, map->min_offset, map->max_offset,
1160 flags, VM_MAP_NULL);
1161 /* clean up leftover special mappings (commpage, etc...) */
2d21ac55
A
1162 (void) vm_map_delete(map, 0x0, 0xFFFFFFFFFFFFF000ULL,
1163 flags, VM_MAP_NULL);
6d2010ae
A
1164
1165#if CONFIG_FREEZE
316670eb
A
1166 if (map->default_freezer_handle) {
1167 default_freezer_handle_deallocate(map->default_freezer_handle);
1168 map->default_freezer_handle = NULL;
6d2010ae
A
1169 }
1170#endif
3e170ce0 1171 vm_map_disable_hole_optimization(map);
1c79356b
A
1172 vm_map_unlock(map);
1173
2d21ac55
A
1174 assert(map->hdr.nentries == 0);
1175
55e303ae
A
1176 if(map->pmap)
1177 pmap_destroy(map->pmap);
1c79356b 1178
91447636 1179 zfree(vm_map_zone, map);
1c79356b
A
1180}
1181
1182#if TASK_SWAPPER
1183/*
1184 * vm_map_swapin/vm_map_swapout
1185 *
1186 * Swap a map in and out, either referencing or releasing its resources.
1187 * These functions are internal use only; however, they must be exported
1188 * because they may be called from macros, which are exported.
1189 *
1190 * In the case of swapout, there could be races on the residence count,
1191 * so if the residence count is up, we return, assuming that a
1192 * vm_map_deallocate() call in the near future will bring us back.
1193 *
1194 * Locking:
1195 * -- We use the map write lock for synchronization among races.
1196 * -- The map write lock, and not the simple s_lock, protects the
1197 * swap state of the map.
1198 * -- If a map entry is a share map, then we hold both locks, in
1199 * hierarchical order.
1200 *
1201 * Synchronization Notes:
1202 * 1) If a vm_map_swapin() call happens while swapout in progress, it
1203 * will block on the map lock and proceed when swapout is through.
1204 * 2) A vm_map_reference() call at this time is illegal, and will
1205 * cause a panic. vm_map_reference() is only allowed on resident
1206 * maps, since it refuses to block.
1207 * 3) A vm_map_swapin() call during a swapin will block, and
1208 * proceeed when the first swapin is done, turning into a nop.
1209 * This is the reason the res_count is not incremented until
1210 * after the swapin is complete.
1211 * 4) There is a timing hole after the checks of the res_count, before
1212 * the map lock is taken, during which a swapin may get the lock
1213 * before a swapout about to happen. If this happens, the swapin
1214 * will detect the state and increment the reference count, causing
1215 * the swapout to be a nop, thereby delaying it until a later
1216 * vm_map_deallocate. If the swapout gets the lock first, then
1217 * the swapin will simply block until the swapout is done, and
1218 * then proceed.
1219 *
1220 * Because vm_map_swapin() is potentially an expensive operation, it
1221 * should be used with caution.
1222 *
1223 * Invariants:
1224 * 1) A map with a residence count of zero is either swapped, or
1225 * being swapped.
1226 * 2) A map with a non-zero residence count is either resident,
1227 * or being swapped in.
1228 */
1229
1230int vm_map_swap_enable = 1;
1231
1232void vm_map_swapin (vm_map_t map)
1233{
1234 register vm_map_entry_t entry;
2d21ac55 1235
1c79356b
A
1236 if (!vm_map_swap_enable) /* debug */
1237 return;
1238
1239 /*
1240 * Map is locked
1241 * First deal with various races.
1242 */
1243 if (map->sw_state == MAP_SW_IN)
1244 /*
1245 * we raced with swapout and won. Returning will incr.
1246 * the res_count, turning the swapout into a nop.
1247 */
1248 return;
1249
1250 /*
1251 * The residence count must be zero. If we raced with another
1252 * swapin, the state would have been IN; if we raced with a
1253 * swapout (after another competing swapin), we must have lost
1254 * the race to get here (see above comment), in which case
1255 * res_count is still 0.
1256 */
1257 assert(map->res_count == 0);
1258
1259 /*
1260 * There are no intermediate states of a map going out or
1261 * coming in, since the map is locked during the transition.
1262 */
1263 assert(map->sw_state == MAP_SW_OUT);
1264
1265 /*
1266 * We now operate upon each map entry. If the entry is a sub-
1267 * or share-map, we call vm_map_res_reference upon it.
1268 * If the entry is an object, we call vm_object_res_reference
1269 * (this may iterate through the shadow chain).
1270 * Note that we hold the map locked the entire time,
1271 * even if we get back here via a recursive call in
1272 * vm_map_res_reference.
1273 */
1274 entry = vm_map_first_entry(map);
1275
1276 while (entry != vm_map_to_entry(map)) {
3e170ce0 1277 if (VME_OBJECT(entry) != VM_OBJECT_NULL) {
1c79356b 1278 if (entry->is_sub_map) {
3e170ce0 1279 vm_map_t lmap = VME_SUBMAP(entry);
b0d623f7 1280 lck_mtx_lock(&lmap->s_lock);
1c79356b 1281 vm_map_res_reference(lmap);
b0d623f7 1282 lck_mtx_unlock(&lmap->s_lock);
1c79356b 1283 } else {
3e170ce0 1284 vm_object_t object = VME_OBEJCT(entry);
1c79356b
A
1285 vm_object_lock(object);
1286 /*
1287 * This call may iterate through the
1288 * shadow chain.
1289 */
1290 vm_object_res_reference(object);
1291 vm_object_unlock(object);
1292 }
1293 }
1294 entry = entry->vme_next;
1295 }
1296 assert(map->sw_state == MAP_SW_OUT);
1297 map->sw_state = MAP_SW_IN;
1298}
1299
1300void vm_map_swapout(vm_map_t map)
1301{
1302 register vm_map_entry_t entry;
1303
1304 /*
1305 * Map is locked
1306 * First deal with various races.
1307 * If we raced with a swapin and lost, the residence count
1308 * will have been incremented to 1, and we simply return.
1309 */
b0d623f7 1310 lck_mtx_lock(&map->s_lock);
1c79356b 1311 if (map->res_count != 0) {
b0d623f7 1312 lck_mtx_unlock(&map->s_lock);
1c79356b
A
1313 return;
1314 }
b0d623f7 1315 lck_mtx_unlock(&map->s_lock);
1c79356b
A
1316
1317 /*
1318 * There are no intermediate states of a map going out or
1319 * coming in, since the map is locked during the transition.
1320 */
1321 assert(map->sw_state == MAP_SW_IN);
1322
1323 if (!vm_map_swap_enable)
1324 return;
1325
1326 /*
1327 * We now operate upon each map entry. If the entry is a sub-
1328 * or share-map, we call vm_map_res_deallocate upon it.
1329 * If the entry is an object, we call vm_object_res_deallocate
1330 * (this may iterate through the shadow chain).
1331 * Note that we hold the map locked the entire time,
1332 * even if we get back here via a recursive call in
1333 * vm_map_res_deallocate.
1334 */
1335 entry = vm_map_first_entry(map);
1336
1337 while (entry != vm_map_to_entry(map)) {
3e170ce0 1338 if (VME_OBJECT(entry) != VM_OBJECT_NULL) {
1c79356b 1339 if (entry->is_sub_map) {
3e170ce0 1340 vm_map_t lmap = VME_SUBMAP(entry);
b0d623f7 1341 lck_mtx_lock(&lmap->s_lock);
1c79356b 1342 vm_map_res_deallocate(lmap);
b0d623f7 1343 lck_mtx_unlock(&lmap->s_lock);
1c79356b 1344 } else {
3e170ce0 1345 vm_object_t object = VME_OBJECT(entry);
1c79356b
A
1346 vm_object_lock(object);
1347 /*
1348 * This call may take a long time,
1349 * since it could actively push
1350 * out pages (if we implement it
1351 * that way).
1352 */
1353 vm_object_res_deallocate(object);
1354 vm_object_unlock(object);
1355 }
1356 }
1357 entry = entry->vme_next;
1358 }
1359 assert(map->sw_state == MAP_SW_IN);
1360 map->sw_state = MAP_SW_OUT;
1361}
1362
1363#endif /* TASK_SWAPPER */
1364
1c79356b
A
1365/*
1366 * vm_map_lookup_entry: [ internal use only ]
1367 *
6d2010ae
A
1368 * Calls into the vm map store layer to find the map
1369 * entry containing (or immediately preceding) the
1370 * specified address in the given map; the entry is returned
1c79356b
A
1371 * in the "entry" parameter. The boolean
1372 * result indicates whether the address is
1373 * actually contained in the map.
1374 */
1375boolean_t
1376vm_map_lookup_entry(
91447636
A
1377 register vm_map_t map,
1378 register vm_map_offset_t address,
1c79356b
A
1379 vm_map_entry_t *entry) /* OUT */
1380{
6d2010ae 1381 return ( vm_map_store_lookup_entry( map, address, entry ));
1c79356b
A
1382}
1383
1384/*
1385 * Routine: vm_map_find_space
1386 * Purpose:
1387 * Allocate a range in the specified virtual address map,
1388 * returning the entry allocated for that range.
1389 * Used by kmem_alloc, etc.
1390 *
1391 * The map must be NOT be locked. It will be returned locked
1392 * on KERN_SUCCESS, unlocked on failure.
1393 *
1394 * If an entry is allocated, the object/offset fields
1395 * are initialized to zero.
1396 */
1397kern_return_t
1398vm_map_find_space(
1399 register vm_map_t map,
91447636
A
1400 vm_map_offset_t *address, /* OUT */
1401 vm_map_size_t size,
1402 vm_map_offset_t mask,
0c530ab8 1403 int flags,
1c79356b
A
1404 vm_map_entry_t *o_entry) /* OUT */
1405{
3e170ce0 1406 vm_map_entry_t entry, new_entry;
91447636
A
1407 register vm_map_offset_t start;
1408 register vm_map_offset_t end;
3e170ce0 1409 vm_map_entry_t hole_entry;
91447636
A
1410
1411 if (size == 0) {
1412 *address = 0;
1413 return KERN_INVALID_ARGUMENT;
1414 }
1c79356b 1415
2d21ac55
A
1416 if (flags & VM_FLAGS_GUARD_AFTER) {
1417 /* account for the back guard page in the size */
39236c6e 1418 size += VM_MAP_PAGE_SIZE(map);
2d21ac55
A
1419 }
1420
7ddcb079 1421 new_entry = vm_map_entry_create(map, FALSE);
1c79356b
A
1422
1423 /*
1424 * Look for the first possible address; if there's already
1425 * something at this address, we have to start after it.
1426 */
1427
1428 vm_map_lock(map);
1429
6d2010ae
A
1430 if( map->disable_vmentry_reuse == TRUE) {
1431 VM_MAP_HIGHEST_ENTRY(map, entry, start);
1432 } else {
3e170ce0
A
1433 if (map->holelistenabled) {
1434 hole_entry = (vm_map_entry_t)map->holes_list;
1435
1436 if (hole_entry == NULL) {
1437 /*
1438 * No more space in the map?
1439 */
1440 vm_map_entry_dispose(map, new_entry);
1441 vm_map_unlock(map);
1442 return(KERN_NO_SPACE);
1443 }
1444
1445 entry = hole_entry;
1446 start = entry->vme_start;
1447 } else {
1448 assert(first_free_is_valid(map));
1449 if ((entry = map->first_free) == vm_map_to_entry(map))
1450 start = map->min_offset;
1451 else
1452 start = entry->vme_end;
1453 }
6d2010ae 1454 }
1c79356b
A
1455
1456 /*
1457 * In any case, the "entry" always precedes
1458 * the proposed new region throughout the loop:
1459 */
1460
1461 while (TRUE) {
1462 register vm_map_entry_t next;
1463
1464 /*
1465 * Find the end of the proposed new region.
1466 * Be sure we didn't go beyond the end, or
1467 * wrap around the address.
1468 */
1469
2d21ac55
A
1470 if (flags & VM_FLAGS_GUARD_BEFORE) {
1471 /* reserve space for the front guard page */
39236c6e 1472 start += VM_MAP_PAGE_SIZE(map);
2d21ac55 1473 }
1c79356b 1474 end = ((start + mask) & ~mask);
2d21ac55 1475
1c79356b
A
1476 if (end < start) {
1477 vm_map_entry_dispose(map, new_entry);
1478 vm_map_unlock(map);
1479 return(KERN_NO_SPACE);
1480 }
1481 start = end;
1482 end += size;
1483
1484 if ((end > map->max_offset) || (end < start)) {
1485 vm_map_entry_dispose(map, new_entry);
1486 vm_map_unlock(map);
1487 return(KERN_NO_SPACE);
1488 }
1489
1c79356b 1490 next = entry->vme_next;
1c79356b 1491
3e170ce0
A
1492 if (map->holelistenabled) {
1493 if (entry->vme_end >= end)
1494 break;
1495 } else {
1496 /*
1497 * If there are no more entries, we must win.
1498 *
1499 * OR
1500 *
1501 * If there is another entry, it must be
1502 * after the end of the potential new region.
1503 */
1c79356b 1504
3e170ce0
A
1505 if (next == vm_map_to_entry(map))
1506 break;
1507
1508 if (next->vme_start >= end)
1509 break;
1510 }
1c79356b
A
1511
1512 /*
1513 * Didn't fit -- move to the next entry.
1514 */
1515
1516 entry = next;
3e170ce0
A
1517
1518 if (map->holelistenabled) {
1519 if (entry == (vm_map_entry_t) map->holes_list) {
1520 /*
1521 * Wrapped around
1522 */
1523 vm_map_entry_dispose(map, new_entry);
1524 vm_map_unlock(map);
1525 return(KERN_NO_SPACE);
1526 }
1527 start = entry->vme_start;
1528 } else {
1529 start = entry->vme_end;
1530 }
1531 }
1532
1533 if (map->holelistenabled) {
1534 if (vm_map_lookup_entry(map, entry->vme_start, &entry)) {
1535 panic("Found an existing entry (%p) instead of potential hole at address: 0x%llx.\n", entry, (unsigned long long)entry->vme_start);
1536 }
1c79356b
A
1537 }
1538
1539 /*
1540 * At this point,
1541 * "start" and "end" should define the endpoints of the
1542 * available new range, and
1543 * "entry" should refer to the region before the new
1544 * range, and
1545 *
1546 * the map should be locked.
1547 */
1548
2d21ac55
A
1549 if (flags & VM_FLAGS_GUARD_BEFORE) {
1550 /* go back for the front guard page */
39236c6e 1551 start -= VM_MAP_PAGE_SIZE(map);
2d21ac55 1552 }
1c79356b
A
1553 *address = start;
1554
e2d2fc5c 1555 assert(start < end);
1c79356b
A
1556 new_entry->vme_start = start;
1557 new_entry->vme_end = end;
1558 assert(page_aligned(new_entry->vme_start));
1559 assert(page_aligned(new_entry->vme_end));
39236c6e
A
1560 assert(VM_MAP_PAGE_ALIGNED(new_entry->vme_start,
1561 VM_MAP_PAGE_MASK(map)));
1562 assert(VM_MAP_PAGE_ALIGNED(new_entry->vme_end,
1563 VM_MAP_PAGE_MASK(map)));
1c79356b
A
1564
1565 new_entry->is_shared = FALSE;
1566 new_entry->is_sub_map = FALSE;
fe8ab488 1567 new_entry->use_pmap = TRUE;
3e170ce0
A
1568 VME_OBJECT_SET(new_entry, VM_OBJECT_NULL);
1569 VME_OFFSET_SET(new_entry, (vm_object_offset_t) 0);
1c79356b
A
1570
1571 new_entry->needs_copy = FALSE;
1572
1573 new_entry->inheritance = VM_INHERIT_DEFAULT;
1574 new_entry->protection = VM_PROT_DEFAULT;
1575 new_entry->max_protection = VM_PROT_ALL;
1576 new_entry->behavior = VM_BEHAVIOR_DEFAULT;
1577 new_entry->wired_count = 0;
1578 new_entry->user_wired_count = 0;
1579
1580 new_entry->in_transition = FALSE;
1581 new_entry->needs_wakeup = FALSE;
2d21ac55 1582 new_entry->no_cache = FALSE;
b0d623f7 1583 new_entry->permanent = FALSE;
39236c6e
A
1584 new_entry->superpage_size = FALSE;
1585 if (VM_MAP_PAGE_SHIFT(map) != PAGE_SHIFT) {
1586 new_entry->map_aligned = TRUE;
1587 } else {
1588 new_entry->map_aligned = FALSE;
1589 }
2d21ac55 1590
3e170ce0 1591 new_entry->used_for_jit = FALSE;
b0d623f7 1592 new_entry->zero_wired_pages = FALSE;
fe8ab488 1593 new_entry->iokit_acct = FALSE;
3e170ce0
A
1594 new_entry->vme_resilient_codesign = FALSE;
1595 new_entry->vme_resilient_media = FALSE;
1c79356b 1596
3e170ce0
A
1597 int alias;
1598 VM_GET_FLAGS_ALIAS(flags, alias);
1599 VME_ALIAS_SET(new_entry, alias);
0c530ab8 1600
1c79356b
A
1601 /*
1602 * Insert the new entry into the list
1603 */
1604
6d2010ae 1605 vm_map_store_entry_link(map, entry, new_entry);
1c79356b
A
1606
1607 map->size += size;
1608
1609 /*
1610 * Update the lookup hint
1611 */
0c530ab8 1612 SAVE_HINT_MAP_WRITE(map, new_entry);
1c79356b
A
1613
1614 *o_entry = new_entry;
1615 return(KERN_SUCCESS);
1616}
1617
1618int vm_map_pmap_enter_print = FALSE;
1619int vm_map_pmap_enter_enable = FALSE;
1620
1621/*
91447636 1622 * Routine: vm_map_pmap_enter [internal only]
1c79356b
A
1623 *
1624 * Description:
1625 * Force pages from the specified object to be entered into
1626 * the pmap at the specified address if they are present.
1627 * As soon as a page not found in the object the scan ends.
1628 *
1629 * Returns:
1630 * Nothing.
1631 *
1632 * In/out conditions:
1633 * The source map should not be locked on entry.
1634 */
fe8ab488 1635__unused static void
1c79356b
A
1636vm_map_pmap_enter(
1637 vm_map_t map,
91447636
A
1638 register vm_map_offset_t addr,
1639 register vm_map_offset_t end_addr,
1c79356b
A
1640 register vm_object_t object,
1641 vm_object_offset_t offset,
1642 vm_prot_t protection)
1643{
2d21ac55
A
1644 int type_of_fault;
1645 kern_return_t kr;
0b4e3aa0 1646
55e303ae
A
1647 if(map->pmap == 0)
1648 return;
1649
1c79356b
A
1650 while (addr < end_addr) {
1651 register vm_page_t m;
1652
fe8ab488
A
1653
1654 /*
1655 * TODO:
1656 * From vm_map_enter(), we come into this function without the map
1657 * lock held or the object lock held.
1658 * We haven't taken a reference on the object either.
1659 * We should do a proper lookup on the map to make sure
1660 * that things are sane before we go locking objects that
1661 * could have been deallocated from under us.
1662 */
1663
1c79356b 1664 vm_object_lock(object);
1c79356b
A
1665
1666 m = vm_page_lookup(object, offset);
91447636
A
1667 /*
1668 * ENCRYPTED SWAP:
1669 * The user should never see encrypted data, so do not
1670 * enter an encrypted page in the page table.
1671 */
1672 if (m == VM_PAGE_NULL || m->busy || m->encrypted ||
2d21ac55
A
1673 m->fictitious ||
1674 (m->unusual && ( m->error || m->restart || m->absent))) {
1c79356b
A
1675 vm_object_unlock(object);
1676 return;
1677 }
1678
1c79356b
A
1679 if (vm_map_pmap_enter_print) {
1680 printf("vm_map_pmap_enter:");
2d21ac55
A
1681 printf("map: %p, addr: %llx, object: %p, offset: %llx\n",
1682 map, (unsigned long long)addr, object, (unsigned long long)offset);
1c79356b 1683 }
2d21ac55 1684 type_of_fault = DBG_CACHE_HIT_FAULT;
6d2010ae 1685 kr = vm_fault_enter(m, map->pmap, addr, protection, protection,
fe8ab488
A
1686 VM_PAGE_WIRED(m), FALSE, FALSE, FALSE,
1687 0, /* XXX need user tag / alias? */
1688 0, /* alternate accounting? */
1689 NULL,
2d21ac55 1690 &type_of_fault);
1c79356b 1691
1c79356b
A
1692 vm_object_unlock(object);
1693
1694 offset += PAGE_SIZE_64;
1695 addr += PAGE_SIZE;
1696 }
1697}
1698
91447636
A
1699boolean_t vm_map_pmap_is_empty(
1700 vm_map_t map,
1701 vm_map_offset_t start,
1702 vm_map_offset_t end);
1703boolean_t vm_map_pmap_is_empty(
1704 vm_map_t map,
1705 vm_map_offset_t start,
1706 vm_map_offset_t end)
1707{
2d21ac55
A
1708#ifdef MACHINE_PMAP_IS_EMPTY
1709 return pmap_is_empty(map->pmap, start, end);
1710#else /* MACHINE_PMAP_IS_EMPTY */
91447636
A
1711 vm_map_offset_t offset;
1712 ppnum_t phys_page;
1713
1714 if (map->pmap == NULL) {
1715 return TRUE;
1716 }
2d21ac55 1717
91447636
A
1718 for (offset = start;
1719 offset < end;
1720 offset += PAGE_SIZE) {
1721 phys_page = pmap_find_phys(map->pmap, offset);
1722 if (phys_page) {
1723 kprintf("vm_map_pmap_is_empty(%p,0x%llx,0x%llx): "
1724 "page %d at 0x%llx\n",
2d21ac55
A
1725 map, (long long)start, (long long)end,
1726 phys_page, (long long)offset);
91447636
A
1727 return FALSE;
1728 }
1729 }
1730 return TRUE;
2d21ac55 1731#endif /* MACHINE_PMAP_IS_EMPTY */
91447636
A
1732}
1733
316670eb
A
1734#define MAX_TRIES_TO_GET_RANDOM_ADDRESS 1000
1735kern_return_t
1736vm_map_random_address_for_size(
1737 vm_map_t map,
1738 vm_map_offset_t *address,
1739 vm_map_size_t size)
1740{
1741 kern_return_t kr = KERN_SUCCESS;
1742 int tries = 0;
1743 vm_map_offset_t random_addr = 0;
1744 vm_map_offset_t hole_end;
1745
1746 vm_map_entry_t next_entry = VM_MAP_ENTRY_NULL;
1747 vm_map_entry_t prev_entry = VM_MAP_ENTRY_NULL;
1748 vm_map_size_t vm_hole_size = 0;
1749 vm_map_size_t addr_space_size;
1750
1751 addr_space_size = vm_map_max(map) - vm_map_min(map);
1752
1753 assert(page_aligned(size));
1754
1755 while (tries < MAX_TRIES_TO_GET_RANDOM_ADDRESS) {
1756 random_addr = ((vm_map_offset_t)random()) << PAGE_SHIFT;
39236c6e
A
1757 random_addr = vm_map_trunc_page(
1758 vm_map_min(map) +(random_addr % addr_space_size),
1759 VM_MAP_PAGE_MASK(map));
316670eb
A
1760
1761 if (vm_map_lookup_entry(map, random_addr, &prev_entry) == FALSE) {
1762 if (prev_entry == vm_map_to_entry(map)) {
1763 next_entry = vm_map_first_entry(map);
1764 } else {
1765 next_entry = prev_entry->vme_next;
1766 }
1767 if (next_entry == vm_map_to_entry(map)) {
1768 hole_end = vm_map_max(map);
1769 } else {
1770 hole_end = next_entry->vme_start;
1771 }
1772 vm_hole_size = hole_end - random_addr;
1773 if (vm_hole_size >= size) {
1774 *address = random_addr;
1775 break;
1776 }
1777 }
1778 tries++;
1779 }
1780
1781 if (tries == MAX_TRIES_TO_GET_RANDOM_ADDRESS) {
1782 kr = KERN_NO_SPACE;
1783 }
1784 return kr;
1785}
1786
1c79356b
A
1787/*
1788 * Routine: vm_map_enter
1789 *
1790 * Description:
1791 * Allocate a range in the specified virtual address map.
1792 * The resulting range will refer to memory defined by
1793 * the given memory object and offset into that object.
1794 *
1795 * Arguments are as defined in the vm_map call.
1796 */
91447636
A
1797int _map_enter_debug = 0;
1798static unsigned int vm_map_enter_restore_successes = 0;
1799static unsigned int vm_map_enter_restore_failures = 0;
1c79356b
A
1800kern_return_t
1801vm_map_enter(
91447636 1802 vm_map_t map,
593a1d5f 1803 vm_map_offset_t *address, /* IN/OUT */
91447636 1804 vm_map_size_t size,
593a1d5f 1805 vm_map_offset_t mask,
1c79356b
A
1806 int flags,
1807 vm_object_t object,
1808 vm_object_offset_t offset,
1809 boolean_t needs_copy,
1810 vm_prot_t cur_protection,
1811 vm_prot_t max_protection,
1812 vm_inherit_t inheritance)
1813{
91447636 1814 vm_map_entry_t entry, new_entry;
2d21ac55 1815 vm_map_offset_t start, tmp_start, tmp_offset;
91447636 1816 vm_map_offset_t end, tmp_end;
b0d623f7
A
1817 vm_map_offset_t tmp2_start, tmp2_end;
1818 vm_map_offset_t step;
1c79356b 1819 kern_return_t result = KERN_SUCCESS;
91447636
A
1820 vm_map_t zap_old_map = VM_MAP_NULL;
1821 vm_map_t zap_new_map = VM_MAP_NULL;
1822 boolean_t map_locked = FALSE;
1823 boolean_t pmap_empty = TRUE;
1824 boolean_t new_mapping_established = FALSE;
fe8ab488 1825 boolean_t keep_map_locked = ((flags & VM_FLAGS_KEEP_MAP_LOCKED) != 0);
91447636
A
1826 boolean_t anywhere = ((flags & VM_FLAGS_ANYWHERE) != 0);
1827 boolean_t purgable = ((flags & VM_FLAGS_PURGABLE) != 0);
1828 boolean_t overwrite = ((flags & VM_FLAGS_OVERWRITE) != 0);
2d21ac55
A
1829 boolean_t no_cache = ((flags & VM_FLAGS_NO_CACHE) != 0);
1830 boolean_t is_submap = ((flags & VM_FLAGS_SUBMAP) != 0);
b0d623f7 1831 boolean_t permanent = ((flags & VM_FLAGS_PERMANENT) != 0);
316670eb 1832 boolean_t entry_for_jit = ((flags & VM_FLAGS_MAP_JIT) != 0);
fe8ab488 1833 boolean_t iokit_acct = ((flags & VM_FLAGS_IOKIT_ACCT) != 0);
3e170ce0
A
1834 boolean_t resilient_codesign = ((flags & VM_FLAGS_RESILIENT_CODESIGN) != 0);
1835 boolean_t resilient_media = ((flags & VM_FLAGS_RESILIENT_MEDIA) != 0);
b0d623f7 1836 unsigned int superpage_size = ((flags & VM_FLAGS_SUPERPAGE_MASK) >> VM_FLAGS_SUPERPAGE_SHIFT);
3e170ce0 1837 vm_tag_t alias, user_alias;
2d21ac55 1838 vm_map_offset_t effective_min_offset, effective_max_offset;
593a1d5f 1839 kern_return_t kr;
39236c6e 1840 boolean_t clear_map_aligned = FALSE;
3e170ce0 1841 vm_map_entry_t hole_entry;
593a1d5f 1842
b0d623f7
A
1843 if (superpage_size) {
1844 switch (superpage_size) {
1845 /*
1846 * Note that the current implementation only supports
1847 * a single size for superpages, SUPERPAGE_SIZE, per
1848 * architecture. As soon as more sizes are supposed
1849 * to be supported, SUPERPAGE_SIZE has to be replaced
1850 * with a lookup of the size depending on superpage_size.
1851 */
1852#ifdef __x86_64__
6d2010ae
A
1853 case SUPERPAGE_SIZE_ANY:
1854 /* handle it like 2 MB and round up to page size */
1855 size = (size + 2*1024*1024 - 1) & ~(2*1024*1024 - 1);
b0d623f7
A
1856 case SUPERPAGE_SIZE_2MB:
1857 break;
1858#endif
1859 default:
1860 return KERN_INVALID_ARGUMENT;
1861 }
1862 mask = SUPERPAGE_SIZE-1;
1863 if (size & (SUPERPAGE_SIZE-1))
1864 return KERN_INVALID_ARGUMENT;
1865 inheritance = VM_INHERIT_NONE; /* fork() children won't inherit superpages */
1866 }
1867
6d2010ae 1868
1c79356b 1869
3e170ce0
A
1870 if (resilient_codesign || resilient_media) {
1871 if ((cur_protection & (VM_PROT_WRITE | VM_PROT_EXECUTE)) ||
1872 (max_protection & (VM_PROT_WRITE | VM_PROT_EXECUTE))) {
1873 return KERN_PROTECTION_FAILURE;
1874 }
1875 }
1876
2d21ac55
A
1877 if (is_submap) {
1878 if (purgable) {
1879 /* submaps can not be purgeable */
1880 return KERN_INVALID_ARGUMENT;
1881 }
1882 if (object == VM_OBJECT_NULL) {
1883 /* submaps can not be created lazily */
1884 return KERN_INVALID_ARGUMENT;
1885 }
1886 }
1887 if (flags & VM_FLAGS_ALREADY) {
1888 /*
1889 * VM_FLAGS_ALREADY says that it's OK if the same mapping
1890 * is already present. For it to be meaningul, the requested
1891 * mapping has to be at a fixed address (!VM_FLAGS_ANYWHERE) and
1892 * we shouldn't try and remove what was mapped there first
1893 * (!VM_FLAGS_OVERWRITE).
1894 */
1895 if ((flags & VM_FLAGS_ANYWHERE) ||
1896 (flags & VM_FLAGS_OVERWRITE)) {
1897 return KERN_INVALID_ARGUMENT;
1898 }
1899 }
1900
6d2010ae 1901 effective_min_offset = map->min_offset;
b0d623f7 1902
2d21ac55
A
1903 if (flags & VM_FLAGS_BEYOND_MAX) {
1904 /*
b0d623f7 1905 * Allow an insertion beyond the map's max offset.
2d21ac55
A
1906 */
1907 if (vm_map_is_64bit(map))
1908 effective_max_offset = 0xFFFFFFFFFFFFF000ULL;
1909 else
1910 effective_max_offset = 0x00000000FFFFF000ULL;
1911 } else {
1912 effective_max_offset = map->max_offset;
1913 }
1914
1915 if (size == 0 ||
1916 (offset & PAGE_MASK_64) != 0) {
91447636
A
1917 *address = 0;
1918 return KERN_INVALID_ARGUMENT;
1919 }
1920
1c79356b 1921 VM_GET_FLAGS_ALIAS(flags, alias);
3e170ce0
A
1922 if (map->pmap == kernel_pmap) {
1923 user_alias = VM_KERN_MEMORY_NONE;
1924 } else {
1925 user_alias = alias;
1926 }
2d21ac55 1927
1c79356b
A
1928#define RETURN(value) { result = value; goto BailOut; }
1929
1930 assert(page_aligned(*address));
1931 assert(page_aligned(size));
91447636 1932
39236c6e
A
1933 if (!VM_MAP_PAGE_ALIGNED(size, VM_MAP_PAGE_MASK(map))) {
1934 /*
1935 * In most cases, the caller rounds the size up to the
1936 * map's page size.
1937 * If we get a size that is explicitly not map-aligned here,
1938 * we'll have to respect the caller's wish and mark the
1939 * mapping as "not map-aligned" to avoid tripping the
1940 * map alignment checks later.
1941 */
1942 clear_map_aligned = TRUE;
1943 }
fe8ab488
A
1944 if (!anywhere &&
1945 !VM_MAP_PAGE_ALIGNED(*address, VM_MAP_PAGE_MASK(map))) {
1946 /*
1947 * We've been asked to map at a fixed address and that
1948 * address is not aligned to the map's specific alignment.
1949 * The caller should know what it's doing (i.e. most likely
1950 * mapping some fragmented copy map, transferring memory from
1951 * a VM map with a different alignment), so clear map_aligned
1952 * for this new VM map entry and proceed.
1953 */
1954 clear_map_aligned = TRUE;
1955 }
39236c6e 1956
91447636
A
1957 /*
1958 * Only zero-fill objects are allowed to be purgable.
1959 * LP64todo - limit purgable objects to 32-bits for now
1960 */
1961 if (purgable &&
1962 (offset != 0 ||
1963 (object != VM_OBJECT_NULL &&
6d2010ae 1964 (object->vo_size != size ||
2d21ac55 1965 object->purgable == VM_PURGABLE_DENY))
b0d623f7 1966 || size > ANON_MAX_SIZE)) /* LP64todo: remove when dp capable */
91447636
A
1967 return KERN_INVALID_ARGUMENT;
1968
1969 if (!anywhere && overwrite) {
1970 /*
1971 * Create a temporary VM map to hold the old mappings in the
1972 * affected area while we create the new one.
1973 * This avoids releasing the VM map lock in
1974 * vm_map_entry_delete() and allows atomicity
1975 * when we want to replace some mappings with a new one.
1976 * It also allows us to restore the old VM mappings if the
1977 * new mapping fails.
1978 */
1979 zap_old_map = vm_map_create(PMAP_NULL,
1980 *address,
1981 *address + size,
b0d623f7 1982 map->hdr.entries_pageable);
39236c6e 1983 vm_map_set_page_shift(zap_old_map, VM_MAP_PAGE_SHIFT(map));
3e170ce0 1984 vm_map_disable_hole_optimization(zap_old_map);
91447636
A
1985 }
1986
2d21ac55 1987StartAgain: ;
1c79356b
A
1988
1989 start = *address;
1990
1991 if (anywhere) {
1992 vm_map_lock(map);
91447636 1993 map_locked = TRUE;
6d2010ae 1994
316670eb
A
1995 if (entry_for_jit) {
1996 if (map->jit_entry_exists) {
1997 result = KERN_INVALID_ARGUMENT;
1998 goto BailOut;
1999 }
2000 /*
2001 * Get a random start address.
2002 */
2003 result = vm_map_random_address_for_size(map, address, size);
2004 if (result != KERN_SUCCESS) {
2005 goto BailOut;
2006 }
2007 start = *address;
6d2010ae 2008 }
1c79356b 2009
316670eb 2010
1c79356b
A
2011 /*
2012 * Calculate the first possible address.
2013 */
2014
2d21ac55
A
2015 if (start < effective_min_offset)
2016 start = effective_min_offset;
2017 if (start > effective_max_offset)
1c79356b
A
2018 RETURN(KERN_NO_SPACE);
2019
2020 /*
2021 * Look for the first possible address;
2022 * if there's already something at this
2023 * address, we have to start after it.
2024 */
2025
6d2010ae
A
2026 if( map->disable_vmentry_reuse == TRUE) {
2027 VM_MAP_HIGHEST_ENTRY(map, entry, start);
1c79356b 2028 } else {
6d2010ae 2029
3e170ce0
A
2030 if (map->holelistenabled) {
2031 hole_entry = (vm_map_entry_t)map->holes_list;
2032
2033 if (hole_entry == NULL) {
2034 /*
2035 * No more space in the map?
2036 */
2037 result = KERN_NO_SPACE;
2038 goto BailOut;
2039 } else {
2040
2041 boolean_t found_hole = FALSE;
2042
2043 do {
2044 if (hole_entry->vme_start >= start) {
2045 start = hole_entry->vme_start;
2046 found_hole = TRUE;
2047 break;
2048 }
2049
2050 if (hole_entry->vme_end > start) {
2051 found_hole = TRUE;
2052 break;
2053 }
2054 hole_entry = hole_entry->vme_next;
2055
2056 } while (hole_entry != (vm_map_entry_t) map->holes_list);
2057
2058 if (found_hole == FALSE) {
2059 result = KERN_NO_SPACE;
2060 goto BailOut;
2061 }
2062
2063 entry = hole_entry;
6d2010ae 2064
3e170ce0
A
2065 if (start == 0)
2066 start += PAGE_SIZE_64;
2067 }
6d2010ae 2068 } else {
3e170ce0
A
2069 assert(first_free_is_valid(map));
2070
2071 entry = map->first_free;
2072
2073 if (entry == vm_map_to_entry(map)) {
6d2010ae 2074 entry = NULL;
3e170ce0
A
2075 } else {
2076 if (entry->vme_next == vm_map_to_entry(map)){
2077 /*
2078 * Hole at the end of the map.
2079 */
2080 entry = NULL;
2081 } else {
2082 if (start < (entry->vme_next)->vme_start ) {
2083 start = entry->vme_end;
2084 start = vm_map_round_page(start,
2085 VM_MAP_PAGE_MASK(map));
2086 } else {
2087 /*
2088 * Need to do a lookup.
2089 */
2090 entry = NULL;
2091 }
2092 }
2093 }
2094
2095 if (entry == NULL) {
2096 vm_map_entry_t tmp_entry;
2097 if (vm_map_lookup_entry(map, start, &tmp_entry)) {
2098 assert(!entry_for_jit);
2099 start = tmp_entry->vme_end;
39236c6e
A
2100 start = vm_map_round_page(start,
2101 VM_MAP_PAGE_MASK(map));
6d2010ae 2102 }
3e170ce0 2103 entry = tmp_entry;
316670eb 2104 }
6d2010ae 2105 }
1c79356b
A
2106 }
2107
2108 /*
2109 * In any case, the "entry" always precedes
2110 * the proposed new region throughout the
2111 * loop:
2112 */
2113
2114 while (TRUE) {
2115 register vm_map_entry_t next;
2116
2d21ac55 2117 /*
1c79356b
A
2118 * Find the end of the proposed new region.
2119 * Be sure we didn't go beyond the end, or
2120 * wrap around the address.
2121 */
2122
2123 end = ((start + mask) & ~mask);
39236c6e
A
2124 end = vm_map_round_page(end,
2125 VM_MAP_PAGE_MASK(map));
1c79356b
A
2126 if (end < start)
2127 RETURN(KERN_NO_SPACE);
2128 start = end;
39236c6e
A
2129 assert(VM_MAP_PAGE_ALIGNED(start,
2130 VM_MAP_PAGE_MASK(map)));
1c79356b
A
2131 end += size;
2132
2d21ac55 2133 if ((end > effective_max_offset) || (end < start)) {
1c79356b 2134 if (map->wait_for_space) {
fe8ab488 2135 assert(!keep_map_locked);
2d21ac55
A
2136 if (size <= (effective_max_offset -
2137 effective_min_offset)) {
1c79356b
A
2138 assert_wait((event_t)map,
2139 THREAD_ABORTSAFE);
2140 vm_map_unlock(map);
91447636
A
2141 map_locked = FALSE;
2142 thread_block(THREAD_CONTINUE_NULL);
1c79356b
A
2143 goto StartAgain;
2144 }
2145 }
2146 RETURN(KERN_NO_SPACE);
2147 }
2148
1c79356b 2149 next = entry->vme_next;
1c79356b 2150
3e170ce0
A
2151 if (map->holelistenabled) {
2152 if (entry->vme_end >= end)
2153 break;
2154 } else {
2155 /*
2156 * If there are no more entries, we must win.
2157 *
2158 * OR
2159 *
2160 * If there is another entry, it must be
2161 * after the end of the potential new region.
2162 */
1c79356b 2163
3e170ce0
A
2164 if (next == vm_map_to_entry(map))
2165 break;
2166
2167 if (next->vme_start >= end)
2168 break;
2169 }
1c79356b
A
2170
2171 /*
2172 * Didn't fit -- move to the next entry.
2173 */
2174
2175 entry = next;
3e170ce0
A
2176
2177 if (map->holelistenabled) {
2178 if (entry == (vm_map_entry_t) map->holes_list) {
2179 /*
2180 * Wrapped around
2181 */
2182 result = KERN_NO_SPACE;
2183 goto BailOut;
2184 }
2185 start = entry->vme_start;
2186 } else {
2187 start = entry->vme_end;
2188 }
2189
39236c6e
A
2190 start = vm_map_round_page(start,
2191 VM_MAP_PAGE_MASK(map));
1c79356b 2192 }
3e170ce0
A
2193
2194 if (map->holelistenabled) {
2195 if (vm_map_lookup_entry(map, entry->vme_start, &entry)) {
2196 panic("Found an existing entry (%p) instead of potential hole at address: 0x%llx.\n", entry, (unsigned long long)entry->vme_start);
2197 }
2198 }
2199
1c79356b 2200 *address = start;
39236c6e
A
2201 assert(VM_MAP_PAGE_ALIGNED(*address,
2202 VM_MAP_PAGE_MASK(map)));
1c79356b 2203 } else {
1c79356b
A
2204 /*
2205 * Verify that:
2206 * the address doesn't itself violate
2207 * the mask requirement.
2208 */
2209
2210 vm_map_lock(map);
91447636 2211 map_locked = TRUE;
1c79356b
A
2212 if ((start & mask) != 0)
2213 RETURN(KERN_NO_SPACE);
2214
2215 /*
2216 * ... the address is within bounds
2217 */
2218
2219 end = start + size;
2220
2d21ac55
A
2221 if ((start < effective_min_offset) ||
2222 (end > effective_max_offset) ||
1c79356b
A
2223 (start >= end)) {
2224 RETURN(KERN_INVALID_ADDRESS);
2225 }
2226
91447636
A
2227 if (overwrite && zap_old_map != VM_MAP_NULL) {
2228 /*
2229 * Fixed mapping and "overwrite" flag: attempt to
2230 * remove all existing mappings in the specified
2231 * address range, saving them in our "zap_old_map".
2232 */
2233 (void) vm_map_delete(map, start, end,
fe8ab488
A
2234 (VM_MAP_REMOVE_SAVE_ENTRIES |
2235 VM_MAP_REMOVE_NO_MAP_ALIGN),
91447636
A
2236 zap_old_map);
2237 }
2238
1c79356b
A
2239 /*
2240 * ... the starting address isn't allocated
2241 */
2242
2d21ac55
A
2243 if (vm_map_lookup_entry(map, start, &entry)) {
2244 if (! (flags & VM_FLAGS_ALREADY)) {
2245 RETURN(KERN_NO_SPACE);
2246 }
2247 /*
2248 * Check if what's already there is what we want.
2249 */
2250 tmp_start = start;
2251 tmp_offset = offset;
2252 if (entry->vme_start < start) {
2253 tmp_start -= start - entry->vme_start;
2254 tmp_offset -= start - entry->vme_start;
2255
2256 }
2257 for (; entry->vme_start < end;
2258 entry = entry->vme_next) {
4a3eedf9
A
2259 /*
2260 * Check if the mapping's attributes
2261 * match the existing map entry.
2262 */
2d21ac55
A
2263 if (entry == vm_map_to_entry(map) ||
2264 entry->vme_start != tmp_start ||
2265 entry->is_sub_map != is_submap ||
3e170ce0 2266 VME_OFFSET(entry) != tmp_offset ||
2d21ac55
A
2267 entry->needs_copy != needs_copy ||
2268 entry->protection != cur_protection ||
2269 entry->max_protection != max_protection ||
2270 entry->inheritance != inheritance ||
fe8ab488 2271 entry->iokit_acct != iokit_acct ||
3e170ce0 2272 VME_ALIAS(entry) != alias) {
2d21ac55
A
2273 /* not the same mapping ! */
2274 RETURN(KERN_NO_SPACE);
2275 }
4a3eedf9
A
2276 /*
2277 * Check if the same object is being mapped.
2278 */
2279 if (is_submap) {
3e170ce0 2280 if (VME_SUBMAP(entry) !=
4a3eedf9
A
2281 (vm_map_t) object) {
2282 /* not the same submap */
2283 RETURN(KERN_NO_SPACE);
2284 }
2285 } else {
3e170ce0 2286 if (VME_OBJECT(entry) != object) {
4a3eedf9
A
2287 /* not the same VM object... */
2288 vm_object_t obj2;
2289
3e170ce0 2290 obj2 = VME_OBJECT(entry);
4a3eedf9
A
2291 if ((obj2 == VM_OBJECT_NULL ||
2292 obj2->internal) &&
2293 (object == VM_OBJECT_NULL ||
2294 object->internal)) {
2295 /*
2296 * ... but both are
2297 * anonymous memory,
2298 * so equivalent.
2299 */
2300 } else {
2301 RETURN(KERN_NO_SPACE);
2302 }
2303 }
2304 }
2305
2d21ac55
A
2306 tmp_offset += entry->vme_end - entry->vme_start;
2307 tmp_start += entry->vme_end - entry->vme_start;
2308 if (entry->vme_end >= end) {
2309 /* reached the end of our mapping */
2310 break;
2311 }
2312 }
2313 /* it all matches: let's use what's already there ! */
2314 RETURN(KERN_MEMORY_PRESENT);
2315 }
1c79356b
A
2316
2317 /*
2318 * ... the next region doesn't overlap the
2319 * end point.
2320 */
2321
2322 if ((entry->vme_next != vm_map_to_entry(map)) &&
2323 (entry->vme_next->vme_start < end))
2324 RETURN(KERN_NO_SPACE);
2325 }
2326
2327 /*
2328 * At this point,
2329 * "start" and "end" should define the endpoints of the
2330 * available new range, and
2331 * "entry" should refer to the region before the new
2332 * range, and
2333 *
2334 * the map should be locked.
2335 */
2336
2337 /*
2338 * See whether we can avoid creating a new entry (and object) by
2339 * extending one of our neighbors. [So far, we only attempt to
91447636
A
2340 * extend from below.] Note that we can never extend/join
2341 * purgable objects because they need to remain distinct
2342 * entities in order to implement their "volatile object"
2343 * semantics.
1c79356b
A
2344 */
2345
316670eb 2346 if (purgable || entry_for_jit) {
91447636 2347 if (object == VM_OBJECT_NULL) {
3e170ce0 2348
91447636
A
2349 object = vm_object_allocate(size);
2350 object->copy_strategy = MEMORY_OBJECT_COPY_NONE;
fe8ab488 2351 object->true_share = TRUE;
316670eb 2352 if (purgable) {
fe8ab488 2353 task_t owner;
316670eb 2354 object->purgable = VM_PURGABLE_NONVOLATILE;
fe8ab488
A
2355 if (map->pmap == kernel_pmap) {
2356 /*
2357 * Purgeable mappings made in a kernel
2358 * map are "owned" by the kernel itself
2359 * rather than the current user task
2360 * because they're likely to be used by
2361 * more than this user task (see
2362 * execargs_purgeable_allocate(), for
2363 * example).
2364 */
2365 owner = kernel_task;
2366 } else {
2367 owner = current_task();
2368 }
2369 assert(object->vo_purgeable_owner == NULL);
2370 assert(object->resident_page_count == 0);
2371 assert(object->wired_page_count == 0);
2372 vm_object_lock(object);
2373 vm_purgeable_nonvolatile_enqueue(object, owner);
2374 vm_object_unlock(object);
316670eb 2375 }
91447636
A
2376 offset = (vm_object_offset_t)0;
2377 }
2d21ac55
A
2378 } else if ((is_submap == FALSE) &&
2379 (object == VM_OBJECT_NULL) &&
2380 (entry != vm_map_to_entry(map)) &&
2381 (entry->vme_end == start) &&
2382 (!entry->is_shared) &&
2383 (!entry->is_sub_map) &&
fe8ab488
A
2384 (!entry->in_transition) &&
2385 (!entry->needs_wakeup) &&
2386 (entry->behavior == VM_BEHAVIOR_DEFAULT) &&
2d21ac55
A
2387 (entry->protection == cur_protection) &&
2388 (entry->max_protection == max_protection) &&
fe8ab488 2389 (entry->inheritance == inheritance) &&
3e170ce0
A
2390 ((user_alias == VM_MEMORY_REALLOC) ||
2391 (VME_ALIAS(entry) == alias)) &&
2d21ac55 2392 (entry->no_cache == no_cache) &&
fe8ab488
A
2393 (entry->permanent == permanent) &&
2394 (!entry->superpage_size && !superpage_size) &&
39236c6e
A
2395 /*
2396 * No coalescing if not map-aligned, to avoid propagating
2397 * that condition any further than needed:
2398 */
2399 (!entry->map_aligned || !clear_map_aligned) &&
fe8ab488
A
2400 (!entry->zero_wired_pages) &&
2401 (!entry->used_for_jit && !entry_for_jit) &&
2402 (entry->iokit_acct == iokit_acct) &&
3e170ce0
A
2403 (!entry->vme_resilient_codesign) &&
2404 (!entry->vme_resilient_media) &&
fe8ab488 2405
b0d623f7 2406 ((entry->vme_end - entry->vme_start) + size <=
3e170ce0 2407 (user_alias == VM_MEMORY_REALLOC ?
b0d623f7
A
2408 ANON_CHUNK_SIZE :
2409 NO_COALESCE_LIMIT)) &&
fe8ab488 2410
2d21ac55 2411 (entry->wired_count == 0)) { /* implies user_wired_count == 0 */
3e170ce0 2412 if (vm_object_coalesce(VME_OBJECT(entry),
2d21ac55 2413 VM_OBJECT_NULL,
3e170ce0 2414 VME_OFFSET(entry),
2d21ac55
A
2415 (vm_object_offset_t) 0,
2416 (vm_map_size_t)(entry->vme_end - entry->vme_start),
2417 (vm_map_size_t)(end - entry->vme_end))) {
1c79356b
A
2418
2419 /*
2420 * Coalesced the two objects - can extend
2421 * the previous map entry to include the
2422 * new range.
2423 */
2424 map->size += (end - entry->vme_end);
e2d2fc5c 2425 assert(entry->vme_start < end);
39236c6e
A
2426 assert(VM_MAP_PAGE_ALIGNED(end,
2427 VM_MAP_PAGE_MASK(map)));
3e170ce0
A
2428 if (__improbable(vm_debug_events))
2429 DTRACE_VM5(map_entry_extend, vm_map_t, map, vm_map_entry_t, entry, vm_address_t, entry->vme_start, vm_address_t, entry->vme_end, vm_address_t, end);
1c79356b 2430 entry->vme_end = end;
3e170ce0
A
2431 if (map->holelistenabled) {
2432 vm_map_store_update_first_free(map, entry, TRUE);
2433 } else {
2434 vm_map_store_update_first_free(map, map->first_free, TRUE);
2435 }
fe8ab488 2436 new_mapping_established = TRUE;
1c79356b
A
2437 RETURN(KERN_SUCCESS);
2438 }
2439 }
2440
b0d623f7
A
2441 step = superpage_size ? SUPERPAGE_SIZE : (end - start);
2442 new_entry = NULL;
2443
2444 for (tmp2_start = start; tmp2_start<end; tmp2_start += step) {
2445 tmp2_end = tmp2_start + step;
2446 /*
2447 * Create a new entry
2448 * LP64todo - for now, we can only allocate 4GB internal objects
2449 * because the default pager can't page bigger ones. Remove this
2450 * when it can.
2451 *
2452 * XXX FBDP
2453 * The reserved "page zero" in each process's address space can
2454 * be arbitrarily large. Splitting it into separate 4GB objects and
2455 * therefore different VM map entries serves no purpose and just
2456 * slows down operations on the VM map, so let's not split the
2457 * allocation into 4GB chunks if the max protection is NONE. That
2458 * memory should never be accessible, so it will never get to the
2459 * default pager.
2460 */
2461 tmp_start = tmp2_start;
2462 if (object == VM_OBJECT_NULL &&
2463 size > (vm_map_size_t)ANON_CHUNK_SIZE &&
2464 max_protection != VM_PROT_NONE &&
2465 superpage_size == 0)
2466 tmp_end = tmp_start + (vm_map_size_t)ANON_CHUNK_SIZE;
2467 else
2468 tmp_end = tmp2_end;
2469 do {
2470 new_entry = vm_map_entry_insert(map, entry, tmp_start, tmp_end,
2471 object, offset, needs_copy,
2472 FALSE, FALSE,
2473 cur_protection, max_protection,
2474 VM_BEHAVIOR_DEFAULT,
316670eb 2475 (entry_for_jit)? VM_INHERIT_NONE: inheritance,
6d2010ae 2476 0, no_cache,
39236c6e
A
2477 permanent,
2478 superpage_size,
fe8ab488
A
2479 clear_map_aligned,
2480 is_submap);
3e170ce0
A
2481
2482 assert((object != kernel_object) || (VM_KERN_MEMORY_NONE != alias));
2483 VME_ALIAS_SET(new_entry, alias);
2484
316670eb 2485 if (entry_for_jit){
6d2010ae
A
2486 if (!(map->jit_entry_exists)){
2487 new_entry->used_for_jit = TRUE;
2488 map->jit_entry_exists = TRUE;
2489 }
2490 }
2491
3e170ce0
A
2492 if (resilient_codesign &&
2493 ! ((cur_protection | max_protection) &
2494 (VM_PROT_WRITE | VM_PROT_EXECUTE))) {
2495 new_entry->vme_resilient_codesign = TRUE;
2496 }
2497
2498 if (resilient_media &&
2499 ! ((cur_protection | max_protection) &
2500 (VM_PROT_WRITE | VM_PROT_EXECUTE))) {
2501 new_entry->vme_resilient_media = TRUE;
2502 }
2503
fe8ab488
A
2504 assert(!new_entry->iokit_acct);
2505 if (!is_submap &&
2506 object != VM_OBJECT_NULL &&
2507 object->purgable != VM_PURGABLE_DENY) {
2508 assert(new_entry->use_pmap);
2509 assert(!new_entry->iokit_acct);
2510 /*
2511 * Turn off pmap accounting since
2512 * purgeable objects have their
2513 * own ledgers.
2514 */
2515 new_entry->use_pmap = FALSE;
2516 } else if (!is_submap &&
2517 iokit_acct) {
2518 /* alternate accounting */
2519 assert(!new_entry->iokit_acct);
2520 assert(new_entry->use_pmap);
2521 new_entry->iokit_acct = TRUE;
2522 new_entry->use_pmap = FALSE;
2523 vm_map_iokit_mapped_region(
2524 map,
2525 (new_entry->vme_end -
2526 new_entry->vme_start));
2527 } else if (!is_submap) {
2528 assert(!new_entry->iokit_acct);
2529 assert(new_entry->use_pmap);
2530 }
2531
b0d623f7
A
2532 if (is_submap) {
2533 vm_map_t submap;
2534 boolean_t submap_is_64bit;
2535 boolean_t use_pmap;
2536
fe8ab488
A
2537 assert(new_entry->is_sub_map);
2538 assert(!new_entry->use_pmap);
2539 assert(!new_entry->iokit_acct);
b0d623f7
A
2540 submap = (vm_map_t) object;
2541 submap_is_64bit = vm_map_is_64bit(submap);
3e170ce0 2542 use_pmap = (user_alias == VM_MEMORY_SHARED_PMAP);
fe8ab488 2543#ifndef NO_NESTED_PMAP
b0d623f7 2544 if (use_pmap && submap->pmap == NULL) {
316670eb 2545 ledger_t ledger = map->pmap->ledger;
b0d623f7 2546 /* we need a sub pmap to nest... */
316670eb
A
2547 submap->pmap = pmap_create(ledger, 0,
2548 submap_is_64bit);
b0d623f7
A
2549 if (submap->pmap == NULL) {
2550 /* let's proceed without nesting... */
2551 }
2d21ac55 2552 }
b0d623f7
A
2553 if (use_pmap && submap->pmap != NULL) {
2554 kr = pmap_nest(map->pmap,
2555 submap->pmap,
2556 tmp_start,
2557 tmp_start,
2558 tmp_end - tmp_start);
2559 if (kr != KERN_SUCCESS) {
2560 printf("vm_map_enter: "
2561 "pmap_nest(0x%llx,0x%llx) "
2562 "error 0x%x\n",
2563 (long long)tmp_start,
2564 (long long)tmp_end,
2565 kr);
2566 } else {
2567 /* we're now nested ! */
2568 new_entry->use_pmap = TRUE;
2569 pmap_empty = FALSE;
2570 }
2571 }
fe8ab488 2572#endif /* NO_NESTED_PMAP */
2d21ac55 2573 }
b0d623f7
A
2574 entry = new_entry;
2575
2576 if (superpage_size) {
2577 vm_page_t pages, m;
2578 vm_object_t sp_object;
2579
3e170ce0 2580 VME_OFFSET_SET(entry, 0);
b0d623f7
A
2581
2582 /* allocate one superpage */
2583 kr = cpm_allocate(SUPERPAGE_SIZE, &pages, 0, SUPERPAGE_NBASEPAGES-1, TRUE, 0);
2d21ac55 2584 if (kr != KERN_SUCCESS) {
3e170ce0
A
2585 /* deallocate whole range... */
2586 new_mapping_established = TRUE;
2587 /* ... but only up to "tmp_end" */
2588 size -= end - tmp_end;
b0d623f7
A
2589 RETURN(kr);
2590 }
2591
2592 /* create one vm_object per superpage */
2593 sp_object = vm_object_allocate((vm_map_size_t)(entry->vme_end - entry->vme_start));
2594 sp_object->phys_contiguous = TRUE;
6d2010ae 2595 sp_object->vo_shadow_offset = (vm_object_offset_t)pages->phys_page*PAGE_SIZE;
3e170ce0 2596 VME_OBJECT_SET(entry, sp_object);
fe8ab488 2597 assert(entry->use_pmap);
b0d623f7
A
2598
2599 /* enter the base pages into the object */
2600 vm_object_lock(sp_object);
2601 for (offset = 0; offset < SUPERPAGE_SIZE; offset += PAGE_SIZE) {
2602 m = pages;
2603 pmap_zero_page(m->phys_page);
2604 pages = NEXT_PAGE(m);
2605 *(NEXT_PAGE_PTR(m)) = VM_PAGE_NULL;
3e170ce0 2606 vm_page_insert_wired(m, sp_object, offset, VM_KERN_MEMORY_OSFMK);
2d21ac55 2607 }
b0d623f7 2608 vm_object_unlock(sp_object);
2d21ac55 2609 }
b0d623f7
A
2610 } while (tmp_end != tmp2_end &&
2611 (tmp_start = tmp_end) &&
2612 (tmp_end = (tmp2_end - tmp_end > (vm_map_size_t)ANON_CHUNK_SIZE) ?
2613 tmp_end + (vm_map_size_t)ANON_CHUNK_SIZE : tmp2_end));
2614 }
91447636 2615
91447636 2616 new_mapping_established = TRUE;
1c79356b 2617
fe8ab488
A
2618BailOut:
2619 assert(map_locked == TRUE);
2d21ac55 2620
593a1d5f
A
2621 if (result == KERN_SUCCESS) {
2622 vm_prot_t pager_prot;
2623 memory_object_t pager;
91447636 2624
fe8ab488 2625#if DEBUG
593a1d5f
A
2626 if (pmap_empty &&
2627 !(flags & VM_FLAGS_NO_PMAP_CHECK)) {
2628 assert(vm_map_pmap_is_empty(map,
2629 *address,
2630 *address+size));
2631 }
fe8ab488 2632#endif /* DEBUG */
593a1d5f
A
2633
2634 /*
2635 * For "named" VM objects, let the pager know that the
2636 * memory object is being mapped. Some pagers need to keep
2637 * track of this, to know when they can reclaim the memory
2638 * object, for example.
2639 * VM calls memory_object_map() for each mapping (specifying
2640 * the protection of each mapping) and calls
2641 * memory_object_last_unmap() when all the mappings are gone.
2642 */
2643 pager_prot = max_protection;
2644 if (needs_copy) {
2645 /*
2646 * Copy-On-Write mapping: won't modify
2647 * the memory object.
2648 */
2649 pager_prot &= ~VM_PROT_WRITE;
2650 }
2651 if (!is_submap &&
2652 object != VM_OBJECT_NULL &&
2653 object->named &&
2654 object->pager != MEMORY_OBJECT_NULL) {
2655 vm_object_lock(object);
2656 pager = object->pager;
2657 if (object->named &&
2658 pager != MEMORY_OBJECT_NULL) {
2659 assert(object->pager_ready);
2660 vm_object_mapping_wait(object, THREAD_UNINT);
2661 vm_object_mapping_begin(object);
2662 vm_object_unlock(object);
2663
2664 kr = memory_object_map(pager, pager_prot);
2665 assert(kr == KERN_SUCCESS);
2666
2667 vm_object_lock(object);
2668 vm_object_mapping_end(object);
2669 }
2670 vm_object_unlock(object);
2671 }
fe8ab488
A
2672 }
2673
2674 assert(map_locked == TRUE);
2675
2676 if (!keep_map_locked) {
2677 vm_map_unlock(map);
2678 map_locked = FALSE;
2679 }
2680
2681 /*
2682 * We can't hold the map lock if we enter this block.
2683 */
2684
2685 if (result == KERN_SUCCESS) {
2686
2687 /* Wire down the new entry if the user
2688 * requested all new map entries be wired.
2689 */
2690 if ((map->wiring_required)||(superpage_size)) {
2691 assert(!keep_map_locked);
2692 pmap_empty = FALSE; /* pmap won't be empty */
2693 kr = vm_map_wire(map, start, end,
3e170ce0
A
2694 new_entry->protection | VM_PROT_MEMORY_TAG_MAKE(VM_KERN_MEMORY_MLOCK),
2695 TRUE);
fe8ab488
A
2696 result = kr;
2697 }
2698
2699 }
2700
2701 if (result != KERN_SUCCESS) {
91447636
A
2702 if (new_mapping_established) {
2703 /*
2704 * We have to get rid of the new mappings since we
2705 * won't make them available to the user.
2706 * Try and do that atomically, to minimize the risk
2707 * that someone else create new mappings that range.
2708 */
2709 zap_new_map = vm_map_create(PMAP_NULL,
2710 *address,
2711 *address + size,
b0d623f7 2712 map->hdr.entries_pageable);
39236c6e
A
2713 vm_map_set_page_shift(zap_new_map,
2714 VM_MAP_PAGE_SHIFT(map));
3e170ce0
A
2715 vm_map_disable_hole_optimization(zap_new_map);
2716
91447636
A
2717 if (!map_locked) {
2718 vm_map_lock(map);
2719 map_locked = TRUE;
2720 }
2721 (void) vm_map_delete(map, *address, *address+size,
fe8ab488
A
2722 (VM_MAP_REMOVE_SAVE_ENTRIES |
2723 VM_MAP_REMOVE_NO_MAP_ALIGN),
91447636
A
2724 zap_new_map);
2725 }
2726 if (zap_old_map != VM_MAP_NULL &&
2727 zap_old_map->hdr.nentries != 0) {
2728 vm_map_entry_t entry1, entry2;
2729
2730 /*
2731 * The new mapping failed. Attempt to restore
2732 * the old mappings, saved in the "zap_old_map".
2733 */
2734 if (!map_locked) {
2735 vm_map_lock(map);
2736 map_locked = TRUE;
2737 }
2738
2739 /* first check if the coast is still clear */
2740 start = vm_map_first_entry(zap_old_map)->vme_start;
2741 end = vm_map_last_entry(zap_old_map)->vme_end;
2742 if (vm_map_lookup_entry(map, start, &entry1) ||
2743 vm_map_lookup_entry(map, end, &entry2) ||
2744 entry1 != entry2) {
2745 /*
2746 * Part of that range has already been
2747 * re-mapped: we can't restore the old
2748 * mappings...
2749 */
2750 vm_map_enter_restore_failures++;
2751 } else {
2752 /*
2753 * Transfer the saved map entries from
2754 * "zap_old_map" to the original "map",
2755 * inserting them all after "entry1".
2756 */
2757 for (entry2 = vm_map_first_entry(zap_old_map);
2758 entry2 != vm_map_to_entry(zap_old_map);
2759 entry2 = vm_map_first_entry(zap_old_map)) {
2d21ac55
A
2760 vm_map_size_t entry_size;
2761
2762 entry_size = (entry2->vme_end -
2763 entry2->vme_start);
6d2010ae 2764 vm_map_store_entry_unlink(zap_old_map,
91447636 2765 entry2);
2d21ac55 2766 zap_old_map->size -= entry_size;
6d2010ae 2767 vm_map_store_entry_link(map, entry1, entry2);
2d21ac55 2768 map->size += entry_size;
91447636
A
2769 entry1 = entry2;
2770 }
2771 if (map->wiring_required) {
2772 /*
2773 * XXX TODO: we should rewire the
2774 * old pages here...
2775 */
2776 }
2777 vm_map_enter_restore_successes++;
2778 }
2779 }
2780 }
2781
fe8ab488
A
2782 /*
2783 * The caller is responsible for releasing the lock if it requested to
2784 * keep the map locked.
2785 */
2786 if (map_locked && !keep_map_locked) {
91447636
A
2787 vm_map_unlock(map);
2788 }
2789
2790 /*
2791 * Get rid of the "zap_maps" and all the map entries that
2792 * they may still contain.
2793 */
2794 if (zap_old_map != VM_MAP_NULL) {
2d21ac55 2795 vm_map_destroy(zap_old_map, VM_MAP_REMOVE_NO_PMAP_CLEANUP);
91447636
A
2796 zap_old_map = VM_MAP_NULL;
2797 }
2798 if (zap_new_map != VM_MAP_NULL) {
2d21ac55 2799 vm_map_destroy(zap_new_map, VM_MAP_REMOVE_NO_PMAP_CLEANUP);
91447636
A
2800 zap_new_map = VM_MAP_NULL;
2801 }
2802
2803 return result;
1c79356b
A
2804
2805#undef RETURN
2806}
2807
3e170ce0 2808
fe8ab488
A
2809/*
2810 * Counters for the prefault optimization.
2811 */
2812int64_t vm_prefault_nb_pages = 0;
2813int64_t vm_prefault_nb_bailout = 0;
2814
2815static kern_return_t
2816vm_map_enter_mem_object_helper(
2d21ac55
A
2817 vm_map_t target_map,
2818 vm_map_offset_t *address,
2819 vm_map_size_t initial_size,
2820 vm_map_offset_t mask,
2821 int flags,
2822 ipc_port_t port,
2823 vm_object_offset_t offset,
2824 boolean_t copy,
2825 vm_prot_t cur_protection,
2826 vm_prot_t max_protection,
fe8ab488
A
2827 vm_inherit_t inheritance,
2828 upl_page_list_ptr_t page_list,
2829 unsigned int page_list_count)
91447636 2830{
2d21ac55
A
2831 vm_map_address_t map_addr;
2832 vm_map_size_t map_size;
2833 vm_object_t object;
2834 vm_object_size_t size;
2835 kern_return_t result;
6d2010ae 2836 boolean_t mask_cur_protection, mask_max_protection;
fe8ab488 2837 boolean_t try_prefault = (page_list_count != 0);
3e170ce0 2838 vm_map_offset_t offset_in_mapping = 0;
6d2010ae
A
2839
2840 mask_cur_protection = cur_protection & VM_PROT_IS_MASK;
2841 mask_max_protection = max_protection & VM_PROT_IS_MASK;
2842 cur_protection &= ~VM_PROT_IS_MASK;
2843 max_protection &= ~VM_PROT_IS_MASK;
91447636
A
2844
2845 /*
2d21ac55 2846 * Check arguments for validity
91447636 2847 */
2d21ac55
A
2848 if ((target_map == VM_MAP_NULL) ||
2849 (cur_protection & ~VM_PROT_ALL) ||
2850 (max_protection & ~VM_PROT_ALL) ||
2851 (inheritance > VM_INHERIT_LAST_VALID) ||
fe8ab488 2852 (try_prefault && (copy || !page_list)) ||
3e170ce0 2853 initial_size == 0) {
2d21ac55 2854 return KERN_INVALID_ARGUMENT;
3e170ce0 2855 }
6d2010ae 2856
3e170ce0
A
2857 {
2858 map_addr = vm_map_trunc_page(*address,
2859 VM_MAP_PAGE_MASK(target_map));
2860 map_size = vm_map_round_page(initial_size,
2861 VM_MAP_PAGE_MASK(target_map));
2862 }
39236c6e 2863 size = vm_object_round_page(initial_size);
593a1d5f 2864
2d21ac55
A
2865 /*
2866 * Find the vm object (if any) corresponding to this port.
2867 */
2868 if (!IP_VALID(port)) {
2869 object = VM_OBJECT_NULL;
2870 offset = 0;
2871 copy = FALSE;
2872 } else if (ip_kotype(port) == IKOT_NAMED_ENTRY) {
2873 vm_named_entry_t named_entry;
2874
2875 named_entry = (vm_named_entry_t) port->ip_kobject;
39236c6e 2876
3e170ce0
A
2877 if (flags & (VM_FLAGS_RETURN_DATA_ADDR |
2878 VM_FLAGS_RETURN_4K_DATA_ADDR)) {
39236c6e
A
2879 offset += named_entry->data_offset;
2880 }
2881
2d21ac55
A
2882 /* a few checks to make sure user is obeying rules */
2883 if (size == 0) {
2884 if (offset >= named_entry->size)
2885 return KERN_INVALID_RIGHT;
2886 size = named_entry->size - offset;
2887 }
6d2010ae
A
2888 if (mask_max_protection) {
2889 max_protection &= named_entry->protection;
2890 }
2891 if (mask_cur_protection) {
2892 cur_protection &= named_entry->protection;
2893 }
2d21ac55
A
2894 if ((named_entry->protection & max_protection) !=
2895 max_protection)
2896 return KERN_INVALID_RIGHT;
2897 if ((named_entry->protection & cur_protection) !=
2898 cur_protection)
2899 return KERN_INVALID_RIGHT;
22ba694c
A
2900 if (offset + size < offset) {
2901 /* overflow */
2902 return KERN_INVALID_ARGUMENT;
2903 }
3e170ce0 2904 if (named_entry->size < (offset + initial_size)) {
2d21ac55 2905 return KERN_INVALID_ARGUMENT;
3e170ce0 2906 }
2d21ac55 2907
39236c6e
A
2908 if (named_entry->is_copy) {
2909 /* for a vm_map_copy, we can only map it whole */
2910 if ((size != named_entry->size) &&
2911 (vm_map_round_page(size,
2912 VM_MAP_PAGE_MASK(target_map)) ==
2913 named_entry->size)) {
2914 /* XXX FBDP use the rounded size... */
2915 size = vm_map_round_page(
2916 size,
2917 VM_MAP_PAGE_MASK(target_map));
2918 }
2919
fe8ab488
A
2920 if (!(flags & VM_FLAGS_ANYWHERE) &&
2921 (offset != 0 ||
2922 size != named_entry->size)) {
2923 /*
2924 * XXX for a mapping at a "fixed" address,
2925 * we can't trim after mapping the whole
2926 * memory entry, so reject a request for a
2927 * partial mapping.
2928 */
39236c6e
A
2929 return KERN_INVALID_ARGUMENT;
2930 }
2931 }
2932
2d21ac55
A
2933 /* the callers parameter offset is defined to be the */
2934 /* offset from beginning of named entry offset in object */
2935 offset = offset + named_entry->offset;
2936
39236c6e
A
2937 if (! VM_MAP_PAGE_ALIGNED(size,
2938 VM_MAP_PAGE_MASK(target_map))) {
2939 /*
2940 * Let's not map more than requested;
2941 * vm_map_enter() will handle this "not map-aligned"
2942 * case.
2943 */
2944 map_size = size;
2945 }
2946
2d21ac55
A
2947 named_entry_lock(named_entry);
2948 if (named_entry->is_sub_map) {
2949 vm_map_t submap;
2950
3e170ce0
A
2951 if (flags & (VM_FLAGS_RETURN_DATA_ADDR |
2952 VM_FLAGS_RETURN_4K_DATA_ADDR)) {
39236c6e
A
2953 panic("VM_FLAGS_RETURN_DATA_ADDR not expected for submap.");
2954 }
2955
2d21ac55
A
2956 submap = named_entry->backing.map;
2957 vm_map_lock(submap);
2958 vm_map_reference(submap);
2959 vm_map_unlock(submap);
2960 named_entry_unlock(named_entry);
2961
2962 result = vm_map_enter(target_map,
2963 &map_addr,
2964 map_size,
2965 mask,
2966 flags | VM_FLAGS_SUBMAP,
2967 (vm_object_t) submap,
2968 offset,
2969 copy,
2970 cur_protection,
2971 max_protection,
2972 inheritance);
2973 if (result != KERN_SUCCESS) {
2974 vm_map_deallocate(submap);
2975 } else {
2976 /*
2977 * No need to lock "submap" just to check its
2978 * "mapped" flag: that flag is never reset
2979 * once it's been set and if we race, we'll
2980 * just end up setting it twice, which is OK.
2981 */
316670eb
A
2982 if (submap->mapped_in_other_pmaps == FALSE &&
2983 vm_map_pmap(submap) != PMAP_NULL &&
2984 vm_map_pmap(submap) !=
2985 vm_map_pmap(target_map)) {
2d21ac55 2986 /*
316670eb
A
2987 * This submap is being mapped in a map
2988 * that uses a different pmap.
2989 * Set its "mapped_in_other_pmaps" flag
2990 * to indicate that we now need to
2991 * remove mappings from all pmaps rather
2992 * than just the submap's pmap.
2d21ac55
A
2993 */
2994 vm_map_lock(submap);
316670eb 2995 submap->mapped_in_other_pmaps = TRUE;
2d21ac55
A
2996 vm_map_unlock(submap);
2997 }
2998 *address = map_addr;
2999 }
3000 return result;
3001
3002 } else if (named_entry->is_pager) {
3003 unsigned int access;
3004 vm_prot_t protections;
3005 unsigned int wimg_mode;
2d21ac55
A
3006
3007 protections = named_entry->protection & VM_PROT_ALL;
3008 access = GET_MAP_MEM(named_entry->protection);
3009
3e170ce0
A
3010 if (flags & (VM_FLAGS_RETURN_DATA_ADDR|
3011 VM_FLAGS_RETURN_4K_DATA_ADDR)) {
39236c6e
A
3012 panic("VM_FLAGS_RETURN_DATA_ADDR not expected for submap.");
3013 }
3014
2d21ac55
A
3015 object = vm_object_enter(named_entry->backing.pager,
3016 named_entry->size,
3017 named_entry->internal,
3018 FALSE,
3019 FALSE);
3020 if (object == VM_OBJECT_NULL) {
3021 named_entry_unlock(named_entry);
3022 return KERN_INVALID_OBJECT;
3023 }
3024
3025 /* JMM - drop reference on pager here */
3026
3027 /* create an extra ref for the named entry */
3028 vm_object_lock(object);
3029 vm_object_reference_locked(object);
3030 named_entry->backing.object = object;
3031 named_entry->is_pager = FALSE;
3032 named_entry_unlock(named_entry);
3033
3034 wimg_mode = object->wimg_bits;
6d2010ae 3035
2d21ac55
A
3036 if (access == MAP_MEM_IO) {
3037 wimg_mode = VM_WIMG_IO;
3038 } else if (access == MAP_MEM_COPYBACK) {
3039 wimg_mode = VM_WIMG_USE_DEFAULT;
316670eb
A
3040 } else if (access == MAP_MEM_INNERWBACK) {
3041 wimg_mode = VM_WIMG_INNERWBACK;
2d21ac55
A
3042 } else if (access == MAP_MEM_WTHRU) {
3043 wimg_mode = VM_WIMG_WTHRU;
3044 } else if (access == MAP_MEM_WCOMB) {
3045 wimg_mode = VM_WIMG_WCOMB;
3046 }
2d21ac55
A
3047
3048 /* wait for object (if any) to be ready */
3049 if (!named_entry->internal) {
3050 while (!object->pager_ready) {
3051 vm_object_wait(
3052 object,
3053 VM_OBJECT_EVENT_PAGER_READY,
3054 THREAD_UNINT);
3055 vm_object_lock(object);
3056 }
3057 }
3058
6d2010ae
A
3059 if (object->wimg_bits != wimg_mode)
3060 vm_object_change_wimg_mode(object, wimg_mode);
2d21ac55 3061
fe8ab488
A
3062#if VM_OBJECT_TRACKING_OP_TRUESHARE
3063 if (!object->true_share &&
3064 vm_object_tracking_inited) {
3065 void *bt[VM_OBJECT_TRACKING_BTDEPTH];
3066 int num = 0;
3067
3068 num = OSBacktrace(bt,
3069 VM_OBJECT_TRACKING_BTDEPTH);
3070 btlog_add_entry(vm_object_tracking_btlog,
3071 object,
3072 VM_OBJECT_TRACKING_OP_TRUESHARE,
3073 bt,
3074 num);
3075 }
3076#endif /* VM_OBJECT_TRACKING_OP_TRUESHARE */
3077
2d21ac55 3078 object->true_share = TRUE;
6d2010ae 3079
2d21ac55
A
3080 if (object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC)
3081 object->copy_strategy = MEMORY_OBJECT_COPY_DELAY;
3082 vm_object_unlock(object);
39236c6e
A
3083
3084 } else if (named_entry->is_copy) {
3085 kern_return_t kr;
3086 vm_map_copy_t copy_map;
3087 vm_map_entry_t copy_entry;
3088 vm_map_offset_t copy_addr;
3089
3090 if (flags & ~(VM_FLAGS_FIXED |
3091 VM_FLAGS_ANYWHERE |
3092 VM_FLAGS_OVERWRITE |
3e170ce0 3093 VM_FLAGS_RETURN_4K_DATA_ADDR |
39236c6e
A
3094 VM_FLAGS_RETURN_DATA_ADDR)) {
3095 named_entry_unlock(named_entry);
3096 return KERN_INVALID_ARGUMENT;
3097 }
3098
3e170ce0
A
3099 if (flags & (VM_FLAGS_RETURN_DATA_ADDR |
3100 VM_FLAGS_RETURN_4K_DATA_ADDR)) {
39236c6e 3101 offset_in_mapping = offset - vm_object_trunc_page(offset);
3e170ce0
A
3102 if (flags & VM_FLAGS_RETURN_4K_DATA_ADDR)
3103 offset_in_mapping &= ~((signed)(0xFFF));
39236c6e
A
3104 offset = vm_object_trunc_page(offset);
3105 map_size = vm_object_round_page(offset + offset_in_mapping + initial_size) - offset;
3106 }
3107
3108 copy_map = named_entry->backing.copy;
3109 assert(copy_map->type == VM_MAP_COPY_ENTRY_LIST);
3110 if (copy_map->type != VM_MAP_COPY_ENTRY_LIST) {
3111 /* unsupported type; should not happen */
3112 printf("vm_map_enter_mem_object: "
3113 "memory_entry->backing.copy "
3114 "unsupported type 0x%x\n",
3115 copy_map->type);
3116 named_entry_unlock(named_entry);
3117 return KERN_INVALID_ARGUMENT;
3118 }
3119
3120 /* reserve a contiguous range */
3121 kr = vm_map_enter(target_map,
3122 &map_addr,
fe8ab488
A
3123 /* map whole mem entry, trim later: */
3124 named_entry->size,
39236c6e
A
3125 mask,
3126 flags & (VM_FLAGS_ANYWHERE |
3127 VM_FLAGS_OVERWRITE |
3e170ce0 3128 VM_FLAGS_RETURN_4K_DATA_ADDR |
39236c6e
A
3129 VM_FLAGS_RETURN_DATA_ADDR),
3130 VM_OBJECT_NULL,
3131 0,
3132 FALSE, /* copy */
3133 cur_protection,
3134 max_protection,
3135 inheritance);
3136 if (kr != KERN_SUCCESS) {
3137 named_entry_unlock(named_entry);
3138 return kr;
3139 }
3140
3141 copy_addr = map_addr;
3142
3143 for (copy_entry = vm_map_copy_first_entry(copy_map);
3144 copy_entry != vm_map_copy_to_entry(copy_map);
3145 copy_entry = copy_entry->vme_next) {
3146 int remap_flags = 0;
3147 vm_map_t copy_submap;
3148 vm_object_t copy_object;
3149 vm_map_size_t copy_size;
3150 vm_object_offset_t copy_offset;
3151
3e170ce0 3152 copy_offset = VME_OFFSET(copy_entry);
39236c6e
A
3153 copy_size = (copy_entry->vme_end -
3154 copy_entry->vme_start);
3155
3156 /* sanity check */
fe8ab488
A
3157 if ((copy_addr + copy_size) >
3158 (map_addr +
3159 named_entry->size /* XXX full size */ )) {
39236c6e
A
3160 /* over-mapping too much !? */
3161 kr = KERN_INVALID_ARGUMENT;
3162 /* abort */
3163 break;
3164 }
3165
3166 /* take a reference on the object */
3167 if (copy_entry->is_sub_map) {
3168 remap_flags |= VM_FLAGS_SUBMAP;
3e170ce0 3169 copy_submap = VME_SUBMAP(copy_entry);
39236c6e
A
3170 vm_map_lock(copy_submap);
3171 vm_map_reference(copy_submap);
3172 vm_map_unlock(copy_submap);
3173 copy_object = (vm_object_t) copy_submap;
3174 } else {
3e170ce0 3175 copy_object = VME_OBJECT(copy_entry);
39236c6e
A
3176 vm_object_reference(copy_object);
3177 }
3178
3179 /* over-map the object into destination */
3180 remap_flags |= flags;
3181 remap_flags |= VM_FLAGS_FIXED;
3182 remap_flags |= VM_FLAGS_OVERWRITE;
3183 remap_flags &= ~VM_FLAGS_ANYWHERE;
3184 kr = vm_map_enter(target_map,
3185 &copy_addr,
3186 copy_size,
3187 (vm_map_offset_t) 0,
3188 remap_flags,
3189 copy_object,
3190 copy_offset,
3191 copy,
3192 cur_protection,
3193 max_protection,
3194 inheritance);
3195 if (kr != KERN_SUCCESS) {
3196 if (copy_entry->is_sub_map) {
3197 vm_map_deallocate(copy_submap);
3198 } else {
3199 vm_object_deallocate(copy_object);
3200 }
3201 /* abort */
3202 break;
3203 }
3204
3205 /* next mapping */
3206 copy_addr += copy_size;
3207 }
3208
3209 if (kr == KERN_SUCCESS) {
3e170ce0
A
3210 if (flags & (VM_FLAGS_RETURN_DATA_ADDR |
3211 VM_FLAGS_RETURN_4K_DATA_ADDR)) {
39236c6e
A
3212 *address = map_addr + offset_in_mapping;
3213 } else {
3214 *address = map_addr;
3215 }
fe8ab488
A
3216
3217 if (offset) {
3218 /*
3219 * Trim in front, from 0 to "offset".
3220 */
3221 vm_map_remove(target_map,
3222 map_addr,
3223 map_addr + offset,
3224 0);
3225 *address += offset;
3226 }
3227 if (offset + map_size < named_entry->size) {
3228 /*
3229 * Trim in back, from
3230 * "offset + map_size" to
3231 * "named_entry->size".
3232 */
3233 vm_map_remove(target_map,
3234 (map_addr +
3235 offset + map_size),
3236 (map_addr +
3237 named_entry->size),
3238 0);
3239 }
39236c6e
A
3240 }
3241 named_entry_unlock(named_entry);
3242
3243 if (kr != KERN_SUCCESS) {
3244 if (! (flags & VM_FLAGS_OVERWRITE)) {
3245 /* deallocate the contiguous range */
3246 (void) vm_deallocate(target_map,
3247 map_addr,
3248 map_size);
3249 }
3250 }
3251
3252 return kr;
3253
2d21ac55
A
3254 } else {
3255 /* This is the case where we are going to map */
3256 /* an already mapped object. If the object is */
3257 /* not ready it is internal. An external */
3258 /* object cannot be mapped until it is ready */
3259 /* we can therefore avoid the ready check */
3260 /* in this case. */
3e170ce0
A
3261 if (flags & (VM_FLAGS_RETURN_DATA_ADDR |
3262 VM_FLAGS_RETURN_4K_DATA_ADDR)) {
39236c6e 3263 offset_in_mapping = offset - vm_object_trunc_page(offset);
3e170ce0
A
3264 if (flags & VM_FLAGS_RETURN_4K_DATA_ADDR)
3265 offset_in_mapping &= ~((signed)(0xFFF));
39236c6e
A
3266 offset = vm_object_trunc_page(offset);
3267 map_size = vm_object_round_page(offset + offset_in_mapping + initial_size) - offset;
3268 }
3269
2d21ac55
A
3270 object = named_entry->backing.object;
3271 assert(object != VM_OBJECT_NULL);
3272 named_entry_unlock(named_entry);
3273 vm_object_reference(object);
3274 }
3275 } else if (ip_kotype(port) == IKOT_MEMORY_OBJECT) {
3276 /*
3277 * JMM - This is temporary until we unify named entries
3278 * and raw memory objects.
3279 *
3280 * Detected fake ip_kotype for a memory object. In
3281 * this case, the port isn't really a port at all, but
3282 * instead is just a raw memory object.
3283 */
3e170ce0
A
3284 if (flags & (VM_FLAGS_RETURN_DATA_ADDR |
3285 VM_FLAGS_RETURN_4K_DATA_ADDR)) {
39236c6e
A
3286 panic("VM_FLAGS_RETURN_DATA_ADDR not expected for raw memory object.");
3287 }
3288
2d21ac55
A
3289 object = vm_object_enter((memory_object_t)port,
3290 size, FALSE, FALSE, FALSE);
3291 if (object == VM_OBJECT_NULL)
3292 return KERN_INVALID_OBJECT;
3293
3294 /* wait for object (if any) to be ready */
3295 if (object != VM_OBJECT_NULL) {
3296 if (object == kernel_object) {
3297 printf("Warning: Attempt to map kernel object"
3298 " by a non-private kernel entity\n");
3299 return KERN_INVALID_OBJECT;
3300 }
b0d623f7 3301 if (!object->pager_ready) {
2d21ac55 3302 vm_object_lock(object);
b0d623f7
A
3303
3304 while (!object->pager_ready) {
3305 vm_object_wait(object,
3306 VM_OBJECT_EVENT_PAGER_READY,
3307 THREAD_UNINT);
3308 vm_object_lock(object);
3309 }
3310 vm_object_unlock(object);
2d21ac55 3311 }
2d21ac55
A
3312 }
3313 } else {
3314 return KERN_INVALID_OBJECT;
3315 }
3316
593a1d5f
A
3317 if (object != VM_OBJECT_NULL &&
3318 object->named &&
3319 object->pager != MEMORY_OBJECT_NULL &&
3320 object->copy_strategy != MEMORY_OBJECT_COPY_NONE) {
3321 memory_object_t pager;
3322 vm_prot_t pager_prot;
3323 kern_return_t kr;
3324
3325 /*
3326 * For "named" VM objects, let the pager know that the
3327 * memory object is being mapped. Some pagers need to keep
3328 * track of this, to know when they can reclaim the memory
3329 * object, for example.
3330 * VM calls memory_object_map() for each mapping (specifying
3331 * the protection of each mapping) and calls
3332 * memory_object_last_unmap() when all the mappings are gone.
3333 */
3334 pager_prot = max_protection;
3335 if (copy) {
3336 /*
3337 * Copy-On-Write mapping: won't modify the
3338 * memory object.
3339 */
3340 pager_prot &= ~VM_PROT_WRITE;
3341 }
3342 vm_object_lock(object);
3343 pager = object->pager;
3344 if (object->named &&
3345 pager != MEMORY_OBJECT_NULL &&
3346 object->copy_strategy != MEMORY_OBJECT_COPY_NONE) {
3347 assert(object->pager_ready);
3348 vm_object_mapping_wait(object, THREAD_UNINT);
3349 vm_object_mapping_begin(object);
3350 vm_object_unlock(object);
3351
3352 kr = memory_object_map(pager, pager_prot);
3353 assert(kr == KERN_SUCCESS);
3354
3355 vm_object_lock(object);
3356 vm_object_mapping_end(object);
3357 }
3358 vm_object_unlock(object);
3359 }
3360
2d21ac55
A
3361 /*
3362 * Perform the copy if requested
3363 */
3364
3365 if (copy) {
3366 vm_object_t new_object;
3367 vm_object_offset_t new_offset;
3368
3e170ce0
A
3369 result = vm_object_copy_strategically(object, offset,
3370 map_size,
2d21ac55
A
3371 &new_object, &new_offset,
3372 &copy);
3373
3374
3375 if (result == KERN_MEMORY_RESTART_COPY) {
3376 boolean_t success;
3377 boolean_t src_needs_copy;
3378
3379 /*
3380 * XXX
3381 * We currently ignore src_needs_copy.
3382 * This really is the issue of how to make
3383 * MEMORY_OBJECT_COPY_SYMMETRIC safe for
3384 * non-kernel users to use. Solution forthcoming.
3385 * In the meantime, since we don't allow non-kernel
3386 * memory managers to specify symmetric copy,
3387 * we won't run into problems here.
3388 */
3389 new_object = object;
3390 new_offset = offset;
3391 success = vm_object_copy_quickly(&new_object,
3e170ce0
A
3392 new_offset,
3393 map_size,
2d21ac55
A
3394 &src_needs_copy,
3395 &copy);
3396 assert(success);
3397 result = KERN_SUCCESS;
3398 }
3399 /*
3400 * Throw away the reference to the
3401 * original object, as it won't be mapped.
3402 */
3403
3404 vm_object_deallocate(object);
3405
3e170ce0 3406 if (result != KERN_SUCCESS) {
2d21ac55 3407 return result;
3e170ce0 3408 }
2d21ac55
A
3409
3410 object = new_object;
3411 offset = new_offset;
3412 }
3413
fe8ab488
A
3414 /*
3415 * If users want to try to prefault pages, the mapping and prefault
3416 * needs to be atomic.
3417 */
3418 if (try_prefault)
3419 flags |= VM_FLAGS_KEEP_MAP_LOCKED;
3e170ce0
A
3420
3421 {
3422 result = vm_map_enter(target_map,
3423 &map_addr, map_size,
3424 (vm_map_offset_t)mask,
3425 flags,
3426 object, offset,
3427 copy,
3428 cur_protection, max_protection,
3429 inheritance);
3430 }
2d21ac55
A
3431 if (result != KERN_SUCCESS)
3432 vm_object_deallocate(object);
39236c6e 3433
fe8ab488
A
3434 /*
3435 * Try to prefault, and do not forget to release the vm map lock.
3436 */
3437 if (result == KERN_SUCCESS && try_prefault) {
3438 mach_vm_address_t va = map_addr;
3439 kern_return_t kr = KERN_SUCCESS;
3440 unsigned int i = 0;
3441
3442 for (i = 0; i < page_list_count; ++i) {
3443 if (UPL_VALID_PAGE(page_list, i)) {
3444 /*
3445 * If this function call failed, we should stop
3446 * trying to optimize, other calls are likely
3447 * going to fail too.
3448 *
3449 * We are not gonna report an error for such
3450 * failure though. That's an optimization, not
3451 * something critical.
3452 */
3453 kr = pmap_enter_options(target_map->pmap,
3454 va, UPL_PHYS_PAGE(page_list, i),
3455 cur_protection, VM_PROT_NONE,
3456 0, TRUE, PMAP_OPTIONS_NOWAIT, NULL);
3457 if (kr != KERN_SUCCESS) {
3458 OSIncrementAtomic64(&vm_prefault_nb_bailout);
3e170ce0 3459 break;
fe8ab488
A
3460 }
3461 OSIncrementAtomic64(&vm_prefault_nb_pages);
3462 }
3463
3464 /* Next virtual address */
3465 va += PAGE_SIZE;
3466 }
fe8ab488
A
3467 vm_map_unlock(target_map);
3468 }
3469
3e170ce0
A
3470 if (flags & (VM_FLAGS_RETURN_DATA_ADDR |
3471 VM_FLAGS_RETURN_4K_DATA_ADDR)) {
39236c6e
A
3472 *address = map_addr + offset_in_mapping;
3473 } else {
3474 *address = map_addr;
3475 }
2d21ac55
A
3476 return result;
3477}
3478
fe8ab488
A
3479kern_return_t
3480vm_map_enter_mem_object(
3481 vm_map_t target_map,
3482 vm_map_offset_t *address,
3483 vm_map_size_t initial_size,
3484 vm_map_offset_t mask,
3485 int flags,
3486 ipc_port_t port,
3487 vm_object_offset_t offset,
3488 boolean_t copy,
3489 vm_prot_t cur_protection,
3490 vm_prot_t max_protection,
3491 vm_inherit_t inheritance)
3492{
3493 return vm_map_enter_mem_object_helper(target_map, address, initial_size, mask, flags,
3494 port, offset, copy, cur_protection, max_protection,
3495 inheritance, NULL, 0);
3496}
b0d623f7 3497
fe8ab488
A
3498kern_return_t
3499vm_map_enter_mem_object_prefault(
3500 vm_map_t target_map,
3501 vm_map_offset_t *address,
3502 vm_map_size_t initial_size,
3503 vm_map_offset_t mask,
3504 int flags,
3505 ipc_port_t port,
3506 vm_object_offset_t offset,
3507 vm_prot_t cur_protection,
3508 vm_prot_t max_protection,
3509 upl_page_list_ptr_t page_list,
3510 unsigned int page_list_count)
3511{
3512 return vm_map_enter_mem_object_helper(target_map, address, initial_size, mask, flags,
3513 port, offset, FALSE, cur_protection, max_protection,
3514 VM_INHERIT_DEFAULT, page_list, page_list_count);
3515}
b0d623f7
A
3516
3517
3518kern_return_t
3519vm_map_enter_mem_object_control(
3520 vm_map_t target_map,
3521 vm_map_offset_t *address,
3522 vm_map_size_t initial_size,
3523 vm_map_offset_t mask,
3524 int flags,
3525 memory_object_control_t control,
3526 vm_object_offset_t offset,
3527 boolean_t copy,
3528 vm_prot_t cur_protection,
3529 vm_prot_t max_protection,
3530 vm_inherit_t inheritance)
3531{
3532 vm_map_address_t map_addr;
3533 vm_map_size_t map_size;
3534 vm_object_t object;
3535 vm_object_size_t size;
3536 kern_return_t result;
3537 memory_object_t pager;
3538 vm_prot_t pager_prot;
3539 kern_return_t kr;
3540
3541 /*
3542 * Check arguments for validity
3543 */
3544 if ((target_map == VM_MAP_NULL) ||
3545 (cur_protection & ~VM_PROT_ALL) ||
3546 (max_protection & ~VM_PROT_ALL) ||
3547 (inheritance > VM_INHERIT_LAST_VALID) ||
3e170ce0 3548 initial_size == 0) {
b0d623f7 3549 return KERN_INVALID_ARGUMENT;
3e170ce0 3550 }
b0d623f7 3551
3e170ce0
A
3552 {
3553 map_addr = vm_map_trunc_page(*address,
3554 VM_MAP_PAGE_MASK(target_map));
3555 map_size = vm_map_round_page(initial_size,
3556 VM_MAP_PAGE_MASK(target_map));
3557 }
3558 size = vm_object_round_page(initial_size);
b0d623f7
A
3559
3560 object = memory_object_control_to_vm_object(control);
3561
3562 if (object == VM_OBJECT_NULL)
3563 return KERN_INVALID_OBJECT;
3564
3565 if (object == kernel_object) {
3566 printf("Warning: Attempt to map kernel object"
3567 " by a non-private kernel entity\n");
3568 return KERN_INVALID_OBJECT;
3569 }
3570
3571 vm_object_lock(object);
3572 object->ref_count++;
3573 vm_object_res_reference(object);
3574
3575 /*
3576 * For "named" VM objects, let the pager know that the
3577 * memory object is being mapped. Some pagers need to keep
3578 * track of this, to know when they can reclaim the memory
3579 * object, for example.
3580 * VM calls memory_object_map() for each mapping (specifying
3581 * the protection of each mapping) and calls
3582 * memory_object_last_unmap() when all the mappings are gone.
3583 */
3584 pager_prot = max_protection;
3585 if (copy) {
3586 pager_prot &= ~VM_PROT_WRITE;
3587 }
3588 pager = object->pager;
3589 if (object->named &&
3590 pager != MEMORY_OBJECT_NULL &&
3591 object->copy_strategy != MEMORY_OBJECT_COPY_NONE) {
3592 assert(object->pager_ready);
3593 vm_object_mapping_wait(object, THREAD_UNINT);
3594 vm_object_mapping_begin(object);
3595 vm_object_unlock(object);
3596
3597 kr = memory_object_map(pager, pager_prot);
3598 assert(kr == KERN_SUCCESS);
3599
3600 vm_object_lock(object);
3601 vm_object_mapping_end(object);
3602 }
3603 vm_object_unlock(object);
3604
3605 /*
3606 * Perform the copy if requested
3607 */
3608
3609 if (copy) {
3610 vm_object_t new_object;
3611 vm_object_offset_t new_offset;
3612
3613 result = vm_object_copy_strategically(object, offset, size,
3614 &new_object, &new_offset,
3615 &copy);
3616
3617
3618 if (result == KERN_MEMORY_RESTART_COPY) {
3619 boolean_t success;
3620 boolean_t src_needs_copy;
3621
3622 /*
3623 * XXX
3624 * We currently ignore src_needs_copy.
3625 * This really is the issue of how to make
3626 * MEMORY_OBJECT_COPY_SYMMETRIC safe for
3627 * non-kernel users to use. Solution forthcoming.
3628 * In the meantime, since we don't allow non-kernel
3629 * memory managers to specify symmetric copy,
3630 * we won't run into problems here.
3631 */
3632 new_object = object;
3633 new_offset = offset;
3634 success = vm_object_copy_quickly(&new_object,
3635 new_offset, size,
3636 &src_needs_copy,
3637 &copy);
3638 assert(success);
3639 result = KERN_SUCCESS;
3640 }
3641 /*
3642 * Throw away the reference to the
3643 * original object, as it won't be mapped.
3644 */
3645
3646 vm_object_deallocate(object);
3647
3e170ce0 3648 if (result != KERN_SUCCESS) {
b0d623f7 3649 return result;
3e170ce0 3650 }
b0d623f7
A
3651
3652 object = new_object;
3653 offset = new_offset;
3654 }
3655
3e170ce0
A
3656 {
3657 result = vm_map_enter(target_map,
3658 &map_addr, map_size,
3659 (vm_map_offset_t)mask,
3660 flags,
3661 object, offset,
3662 copy,
3663 cur_protection, max_protection,
3664 inheritance);
3665 }
b0d623f7
A
3666 if (result != KERN_SUCCESS)
3667 vm_object_deallocate(object);
3668 *address = map_addr;
3669
3670 return result;
3671}
3672
3673
2d21ac55
A
3674#if VM_CPM
3675
3676#ifdef MACH_ASSERT
3677extern pmap_paddr_t avail_start, avail_end;
3678#endif
3679
3680/*
3681 * Allocate memory in the specified map, with the caveat that
3682 * the memory is physically contiguous. This call may fail
3683 * if the system can't find sufficient contiguous memory.
3684 * This call may cause or lead to heart-stopping amounts of
3685 * paging activity.
3686 *
3687 * Memory obtained from this call should be freed in the
3688 * normal way, viz., via vm_deallocate.
3689 */
3690kern_return_t
3691vm_map_enter_cpm(
3692 vm_map_t map,
3693 vm_map_offset_t *addr,
3694 vm_map_size_t size,
3695 int flags)
3696{
3697 vm_object_t cpm_obj;
3698 pmap_t pmap;
3699 vm_page_t m, pages;
3700 kern_return_t kr;
3701 vm_map_offset_t va, start, end, offset;
3702#if MACH_ASSERT
316670eb 3703 vm_map_offset_t prev_addr = 0;
2d21ac55
A
3704#endif /* MACH_ASSERT */
3705
3706 boolean_t anywhere = ((VM_FLAGS_ANYWHERE & flags) != 0);
3e170ce0
A
3707 vm_tag_t tag;
3708
3709 VM_GET_FLAGS_ALIAS(flags, tag);
2d21ac55 3710
2d21ac55
A
3711 if (size == 0) {
3712 *addr = 0;
3713 return KERN_SUCCESS;
3714 }
3715 if (anywhere)
3716 *addr = vm_map_min(map);
3717 else
39236c6e
A
3718 *addr = vm_map_trunc_page(*addr,
3719 VM_MAP_PAGE_MASK(map));
3720 size = vm_map_round_page(size,
3721 VM_MAP_PAGE_MASK(map));
2d21ac55
A
3722
3723 /*
3724 * LP64todo - cpm_allocate should probably allow
3725 * allocations of >4GB, but not with the current
3726 * algorithm, so just cast down the size for now.
3727 */
3728 if (size > VM_MAX_ADDRESS)
3729 return KERN_RESOURCE_SHORTAGE;
3730 if ((kr = cpm_allocate(CAST_DOWN(vm_size_t, size),
b0d623f7 3731 &pages, 0, 0, TRUE, flags)) != KERN_SUCCESS)
2d21ac55
A
3732 return kr;
3733
3734 cpm_obj = vm_object_allocate((vm_object_size_t)size);
3735 assert(cpm_obj != VM_OBJECT_NULL);
3736 assert(cpm_obj->internal);
316670eb 3737 assert(cpm_obj->vo_size == (vm_object_size_t)size);
2d21ac55
A
3738 assert(cpm_obj->can_persist == FALSE);
3739 assert(cpm_obj->pager_created == FALSE);
3740 assert(cpm_obj->pageout == FALSE);
3741 assert(cpm_obj->shadow == VM_OBJECT_NULL);
91447636
A
3742
3743 /*
3744 * Insert pages into object.
3745 */
3746
3747 vm_object_lock(cpm_obj);
3748 for (offset = 0; offset < size; offset += PAGE_SIZE) {
3749 m = pages;
3750 pages = NEXT_PAGE(m);
0c530ab8 3751 *(NEXT_PAGE_PTR(m)) = VM_PAGE_NULL;
91447636
A
3752
3753 assert(!m->gobbled);
3754 assert(!m->wanted);
3755 assert(!m->pageout);
3756 assert(!m->tabled);
b0d623f7 3757 assert(VM_PAGE_WIRED(m));
91447636
A
3758 /*
3759 * ENCRYPTED SWAP:
3760 * "m" is not supposed to be pageable, so it
3761 * should not be encrypted. It wouldn't be safe
3762 * to enter it in a new VM object while encrypted.
3763 */
3764 ASSERT_PAGE_DECRYPTED(m);
3765 assert(m->busy);
0c530ab8 3766 assert(m->phys_page>=(avail_start>>PAGE_SHIFT) && m->phys_page<=(avail_end>>PAGE_SHIFT));
91447636
A
3767
3768 m->busy = FALSE;
3769 vm_page_insert(m, cpm_obj, offset);
3770 }
3771 assert(cpm_obj->resident_page_count == size / PAGE_SIZE);
3772 vm_object_unlock(cpm_obj);
3773
3774 /*
3775 * Hang onto a reference on the object in case a
3776 * multi-threaded application for some reason decides
3777 * to deallocate the portion of the address space into
3778 * which we will insert this object.
3779 *
3780 * Unfortunately, we must insert the object now before
3781 * we can talk to the pmap module about which addresses
3782 * must be wired down. Hence, the race with a multi-
3783 * threaded app.
3784 */
3785 vm_object_reference(cpm_obj);
3786
3787 /*
3788 * Insert object into map.
3789 */
3790
3791 kr = vm_map_enter(
2d21ac55
A
3792 map,
3793 addr,
3794 size,
3795 (vm_map_offset_t)0,
3796 flags,
3797 cpm_obj,
3798 (vm_object_offset_t)0,
3799 FALSE,
3800 VM_PROT_ALL,
3801 VM_PROT_ALL,
3802 VM_INHERIT_DEFAULT);
91447636
A
3803
3804 if (kr != KERN_SUCCESS) {
3805 /*
3806 * A CPM object doesn't have can_persist set,
3807 * so all we have to do is deallocate it to
3808 * free up these pages.
3809 */
3810 assert(cpm_obj->pager_created == FALSE);
3811 assert(cpm_obj->can_persist == FALSE);
3812 assert(cpm_obj->pageout == FALSE);
3813 assert(cpm_obj->shadow == VM_OBJECT_NULL);
3814 vm_object_deallocate(cpm_obj); /* kill acquired ref */
3815 vm_object_deallocate(cpm_obj); /* kill creation ref */
3816 }
3817
3818 /*
3819 * Inform the physical mapping system that the
3820 * range of addresses may not fault, so that
3821 * page tables and such can be locked down as well.
3822 */
3823 start = *addr;
3824 end = start + size;
3825 pmap = vm_map_pmap(map);
3826 pmap_pageable(pmap, start, end, FALSE);
3827
3828 /*
3829 * Enter each page into the pmap, to avoid faults.
3830 * Note that this loop could be coded more efficiently,
3831 * if the need arose, rather than looking up each page
3832 * again.
3833 */
3834 for (offset = 0, va = start; offset < size;
3835 va += PAGE_SIZE, offset += PAGE_SIZE) {
2d21ac55
A
3836 int type_of_fault;
3837
91447636
A
3838 vm_object_lock(cpm_obj);
3839 m = vm_page_lookup(cpm_obj, (vm_object_offset_t)offset);
91447636 3840 assert(m != VM_PAGE_NULL);
2d21ac55
A
3841
3842 vm_page_zero_fill(m);
3843
3844 type_of_fault = DBG_ZERO_FILL_FAULT;
3845
6d2010ae 3846 vm_fault_enter(m, pmap, va, VM_PROT_ALL, VM_PROT_WRITE,
fe8ab488 3847 VM_PAGE_WIRED(m), FALSE, FALSE, FALSE, 0, NULL,
2d21ac55
A
3848 &type_of_fault);
3849
3850 vm_object_unlock(cpm_obj);
91447636
A
3851 }
3852
3853#if MACH_ASSERT
3854 /*
3855 * Verify ordering in address space.
3856 */
3857 for (offset = 0; offset < size; offset += PAGE_SIZE) {
3858 vm_object_lock(cpm_obj);
3859 m = vm_page_lookup(cpm_obj, (vm_object_offset_t)offset);
3860 vm_object_unlock(cpm_obj);
3861 if (m == VM_PAGE_NULL)
316670eb
A
3862 panic("vm_allocate_cpm: obj %p off 0x%llx no page",
3863 cpm_obj, (uint64_t)offset);
91447636
A
3864 assert(m->tabled);
3865 assert(!m->busy);
3866 assert(!m->wanted);
3867 assert(!m->fictitious);
3868 assert(!m->private);
3869 assert(!m->absent);
3870 assert(!m->error);
3871 assert(!m->cleaning);
316670eb 3872 assert(!m->laundry);
91447636
A
3873 assert(!m->precious);
3874 assert(!m->clustered);
3875 if (offset != 0) {
3876 if (m->phys_page != prev_addr + 1) {
316670eb
A
3877 printf("start 0x%llx end 0x%llx va 0x%llx\n",
3878 (uint64_t)start, (uint64_t)end, (uint64_t)va);
3879 printf("obj %p off 0x%llx\n", cpm_obj, (uint64_t)offset);
3880 printf("m %p prev_address 0x%llx\n", m, (uint64_t)prev_addr);
91447636
A
3881 panic("vm_allocate_cpm: pages not contig!");
3882 }
3883 }
3884 prev_addr = m->phys_page;
3885 }
3886#endif /* MACH_ASSERT */
3887
3888 vm_object_deallocate(cpm_obj); /* kill extra ref */
3889
3890 return kr;
3891}
3892
3893
3894#else /* VM_CPM */
3895
3896/*
3897 * Interface is defined in all cases, but unless the kernel
3898 * is built explicitly for this option, the interface does
3899 * nothing.
3900 */
3901
3902kern_return_t
3903vm_map_enter_cpm(
3904 __unused vm_map_t map,
3905 __unused vm_map_offset_t *addr,
3906 __unused vm_map_size_t size,
3907 __unused int flags)
3908{
3909 return KERN_FAILURE;
3910}
3911#endif /* VM_CPM */
3912
b0d623f7
A
3913/* Not used without nested pmaps */
3914#ifndef NO_NESTED_PMAP
2d21ac55
A
3915/*
3916 * Clip and unnest a portion of a nested submap mapping.
3917 */
b0d623f7
A
3918
3919
2d21ac55
A
3920static void
3921vm_map_clip_unnest(
3922 vm_map_t map,
3923 vm_map_entry_t entry,
3924 vm_map_offset_t start_unnest,
3925 vm_map_offset_t end_unnest)
3926{
b0d623f7
A
3927 vm_map_offset_t old_start_unnest = start_unnest;
3928 vm_map_offset_t old_end_unnest = end_unnest;
3929
2d21ac55 3930 assert(entry->is_sub_map);
3e170ce0 3931 assert(VME_SUBMAP(entry) != NULL);
fe8ab488 3932 assert(entry->use_pmap);
2d21ac55 3933
b0d623f7
A
3934 /*
3935 * Query the platform for the optimal unnest range.
3936 * DRK: There's some duplication of effort here, since
3937 * callers may have adjusted the range to some extent. This
3938 * routine was introduced to support 1GiB subtree nesting
3939 * for x86 platforms, which can also nest on 2MiB boundaries
3940 * depending on size/alignment.
3941 */
3942 if (pmap_adjust_unnest_parameters(map->pmap, &start_unnest, &end_unnest)) {
3943 log_unnest_badness(map, old_start_unnest, old_end_unnest);
3944 }
3945
2d21ac55
A
3946 if (entry->vme_start > start_unnest ||
3947 entry->vme_end < end_unnest) {
3948 panic("vm_map_clip_unnest(0x%llx,0x%llx): "
3949 "bad nested entry: start=0x%llx end=0x%llx\n",
3950 (long long)start_unnest, (long long)end_unnest,
3951 (long long)entry->vme_start, (long long)entry->vme_end);
3952 }
b0d623f7 3953
2d21ac55
A
3954 if (start_unnest > entry->vme_start) {
3955 _vm_map_clip_start(&map->hdr,
3956 entry,
3957 start_unnest);
3e170ce0
A
3958 if (map->holelistenabled) {
3959 vm_map_store_update_first_free(map, NULL, FALSE);
3960 } else {
3961 vm_map_store_update_first_free(map, map->first_free, FALSE);
3962 }
2d21ac55
A
3963 }
3964 if (entry->vme_end > end_unnest) {
3965 _vm_map_clip_end(&map->hdr,
3966 entry,
3967 end_unnest);
3e170ce0
A
3968 if (map->holelistenabled) {
3969 vm_map_store_update_first_free(map, NULL, FALSE);
3970 } else {
3971 vm_map_store_update_first_free(map, map->first_free, FALSE);
3972 }
2d21ac55
A
3973 }
3974
3975 pmap_unnest(map->pmap,
3976 entry->vme_start,
3977 entry->vme_end - entry->vme_start);
316670eb 3978 if ((map->mapped_in_other_pmaps) && (map->ref_count)) {
2d21ac55
A
3979 /* clean up parent map/maps */
3980 vm_map_submap_pmap_clean(
3981 map, entry->vme_start,
3982 entry->vme_end,
3e170ce0
A
3983 VME_SUBMAP(entry),
3984 VME_OFFSET(entry));
2d21ac55
A
3985 }
3986 entry->use_pmap = FALSE;
3e170ce0
A
3987 if ((map->pmap != kernel_pmap) &&
3988 (VME_ALIAS(entry) == VM_MEMORY_SHARED_PMAP)) {
3989 VME_ALIAS_SET(entry, VM_MEMORY_UNSHARED_PMAP);
316670eb 3990 }
2d21ac55 3991}
b0d623f7 3992#endif /* NO_NESTED_PMAP */
2d21ac55 3993
1c79356b
A
3994/*
3995 * vm_map_clip_start: [ internal use only ]
3996 *
3997 * Asserts that the given entry begins at or after
3998 * the specified address; if necessary,
3999 * it splits the entry into two.
4000 */
e2d2fc5c 4001void
2d21ac55
A
4002vm_map_clip_start(
4003 vm_map_t map,
4004 vm_map_entry_t entry,
4005 vm_map_offset_t startaddr)
4006{
0c530ab8 4007#ifndef NO_NESTED_PMAP
fe8ab488
A
4008 if (entry->is_sub_map &&
4009 entry->use_pmap &&
2d21ac55
A
4010 startaddr >= entry->vme_start) {
4011 vm_map_offset_t start_unnest, end_unnest;
4012
4013 /*
4014 * Make sure "startaddr" is no longer in a nested range
4015 * before we clip. Unnest only the minimum range the platform
4016 * can handle.
b0d623f7
A
4017 * vm_map_clip_unnest may perform additional adjustments to
4018 * the unnest range.
2d21ac55
A
4019 */
4020 start_unnest = startaddr & ~(pmap_nesting_size_min - 1);
4021 end_unnest = start_unnest + pmap_nesting_size_min;
4022 vm_map_clip_unnest(map, entry, start_unnest, end_unnest);
4023 }
4024#endif /* NO_NESTED_PMAP */
4025 if (startaddr > entry->vme_start) {
3e170ce0 4026 if (VME_OBJECT(entry) &&
2d21ac55 4027 !entry->is_sub_map &&
3e170ce0 4028 VME_OBJECT(entry)->phys_contiguous) {
2d21ac55
A
4029 pmap_remove(map->pmap,
4030 (addr64_t)(entry->vme_start),
4031 (addr64_t)(entry->vme_end));
4032 }
4033 _vm_map_clip_start(&map->hdr, entry, startaddr);
3e170ce0
A
4034 if (map->holelistenabled) {
4035 vm_map_store_update_first_free(map, NULL, FALSE);
4036 } else {
4037 vm_map_store_update_first_free(map, map->first_free, FALSE);
4038 }
2d21ac55
A
4039 }
4040}
4041
1c79356b
A
4042
4043#define vm_map_copy_clip_start(copy, entry, startaddr) \
4044 MACRO_BEGIN \
4045 if ((startaddr) > (entry)->vme_start) \
4046 _vm_map_clip_start(&(copy)->cpy_hdr,(entry),(startaddr)); \
4047 MACRO_END
4048
4049/*
4050 * This routine is called only when it is known that
4051 * the entry must be split.
4052 */
91447636 4053static void
1c79356b
A
4054_vm_map_clip_start(
4055 register struct vm_map_header *map_header,
4056 register vm_map_entry_t entry,
3e170ce0 4057 register vm_map_offset_t start)
1c79356b
A
4058{
4059 register vm_map_entry_t new_entry;
4060
4061 /*
4062 * Split off the front portion --
4063 * note that we must insert the new
4064 * entry BEFORE this one, so that
4065 * this entry has the specified starting
4066 * address.
4067 */
4068
fe8ab488
A
4069 if (entry->map_aligned) {
4070 assert(VM_MAP_PAGE_ALIGNED(start,
4071 VM_MAP_HDR_PAGE_MASK(map_header)));
4072 }
4073
7ddcb079 4074 new_entry = _vm_map_entry_create(map_header, !map_header->entries_pageable);
1c79356b
A
4075 vm_map_entry_copy_full(new_entry, entry);
4076
4077 new_entry->vme_end = start;
e2d2fc5c 4078 assert(new_entry->vme_start < new_entry->vme_end);
3e170ce0 4079 VME_OFFSET_SET(entry, VME_OFFSET(entry) + (start - entry->vme_start));
e2d2fc5c 4080 assert(start < entry->vme_end);
1c79356b
A
4081 entry->vme_start = start;
4082
6d2010ae 4083 _vm_map_store_entry_link(map_header, entry->vme_prev, new_entry);
1c79356b
A
4084
4085 if (entry->is_sub_map)
3e170ce0 4086 vm_map_reference(VME_SUBMAP(new_entry));
1c79356b 4087 else
3e170ce0 4088 vm_object_reference(VME_OBJECT(new_entry));
1c79356b
A
4089}
4090
4091
4092/*
4093 * vm_map_clip_end: [ internal use only ]
4094 *
4095 * Asserts that the given entry ends at or before
4096 * the specified address; if necessary,
4097 * it splits the entry into two.
4098 */
e2d2fc5c 4099void
2d21ac55
A
4100vm_map_clip_end(
4101 vm_map_t map,
4102 vm_map_entry_t entry,
4103 vm_map_offset_t endaddr)
4104{
4105 if (endaddr > entry->vme_end) {
4106 /*
4107 * Within the scope of this clipping, limit "endaddr" to
4108 * the end of this map entry...
4109 */
4110 endaddr = entry->vme_end;
4111 }
4112#ifndef NO_NESTED_PMAP
fe8ab488 4113 if (entry->is_sub_map && entry->use_pmap) {
2d21ac55
A
4114 vm_map_offset_t start_unnest, end_unnest;
4115
4116 /*
4117 * Make sure the range between the start of this entry and
4118 * the new "endaddr" is no longer nested before we clip.
4119 * Unnest only the minimum range the platform can handle.
b0d623f7
A
4120 * vm_map_clip_unnest may perform additional adjustments to
4121 * the unnest range.
2d21ac55
A
4122 */
4123 start_unnest = entry->vme_start;
4124 end_unnest =
4125 (endaddr + pmap_nesting_size_min - 1) &
4126 ~(pmap_nesting_size_min - 1);
4127 vm_map_clip_unnest(map, entry, start_unnest, end_unnest);
4128 }
4129#endif /* NO_NESTED_PMAP */
4130 if (endaddr < entry->vme_end) {
3e170ce0 4131 if (VME_OBJECT(entry) &&
2d21ac55 4132 !entry->is_sub_map &&
3e170ce0 4133 VME_OBJECT(entry)->phys_contiguous) {
2d21ac55
A
4134 pmap_remove(map->pmap,
4135 (addr64_t)(entry->vme_start),
4136 (addr64_t)(entry->vme_end));
4137 }
4138 _vm_map_clip_end(&map->hdr, entry, endaddr);
3e170ce0
A
4139 if (map->holelistenabled) {
4140 vm_map_store_update_first_free(map, NULL, FALSE);
4141 } else {
4142 vm_map_store_update_first_free(map, map->first_free, FALSE);
4143 }
2d21ac55
A
4144 }
4145}
0c530ab8 4146
1c79356b
A
4147
4148#define vm_map_copy_clip_end(copy, entry, endaddr) \
4149 MACRO_BEGIN \
4150 if ((endaddr) < (entry)->vme_end) \
4151 _vm_map_clip_end(&(copy)->cpy_hdr,(entry),(endaddr)); \
4152 MACRO_END
4153
4154/*
4155 * This routine is called only when it is known that
4156 * the entry must be split.
4157 */
91447636 4158static void
1c79356b
A
4159_vm_map_clip_end(
4160 register struct vm_map_header *map_header,
4161 register vm_map_entry_t entry,
2d21ac55 4162 register vm_map_offset_t end)
1c79356b
A
4163{
4164 register vm_map_entry_t new_entry;
4165
4166 /*
4167 * Create a new entry and insert it
4168 * AFTER the specified entry
4169 */
4170
fe8ab488
A
4171 if (entry->map_aligned) {
4172 assert(VM_MAP_PAGE_ALIGNED(end,
4173 VM_MAP_HDR_PAGE_MASK(map_header)));
4174 }
4175
7ddcb079 4176 new_entry = _vm_map_entry_create(map_header, !map_header->entries_pageable);
1c79356b
A
4177 vm_map_entry_copy_full(new_entry, entry);
4178
e2d2fc5c 4179 assert(entry->vme_start < end);
1c79356b 4180 new_entry->vme_start = entry->vme_end = end;
3e170ce0
A
4181 VME_OFFSET_SET(new_entry,
4182 VME_OFFSET(new_entry) + (end - entry->vme_start));
e2d2fc5c 4183 assert(new_entry->vme_start < new_entry->vme_end);
1c79356b 4184
6d2010ae 4185 _vm_map_store_entry_link(map_header, entry, new_entry);
1c79356b
A
4186
4187 if (entry->is_sub_map)
3e170ce0 4188 vm_map_reference(VME_SUBMAP(new_entry));
1c79356b 4189 else
3e170ce0 4190 vm_object_reference(VME_OBJECT(new_entry));
1c79356b
A
4191}
4192
4193
4194/*
4195 * VM_MAP_RANGE_CHECK: [ internal use only ]
4196 *
4197 * Asserts that the starting and ending region
4198 * addresses fall within the valid range of the map.
4199 */
2d21ac55
A
4200#define VM_MAP_RANGE_CHECK(map, start, end) \
4201 MACRO_BEGIN \
4202 if (start < vm_map_min(map)) \
4203 start = vm_map_min(map); \
4204 if (end > vm_map_max(map)) \
4205 end = vm_map_max(map); \
4206 if (start > end) \
4207 start = end; \
4208 MACRO_END
1c79356b
A
4209
4210/*
4211 * vm_map_range_check: [ internal use only ]
4212 *
4213 * Check that the region defined by the specified start and
4214 * end addresses are wholly contained within a single map
4215 * entry or set of adjacent map entries of the spacified map,
4216 * i.e. the specified region contains no unmapped space.
4217 * If any or all of the region is unmapped, FALSE is returned.
4218 * Otherwise, TRUE is returned and if the output argument 'entry'
4219 * is not NULL it points to the map entry containing the start
4220 * of the region.
4221 *
4222 * The map is locked for reading on entry and is left locked.
4223 */
91447636 4224static boolean_t
1c79356b
A
4225vm_map_range_check(
4226 register vm_map_t map,
91447636
A
4227 register vm_map_offset_t start,
4228 register vm_map_offset_t end,
1c79356b
A
4229 vm_map_entry_t *entry)
4230{
4231 vm_map_entry_t cur;
91447636 4232 register vm_map_offset_t prev;
1c79356b
A
4233
4234 /*
4235 * Basic sanity checks first
4236 */
4237 if (start < vm_map_min(map) || end > vm_map_max(map) || start > end)
4238 return (FALSE);
4239
4240 /*
4241 * Check first if the region starts within a valid
4242 * mapping for the map.
4243 */
4244 if (!vm_map_lookup_entry(map, start, &cur))
4245 return (FALSE);
4246
4247 /*
4248 * Optimize for the case that the region is contained
4249 * in a single map entry.
4250 */
4251 if (entry != (vm_map_entry_t *) NULL)
4252 *entry = cur;
4253 if (end <= cur->vme_end)
4254 return (TRUE);
4255
4256 /*
4257 * If the region is not wholly contained within a
4258 * single entry, walk the entries looking for holes.
4259 */
4260 prev = cur->vme_end;
4261 cur = cur->vme_next;
4262 while ((cur != vm_map_to_entry(map)) && (prev == cur->vme_start)) {
4263 if (end <= cur->vme_end)
4264 return (TRUE);
4265 prev = cur->vme_end;
4266 cur = cur->vme_next;
4267 }
4268 return (FALSE);
4269}
4270
4271/*
4272 * vm_map_submap: [ kernel use only ]
4273 *
4274 * Mark the given range as handled by a subordinate map.
4275 *
4276 * This range must have been created with vm_map_find using
4277 * the vm_submap_object, and no other operations may have been
4278 * performed on this range prior to calling vm_map_submap.
4279 *
4280 * Only a limited number of operations can be performed
4281 * within this rage after calling vm_map_submap:
4282 * vm_fault
4283 * [Don't try vm_map_copyin!]
4284 *
4285 * To remove a submapping, one must first remove the
4286 * range from the superior map, and then destroy the
4287 * submap (if desired). [Better yet, don't try it.]
4288 */
4289kern_return_t
4290vm_map_submap(
fe8ab488 4291 vm_map_t map,
91447636
A
4292 vm_map_offset_t start,
4293 vm_map_offset_t end,
fe8ab488 4294 vm_map_t submap,
91447636 4295 vm_map_offset_t offset,
0c530ab8 4296#ifdef NO_NESTED_PMAP
91447636 4297 __unused
0c530ab8 4298#endif /* NO_NESTED_PMAP */
fe8ab488 4299 boolean_t use_pmap)
1c79356b
A
4300{
4301 vm_map_entry_t entry;
4302 register kern_return_t result = KERN_INVALID_ARGUMENT;
4303 register vm_object_t object;
4304
4305 vm_map_lock(map);
4306
2d21ac55 4307 if (! vm_map_lookup_entry(map, start, &entry)) {
1c79356b 4308 entry = entry->vme_next;
2d21ac55 4309 }
1c79356b 4310
2d21ac55
A
4311 if (entry == vm_map_to_entry(map) ||
4312 entry->is_sub_map) {
1c79356b
A
4313 vm_map_unlock(map);
4314 return KERN_INVALID_ARGUMENT;
4315 }
4316
2d21ac55 4317 vm_map_clip_start(map, entry, start);
1c79356b
A
4318 vm_map_clip_end(map, entry, end);
4319
4320 if ((entry->vme_start == start) && (entry->vme_end == end) &&
4321 (!entry->is_sub_map) &&
3e170ce0 4322 ((object = VME_OBJECT(entry)) == vm_submap_object) &&
1c79356b
A
4323 (object->resident_page_count == 0) &&
4324 (object->copy == VM_OBJECT_NULL) &&
4325 (object->shadow == VM_OBJECT_NULL) &&
4326 (!object->pager_created)) {
3e170ce0
A
4327 VME_OFFSET_SET(entry, (vm_object_offset_t)offset);
4328 VME_OBJECT_SET(entry, VM_OBJECT_NULL);
2d21ac55
A
4329 vm_object_deallocate(object);
4330 entry->is_sub_map = TRUE;
fe8ab488 4331 entry->use_pmap = FALSE;
3e170ce0 4332 VME_SUBMAP_SET(entry, submap);
2d21ac55 4333 vm_map_reference(submap);
316670eb
A
4334 if (submap->mapped_in_other_pmaps == FALSE &&
4335 vm_map_pmap(submap) != PMAP_NULL &&
4336 vm_map_pmap(submap) != vm_map_pmap(map)) {
4337 /*
4338 * This submap is being mapped in a map
4339 * that uses a different pmap.
4340 * Set its "mapped_in_other_pmaps" flag
4341 * to indicate that we now need to
4342 * remove mappings from all pmaps rather
4343 * than just the submap's pmap.
4344 */
4345 submap->mapped_in_other_pmaps = TRUE;
4346 }
2d21ac55 4347
0c530ab8 4348#ifndef NO_NESTED_PMAP
2d21ac55
A
4349 if (use_pmap) {
4350 /* nest if platform code will allow */
4351 if(submap->pmap == NULL) {
316670eb
A
4352 ledger_t ledger = map->pmap->ledger;
4353 submap->pmap = pmap_create(ledger,
4354 (vm_map_size_t) 0, FALSE);
2d21ac55
A
4355 if(submap->pmap == PMAP_NULL) {
4356 vm_map_unlock(map);
4357 return(KERN_NO_SPACE);
55e303ae 4358 }
55e303ae 4359 }
2d21ac55 4360 result = pmap_nest(map->pmap,
3e170ce0 4361 (VME_SUBMAP(entry))->pmap,
2d21ac55
A
4362 (addr64_t)start,
4363 (addr64_t)start,
4364 (uint64_t)(end - start));
4365 if(result)
4366 panic("vm_map_submap: pmap_nest failed, rc = %08X\n", result);
4367 entry->use_pmap = TRUE;
4368 }
0c530ab8 4369#else /* NO_NESTED_PMAP */
2d21ac55 4370 pmap_remove(map->pmap, (addr64_t)start, (addr64_t)end);
0c530ab8 4371#endif /* NO_NESTED_PMAP */
2d21ac55 4372 result = KERN_SUCCESS;
1c79356b
A
4373 }
4374 vm_map_unlock(map);
4375
4376 return(result);
4377}
4378
4379/*
4380 * vm_map_protect:
4381 *
4382 * Sets the protection of the specified address
4383 * region in the target map. If "set_max" is
4384 * specified, the maximum protection is to be set;
4385 * otherwise, only the current protection is affected.
4386 */
4387kern_return_t
4388vm_map_protect(
4389 register vm_map_t map,
91447636
A
4390 register vm_map_offset_t start,
4391 register vm_map_offset_t end,
1c79356b
A
4392 register vm_prot_t new_prot,
4393 register boolean_t set_max)
4394{
4395 register vm_map_entry_t current;
2d21ac55 4396 register vm_map_offset_t prev;
1c79356b
A
4397 vm_map_entry_t entry;
4398 vm_prot_t new_max;
1c79356b
A
4399
4400 XPR(XPR_VM_MAP,
2d21ac55 4401 "vm_map_protect, 0x%X start 0x%X end 0x%X, new 0x%X %d",
b0d623f7 4402 map, start, end, new_prot, set_max);
1c79356b
A
4403
4404 vm_map_lock(map);
4405
91447636
A
4406 /* LP64todo - remove this check when vm_map_commpage64()
4407 * no longer has to stuff in a map_entry for the commpage
4408 * above the map's max_offset.
4409 */
4410 if (start >= map->max_offset) {
4411 vm_map_unlock(map);
4412 return(KERN_INVALID_ADDRESS);
4413 }
4414
b0d623f7
A
4415 while(1) {
4416 /*
4417 * Lookup the entry. If it doesn't start in a valid
4418 * entry, return an error.
4419 */
4420 if (! vm_map_lookup_entry(map, start, &entry)) {
4421 vm_map_unlock(map);
4422 return(KERN_INVALID_ADDRESS);
4423 }
4424
4425 if (entry->superpage_size && (start & (SUPERPAGE_SIZE-1))) { /* extend request to whole entry */
4426 start = SUPERPAGE_ROUND_DOWN(start);
4427 continue;
4428 }
4429 break;
4430 }
4431 if (entry->superpage_size)
4432 end = SUPERPAGE_ROUND_UP(end);
1c79356b
A
4433
4434 /*
4435 * Make a first pass to check for protection and address
4436 * violations.
4437 */
4438
4439 current = entry;
4440 prev = current->vme_start;
4441 while ((current != vm_map_to_entry(map)) &&
4442 (current->vme_start < end)) {
4443
4444 /*
4445 * If there is a hole, return an error.
4446 */
4447 if (current->vme_start != prev) {
4448 vm_map_unlock(map);
4449 return(KERN_INVALID_ADDRESS);
4450 }
4451
4452 new_max = current->max_protection;
4453 if(new_prot & VM_PROT_COPY) {
4454 new_max |= VM_PROT_WRITE;
4455 if ((new_prot & (new_max | VM_PROT_COPY)) != new_prot) {
4456 vm_map_unlock(map);
4457 return(KERN_PROTECTION_FAILURE);
4458 }
4459 } else {
4460 if ((new_prot & new_max) != new_prot) {
4461 vm_map_unlock(map);
4462 return(KERN_PROTECTION_FAILURE);
4463 }
4464 }
4465
593a1d5f 4466
1c79356b
A
4467 prev = current->vme_end;
4468 current = current->vme_next;
4469 }
4470 if (end > prev) {
4471 vm_map_unlock(map);
4472 return(KERN_INVALID_ADDRESS);
4473 }
4474
4475 /*
4476 * Go back and fix up protections.
4477 * Clip to start here if the range starts within
4478 * the entry.
4479 */
4480
4481 current = entry;
2d21ac55
A
4482 if (current != vm_map_to_entry(map)) {
4483 /* clip and unnest if necessary */
4484 vm_map_clip_start(map, current, start);
1c79356b 4485 }
2d21ac55 4486
1c79356b
A
4487 while ((current != vm_map_to_entry(map)) &&
4488 (current->vme_start < end)) {
4489
4490 vm_prot_t old_prot;
4491
4492 vm_map_clip_end(map, current, end);
4493
fe8ab488
A
4494 if (current->is_sub_map) {
4495 /* clipping did unnest if needed */
4496 assert(!current->use_pmap);
4497 }
2d21ac55 4498
1c79356b
A
4499 old_prot = current->protection;
4500
4501 if(new_prot & VM_PROT_COPY) {
4502 /* caller is asking specifically to copy the */
4503 /* mapped data, this implies that max protection */
4504 /* will include write. Caller must be prepared */
4505 /* for loss of shared memory communication in the */
4506 /* target area after taking this step */
6d2010ae 4507
3e170ce0
A
4508 if (current->is_sub_map == FALSE &&
4509 VME_OBJECT(current) == VM_OBJECT_NULL) {
4510 VME_OBJECT_SET(current,
4511 vm_object_allocate(
4512 (vm_map_size_t)
4513 (current->vme_end -
4514 current->vme_start)));
4515 VME_OFFSET_SET(current, 0);
fe8ab488 4516 assert(current->use_pmap);
6d2010ae 4517 }
3e170ce0 4518 assert(current->wired_count == 0);
1c79356b
A
4519 current->needs_copy = TRUE;
4520 current->max_protection |= VM_PROT_WRITE;
4521 }
4522
4523 if (set_max)
4524 current->protection =
4525 (current->max_protection =
2d21ac55
A
4526 new_prot & ~VM_PROT_COPY) &
4527 old_prot;
1c79356b
A
4528 else
4529 current->protection = new_prot & ~VM_PROT_COPY;
4530
4531 /*
4532 * Update physical map if necessary.
4533 * If the request is to turn off write protection,
4534 * we won't do it for real (in pmap). This is because
4535 * it would cause copy-on-write to fail. We've already
4536 * set, the new protection in the map, so if a
4537 * write-protect fault occurred, it will be fixed up
4538 * properly, COW or not.
4539 */
1c79356b 4540 if (current->protection != old_prot) {
1c79356b
A
4541 /* Look one level in we support nested pmaps */
4542 /* from mapped submaps which are direct entries */
4543 /* in our map */
0c530ab8 4544
2d21ac55 4545 vm_prot_t prot;
0c530ab8 4546
2d21ac55
A
4547 prot = current->protection & ~VM_PROT_WRITE;
4548
3e170ce0 4549 if (override_nx(map, VME_ALIAS(current)) && prot)
0c530ab8 4550 prot |= VM_PROT_EXECUTE;
2d21ac55 4551
0c530ab8 4552 if (current->is_sub_map && current->use_pmap) {
3e170ce0 4553 pmap_protect(VME_SUBMAP(current)->pmap,
2d21ac55
A
4554 current->vme_start,
4555 current->vme_end,
4556 prot);
1c79356b 4557 } else {
2d21ac55
A
4558 pmap_protect(map->pmap,
4559 current->vme_start,
4560 current->vme_end,
4561 prot);
1c79356b 4562 }
1c79356b
A
4563 }
4564 current = current->vme_next;
4565 }
4566
5353443c 4567 current = entry;
91447636
A
4568 while ((current != vm_map_to_entry(map)) &&
4569 (current->vme_start <= end)) {
5353443c
A
4570 vm_map_simplify_entry(map, current);
4571 current = current->vme_next;
4572 }
4573
1c79356b
A
4574 vm_map_unlock(map);
4575 return(KERN_SUCCESS);
4576}
4577
4578/*
4579 * vm_map_inherit:
4580 *
4581 * Sets the inheritance of the specified address
4582 * range in the target map. Inheritance
4583 * affects how the map will be shared with
4584 * child maps at the time of vm_map_fork.
4585 */
4586kern_return_t
4587vm_map_inherit(
4588 register vm_map_t map,
91447636
A
4589 register vm_map_offset_t start,
4590 register vm_map_offset_t end,
1c79356b
A
4591 register vm_inherit_t new_inheritance)
4592{
4593 register vm_map_entry_t entry;
4594 vm_map_entry_t temp_entry;
4595
4596 vm_map_lock(map);
4597
4598 VM_MAP_RANGE_CHECK(map, start, end);
4599
4600 if (vm_map_lookup_entry(map, start, &temp_entry)) {
4601 entry = temp_entry;
1c79356b
A
4602 }
4603 else {
4604 temp_entry = temp_entry->vme_next;
4605 entry = temp_entry;
4606 }
4607
4608 /* first check entire range for submaps which can't support the */
4609 /* given inheritance. */
4610 while ((entry != vm_map_to_entry(map)) && (entry->vme_start < end)) {
4611 if(entry->is_sub_map) {
91447636
A
4612 if(new_inheritance == VM_INHERIT_COPY) {
4613 vm_map_unlock(map);
1c79356b 4614 return(KERN_INVALID_ARGUMENT);
91447636 4615 }
1c79356b
A
4616 }
4617
4618 entry = entry->vme_next;
4619 }
4620
4621 entry = temp_entry;
2d21ac55
A
4622 if (entry != vm_map_to_entry(map)) {
4623 /* clip and unnest if necessary */
4624 vm_map_clip_start(map, entry, start);
4625 }
1c79356b
A
4626
4627 while ((entry != vm_map_to_entry(map)) && (entry->vme_start < end)) {
4628 vm_map_clip_end(map, entry, end);
fe8ab488
A
4629 if (entry->is_sub_map) {
4630 /* clip did unnest if needed */
4631 assert(!entry->use_pmap);
4632 }
1c79356b
A
4633
4634 entry->inheritance = new_inheritance;
4635
4636 entry = entry->vme_next;
4637 }
4638
4639 vm_map_unlock(map);
4640 return(KERN_SUCCESS);
4641}
4642
2d21ac55
A
4643/*
4644 * Update the accounting for the amount of wired memory in this map. If the user has
4645 * exceeded the defined limits, then we fail. Wiring on behalf of the kernel never fails.
4646 */
4647
4648static kern_return_t
4649add_wire_counts(
4650 vm_map_t map,
4651 vm_map_entry_t entry,
4652 boolean_t user_wire)
4653{
4654 vm_map_size_t size;
4655
4656 if (user_wire) {
6d2010ae 4657 unsigned int total_wire_count = vm_page_wire_count + vm_lopage_free_count;
2d21ac55
A
4658
4659 /*
4660 * We're wiring memory at the request of the user. Check if this is the first time the user is wiring
4661 * this map entry.
4662 */
4663
4664 if (entry->user_wired_count == 0) {
4665 size = entry->vme_end - entry->vme_start;
4666
4667 /*
4668 * Since this is the first time the user is wiring this map entry, check to see if we're
4669 * exceeding the user wire limits. There is a per map limit which is the smaller of either
4670 * the process's rlimit or the global vm_user_wire_limit which caps this value. There is also
4671 * a system-wide limit on the amount of memory all users can wire. If the user is over either
4672 * limit, then we fail.
4673 */
4674
4675 if(size + map->user_wire_size > MIN(map->user_wire_limit, vm_user_wire_limit) ||
6d2010ae
A
4676 size + ptoa_64(total_wire_count) > vm_global_user_wire_limit ||
4677 size + ptoa_64(total_wire_count) > max_mem - vm_global_no_user_wire_amount)
2d21ac55
A
4678 return KERN_RESOURCE_SHORTAGE;
4679
4680 /*
4681 * The first time the user wires an entry, we also increment the wired_count and add this to
4682 * the total that has been wired in the map.
4683 */
4684
4685 if (entry->wired_count >= MAX_WIRE_COUNT)
4686 return KERN_FAILURE;
4687
4688 entry->wired_count++;
4689 map->user_wire_size += size;
4690 }
4691
4692 if (entry->user_wired_count >= MAX_WIRE_COUNT)
4693 return KERN_FAILURE;
4694
4695 entry->user_wired_count++;
4696
4697 } else {
4698
4699 /*
4700 * The kernel's wiring the memory. Just bump the count and continue.
4701 */
4702
4703 if (entry->wired_count >= MAX_WIRE_COUNT)
4704 panic("vm_map_wire: too many wirings");
4705
4706 entry->wired_count++;
4707 }
4708
4709 return KERN_SUCCESS;
4710}
4711
4712/*
4713 * Update the memory wiring accounting now that the given map entry is being unwired.
4714 */
4715
4716static void
4717subtract_wire_counts(
4718 vm_map_t map,
4719 vm_map_entry_t entry,
4720 boolean_t user_wire)
4721{
4722
4723 if (user_wire) {
4724
4725 /*
4726 * We're unwiring memory at the request of the user. See if we're removing the last user wire reference.
4727 */
4728
4729 if (entry->user_wired_count == 1) {
4730
4731 /*
4732 * We're removing the last user wire reference. Decrement the wired_count and the total
4733 * user wired memory for this map.
4734 */
4735
4736 assert(entry->wired_count >= 1);
4737 entry->wired_count--;
4738 map->user_wire_size -= entry->vme_end - entry->vme_start;
4739 }
4740
4741 assert(entry->user_wired_count >= 1);
4742 entry->user_wired_count--;
4743
4744 } else {
4745
4746 /*
4747 * The kernel is unwiring the memory. Just update the count.
4748 */
4749
4750 assert(entry->wired_count >= 1);
4751 entry->wired_count--;
4752 }
4753}
4754
1c79356b
A
4755/*
4756 * vm_map_wire:
4757 *
4758 * Sets the pageability of the specified address range in the
4759 * target map as wired. Regions specified as not pageable require
4760 * locked-down physical memory and physical page maps. The
4761 * access_type variable indicates types of accesses that must not
4762 * generate page faults. This is checked against protection of
4763 * memory being locked-down.
4764 *
4765 * The map must not be locked, but a reference must remain to the
4766 * map throughout the call.
4767 */
91447636 4768static kern_return_t
1c79356b
A
4769vm_map_wire_nested(
4770 register vm_map_t map,
91447636
A
4771 register vm_map_offset_t start,
4772 register vm_map_offset_t end,
3e170ce0 4773 register vm_prot_t caller_prot,
1c79356b 4774 boolean_t user_wire,
9bccf70c 4775 pmap_t map_pmap,
fe8ab488
A
4776 vm_map_offset_t pmap_addr,
4777 ppnum_t *physpage_p)
1c79356b
A
4778{
4779 register vm_map_entry_t entry;
3e170ce0 4780 register vm_prot_t access_type;
1c79356b 4781 struct vm_map_entry *first_entry, tmp_entry;
91447636
A
4782 vm_map_t real_map;
4783 register vm_map_offset_t s,e;
1c79356b
A
4784 kern_return_t rc;
4785 boolean_t need_wakeup;
4786 boolean_t main_map = FALSE;
9bccf70c 4787 wait_interrupt_t interruptible_state;
0b4e3aa0 4788 thread_t cur_thread;
1c79356b 4789 unsigned int last_timestamp;
91447636 4790 vm_map_size_t size;
fe8ab488
A
4791 boolean_t wire_and_extract;
4792
3e170ce0
A
4793 access_type = (caller_prot & VM_PROT_ALL);
4794
fe8ab488
A
4795 wire_and_extract = FALSE;
4796 if (physpage_p != NULL) {
4797 /*
4798 * The caller wants the physical page number of the
4799 * wired page. We return only one physical page number
4800 * so this works for only one page at a time.
4801 */
4802 if ((end - start) != PAGE_SIZE) {
4803 return KERN_INVALID_ARGUMENT;
4804 }
4805 wire_and_extract = TRUE;
4806 *physpage_p = 0;
4807 }
1c79356b
A
4808
4809 vm_map_lock(map);
4810 if(map_pmap == NULL)
4811 main_map = TRUE;
4812 last_timestamp = map->timestamp;
4813
4814 VM_MAP_RANGE_CHECK(map, start, end);
4815 assert(page_aligned(start));
4816 assert(page_aligned(end));
39236c6e
A
4817 assert(VM_MAP_PAGE_ALIGNED(start, VM_MAP_PAGE_MASK(map)));
4818 assert(VM_MAP_PAGE_ALIGNED(end, VM_MAP_PAGE_MASK(map)));
0b4e3aa0
A
4819 if (start == end) {
4820 /* We wired what the caller asked for, zero pages */
4821 vm_map_unlock(map);
4822 return KERN_SUCCESS;
4823 }
1c79356b 4824
2d21ac55
A
4825 need_wakeup = FALSE;
4826 cur_thread = current_thread();
4827
4828 s = start;
4829 rc = KERN_SUCCESS;
4830
4831 if (vm_map_lookup_entry(map, s, &first_entry)) {
1c79356b 4832 entry = first_entry;
2d21ac55
A
4833 /*
4834 * vm_map_clip_start will be done later.
4835 * We don't want to unnest any nested submaps here !
4836 */
1c79356b
A
4837 } else {
4838 /* Start address is not in map */
2d21ac55
A
4839 rc = KERN_INVALID_ADDRESS;
4840 goto done;
1c79356b
A
4841 }
4842
2d21ac55
A
4843 while ((entry != vm_map_to_entry(map)) && (s < end)) {
4844 /*
4845 * At this point, we have wired from "start" to "s".
4846 * We still need to wire from "s" to "end".
4847 *
4848 * "entry" hasn't been clipped, so it could start before "s"
4849 * and/or end after "end".
4850 */
4851
4852 /* "e" is how far we want to wire in this entry */
4853 e = entry->vme_end;
4854 if (e > end)
4855 e = end;
4856
1c79356b
A
4857 /*
4858 * If another thread is wiring/unwiring this entry then
4859 * block after informing other thread to wake us up.
4860 */
4861 if (entry->in_transition) {
9bccf70c
A
4862 wait_result_t wait_result;
4863
1c79356b
A
4864 /*
4865 * We have not clipped the entry. Make sure that
4866 * the start address is in range so that the lookup
4867 * below will succeed.
2d21ac55
A
4868 * "s" is the current starting point: we've already
4869 * wired from "start" to "s" and we still have
4870 * to wire from "s" to "end".
1c79356b 4871 */
1c79356b
A
4872
4873 entry->needs_wakeup = TRUE;
4874
4875 /*
4876 * wake up anybody waiting on entries that we have
4877 * already wired.
4878 */
4879 if (need_wakeup) {
4880 vm_map_entry_wakeup(map);
4881 need_wakeup = FALSE;
4882 }
4883 /*
4884 * User wiring is interruptible
4885 */
9bccf70c 4886 wait_result = vm_map_entry_wait(map,
2d21ac55
A
4887 (user_wire) ? THREAD_ABORTSAFE :
4888 THREAD_UNINT);
9bccf70c 4889 if (user_wire && wait_result == THREAD_INTERRUPTED) {
1c79356b
A
4890 /*
4891 * undo the wirings we have done so far
4892 * We do not clear the needs_wakeup flag,
4893 * because we cannot tell if we were the
4894 * only one waiting.
4895 */
2d21ac55
A
4896 rc = KERN_FAILURE;
4897 goto done;
1c79356b
A
4898 }
4899
1c79356b
A
4900 /*
4901 * Cannot avoid a lookup here. reset timestamp.
4902 */
4903 last_timestamp = map->timestamp;
4904
4905 /*
4906 * The entry could have been clipped, look it up again.
4907 * Worse that can happen is, it may not exist anymore.
4908 */
4909 if (!vm_map_lookup_entry(map, s, &first_entry)) {
1c79356b
A
4910 /*
4911 * User: undo everything upto the previous
4912 * entry. let vm_map_unwire worry about
4913 * checking the validity of the range.
4914 */
2d21ac55
A
4915 rc = KERN_FAILURE;
4916 goto done;
1c79356b
A
4917 }
4918 entry = first_entry;
4919 continue;
4920 }
2d21ac55
A
4921
4922 if (entry->is_sub_map) {
91447636
A
4923 vm_map_offset_t sub_start;
4924 vm_map_offset_t sub_end;
4925 vm_map_offset_t local_start;
4926 vm_map_offset_t local_end;
1c79356b 4927 pmap_t pmap;
2d21ac55 4928
fe8ab488
A
4929 if (wire_and_extract) {
4930 /*
4931 * Wiring would result in copy-on-write
4932 * which would not be compatible with
4933 * the sharing we have with the original
4934 * provider of this memory.
4935 */
4936 rc = KERN_INVALID_ARGUMENT;
4937 goto done;
4938 }
4939
2d21ac55 4940 vm_map_clip_start(map, entry, s);
1c79356b
A
4941 vm_map_clip_end(map, entry, end);
4942
3e170ce0 4943 sub_start = VME_OFFSET(entry);
2d21ac55 4944 sub_end = entry->vme_end;
3e170ce0 4945 sub_end += VME_OFFSET(entry) - entry->vme_start;
2d21ac55 4946
1c79356b
A
4947 local_end = entry->vme_end;
4948 if(map_pmap == NULL) {
2d21ac55
A
4949 vm_object_t object;
4950 vm_object_offset_t offset;
4951 vm_prot_t prot;
4952 boolean_t wired;
4953 vm_map_entry_t local_entry;
4954 vm_map_version_t version;
4955 vm_map_t lookup_map;
4956
1c79356b 4957 if(entry->use_pmap) {
3e170ce0 4958 pmap = VME_SUBMAP(entry)->pmap;
9bccf70c
A
4959 /* ppc implementation requires that */
4960 /* submaps pmap address ranges line */
4961 /* up with parent map */
4962#ifdef notdef
4963 pmap_addr = sub_start;
4964#endif
2d21ac55 4965 pmap_addr = s;
1c79356b
A
4966 } else {
4967 pmap = map->pmap;
2d21ac55 4968 pmap_addr = s;
1c79356b 4969 }
2d21ac55 4970
1c79356b 4971 if (entry->wired_count) {
2d21ac55
A
4972 if ((rc = add_wire_counts(map, entry, user_wire)) != KERN_SUCCESS)
4973 goto done;
4974
4975 /*
4976 * The map was not unlocked:
4977 * no need to goto re-lookup.
4978 * Just go directly to next entry.
4979 */
1c79356b 4980 entry = entry->vme_next;
2d21ac55 4981 s = entry->vme_start;
1c79356b
A
4982 continue;
4983
2d21ac55 4984 }
9bccf70c 4985
2d21ac55
A
4986 /* call vm_map_lookup_locked to */
4987 /* cause any needs copy to be */
4988 /* evaluated */
4989 local_start = entry->vme_start;
4990 lookup_map = map;
4991 vm_map_lock_write_to_read(map);
4992 if(vm_map_lookup_locked(
4993 &lookup_map, local_start,
4994 access_type,
4995 OBJECT_LOCK_EXCLUSIVE,
4996 &version, &object,
4997 &offset, &prot, &wired,
4998 NULL,
4999 &real_map)) {
1c79356b 5000
2d21ac55
A
5001 vm_map_unlock_read(lookup_map);
5002 vm_map_unwire(map, start,
5003 s, user_wire);
5004 return(KERN_FAILURE);
5005 }
316670eb 5006 vm_object_unlock(object);
2d21ac55
A
5007 if(real_map != lookup_map)
5008 vm_map_unlock(real_map);
5009 vm_map_unlock_read(lookup_map);
5010 vm_map_lock(map);
1c79356b 5011
2d21ac55
A
5012 /* we unlocked, so must re-lookup */
5013 if (!vm_map_lookup_entry(map,
5014 local_start,
5015 &local_entry)) {
5016 rc = KERN_FAILURE;
5017 goto done;
5018 }
5019
5020 /*
5021 * entry could have been "simplified",
5022 * so re-clip
5023 */
5024 entry = local_entry;
5025 assert(s == local_start);
5026 vm_map_clip_start(map, entry, s);
5027 vm_map_clip_end(map, entry, end);
5028 /* re-compute "e" */
5029 e = entry->vme_end;
5030 if (e > end)
5031 e = end;
5032
5033 /* did we have a change of type? */
5034 if (!entry->is_sub_map) {
5035 last_timestamp = map->timestamp;
5036 continue;
1c79356b
A
5037 }
5038 } else {
9bccf70c 5039 local_start = entry->vme_start;
2d21ac55
A
5040 pmap = map_pmap;
5041 }
5042
5043 if ((rc = add_wire_counts(map, entry, user_wire)) != KERN_SUCCESS)
5044 goto done;
5045
5046 entry->in_transition = TRUE;
5047
5048 vm_map_unlock(map);
3e170ce0 5049 rc = vm_map_wire_nested(VME_SUBMAP(entry),
1c79356b 5050 sub_start, sub_end,
3e170ce0 5051 caller_prot,
fe8ab488
A
5052 user_wire, pmap, pmap_addr,
5053 NULL);
2d21ac55 5054 vm_map_lock(map);
9bccf70c 5055
1c79356b
A
5056 /*
5057 * Find the entry again. It could have been clipped
5058 * after we unlocked the map.
5059 */
9bccf70c
A
5060 if (!vm_map_lookup_entry(map, local_start,
5061 &first_entry))
5062 panic("vm_map_wire: re-lookup failed");
5063 entry = first_entry;
1c79356b 5064
2d21ac55
A
5065 assert(local_start == s);
5066 /* re-compute "e" */
5067 e = entry->vme_end;
5068 if (e > end)
5069 e = end;
5070
1c79356b
A
5071 last_timestamp = map->timestamp;
5072 while ((entry != vm_map_to_entry(map)) &&
2d21ac55 5073 (entry->vme_start < e)) {
1c79356b
A
5074 assert(entry->in_transition);
5075 entry->in_transition = FALSE;
5076 if (entry->needs_wakeup) {
5077 entry->needs_wakeup = FALSE;
5078 need_wakeup = TRUE;
5079 }
5080 if (rc != KERN_SUCCESS) {/* from vm_*_wire */
2d21ac55 5081 subtract_wire_counts(map, entry, user_wire);
1c79356b
A
5082 }
5083 entry = entry->vme_next;
5084 }
5085 if (rc != KERN_SUCCESS) { /* from vm_*_wire */
2d21ac55 5086 goto done;
1c79356b 5087 }
2d21ac55
A
5088
5089 /* no need to relookup again */
5090 s = entry->vme_start;
1c79356b
A
5091 continue;
5092 }
5093
5094 /*
5095 * If this entry is already wired then increment
5096 * the appropriate wire reference count.
5097 */
9bccf70c 5098 if (entry->wired_count) {
fe8ab488
A
5099
5100 if ((entry->protection & access_type) != access_type) {
5101 /* found a protection problem */
5102
5103 /*
5104 * XXX FBDP
5105 * We should always return an error
5106 * in this case but since we didn't
5107 * enforce it before, let's do
5108 * it only for the new "wire_and_extract"
5109 * code path for now...
5110 */
5111 if (wire_and_extract) {
5112 rc = KERN_PROTECTION_FAILURE;
5113 goto done;
5114 }
5115 }
5116
1c79356b
A
5117 /*
5118 * entry is already wired down, get our reference
5119 * after clipping to our range.
5120 */
2d21ac55 5121 vm_map_clip_start(map, entry, s);
1c79356b 5122 vm_map_clip_end(map, entry, end);
1c79356b 5123
2d21ac55
A
5124 if ((rc = add_wire_counts(map, entry, user_wire)) != KERN_SUCCESS)
5125 goto done;
5126
fe8ab488
A
5127 if (wire_and_extract) {
5128 vm_object_t object;
5129 vm_object_offset_t offset;
5130 vm_page_t m;
5131
5132 /*
5133 * We don't have to "wire" the page again
5134 * bit we still have to "extract" its
5135 * physical page number, after some sanity
5136 * checks.
5137 */
5138 assert((entry->vme_end - entry->vme_start)
5139 == PAGE_SIZE);
5140 assert(!entry->needs_copy);
5141 assert(!entry->is_sub_map);
3e170ce0 5142 assert(VME_OBJECT(entry));
fe8ab488
A
5143 if (((entry->vme_end - entry->vme_start)
5144 != PAGE_SIZE) ||
5145 entry->needs_copy ||
5146 entry->is_sub_map ||
3e170ce0 5147 VME_OBJECT(entry) == VM_OBJECT_NULL) {
fe8ab488
A
5148 rc = KERN_INVALID_ARGUMENT;
5149 goto done;
5150 }
5151
3e170ce0
A
5152 object = VME_OBJECT(entry);
5153 offset = VME_OFFSET(entry);
fe8ab488
A
5154 /* need exclusive lock to update m->dirty */
5155 if (entry->protection & VM_PROT_WRITE) {
5156 vm_object_lock(object);
5157 } else {
5158 vm_object_lock_shared(object);
5159 }
5160 m = vm_page_lookup(object, offset);
5161 assert(m != VM_PAGE_NULL);
5162 assert(m->wire_count);
5163 if (m != VM_PAGE_NULL && m->wire_count) {
5164 *physpage_p = m->phys_page;
5165 if (entry->protection & VM_PROT_WRITE) {
5166 vm_object_lock_assert_exclusive(
5167 m->object);
5168 m->dirty = TRUE;
5169 }
5170 } else {
5171 /* not already wired !? */
5172 *physpage_p = 0;
5173 }
5174 vm_object_unlock(object);
5175 }
5176
2d21ac55 5177 /* map was not unlocked: no need to relookup */
1c79356b 5178 entry = entry->vme_next;
2d21ac55 5179 s = entry->vme_start;
1c79356b
A
5180 continue;
5181 }
5182
5183 /*
5184 * Unwired entry or wire request transmitted via submap
5185 */
5186
5187
5188 /*
5189 * Perform actions of vm_map_lookup that need the write
5190 * lock on the map: create a shadow object for a
5191 * copy-on-write region, or an object for a zero-fill
5192 * region.
5193 */
5194 size = entry->vme_end - entry->vme_start;
5195 /*
5196 * If wiring a copy-on-write page, we need to copy it now
5197 * even if we're only (currently) requesting read access.
5198 * This is aggressive, but once it's wired we can't move it.
5199 */
5200 if (entry->needs_copy) {
fe8ab488
A
5201 if (wire_and_extract) {
5202 /*
5203 * We're supposed to share with the original
5204 * provider so should not be "needs_copy"
5205 */
5206 rc = KERN_INVALID_ARGUMENT;
5207 goto done;
5208 }
3e170ce0
A
5209
5210 VME_OBJECT_SHADOW(entry, size);
1c79356b 5211 entry->needs_copy = FALSE;
3e170ce0 5212 } else if (VME_OBJECT(entry) == VM_OBJECT_NULL) {
fe8ab488
A
5213 if (wire_and_extract) {
5214 /*
5215 * We're supposed to share with the original
5216 * provider so should already have an object.
5217 */
5218 rc = KERN_INVALID_ARGUMENT;
5219 goto done;
5220 }
3e170ce0
A
5221 VME_OBJECT_SET(entry, vm_object_allocate(size));
5222 VME_OFFSET_SET(entry, (vm_object_offset_t)0);
fe8ab488 5223 assert(entry->use_pmap);
1c79356b
A
5224 }
5225
2d21ac55 5226 vm_map_clip_start(map, entry, s);
1c79356b
A
5227 vm_map_clip_end(map, entry, end);
5228
2d21ac55 5229 /* re-compute "e" */
1c79356b 5230 e = entry->vme_end;
2d21ac55
A
5231 if (e > end)
5232 e = end;
1c79356b
A
5233
5234 /*
5235 * Check for holes and protection mismatch.
5236 * Holes: Next entry should be contiguous unless this
5237 * is the end of the region.
5238 * Protection: Access requested must be allowed, unless
5239 * wiring is by protection class
5240 */
2d21ac55
A
5241 if ((entry->vme_end < end) &&
5242 ((entry->vme_next == vm_map_to_entry(map)) ||
5243 (entry->vme_next->vme_start > entry->vme_end))) {
5244 /* found a hole */
5245 rc = KERN_INVALID_ADDRESS;
5246 goto done;
5247 }
5248 if ((entry->protection & access_type) != access_type) {
5249 /* found a protection problem */
5250 rc = KERN_PROTECTION_FAILURE;
5251 goto done;
1c79356b
A
5252 }
5253
5254 assert(entry->wired_count == 0 && entry->user_wired_count == 0);
5255
2d21ac55
A
5256 if ((rc = add_wire_counts(map, entry, user_wire)) != KERN_SUCCESS)
5257 goto done;
1c79356b
A
5258
5259 entry->in_transition = TRUE;
5260
5261 /*
5262 * This entry might get split once we unlock the map.
5263 * In vm_fault_wire(), we need the current range as
5264 * defined by this entry. In order for this to work
5265 * along with a simultaneous clip operation, we make a
5266 * temporary copy of this entry and use that for the
5267 * wiring. Note that the underlying objects do not
5268 * change during a clip.
5269 */
5270 tmp_entry = *entry;
5271
5272 /*
5273 * The in_transition state guarentees that the entry
5274 * (or entries for this range, if split occured) will be
5275 * there when the map lock is acquired for the second time.
5276 */
5277 vm_map_unlock(map);
0b4e3aa0 5278
9bccf70c
A
5279 if (!user_wire && cur_thread != THREAD_NULL)
5280 interruptible_state = thread_interrupt_level(THREAD_UNINT);
91447636
A
5281 else
5282 interruptible_state = THREAD_UNINT;
9bccf70c 5283
1c79356b 5284 if(map_pmap)
9bccf70c 5285 rc = vm_fault_wire(map,
3e170ce0 5286 &tmp_entry, caller_prot, map_pmap, pmap_addr,
fe8ab488 5287 physpage_p);
1c79356b 5288 else
9bccf70c 5289 rc = vm_fault_wire(map,
3e170ce0 5290 &tmp_entry, caller_prot, map->pmap,
fe8ab488
A
5291 tmp_entry.vme_start,
5292 physpage_p);
0b4e3aa0
A
5293
5294 if (!user_wire && cur_thread != THREAD_NULL)
9bccf70c 5295 thread_interrupt_level(interruptible_state);
0b4e3aa0 5296
1c79356b
A
5297 vm_map_lock(map);
5298
5299 if (last_timestamp+1 != map->timestamp) {
5300 /*
5301 * Find the entry again. It could have been clipped
5302 * after we unlocked the map.
5303 */
5304 if (!vm_map_lookup_entry(map, tmp_entry.vme_start,
2d21ac55 5305 &first_entry))
1c79356b
A
5306 panic("vm_map_wire: re-lookup failed");
5307
5308 entry = first_entry;
5309 }
5310
5311 last_timestamp = map->timestamp;
5312
5313 while ((entry != vm_map_to_entry(map)) &&
5314 (entry->vme_start < tmp_entry.vme_end)) {
5315 assert(entry->in_transition);
5316 entry->in_transition = FALSE;
5317 if (entry->needs_wakeup) {
5318 entry->needs_wakeup = FALSE;
5319 need_wakeup = TRUE;
5320 }
5321 if (rc != KERN_SUCCESS) { /* from vm_*_wire */
2d21ac55 5322 subtract_wire_counts(map, entry, user_wire);
1c79356b
A
5323 }
5324 entry = entry->vme_next;
5325 }
5326
5327 if (rc != KERN_SUCCESS) { /* from vm_*_wire */
2d21ac55 5328 goto done;
1c79356b 5329 }
2d21ac55
A
5330
5331 s = entry->vme_start;
1c79356b 5332 } /* end while loop through map entries */
2d21ac55
A
5333
5334done:
5335 if (rc == KERN_SUCCESS) {
5336 /* repair any damage we may have made to the VM map */
5337 vm_map_simplify_range(map, start, end);
5338 }
5339
1c79356b
A
5340 vm_map_unlock(map);
5341
5342 /*
5343 * wake up anybody waiting on entries we wired.
5344 */
5345 if (need_wakeup)
5346 vm_map_entry_wakeup(map);
5347
2d21ac55
A
5348 if (rc != KERN_SUCCESS) {
5349 /* undo what has been wired so far */
5350 vm_map_unwire(map, start, s, user_wire);
fe8ab488
A
5351 if (physpage_p) {
5352 *physpage_p = 0;
5353 }
2d21ac55
A
5354 }
5355
5356 return rc;
1c79356b
A
5357
5358}
5359
5360kern_return_t
3e170ce0 5361vm_map_wire_external(
1c79356b 5362 register vm_map_t map,
91447636
A
5363 register vm_map_offset_t start,
5364 register vm_map_offset_t end,
3e170ce0 5365 register vm_prot_t caller_prot,
1c79356b
A
5366 boolean_t user_wire)
5367{
3e170ce0
A
5368 kern_return_t kret;
5369
5370 caller_prot &= ~VM_PROT_MEMORY_TAG_MASK;
5371 caller_prot |= VM_PROT_MEMORY_TAG_MAKE(vm_tag_bt());
5372 kret = vm_map_wire_nested(map, start, end, caller_prot,
5373 user_wire, (pmap_t)NULL, 0, NULL);
5374 return kret;
5375}
1c79356b 5376
3e170ce0
A
5377kern_return_t
5378vm_map_wire(
5379 register vm_map_t map,
5380 register vm_map_offset_t start,
5381 register vm_map_offset_t end,
5382 register vm_prot_t caller_prot,
5383 boolean_t user_wire)
5384{
1c79356b
A
5385 kern_return_t kret;
5386
3e170ce0 5387 kret = vm_map_wire_nested(map, start, end, caller_prot,
fe8ab488
A
5388 user_wire, (pmap_t)NULL, 0, NULL);
5389 return kret;
5390}
5391
5392kern_return_t
3e170ce0 5393vm_map_wire_and_extract_external(
fe8ab488
A
5394 vm_map_t map,
5395 vm_map_offset_t start,
3e170ce0 5396 vm_prot_t caller_prot,
fe8ab488
A
5397 boolean_t user_wire,
5398 ppnum_t *physpage_p)
5399{
3e170ce0
A
5400 kern_return_t kret;
5401
5402 caller_prot &= ~VM_PROT_MEMORY_TAG_MASK;
5403 caller_prot |= VM_PROT_MEMORY_TAG_MAKE(vm_tag_bt());
5404 kret = vm_map_wire_nested(map,
5405 start,
5406 start+VM_MAP_PAGE_SIZE(map),
5407 caller_prot,
5408 user_wire,
5409 (pmap_t)NULL,
5410 0,
5411 physpage_p);
5412 if (kret != KERN_SUCCESS &&
5413 physpage_p != NULL) {
5414 *physpage_p = 0;
5415 }
5416 return kret;
5417}
fe8ab488 5418
3e170ce0
A
5419kern_return_t
5420vm_map_wire_and_extract(
5421 vm_map_t map,
5422 vm_map_offset_t start,
5423 vm_prot_t caller_prot,
5424 boolean_t user_wire,
5425 ppnum_t *physpage_p)
5426{
fe8ab488
A
5427 kern_return_t kret;
5428
5429 kret = vm_map_wire_nested(map,
5430 start,
5431 start+VM_MAP_PAGE_SIZE(map),
3e170ce0 5432 caller_prot,
fe8ab488
A
5433 user_wire,
5434 (pmap_t)NULL,
5435 0,
5436 physpage_p);
5437 if (kret != KERN_SUCCESS &&
5438 physpage_p != NULL) {
5439 *physpage_p = 0;
5440 }
1c79356b
A
5441 return kret;
5442}
5443
5444/*
5445 * vm_map_unwire:
5446 *
5447 * Sets the pageability of the specified address range in the target
5448 * as pageable. Regions specified must have been wired previously.
5449 *
5450 * The map must not be locked, but a reference must remain to the map
5451 * throughout the call.
5452 *
5453 * Kernel will panic on failures. User unwire ignores holes and
5454 * unwired and intransition entries to avoid losing memory by leaving
5455 * it unwired.
5456 */
91447636 5457static kern_return_t
1c79356b
A
5458vm_map_unwire_nested(
5459 register vm_map_t map,
91447636
A
5460 register vm_map_offset_t start,
5461 register vm_map_offset_t end,
1c79356b 5462 boolean_t user_wire,
9bccf70c 5463 pmap_t map_pmap,
91447636 5464 vm_map_offset_t pmap_addr)
1c79356b
A
5465{
5466 register vm_map_entry_t entry;
5467 struct vm_map_entry *first_entry, tmp_entry;
5468 boolean_t need_wakeup;
5469 boolean_t main_map = FALSE;
5470 unsigned int last_timestamp;
5471
5472 vm_map_lock(map);
5473 if(map_pmap == NULL)
5474 main_map = TRUE;
5475 last_timestamp = map->timestamp;
5476
5477 VM_MAP_RANGE_CHECK(map, start, end);
5478 assert(page_aligned(start));
5479 assert(page_aligned(end));
39236c6e
A
5480 assert(VM_MAP_PAGE_ALIGNED(start, VM_MAP_PAGE_MASK(map)));
5481 assert(VM_MAP_PAGE_ALIGNED(end, VM_MAP_PAGE_MASK(map)));
1c79356b 5482
2d21ac55
A
5483 if (start == end) {
5484 /* We unwired what the caller asked for: zero pages */
5485 vm_map_unlock(map);
5486 return KERN_SUCCESS;
5487 }
5488
1c79356b
A
5489 if (vm_map_lookup_entry(map, start, &first_entry)) {
5490 entry = first_entry;
2d21ac55
A
5491 /*
5492 * vm_map_clip_start will be done later.
5493 * We don't want to unnest any nested sub maps here !
5494 */
1c79356b
A
5495 }
5496 else {
2d21ac55
A
5497 if (!user_wire) {
5498 panic("vm_map_unwire: start not found");
5499 }
1c79356b
A
5500 /* Start address is not in map. */
5501 vm_map_unlock(map);
5502 return(KERN_INVALID_ADDRESS);
5503 }
5504
b0d623f7
A
5505 if (entry->superpage_size) {
5506 /* superpages are always wired */
5507 vm_map_unlock(map);
5508 return KERN_INVALID_ADDRESS;
5509 }
5510
1c79356b
A
5511 need_wakeup = FALSE;
5512 while ((entry != vm_map_to_entry(map)) && (entry->vme_start < end)) {
5513 if (entry->in_transition) {
5514 /*
5515 * 1)
5516 * Another thread is wiring down this entry. Note
5517 * that if it is not for the other thread we would
5518 * be unwiring an unwired entry. This is not
5519 * permitted. If we wait, we will be unwiring memory
5520 * we did not wire.
5521 *
5522 * 2)
5523 * Another thread is unwiring this entry. We did not
5524 * have a reference to it, because if we did, this
5525 * entry will not be getting unwired now.
5526 */
2d21ac55
A
5527 if (!user_wire) {
5528 /*
5529 * XXX FBDP
5530 * This could happen: there could be some
5531 * overlapping vslock/vsunlock operations
5532 * going on.
5533 * We should probably just wait and retry,
5534 * but then we have to be careful that this
5535 * entry could get "simplified" after
5536 * "in_transition" gets unset and before
5537 * we re-lookup the entry, so we would
5538 * have to re-clip the entry to avoid
5539 * re-unwiring what we have already unwired...
5540 * See vm_map_wire_nested().
5541 *
5542 * Or we could just ignore "in_transition"
5543 * here and proceed to decement the wired
5544 * count(s) on this entry. That should be fine
5545 * as long as "wired_count" doesn't drop all
5546 * the way to 0 (and we should panic if THAT
5547 * happens).
5548 */
1c79356b 5549 panic("vm_map_unwire: in_transition entry");
2d21ac55 5550 }
1c79356b
A
5551
5552 entry = entry->vme_next;
5553 continue;
5554 }
5555
2d21ac55 5556 if (entry->is_sub_map) {
91447636
A
5557 vm_map_offset_t sub_start;
5558 vm_map_offset_t sub_end;
5559 vm_map_offset_t local_end;
1c79356b 5560 pmap_t pmap;
2d21ac55 5561
1c79356b
A
5562 vm_map_clip_start(map, entry, start);
5563 vm_map_clip_end(map, entry, end);
5564
3e170ce0 5565 sub_start = VME_OFFSET(entry);
1c79356b 5566 sub_end = entry->vme_end - entry->vme_start;
3e170ce0 5567 sub_end += VME_OFFSET(entry);
1c79356b
A
5568 local_end = entry->vme_end;
5569 if(map_pmap == NULL) {
2d21ac55 5570 if(entry->use_pmap) {
3e170ce0 5571 pmap = VME_SUBMAP(entry)->pmap;
9bccf70c 5572 pmap_addr = sub_start;
2d21ac55 5573 } else {
1c79356b 5574 pmap = map->pmap;
9bccf70c 5575 pmap_addr = start;
2d21ac55
A
5576 }
5577 if (entry->wired_count == 0 ||
5578 (user_wire && entry->user_wired_count == 0)) {
5579 if (!user_wire)
5580 panic("vm_map_unwire: entry is unwired");
5581 entry = entry->vme_next;
5582 continue;
5583 }
5584
5585 /*
5586 * Check for holes
5587 * Holes: Next entry should be contiguous unless
5588 * this is the end of the region.
5589 */
5590 if (((entry->vme_end < end) &&
5591 ((entry->vme_next == vm_map_to_entry(map)) ||
5592 (entry->vme_next->vme_start
5593 > entry->vme_end)))) {
5594 if (!user_wire)
5595 panic("vm_map_unwire: non-contiguous region");
1c79356b 5596/*
2d21ac55
A
5597 entry = entry->vme_next;
5598 continue;
1c79356b 5599*/
2d21ac55 5600 }
1c79356b 5601
2d21ac55 5602 subtract_wire_counts(map, entry, user_wire);
1c79356b 5603
2d21ac55
A
5604 if (entry->wired_count != 0) {
5605 entry = entry->vme_next;
5606 continue;
5607 }
1c79356b 5608
2d21ac55
A
5609 entry->in_transition = TRUE;
5610 tmp_entry = *entry;/* see comment in vm_map_wire() */
5611
5612 /*
5613 * We can unlock the map now. The in_transition state
5614 * guarantees existance of the entry.
5615 */
5616 vm_map_unlock(map);
3e170ce0 5617 vm_map_unwire_nested(VME_SUBMAP(entry),
2d21ac55
A
5618 sub_start, sub_end, user_wire, pmap, pmap_addr);
5619 vm_map_lock(map);
1c79356b 5620
2d21ac55
A
5621 if (last_timestamp+1 != map->timestamp) {
5622 /*
5623 * Find the entry again. It could have been
5624 * clipped or deleted after we unlocked the map.
5625 */
5626 if (!vm_map_lookup_entry(map,
5627 tmp_entry.vme_start,
5628 &first_entry)) {
5629 if (!user_wire)
5630 panic("vm_map_unwire: re-lookup failed");
5631 entry = first_entry->vme_next;
5632 } else
5633 entry = first_entry;
5634 }
5635 last_timestamp = map->timestamp;
1c79356b 5636
1c79356b 5637 /*
2d21ac55
A
5638 * clear transition bit for all constituent entries
5639 * that were in the original entry (saved in
5640 * tmp_entry). Also check for waiters.
5641 */
5642 while ((entry != vm_map_to_entry(map)) &&
5643 (entry->vme_start < tmp_entry.vme_end)) {
5644 assert(entry->in_transition);
5645 entry->in_transition = FALSE;
5646 if (entry->needs_wakeup) {
5647 entry->needs_wakeup = FALSE;
5648 need_wakeup = TRUE;
5649 }
5650 entry = entry->vme_next;
1c79356b 5651 }
2d21ac55 5652 continue;
1c79356b 5653 } else {
2d21ac55 5654 vm_map_unlock(map);
3e170ce0 5655 vm_map_unwire_nested(VME_SUBMAP(entry),
2d21ac55
A
5656 sub_start, sub_end, user_wire, map_pmap,
5657 pmap_addr);
5658 vm_map_lock(map);
1c79356b 5659
2d21ac55
A
5660 if (last_timestamp+1 != map->timestamp) {
5661 /*
5662 * Find the entry again. It could have been
5663 * clipped or deleted after we unlocked the map.
5664 */
5665 if (!vm_map_lookup_entry(map,
5666 tmp_entry.vme_start,
5667 &first_entry)) {
5668 if (!user_wire)
5669 panic("vm_map_unwire: re-lookup failed");
5670 entry = first_entry->vme_next;
5671 } else
5672 entry = first_entry;
5673 }
5674 last_timestamp = map->timestamp;
1c79356b
A
5675 }
5676 }
5677
5678
9bccf70c 5679 if ((entry->wired_count == 0) ||
2d21ac55 5680 (user_wire && entry->user_wired_count == 0)) {
1c79356b
A
5681 if (!user_wire)
5682 panic("vm_map_unwire: entry is unwired");
5683
5684 entry = entry->vme_next;
5685 continue;
5686 }
2d21ac55 5687
1c79356b 5688 assert(entry->wired_count > 0 &&
2d21ac55 5689 (!user_wire || entry->user_wired_count > 0));
1c79356b
A
5690
5691 vm_map_clip_start(map, entry, start);
5692 vm_map_clip_end(map, entry, end);
5693
5694 /*
5695 * Check for holes
5696 * Holes: Next entry should be contiguous unless
5697 * this is the end of the region.
5698 */
5699 if (((entry->vme_end < end) &&
2d21ac55
A
5700 ((entry->vme_next == vm_map_to_entry(map)) ||
5701 (entry->vme_next->vme_start > entry->vme_end)))) {
1c79356b
A
5702
5703 if (!user_wire)
5704 panic("vm_map_unwire: non-contiguous region");
5705 entry = entry->vme_next;
5706 continue;
5707 }
5708
2d21ac55 5709 subtract_wire_counts(map, entry, user_wire);
1c79356b 5710
9bccf70c 5711 if (entry->wired_count != 0) {
1c79356b
A
5712 entry = entry->vme_next;
5713 continue;
1c79356b
A
5714 }
5715
b0d623f7
A
5716 if(entry->zero_wired_pages) {
5717 entry->zero_wired_pages = FALSE;
5718 }
5719
1c79356b
A
5720 entry->in_transition = TRUE;
5721 tmp_entry = *entry; /* see comment in vm_map_wire() */
5722
5723 /*
5724 * We can unlock the map now. The in_transition state
5725 * guarantees existance of the entry.
5726 */
5727 vm_map_unlock(map);
5728 if(map_pmap) {
9bccf70c 5729 vm_fault_unwire(map,
2d21ac55 5730 &tmp_entry, FALSE, map_pmap, pmap_addr);
1c79356b 5731 } else {
9bccf70c 5732 vm_fault_unwire(map,
2d21ac55
A
5733 &tmp_entry, FALSE, map->pmap,
5734 tmp_entry.vme_start);
1c79356b
A
5735 }
5736 vm_map_lock(map);
5737
5738 if (last_timestamp+1 != map->timestamp) {
5739 /*
5740 * Find the entry again. It could have been clipped
5741 * or deleted after we unlocked the map.
5742 */
5743 if (!vm_map_lookup_entry(map, tmp_entry.vme_start,
2d21ac55 5744 &first_entry)) {
1c79356b 5745 if (!user_wire)
2d21ac55 5746 panic("vm_map_unwire: re-lookup failed");
1c79356b
A
5747 entry = first_entry->vme_next;
5748 } else
5749 entry = first_entry;
5750 }
5751 last_timestamp = map->timestamp;
5752
5753 /*
5754 * clear transition bit for all constituent entries that
5755 * were in the original entry (saved in tmp_entry). Also
5756 * check for waiters.
5757 */
5758 while ((entry != vm_map_to_entry(map)) &&
5759 (entry->vme_start < tmp_entry.vme_end)) {
5760 assert(entry->in_transition);
5761 entry->in_transition = FALSE;
5762 if (entry->needs_wakeup) {
5763 entry->needs_wakeup = FALSE;
5764 need_wakeup = TRUE;
5765 }
5766 entry = entry->vme_next;
5767 }
5768 }
91447636
A
5769
5770 /*
5771 * We might have fragmented the address space when we wired this
5772 * range of addresses. Attempt to re-coalesce these VM map entries
5773 * with their neighbors now that they're no longer wired.
5774 * Under some circumstances, address space fragmentation can
5775 * prevent VM object shadow chain collapsing, which can cause
5776 * swap space leaks.
5777 */
5778 vm_map_simplify_range(map, start, end);
5779
1c79356b
A
5780 vm_map_unlock(map);
5781 /*
5782 * wake up anybody waiting on entries that we have unwired.
5783 */
5784 if (need_wakeup)
5785 vm_map_entry_wakeup(map);
5786 return(KERN_SUCCESS);
5787
5788}
5789
5790kern_return_t
5791vm_map_unwire(
5792 register vm_map_t map,
91447636
A
5793 register vm_map_offset_t start,
5794 register vm_map_offset_t end,
1c79356b
A
5795 boolean_t user_wire)
5796{
9bccf70c 5797 return vm_map_unwire_nested(map, start, end,
2d21ac55 5798 user_wire, (pmap_t)NULL, 0);
1c79356b
A
5799}
5800
5801
5802/*
5803 * vm_map_entry_delete: [ internal use only ]
5804 *
5805 * Deallocate the given entry from the target map.
5806 */
91447636 5807static void
1c79356b
A
5808vm_map_entry_delete(
5809 register vm_map_t map,
5810 register vm_map_entry_t entry)
5811{
91447636 5812 register vm_map_offset_t s, e;
1c79356b
A
5813 register vm_object_t object;
5814 register vm_map_t submap;
1c79356b
A
5815
5816 s = entry->vme_start;
5817 e = entry->vme_end;
5818 assert(page_aligned(s));
5819 assert(page_aligned(e));
39236c6e
A
5820 if (entry->map_aligned == TRUE) {
5821 assert(VM_MAP_PAGE_ALIGNED(s, VM_MAP_PAGE_MASK(map)));
5822 assert(VM_MAP_PAGE_ALIGNED(e, VM_MAP_PAGE_MASK(map)));
5823 }
1c79356b
A
5824 assert(entry->wired_count == 0);
5825 assert(entry->user_wired_count == 0);
b0d623f7 5826 assert(!entry->permanent);
1c79356b
A
5827
5828 if (entry->is_sub_map) {
5829 object = NULL;
3e170ce0 5830 submap = VME_SUBMAP(entry);
1c79356b
A
5831 } else {
5832 submap = NULL;
3e170ce0 5833 object = VME_OBJECT(entry);
1c79356b
A
5834 }
5835
6d2010ae 5836 vm_map_store_entry_unlink(map, entry);
1c79356b
A
5837 map->size -= e - s;
5838
5839 vm_map_entry_dispose(map, entry);
5840
5841 vm_map_unlock(map);
5842 /*
5843 * Deallocate the object only after removing all
5844 * pmap entries pointing to its pages.
5845 */
5846 if (submap)
5847 vm_map_deallocate(submap);
5848 else
2d21ac55 5849 vm_object_deallocate(object);
1c79356b
A
5850
5851}
5852
5853void
5854vm_map_submap_pmap_clean(
5855 vm_map_t map,
91447636
A
5856 vm_map_offset_t start,
5857 vm_map_offset_t end,
1c79356b 5858 vm_map_t sub_map,
91447636 5859 vm_map_offset_t offset)
1c79356b 5860{
91447636
A
5861 vm_map_offset_t submap_start;
5862 vm_map_offset_t submap_end;
5863 vm_map_size_t remove_size;
1c79356b
A
5864 vm_map_entry_t entry;
5865
5866 submap_end = offset + (end - start);
5867 submap_start = offset;
b7266188
A
5868
5869 vm_map_lock_read(sub_map);
1c79356b 5870 if(vm_map_lookup_entry(sub_map, offset, &entry)) {
2d21ac55 5871
1c79356b
A
5872 remove_size = (entry->vme_end - entry->vme_start);
5873 if(offset > entry->vme_start)
5874 remove_size -= offset - entry->vme_start;
2d21ac55 5875
1c79356b
A
5876
5877 if(submap_end < entry->vme_end) {
5878 remove_size -=
5879 entry->vme_end - submap_end;
5880 }
5881 if(entry->is_sub_map) {
5882 vm_map_submap_pmap_clean(
5883 sub_map,
5884 start,
5885 start + remove_size,
3e170ce0
A
5886 VME_SUBMAP(entry),
5887 VME_OFFSET(entry));
1c79356b 5888 } else {
9bccf70c 5889
316670eb 5890 if((map->mapped_in_other_pmaps) && (map->ref_count)
3e170ce0
A
5891 && (VME_OBJECT(entry) != NULL)) {
5892 vm_object_pmap_protect_options(
5893 VME_OBJECT(entry),
5894 (VME_OFFSET(entry) +
5895 offset -
5896 entry->vme_start),
9bccf70c
A
5897 remove_size,
5898 PMAP_NULL,
5899 entry->vme_start,
3e170ce0
A
5900 VM_PROT_NONE,
5901 PMAP_OPTIONS_REMOVE);
9bccf70c
A
5902 } else {
5903 pmap_remove(map->pmap,
2d21ac55
A
5904 (addr64_t)start,
5905 (addr64_t)(start + remove_size));
9bccf70c 5906 }
1c79356b
A
5907 }
5908 }
5909
5910 entry = entry->vme_next;
2d21ac55 5911
1c79356b 5912 while((entry != vm_map_to_entry(sub_map))
2d21ac55 5913 && (entry->vme_start < submap_end)) {
1c79356b
A
5914 remove_size = (entry->vme_end - entry->vme_start);
5915 if(submap_end < entry->vme_end) {
5916 remove_size -= entry->vme_end - submap_end;
5917 }
5918 if(entry->is_sub_map) {
5919 vm_map_submap_pmap_clean(
5920 sub_map,
5921 (start + entry->vme_start) - offset,
5922 ((start + entry->vme_start) - offset) + remove_size,
3e170ce0
A
5923 VME_SUBMAP(entry),
5924 VME_OFFSET(entry));
1c79356b 5925 } else {
316670eb 5926 if((map->mapped_in_other_pmaps) && (map->ref_count)
3e170ce0
A
5927 && (VME_OBJECT(entry) != NULL)) {
5928 vm_object_pmap_protect_options(
5929 VME_OBJECT(entry),
5930 VME_OFFSET(entry),
9bccf70c
A
5931 remove_size,
5932 PMAP_NULL,
5933 entry->vme_start,
3e170ce0
A
5934 VM_PROT_NONE,
5935 PMAP_OPTIONS_REMOVE);
9bccf70c
A
5936 } else {
5937 pmap_remove(map->pmap,
2d21ac55
A
5938 (addr64_t)((start + entry->vme_start)
5939 - offset),
5940 (addr64_t)(((start + entry->vme_start)
5941 - offset) + remove_size));
9bccf70c 5942 }
1c79356b
A
5943 }
5944 entry = entry->vme_next;
b7266188
A
5945 }
5946 vm_map_unlock_read(sub_map);
1c79356b
A
5947 return;
5948}
5949
5950/*
5951 * vm_map_delete: [ internal use only ]
5952 *
5953 * Deallocates the given address range from the target map.
5954 * Removes all user wirings. Unwires one kernel wiring if
5955 * VM_MAP_REMOVE_KUNWIRE is set. Waits for kernel wirings to go
5956 * away if VM_MAP_REMOVE_WAIT_FOR_KWIRE is set. Sleeps
5957 * interruptibly if VM_MAP_REMOVE_INTERRUPTIBLE is set.
5958 *
5959 * This routine is called with map locked and leaves map locked.
5960 */
91447636 5961static kern_return_t
1c79356b 5962vm_map_delete(
91447636
A
5963 vm_map_t map,
5964 vm_map_offset_t start,
5965 vm_map_offset_t end,
5966 int flags,
5967 vm_map_t zap_map)
1c79356b
A
5968{
5969 vm_map_entry_t entry, next;
5970 struct vm_map_entry *first_entry, tmp_entry;
2d21ac55 5971 register vm_map_offset_t s;
1c79356b
A
5972 register vm_object_t object;
5973 boolean_t need_wakeup;
5974 unsigned int last_timestamp = ~0; /* unlikely value */
5975 int interruptible;
1c79356b
A
5976
5977 interruptible = (flags & VM_MAP_REMOVE_INTERRUPTIBLE) ?
2d21ac55 5978 THREAD_ABORTSAFE : THREAD_UNINT;
1c79356b
A
5979
5980 /*
5981 * All our DMA I/O operations in IOKit are currently done by
5982 * wiring through the map entries of the task requesting the I/O.
5983 * Because of this, we must always wait for kernel wirings
5984 * to go away on the entries before deleting them.
5985 *
5986 * Any caller who wants to actually remove a kernel wiring
5987 * should explicitly set the VM_MAP_REMOVE_KUNWIRE flag to
5988 * properly remove one wiring instead of blasting through
5989 * them all.
5990 */
5991 flags |= VM_MAP_REMOVE_WAIT_FOR_KWIRE;
5992
b0d623f7
A
5993 while(1) {
5994 /*
5995 * Find the start of the region, and clip it
5996 */
5997 if (vm_map_lookup_entry(map, start, &first_entry)) {
5998 entry = first_entry;
fe8ab488
A
5999 if (map == kalloc_map &&
6000 (entry->vme_start != start ||
6001 entry->vme_end != end)) {
6002 panic("vm_map_delete(%p,0x%llx,0x%llx): "
6003 "mismatched entry %p [0x%llx:0x%llx]\n",
6004 map,
6005 (uint64_t)start,
6006 (uint64_t)end,
6007 entry,
6008 (uint64_t)entry->vme_start,
6009 (uint64_t)entry->vme_end);
6010 }
b0d623f7
A
6011 if (entry->superpage_size && (start & ~SUPERPAGE_MASK)) { /* extend request to whole entry */ start = SUPERPAGE_ROUND_DOWN(start);
6012 start = SUPERPAGE_ROUND_DOWN(start);
6013 continue;
6014 }
6015 if (start == entry->vme_start) {
6016 /*
6017 * No need to clip. We don't want to cause
6018 * any unnecessary unnesting in this case...
6019 */
6020 } else {
fe8ab488
A
6021 if ((flags & VM_MAP_REMOVE_NO_MAP_ALIGN) &&
6022 entry->map_aligned &&
6023 !VM_MAP_PAGE_ALIGNED(
6024 start,
6025 VM_MAP_PAGE_MASK(map))) {
6026 /*
6027 * The entry will no longer be
6028 * map-aligned after clipping
6029 * and the caller said it's OK.
6030 */
6031 entry->map_aligned = FALSE;
6032 }
6033 if (map == kalloc_map) {
6034 panic("vm_map_delete(%p,0x%llx,0x%llx):"
6035 " clipping %p at 0x%llx\n",
6036 map,
6037 (uint64_t)start,
6038 (uint64_t)end,
6039 entry,
6040 (uint64_t)start);
6041 }
b0d623f7
A
6042 vm_map_clip_start(map, entry, start);
6043 }
6044
2d21ac55 6045 /*
b0d623f7
A
6046 * Fix the lookup hint now, rather than each
6047 * time through the loop.
2d21ac55 6048 */
b0d623f7 6049 SAVE_HINT_MAP_WRITE(map, entry->vme_prev);
2d21ac55 6050 } else {
fe8ab488
A
6051 if (map->pmap == kernel_pmap &&
6052 map->ref_count != 0) {
6053 panic("vm_map_delete(%p,0x%llx,0x%llx): "
6054 "no map entry at 0x%llx\n",
6055 map,
6056 (uint64_t)start,
6057 (uint64_t)end,
6058 (uint64_t)start);
6059 }
b0d623f7 6060 entry = first_entry->vme_next;
2d21ac55 6061 }
b0d623f7 6062 break;
1c79356b 6063 }
b0d623f7
A
6064 if (entry->superpage_size)
6065 end = SUPERPAGE_ROUND_UP(end);
1c79356b
A
6066
6067 need_wakeup = FALSE;
6068 /*
6069 * Step through all entries in this region
6070 */
2d21ac55
A
6071 s = entry->vme_start;
6072 while ((entry != vm_map_to_entry(map)) && (s < end)) {
6073 /*
6074 * At this point, we have deleted all the memory entries
6075 * between "start" and "s". We still need to delete
6076 * all memory entries between "s" and "end".
6077 * While we were blocked and the map was unlocked, some
6078 * new memory entries could have been re-allocated between
6079 * "start" and "s" and we don't want to mess with those.
6080 * Some of those entries could even have been re-assembled
6081 * with an entry after "s" (in vm_map_simplify_entry()), so
6082 * we may have to vm_map_clip_start() again.
6083 */
1c79356b 6084
2d21ac55
A
6085 if (entry->vme_start >= s) {
6086 /*
6087 * This entry starts on or after "s"
6088 * so no need to clip its start.
6089 */
6090 } else {
6091 /*
6092 * This entry has been re-assembled by a
6093 * vm_map_simplify_entry(). We need to
6094 * re-clip its start.
6095 */
fe8ab488
A
6096 if ((flags & VM_MAP_REMOVE_NO_MAP_ALIGN) &&
6097 entry->map_aligned &&
6098 !VM_MAP_PAGE_ALIGNED(s,
6099 VM_MAP_PAGE_MASK(map))) {
6100 /*
6101 * The entry will no longer be map-aligned
6102 * after clipping and the caller said it's OK.
6103 */
6104 entry->map_aligned = FALSE;
6105 }
6106 if (map == kalloc_map) {
6107 panic("vm_map_delete(%p,0x%llx,0x%llx): "
6108 "clipping %p at 0x%llx\n",
6109 map,
6110 (uint64_t)start,
6111 (uint64_t)end,
6112 entry,
6113 (uint64_t)s);
6114 }
2d21ac55
A
6115 vm_map_clip_start(map, entry, s);
6116 }
6117 if (entry->vme_end <= end) {
6118 /*
6119 * This entry is going away completely, so no need
6120 * to clip and possibly cause an unnecessary unnesting.
6121 */
6122 } else {
fe8ab488
A
6123 if ((flags & VM_MAP_REMOVE_NO_MAP_ALIGN) &&
6124 entry->map_aligned &&
6125 !VM_MAP_PAGE_ALIGNED(end,
6126 VM_MAP_PAGE_MASK(map))) {
6127 /*
6128 * The entry will no longer be map-aligned
6129 * after clipping and the caller said it's OK.
6130 */
6131 entry->map_aligned = FALSE;
6132 }
6133 if (map == kalloc_map) {
6134 panic("vm_map_delete(%p,0x%llx,0x%llx): "
6135 "clipping %p at 0x%llx\n",
6136 map,
6137 (uint64_t)start,
6138 (uint64_t)end,
6139 entry,
6140 (uint64_t)end);
6141 }
2d21ac55
A
6142 vm_map_clip_end(map, entry, end);
6143 }
b0d623f7
A
6144
6145 if (entry->permanent) {
6146 panic("attempt to remove permanent VM map entry "
6147 "%p [0x%llx:0x%llx]\n",
6148 entry, (uint64_t) s, (uint64_t) end);
6149 }
6150
6151
1c79356b 6152 if (entry->in_transition) {
9bccf70c
A
6153 wait_result_t wait_result;
6154
1c79356b
A
6155 /*
6156 * Another thread is wiring/unwiring this entry.
6157 * Let the other thread know we are waiting.
6158 */
2d21ac55 6159 assert(s == entry->vme_start);
1c79356b
A
6160 entry->needs_wakeup = TRUE;
6161
6162 /*
6163 * wake up anybody waiting on entries that we have
6164 * already unwired/deleted.
6165 */
6166 if (need_wakeup) {
6167 vm_map_entry_wakeup(map);
6168 need_wakeup = FALSE;
6169 }
6170
9bccf70c 6171 wait_result = vm_map_entry_wait(map, interruptible);
1c79356b
A
6172
6173 if (interruptible &&
9bccf70c 6174 wait_result == THREAD_INTERRUPTED) {
1c79356b
A
6175 /*
6176 * We do not clear the needs_wakeup flag,
6177 * since we cannot tell if we were the only one.
6178 */
6179 return KERN_ABORTED;
9bccf70c 6180 }
1c79356b
A
6181
6182 /*
6183 * The entry could have been clipped or it
6184 * may not exist anymore. Look it up again.
6185 */
6186 if (!vm_map_lookup_entry(map, s, &first_entry)) {
1c79356b
A
6187 /*
6188 * User: use the next entry
6189 */
6190 entry = first_entry->vme_next;
2d21ac55 6191 s = entry->vme_start;
1c79356b
A
6192 } else {
6193 entry = first_entry;
0c530ab8 6194 SAVE_HINT_MAP_WRITE(map, entry->vme_prev);
1c79356b 6195 }
9bccf70c 6196 last_timestamp = map->timestamp;
1c79356b
A
6197 continue;
6198 } /* end in_transition */
6199
6200 if (entry->wired_count) {
2d21ac55
A
6201 boolean_t user_wire;
6202
6203 user_wire = entry->user_wired_count > 0;
6204
1c79356b 6205 /*
b0d623f7 6206 * Remove a kernel wiring if requested
1c79356b 6207 */
b0d623f7 6208 if (flags & VM_MAP_REMOVE_KUNWIRE) {
1c79356b 6209 entry->wired_count--;
b0d623f7
A
6210 }
6211
6212 /*
6213 * Remove all user wirings for proper accounting
6214 */
6215 if (entry->user_wired_count > 0) {
6216 while (entry->user_wired_count)
6217 subtract_wire_counts(map, entry, user_wire);
6218 }
1c79356b
A
6219
6220 if (entry->wired_count != 0) {
2d21ac55 6221 assert(map != kernel_map);
1c79356b
A
6222 /*
6223 * Cannot continue. Typical case is when
6224 * a user thread has physical io pending on
6225 * on this page. Either wait for the
6226 * kernel wiring to go away or return an
6227 * error.
6228 */
6229 if (flags & VM_MAP_REMOVE_WAIT_FOR_KWIRE) {
9bccf70c 6230 wait_result_t wait_result;
1c79356b 6231
2d21ac55 6232 assert(s == entry->vme_start);
1c79356b 6233 entry->needs_wakeup = TRUE;
9bccf70c 6234 wait_result = vm_map_entry_wait(map,
2d21ac55 6235 interruptible);
1c79356b
A
6236
6237 if (interruptible &&
2d21ac55 6238 wait_result == THREAD_INTERRUPTED) {
1c79356b 6239 /*
2d21ac55 6240 * We do not clear the
1c79356b
A
6241 * needs_wakeup flag, since we
6242 * cannot tell if we were the
6243 * only one.
2d21ac55 6244 */
1c79356b 6245 return KERN_ABORTED;
9bccf70c 6246 }
1c79356b
A
6247
6248 /*
2d21ac55 6249 * The entry could have been clipped or
1c79356b
A
6250 * it may not exist anymore. Look it
6251 * up again.
2d21ac55 6252 */
1c79356b 6253 if (!vm_map_lookup_entry(map, s,
2d21ac55
A
6254 &first_entry)) {
6255 assert(map != kernel_map);
1c79356b 6256 /*
2d21ac55
A
6257 * User: use the next entry
6258 */
1c79356b 6259 entry = first_entry->vme_next;
2d21ac55 6260 s = entry->vme_start;
1c79356b
A
6261 } else {
6262 entry = first_entry;
0c530ab8 6263 SAVE_HINT_MAP_WRITE(map, entry->vme_prev);
1c79356b 6264 }
9bccf70c 6265 last_timestamp = map->timestamp;
1c79356b
A
6266 continue;
6267 }
6268 else {
6269 return KERN_FAILURE;
6270 }
6271 }
6272
6273 entry->in_transition = TRUE;
6274 /*
6275 * copy current entry. see comment in vm_map_wire()
6276 */
6277 tmp_entry = *entry;
2d21ac55 6278 assert(s == entry->vme_start);
1c79356b
A
6279
6280 /*
6281 * We can unlock the map now. The in_transition
6282 * state guarentees existance of the entry.
6283 */
6284 vm_map_unlock(map);
2d21ac55
A
6285
6286 if (tmp_entry.is_sub_map) {
6287 vm_map_t sub_map;
6288 vm_map_offset_t sub_start, sub_end;
6289 pmap_t pmap;
6290 vm_map_offset_t pmap_addr;
6291
6292
3e170ce0
A
6293 sub_map = VME_SUBMAP(&tmp_entry);
6294 sub_start = VME_OFFSET(&tmp_entry);
2d21ac55
A
6295 sub_end = sub_start + (tmp_entry.vme_end -
6296 tmp_entry.vme_start);
6297 if (tmp_entry.use_pmap) {
6298 pmap = sub_map->pmap;
6299 pmap_addr = tmp_entry.vme_start;
6300 } else {
6301 pmap = map->pmap;
6302 pmap_addr = tmp_entry.vme_start;
6303 }
6304 (void) vm_map_unwire_nested(sub_map,
6305 sub_start, sub_end,
6306 user_wire,
6307 pmap, pmap_addr);
6308 } else {
6309
3e170ce0 6310 if (VME_OBJECT(&tmp_entry) == kernel_object) {
39236c6e
A
6311 pmap_protect_options(
6312 map->pmap,
6313 tmp_entry.vme_start,
6314 tmp_entry.vme_end,
6315 VM_PROT_NONE,
6316 PMAP_OPTIONS_REMOVE,
6317 NULL);
6318 }
2d21ac55 6319 vm_fault_unwire(map, &tmp_entry,
3e170ce0 6320 VME_OBJECT(&tmp_entry) == kernel_object,
2d21ac55
A
6321 map->pmap, tmp_entry.vme_start);
6322 }
6323
1c79356b
A
6324 vm_map_lock(map);
6325
6326 if (last_timestamp+1 != map->timestamp) {
6327 /*
6328 * Find the entry again. It could have
6329 * been clipped after we unlocked the map.
6330 */
6331 if (!vm_map_lookup_entry(map, s, &first_entry)){
6332 assert((map != kernel_map) &&
2d21ac55 6333 (!entry->is_sub_map));
1c79356b 6334 first_entry = first_entry->vme_next;
2d21ac55 6335 s = first_entry->vme_start;
1c79356b 6336 } else {
0c530ab8 6337 SAVE_HINT_MAP_WRITE(map, entry->vme_prev);
1c79356b
A
6338 }
6339 } else {
0c530ab8 6340 SAVE_HINT_MAP_WRITE(map, entry->vme_prev);
1c79356b
A
6341 first_entry = entry;
6342 }
6343
6344 last_timestamp = map->timestamp;
6345
6346 entry = first_entry;
6347 while ((entry != vm_map_to_entry(map)) &&
6348 (entry->vme_start < tmp_entry.vme_end)) {
6349 assert(entry->in_transition);
6350 entry->in_transition = FALSE;
6351 if (entry->needs_wakeup) {
6352 entry->needs_wakeup = FALSE;
6353 need_wakeup = TRUE;
6354 }
6355 entry = entry->vme_next;
6356 }
6357 /*
6358 * We have unwired the entry(s). Go back and
6359 * delete them.
6360 */
6361 entry = first_entry;
6362 continue;
6363 }
6364
6365 /* entry is unwired */
6366 assert(entry->wired_count == 0);
6367 assert(entry->user_wired_count == 0);
6368
2d21ac55
A
6369 assert(s == entry->vme_start);
6370
6371 if (flags & VM_MAP_REMOVE_NO_PMAP_CLEANUP) {
6372 /*
6373 * XXX with the VM_MAP_REMOVE_SAVE_ENTRIES flag to
6374 * vm_map_delete(), some map entries might have been
6375 * transferred to a "zap_map", which doesn't have a
6376 * pmap. The original pmap has already been flushed
6377 * in the vm_map_delete() call targeting the original
6378 * map, but when we get to destroying the "zap_map",
6379 * we don't have any pmap to flush, so let's just skip
6380 * all this.
6381 */
6382 } else if (entry->is_sub_map) {
6383 if (entry->use_pmap) {
0c530ab8 6384#ifndef NO_NESTED_PMAP
3e170ce0
A
6385 int pmap_flags;
6386
6387 if (flags & VM_MAP_REMOVE_NO_UNNESTING) {
6388 /*
6389 * This is the final cleanup of the
6390 * address space being terminated.
6391 * No new mappings are expected and
6392 * we don't really need to unnest the
6393 * shared region (and lose the "global"
6394 * pmap mappings, if applicable).
6395 *
6396 * Tell the pmap layer that we're
6397 * "clean" wrt nesting.
6398 */
6399 pmap_flags = PMAP_UNNEST_CLEAN;
6400 } else {
6401 /*
6402 * We're unmapping part of the nested
6403 * shared region, so we can't keep the
6404 * nested pmap.
6405 */
6406 pmap_flags = 0;
6407 }
6408 pmap_unnest_options(
6409 map->pmap,
6410 (addr64_t)entry->vme_start,
6411 entry->vme_end - entry->vme_start,
6412 pmap_flags);
0c530ab8 6413#endif /* NO_NESTED_PMAP */
316670eb 6414 if ((map->mapped_in_other_pmaps) && (map->ref_count)) {
9bccf70c
A
6415 /* clean up parent map/maps */
6416 vm_map_submap_pmap_clean(
6417 map, entry->vme_start,
6418 entry->vme_end,
3e170ce0
A
6419 VME_SUBMAP(entry),
6420 VME_OFFSET(entry));
9bccf70c 6421 }
2d21ac55 6422 } else {
1c79356b
A
6423 vm_map_submap_pmap_clean(
6424 map, entry->vme_start, entry->vme_end,
3e170ce0
A
6425 VME_SUBMAP(entry),
6426 VME_OFFSET(entry));
2d21ac55 6427 }
3e170ce0
A
6428 } else if (VME_OBJECT(entry) != kernel_object &&
6429 VME_OBJECT(entry) != compressor_object) {
6430 object = VME_OBJECT(entry);
39236c6e
A
6431 if ((map->mapped_in_other_pmaps) && (map->ref_count)) {
6432 vm_object_pmap_protect_options(
3e170ce0 6433 object, VME_OFFSET(entry),
55e303ae
A
6434 entry->vme_end - entry->vme_start,
6435 PMAP_NULL,
6436 entry->vme_start,
39236c6e
A
6437 VM_PROT_NONE,
6438 PMAP_OPTIONS_REMOVE);
3e170ce0 6439 } else if ((VME_OBJECT(entry) != VM_OBJECT_NULL) ||
39236c6e
A
6440 (map->pmap == kernel_pmap)) {
6441 /* Remove translations associated
6442 * with this range unless the entry
6443 * does not have an object, or
6444 * it's the kernel map or a descendant
6445 * since the platform could potentially
6446 * create "backdoor" mappings invisible
6447 * to the VM. It is expected that
6448 * objectless, non-kernel ranges
6449 * do not have such VM invisible
6450 * translations.
6451 */
6452 pmap_remove_options(map->pmap,
6453 (addr64_t)entry->vme_start,
6454 (addr64_t)entry->vme_end,
6455 PMAP_OPTIONS_REMOVE);
1c79356b
A
6456 }
6457 }
6458
fe8ab488
A
6459 if (entry->iokit_acct) {
6460 /* alternate accounting */
6461 vm_map_iokit_unmapped_region(map,
6462 (entry->vme_end -
6463 entry->vme_start));
6464 entry->iokit_acct = FALSE;
6465 }
6466
91447636
A
6467 /*
6468 * All pmap mappings for this map entry must have been
6469 * cleared by now.
6470 */
fe8ab488 6471#if DEBUG
91447636
A
6472 assert(vm_map_pmap_is_empty(map,
6473 entry->vme_start,
6474 entry->vme_end));
fe8ab488 6475#endif /* DEBUG */
91447636 6476
1c79356b 6477 next = entry->vme_next;
fe8ab488
A
6478
6479 if (map->pmap == kernel_pmap &&
6480 map->ref_count != 0 &&
6481 entry->vme_end < end &&
6482 (next == vm_map_to_entry(map) ||
6483 next->vme_start != entry->vme_end)) {
6484 panic("vm_map_delete(%p,0x%llx,0x%llx): "
6485 "hole after %p at 0x%llx\n",
6486 map,
6487 (uint64_t)start,
6488 (uint64_t)end,
6489 entry,
6490 (uint64_t)entry->vme_end);
6491 }
6492
1c79356b
A
6493 s = next->vme_start;
6494 last_timestamp = map->timestamp;
91447636
A
6495
6496 if ((flags & VM_MAP_REMOVE_SAVE_ENTRIES) &&
6497 zap_map != VM_MAP_NULL) {
2d21ac55 6498 vm_map_size_t entry_size;
91447636
A
6499 /*
6500 * The caller wants to save the affected VM map entries
6501 * into the "zap_map". The caller will take care of
6502 * these entries.
6503 */
6504 /* unlink the entry from "map" ... */
6d2010ae 6505 vm_map_store_entry_unlink(map, entry);
91447636 6506 /* ... and add it to the end of the "zap_map" */
6d2010ae 6507 vm_map_store_entry_link(zap_map,
91447636
A
6508 vm_map_last_entry(zap_map),
6509 entry);
2d21ac55
A
6510 entry_size = entry->vme_end - entry->vme_start;
6511 map->size -= entry_size;
6512 zap_map->size += entry_size;
6513 /* we didn't unlock the map, so no timestamp increase */
6514 last_timestamp--;
91447636
A
6515 } else {
6516 vm_map_entry_delete(map, entry);
6517 /* vm_map_entry_delete unlocks the map */
6518 vm_map_lock(map);
6519 }
6520
1c79356b
A
6521 entry = next;
6522
6523 if(entry == vm_map_to_entry(map)) {
6524 break;
6525 }
6526 if (last_timestamp+1 != map->timestamp) {
6527 /*
6528 * we are responsible for deleting everything
6529 * from the give space, if someone has interfered
6530 * we pick up where we left off, back fills should
6531 * be all right for anyone except map_delete and
6532 * we have to assume that the task has been fully
6533 * disabled before we get here
6534 */
6535 if (!vm_map_lookup_entry(map, s, &entry)){
6536 entry = entry->vme_next;
2d21ac55 6537 s = entry->vme_start;
1c79356b 6538 } else {
2d21ac55 6539 SAVE_HINT_MAP_WRITE(map, entry->vme_prev);
1c79356b
A
6540 }
6541 /*
6542 * others can not only allocate behind us, we can
6543 * also see coalesce while we don't have the map lock
6544 */
6545 if(entry == vm_map_to_entry(map)) {
6546 break;
6547 }
1c79356b
A
6548 }
6549 last_timestamp = map->timestamp;
6550 }
6551
6552 if (map->wait_for_space)
6553 thread_wakeup((event_t) map);
6554 /*
6555 * wake up anybody waiting on entries that we have already deleted.
6556 */
6557 if (need_wakeup)
6558 vm_map_entry_wakeup(map);
6559
6560 return KERN_SUCCESS;
6561}
6562
6563/*
6564 * vm_map_remove:
6565 *
6566 * Remove the given address range from the target map.
6567 * This is the exported form of vm_map_delete.
6568 */
6569kern_return_t
6570vm_map_remove(
6571 register vm_map_t map,
91447636
A
6572 register vm_map_offset_t start,
6573 register vm_map_offset_t end,
1c79356b
A
6574 register boolean_t flags)
6575{
6576 register kern_return_t result;
9bccf70c 6577
1c79356b
A
6578 vm_map_lock(map);
6579 VM_MAP_RANGE_CHECK(map, start, end);
39236c6e
A
6580 /*
6581 * For the zone_map, the kernel controls the allocation/freeing of memory.
6582 * Any free to the zone_map should be within the bounds of the map and
6583 * should free up memory. If the VM_MAP_RANGE_CHECK() silently converts a
6584 * free to the zone_map into a no-op, there is a problem and we should
6585 * panic.
6586 */
6587 if ((map == zone_map) && (start == end))
6588 panic("Nothing being freed to the zone_map. start = end = %p\n", (void *)start);
91447636 6589 result = vm_map_delete(map, start, end, flags, VM_MAP_NULL);
1c79356b 6590 vm_map_unlock(map);
91447636 6591
1c79356b
A
6592 return(result);
6593}
6594
6595
1c79356b
A
6596/*
6597 * Routine: vm_map_copy_discard
6598 *
6599 * Description:
6600 * Dispose of a map copy object (returned by
6601 * vm_map_copyin).
6602 */
6603void
6604vm_map_copy_discard(
6605 vm_map_copy_t copy)
6606{
1c79356b
A
6607 if (copy == VM_MAP_COPY_NULL)
6608 return;
6609
6610 switch (copy->type) {
6611 case VM_MAP_COPY_ENTRY_LIST:
6612 while (vm_map_copy_first_entry(copy) !=
2d21ac55 6613 vm_map_copy_to_entry(copy)) {
1c79356b
A
6614 vm_map_entry_t entry = vm_map_copy_first_entry(copy);
6615
6616 vm_map_copy_entry_unlink(copy, entry);
39236c6e 6617 if (entry->is_sub_map) {
3e170ce0 6618 vm_map_deallocate(VME_SUBMAP(entry));
39236c6e 6619 } else {
3e170ce0 6620 vm_object_deallocate(VME_OBJECT(entry));
39236c6e 6621 }
1c79356b
A
6622 vm_map_copy_entry_dispose(copy, entry);
6623 }
6624 break;
6625 case VM_MAP_COPY_OBJECT:
6626 vm_object_deallocate(copy->cpy_object);
6627 break;
1c79356b
A
6628 case VM_MAP_COPY_KERNEL_BUFFER:
6629
6630 /*
6631 * The vm_map_copy_t and possibly the data buffer were
6632 * allocated by a single call to kalloc(), i.e. the
6633 * vm_map_copy_t was not allocated out of the zone.
6634 */
3e170ce0
A
6635 if (copy->size > msg_ool_size_small || copy->offset)
6636 panic("Invalid vm_map_copy_t sz:%lld, ofst:%lld",
6637 (long long)copy->size, (long long)copy->offset);
6638 kfree(copy, copy->size + cpy_kdata_hdr_sz);
1c79356b
A
6639 return;
6640 }
91447636 6641 zfree(vm_map_copy_zone, copy);
1c79356b
A
6642}
6643
6644/*
6645 * Routine: vm_map_copy_copy
6646 *
6647 * Description:
6648 * Move the information in a map copy object to
6649 * a new map copy object, leaving the old one
6650 * empty.
6651 *
6652 * This is used by kernel routines that need
6653 * to look at out-of-line data (in copyin form)
6654 * before deciding whether to return SUCCESS.
6655 * If the routine returns FAILURE, the original
6656 * copy object will be deallocated; therefore,
6657 * these routines must make a copy of the copy
6658 * object and leave the original empty so that
6659 * deallocation will not fail.
6660 */
6661vm_map_copy_t
6662vm_map_copy_copy(
6663 vm_map_copy_t copy)
6664{
6665 vm_map_copy_t new_copy;
6666
6667 if (copy == VM_MAP_COPY_NULL)
6668 return VM_MAP_COPY_NULL;
6669
6670 /*
6671 * Allocate a new copy object, and copy the information
6672 * from the old one into it.
6673 */
6674
6675 new_copy = (vm_map_copy_t) zalloc(vm_map_copy_zone);
04b8595b 6676 new_copy->c_u.hdr.rb_head_store.rbh_root = (void*)(int)SKIP_RB_TREE;
1c79356b
A
6677 *new_copy = *copy;
6678
6679 if (copy->type == VM_MAP_COPY_ENTRY_LIST) {
6680 /*
6681 * The links in the entry chain must be
6682 * changed to point to the new copy object.
6683 */
6684 vm_map_copy_first_entry(copy)->vme_prev
6685 = vm_map_copy_to_entry(new_copy);
6686 vm_map_copy_last_entry(copy)->vme_next
6687 = vm_map_copy_to_entry(new_copy);
6688 }
6689
6690 /*
6691 * Change the old copy object into one that contains
6692 * nothing to be deallocated.
6693 */
6694 copy->type = VM_MAP_COPY_OBJECT;
6695 copy->cpy_object = VM_OBJECT_NULL;
6696
6697 /*
6698 * Return the new object.
6699 */
6700 return new_copy;
6701}
6702
91447636 6703static kern_return_t
1c79356b
A
6704vm_map_overwrite_submap_recurse(
6705 vm_map_t dst_map,
91447636
A
6706 vm_map_offset_t dst_addr,
6707 vm_map_size_t dst_size)
1c79356b 6708{
91447636 6709 vm_map_offset_t dst_end;
1c79356b
A
6710 vm_map_entry_t tmp_entry;
6711 vm_map_entry_t entry;
6712 kern_return_t result;
6713 boolean_t encountered_sub_map = FALSE;
6714
6715
6716
6717 /*
6718 * Verify that the destination is all writeable
6719 * initially. We have to trunc the destination
6720 * address and round the copy size or we'll end up
6721 * splitting entries in strange ways.
6722 */
6723
39236c6e
A
6724 dst_end = vm_map_round_page(dst_addr + dst_size,
6725 VM_MAP_PAGE_MASK(dst_map));
9bccf70c 6726 vm_map_lock(dst_map);
1c79356b
A
6727
6728start_pass_1:
1c79356b
A
6729 if (!vm_map_lookup_entry(dst_map, dst_addr, &tmp_entry)) {
6730 vm_map_unlock(dst_map);
6731 return(KERN_INVALID_ADDRESS);
6732 }
6733
39236c6e
A
6734 vm_map_clip_start(dst_map,
6735 tmp_entry,
6736 vm_map_trunc_page(dst_addr,
6737 VM_MAP_PAGE_MASK(dst_map)));
fe8ab488
A
6738 if (tmp_entry->is_sub_map) {
6739 /* clipping did unnest if needed */
6740 assert(!tmp_entry->use_pmap);
6741 }
1c79356b
A
6742
6743 for (entry = tmp_entry;;) {
6744 vm_map_entry_t next;
6745
6746 next = entry->vme_next;
6747 while(entry->is_sub_map) {
91447636
A
6748 vm_map_offset_t sub_start;
6749 vm_map_offset_t sub_end;
6750 vm_map_offset_t local_end;
1c79356b
A
6751
6752 if (entry->in_transition) {
2d21ac55
A
6753 /*
6754 * Say that we are waiting, and wait for entry.
6755 */
1c79356b
A
6756 entry->needs_wakeup = TRUE;
6757 vm_map_entry_wait(dst_map, THREAD_UNINT);
6758
6759 goto start_pass_1;
6760 }
6761
6762 encountered_sub_map = TRUE;
3e170ce0 6763 sub_start = VME_OFFSET(entry);
1c79356b
A
6764
6765 if(entry->vme_end < dst_end)
6766 sub_end = entry->vme_end;
6767 else
6768 sub_end = dst_end;
6769 sub_end -= entry->vme_start;
3e170ce0 6770 sub_end += VME_OFFSET(entry);
1c79356b
A
6771 local_end = entry->vme_end;
6772 vm_map_unlock(dst_map);
6773
6774 result = vm_map_overwrite_submap_recurse(
3e170ce0 6775 VME_SUBMAP(entry),
2d21ac55
A
6776 sub_start,
6777 sub_end - sub_start);
1c79356b
A
6778
6779 if(result != KERN_SUCCESS)
6780 return result;
6781 if (dst_end <= entry->vme_end)
6782 return KERN_SUCCESS;
6783 vm_map_lock(dst_map);
6784 if(!vm_map_lookup_entry(dst_map, local_end,
6785 &tmp_entry)) {
6786 vm_map_unlock(dst_map);
6787 return(KERN_INVALID_ADDRESS);
6788 }
6789 entry = tmp_entry;
6790 next = entry->vme_next;
6791 }
6792
6793 if ( ! (entry->protection & VM_PROT_WRITE)) {
6794 vm_map_unlock(dst_map);
6795 return(KERN_PROTECTION_FAILURE);
6796 }
6797
6798 /*
6799 * If the entry is in transition, we must wait
6800 * for it to exit that state. Anything could happen
6801 * when we unlock the map, so start over.
6802 */
6803 if (entry->in_transition) {
6804
6805 /*
6806 * Say that we are waiting, and wait for entry.
6807 */
6808 entry->needs_wakeup = TRUE;
6809 vm_map_entry_wait(dst_map, THREAD_UNINT);
6810
6811 goto start_pass_1;
6812 }
6813
6814/*
6815 * our range is contained completely within this map entry
6816 */
6817 if (dst_end <= entry->vme_end) {
6818 vm_map_unlock(dst_map);
6819 return KERN_SUCCESS;
6820 }
6821/*
6822 * check that range specified is contiguous region
6823 */
6824 if ((next == vm_map_to_entry(dst_map)) ||
6825 (next->vme_start != entry->vme_end)) {
6826 vm_map_unlock(dst_map);
6827 return(KERN_INVALID_ADDRESS);
6828 }
6829
6830 /*
6831 * Check for permanent objects in the destination.
6832 */
3e170ce0
A
6833 if ((VME_OBJECT(entry) != VM_OBJECT_NULL) &&
6834 ((!VME_OBJECT(entry)->internal) ||
6835 (VME_OBJECT(entry)->true_share))) {
1c79356b
A
6836 if(encountered_sub_map) {
6837 vm_map_unlock(dst_map);
6838 return(KERN_FAILURE);
6839 }
6840 }
6841
6842
6843 entry = next;
6844 }/* for */
6845 vm_map_unlock(dst_map);
6846 return(KERN_SUCCESS);
6847}
6848
6849/*
6850 * Routine: vm_map_copy_overwrite
6851 *
6852 * Description:
6853 * Copy the memory described by the map copy
6854 * object (copy; returned by vm_map_copyin) onto
6855 * the specified destination region (dst_map, dst_addr).
6856 * The destination must be writeable.
6857 *
6858 * Unlike vm_map_copyout, this routine actually
6859 * writes over previously-mapped memory. If the
6860 * previous mapping was to a permanent (user-supplied)
6861 * memory object, it is preserved.
6862 *
6863 * The attributes (protection and inheritance) of the
6864 * destination region are preserved.
6865 *
6866 * If successful, consumes the copy object.
6867 * Otherwise, the caller is responsible for it.
6868 *
6869 * Implementation notes:
6870 * To overwrite aligned temporary virtual memory, it is
6871 * sufficient to remove the previous mapping and insert
6872 * the new copy. This replacement is done either on
6873 * the whole region (if no permanent virtual memory
6874 * objects are embedded in the destination region) or
6875 * in individual map entries.
6876 *
6877 * To overwrite permanent virtual memory , it is necessary
6878 * to copy each page, as the external memory management
6879 * interface currently does not provide any optimizations.
6880 *
6881 * Unaligned memory also has to be copied. It is possible
6882 * to use 'vm_trickery' to copy the aligned data. This is
6883 * not done but not hard to implement.
6884 *
6885 * Once a page of permanent memory has been overwritten,
6886 * it is impossible to interrupt this function; otherwise,
6887 * the call would be neither atomic nor location-independent.
6888 * The kernel-state portion of a user thread must be
6889 * interruptible.
6890 *
6891 * It may be expensive to forward all requests that might
6892 * overwrite permanent memory (vm_write, vm_copy) to
6893 * uninterruptible kernel threads. This routine may be
6894 * called by interruptible threads; however, success is
6895 * not guaranteed -- if the request cannot be performed
6896 * atomically and interruptibly, an error indication is
6897 * returned.
6898 */
6899
91447636 6900static kern_return_t
1c79356b 6901vm_map_copy_overwrite_nested(
91447636
A
6902 vm_map_t dst_map,
6903 vm_map_address_t dst_addr,
6904 vm_map_copy_t copy,
6905 boolean_t interruptible,
6d2010ae
A
6906 pmap_t pmap,
6907 boolean_t discard_on_success)
1c79356b 6908{
91447636
A
6909 vm_map_offset_t dst_end;
6910 vm_map_entry_t tmp_entry;
6911 vm_map_entry_t entry;
6912 kern_return_t kr;
6913 boolean_t aligned = TRUE;
6914 boolean_t contains_permanent_objects = FALSE;
6915 boolean_t encountered_sub_map = FALSE;
6916 vm_map_offset_t base_addr;
6917 vm_map_size_t copy_size;
6918 vm_map_size_t total_size;
1c79356b
A
6919
6920
6921 /*
6922 * Check for null copy object.
6923 */
6924
6925 if (copy == VM_MAP_COPY_NULL)
6926 return(KERN_SUCCESS);
6927
6928 /*
6929 * Check for special kernel buffer allocated
6930 * by new_ipc_kmsg_copyin.
6931 */
6932
6933 if (copy->type == VM_MAP_COPY_KERNEL_BUFFER) {
0b4e3aa0 6934 return(vm_map_copyout_kernel_buffer(
2d21ac55 6935 dst_map, &dst_addr,
39236c6e 6936 copy, TRUE, discard_on_success));
1c79356b
A
6937 }
6938
6939 /*
6940 * Only works for entry lists at the moment. Will
6941 * support page lists later.
6942 */
6943
6944 assert(copy->type == VM_MAP_COPY_ENTRY_LIST);
6945
6946 if (copy->size == 0) {
6d2010ae
A
6947 if (discard_on_success)
6948 vm_map_copy_discard(copy);
1c79356b
A
6949 return(KERN_SUCCESS);
6950 }
6951
6952 /*
6953 * Verify that the destination is all writeable
6954 * initially. We have to trunc the destination
6955 * address and round the copy size or we'll end up
6956 * splitting entries in strange ways.
6957 */
6958
39236c6e
A
6959 if (!VM_MAP_PAGE_ALIGNED(copy->size,
6960 VM_MAP_PAGE_MASK(dst_map)) ||
6961 !VM_MAP_PAGE_ALIGNED(copy->offset,
6962 VM_MAP_PAGE_MASK(dst_map)) ||
6963 !VM_MAP_PAGE_ALIGNED(dst_addr,
fe8ab488 6964 VM_MAP_PAGE_MASK(dst_map)))
1c79356b
A
6965 {
6966 aligned = FALSE;
39236c6e
A
6967 dst_end = vm_map_round_page(dst_addr + copy->size,
6968 VM_MAP_PAGE_MASK(dst_map));
1c79356b
A
6969 } else {
6970 dst_end = dst_addr + copy->size;
6971 }
6972
1c79356b 6973 vm_map_lock(dst_map);
9bccf70c 6974
91447636
A
6975 /* LP64todo - remove this check when vm_map_commpage64()
6976 * no longer has to stuff in a map_entry for the commpage
6977 * above the map's max_offset.
6978 */
6979 if (dst_addr >= dst_map->max_offset) {
6980 vm_map_unlock(dst_map);
6981 return(KERN_INVALID_ADDRESS);
6982 }
6983
9bccf70c 6984start_pass_1:
1c79356b
A
6985 if (!vm_map_lookup_entry(dst_map, dst_addr, &tmp_entry)) {
6986 vm_map_unlock(dst_map);
6987 return(KERN_INVALID_ADDRESS);
6988 }
39236c6e
A
6989 vm_map_clip_start(dst_map,
6990 tmp_entry,
6991 vm_map_trunc_page(dst_addr,
6992 VM_MAP_PAGE_MASK(dst_map)));
1c79356b
A
6993 for (entry = tmp_entry;;) {
6994 vm_map_entry_t next = entry->vme_next;
6995
6996 while(entry->is_sub_map) {
91447636
A
6997 vm_map_offset_t sub_start;
6998 vm_map_offset_t sub_end;
6999 vm_map_offset_t local_end;
1c79356b
A
7000
7001 if (entry->in_transition) {
7002
2d21ac55
A
7003 /*
7004 * Say that we are waiting, and wait for entry.
7005 */
1c79356b
A
7006 entry->needs_wakeup = TRUE;
7007 vm_map_entry_wait(dst_map, THREAD_UNINT);
7008
7009 goto start_pass_1;
7010 }
7011
7012 local_end = entry->vme_end;
7013 if (!(entry->needs_copy)) {
7014 /* if needs_copy we are a COW submap */
7015 /* in such a case we just replace so */
7016 /* there is no need for the follow- */
7017 /* ing check. */
7018 encountered_sub_map = TRUE;
3e170ce0 7019 sub_start = VME_OFFSET(entry);
1c79356b
A
7020
7021 if(entry->vme_end < dst_end)
7022 sub_end = entry->vme_end;
7023 else
7024 sub_end = dst_end;
7025 sub_end -= entry->vme_start;
3e170ce0 7026 sub_end += VME_OFFSET(entry);
1c79356b
A
7027 vm_map_unlock(dst_map);
7028
7029 kr = vm_map_overwrite_submap_recurse(
3e170ce0 7030 VME_SUBMAP(entry),
1c79356b
A
7031 sub_start,
7032 sub_end - sub_start);
7033 if(kr != KERN_SUCCESS)
7034 return kr;
7035 vm_map_lock(dst_map);
7036 }
7037
7038 if (dst_end <= entry->vme_end)
7039 goto start_overwrite;
7040 if(!vm_map_lookup_entry(dst_map, local_end,
7041 &entry)) {
7042 vm_map_unlock(dst_map);
7043 return(KERN_INVALID_ADDRESS);
7044 }
7045 next = entry->vme_next;
7046 }
7047
7048 if ( ! (entry->protection & VM_PROT_WRITE)) {
7049 vm_map_unlock(dst_map);
7050 return(KERN_PROTECTION_FAILURE);
7051 }
7052
7053 /*
7054 * If the entry is in transition, we must wait
7055 * for it to exit that state. Anything could happen
7056 * when we unlock the map, so start over.
7057 */
7058 if (entry->in_transition) {
7059
7060 /*
7061 * Say that we are waiting, and wait for entry.
7062 */
7063 entry->needs_wakeup = TRUE;
7064 vm_map_entry_wait(dst_map, THREAD_UNINT);
7065
7066 goto start_pass_1;
7067 }
7068
7069/*
7070 * our range is contained completely within this map entry
7071 */
7072 if (dst_end <= entry->vme_end)
7073 break;
7074/*
7075 * check that range specified is contiguous region
7076 */
7077 if ((next == vm_map_to_entry(dst_map)) ||
7078 (next->vme_start != entry->vme_end)) {
7079 vm_map_unlock(dst_map);
7080 return(KERN_INVALID_ADDRESS);
7081 }
7082
7083
7084 /*
7085 * Check for permanent objects in the destination.
7086 */
3e170ce0
A
7087 if ((VME_OBJECT(entry) != VM_OBJECT_NULL) &&
7088 ((!VME_OBJECT(entry)->internal) ||
7089 (VME_OBJECT(entry)->true_share))) {
1c79356b
A
7090 contains_permanent_objects = TRUE;
7091 }
7092
7093 entry = next;
7094 }/* for */
7095
7096start_overwrite:
7097 /*
7098 * If there are permanent objects in the destination, then
7099 * the copy cannot be interrupted.
7100 */
7101
7102 if (interruptible && contains_permanent_objects) {
7103 vm_map_unlock(dst_map);
7104 return(KERN_FAILURE); /* XXX */
7105 }
7106
7107 /*
7108 *
7109 * Make a second pass, overwriting the data
7110 * At the beginning of each loop iteration,
7111 * the next entry to be overwritten is "tmp_entry"
7112 * (initially, the value returned from the lookup above),
7113 * and the starting address expected in that entry
7114 * is "start".
7115 */
7116
7117 total_size = copy->size;
7118 if(encountered_sub_map) {
7119 copy_size = 0;
7120 /* re-calculate tmp_entry since we've had the map */
7121 /* unlocked */
7122 if (!vm_map_lookup_entry( dst_map, dst_addr, &tmp_entry)) {
7123 vm_map_unlock(dst_map);
7124 return(KERN_INVALID_ADDRESS);
7125 }
7126 } else {
7127 copy_size = copy->size;
7128 }
7129
7130 base_addr = dst_addr;
7131 while(TRUE) {
7132 /* deconstruct the copy object and do in parts */
7133 /* only in sub_map, interruptable case */
7134 vm_map_entry_t copy_entry;
91447636
A
7135 vm_map_entry_t previous_prev = VM_MAP_ENTRY_NULL;
7136 vm_map_entry_t next_copy = VM_MAP_ENTRY_NULL;
1c79356b 7137 int nentries;
91447636 7138 int remaining_entries = 0;
b0d623f7 7139 vm_map_offset_t new_offset = 0;
1c79356b
A
7140
7141 for (entry = tmp_entry; copy_size == 0;) {
7142 vm_map_entry_t next;
7143
7144 next = entry->vme_next;
7145
7146 /* tmp_entry and base address are moved along */
7147 /* each time we encounter a sub-map. Otherwise */
7148 /* entry can outpase tmp_entry, and the copy_size */
7149 /* may reflect the distance between them */
7150 /* if the current entry is found to be in transition */
7151 /* we will start over at the beginning or the last */
7152 /* encounter of a submap as dictated by base_addr */
7153 /* we will zero copy_size accordingly. */
7154 if (entry->in_transition) {
7155 /*
7156 * Say that we are waiting, and wait for entry.
7157 */
7158 entry->needs_wakeup = TRUE;
7159 vm_map_entry_wait(dst_map, THREAD_UNINT);
7160
1c79356b 7161 if(!vm_map_lookup_entry(dst_map, base_addr,
2d21ac55 7162 &tmp_entry)) {
1c79356b
A
7163 vm_map_unlock(dst_map);
7164 return(KERN_INVALID_ADDRESS);
7165 }
7166 copy_size = 0;
7167 entry = tmp_entry;
7168 continue;
7169 }
7170 if(entry->is_sub_map) {
91447636
A
7171 vm_map_offset_t sub_start;
7172 vm_map_offset_t sub_end;
7173 vm_map_offset_t local_end;
1c79356b
A
7174
7175 if (entry->needs_copy) {
7176 /* if this is a COW submap */
7177 /* just back the range with a */
7178 /* anonymous entry */
7179 if(entry->vme_end < dst_end)
7180 sub_end = entry->vme_end;
7181 else
7182 sub_end = dst_end;
7183 if(entry->vme_start < base_addr)
7184 sub_start = base_addr;
7185 else
7186 sub_start = entry->vme_start;
7187 vm_map_clip_end(
7188 dst_map, entry, sub_end);
7189 vm_map_clip_start(
7190 dst_map, entry, sub_start);
2d21ac55 7191 assert(!entry->use_pmap);
1c79356b
A
7192 entry->is_sub_map = FALSE;
7193 vm_map_deallocate(
3e170ce0
A
7194 VME_SUBMAP(entry));
7195 VME_SUBMAP_SET(entry, NULL);
1c79356b
A
7196 entry->is_shared = FALSE;
7197 entry->needs_copy = FALSE;
3e170ce0 7198 VME_OFFSET_SET(entry, 0);
2d21ac55
A
7199 /*
7200 * XXX FBDP
7201 * We should propagate the protections
7202 * of the submap entry here instead
7203 * of forcing them to VM_PROT_ALL...
7204 * Or better yet, we should inherit
7205 * the protection of the copy_entry.
7206 */
1c79356b
A
7207 entry->protection = VM_PROT_ALL;
7208 entry->max_protection = VM_PROT_ALL;
7209 entry->wired_count = 0;
7210 entry->user_wired_count = 0;
7211 if(entry->inheritance
2d21ac55
A
7212 == VM_INHERIT_SHARE)
7213 entry->inheritance = VM_INHERIT_COPY;
1c79356b
A
7214 continue;
7215 }
7216 /* first take care of any non-sub_map */
7217 /* entries to send */
7218 if(base_addr < entry->vme_start) {
7219 /* stuff to send */
7220 copy_size =
7221 entry->vme_start - base_addr;
7222 break;
7223 }
3e170ce0 7224 sub_start = VME_OFFSET(entry);
1c79356b
A
7225
7226 if(entry->vme_end < dst_end)
7227 sub_end = entry->vme_end;
7228 else
7229 sub_end = dst_end;
7230 sub_end -= entry->vme_start;
3e170ce0 7231 sub_end += VME_OFFSET(entry);
1c79356b
A
7232 local_end = entry->vme_end;
7233 vm_map_unlock(dst_map);
7234 copy_size = sub_end - sub_start;
7235
7236 /* adjust the copy object */
7237 if (total_size > copy_size) {
91447636
A
7238 vm_map_size_t local_size = 0;
7239 vm_map_size_t entry_size;
1c79356b 7240
2d21ac55
A
7241 nentries = 1;
7242 new_offset = copy->offset;
7243 copy_entry = vm_map_copy_first_entry(copy);
7244 while(copy_entry !=
7245 vm_map_copy_to_entry(copy)){
7246 entry_size = copy_entry->vme_end -
7247 copy_entry->vme_start;
7248 if((local_size < copy_size) &&
7249 ((local_size + entry_size)
7250 >= copy_size)) {
7251 vm_map_copy_clip_end(copy,
7252 copy_entry,
7253 copy_entry->vme_start +
7254 (copy_size - local_size));
7255 entry_size = copy_entry->vme_end -
7256 copy_entry->vme_start;
7257 local_size += entry_size;
7258 new_offset += entry_size;
7259 }
7260 if(local_size >= copy_size) {
7261 next_copy = copy_entry->vme_next;
7262 copy_entry->vme_next =
7263 vm_map_copy_to_entry(copy);
7264 previous_prev =
7265 copy->cpy_hdr.links.prev;
7266 copy->cpy_hdr.links.prev = copy_entry;
7267 copy->size = copy_size;
7268 remaining_entries =
7269 copy->cpy_hdr.nentries;
7270 remaining_entries -= nentries;
7271 copy->cpy_hdr.nentries = nentries;
7272 break;
7273 } else {
7274 local_size += entry_size;
7275 new_offset += entry_size;
7276 nentries++;
7277 }
7278 copy_entry = copy_entry->vme_next;
7279 }
1c79356b
A
7280 }
7281
7282 if((entry->use_pmap) && (pmap == NULL)) {
7283 kr = vm_map_copy_overwrite_nested(
3e170ce0 7284 VME_SUBMAP(entry),
1c79356b
A
7285 sub_start,
7286 copy,
7287 interruptible,
3e170ce0 7288 VME_SUBMAP(entry)->pmap,
6d2010ae 7289 TRUE);
1c79356b
A
7290 } else if (pmap != NULL) {
7291 kr = vm_map_copy_overwrite_nested(
3e170ce0 7292 VME_SUBMAP(entry),
1c79356b
A
7293 sub_start,
7294 copy,
6d2010ae
A
7295 interruptible, pmap,
7296 TRUE);
1c79356b
A
7297 } else {
7298 kr = vm_map_copy_overwrite_nested(
3e170ce0 7299 VME_SUBMAP(entry),
1c79356b
A
7300 sub_start,
7301 copy,
7302 interruptible,
6d2010ae
A
7303 dst_map->pmap,
7304 TRUE);
1c79356b
A
7305 }
7306 if(kr != KERN_SUCCESS) {
7307 if(next_copy != NULL) {
2d21ac55
A
7308 copy->cpy_hdr.nentries +=
7309 remaining_entries;
7310 copy->cpy_hdr.links.prev->vme_next =
7311 next_copy;
7312 copy->cpy_hdr.links.prev
7313 = previous_prev;
7314 copy->size = total_size;
1c79356b
A
7315 }
7316 return kr;
7317 }
7318 if (dst_end <= local_end) {
7319 return(KERN_SUCCESS);
7320 }
7321 /* otherwise copy no longer exists, it was */
7322 /* destroyed after successful copy_overwrite */
7323 copy = (vm_map_copy_t)
2d21ac55 7324 zalloc(vm_map_copy_zone);
04b8595b 7325 copy->c_u.hdr.rb_head_store.rbh_root = (void*)(int)SKIP_RB_TREE;
1c79356b 7326 vm_map_copy_first_entry(copy) =
2d21ac55
A
7327 vm_map_copy_last_entry(copy) =
7328 vm_map_copy_to_entry(copy);
1c79356b
A
7329 copy->type = VM_MAP_COPY_ENTRY_LIST;
7330 copy->offset = new_offset;
7331
e2d2fc5c
A
7332 /*
7333 * XXX FBDP
7334 * this does not seem to deal with
7335 * the VM map store (R&B tree)
7336 */
7337
1c79356b
A
7338 total_size -= copy_size;
7339 copy_size = 0;
7340 /* put back remainder of copy in container */
7341 if(next_copy != NULL) {
2d21ac55
A
7342 copy->cpy_hdr.nentries = remaining_entries;
7343 copy->cpy_hdr.links.next = next_copy;
7344 copy->cpy_hdr.links.prev = previous_prev;
7345 copy->size = total_size;
7346 next_copy->vme_prev =
7347 vm_map_copy_to_entry(copy);
7348 next_copy = NULL;
1c79356b
A
7349 }
7350 base_addr = local_end;
7351 vm_map_lock(dst_map);
7352 if(!vm_map_lookup_entry(dst_map,
2d21ac55 7353 local_end, &tmp_entry)) {
1c79356b
A
7354 vm_map_unlock(dst_map);
7355 return(KERN_INVALID_ADDRESS);
7356 }
7357 entry = tmp_entry;
7358 continue;
7359 }
7360 if (dst_end <= entry->vme_end) {
7361 copy_size = dst_end - base_addr;
7362 break;
7363 }
7364
7365 if ((next == vm_map_to_entry(dst_map)) ||
2d21ac55 7366 (next->vme_start != entry->vme_end)) {
1c79356b
A
7367 vm_map_unlock(dst_map);
7368 return(KERN_INVALID_ADDRESS);
7369 }
7370
7371 entry = next;
7372 }/* for */
7373
7374 next_copy = NULL;
7375 nentries = 1;
7376
7377 /* adjust the copy object */
7378 if (total_size > copy_size) {
91447636
A
7379 vm_map_size_t local_size = 0;
7380 vm_map_size_t entry_size;
1c79356b
A
7381
7382 new_offset = copy->offset;
7383 copy_entry = vm_map_copy_first_entry(copy);
7384 while(copy_entry != vm_map_copy_to_entry(copy)) {
7385 entry_size = copy_entry->vme_end -
2d21ac55 7386 copy_entry->vme_start;
1c79356b 7387 if((local_size < copy_size) &&
2d21ac55
A
7388 ((local_size + entry_size)
7389 >= copy_size)) {
1c79356b 7390 vm_map_copy_clip_end(copy, copy_entry,
2d21ac55
A
7391 copy_entry->vme_start +
7392 (copy_size - local_size));
1c79356b 7393 entry_size = copy_entry->vme_end -
2d21ac55 7394 copy_entry->vme_start;
1c79356b
A
7395 local_size += entry_size;
7396 new_offset += entry_size;
7397 }
7398 if(local_size >= copy_size) {
7399 next_copy = copy_entry->vme_next;
7400 copy_entry->vme_next =
7401 vm_map_copy_to_entry(copy);
7402 previous_prev =
7403 copy->cpy_hdr.links.prev;
7404 copy->cpy_hdr.links.prev = copy_entry;
7405 copy->size = copy_size;
7406 remaining_entries =
7407 copy->cpy_hdr.nentries;
7408 remaining_entries -= nentries;
7409 copy->cpy_hdr.nentries = nentries;
7410 break;
7411 } else {
7412 local_size += entry_size;
7413 new_offset += entry_size;
7414 nentries++;
7415 }
7416 copy_entry = copy_entry->vme_next;
7417 }
7418 }
7419
7420 if (aligned) {
7421 pmap_t local_pmap;
7422
7423 if(pmap)
7424 local_pmap = pmap;
7425 else
7426 local_pmap = dst_map->pmap;
7427
7428 if ((kr = vm_map_copy_overwrite_aligned(
2d21ac55
A
7429 dst_map, tmp_entry, copy,
7430 base_addr, local_pmap)) != KERN_SUCCESS) {
1c79356b
A
7431 if(next_copy != NULL) {
7432 copy->cpy_hdr.nentries +=
2d21ac55 7433 remaining_entries;
1c79356b 7434 copy->cpy_hdr.links.prev->vme_next =
2d21ac55 7435 next_copy;
1c79356b 7436 copy->cpy_hdr.links.prev =
2d21ac55 7437 previous_prev;
1c79356b
A
7438 copy->size += copy_size;
7439 }
7440 return kr;
7441 }
7442 vm_map_unlock(dst_map);
7443 } else {
2d21ac55
A
7444 /*
7445 * Performance gain:
7446 *
7447 * if the copy and dst address are misaligned but the same
7448 * offset within the page we can copy_not_aligned the
7449 * misaligned parts and copy aligned the rest. If they are
7450 * aligned but len is unaligned we simply need to copy
7451 * the end bit unaligned. We'll need to split the misaligned
7452 * bits of the region in this case !
7453 */
7454 /* ALWAYS UNLOCKS THE dst_map MAP */
39236c6e
A
7455 kr = vm_map_copy_overwrite_unaligned(
7456 dst_map,
7457 tmp_entry,
7458 copy,
7459 base_addr,
7460 discard_on_success);
7461 if (kr != KERN_SUCCESS) {
1c79356b
A
7462 if(next_copy != NULL) {
7463 copy->cpy_hdr.nentries +=
2d21ac55 7464 remaining_entries;
1c79356b 7465 copy->cpy_hdr.links.prev->vme_next =
2d21ac55 7466 next_copy;
1c79356b
A
7467 copy->cpy_hdr.links.prev =
7468 previous_prev;
7469 copy->size += copy_size;
7470 }
7471 return kr;
7472 }
7473 }
7474 total_size -= copy_size;
7475 if(total_size == 0)
7476 break;
7477 base_addr += copy_size;
7478 copy_size = 0;
7479 copy->offset = new_offset;
7480 if(next_copy != NULL) {
7481 copy->cpy_hdr.nentries = remaining_entries;
7482 copy->cpy_hdr.links.next = next_copy;
7483 copy->cpy_hdr.links.prev = previous_prev;
7484 next_copy->vme_prev = vm_map_copy_to_entry(copy);
7485 copy->size = total_size;
7486 }
7487 vm_map_lock(dst_map);
7488 while(TRUE) {
7489 if (!vm_map_lookup_entry(dst_map,
2d21ac55 7490 base_addr, &tmp_entry)) {
1c79356b
A
7491 vm_map_unlock(dst_map);
7492 return(KERN_INVALID_ADDRESS);
7493 }
7494 if (tmp_entry->in_transition) {
7495 entry->needs_wakeup = TRUE;
7496 vm_map_entry_wait(dst_map, THREAD_UNINT);
7497 } else {
7498 break;
7499 }
7500 }
39236c6e
A
7501 vm_map_clip_start(dst_map,
7502 tmp_entry,
7503 vm_map_trunc_page(base_addr,
7504 VM_MAP_PAGE_MASK(dst_map)));
1c79356b
A
7505
7506 entry = tmp_entry;
7507 } /* while */
7508
7509 /*
7510 * Throw away the vm_map_copy object
7511 */
6d2010ae
A
7512 if (discard_on_success)
7513 vm_map_copy_discard(copy);
1c79356b
A
7514
7515 return(KERN_SUCCESS);
7516}/* vm_map_copy_overwrite */
7517
7518kern_return_t
7519vm_map_copy_overwrite(
7520 vm_map_t dst_map,
91447636 7521 vm_map_offset_t dst_addr,
1c79356b
A
7522 vm_map_copy_t copy,
7523 boolean_t interruptible)
7524{
6d2010ae
A
7525 vm_map_size_t head_size, tail_size;
7526 vm_map_copy_t head_copy, tail_copy;
7527 vm_map_offset_t head_addr, tail_addr;
7528 vm_map_entry_t entry;
7529 kern_return_t kr;
7530
7531 head_size = 0;
7532 tail_size = 0;
7533 head_copy = NULL;
7534 tail_copy = NULL;
7535 head_addr = 0;
7536 tail_addr = 0;
7537
7538 if (interruptible ||
7539 copy == VM_MAP_COPY_NULL ||
7540 copy->type != VM_MAP_COPY_ENTRY_LIST) {
7541 /*
7542 * We can't split the "copy" map if we're interruptible
7543 * or if we don't have a "copy" map...
7544 */
7545 blunt_copy:
7546 return vm_map_copy_overwrite_nested(dst_map,
7547 dst_addr,
7548 copy,
7549 interruptible,
7550 (pmap_t) NULL,
7551 TRUE);
7552 }
7553
7554 if (copy->size < 3 * PAGE_SIZE) {
7555 /*
7556 * Too small to bother with optimizing...
7557 */
7558 goto blunt_copy;
7559 }
7560
39236c6e
A
7561 if ((dst_addr & VM_MAP_PAGE_MASK(dst_map)) !=
7562 (copy->offset & VM_MAP_PAGE_MASK(dst_map))) {
6d2010ae
A
7563 /*
7564 * Incompatible mis-alignment of source and destination...
7565 */
7566 goto blunt_copy;
7567 }
7568
7569 /*
7570 * Proper alignment or identical mis-alignment at the beginning.
7571 * Let's try and do a small unaligned copy first (if needed)
7572 * and then an aligned copy for the rest.
7573 */
7574 if (!page_aligned(dst_addr)) {
7575 head_addr = dst_addr;
39236c6e
A
7576 head_size = (VM_MAP_PAGE_SIZE(dst_map) -
7577 (copy->offset & VM_MAP_PAGE_MASK(dst_map)));
6d2010ae
A
7578 }
7579 if (!page_aligned(copy->offset + copy->size)) {
7580 /*
7581 * Mis-alignment at the end.
7582 * Do an aligned copy up to the last page and
7583 * then an unaligned copy for the remaining bytes.
7584 */
39236c6e
A
7585 tail_size = ((copy->offset + copy->size) &
7586 VM_MAP_PAGE_MASK(dst_map));
6d2010ae
A
7587 tail_addr = dst_addr + copy->size - tail_size;
7588 }
7589
7590 if (head_size + tail_size == copy->size) {
7591 /*
7592 * It's all unaligned, no optimization possible...
7593 */
7594 goto blunt_copy;
7595 }
7596
7597 /*
7598 * Can't optimize if there are any submaps in the
7599 * destination due to the way we free the "copy" map
7600 * progressively in vm_map_copy_overwrite_nested()
7601 * in that case.
7602 */
7603 vm_map_lock_read(dst_map);
7604 if (! vm_map_lookup_entry(dst_map, dst_addr, &entry)) {
7605 vm_map_unlock_read(dst_map);
7606 goto blunt_copy;
7607 }
7608 for (;
7609 (entry != vm_map_copy_to_entry(copy) &&
7610 entry->vme_start < dst_addr + copy->size);
7611 entry = entry->vme_next) {
7612 if (entry->is_sub_map) {
7613 vm_map_unlock_read(dst_map);
7614 goto blunt_copy;
7615 }
7616 }
7617 vm_map_unlock_read(dst_map);
7618
7619 if (head_size) {
7620 /*
7621 * Unaligned copy of the first "head_size" bytes, to reach
7622 * a page boundary.
7623 */
7624
7625 /*
7626 * Extract "head_copy" out of "copy".
7627 */
7628 head_copy = (vm_map_copy_t) zalloc(vm_map_copy_zone);
04b8595b 7629 head_copy->c_u.hdr.rb_head_store.rbh_root = (void*)(int)SKIP_RB_TREE;
6d2010ae
A
7630 vm_map_copy_first_entry(head_copy) =
7631 vm_map_copy_to_entry(head_copy);
7632 vm_map_copy_last_entry(head_copy) =
7633 vm_map_copy_to_entry(head_copy);
7634 head_copy->type = VM_MAP_COPY_ENTRY_LIST;
7635 head_copy->cpy_hdr.nentries = 0;
7636 head_copy->cpy_hdr.entries_pageable =
7637 copy->cpy_hdr.entries_pageable;
7638 vm_map_store_init(&head_copy->cpy_hdr);
7639
7640 head_copy->offset = copy->offset;
7641 head_copy->size = head_size;
7642
7643 copy->offset += head_size;
7644 copy->size -= head_size;
7645
7646 entry = vm_map_copy_first_entry(copy);
7647 vm_map_copy_clip_end(copy, entry, copy->offset);
7648 vm_map_copy_entry_unlink(copy, entry);
7649 vm_map_copy_entry_link(head_copy,
7650 vm_map_copy_to_entry(head_copy),
7651 entry);
7652
7653 /*
7654 * Do the unaligned copy.
7655 */
7656 kr = vm_map_copy_overwrite_nested(dst_map,
7657 head_addr,
7658 head_copy,
7659 interruptible,
7660 (pmap_t) NULL,
7661 FALSE);
7662 if (kr != KERN_SUCCESS)
7663 goto done;
7664 }
7665
7666 if (tail_size) {
7667 /*
7668 * Extract "tail_copy" out of "copy".
7669 */
7670 tail_copy = (vm_map_copy_t) zalloc(vm_map_copy_zone);
04b8595b 7671 tail_copy->c_u.hdr.rb_head_store.rbh_root = (void*)(int)SKIP_RB_TREE;
6d2010ae
A
7672 vm_map_copy_first_entry(tail_copy) =
7673 vm_map_copy_to_entry(tail_copy);
7674 vm_map_copy_last_entry(tail_copy) =
7675 vm_map_copy_to_entry(tail_copy);
7676 tail_copy->type = VM_MAP_COPY_ENTRY_LIST;
7677 tail_copy->cpy_hdr.nentries = 0;
7678 tail_copy->cpy_hdr.entries_pageable =
7679 copy->cpy_hdr.entries_pageable;
7680 vm_map_store_init(&tail_copy->cpy_hdr);
7681
7682 tail_copy->offset = copy->offset + copy->size - tail_size;
7683 tail_copy->size = tail_size;
7684
7685 copy->size -= tail_size;
7686
7687 entry = vm_map_copy_last_entry(copy);
7688 vm_map_copy_clip_start(copy, entry, tail_copy->offset);
7689 entry = vm_map_copy_last_entry(copy);
7690 vm_map_copy_entry_unlink(copy, entry);
7691 vm_map_copy_entry_link(tail_copy,
7692 vm_map_copy_last_entry(tail_copy),
7693 entry);
7694 }
7695
7696 /*
7697 * Copy most (or possibly all) of the data.
7698 */
7699 kr = vm_map_copy_overwrite_nested(dst_map,
7700 dst_addr + head_size,
7701 copy,
7702 interruptible,
7703 (pmap_t) NULL,
7704 FALSE);
7705 if (kr != KERN_SUCCESS) {
7706 goto done;
7707 }
7708
7709 if (tail_size) {
7710 kr = vm_map_copy_overwrite_nested(dst_map,
7711 tail_addr,
7712 tail_copy,
7713 interruptible,
7714 (pmap_t) NULL,
7715 FALSE);
7716 }
7717
7718done:
7719 assert(copy->type == VM_MAP_COPY_ENTRY_LIST);
7720 if (kr == KERN_SUCCESS) {
7721 /*
7722 * Discard all the copy maps.
7723 */
7724 if (head_copy) {
7725 vm_map_copy_discard(head_copy);
7726 head_copy = NULL;
7727 }
7728 vm_map_copy_discard(copy);
7729 if (tail_copy) {
7730 vm_map_copy_discard(tail_copy);
7731 tail_copy = NULL;
7732 }
7733 } else {
7734 /*
7735 * Re-assemble the original copy map.
7736 */
7737 if (head_copy) {
7738 entry = vm_map_copy_first_entry(head_copy);
7739 vm_map_copy_entry_unlink(head_copy, entry);
7740 vm_map_copy_entry_link(copy,
7741 vm_map_copy_to_entry(copy),
7742 entry);
7743 copy->offset -= head_size;
7744 copy->size += head_size;
7745 vm_map_copy_discard(head_copy);
7746 head_copy = NULL;
7747 }
7748 if (tail_copy) {
7749 entry = vm_map_copy_last_entry(tail_copy);
7750 vm_map_copy_entry_unlink(tail_copy, entry);
7751 vm_map_copy_entry_link(copy,
7752 vm_map_copy_last_entry(copy),
7753 entry);
7754 copy->size += tail_size;
7755 vm_map_copy_discard(tail_copy);
7756 tail_copy = NULL;
7757 }
7758 }
7759 return kr;
1c79356b
A
7760}
7761
7762
7763/*
91447636 7764 * Routine: vm_map_copy_overwrite_unaligned [internal use only]
1c79356b
A
7765 *
7766 * Decription:
7767 * Physically copy unaligned data
7768 *
7769 * Implementation:
7770 * Unaligned parts of pages have to be physically copied. We use
7771 * a modified form of vm_fault_copy (which understands none-aligned
7772 * page offsets and sizes) to do the copy. We attempt to copy as
7773 * much memory in one go as possibly, however vm_fault_copy copies
7774 * within 1 memory object so we have to find the smaller of "amount left"
7775 * "source object data size" and "target object data size". With
7776 * unaligned data we don't need to split regions, therefore the source
7777 * (copy) object should be one map entry, the target range may be split
7778 * over multiple map entries however. In any event we are pessimistic
7779 * about these assumptions.
7780 *
7781 * Assumptions:
7782 * dst_map is locked on entry and is return locked on success,
7783 * unlocked on error.
7784 */
7785
91447636 7786static kern_return_t
1c79356b
A
7787vm_map_copy_overwrite_unaligned(
7788 vm_map_t dst_map,
7789 vm_map_entry_t entry,
7790 vm_map_copy_t copy,
39236c6e
A
7791 vm_map_offset_t start,
7792 boolean_t discard_on_success)
1c79356b 7793{
39236c6e
A
7794 vm_map_entry_t copy_entry;
7795 vm_map_entry_t copy_entry_next;
1c79356b
A
7796 vm_map_version_t version;
7797 vm_object_t dst_object;
7798 vm_object_offset_t dst_offset;
7799 vm_object_offset_t src_offset;
7800 vm_object_offset_t entry_offset;
91447636
A
7801 vm_map_offset_t entry_end;
7802 vm_map_size_t src_size,
1c79356b
A
7803 dst_size,
7804 copy_size,
7805 amount_left;
7806 kern_return_t kr = KERN_SUCCESS;
7807
39236c6e
A
7808
7809 copy_entry = vm_map_copy_first_entry(copy);
7810
1c79356b
A
7811 vm_map_lock_write_to_read(dst_map);
7812
91447636 7813 src_offset = copy->offset - vm_object_trunc_page(copy->offset);
1c79356b
A
7814 amount_left = copy->size;
7815/*
7816 * unaligned so we never clipped this entry, we need the offset into
7817 * the vm_object not just the data.
7818 */
7819 while (amount_left > 0) {
7820
7821 if (entry == vm_map_to_entry(dst_map)) {
7822 vm_map_unlock_read(dst_map);
7823 return KERN_INVALID_ADDRESS;
7824 }
7825
7826 /* "start" must be within the current map entry */
7827 assert ((start>=entry->vme_start) && (start<entry->vme_end));
7828
7829 dst_offset = start - entry->vme_start;
7830
7831 dst_size = entry->vme_end - start;
7832
7833 src_size = copy_entry->vme_end -
7834 (copy_entry->vme_start + src_offset);
7835
7836 if (dst_size < src_size) {
7837/*
7838 * we can only copy dst_size bytes before
7839 * we have to get the next destination entry
7840 */
7841 copy_size = dst_size;
7842 } else {
7843/*
7844 * we can only copy src_size bytes before
7845 * we have to get the next source copy entry
7846 */
7847 copy_size = src_size;
7848 }
7849
7850 if (copy_size > amount_left) {
7851 copy_size = amount_left;
7852 }
7853/*
7854 * Entry needs copy, create a shadow shadow object for
7855 * Copy on write region.
7856 */
7857 if (entry->needs_copy &&
2d21ac55 7858 ((entry->protection & VM_PROT_WRITE) != 0))
1c79356b
A
7859 {
7860 if (vm_map_lock_read_to_write(dst_map)) {
7861 vm_map_lock_read(dst_map);
7862 goto RetryLookup;
7863 }
3e170ce0
A
7864 VME_OBJECT_SHADOW(entry,
7865 (vm_map_size_t)(entry->vme_end
7866 - entry->vme_start));
1c79356b
A
7867 entry->needs_copy = FALSE;
7868 vm_map_lock_write_to_read(dst_map);
7869 }
3e170ce0 7870 dst_object = VME_OBJECT(entry);
1c79356b
A
7871/*
7872 * unlike with the virtual (aligned) copy we're going
7873 * to fault on it therefore we need a target object.
7874 */
7875 if (dst_object == VM_OBJECT_NULL) {
7876 if (vm_map_lock_read_to_write(dst_map)) {
7877 vm_map_lock_read(dst_map);
7878 goto RetryLookup;
7879 }
91447636 7880 dst_object = vm_object_allocate((vm_map_size_t)
2d21ac55 7881 entry->vme_end - entry->vme_start);
3e170ce0
A
7882 VME_OBJECT(entry) = dst_object;
7883 VME_OFFSET_SET(entry, 0);
fe8ab488 7884 assert(entry->use_pmap);
1c79356b
A
7885 vm_map_lock_write_to_read(dst_map);
7886 }
7887/*
7888 * Take an object reference and unlock map. The "entry" may
7889 * disappear or change when the map is unlocked.
7890 */
7891 vm_object_reference(dst_object);
7892 version.main_timestamp = dst_map->timestamp;
3e170ce0 7893 entry_offset = VME_OFFSET(entry);
1c79356b
A
7894 entry_end = entry->vme_end;
7895 vm_map_unlock_read(dst_map);
7896/*
7897 * Copy as much as possible in one pass
7898 */
7899 kr = vm_fault_copy(
3e170ce0
A
7900 VME_OBJECT(copy_entry),
7901 VME_OFFSET(copy_entry) + src_offset,
1c79356b
A
7902 &copy_size,
7903 dst_object,
7904 entry_offset + dst_offset,
7905 dst_map,
7906 &version,
7907 THREAD_UNINT );
7908
7909 start += copy_size;
7910 src_offset += copy_size;
7911 amount_left -= copy_size;
7912/*
7913 * Release the object reference
7914 */
7915 vm_object_deallocate(dst_object);
7916/*
7917 * If a hard error occurred, return it now
7918 */
7919 if (kr != KERN_SUCCESS)
7920 return kr;
7921
7922 if ((copy_entry->vme_start + src_offset) == copy_entry->vme_end
2d21ac55 7923 || amount_left == 0)
1c79356b
A
7924 {
7925/*
7926 * all done with this copy entry, dispose.
7927 */
39236c6e
A
7928 copy_entry_next = copy_entry->vme_next;
7929
7930 if (discard_on_success) {
7931 vm_map_copy_entry_unlink(copy, copy_entry);
7932 assert(!copy_entry->is_sub_map);
3e170ce0 7933 vm_object_deallocate(VME_OBJECT(copy_entry));
39236c6e
A
7934 vm_map_copy_entry_dispose(copy, copy_entry);
7935 }
1c79356b 7936
39236c6e
A
7937 if (copy_entry_next == vm_map_copy_to_entry(copy) &&
7938 amount_left) {
1c79356b
A
7939/*
7940 * not finished copying but run out of source
7941 */
7942 return KERN_INVALID_ADDRESS;
7943 }
39236c6e
A
7944
7945 copy_entry = copy_entry_next;
7946
1c79356b
A
7947 src_offset = 0;
7948 }
7949
7950 if (amount_left == 0)
7951 return KERN_SUCCESS;
7952
7953 vm_map_lock_read(dst_map);
7954 if (version.main_timestamp == dst_map->timestamp) {
7955 if (start == entry_end) {
7956/*
7957 * destination region is split. Use the version
7958 * information to avoid a lookup in the normal
7959 * case.
7960 */
7961 entry = entry->vme_next;
7962/*
7963 * should be contiguous. Fail if we encounter
7964 * a hole in the destination.
7965 */
7966 if (start != entry->vme_start) {
7967 vm_map_unlock_read(dst_map);
7968 return KERN_INVALID_ADDRESS ;
7969 }
7970 }
7971 } else {
7972/*
7973 * Map version check failed.
7974 * we must lookup the entry because somebody
7975 * might have changed the map behind our backs.
7976 */
2d21ac55 7977 RetryLookup:
1c79356b
A
7978 if (!vm_map_lookup_entry(dst_map, start, &entry))
7979 {
7980 vm_map_unlock_read(dst_map);
7981 return KERN_INVALID_ADDRESS ;
7982 }
7983 }
7984 }/* while */
7985
1c79356b
A
7986 return KERN_SUCCESS;
7987}/* vm_map_copy_overwrite_unaligned */
7988
7989/*
91447636 7990 * Routine: vm_map_copy_overwrite_aligned [internal use only]
1c79356b
A
7991 *
7992 * Description:
7993 * Does all the vm_trickery possible for whole pages.
7994 *
7995 * Implementation:
7996 *
7997 * If there are no permanent objects in the destination,
7998 * and the source and destination map entry zones match,
7999 * and the destination map entry is not shared,
8000 * then the map entries can be deleted and replaced
8001 * with those from the copy. The following code is the
8002 * basic idea of what to do, but there are lots of annoying
8003 * little details about getting protection and inheritance
8004 * right. Should add protection, inheritance, and sharing checks
8005 * to the above pass and make sure that no wiring is involved.
8006 */
8007
e2d2fc5c
A
8008int vm_map_copy_overwrite_aligned_src_not_internal = 0;
8009int vm_map_copy_overwrite_aligned_src_not_symmetric = 0;
8010int vm_map_copy_overwrite_aligned_src_large = 0;
8011
91447636 8012static kern_return_t
1c79356b
A
8013vm_map_copy_overwrite_aligned(
8014 vm_map_t dst_map,
8015 vm_map_entry_t tmp_entry,
8016 vm_map_copy_t copy,
91447636 8017 vm_map_offset_t start,
2d21ac55 8018 __unused pmap_t pmap)
1c79356b
A
8019{
8020 vm_object_t object;
8021 vm_map_entry_t copy_entry;
91447636
A
8022 vm_map_size_t copy_size;
8023 vm_map_size_t size;
1c79356b
A
8024 vm_map_entry_t entry;
8025
8026 while ((copy_entry = vm_map_copy_first_entry(copy))
2d21ac55 8027 != vm_map_copy_to_entry(copy))
1c79356b
A
8028 {
8029 copy_size = (copy_entry->vme_end - copy_entry->vme_start);
8030
8031 entry = tmp_entry;
fe8ab488
A
8032 if (entry->is_sub_map) {
8033 /* unnested when clipped earlier */
8034 assert(!entry->use_pmap);
8035 }
1c79356b
A
8036 if (entry == vm_map_to_entry(dst_map)) {
8037 vm_map_unlock(dst_map);
8038 return KERN_INVALID_ADDRESS;
8039 }
8040 size = (entry->vme_end - entry->vme_start);
8041 /*
8042 * Make sure that no holes popped up in the
8043 * address map, and that the protection is
8044 * still valid, in case the map was unlocked
8045 * earlier.
8046 */
8047
8048 if ((entry->vme_start != start) || ((entry->is_sub_map)
2d21ac55 8049 && !entry->needs_copy)) {
1c79356b
A
8050 vm_map_unlock(dst_map);
8051 return(KERN_INVALID_ADDRESS);
8052 }
8053 assert(entry != vm_map_to_entry(dst_map));
8054
8055 /*
8056 * Check protection again
8057 */
8058
8059 if ( ! (entry->protection & VM_PROT_WRITE)) {
8060 vm_map_unlock(dst_map);
8061 return(KERN_PROTECTION_FAILURE);
8062 }
8063
8064 /*
8065 * Adjust to source size first
8066 */
8067
8068 if (copy_size < size) {
fe8ab488
A
8069 if (entry->map_aligned &&
8070 !VM_MAP_PAGE_ALIGNED(entry->vme_start + copy_size,
8071 VM_MAP_PAGE_MASK(dst_map))) {
8072 /* no longer map-aligned */
8073 entry->map_aligned = FALSE;
8074 }
1c79356b
A
8075 vm_map_clip_end(dst_map, entry, entry->vme_start + copy_size);
8076 size = copy_size;
8077 }
8078
8079 /*
8080 * Adjust to destination size
8081 */
8082
8083 if (size < copy_size) {
8084 vm_map_copy_clip_end(copy, copy_entry,
2d21ac55 8085 copy_entry->vme_start + size);
1c79356b
A
8086 copy_size = size;
8087 }
8088
8089 assert((entry->vme_end - entry->vme_start) == size);
8090 assert((tmp_entry->vme_end - tmp_entry->vme_start) == size);
8091 assert((copy_entry->vme_end - copy_entry->vme_start) == size);
8092
8093 /*
8094 * If the destination contains temporary unshared memory,
8095 * we can perform the copy by throwing it away and
8096 * installing the source data.
8097 */
8098
3e170ce0 8099 object = VME_OBJECT(entry);
1c79356b 8100 if ((!entry->is_shared &&
2d21ac55
A
8101 ((object == VM_OBJECT_NULL) ||
8102 (object->internal && !object->true_share))) ||
1c79356b 8103 entry->needs_copy) {
3e170ce0
A
8104 vm_object_t old_object = VME_OBJECT(entry);
8105 vm_object_offset_t old_offset = VME_OFFSET(entry);
1c79356b
A
8106 vm_object_offset_t offset;
8107
8108 /*
8109 * Ensure that the source and destination aren't
8110 * identical
8111 */
3e170ce0
A
8112 if (old_object == VME_OBJECT(copy_entry) &&
8113 old_offset == VME_OFFSET(copy_entry)) {
1c79356b
A
8114 vm_map_copy_entry_unlink(copy, copy_entry);
8115 vm_map_copy_entry_dispose(copy, copy_entry);
8116
8117 if (old_object != VM_OBJECT_NULL)
8118 vm_object_deallocate(old_object);
8119
8120 start = tmp_entry->vme_end;
8121 tmp_entry = tmp_entry->vme_next;
8122 continue;
8123 }
8124
e2d2fc5c
A
8125#define __TRADEOFF1_OBJ_SIZE (64 * 1024 * 1024) /* 64 MB */
8126#define __TRADEOFF1_COPY_SIZE (128 * 1024) /* 128 KB */
3e170ce0
A
8127 if (VME_OBJECT(copy_entry) != VM_OBJECT_NULL &&
8128 VME_OBJECT(copy_entry)->vo_size >= __TRADEOFF1_OBJ_SIZE &&
e2d2fc5c
A
8129 copy_size <= __TRADEOFF1_COPY_SIZE) {
8130 /*
8131 * Virtual vs. Physical copy tradeoff #1.
8132 *
8133 * Copying only a few pages out of a large
8134 * object: do a physical copy instead of
8135 * a virtual copy, to avoid possibly keeping
8136 * the entire large object alive because of
8137 * those few copy-on-write pages.
8138 */
8139 vm_map_copy_overwrite_aligned_src_large++;
8140 goto slow_copy;
8141 }
e2d2fc5c 8142
3e170ce0
A
8143 if ((dst_map->pmap != kernel_pmap) &&
8144 (VME_ALIAS(entry) >= VM_MEMORY_MALLOC) &&
8145 (VME_ALIAS(entry) <= VM_MEMORY_MALLOC_LARGE_REUSED)) {
ebb1b9f4
A
8146 vm_object_t new_object, new_shadow;
8147
8148 /*
8149 * We're about to map something over a mapping
8150 * established by malloc()...
8151 */
3e170ce0 8152 new_object = VME_OBJECT(copy_entry);
ebb1b9f4
A
8153 if (new_object != VM_OBJECT_NULL) {
8154 vm_object_lock_shared(new_object);
8155 }
8156 while (new_object != VM_OBJECT_NULL &&
e2d2fc5c
A
8157 !new_object->true_share &&
8158 new_object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC &&
ebb1b9f4
A
8159 new_object->internal) {
8160 new_shadow = new_object->shadow;
8161 if (new_shadow == VM_OBJECT_NULL) {
8162 break;
8163 }
8164 vm_object_lock_shared(new_shadow);
8165 vm_object_unlock(new_object);
8166 new_object = new_shadow;
8167 }
8168 if (new_object != VM_OBJECT_NULL) {
8169 if (!new_object->internal) {
8170 /*
8171 * The new mapping is backed
8172 * by an external object. We
8173 * don't want malloc'ed memory
8174 * to be replaced with such a
8175 * non-anonymous mapping, so
8176 * let's go off the optimized
8177 * path...
8178 */
e2d2fc5c 8179 vm_map_copy_overwrite_aligned_src_not_internal++;
ebb1b9f4
A
8180 vm_object_unlock(new_object);
8181 goto slow_copy;
8182 }
e2d2fc5c
A
8183 if (new_object->true_share ||
8184 new_object->copy_strategy != MEMORY_OBJECT_COPY_SYMMETRIC) {
8185 /*
8186 * Same if there's a "true_share"
8187 * object in the shadow chain, or
8188 * an object with a non-default
8189 * (SYMMETRIC) copy strategy.
8190 */
8191 vm_map_copy_overwrite_aligned_src_not_symmetric++;
8192 vm_object_unlock(new_object);
8193 goto slow_copy;
8194 }
ebb1b9f4
A
8195 vm_object_unlock(new_object);
8196 }
8197 /*
8198 * The new mapping is still backed by
8199 * anonymous (internal) memory, so it's
8200 * OK to substitute it for the original
8201 * malloc() mapping.
8202 */
8203 }
8204
1c79356b
A
8205 if (old_object != VM_OBJECT_NULL) {
8206 if(entry->is_sub_map) {
9bccf70c 8207 if(entry->use_pmap) {
0c530ab8 8208#ifndef NO_NESTED_PMAP
9bccf70c 8209 pmap_unnest(dst_map->pmap,
2d21ac55
A
8210 (addr64_t)entry->vme_start,
8211 entry->vme_end - entry->vme_start);
0c530ab8 8212#endif /* NO_NESTED_PMAP */
316670eb 8213 if(dst_map->mapped_in_other_pmaps) {
9bccf70c
A
8214 /* clean up parent */
8215 /* map/maps */
2d21ac55
A
8216 vm_map_submap_pmap_clean(
8217 dst_map, entry->vme_start,
8218 entry->vme_end,
3e170ce0
A
8219 VME_SUBMAP(entry),
8220 VME_OFFSET(entry));
9bccf70c
A
8221 }
8222 } else {
8223 vm_map_submap_pmap_clean(
8224 dst_map, entry->vme_start,
8225 entry->vme_end,
3e170ce0
A
8226 VME_SUBMAP(entry),
8227 VME_OFFSET(entry));
9bccf70c 8228 }
3e170ce0 8229 vm_map_deallocate(VME_SUBMAP(entry));
9bccf70c 8230 } else {
316670eb 8231 if(dst_map->mapped_in_other_pmaps) {
39236c6e 8232 vm_object_pmap_protect_options(
3e170ce0
A
8233 VME_OBJECT(entry),
8234 VME_OFFSET(entry),
9bccf70c 8235 entry->vme_end
2d21ac55 8236 - entry->vme_start,
9bccf70c
A
8237 PMAP_NULL,
8238 entry->vme_start,
39236c6e
A
8239 VM_PROT_NONE,
8240 PMAP_OPTIONS_REMOVE);
9bccf70c 8241 } else {
39236c6e
A
8242 pmap_remove_options(
8243 dst_map->pmap,
8244 (addr64_t)(entry->vme_start),
8245 (addr64_t)(entry->vme_end),
8246 PMAP_OPTIONS_REMOVE);
9bccf70c 8247 }
1c79356b 8248 vm_object_deallocate(old_object);
9bccf70c 8249 }
1c79356b
A
8250 }
8251
8252 entry->is_sub_map = FALSE;
3e170ce0
A
8253 VME_OBJECT_SET(entry, VME_OBJECT(copy_entry));
8254 object = VME_OBJECT(entry);
1c79356b
A
8255 entry->needs_copy = copy_entry->needs_copy;
8256 entry->wired_count = 0;
8257 entry->user_wired_count = 0;
3e170ce0
A
8258 offset = VME_OFFSET(copy_entry);
8259 VME_OFFSET_SET(entry, offset);
1c79356b
A
8260
8261 vm_map_copy_entry_unlink(copy, copy_entry);
8262 vm_map_copy_entry_dispose(copy, copy_entry);
2d21ac55 8263
1c79356b 8264 /*
2d21ac55 8265 * we could try to push pages into the pmap at this point, BUT
1c79356b
A
8266 * this optimization only saved on average 2 us per page if ALL
8267 * the pages in the source were currently mapped
8268 * and ALL the pages in the dest were touched, if there were fewer
8269 * than 2/3 of the pages touched, this optimization actually cost more cycles
2d21ac55 8270 * it also puts a lot of pressure on the pmap layer w/r to mapping structures
1c79356b
A
8271 */
8272
1c79356b
A
8273 /*
8274 * Set up for the next iteration. The map
8275 * has not been unlocked, so the next
8276 * address should be at the end of this
8277 * entry, and the next map entry should be
8278 * the one following it.
8279 */
8280
8281 start = tmp_entry->vme_end;
8282 tmp_entry = tmp_entry->vme_next;
8283 } else {
8284 vm_map_version_t version;
ebb1b9f4
A
8285 vm_object_t dst_object;
8286 vm_object_offset_t dst_offset;
1c79356b
A
8287 kern_return_t r;
8288
ebb1b9f4 8289 slow_copy:
e2d2fc5c 8290 if (entry->needs_copy) {
3e170ce0
A
8291 VME_OBJECT_SHADOW(entry,
8292 (entry->vme_end -
8293 entry->vme_start));
e2d2fc5c
A
8294 entry->needs_copy = FALSE;
8295 }
8296
3e170ce0
A
8297 dst_object = VME_OBJECT(entry);
8298 dst_offset = VME_OFFSET(entry);
ebb1b9f4 8299
1c79356b
A
8300 /*
8301 * Take an object reference, and record
8302 * the map version information so that the
8303 * map can be safely unlocked.
8304 */
8305
ebb1b9f4
A
8306 if (dst_object == VM_OBJECT_NULL) {
8307 /*
8308 * We would usually have just taken the
8309 * optimized path above if the destination
8310 * object has not been allocated yet. But we
8311 * now disable that optimization if the copy
8312 * entry's object is not backed by anonymous
8313 * memory to avoid replacing malloc'ed
8314 * (i.e. re-usable) anonymous memory with a
8315 * not-so-anonymous mapping.
8316 * So we have to handle this case here and
8317 * allocate a new VM object for this map entry.
8318 */
8319 dst_object = vm_object_allocate(
8320 entry->vme_end - entry->vme_start);
8321 dst_offset = 0;
3e170ce0
A
8322 VME_OBJECT_SET(entry, dst_object);
8323 VME_OFFSET_SET(entry, dst_offset);
fe8ab488 8324 assert(entry->use_pmap);
ebb1b9f4
A
8325
8326 }
8327
1c79356b
A
8328 vm_object_reference(dst_object);
8329
9bccf70c
A
8330 /* account for unlock bumping up timestamp */
8331 version.main_timestamp = dst_map->timestamp + 1;
1c79356b
A
8332
8333 vm_map_unlock(dst_map);
8334
8335 /*
8336 * Copy as much as possible in one pass
8337 */
8338
8339 copy_size = size;
8340 r = vm_fault_copy(
3e170ce0
A
8341 VME_OBJECT(copy_entry),
8342 VME_OFFSET(copy_entry),
2d21ac55
A
8343 &copy_size,
8344 dst_object,
8345 dst_offset,
8346 dst_map,
8347 &version,
8348 THREAD_UNINT );
1c79356b
A
8349
8350 /*
8351 * Release the object reference
8352 */
8353
8354 vm_object_deallocate(dst_object);
8355
8356 /*
8357 * If a hard error occurred, return it now
8358 */
8359
8360 if (r != KERN_SUCCESS)
8361 return(r);
8362
8363 if (copy_size != 0) {
8364 /*
8365 * Dispose of the copied region
8366 */
8367
8368 vm_map_copy_clip_end(copy, copy_entry,
2d21ac55 8369 copy_entry->vme_start + copy_size);
1c79356b 8370 vm_map_copy_entry_unlink(copy, copy_entry);
3e170ce0 8371 vm_object_deallocate(VME_OBJECT(copy_entry));
1c79356b
A
8372 vm_map_copy_entry_dispose(copy, copy_entry);
8373 }
8374
8375 /*
8376 * Pick up in the destination map where we left off.
8377 *
8378 * Use the version information to avoid a lookup
8379 * in the normal case.
8380 */
8381
8382 start += copy_size;
8383 vm_map_lock(dst_map);
e2d2fc5c
A
8384 if (version.main_timestamp == dst_map->timestamp &&
8385 copy_size != 0) {
1c79356b
A
8386 /* We can safely use saved tmp_entry value */
8387
fe8ab488
A
8388 if (tmp_entry->map_aligned &&
8389 !VM_MAP_PAGE_ALIGNED(
8390 start,
8391 VM_MAP_PAGE_MASK(dst_map))) {
8392 /* no longer map-aligned */
8393 tmp_entry->map_aligned = FALSE;
8394 }
1c79356b
A
8395 vm_map_clip_end(dst_map, tmp_entry, start);
8396 tmp_entry = tmp_entry->vme_next;
8397 } else {
8398 /* Must do lookup of tmp_entry */
8399
8400 if (!vm_map_lookup_entry(dst_map, start, &tmp_entry)) {
8401 vm_map_unlock(dst_map);
8402 return(KERN_INVALID_ADDRESS);
8403 }
fe8ab488
A
8404 if (tmp_entry->map_aligned &&
8405 !VM_MAP_PAGE_ALIGNED(
8406 start,
8407 VM_MAP_PAGE_MASK(dst_map))) {
8408 /* no longer map-aligned */
8409 tmp_entry->map_aligned = FALSE;
8410 }
1c79356b
A
8411 vm_map_clip_start(dst_map, tmp_entry, start);
8412 }
8413 }
8414 }/* while */
8415
8416 return(KERN_SUCCESS);
8417}/* vm_map_copy_overwrite_aligned */
8418
8419/*
91447636 8420 * Routine: vm_map_copyin_kernel_buffer [internal use only]
1c79356b
A
8421 *
8422 * Description:
8423 * Copy in data to a kernel buffer from space in the
91447636 8424 * source map. The original space may be optionally
1c79356b
A
8425 * deallocated.
8426 *
8427 * If successful, returns a new copy object.
8428 */
91447636 8429static kern_return_t
1c79356b
A
8430vm_map_copyin_kernel_buffer(
8431 vm_map_t src_map,
91447636
A
8432 vm_map_offset_t src_addr,
8433 vm_map_size_t len,
1c79356b
A
8434 boolean_t src_destroy,
8435 vm_map_copy_t *copy_result)
8436{
91447636 8437 kern_return_t kr;
1c79356b 8438 vm_map_copy_t copy;
b0d623f7
A
8439 vm_size_t kalloc_size;
8440
3e170ce0
A
8441 if (len > msg_ool_size_small)
8442 return KERN_INVALID_ARGUMENT;
1c79356b 8443
3e170ce0
A
8444 kalloc_size = (vm_size_t)(cpy_kdata_hdr_sz + len);
8445
8446 copy = (vm_map_copy_t)kalloc(kalloc_size);
8447 if (copy == VM_MAP_COPY_NULL)
1c79356b 8448 return KERN_RESOURCE_SHORTAGE;
1c79356b
A
8449 copy->type = VM_MAP_COPY_KERNEL_BUFFER;
8450 copy->size = len;
8451 copy->offset = 0;
1c79356b 8452
3e170ce0 8453 kr = copyinmap(src_map, src_addr, copy->cpy_kdata, (vm_size_t)len);
91447636
A
8454 if (kr != KERN_SUCCESS) {
8455 kfree(copy, kalloc_size);
8456 return kr;
1c79356b
A
8457 }
8458 if (src_destroy) {
39236c6e
A
8459 (void) vm_map_remove(
8460 src_map,
8461 vm_map_trunc_page(src_addr,
8462 VM_MAP_PAGE_MASK(src_map)),
8463 vm_map_round_page(src_addr + len,
8464 VM_MAP_PAGE_MASK(src_map)),
8465 (VM_MAP_REMOVE_INTERRUPTIBLE |
8466 VM_MAP_REMOVE_WAIT_FOR_KWIRE |
8467 (src_map == kernel_map) ? VM_MAP_REMOVE_KUNWIRE : 0));
1c79356b
A
8468 }
8469 *copy_result = copy;
8470 return KERN_SUCCESS;
8471}
8472
8473/*
91447636 8474 * Routine: vm_map_copyout_kernel_buffer [internal use only]
1c79356b
A
8475 *
8476 * Description:
8477 * Copy out data from a kernel buffer into space in the
8478 * destination map. The space may be otpionally dynamically
8479 * allocated.
8480 *
8481 * If successful, consumes the copy object.
8482 * Otherwise, the caller is responsible for it.
8483 */
91447636
A
8484static int vm_map_copyout_kernel_buffer_failures = 0;
8485static kern_return_t
1c79356b 8486vm_map_copyout_kernel_buffer(
91447636
A
8487 vm_map_t map,
8488 vm_map_address_t *addr, /* IN/OUT */
8489 vm_map_copy_t copy,
39236c6e
A
8490 boolean_t overwrite,
8491 boolean_t consume_on_success)
1c79356b
A
8492{
8493 kern_return_t kr = KERN_SUCCESS;
91447636 8494 thread_t thread = current_thread();
1c79356b 8495
3e170ce0
A
8496 /*
8497 * check for corrupted vm_map_copy structure
8498 */
8499 if (copy->size > msg_ool_size_small || copy->offset)
8500 panic("Invalid vm_map_copy_t sz:%lld, ofst:%lld",
8501 (long long)copy->size, (long long)copy->offset);
8502
1c79356b
A
8503 if (!overwrite) {
8504
8505 /*
8506 * Allocate space in the target map for the data
8507 */
8508 *addr = 0;
8509 kr = vm_map_enter(map,
8510 addr,
39236c6e
A
8511 vm_map_round_page(copy->size,
8512 VM_MAP_PAGE_MASK(map)),
91447636
A
8513 (vm_map_offset_t) 0,
8514 VM_FLAGS_ANYWHERE,
1c79356b
A
8515 VM_OBJECT_NULL,
8516 (vm_object_offset_t) 0,
8517 FALSE,
8518 VM_PROT_DEFAULT,
8519 VM_PROT_ALL,
8520 VM_INHERIT_DEFAULT);
8521 if (kr != KERN_SUCCESS)
91447636 8522 return kr;
1c79356b
A
8523 }
8524
8525 /*
8526 * Copyout the data from the kernel buffer to the target map.
8527 */
91447636 8528 if (thread->map == map) {
1c79356b
A
8529
8530 /*
8531 * If the target map is the current map, just do
8532 * the copy.
8533 */
b0d623f7
A
8534 assert((vm_size_t) copy->size == copy->size);
8535 if (copyout(copy->cpy_kdata, *addr, (vm_size_t) copy->size)) {
91447636 8536 kr = KERN_INVALID_ADDRESS;
1c79356b
A
8537 }
8538 }
8539 else {
8540 vm_map_t oldmap;
8541
8542 /*
8543 * If the target map is another map, assume the
8544 * target's address space identity for the duration
8545 * of the copy.
8546 */
8547 vm_map_reference(map);
8548 oldmap = vm_map_switch(map);
8549
b0d623f7
A
8550 assert((vm_size_t) copy->size == copy->size);
8551 if (copyout(copy->cpy_kdata, *addr, (vm_size_t) copy->size)) {
91447636
A
8552 vm_map_copyout_kernel_buffer_failures++;
8553 kr = KERN_INVALID_ADDRESS;
1c79356b
A
8554 }
8555
8556 (void) vm_map_switch(oldmap);
8557 vm_map_deallocate(map);
8558 }
8559
91447636
A
8560 if (kr != KERN_SUCCESS) {
8561 /* the copy failed, clean up */
8562 if (!overwrite) {
8563 /*
8564 * Deallocate the space we allocated in the target map.
8565 */
39236c6e
A
8566 (void) vm_map_remove(
8567 map,
8568 vm_map_trunc_page(*addr,
8569 VM_MAP_PAGE_MASK(map)),
8570 vm_map_round_page((*addr +
8571 vm_map_round_page(copy->size,
8572 VM_MAP_PAGE_MASK(map))),
8573 VM_MAP_PAGE_MASK(map)),
8574 VM_MAP_NO_FLAGS);
91447636
A
8575 *addr = 0;
8576 }
8577 } else {
8578 /* copy was successful, dicard the copy structure */
39236c6e 8579 if (consume_on_success) {
3e170ce0 8580 kfree(copy, copy->size + cpy_kdata_hdr_sz);
39236c6e 8581 }
91447636 8582 }
1c79356b 8583
91447636 8584 return kr;
1c79356b
A
8585}
8586
8587/*
8588 * Macro: vm_map_copy_insert
8589 *
8590 * Description:
8591 * Link a copy chain ("copy") into a map at the
8592 * specified location (after "where").
8593 * Side effects:
8594 * The copy chain is destroyed.
8595 * Warning:
8596 * The arguments are evaluated multiple times.
8597 */
8598#define vm_map_copy_insert(map, where, copy) \
8599MACRO_BEGIN \
6d2010ae
A
8600 vm_map_store_copy_insert(map, where, copy); \
8601 zfree(vm_map_copy_zone, copy); \
1c79356b
A
8602MACRO_END
8603
39236c6e
A
8604void
8605vm_map_copy_remap(
8606 vm_map_t map,
8607 vm_map_entry_t where,
8608 vm_map_copy_t copy,
8609 vm_map_offset_t adjustment,
8610 vm_prot_t cur_prot,
8611 vm_prot_t max_prot,
8612 vm_inherit_t inheritance)
8613{
8614 vm_map_entry_t copy_entry, new_entry;
8615
8616 for (copy_entry = vm_map_copy_first_entry(copy);
8617 copy_entry != vm_map_copy_to_entry(copy);
8618 copy_entry = copy_entry->vme_next) {
8619 /* get a new VM map entry for the map */
8620 new_entry = vm_map_entry_create(map,
8621 !map->hdr.entries_pageable);
8622 /* copy the "copy entry" to the new entry */
8623 vm_map_entry_copy(new_entry, copy_entry);
8624 /* adjust "start" and "end" */
8625 new_entry->vme_start += adjustment;
8626 new_entry->vme_end += adjustment;
8627 /* clear some attributes */
8628 new_entry->inheritance = inheritance;
8629 new_entry->protection = cur_prot;
8630 new_entry->max_protection = max_prot;
8631 new_entry->behavior = VM_BEHAVIOR_DEFAULT;
8632 /* take an extra reference on the entry's "object" */
8633 if (new_entry->is_sub_map) {
fe8ab488 8634 assert(!new_entry->use_pmap); /* not nested */
3e170ce0
A
8635 vm_map_lock(VME_SUBMAP(new_entry));
8636 vm_map_reference(VME_SUBMAP(new_entry));
8637 vm_map_unlock(VME_SUBMAP(new_entry));
39236c6e 8638 } else {
3e170ce0 8639 vm_object_reference(VME_OBJECT(new_entry));
39236c6e
A
8640 }
8641 /* insert the new entry in the map */
8642 vm_map_store_entry_link(map, where, new_entry);
8643 /* continue inserting the "copy entries" after the new entry */
8644 where = new_entry;
8645 }
8646}
8647
2dced7af
A
8648
8649boolean_t
8650vm_map_copy_validate_size(
8651 vm_map_t dst_map,
8652 vm_map_copy_t copy,
8653 vm_map_size_t size)
8654{
8655 if (copy == VM_MAP_COPY_NULL)
8656 return FALSE;
8657 switch (copy->type) {
8658 case VM_MAP_COPY_OBJECT:
8659 case VM_MAP_COPY_KERNEL_BUFFER:
8660 if (size == copy->size)
8661 return TRUE;
8662 break;
8663 case VM_MAP_COPY_ENTRY_LIST:
8664 /*
8665 * potential page-size rounding prevents us from exactly
8666 * validating this flavor of vm_map_copy, but we can at least
8667 * assert that it's within a range.
8668 */
8669 if (copy->size >= size &&
8670 copy->size <= vm_map_round_page(size,
8671 VM_MAP_PAGE_MASK(dst_map)))
8672 return TRUE;
8673 break;
8674 default:
8675 break;
8676 }
8677 return FALSE;
8678}
8679
8680
1c79356b
A
8681/*
8682 * Routine: vm_map_copyout
8683 *
8684 * Description:
8685 * Copy out a copy chain ("copy") into newly-allocated
8686 * space in the destination map.
8687 *
8688 * If successful, consumes the copy object.
8689 * Otherwise, the caller is responsible for it.
8690 */
39236c6e 8691
1c79356b
A
8692kern_return_t
8693vm_map_copyout(
91447636
A
8694 vm_map_t dst_map,
8695 vm_map_address_t *dst_addr, /* OUT */
8696 vm_map_copy_t copy)
39236c6e
A
8697{
8698 return vm_map_copyout_internal(dst_map, dst_addr, copy,
8699 TRUE, /* consume_on_success */
8700 VM_PROT_DEFAULT,
8701 VM_PROT_ALL,
8702 VM_INHERIT_DEFAULT);
8703}
8704
8705kern_return_t
8706vm_map_copyout_internal(
8707 vm_map_t dst_map,
8708 vm_map_address_t *dst_addr, /* OUT */
8709 vm_map_copy_t copy,
8710 boolean_t consume_on_success,
8711 vm_prot_t cur_protection,
8712 vm_prot_t max_protection,
8713 vm_inherit_t inheritance)
1c79356b 8714{
91447636
A
8715 vm_map_size_t size;
8716 vm_map_size_t adjustment;
8717 vm_map_offset_t start;
1c79356b
A
8718 vm_object_offset_t vm_copy_start;
8719 vm_map_entry_t last;
1c79356b 8720 vm_map_entry_t entry;
3e170ce0 8721 vm_map_entry_t hole_entry;
1c79356b
A
8722
8723 /*
8724 * Check for null copy object.
8725 */
8726
8727 if (copy == VM_MAP_COPY_NULL) {
8728 *dst_addr = 0;
8729 return(KERN_SUCCESS);
8730 }
8731
8732 /*
8733 * Check for special copy object, created
8734 * by vm_map_copyin_object.
8735 */
8736
8737 if (copy->type == VM_MAP_COPY_OBJECT) {
8738 vm_object_t object = copy->cpy_object;
8739 kern_return_t kr;
8740 vm_object_offset_t offset;
8741
91447636 8742 offset = vm_object_trunc_page(copy->offset);
39236c6e
A
8743 size = vm_map_round_page((copy->size +
8744 (vm_map_size_t)(copy->offset -
8745 offset)),
8746 VM_MAP_PAGE_MASK(dst_map));
1c79356b
A
8747 *dst_addr = 0;
8748 kr = vm_map_enter(dst_map, dst_addr, size,
91447636 8749 (vm_map_offset_t) 0, VM_FLAGS_ANYWHERE,
1c79356b
A
8750 object, offset, FALSE,
8751 VM_PROT_DEFAULT, VM_PROT_ALL,
8752 VM_INHERIT_DEFAULT);
8753 if (kr != KERN_SUCCESS)
8754 return(kr);
8755 /* Account for non-pagealigned copy object */
91447636 8756 *dst_addr += (vm_map_offset_t)(copy->offset - offset);
39236c6e
A
8757 if (consume_on_success)
8758 zfree(vm_map_copy_zone, copy);
1c79356b
A
8759 return(KERN_SUCCESS);
8760 }
8761
8762 /*
8763 * Check for special kernel buffer allocated
8764 * by new_ipc_kmsg_copyin.
8765 */
8766
8767 if (copy->type == VM_MAP_COPY_KERNEL_BUFFER) {
39236c6e
A
8768 return vm_map_copyout_kernel_buffer(dst_map, dst_addr,
8769 copy, FALSE,
8770 consume_on_success);
1c79356b
A
8771 }
8772
39236c6e 8773
1c79356b
A
8774 /*
8775 * Find space for the data
8776 */
8777
39236c6e
A
8778 vm_copy_start = vm_map_trunc_page((vm_map_size_t)copy->offset,
8779 VM_MAP_COPY_PAGE_MASK(copy));
8780 size = vm_map_round_page((vm_map_size_t)copy->offset + copy->size,
8781 VM_MAP_COPY_PAGE_MASK(copy))
2d21ac55 8782 - vm_copy_start;
1c79356b 8783
39236c6e 8784
2d21ac55 8785StartAgain: ;
1c79356b
A
8786
8787 vm_map_lock(dst_map);
6d2010ae
A
8788 if( dst_map->disable_vmentry_reuse == TRUE) {
8789 VM_MAP_HIGHEST_ENTRY(dst_map, entry, start);
8790 last = entry;
8791 } else {
3e170ce0
A
8792 if (dst_map->holelistenabled) {
8793 hole_entry = (vm_map_entry_t)dst_map->holes_list;
8794
8795 if (hole_entry == NULL) {
8796 /*
8797 * No more space in the map?
8798 */
8799 vm_map_unlock(dst_map);
8800 return(KERN_NO_SPACE);
8801 }
8802
8803 last = hole_entry;
8804 start = last->vme_start;
8805 } else {
8806 assert(first_free_is_valid(dst_map));
8807 start = ((last = dst_map->first_free) == vm_map_to_entry(dst_map)) ?
8808 vm_map_min(dst_map) : last->vme_end;
8809 }
39236c6e
A
8810 start = vm_map_round_page(start,
8811 VM_MAP_PAGE_MASK(dst_map));
6d2010ae 8812 }
1c79356b
A
8813
8814 while (TRUE) {
8815 vm_map_entry_t next = last->vme_next;
91447636 8816 vm_map_offset_t end = start + size;
1c79356b
A
8817
8818 if ((end > dst_map->max_offset) || (end < start)) {
8819 if (dst_map->wait_for_space) {
8820 if (size <= (dst_map->max_offset - dst_map->min_offset)) {
8821 assert_wait((event_t) dst_map,
8822 THREAD_INTERRUPTIBLE);
8823 vm_map_unlock(dst_map);
91447636 8824 thread_block(THREAD_CONTINUE_NULL);
1c79356b
A
8825 goto StartAgain;
8826 }
8827 }
8828 vm_map_unlock(dst_map);
8829 return(KERN_NO_SPACE);
8830 }
8831
3e170ce0
A
8832 if (dst_map->holelistenabled) {
8833 if (last->vme_end >= end)
8834 break;
8835 } else {
8836 /*
8837 * If there are no more entries, we must win.
8838 *
8839 * OR
8840 *
8841 * If there is another entry, it must be
8842 * after the end of the potential new region.
8843 */
8844
8845 if (next == vm_map_to_entry(dst_map))
8846 break;
8847
8848 if (next->vme_start >= end)
8849 break;
8850 }
1c79356b
A
8851
8852 last = next;
3e170ce0
A
8853
8854 if (dst_map->holelistenabled) {
8855 if (last == (vm_map_entry_t) dst_map->holes_list) {
8856 /*
8857 * Wrapped around
8858 */
8859 vm_map_unlock(dst_map);
8860 return(KERN_NO_SPACE);
8861 }
8862 start = last->vme_start;
8863 } else {
8864 start = last->vme_end;
8865 }
39236c6e
A
8866 start = vm_map_round_page(start,
8867 VM_MAP_PAGE_MASK(dst_map));
8868 }
8869
3e170ce0
A
8870 if (dst_map->holelistenabled) {
8871 if (vm_map_lookup_entry(dst_map, last->vme_start, &last)) {
8872 panic("Found an existing entry (%p) instead of potential hole at address: 0x%llx.\n", last, (unsigned long long)last->vme_start);
8873 }
8874 }
8875
8876
39236c6e
A
8877 adjustment = start - vm_copy_start;
8878 if (! consume_on_success) {
8879 /*
8880 * We're not allowed to consume "copy", so we'll have to
8881 * copy its map entries into the destination map below.
8882 * No need to re-allocate map entries from the correct
8883 * (pageable or not) zone, since we'll get new map entries
8884 * during the transfer.
8885 * We'll also adjust the map entries's "start" and "end"
8886 * during the transfer, to keep "copy"'s entries consistent
8887 * with its "offset".
8888 */
8889 goto after_adjustments;
1c79356b
A
8890 }
8891
8892 /*
8893 * Since we're going to just drop the map
8894 * entries from the copy into the destination
8895 * map, they must come from the same pool.
8896 */
8897
8898 if (copy->cpy_hdr.entries_pageable != dst_map->hdr.entries_pageable) {
2d21ac55
A
8899 /*
8900 * Mismatches occur when dealing with the default
8901 * pager.
8902 */
8903 zone_t old_zone;
8904 vm_map_entry_t next, new;
8905
8906 /*
8907 * Find the zone that the copies were allocated from
8908 */
7ddcb079 8909
2d21ac55
A
8910 entry = vm_map_copy_first_entry(copy);
8911
8912 /*
8913 * Reinitialize the copy so that vm_map_copy_entry_link
8914 * will work.
8915 */
6d2010ae 8916 vm_map_store_copy_reset(copy, entry);
2d21ac55 8917 copy->cpy_hdr.entries_pageable = dst_map->hdr.entries_pageable;
2d21ac55
A
8918
8919 /*
8920 * Copy each entry.
8921 */
8922 while (entry != vm_map_copy_to_entry(copy)) {
7ddcb079 8923 new = vm_map_copy_entry_create(copy, !copy->cpy_hdr.entries_pageable);
2d21ac55 8924 vm_map_entry_copy_full(new, entry);
fe8ab488
A
8925 assert(!new->iokit_acct);
8926 if (new->is_sub_map) {
8927 /* clr address space specifics */
8928 new->use_pmap = FALSE;
8929 }
2d21ac55
A
8930 vm_map_copy_entry_link(copy,
8931 vm_map_copy_last_entry(copy),
8932 new);
8933 next = entry->vme_next;
7ddcb079 8934 old_zone = entry->from_reserved_zone ? vm_map_entry_reserved_zone : vm_map_entry_zone;
2d21ac55
A
8935 zfree(old_zone, entry);
8936 entry = next;
8937 }
1c79356b
A
8938 }
8939
8940 /*
8941 * Adjust the addresses in the copy chain, and
8942 * reset the region attributes.
8943 */
8944
1c79356b
A
8945 for (entry = vm_map_copy_first_entry(copy);
8946 entry != vm_map_copy_to_entry(copy);
8947 entry = entry->vme_next) {
39236c6e
A
8948 if (VM_MAP_PAGE_SHIFT(dst_map) == PAGE_SHIFT) {
8949 /*
8950 * We're injecting this copy entry into a map that
8951 * has the standard page alignment, so clear
8952 * "map_aligned" (which might have been inherited
8953 * from the original map entry).
8954 */
8955 entry->map_aligned = FALSE;
8956 }
8957
1c79356b
A
8958 entry->vme_start += adjustment;
8959 entry->vme_end += adjustment;
8960
39236c6e
A
8961 if (entry->map_aligned) {
8962 assert(VM_MAP_PAGE_ALIGNED(entry->vme_start,
8963 VM_MAP_PAGE_MASK(dst_map)));
8964 assert(VM_MAP_PAGE_ALIGNED(entry->vme_end,
8965 VM_MAP_PAGE_MASK(dst_map)));
8966 }
8967
1c79356b
A
8968 entry->inheritance = VM_INHERIT_DEFAULT;
8969 entry->protection = VM_PROT_DEFAULT;
8970 entry->max_protection = VM_PROT_ALL;
8971 entry->behavior = VM_BEHAVIOR_DEFAULT;
8972
8973 /*
8974 * If the entry is now wired,
8975 * map the pages into the destination map.
8976 */
8977 if (entry->wired_count != 0) {
2d21ac55
A
8978 register vm_map_offset_t va;
8979 vm_object_offset_t offset;
8980 register vm_object_t object;
8981 vm_prot_t prot;
8982 int type_of_fault;
1c79356b 8983
3e170ce0
A
8984 object = VME_OBJECT(entry);
8985 offset = VME_OFFSET(entry);
2d21ac55 8986 va = entry->vme_start;
1c79356b 8987
2d21ac55
A
8988 pmap_pageable(dst_map->pmap,
8989 entry->vme_start,
8990 entry->vme_end,
8991 TRUE);
1c79356b 8992
2d21ac55
A
8993 while (va < entry->vme_end) {
8994 register vm_page_t m;
1c79356b 8995
2d21ac55
A
8996 /*
8997 * Look up the page in the object.
8998 * Assert that the page will be found in the
8999 * top object:
9000 * either
9001 * the object was newly created by
9002 * vm_object_copy_slowly, and has
9003 * copies of all of the pages from
9004 * the source object
9005 * or
9006 * the object was moved from the old
9007 * map entry; because the old map
9008 * entry was wired, all of the pages
9009 * were in the top-level object.
9010 * (XXX not true if we wire pages for
9011 * reading)
9012 */
9013 vm_object_lock(object);
91447636 9014
2d21ac55 9015 m = vm_page_lookup(object, offset);
b0d623f7 9016 if (m == VM_PAGE_NULL || !VM_PAGE_WIRED(m) ||
2d21ac55
A
9017 m->absent)
9018 panic("vm_map_copyout: wiring %p", m);
1c79356b 9019
2d21ac55
A
9020 /*
9021 * ENCRYPTED SWAP:
9022 * The page is assumed to be wired here, so it
9023 * shouldn't be encrypted. Otherwise, we
9024 * couldn't enter it in the page table, since
9025 * we don't want the user to see the encrypted
9026 * data.
9027 */
9028 ASSERT_PAGE_DECRYPTED(m);
1c79356b 9029
2d21ac55 9030 prot = entry->protection;
1c79356b 9031
3e170ce0
A
9032 if (override_nx(dst_map, VME_ALIAS(entry)) &&
9033 prot)
2d21ac55 9034 prot |= VM_PROT_EXECUTE;
1c79356b 9035
2d21ac55 9036 type_of_fault = DBG_CACHE_HIT_FAULT;
1c79356b 9037
6d2010ae 9038 vm_fault_enter(m, dst_map->pmap, va, prot, prot,
fe8ab488 9039 VM_PAGE_WIRED(m), FALSE, FALSE,
3e170ce0 9040 FALSE, VME_ALIAS(entry),
fe8ab488
A
9041 ((entry->iokit_acct ||
9042 (!entry->is_sub_map &&
9043 !entry->use_pmap))
9044 ? PMAP_OPTIONS_ALT_ACCT
9045 : 0),
9046 NULL, &type_of_fault);
1c79356b 9047
2d21ac55 9048 vm_object_unlock(object);
1c79356b 9049
2d21ac55
A
9050 offset += PAGE_SIZE_64;
9051 va += PAGE_SIZE;
1c79356b
A
9052 }
9053 }
9054 }
9055
39236c6e
A
9056after_adjustments:
9057
1c79356b
A
9058 /*
9059 * Correct the page alignment for the result
9060 */
9061
9062 *dst_addr = start + (copy->offset - vm_copy_start);
9063
9064 /*
9065 * Update the hints and the map size
9066 */
9067
39236c6e
A
9068 if (consume_on_success) {
9069 SAVE_HINT_MAP_WRITE(dst_map, vm_map_copy_last_entry(copy));
9070 } else {
9071 SAVE_HINT_MAP_WRITE(dst_map, last);
9072 }
1c79356b
A
9073
9074 dst_map->size += size;
9075
9076 /*
9077 * Link in the copy
9078 */
9079
39236c6e
A
9080 if (consume_on_success) {
9081 vm_map_copy_insert(dst_map, last, copy);
9082 } else {
9083 vm_map_copy_remap(dst_map, last, copy, adjustment,
9084 cur_protection, max_protection,
9085 inheritance);
9086 }
1c79356b
A
9087
9088 vm_map_unlock(dst_map);
9089
9090 /*
9091 * XXX If wiring_required, call vm_map_pageable
9092 */
9093
9094 return(KERN_SUCCESS);
9095}
9096
1c79356b
A
9097/*
9098 * Routine: vm_map_copyin
9099 *
9100 * Description:
2d21ac55
A
9101 * see vm_map_copyin_common. Exported via Unsupported.exports.
9102 *
9103 */
9104
9105#undef vm_map_copyin
9106
9107kern_return_t
9108vm_map_copyin(
9109 vm_map_t src_map,
9110 vm_map_address_t src_addr,
9111 vm_map_size_t len,
9112 boolean_t src_destroy,
9113 vm_map_copy_t *copy_result) /* OUT */
9114{
9115 return(vm_map_copyin_common(src_map, src_addr, len, src_destroy,
9116 FALSE, copy_result, FALSE));
9117}
9118
9119/*
9120 * Routine: vm_map_copyin_common
9121 *
9122 * Description:
1c79356b
A
9123 * Copy the specified region (src_addr, len) from the
9124 * source address space (src_map), possibly removing
9125 * the region from the source address space (src_destroy).
9126 *
9127 * Returns:
9128 * A vm_map_copy_t object (copy_result), suitable for
9129 * insertion into another address space (using vm_map_copyout),
9130 * copying over another address space region (using
9131 * vm_map_copy_overwrite). If the copy is unused, it
9132 * should be destroyed (using vm_map_copy_discard).
9133 *
9134 * In/out conditions:
9135 * The source map should not be locked on entry.
9136 */
9137
9138typedef struct submap_map {
9139 vm_map_t parent_map;
91447636
A
9140 vm_map_offset_t base_start;
9141 vm_map_offset_t base_end;
2d21ac55 9142 vm_map_size_t base_len;
1c79356b
A
9143 struct submap_map *next;
9144} submap_map_t;
9145
9146kern_return_t
9147vm_map_copyin_common(
9148 vm_map_t src_map,
91447636
A
9149 vm_map_address_t src_addr,
9150 vm_map_size_t len,
1c79356b 9151 boolean_t src_destroy,
91447636 9152 __unused boolean_t src_volatile,
1c79356b
A
9153 vm_map_copy_t *copy_result, /* OUT */
9154 boolean_t use_maxprot)
9155{
1c79356b
A
9156 vm_map_entry_t tmp_entry; /* Result of last map lookup --
9157 * in multi-level lookup, this
9158 * entry contains the actual
9159 * vm_object/offset.
9160 */
9161 register
9162 vm_map_entry_t new_entry = VM_MAP_ENTRY_NULL; /* Map entry for copy */
9163
91447636 9164 vm_map_offset_t src_start; /* Start of current entry --
1c79356b
A
9165 * where copy is taking place now
9166 */
91447636 9167 vm_map_offset_t src_end; /* End of entire region to be
1c79356b 9168 * copied */
2d21ac55 9169 vm_map_offset_t src_base;
91447636 9170 vm_map_t base_map = src_map;
1c79356b
A
9171 boolean_t map_share=FALSE;
9172 submap_map_t *parent_maps = NULL;
9173
9174 register
9175 vm_map_copy_t copy; /* Resulting copy */
fe8ab488
A
9176 vm_map_address_t copy_addr;
9177 vm_map_size_t copy_size;
1c79356b
A
9178
9179 /*
9180 * Check for copies of zero bytes.
9181 */
9182
9183 if (len == 0) {
9184 *copy_result = VM_MAP_COPY_NULL;
9185 return(KERN_SUCCESS);
9186 }
9187
4a249263
A
9188 /*
9189 * Check that the end address doesn't overflow
9190 */
9191 src_end = src_addr + len;
9192 if (src_end < src_addr)
9193 return KERN_INVALID_ADDRESS;
9194
1c79356b
A
9195 /*
9196 * If the copy is sufficiently small, use a kernel buffer instead
9197 * of making a virtual copy. The theory being that the cost of
9198 * setting up VM (and taking C-O-W faults) dominates the copy costs
9199 * for small regions.
9200 */
9201 if ((len < msg_ool_size_small) && !use_maxprot)
2d21ac55
A
9202 return vm_map_copyin_kernel_buffer(src_map, src_addr, len,
9203 src_destroy, copy_result);
1c79356b
A
9204
9205 /*
4a249263 9206 * Compute (page aligned) start and end of region
1c79356b 9207 */
39236c6e
A
9208 src_start = vm_map_trunc_page(src_addr,
9209 VM_MAP_PAGE_MASK(src_map));
9210 src_end = vm_map_round_page(src_end,
9211 VM_MAP_PAGE_MASK(src_map));
1c79356b 9212
b0d623f7 9213 XPR(XPR_VM_MAP, "vm_map_copyin_common map 0x%x addr 0x%x len 0x%x dest %d\n", src_map, src_addr, len, src_destroy, 0);
1c79356b 9214
1c79356b
A
9215 /*
9216 * Allocate a header element for the list.
9217 *
9218 * Use the start and end in the header to
9219 * remember the endpoints prior to rounding.
9220 */
9221
9222 copy = (vm_map_copy_t) zalloc(vm_map_copy_zone);
04b8595b 9223 copy->c_u.hdr.rb_head_store.rbh_root = (void*)(int)SKIP_RB_TREE;
1c79356b 9224 vm_map_copy_first_entry(copy) =
2d21ac55 9225 vm_map_copy_last_entry(copy) = vm_map_copy_to_entry(copy);
1c79356b
A
9226 copy->type = VM_MAP_COPY_ENTRY_LIST;
9227 copy->cpy_hdr.nentries = 0;
9228 copy->cpy_hdr.entries_pageable = TRUE;
39236c6e
A
9229#if 00
9230 copy->cpy_hdr.page_shift = src_map->hdr.page_shift;
9231#else
9232 /*
9233 * The copy entries can be broken down for a variety of reasons,
9234 * so we can't guarantee that they will remain map-aligned...
9235 * Will need to adjust the first copy_entry's "vme_start" and
9236 * the last copy_entry's "vme_end" to be rounded to PAGE_MASK
9237 * rather than the original map's alignment.
9238 */
9239 copy->cpy_hdr.page_shift = PAGE_SHIFT;
9240#endif
1c79356b 9241
6d2010ae
A
9242 vm_map_store_init( &(copy->cpy_hdr) );
9243
1c79356b
A
9244 copy->offset = src_addr;
9245 copy->size = len;
9246
7ddcb079 9247 new_entry = vm_map_copy_entry_create(copy, !copy->cpy_hdr.entries_pageable);
1c79356b
A
9248
9249#define RETURN(x) \
9250 MACRO_BEGIN \
9251 vm_map_unlock(src_map); \
9bccf70c
A
9252 if(src_map != base_map) \
9253 vm_map_deallocate(src_map); \
1c79356b
A
9254 if (new_entry != VM_MAP_ENTRY_NULL) \
9255 vm_map_copy_entry_dispose(copy,new_entry); \
9256 vm_map_copy_discard(copy); \
9257 { \
91447636 9258 submap_map_t *_ptr; \
1c79356b 9259 \
91447636 9260 for(_ptr = parent_maps; _ptr != NULL; _ptr = parent_maps) { \
1c79356b 9261 parent_maps=parent_maps->next; \
91447636
A
9262 if (_ptr->parent_map != base_map) \
9263 vm_map_deallocate(_ptr->parent_map); \
9264 kfree(_ptr, sizeof(submap_map_t)); \
1c79356b
A
9265 } \
9266 } \
9267 MACRO_RETURN(x); \
9268 MACRO_END
9269
9270 /*
9271 * Find the beginning of the region.
9272 */
9273
9274 vm_map_lock(src_map);
9275
fe8ab488
A
9276 /*
9277 * Lookup the original "src_addr" rather than the truncated
9278 * "src_start", in case "src_start" falls in a non-map-aligned
9279 * map entry *before* the map entry that contains "src_addr"...
9280 */
9281 if (!vm_map_lookup_entry(src_map, src_addr, &tmp_entry))
1c79356b
A
9282 RETURN(KERN_INVALID_ADDRESS);
9283 if(!tmp_entry->is_sub_map) {
fe8ab488
A
9284 /*
9285 * ... but clip to the map-rounded "src_start" rather than
9286 * "src_addr" to preserve map-alignment. We'll adjust the
9287 * first copy entry at the end, if needed.
9288 */
1c79356b
A
9289 vm_map_clip_start(src_map, tmp_entry, src_start);
9290 }
fe8ab488
A
9291 if (src_start < tmp_entry->vme_start) {
9292 /*
9293 * Move "src_start" up to the start of the
9294 * first map entry to copy.
9295 */
9296 src_start = tmp_entry->vme_start;
9297 }
1c79356b
A
9298 /* set for later submap fix-up */
9299 copy_addr = src_start;
9300
9301 /*
9302 * Go through entries until we get to the end.
9303 */
9304
9305 while (TRUE) {
9306 register
9307 vm_map_entry_t src_entry = tmp_entry; /* Top-level entry */
91447636 9308 vm_map_size_t src_size; /* Size of source
1c79356b
A
9309 * map entry (in both
9310 * maps)
9311 */
9312
9313 register
9314 vm_object_t src_object; /* Object to copy */
9315 vm_object_offset_t src_offset;
9316
9317 boolean_t src_needs_copy; /* Should source map
9318 * be made read-only
9319 * for copy-on-write?
9320 */
9321
9322 boolean_t new_entry_needs_copy; /* Will new entry be COW? */
9323
9324 boolean_t was_wired; /* Was source wired? */
9325 vm_map_version_t version; /* Version before locks
9326 * dropped to make copy
9327 */
9328 kern_return_t result; /* Return value from
9329 * copy_strategically.
9330 */
9331 while(tmp_entry->is_sub_map) {
91447636 9332 vm_map_size_t submap_len;
1c79356b
A
9333 submap_map_t *ptr;
9334
9335 ptr = (submap_map_t *)kalloc(sizeof(submap_map_t));
9336 ptr->next = parent_maps;
9337 parent_maps = ptr;
9338 ptr->parent_map = src_map;
9339 ptr->base_start = src_start;
9340 ptr->base_end = src_end;
9341 submap_len = tmp_entry->vme_end - src_start;
9342 if(submap_len > (src_end-src_start))
9343 submap_len = src_end-src_start;
2d21ac55 9344 ptr->base_len = submap_len;
1c79356b
A
9345
9346 src_start -= tmp_entry->vme_start;
3e170ce0 9347 src_start += VME_OFFSET(tmp_entry);
1c79356b 9348 src_end = src_start + submap_len;
3e170ce0 9349 src_map = VME_SUBMAP(tmp_entry);
1c79356b 9350 vm_map_lock(src_map);
9bccf70c
A
9351 /* keep an outstanding reference for all maps in */
9352 /* the parents tree except the base map */
9353 vm_map_reference(src_map);
1c79356b
A
9354 vm_map_unlock(ptr->parent_map);
9355 if (!vm_map_lookup_entry(
2d21ac55 9356 src_map, src_start, &tmp_entry))
1c79356b
A
9357 RETURN(KERN_INVALID_ADDRESS);
9358 map_share = TRUE;
9359 if(!tmp_entry->is_sub_map)
2d21ac55 9360 vm_map_clip_start(src_map, tmp_entry, src_start);
1c79356b
A
9361 src_entry = tmp_entry;
9362 }
2d21ac55
A
9363 /* we are now in the lowest level submap... */
9364
3e170ce0
A
9365 if ((VME_OBJECT(tmp_entry) != VM_OBJECT_NULL) &&
9366 (VME_OBJECT(tmp_entry)->phys_contiguous)) {
55e303ae
A
9367 /* This is not, supported for now.In future */
9368 /* we will need to detect the phys_contig */
9369 /* condition and then upgrade copy_slowly */
9370 /* to do physical copy from the device mem */
9371 /* based object. We can piggy-back off of */
9372 /* the was wired boolean to set-up the */
9373 /* proper handling */
0b4e3aa0
A
9374 RETURN(KERN_PROTECTION_FAILURE);
9375 }
1c79356b
A
9376 /*
9377 * Create a new address map entry to hold the result.
9378 * Fill in the fields from the appropriate source entries.
9379 * We must unlock the source map to do this if we need
9380 * to allocate a map entry.
9381 */
9382 if (new_entry == VM_MAP_ENTRY_NULL) {
2d21ac55
A
9383 version.main_timestamp = src_map->timestamp;
9384 vm_map_unlock(src_map);
1c79356b 9385
7ddcb079 9386 new_entry = vm_map_copy_entry_create(copy, !copy->cpy_hdr.entries_pageable);
1c79356b 9387
2d21ac55
A
9388 vm_map_lock(src_map);
9389 if ((version.main_timestamp + 1) != src_map->timestamp) {
9390 if (!vm_map_lookup_entry(src_map, src_start,
9391 &tmp_entry)) {
9392 RETURN(KERN_INVALID_ADDRESS);
9393 }
9394 if (!tmp_entry->is_sub_map)
9395 vm_map_clip_start(src_map, tmp_entry, src_start);
9396 continue; /* restart w/ new tmp_entry */
1c79356b 9397 }
1c79356b
A
9398 }
9399
9400 /*
9401 * Verify that the region can be read.
9402 */
9403 if (((src_entry->protection & VM_PROT_READ) == VM_PROT_NONE &&
2d21ac55 9404 !use_maxprot) ||
1c79356b
A
9405 (src_entry->max_protection & VM_PROT_READ) == 0)
9406 RETURN(KERN_PROTECTION_FAILURE);
9407
9408 /*
9409 * Clip against the endpoints of the entire region.
9410 */
9411
9412 vm_map_clip_end(src_map, src_entry, src_end);
9413
9414 src_size = src_entry->vme_end - src_start;
3e170ce0
A
9415 src_object = VME_OBJECT(src_entry);
9416 src_offset = VME_OFFSET(src_entry);
1c79356b
A
9417 was_wired = (src_entry->wired_count != 0);
9418
9419 vm_map_entry_copy(new_entry, src_entry);
fe8ab488
A
9420 if (new_entry->is_sub_map) {
9421 /* clr address space specifics */
9422 new_entry->use_pmap = FALSE;
9423 }
1c79356b
A
9424
9425 /*
9426 * Attempt non-blocking copy-on-write optimizations.
9427 */
9428
9429 if (src_destroy &&
9430 (src_object == VM_OBJECT_NULL ||
2d21ac55
A
9431 (src_object->internal && !src_object->true_share
9432 && !map_share))) {
9433 /*
9434 * If we are destroying the source, and the object
9435 * is internal, we can move the object reference
9436 * from the source to the copy. The copy is
9437 * copy-on-write only if the source is.
9438 * We make another reference to the object, because
9439 * destroying the source entry will deallocate it.
9440 */
9441 vm_object_reference(src_object);
1c79356b 9442
2d21ac55
A
9443 /*
9444 * Copy is always unwired. vm_map_copy_entry
9445 * set its wired count to zero.
9446 */
1c79356b 9447
2d21ac55 9448 goto CopySuccessful;
1c79356b
A
9449 }
9450
9451
2d21ac55 9452 RestartCopy:
1c79356b 9453 XPR(XPR_VM_MAP, "vm_map_copyin_common src_obj 0x%x ent 0x%x obj 0x%x was_wired %d\n",
3e170ce0 9454 src_object, new_entry, VME_OBJECT(new_entry),
1c79356b 9455 was_wired, 0);
55e303ae 9456 if ((src_object == VM_OBJECT_NULL ||
2d21ac55
A
9457 (!was_wired && !map_share && !tmp_entry->is_shared)) &&
9458 vm_object_copy_quickly(
3e170ce0 9459 &VME_OBJECT(new_entry),
2d21ac55
A
9460 src_offset,
9461 src_size,
9462 &src_needs_copy,
9463 &new_entry_needs_copy)) {
1c79356b
A
9464
9465 new_entry->needs_copy = new_entry_needs_copy;
9466
9467 /*
9468 * Handle copy-on-write obligations
9469 */
9470
9471 if (src_needs_copy && !tmp_entry->needs_copy) {
0c530ab8
A
9472 vm_prot_t prot;
9473
9474 prot = src_entry->protection & ~VM_PROT_WRITE;
2d21ac55 9475
3e170ce0
A
9476 if (override_nx(src_map, VME_ALIAS(src_entry))
9477 && prot)
0c530ab8 9478 prot |= VM_PROT_EXECUTE;
2d21ac55 9479
55e303ae
A
9480 vm_object_pmap_protect(
9481 src_object,
9482 src_offset,
9483 src_size,
9484 (src_entry->is_shared ?
2d21ac55
A
9485 PMAP_NULL
9486 : src_map->pmap),
55e303ae 9487 src_entry->vme_start,
0c530ab8
A
9488 prot);
9489
3e170ce0 9490 assert(tmp_entry->wired_count == 0);
55e303ae 9491 tmp_entry->needs_copy = TRUE;
1c79356b
A
9492 }
9493
9494 /*
9495 * The map has never been unlocked, so it's safe
9496 * to move to the next entry rather than doing
9497 * another lookup.
9498 */
9499
9500 goto CopySuccessful;
9501 }
9502
1c79356b
A
9503 /*
9504 * Take an object reference, so that we may
9505 * release the map lock(s).
9506 */
9507
9508 assert(src_object != VM_OBJECT_NULL);
9509 vm_object_reference(src_object);
9510
9511 /*
9512 * Record the timestamp for later verification.
9513 * Unlock the map.
9514 */
9515
9516 version.main_timestamp = src_map->timestamp;
9bccf70c 9517 vm_map_unlock(src_map); /* Increments timestamp once! */
1c79356b
A
9518
9519 /*
9520 * Perform the copy
9521 */
9522
9523 if (was_wired) {
55e303ae 9524 CopySlowly:
1c79356b
A
9525 vm_object_lock(src_object);
9526 result = vm_object_copy_slowly(
2d21ac55
A
9527 src_object,
9528 src_offset,
9529 src_size,
9530 THREAD_UNINT,
3e170ce0
A
9531 &VME_OBJECT(new_entry));
9532 VME_OFFSET_SET(new_entry, 0);
1c79356b 9533 new_entry->needs_copy = FALSE;
55e303ae
A
9534
9535 }
9536 else if (src_object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC &&
2d21ac55 9537 (tmp_entry->is_shared || map_share)) {
55e303ae
A
9538 vm_object_t new_object;
9539
2d21ac55 9540 vm_object_lock_shared(src_object);
55e303ae 9541 new_object = vm_object_copy_delayed(
2d21ac55
A
9542 src_object,
9543 src_offset,
9544 src_size,
9545 TRUE);
55e303ae
A
9546 if (new_object == VM_OBJECT_NULL)
9547 goto CopySlowly;
9548
3e170ce0
A
9549 VME_OBJECT_SET(new_entry, new_object);
9550 assert(new_entry->wired_count == 0);
55e303ae 9551 new_entry->needs_copy = TRUE;
fe8ab488
A
9552 assert(!new_entry->iokit_acct);
9553 assert(new_object->purgable == VM_PURGABLE_DENY);
9554 new_entry->use_pmap = TRUE;
55e303ae
A
9555 result = KERN_SUCCESS;
9556
1c79356b 9557 } else {
3e170ce0
A
9558 vm_object_offset_t new_offset;
9559 new_offset = VME_OFFSET(new_entry);
1c79356b 9560 result = vm_object_copy_strategically(src_object,
2d21ac55
A
9561 src_offset,
9562 src_size,
3e170ce0
A
9563 &VME_OBJECT(new_entry),
9564 &new_offset,
2d21ac55 9565 &new_entry_needs_copy);
3e170ce0
A
9566 if (new_offset != VME_OFFSET(new_entry)) {
9567 VME_OFFSET_SET(new_entry, new_offset);
9568 }
1c79356b
A
9569
9570 new_entry->needs_copy = new_entry_needs_copy;
1c79356b
A
9571 }
9572
9573 if (result != KERN_SUCCESS &&
9574 result != KERN_MEMORY_RESTART_COPY) {
9575 vm_map_lock(src_map);
9576 RETURN(result);
9577 }
9578
9579 /*
9580 * Throw away the extra reference
9581 */
9582
9583 vm_object_deallocate(src_object);
9584
9585 /*
9586 * Verify that the map has not substantially
9587 * changed while the copy was being made.
9588 */
9589
9bccf70c 9590 vm_map_lock(src_map);
1c79356b
A
9591
9592 if ((version.main_timestamp + 1) == src_map->timestamp)
9593 goto VerificationSuccessful;
9594
9595 /*
9596 * Simple version comparison failed.
9597 *
9598 * Retry the lookup and verify that the
9599 * same object/offset are still present.
9600 *
9601 * [Note: a memory manager that colludes with
9602 * the calling task can detect that we have
9603 * cheated. While the map was unlocked, the
9604 * mapping could have been changed and restored.]
9605 */
9606
9607 if (!vm_map_lookup_entry(src_map, src_start, &tmp_entry)) {
fe8ab488 9608 if (result != KERN_MEMORY_RESTART_COPY) {
3e170ce0
A
9609 vm_object_deallocate(VME_OBJECT(new_entry));
9610 VME_OBJECT_SET(new_entry, VM_OBJECT_NULL);
fe8ab488
A
9611 assert(!new_entry->iokit_acct);
9612 new_entry->use_pmap = TRUE;
9613 }
1c79356b
A
9614 RETURN(KERN_INVALID_ADDRESS);
9615 }
9616
9617 src_entry = tmp_entry;
9618 vm_map_clip_start(src_map, src_entry, src_start);
9619
91447636
A
9620 if ((((src_entry->protection & VM_PROT_READ) == VM_PROT_NONE) &&
9621 !use_maxprot) ||
9622 ((src_entry->max_protection & VM_PROT_READ) == 0))
1c79356b
A
9623 goto VerificationFailed;
9624
39236c6e
A
9625 if (src_entry->vme_end < new_entry->vme_end) {
9626 assert(VM_MAP_PAGE_ALIGNED(src_entry->vme_end,
9627 VM_MAP_COPY_PAGE_MASK(copy)));
9628 new_entry->vme_end = src_entry->vme_end;
9629 src_size = new_entry->vme_end - src_start;
9630 }
1c79356b 9631
3e170ce0
A
9632 if ((VME_OBJECT(src_entry) != src_object) ||
9633 (VME_OFFSET(src_entry) != src_offset) ) {
1c79356b
A
9634
9635 /*
9636 * Verification failed.
9637 *
9638 * Start over with this top-level entry.
9639 */
9640
2d21ac55 9641 VerificationFailed: ;
1c79356b 9642
3e170ce0 9643 vm_object_deallocate(VME_OBJECT(new_entry));
1c79356b
A
9644 tmp_entry = src_entry;
9645 continue;
9646 }
9647
9648 /*
9649 * Verification succeeded.
9650 */
9651
2d21ac55 9652 VerificationSuccessful: ;
1c79356b
A
9653
9654 if (result == KERN_MEMORY_RESTART_COPY)
9655 goto RestartCopy;
9656
9657 /*
9658 * Copy succeeded.
9659 */
9660
2d21ac55 9661 CopySuccessful: ;
1c79356b
A
9662
9663 /*
9664 * Link in the new copy entry.
9665 */
9666
9667 vm_map_copy_entry_link(copy, vm_map_copy_last_entry(copy),
9668 new_entry);
9669
9670 /*
9671 * Determine whether the entire region
9672 * has been copied.
9673 */
2d21ac55 9674 src_base = src_start;
1c79356b
A
9675 src_start = new_entry->vme_end;
9676 new_entry = VM_MAP_ENTRY_NULL;
9677 while ((src_start >= src_end) && (src_end != 0)) {
fe8ab488
A
9678 submap_map_t *ptr;
9679
9680 if (src_map == base_map) {
9681 /* back to the top */
1c79356b 9682 break;
fe8ab488
A
9683 }
9684
9685 ptr = parent_maps;
9686 assert(ptr != NULL);
9687 parent_maps = parent_maps->next;
9688
9689 /* fix up the damage we did in that submap */
9690 vm_map_simplify_range(src_map,
9691 src_base,
9692 src_end);
9693
9694 vm_map_unlock(src_map);
9695 vm_map_deallocate(src_map);
9696 vm_map_lock(ptr->parent_map);
9697 src_map = ptr->parent_map;
9698 src_base = ptr->base_start;
9699 src_start = ptr->base_start + ptr->base_len;
9700 src_end = ptr->base_end;
9701 if (!vm_map_lookup_entry(src_map,
9702 src_start,
9703 &tmp_entry) &&
9704 (src_end > src_start)) {
9705 RETURN(KERN_INVALID_ADDRESS);
9706 }
9707 kfree(ptr, sizeof(submap_map_t));
9708 if (parent_maps == NULL)
9709 map_share = FALSE;
9710 src_entry = tmp_entry->vme_prev;
9711 }
9712
9713 if ((VM_MAP_PAGE_SHIFT(src_map) != PAGE_SHIFT) &&
9714 (src_start >= src_addr + len) &&
9715 (src_addr + len != 0)) {
9716 /*
9717 * Stop copying now, even though we haven't reached
9718 * "src_end". We'll adjust the end of the last copy
9719 * entry at the end, if needed.
9720 *
9721 * If src_map's aligment is different from the
9722 * system's page-alignment, there could be
9723 * extra non-map-aligned map entries between
9724 * the original (non-rounded) "src_addr + len"
9725 * and the rounded "src_end".
9726 * We do not want to copy those map entries since
9727 * they're not part of the copied range.
9728 */
9729 break;
1c79356b 9730 }
fe8ab488 9731
1c79356b
A
9732 if ((src_start >= src_end) && (src_end != 0))
9733 break;
9734
9735 /*
9736 * Verify that there are no gaps in the region
9737 */
9738
9739 tmp_entry = src_entry->vme_next;
fe8ab488 9740 if ((tmp_entry->vme_start != src_start) ||
39236c6e 9741 (tmp_entry == vm_map_to_entry(src_map))) {
1c79356b 9742 RETURN(KERN_INVALID_ADDRESS);
39236c6e 9743 }
1c79356b
A
9744 }
9745
9746 /*
9747 * If the source should be destroyed, do it now, since the
9748 * copy was successful.
9749 */
9750 if (src_destroy) {
39236c6e
A
9751 (void) vm_map_delete(
9752 src_map,
9753 vm_map_trunc_page(src_addr,
9754 VM_MAP_PAGE_MASK(src_map)),
9755 src_end,
9756 ((src_map == kernel_map) ?
9757 VM_MAP_REMOVE_KUNWIRE :
9758 VM_MAP_NO_FLAGS),
9759 VM_MAP_NULL);
2d21ac55
A
9760 } else {
9761 /* fix up the damage we did in the base map */
39236c6e
A
9762 vm_map_simplify_range(
9763 src_map,
9764 vm_map_trunc_page(src_addr,
9765 VM_MAP_PAGE_MASK(src_map)),
9766 vm_map_round_page(src_end,
9767 VM_MAP_PAGE_MASK(src_map)));
1c79356b
A
9768 }
9769
9770 vm_map_unlock(src_map);
9771
39236c6e 9772 if (VM_MAP_PAGE_SHIFT(src_map) != PAGE_SHIFT) {
fe8ab488
A
9773 vm_map_offset_t original_start, original_offset, original_end;
9774
39236c6e
A
9775 assert(VM_MAP_COPY_PAGE_MASK(copy) == PAGE_MASK);
9776
9777 /* adjust alignment of first copy_entry's "vme_start" */
9778 tmp_entry = vm_map_copy_first_entry(copy);
9779 if (tmp_entry != vm_map_copy_to_entry(copy)) {
9780 vm_map_offset_t adjustment;
fe8ab488
A
9781
9782 original_start = tmp_entry->vme_start;
3e170ce0 9783 original_offset = VME_OFFSET(tmp_entry);
fe8ab488
A
9784
9785 /* map-align the start of the first copy entry... */
9786 adjustment = (tmp_entry->vme_start -
9787 vm_map_trunc_page(
9788 tmp_entry->vme_start,
9789 VM_MAP_PAGE_MASK(src_map)));
9790 tmp_entry->vme_start -= adjustment;
3e170ce0
A
9791 VME_OFFSET_SET(tmp_entry,
9792 VME_OFFSET(tmp_entry) - adjustment);
fe8ab488
A
9793 copy_addr -= adjustment;
9794 assert(tmp_entry->vme_start < tmp_entry->vme_end);
9795 /* ... adjust for mis-aligned start of copy range */
39236c6e
A
9796 adjustment =
9797 (vm_map_trunc_page(copy->offset,
9798 PAGE_MASK) -
9799 vm_map_trunc_page(copy->offset,
9800 VM_MAP_PAGE_MASK(src_map)));
9801 if (adjustment) {
9802 assert(page_aligned(adjustment));
9803 assert(adjustment < VM_MAP_PAGE_SIZE(src_map));
9804 tmp_entry->vme_start += adjustment;
3e170ce0
A
9805 VME_OFFSET_SET(tmp_entry,
9806 (VME_OFFSET(tmp_entry) +
9807 adjustment));
39236c6e
A
9808 copy_addr += adjustment;
9809 assert(tmp_entry->vme_start < tmp_entry->vme_end);
9810 }
fe8ab488
A
9811
9812 /*
9813 * Assert that the adjustments haven't exposed
9814 * more than was originally copied...
9815 */
9816 assert(tmp_entry->vme_start >= original_start);
3e170ce0 9817 assert(VME_OFFSET(tmp_entry) >= original_offset);
fe8ab488
A
9818 /*
9819 * ... and that it did not adjust outside of a
9820 * a single 16K page.
9821 */
9822 assert(vm_map_trunc_page(tmp_entry->vme_start,
9823 VM_MAP_PAGE_MASK(src_map)) ==
9824 vm_map_trunc_page(original_start,
9825 VM_MAP_PAGE_MASK(src_map)));
39236c6e
A
9826 }
9827
9828 /* adjust alignment of last copy_entry's "vme_end" */
9829 tmp_entry = vm_map_copy_last_entry(copy);
9830 if (tmp_entry != vm_map_copy_to_entry(copy)) {
9831 vm_map_offset_t adjustment;
fe8ab488
A
9832
9833 original_end = tmp_entry->vme_end;
9834
9835 /* map-align the end of the last copy entry... */
9836 tmp_entry->vme_end =
9837 vm_map_round_page(tmp_entry->vme_end,
9838 VM_MAP_PAGE_MASK(src_map));
9839 /* ... adjust for mis-aligned end of copy range */
39236c6e
A
9840 adjustment =
9841 (vm_map_round_page((copy->offset +
9842 copy->size),
9843 VM_MAP_PAGE_MASK(src_map)) -
9844 vm_map_round_page((copy->offset +
9845 copy->size),
9846 PAGE_MASK));
9847 if (adjustment) {
9848 assert(page_aligned(adjustment));
9849 assert(adjustment < VM_MAP_PAGE_SIZE(src_map));
9850 tmp_entry->vme_end -= adjustment;
9851 assert(tmp_entry->vme_start < tmp_entry->vme_end);
9852 }
fe8ab488
A
9853
9854 /*
9855 * Assert that the adjustments haven't exposed
9856 * more than was originally copied...
9857 */
9858 assert(tmp_entry->vme_end <= original_end);
9859 /*
9860 * ... and that it did not adjust outside of a
9861 * a single 16K page.
9862 */
9863 assert(vm_map_round_page(tmp_entry->vme_end,
9864 VM_MAP_PAGE_MASK(src_map)) ==
9865 vm_map_round_page(original_end,
9866 VM_MAP_PAGE_MASK(src_map)));
39236c6e
A
9867 }
9868 }
9869
1c79356b
A
9870 /* Fix-up start and end points in copy. This is necessary */
9871 /* when the various entries in the copy object were picked */
9872 /* up from different sub-maps */
9873
9874 tmp_entry = vm_map_copy_first_entry(copy);
fe8ab488 9875 copy_size = 0; /* compute actual size */
1c79356b 9876 while (tmp_entry != vm_map_copy_to_entry(copy)) {
39236c6e
A
9877 assert(VM_MAP_PAGE_ALIGNED(
9878 copy_addr + (tmp_entry->vme_end -
9879 tmp_entry->vme_start),
9880 VM_MAP_COPY_PAGE_MASK(copy)));
9881 assert(VM_MAP_PAGE_ALIGNED(
9882 copy_addr,
9883 VM_MAP_COPY_PAGE_MASK(copy)));
9884
9885 /*
9886 * The copy_entries will be injected directly into the
9887 * destination map and might not be "map aligned" there...
9888 */
9889 tmp_entry->map_aligned = FALSE;
9890
1c79356b
A
9891 tmp_entry->vme_end = copy_addr +
9892 (tmp_entry->vme_end - tmp_entry->vme_start);
9893 tmp_entry->vme_start = copy_addr;
e2d2fc5c 9894 assert(tmp_entry->vme_start < tmp_entry->vme_end);
1c79356b 9895 copy_addr += tmp_entry->vme_end - tmp_entry->vme_start;
fe8ab488 9896 copy_size += tmp_entry->vme_end - tmp_entry->vme_start;
1c79356b
A
9897 tmp_entry = (struct vm_map_entry *)tmp_entry->vme_next;
9898 }
9899
fe8ab488
A
9900 if (VM_MAP_PAGE_SHIFT(src_map) != PAGE_SHIFT &&
9901 copy_size < copy->size) {
9902 /*
9903 * The actual size of the VM map copy is smaller than what
9904 * was requested by the caller. This must be because some
9905 * PAGE_SIZE-sized pages are missing at the end of the last
9906 * VM_MAP_PAGE_SIZE(src_map)-sized chunk of the range.
9907 * The caller might not have been aware of those missing
9908 * pages and might not want to be aware of it, which is
9909 * fine as long as they don't try to access (and crash on)
9910 * those missing pages.
9911 * Let's adjust the size of the "copy", to avoid failing
9912 * in vm_map_copyout() or vm_map_copy_overwrite().
9913 */
9914 assert(vm_map_round_page(copy_size,
9915 VM_MAP_PAGE_MASK(src_map)) ==
9916 vm_map_round_page(copy->size,
9917 VM_MAP_PAGE_MASK(src_map)));
9918 copy->size = copy_size;
9919 }
9920
1c79356b
A
9921 *copy_result = copy;
9922 return(KERN_SUCCESS);
9923
9924#undef RETURN
9925}
9926
39236c6e
A
9927kern_return_t
9928vm_map_copy_extract(
9929 vm_map_t src_map,
9930 vm_map_address_t src_addr,
9931 vm_map_size_t len,
9932 vm_map_copy_t *copy_result, /* OUT */
9933 vm_prot_t *cur_prot, /* OUT */
9934 vm_prot_t *max_prot)
9935{
9936 vm_map_offset_t src_start, src_end;
9937 vm_map_copy_t copy;
9938 kern_return_t kr;
9939
9940 /*
9941 * Check for copies of zero bytes.
9942 */
9943
9944 if (len == 0) {
9945 *copy_result = VM_MAP_COPY_NULL;
9946 return(KERN_SUCCESS);
9947 }
9948
9949 /*
9950 * Check that the end address doesn't overflow
9951 */
9952 src_end = src_addr + len;
9953 if (src_end < src_addr)
9954 return KERN_INVALID_ADDRESS;
9955
9956 /*
9957 * Compute (page aligned) start and end of region
9958 */
9959 src_start = vm_map_trunc_page(src_addr, PAGE_MASK);
9960 src_end = vm_map_round_page(src_end, PAGE_MASK);
9961
9962 /*
9963 * Allocate a header element for the list.
9964 *
9965 * Use the start and end in the header to
9966 * remember the endpoints prior to rounding.
9967 */
9968
9969 copy = (vm_map_copy_t) zalloc(vm_map_copy_zone);
04b8595b 9970 copy->c_u.hdr.rb_head_store.rbh_root = (void*)(int)SKIP_RB_TREE;
39236c6e
A
9971 vm_map_copy_first_entry(copy) =
9972 vm_map_copy_last_entry(copy) = vm_map_copy_to_entry(copy);
9973 copy->type = VM_MAP_COPY_ENTRY_LIST;
9974 copy->cpy_hdr.nentries = 0;
9975 copy->cpy_hdr.entries_pageable = TRUE;
9976
9977 vm_map_store_init(&copy->cpy_hdr);
9978
9979 copy->offset = 0;
9980 copy->size = len;
9981
9982 kr = vm_map_remap_extract(src_map,
9983 src_addr,
9984 len,
9985 FALSE, /* copy */
9986 &copy->cpy_hdr,
9987 cur_prot,
9988 max_prot,
9989 VM_INHERIT_SHARE,
9990 TRUE); /* pageable */
9991 if (kr != KERN_SUCCESS) {
9992 vm_map_copy_discard(copy);
9993 return kr;
9994 }
9995
9996 *copy_result = copy;
9997 return KERN_SUCCESS;
9998}
9999
1c79356b
A
10000/*
10001 * vm_map_copyin_object:
10002 *
10003 * Create a copy object from an object.
10004 * Our caller donates an object reference.
10005 */
10006
10007kern_return_t
10008vm_map_copyin_object(
10009 vm_object_t object,
10010 vm_object_offset_t offset, /* offset of region in object */
10011 vm_object_size_t size, /* size of region in object */
10012 vm_map_copy_t *copy_result) /* OUT */
10013{
10014 vm_map_copy_t copy; /* Resulting copy */
10015
10016 /*
10017 * We drop the object into a special copy object
10018 * that contains the object directly.
10019 */
10020
10021 copy = (vm_map_copy_t) zalloc(vm_map_copy_zone);
04b8595b 10022 copy->c_u.hdr.rb_head_store.rbh_root = (void*)(int)SKIP_RB_TREE;
1c79356b
A
10023 copy->type = VM_MAP_COPY_OBJECT;
10024 copy->cpy_object = object;
1c79356b
A
10025 copy->offset = offset;
10026 copy->size = size;
10027
10028 *copy_result = copy;
10029 return(KERN_SUCCESS);
10030}
10031
91447636 10032static void
1c79356b
A
10033vm_map_fork_share(
10034 vm_map_t old_map,
10035 vm_map_entry_t old_entry,
10036 vm_map_t new_map)
10037{
10038 vm_object_t object;
10039 vm_map_entry_t new_entry;
1c79356b
A
10040
10041 /*
10042 * New sharing code. New map entry
10043 * references original object. Internal
10044 * objects use asynchronous copy algorithm for
10045 * future copies. First make sure we have
10046 * the right object. If we need a shadow,
10047 * or someone else already has one, then
10048 * make a new shadow and share it.
10049 */
10050
3e170ce0 10051 object = VME_OBJECT(old_entry);
1c79356b
A
10052 if (old_entry->is_sub_map) {
10053 assert(old_entry->wired_count == 0);
0c530ab8 10054#ifndef NO_NESTED_PMAP
1c79356b 10055 if(old_entry->use_pmap) {
91447636
A
10056 kern_return_t result;
10057
1c79356b 10058 result = pmap_nest(new_map->pmap,
3e170ce0 10059 (VME_SUBMAP(old_entry))->pmap,
2d21ac55
A
10060 (addr64_t)old_entry->vme_start,
10061 (addr64_t)old_entry->vme_start,
10062 (uint64_t)(old_entry->vme_end - old_entry->vme_start));
1c79356b
A
10063 if(result)
10064 panic("vm_map_fork_share: pmap_nest failed!");
10065 }
0c530ab8 10066#endif /* NO_NESTED_PMAP */
1c79356b 10067 } else if (object == VM_OBJECT_NULL) {
91447636 10068 object = vm_object_allocate((vm_map_size_t)(old_entry->vme_end -
2d21ac55 10069 old_entry->vme_start));
3e170ce0
A
10070 VME_OFFSET_SET(old_entry, 0);
10071 VME_OBJECT_SET(old_entry, object);
fe8ab488 10072 old_entry->use_pmap = TRUE;
1c79356b
A
10073 assert(!old_entry->needs_copy);
10074 } else if (object->copy_strategy !=
2d21ac55 10075 MEMORY_OBJECT_COPY_SYMMETRIC) {
1c79356b
A
10076
10077 /*
10078 * We are already using an asymmetric
10079 * copy, and therefore we already have
10080 * the right object.
10081 */
10082
10083 assert(! old_entry->needs_copy);
10084 }
10085 else if (old_entry->needs_copy || /* case 1 */
10086 object->shadowed || /* case 2 */
10087 (!object->true_share && /* case 3 */
2d21ac55 10088 !old_entry->is_shared &&
6d2010ae 10089 (object->vo_size >
2d21ac55
A
10090 (vm_map_size_t)(old_entry->vme_end -
10091 old_entry->vme_start)))) {
1c79356b
A
10092
10093 /*
10094 * We need to create a shadow.
10095 * There are three cases here.
10096 * In the first case, we need to
10097 * complete a deferred symmetrical
10098 * copy that we participated in.
10099 * In the second and third cases,
10100 * we need to create the shadow so
10101 * that changes that we make to the
10102 * object do not interfere with
10103 * any symmetrical copies which
10104 * have occured (case 2) or which
10105 * might occur (case 3).
10106 *
10107 * The first case is when we had
10108 * deferred shadow object creation
10109 * via the entry->needs_copy mechanism.
10110 * This mechanism only works when
10111 * only one entry points to the source
10112 * object, and we are about to create
10113 * a second entry pointing to the
10114 * same object. The problem is that
10115 * there is no way of mapping from
10116 * an object to the entries pointing
10117 * to it. (Deferred shadow creation
10118 * works with one entry because occurs
10119 * at fault time, and we walk from the
10120 * entry to the object when handling
10121 * the fault.)
10122 *
10123 * The second case is when the object
10124 * to be shared has already been copied
10125 * with a symmetric copy, but we point
10126 * directly to the object without
10127 * needs_copy set in our entry. (This
10128 * can happen because different ranges
10129 * of an object can be pointed to by
10130 * different entries. In particular,
10131 * a single entry pointing to an object
10132 * can be split by a call to vm_inherit,
10133 * which, combined with task_create, can
10134 * result in the different entries
10135 * having different needs_copy values.)
10136 * The shadowed flag in the object allows
10137 * us to detect this case. The problem
10138 * with this case is that if this object
10139 * has or will have shadows, then we
10140 * must not perform an asymmetric copy
10141 * of this object, since such a copy
10142 * allows the object to be changed, which
10143 * will break the previous symmetrical
10144 * copies (which rely upon the object
10145 * not changing). In a sense, the shadowed
10146 * flag says "don't change this object".
10147 * We fix this by creating a shadow
10148 * object for this object, and sharing
10149 * that. This works because we are free
10150 * to change the shadow object (and thus
10151 * to use an asymmetric copy strategy);
10152 * this is also semantically correct,
10153 * since this object is temporary, and
10154 * therefore a copy of the object is
10155 * as good as the object itself. (This
10156 * is not true for permanent objects,
10157 * since the pager needs to see changes,
10158 * which won't happen if the changes
10159 * are made to a copy.)
10160 *
10161 * The third case is when the object
10162 * to be shared has parts sticking
10163 * outside of the entry we're working
10164 * with, and thus may in the future
10165 * be subject to a symmetrical copy.
10166 * (This is a preemptive version of
10167 * case 2.)
10168 */
3e170ce0
A
10169 VME_OBJECT_SHADOW(old_entry,
10170 (vm_map_size_t) (old_entry->vme_end -
10171 old_entry->vme_start));
1c79356b
A
10172
10173 /*
10174 * If we're making a shadow for other than
10175 * copy on write reasons, then we have
10176 * to remove write permission.
10177 */
10178
1c79356b
A
10179 if (!old_entry->needs_copy &&
10180 (old_entry->protection & VM_PROT_WRITE)) {
0c530ab8
A
10181 vm_prot_t prot;
10182
10183 prot = old_entry->protection & ~VM_PROT_WRITE;
2d21ac55 10184
3e170ce0 10185 if (override_nx(old_map, VME_ALIAS(old_entry)) && prot)
0c530ab8 10186 prot |= VM_PROT_EXECUTE;
2d21ac55 10187
316670eb 10188 if (old_map->mapped_in_other_pmaps) {
9bccf70c 10189 vm_object_pmap_protect(
3e170ce0
A
10190 VME_OBJECT(old_entry),
10191 VME_OFFSET(old_entry),
9bccf70c 10192 (old_entry->vme_end -
2d21ac55 10193 old_entry->vme_start),
9bccf70c
A
10194 PMAP_NULL,
10195 old_entry->vme_start,
0c530ab8 10196 prot);
1c79356b 10197 } else {
9bccf70c 10198 pmap_protect(old_map->pmap,
2d21ac55
A
10199 old_entry->vme_start,
10200 old_entry->vme_end,
10201 prot);
1c79356b
A
10202 }
10203 }
10204
10205 old_entry->needs_copy = FALSE;
3e170ce0 10206 object = VME_OBJECT(old_entry);
1c79356b 10207 }
6d2010ae 10208
1c79356b
A
10209
10210 /*
10211 * If object was using a symmetric copy strategy,
10212 * change its copy strategy to the default
10213 * asymmetric copy strategy, which is copy_delay
10214 * in the non-norma case and copy_call in the
10215 * norma case. Bump the reference count for the
10216 * new entry.
10217 */
10218
10219 if(old_entry->is_sub_map) {
3e170ce0
A
10220 vm_map_lock(VME_SUBMAP(old_entry));
10221 vm_map_reference(VME_SUBMAP(old_entry));
10222 vm_map_unlock(VME_SUBMAP(old_entry));
1c79356b
A
10223 } else {
10224 vm_object_lock(object);
2d21ac55 10225 vm_object_reference_locked(object);
1c79356b
A
10226 if (object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC) {
10227 object->copy_strategy = MEMORY_OBJECT_COPY_DELAY;
10228 }
10229 vm_object_unlock(object);
10230 }
10231
10232 /*
10233 * Clone the entry, using object ref from above.
10234 * Mark both entries as shared.
10235 */
10236
7ddcb079
A
10237 new_entry = vm_map_entry_create(new_map, FALSE); /* Never the kernel
10238 * map or descendants */
1c79356b
A
10239 vm_map_entry_copy(new_entry, old_entry);
10240 old_entry->is_shared = TRUE;
10241 new_entry->is_shared = TRUE;
10242
10243 /*
10244 * Insert the entry into the new map -- we
10245 * know we're inserting at the end of the new
10246 * map.
10247 */
10248
6d2010ae 10249 vm_map_store_entry_link(new_map, vm_map_last_entry(new_map), new_entry);
1c79356b
A
10250
10251 /*
10252 * Update the physical map
10253 */
10254
10255 if (old_entry->is_sub_map) {
10256 /* Bill Angell pmap support goes here */
10257 } else {
10258 pmap_copy(new_map->pmap, old_map->pmap, new_entry->vme_start,
2d21ac55
A
10259 old_entry->vme_end - old_entry->vme_start,
10260 old_entry->vme_start);
1c79356b
A
10261 }
10262}
10263
91447636 10264static boolean_t
1c79356b
A
10265vm_map_fork_copy(
10266 vm_map_t old_map,
10267 vm_map_entry_t *old_entry_p,
10268 vm_map_t new_map)
10269{
10270 vm_map_entry_t old_entry = *old_entry_p;
91447636
A
10271 vm_map_size_t entry_size = old_entry->vme_end - old_entry->vme_start;
10272 vm_map_offset_t start = old_entry->vme_start;
1c79356b
A
10273 vm_map_copy_t copy;
10274 vm_map_entry_t last = vm_map_last_entry(new_map);
10275
10276 vm_map_unlock(old_map);
10277 /*
10278 * Use maxprot version of copyin because we
10279 * care about whether this memory can ever
10280 * be accessed, not just whether it's accessible
10281 * right now.
10282 */
10283 if (vm_map_copyin_maxprot(old_map, start, entry_size, FALSE, &copy)
10284 != KERN_SUCCESS) {
10285 /*
10286 * The map might have changed while it
10287 * was unlocked, check it again. Skip
10288 * any blank space or permanently
10289 * unreadable region.
10290 */
10291 vm_map_lock(old_map);
10292 if (!vm_map_lookup_entry(old_map, start, &last) ||
55e303ae 10293 (last->max_protection & VM_PROT_READ) == VM_PROT_NONE) {
1c79356b
A
10294 last = last->vme_next;
10295 }
10296 *old_entry_p = last;
10297
10298 /*
10299 * XXX For some error returns, want to
10300 * XXX skip to the next element. Note
10301 * that INVALID_ADDRESS and
10302 * PROTECTION_FAILURE are handled above.
10303 */
10304
10305 return FALSE;
10306 }
10307
10308 /*
10309 * Insert the copy into the new map
10310 */
10311
10312 vm_map_copy_insert(new_map, last, copy);
10313
10314 /*
10315 * Pick up the traversal at the end of
10316 * the copied region.
10317 */
10318
10319 vm_map_lock(old_map);
10320 start += entry_size;
10321 if (! vm_map_lookup_entry(old_map, start, &last)) {
10322 last = last->vme_next;
10323 } else {
2d21ac55
A
10324 if (last->vme_start == start) {
10325 /*
10326 * No need to clip here and we don't
10327 * want to cause any unnecessary
10328 * unnesting...
10329 */
10330 } else {
10331 vm_map_clip_start(old_map, last, start);
10332 }
1c79356b
A
10333 }
10334 *old_entry_p = last;
10335
10336 return TRUE;
10337}
10338
10339/*
10340 * vm_map_fork:
10341 *
10342 * Create and return a new map based on the old
10343 * map, according to the inheritance values on the
10344 * regions in that map.
10345 *
10346 * The source map must not be locked.
10347 */
10348vm_map_t
10349vm_map_fork(
316670eb 10350 ledger_t ledger,
1c79356b
A
10351 vm_map_t old_map)
10352{
2d21ac55 10353 pmap_t new_pmap;
1c79356b
A
10354 vm_map_t new_map;
10355 vm_map_entry_t old_entry;
91447636 10356 vm_map_size_t new_size = 0, entry_size;
1c79356b
A
10357 vm_map_entry_t new_entry;
10358 boolean_t src_needs_copy;
10359 boolean_t new_entry_needs_copy;
3e170ce0 10360 boolean_t pmap_is64bit;
1c79356b 10361
3e170ce0 10362 pmap_is64bit =
b0d623f7 10363#if defined(__i386__) || defined(__x86_64__)
3e170ce0 10364 old_map->pmap->pm_task_map != TASK_MAP_32BIT;
b0d623f7 10365#else
316670eb 10366#error Unknown architecture.
b0d623f7 10367#endif
3e170ce0
A
10368
10369 new_pmap = pmap_create(ledger, (vm_map_size_t) 0, pmap_is64bit);
2d21ac55 10370
1c79356b
A
10371 vm_map_reference_swap(old_map);
10372 vm_map_lock(old_map);
10373
10374 new_map = vm_map_create(new_pmap,
2d21ac55
A
10375 old_map->min_offset,
10376 old_map->max_offset,
10377 old_map->hdr.entries_pageable);
39236c6e
A
10378 /* inherit the parent map's page size */
10379 vm_map_set_page_shift(new_map, VM_MAP_PAGE_SHIFT(old_map));
1c79356b 10380 for (
2d21ac55
A
10381 old_entry = vm_map_first_entry(old_map);
10382 old_entry != vm_map_to_entry(old_map);
10383 ) {
1c79356b
A
10384
10385 entry_size = old_entry->vme_end - old_entry->vme_start;
10386
10387 switch (old_entry->inheritance) {
10388 case VM_INHERIT_NONE:
10389 break;
10390
10391 case VM_INHERIT_SHARE:
10392 vm_map_fork_share(old_map, old_entry, new_map);
10393 new_size += entry_size;
10394 break;
10395
10396 case VM_INHERIT_COPY:
10397
10398 /*
10399 * Inline the copy_quickly case;
10400 * upon failure, fall back on call
10401 * to vm_map_fork_copy.
10402 */
10403
10404 if(old_entry->is_sub_map)
10405 break;
9bccf70c 10406 if ((old_entry->wired_count != 0) ||
3e170ce0
A
10407 ((VME_OBJECT(old_entry) != NULL) &&
10408 (VME_OBJECT(old_entry)->true_share))) {
1c79356b
A
10409 goto slow_vm_map_fork_copy;
10410 }
10411
7ddcb079 10412 new_entry = vm_map_entry_create(new_map, FALSE); /* never the kernel map or descendants */
1c79356b 10413 vm_map_entry_copy(new_entry, old_entry);
fe8ab488
A
10414 if (new_entry->is_sub_map) {
10415 /* clear address space specifics */
10416 new_entry->use_pmap = FALSE;
10417 }
1c79356b
A
10418
10419 if (! vm_object_copy_quickly(
3e170ce0
A
10420 &VME_OBJECT(new_entry),
10421 VME_OFFSET(old_entry),
2d21ac55
A
10422 (old_entry->vme_end -
10423 old_entry->vme_start),
10424 &src_needs_copy,
10425 &new_entry_needs_copy)) {
1c79356b
A
10426 vm_map_entry_dispose(new_map, new_entry);
10427 goto slow_vm_map_fork_copy;
10428 }
10429
10430 /*
10431 * Handle copy-on-write obligations
10432 */
10433
10434 if (src_needs_copy && !old_entry->needs_copy) {
0c530ab8
A
10435 vm_prot_t prot;
10436
10437 prot = old_entry->protection & ~VM_PROT_WRITE;
2d21ac55 10438
3e170ce0
A
10439 if (override_nx(old_map, VME_ALIAS(old_entry))
10440 && prot)
0c530ab8 10441 prot |= VM_PROT_EXECUTE;
2d21ac55 10442
1c79356b 10443 vm_object_pmap_protect(
3e170ce0
A
10444 VME_OBJECT(old_entry),
10445 VME_OFFSET(old_entry),
1c79356b 10446 (old_entry->vme_end -
2d21ac55 10447 old_entry->vme_start),
1c79356b 10448 ((old_entry->is_shared
316670eb 10449 || old_map->mapped_in_other_pmaps)
2d21ac55
A
10450 ? PMAP_NULL :
10451 old_map->pmap),
1c79356b 10452 old_entry->vme_start,
0c530ab8 10453 prot);
1c79356b 10454
3e170ce0 10455 assert(old_entry->wired_count == 0);
1c79356b
A
10456 old_entry->needs_copy = TRUE;
10457 }
10458 new_entry->needs_copy = new_entry_needs_copy;
10459
10460 /*
10461 * Insert the entry at the end
10462 * of the map.
10463 */
10464
6d2010ae 10465 vm_map_store_entry_link(new_map, vm_map_last_entry(new_map),
1c79356b
A
10466 new_entry);
10467 new_size += entry_size;
10468 break;
10469
10470 slow_vm_map_fork_copy:
10471 if (vm_map_fork_copy(old_map, &old_entry, new_map)) {
10472 new_size += entry_size;
10473 }
10474 continue;
10475 }
10476 old_entry = old_entry->vme_next;
10477 }
10478
fe8ab488 10479
1c79356b
A
10480 new_map->size = new_size;
10481 vm_map_unlock(old_map);
10482 vm_map_deallocate(old_map);
10483
10484 return(new_map);
10485}
10486
2d21ac55
A
10487/*
10488 * vm_map_exec:
10489 *
10490 * Setup the "new_map" with the proper execution environment according
10491 * to the type of executable (platform, 64bit, chroot environment).
10492 * Map the comm page and shared region, etc...
10493 */
10494kern_return_t
10495vm_map_exec(
10496 vm_map_t new_map,
10497 task_t task,
10498 void *fsroot,
10499 cpu_type_t cpu)
10500{
10501 SHARED_REGION_TRACE_DEBUG(
10502 ("shared_region: task %p: vm_map_exec(%p,%p,%p,0x%x): ->\n",
fe8ab488
A
10503 (void *)VM_KERNEL_ADDRPERM(current_task()),
10504 (void *)VM_KERNEL_ADDRPERM(new_map),
10505 (void *)VM_KERNEL_ADDRPERM(task),
10506 (void *)VM_KERNEL_ADDRPERM(fsroot),
10507 cpu));
2d21ac55
A
10508 (void) vm_commpage_enter(new_map, task);
10509 (void) vm_shared_region_enter(new_map, task, fsroot, cpu);
10510 SHARED_REGION_TRACE_DEBUG(
10511 ("shared_region: task %p: vm_map_exec(%p,%p,%p,0x%x): <-\n",
fe8ab488
A
10512 (void *)VM_KERNEL_ADDRPERM(current_task()),
10513 (void *)VM_KERNEL_ADDRPERM(new_map),
10514 (void *)VM_KERNEL_ADDRPERM(task),
10515 (void *)VM_KERNEL_ADDRPERM(fsroot),
10516 cpu));
2d21ac55
A
10517 return KERN_SUCCESS;
10518}
1c79356b
A
10519
10520/*
10521 * vm_map_lookup_locked:
10522 *
10523 * Finds the VM object, offset, and
10524 * protection for a given virtual address in the
10525 * specified map, assuming a page fault of the
10526 * type specified.
10527 *
10528 * Returns the (object, offset, protection) for
10529 * this address, whether it is wired down, and whether
10530 * this map has the only reference to the data in question.
10531 * In order to later verify this lookup, a "version"
10532 * is returned.
10533 *
10534 * The map MUST be locked by the caller and WILL be
10535 * locked on exit. In order to guarantee the
10536 * existence of the returned object, it is returned
10537 * locked.
10538 *
10539 * If a lookup is requested with "write protection"
10540 * specified, the map may be changed to perform virtual
10541 * copying operations, although the data referenced will
10542 * remain the same.
10543 */
10544kern_return_t
10545vm_map_lookup_locked(
10546 vm_map_t *var_map, /* IN/OUT */
2d21ac55 10547 vm_map_offset_t vaddr,
91447636 10548 vm_prot_t fault_type,
2d21ac55 10549 int object_lock_type,
1c79356b
A
10550 vm_map_version_t *out_version, /* OUT */
10551 vm_object_t *object, /* OUT */
10552 vm_object_offset_t *offset, /* OUT */
10553 vm_prot_t *out_prot, /* OUT */
10554 boolean_t *wired, /* OUT */
2d21ac55 10555 vm_object_fault_info_t fault_info, /* OUT */
91447636 10556 vm_map_t *real_map)
1c79356b
A
10557{
10558 vm_map_entry_t entry;
10559 register vm_map_t map = *var_map;
10560 vm_map_t old_map = *var_map;
10561 vm_map_t cow_sub_map_parent = VM_MAP_NULL;
91447636
A
10562 vm_map_offset_t cow_parent_vaddr = 0;
10563 vm_map_offset_t old_start = 0;
10564 vm_map_offset_t old_end = 0;
1c79356b 10565 register vm_prot_t prot;
6d2010ae 10566 boolean_t mask_protections;
fe8ab488 10567 boolean_t force_copy;
6d2010ae
A
10568 vm_prot_t original_fault_type;
10569
10570 /*
10571 * VM_PROT_MASK means that the caller wants us to use "fault_type"
10572 * as a mask against the mapping's actual protections, not as an
10573 * absolute value.
10574 */
10575 mask_protections = (fault_type & VM_PROT_IS_MASK) ? TRUE : FALSE;
fe8ab488
A
10576 force_copy = (fault_type & VM_PROT_COPY) ? TRUE : FALSE;
10577 fault_type &= VM_PROT_ALL;
6d2010ae 10578 original_fault_type = fault_type;
1c79356b 10579
91447636 10580 *real_map = map;
6d2010ae
A
10581
10582RetryLookup:
10583 fault_type = original_fault_type;
1c79356b
A
10584
10585 /*
10586 * If the map has an interesting hint, try it before calling
10587 * full blown lookup routine.
10588 */
1c79356b 10589 entry = map->hint;
1c79356b
A
10590
10591 if ((entry == vm_map_to_entry(map)) ||
10592 (vaddr < entry->vme_start) || (vaddr >= entry->vme_end)) {
10593 vm_map_entry_t tmp_entry;
10594
10595 /*
10596 * Entry was either not a valid hint, or the vaddr
10597 * was not contained in the entry, so do a full lookup.
10598 */
10599 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
10600 if((cow_sub_map_parent) && (cow_sub_map_parent != map))
10601 vm_map_unlock(cow_sub_map_parent);
91447636 10602 if((*real_map != map)
2d21ac55 10603 && (*real_map != cow_sub_map_parent))
91447636 10604 vm_map_unlock(*real_map);
1c79356b
A
10605 return KERN_INVALID_ADDRESS;
10606 }
10607
10608 entry = tmp_entry;
10609 }
10610 if(map == old_map) {
10611 old_start = entry->vme_start;
10612 old_end = entry->vme_end;
10613 }
10614
10615 /*
10616 * Handle submaps. Drop lock on upper map, submap is
10617 * returned locked.
10618 */
10619
10620submap_recurse:
10621 if (entry->is_sub_map) {
91447636
A
10622 vm_map_offset_t local_vaddr;
10623 vm_map_offset_t end_delta;
10624 vm_map_offset_t start_delta;
1c79356b
A
10625 vm_map_entry_t submap_entry;
10626 boolean_t mapped_needs_copy=FALSE;
10627
10628 local_vaddr = vaddr;
10629
2d21ac55 10630 if ((entry->use_pmap && !(fault_type & VM_PROT_WRITE))) {
91447636
A
10631 /* if real_map equals map we unlock below */
10632 if ((*real_map != map) &&
2d21ac55 10633 (*real_map != cow_sub_map_parent))
91447636 10634 vm_map_unlock(*real_map);
3e170ce0 10635 *real_map = VME_SUBMAP(entry);
1c79356b
A
10636 }
10637
2d21ac55 10638 if(entry->needs_copy && (fault_type & VM_PROT_WRITE)) {
1c79356b
A
10639 if (!mapped_needs_copy) {
10640 if (vm_map_lock_read_to_write(map)) {
10641 vm_map_lock_read(map);
99c3a104 10642 *real_map = map;
1c79356b
A
10643 goto RetryLookup;
10644 }
3e170ce0
A
10645 vm_map_lock_read(VME_SUBMAP(entry));
10646 *var_map = VME_SUBMAP(entry);
1c79356b
A
10647 cow_sub_map_parent = map;
10648 /* reset base to map before cow object */
10649 /* this is the map which will accept */
10650 /* the new cow object */
10651 old_start = entry->vme_start;
10652 old_end = entry->vme_end;
10653 cow_parent_vaddr = vaddr;
10654 mapped_needs_copy = TRUE;
10655 } else {
3e170ce0
A
10656 vm_map_lock_read(VME_SUBMAP(entry));
10657 *var_map = VME_SUBMAP(entry);
1c79356b 10658 if((cow_sub_map_parent != map) &&
2d21ac55 10659 (*real_map != map))
1c79356b
A
10660 vm_map_unlock(map);
10661 }
10662 } else {
3e170ce0
A
10663 vm_map_lock_read(VME_SUBMAP(entry));
10664 *var_map = VME_SUBMAP(entry);
1c79356b
A
10665 /* leave map locked if it is a target */
10666 /* cow sub_map above otherwise, just */
10667 /* follow the maps down to the object */
10668 /* here we unlock knowing we are not */
10669 /* revisiting the map. */
91447636 10670 if((*real_map != map) && (map != cow_sub_map_parent))
1c79356b
A
10671 vm_map_unlock_read(map);
10672 }
10673
99c3a104 10674 map = *var_map;
1c79356b
A
10675
10676 /* calculate the offset in the submap for vaddr */
3e170ce0 10677 local_vaddr = (local_vaddr - entry->vme_start) + VME_OFFSET(entry);
1c79356b 10678
2d21ac55 10679 RetrySubMap:
1c79356b
A
10680 if(!vm_map_lookup_entry(map, local_vaddr, &submap_entry)) {
10681 if((cow_sub_map_parent) && (cow_sub_map_parent != map)){
10682 vm_map_unlock(cow_sub_map_parent);
10683 }
91447636 10684 if((*real_map != map)
2d21ac55 10685 && (*real_map != cow_sub_map_parent)) {
91447636 10686 vm_map_unlock(*real_map);
1c79356b 10687 }
91447636 10688 *real_map = map;
1c79356b
A
10689 return KERN_INVALID_ADDRESS;
10690 }
2d21ac55 10691
1c79356b
A
10692 /* find the attenuated shadow of the underlying object */
10693 /* on our target map */
10694
10695 /* in english the submap object may extend beyond the */
10696 /* region mapped by the entry or, may only fill a portion */
10697 /* of it. For our purposes, we only care if the object */
10698 /* doesn't fill. In this case the area which will */
10699 /* ultimately be clipped in the top map will only need */
10700 /* to be as big as the portion of the underlying entry */
10701 /* which is mapped */
3e170ce0
A
10702 start_delta = submap_entry->vme_start > VME_OFFSET(entry) ?
10703 submap_entry->vme_start - VME_OFFSET(entry) : 0;
1c79356b
A
10704
10705 end_delta =
3e170ce0 10706 (VME_OFFSET(entry) + start_delta + (old_end - old_start)) <=
1c79356b 10707 submap_entry->vme_end ?
3e170ce0 10708 0 : (VME_OFFSET(entry) +
2d21ac55
A
10709 (old_end - old_start))
10710 - submap_entry->vme_end;
1c79356b
A
10711
10712 old_start += start_delta;
10713 old_end -= end_delta;
10714
10715 if(submap_entry->is_sub_map) {
10716 entry = submap_entry;
10717 vaddr = local_vaddr;
10718 goto submap_recurse;
10719 }
10720
10721 if(((fault_type & VM_PROT_WRITE) && cow_sub_map_parent)) {
10722
2d21ac55
A
10723 vm_object_t sub_object, copy_object;
10724 vm_object_offset_t copy_offset;
91447636
A
10725 vm_map_offset_t local_start;
10726 vm_map_offset_t local_end;
0b4e3aa0 10727 boolean_t copied_slowly = FALSE;
1c79356b
A
10728
10729 if (vm_map_lock_read_to_write(map)) {
10730 vm_map_lock_read(map);
10731 old_start -= start_delta;
10732 old_end += end_delta;
10733 goto RetrySubMap;
10734 }
0b4e3aa0
A
10735
10736
3e170ce0 10737 sub_object = VME_OBJECT(submap_entry);
2d21ac55
A
10738 if (sub_object == VM_OBJECT_NULL) {
10739 sub_object =
1c79356b 10740 vm_object_allocate(
91447636 10741 (vm_map_size_t)
2d21ac55
A
10742 (submap_entry->vme_end -
10743 submap_entry->vme_start));
3e170ce0
A
10744 VME_OBJECT_SET(submap_entry, sub_object);
10745 VME_OFFSET_SET(submap_entry, 0);
1c79356b
A
10746 }
10747 local_start = local_vaddr -
2d21ac55 10748 (cow_parent_vaddr - old_start);
1c79356b 10749 local_end = local_vaddr +
2d21ac55 10750 (old_end - cow_parent_vaddr);
1c79356b
A
10751 vm_map_clip_start(map, submap_entry, local_start);
10752 vm_map_clip_end(map, submap_entry, local_end);
fe8ab488
A
10753 if (submap_entry->is_sub_map) {
10754 /* unnesting was done when clipping */
10755 assert(!submap_entry->use_pmap);
10756 }
1c79356b
A
10757
10758 /* This is the COW case, lets connect */
10759 /* an entry in our space to the underlying */
10760 /* object in the submap, bypassing the */
10761 /* submap. */
0b4e3aa0
A
10762
10763
2d21ac55 10764 if(submap_entry->wired_count != 0 ||
4a3eedf9
A
10765 (sub_object->copy_strategy ==
10766 MEMORY_OBJECT_COPY_NONE)) {
2d21ac55
A
10767 vm_object_lock(sub_object);
10768 vm_object_copy_slowly(sub_object,
3e170ce0 10769 VME_OFFSET(submap_entry),
2d21ac55
A
10770 (submap_entry->vme_end -
10771 submap_entry->vme_start),
10772 FALSE,
10773 &copy_object);
10774 copied_slowly = TRUE;
0b4e3aa0 10775 } else {
2d21ac55 10776
0b4e3aa0 10777 /* set up shadow object */
2d21ac55 10778 copy_object = sub_object;
0b4e3aa0 10779 vm_object_reference(copy_object);
2d21ac55 10780 sub_object->shadowed = TRUE;
3e170ce0 10781 assert(submap_entry->wired_count == 0);
0b4e3aa0 10782 submap_entry->needs_copy = TRUE;
0c530ab8
A
10783
10784 prot = submap_entry->protection & ~VM_PROT_WRITE;
2d21ac55 10785
3e170ce0
A
10786 if (override_nx(old_map,
10787 VME_ALIAS(submap_entry))
10788 && prot)
0c530ab8 10789 prot |= VM_PROT_EXECUTE;
2d21ac55 10790
0b4e3aa0 10791 vm_object_pmap_protect(
2d21ac55 10792 sub_object,
3e170ce0 10793 VME_OFFSET(submap_entry),
1c79356b 10794 submap_entry->vme_end -
2d21ac55 10795 submap_entry->vme_start,
9bccf70c 10796 (submap_entry->is_shared
316670eb 10797 || map->mapped_in_other_pmaps) ?
2d21ac55 10798 PMAP_NULL : map->pmap,
1c79356b 10799 submap_entry->vme_start,
0c530ab8 10800 prot);
0b4e3aa0 10801 }
1c79356b 10802
2d21ac55
A
10803 /*
10804 * Adjust the fault offset to the submap entry.
10805 */
10806 copy_offset = (local_vaddr -
10807 submap_entry->vme_start +
3e170ce0 10808 VME_OFFSET(submap_entry));
1c79356b
A
10809
10810 /* This works diffently than the */
10811 /* normal submap case. We go back */
10812 /* to the parent of the cow map and*/
10813 /* clip out the target portion of */
10814 /* the sub_map, substituting the */
10815 /* new copy object, */
10816
10817 vm_map_unlock(map);
10818 local_start = old_start;
10819 local_end = old_end;
10820 map = cow_sub_map_parent;
10821 *var_map = cow_sub_map_parent;
10822 vaddr = cow_parent_vaddr;
10823 cow_sub_map_parent = NULL;
10824
2d21ac55
A
10825 if(!vm_map_lookup_entry(map,
10826 vaddr, &entry)) {
10827 vm_object_deallocate(
10828 copy_object);
10829 vm_map_lock_write_to_read(map);
10830 return KERN_INVALID_ADDRESS;
10831 }
10832
10833 /* clip out the portion of space */
10834 /* mapped by the sub map which */
10835 /* corresponds to the underlying */
10836 /* object */
10837
10838 /*
10839 * Clip (and unnest) the smallest nested chunk
10840 * possible around the faulting address...
10841 */
10842 local_start = vaddr & ~(pmap_nesting_size_min - 1);
10843 local_end = local_start + pmap_nesting_size_min;
10844 /*
10845 * ... but don't go beyond the "old_start" to "old_end"
10846 * range, to avoid spanning over another VM region
10847 * with a possibly different VM object and/or offset.
10848 */
10849 if (local_start < old_start) {
10850 local_start = old_start;
10851 }
10852 if (local_end > old_end) {
10853 local_end = old_end;
10854 }
10855 /*
10856 * Adjust copy_offset to the start of the range.
10857 */
10858 copy_offset -= (vaddr - local_start);
10859
1c79356b
A
10860 vm_map_clip_start(map, entry, local_start);
10861 vm_map_clip_end(map, entry, local_end);
fe8ab488
A
10862 if (entry->is_sub_map) {
10863 /* unnesting was done when clipping */
10864 assert(!entry->use_pmap);
10865 }
1c79356b
A
10866
10867 /* substitute copy object for */
10868 /* shared map entry */
3e170ce0 10869 vm_map_deallocate(VME_SUBMAP(entry));
fe8ab488 10870 assert(!entry->iokit_acct);
1c79356b 10871 entry->is_sub_map = FALSE;
fe8ab488 10872 entry->use_pmap = TRUE;
3e170ce0 10873 VME_OBJECT_SET(entry, copy_object);
1c79356b 10874
2d21ac55
A
10875 /* propagate the submap entry's protections */
10876 entry->protection |= submap_entry->protection;
10877 entry->max_protection |= submap_entry->max_protection;
10878
0b4e3aa0 10879 if(copied_slowly) {
3e170ce0 10880 VME_OFFSET_SET(entry, local_start - old_start);
0b4e3aa0
A
10881 entry->needs_copy = FALSE;
10882 entry->is_shared = FALSE;
10883 } else {
3e170ce0
A
10884 VME_OFFSET_SET(entry, copy_offset);
10885 assert(entry->wired_count == 0);
0b4e3aa0
A
10886 entry->needs_copy = TRUE;
10887 if(entry->inheritance == VM_INHERIT_SHARE)
10888 entry->inheritance = VM_INHERIT_COPY;
10889 if (map != old_map)
10890 entry->is_shared = TRUE;
10891 }
1c79356b 10892 if(entry->inheritance == VM_INHERIT_SHARE)
0b4e3aa0 10893 entry->inheritance = VM_INHERIT_COPY;
1c79356b
A
10894
10895 vm_map_lock_write_to_read(map);
10896 } else {
10897 if((cow_sub_map_parent)
2d21ac55
A
10898 && (cow_sub_map_parent != *real_map)
10899 && (cow_sub_map_parent != map)) {
1c79356b
A
10900 vm_map_unlock(cow_sub_map_parent);
10901 }
10902 entry = submap_entry;
10903 vaddr = local_vaddr;
10904 }
10905 }
10906
10907 /*
10908 * Check whether this task is allowed to have
10909 * this page.
10910 */
2d21ac55 10911
6601e61a 10912 prot = entry->protection;
0c530ab8 10913
3e170ce0 10914 if (override_nx(old_map, VME_ALIAS(entry)) && prot) {
0c530ab8 10915 /*
2d21ac55 10916 * HACK -- if not a stack, then allow execution
0c530ab8
A
10917 */
10918 prot |= VM_PROT_EXECUTE;
2d21ac55
A
10919 }
10920
6d2010ae
A
10921 if (mask_protections) {
10922 fault_type &= prot;
10923 if (fault_type == VM_PROT_NONE) {
10924 goto protection_failure;
10925 }
10926 }
1c79356b 10927 if ((fault_type & (prot)) != fault_type) {
6d2010ae 10928 protection_failure:
2d21ac55
A
10929 if (*real_map != map) {
10930 vm_map_unlock(*real_map);
0c530ab8
A
10931 }
10932 *real_map = map;
10933
10934 if ((fault_type & VM_PROT_EXECUTE) && prot)
2d21ac55 10935 log_stack_execution_failure((addr64_t)vaddr, prot);
0c530ab8 10936
2d21ac55 10937 DTRACE_VM2(prot_fault, int, 1, (uint64_t *), NULL);
0c530ab8 10938 return KERN_PROTECTION_FAILURE;
1c79356b
A
10939 }
10940
10941 /*
10942 * If this page is not pageable, we have to get
10943 * it for all possible accesses.
10944 */
10945
91447636
A
10946 *wired = (entry->wired_count != 0);
10947 if (*wired)
0c530ab8 10948 fault_type = prot;
1c79356b
A
10949
10950 /*
10951 * If the entry was copy-on-write, we either ...
10952 */
10953
10954 if (entry->needs_copy) {
10955 /*
10956 * If we want to write the page, we may as well
10957 * handle that now since we've got the map locked.
10958 *
10959 * If we don't need to write the page, we just
10960 * demote the permissions allowed.
10961 */
10962
fe8ab488 10963 if ((fault_type & VM_PROT_WRITE) || *wired || force_copy) {
1c79356b
A
10964 /*
10965 * Make a new object, and place it in the
10966 * object chain. Note that no new references
10967 * have appeared -- one just moved from the
10968 * map to the new object.
10969 */
10970
10971 if (vm_map_lock_read_to_write(map)) {
10972 vm_map_lock_read(map);
10973 goto RetryLookup;
10974 }
3e170ce0
A
10975 VME_OBJECT_SHADOW(entry,
10976 (vm_map_size_t) (entry->vme_end -
10977 entry->vme_start));
1c79356b 10978
3e170ce0 10979 VME_OBJECT(entry)->shadowed = TRUE;
1c79356b
A
10980 entry->needs_copy = FALSE;
10981 vm_map_lock_write_to_read(map);
10982 }
10983 else {
10984 /*
10985 * We're attempting to read a copy-on-write
10986 * page -- don't allow writes.
10987 */
10988
10989 prot &= (~VM_PROT_WRITE);
10990 }
10991 }
10992
10993 /*
10994 * Create an object if necessary.
10995 */
3e170ce0 10996 if (VME_OBJECT(entry) == VM_OBJECT_NULL) {
1c79356b
A
10997
10998 if (vm_map_lock_read_to_write(map)) {
10999 vm_map_lock_read(map);
11000 goto RetryLookup;
11001 }
11002
3e170ce0
A
11003 VME_OBJECT_SET(entry,
11004 vm_object_allocate(
11005 (vm_map_size_t)(entry->vme_end -
11006 entry->vme_start)));
11007 VME_OFFSET_SET(entry, 0);
1c79356b
A
11008 vm_map_lock_write_to_read(map);
11009 }
11010
11011 /*
11012 * Return the object/offset from this entry. If the entry
11013 * was copy-on-write or empty, it has been fixed up. Also
11014 * return the protection.
11015 */
11016
3e170ce0
A
11017 *offset = (vaddr - entry->vme_start) + VME_OFFSET(entry);
11018 *object = VME_OBJECT(entry);
1c79356b 11019 *out_prot = prot;
2d21ac55
A
11020
11021 if (fault_info) {
11022 fault_info->interruptible = THREAD_UNINT; /* for now... */
11023 /* ... the caller will change "interruptible" if needed */
11024 fault_info->cluster_size = 0;
3e170ce0 11025 fault_info->user_tag = VME_ALIAS(entry);
fe8ab488
A
11026 fault_info->pmap_options = 0;
11027 if (entry->iokit_acct ||
11028 (!entry->is_sub_map && !entry->use_pmap)) {
11029 fault_info->pmap_options |= PMAP_OPTIONS_ALT_ACCT;
11030 }
2d21ac55 11031 fault_info->behavior = entry->behavior;
3e170ce0
A
11032 fault_info->lo_offset = VME_OFFSET(entry);
11033 fault_info->hi_offset =
11034 (entry->vme_end - entry->vme_start) + VME_OFFSET(entry);
2d21ac55 11035 fault_info->no_cache = entry->no_cache;
b0d623f7 11036 fault_info->stealth = FALSE;
6d2010ae 11037 fault_info->io_sync = FALSE;
3e170ce0
A
11038 if (entry->used_for_jit ||
11039 entry->vme_resilient_codesign) {
11040 fault_info->cs_bypass = TRUE;
11041 } else {
11042 fault_info->cs_bypass = FALSE;
11043 }
0b4c1975 11044 fault_info->mark_zf_absent = FALSE;
316670eb 11045 fault_info->batch_pmap_op = FALSE;
2d21ac55 11046 }
1c79356b
A
11047
11048 /*
11049 * Lock the object to prevent it from disappearing
11050 */
2d21ac55
A
11051 if (object_lock_type == OBJECT_LOCK_EXCLUSIVE)
11052 vm_object_lock(*object);
11053 else
11054 vm_object_lock_shared(*object);
11055
1c79356b
A
11056 /*
11057 * Save the version number
11058 */
11059
11060 out_version->main_timestamp = map->timestamp;
11061
11062 return KERN_SUCCESS;
11063}
11064
11065
11066/*
11067 * vm_map_verify:
11068 *
11069 * Verifies that the map in question has not changed
11070 * since the given version. If successful, the map
11071 * will not change until vm_map_verify_done() is called.
11072 */
11073boolean_t
11074vm_map_verify(
11075 register vm_map_t map,
11076 register vm_map_version_t *version) /* REF */
11077{
11078 boolean_t result;
11079
11080 vm_map_lock_read(map);
11081 result = (map->timestamp == version->main_timestamp);
11082
11083 if (!result)
11084 vm_map_unlock_read(map);
11085
11086 return(result);
11087}
11088
11089/*
11090 * vm_map_verify_done:
11091 *
11092 * Releases locks acquired by a vm_map_verify.
11093 *
11094 * This is now a macro in vm/vm_map.h. It does a
11095 * vm_map_unlock_read on the map.
11096 */
11097
11098
91447636
A
11099/*
11100 * TEMPORARYTEMPORARYTEMPORARYTEMPORARYTEMPORARYTEMPORARY
11101 * Goes away after regular vm_region_recurse function migrates to
11102 * 64 bits
11103 * vm_region_recurse: A form of vm_region which follows the
11104 * submaps in a target map
11105 *
11106 */
11107
11108kern_return_t
11109vm_map_region_recurse_64(
11110 vm_map_t map,
11111 vm_map_offset_t *address, /* IN/OUT */
11112 vm_map_size_t *size, /* OUT */
11113 natural_t *nesting_depth, /* IN/OUT */
11114 vm_region_submap_info_64_t submap_info, /* IN/OUT */
11115 mach_msg_type_number_t *count) /* IN/OUT */
11116{
39236c6e 11117 mach_msg_type_number_t original_count;
91447636
A
11118 vm_region_extended_info_data_t extended;
11119 vm_map_entry_t tmp_entry;
11120 vm_map_offset_t user_address;
11121 unsigned int user_max_depth;
11122
11123 /*
11124 * "curr_entry" is the VM map entry preceding or including the
11125 * address we're looking for.
11126 * "curr_map" is the map or sub-map containing "curr_entry".
6d2010ae
A
11127 * "curr_address" is the equivalent of the top map's "user_address"
11128 * in the current map.
91447636
A
11129 * "curr_offset" is the cumulated offset of "curr_map" in the
11130 * target task's address space.
11131 * "curr_depth" is the depth of "curr_map" in the chain of
11132 * sub-maps.
6d2010ae
A
11133 *
11134 * "curr_max_below" and "curr_max_above" limit the range (around
11135 * "curr_address") we should take into account in the current (sub)map.
11136 * They limit the range to what's visible through the map entries
11137 * we've traversed from the top map to the current map.
11138
91447636
A
11139 */
11140 vm_map_entry_t curr_entry;
6d2010ae 11141 vm_map_address_t curr_address;
91447636
A
11142 vm_map_offset_t curr_offset;
11143 vm_map_t curr_map;
11144 unsigned int curr_depth;
6d2010ae
A
11145 vm_map_offset_t curr_max_below, curr_max_above;
11146 vm_map_offset_t curr_skip;
91447636
A
11147
11148 /*
11149 * "next_" is the same as "curr_" but for the VM region immediately
11150 * after the address we're looking for. We need to keep track of this
11151 * too because we want to return info about that region if the
11152 * address we're looking for is not mapped.
11153 */
11154 vm_map_entry_t next_entry;
11155 vm_map_offset_t next_offset;
6d2010ae 11156 vm_map_offset_t next_address;
91447636
A
11157 vm_map_t next_map;
11158 unsigned int next_depth;
6d2010ae
A
11159 vm_map_offset_t next_max_below, next_max_above;
11160 vm_map_offset_t next_skip;
91447636 11161
2d21ac55
A
11162 boolean_t look_for_pages;
11163 vm_region_submap_short_info_64_t short_info;
11164
91447636
A
11165 if (map == VM_MAP_NULL) {
11166 /* no address space to work on */
11167 return KERN_INVALID_ARGUMENT;
11168 }
11169
39236c6e
A
11170
11171 if (*count < VM_REGION_SUBMAP_SHORT_INFO_COUNT_64) {
11172 /*
11173 * "info" structure is not big enough and
11174 * would overflow
11175 */
11176 return KERN_INVALID_ARGUMENT;
11177 }
11178
11179 original_count = *count;
11180
11181 if (original_count < VM_REGION_SUBMAP_INFO_V0_COUNT_64) {
11182 *count = VM_REGION_SUBMAP_SHORT_INFO_COUNT_64;
11183 look_for_pages = FALSE;
11184 short_info = (vm_region_submap_short_info_64_t) submap_info;
11185 submap_info = NULL;
2d21ac55
A
11186 } else {
11187 look_for_pages = TRUE;
39236c6e 11188 *count = VM_REGION_SUBMAP_INFO_V0_COUNT_64;
2d21ac55 11189 short_info = NULL;
39236c6e
A
11190
11191 if (original_count >= VM_REGION_SUBMAP_INFO_V1_COUNT_64) {
11192 *count = VM_REGION_SUBMAP_INFO_V1_COUNT_64;
11193 }
91447636 11194 }
39236c6e 11195
91447636
A
11196 user_address = *address;
11197 user_max_depth = *nesting_depth;
11198
3e170ce0
A
11199 if (not_in_kdp) {
11200 vm_map_lock_read(map);
11201 }
11202
11203recurse_again:
91447636
A
11204 curr_entry = NULL;
11205 curr_map = map;
6d2010ae 11206 curr_address = user_address;
91447636 11207 curr_offset = 0;
6d2010ae 11208 curr_skip = 0;
91447636 11209 curr_depth = 0;
6d2010ae
A
11210 curr_max_above = ((vm_map_offset_t) -1) - curr_address;
11211 curr_max_below = curr_address;
91447636
A
11212
11213 next_entry = NULL;
11214 next_map = NULL;
6d2010ae 11215 next_address = 0;
91447636 11216 next_offset = 0;
6d2010ae 11217 next_skip = 0;
91447636 11218 next_depth = 0;
6d2010ae
A
11219 next_max_above = (vm_map_offset_t) -1;
11220 next_max_below = (vm_map_offset_t) -1;
91447636 11221
91447636
A
11222 for (;;) {
11223 if (vm_map_lookup_entry(curr_map,
6d2010ae 11224 curr_address,
91447636
A
11225 &tmp_entry)) {
11226 /* tmp_entry contains the address we're looking for */
11227 curr_entry = tmp_entry;
11228 } else {
6d2010ae 11229 vm_map_offset_t skip;
91447636
A
11230 /*
11231 * The address is not mapped. "tmp_entry" is the
11232 * map entry preceding the address. We want the next
11233 * one, if it exists.
11234 */
11235 curr_entry = tmp_entry->vme_next;
6d2010ae 11236
91447636 11237 if (curr_entry == vm_map_to_entry(curr_map) ||
6d2010ae
A
11238 (curr_entry->vme_start >=
11239 curr_address + curr_max_above)) {
91447636
A
11240 /* no next entry at this level: stop looking */
11241 if (not_in_kdp) {
11242 vm_map_unlock_read(curr_map);
11243 }
11244 curr_entry = NULL;
11245 curr_map = NULL;
3e170ce0 11246 curr_skip = 0;
91447636
A
11247 curr_offset = 0;
11248 curr_depth = 0;
6d2010ae
A
11249 curr_max_above = 0;
11250 curr_max_below = 0;
91447636
A
11251 break;
11252 }
6d2010ae
A
11253
11254 /* adjust current address and offset */
11255 skip = curr_entry->vme_start - curr_address;
11256 curr_address = curr_entry->vme_start;
3e170ce0 11257 curr_skip += skip;
6d2010ae
A
11258 curr_offset += skip;
11259 curr_max_above -= skip;
11260 curr_max_below = 0;
91447636
A
11261 }
11262
11263 /*
11264 * Is the next entry at this level closer to the address (or
11265 * deeper in the submap chain) than the one we had
11266 * so far ?
11267 */
11268 tmp_entry = curr_entry->vme_next;
11269 if (tmp_entry == vm_map_to_entry(curr_map)) {
11270 /* no next entry at this level */
6d2010ae
A
11271 } else if (tmp_entry->vme_start >=
11272 curr_address + curr_max_above) {
91447636
A
11273 /*
11274 * tmp_entry is beyond the scope of what we mapped of
11275 * this submap in the upper level: ignore it.
11276 */
11277 } else if ((next_entry == NULL) ||
11278 (tmp_entry->vme_start + curr_offset <=
11279 next_entry->vme_start + next_offset)) {
11280 /*
11281 * We didn't have a "next_entry" or this one is
11282 * closer to the address we're looking for:
11283 * use this "tmp_entry" as the new "next_entry".
11284 */
11285 if (next_entry != NULL) {
11286 /* unlock the last "next_map" */
11287 if (next_map != curr_map && not_in_kdp) {
11288 vm_map_unlock_read(next_map);
11289 }
11290 }
11291 next_entry = tmp_entry;
11292 next_map = curr_map;
91447636 11293 next_depth = curr_depth;
6d2010ae
A
11294 next_address = next_entry->vme_start;
11295 next_skip = curr_skip;
3e170ce0 11296 next_skip += (next_address - curr_address);
6d2010ae
A
11297 next_offset = curr_offset;
11298 next_offset += (next_address - curr_address);
11299 next_max_above = MIN(next_max_above, curr_max_above);
11300 next_max_above = MIN(next_max_above,
11301 next_entry->vme_end - next_address);
11302 next_max_below = MIN(next_max_below, curr_max_below);
11303 next_max_below = MIN(next_max_below,
11304 next_address - next_entry->vme_start);
91447636
A
11305 }
11306
6d2010ae
A
11307 /*
11308 * "curr_max_{above,below}" allow us to keep track of the
11309 * portion of the submap that is actually mapped at this level:
11310 * the rest of that submap is irrelevant to us, since it's not
11311 * mapped here.
11312 * The relevant portion of the map starts at
3e170ce0 11313 * "VME_OFFSET(curr_entry)" up to the size of "curr_entry".
6d2010ae
A
11314 */
11315 curr_max_above = MIN(curr_max_above,
11316 curr_entry->vme_end - curr_address);
11317 curr_max_below = MIN(curr_max_below,
11318 curr_address - curr_entry->vme_start);
11319
91447636
A
11320 if (!curr_entry->is_sub_map ||
11321 curr_depth >= user_max_depth) {
11322 /*
11323 * We hit a leaf map or we reached the maximum depth
11324 * we could, so stop looking. Keep the current map
11325 * locked.
11326 */
11327 break;
11328 }
11329
11330 /*
11331 * Get down to the next submap level.
11332 */
11333
11334 /*
11335 * Lock the next level and unlock the current level,
11336 * unless we need to keep it locked to access the "next_entry"
11337 * later.
11338 */
11339 if (not_in_kdp) {
3e170ce0 11340 vm_map_lock_read(VME_SUBMAP(curr_entry));
91447636
A
11341 }
11342 if (curr_map == next_map) {
11343 /* keep "next_map" locked in case we need it */
11344 } else {
11345 /* release this map */
b0d623f7
A
11346 if (not_in_kdp)
11347 vm_map_unlock_read(curr_map);
91447636
A
11348 }
11349
11350 /*
11351 * Adjust the offset. "curr_entry" maps the submap
11352 * at relative address "curr_entry->vme_start" in the
3e170ce0 11353 * curr_map but skips the first "VME_OFFSET(curr_entry)"
91447636
A
11354 * bytes of the submap.
11355 * "curr_offset" always represents the offset of a virtual
11356 * address in the curr_map relative to the absolute address
11357 * space (i.e. the top-level VM map).
11358 */
11359 curr_offset +=
3e170ce0 11360 (VME_OFFSET(curr_entry) - curr_entry->vme_start);
6d2010ae 11361 curr_address = user_address + curr_offset;
91447636 11362 /* switch to the submap */
3e170ce0 11363 curr_map = VME_SUBMAP(curr_entry);
91447636 11364 curr_depth++;
91447636
A
11365 curr_entry = NULL;
11366 }
11367
11368 if (curr_entry == NULL) {
11369 /* no VM region contains the address... */
11370 if (next_entry == NULL) {
11371 /* ... and no VM region follows it either */
11372 return KERN_INVALID_ADDRESS;
11373 }
11374 /* ... gather info about the next VM region */
11375 curr_entry = next_entry;
11376 curr_map = next_map; /* still locked ... */
6d2010ae
A
11377 curr_address = next_address;
11378 curr_skip = next_skip;
91447636
A
11379 curr_offset = next_offset;
11380 curr_depth = next_depth;
6d2010ae
A
11381 curr_max_above = next_max_above;
11382 curr_max_below = next_max_below;
91447636
A
11383 } else {
11384 /* we won't need "next_entry" after all */
11385 if (next_entry != NULL) {
11386 /* release "next_map" */
11387 if (next_map != curr_map && not_in_kdp) {
11388 vm_map_unlock_read(next_map);
11389 }
11390 }
11391 }
11392 next_entry = NULL;
11393 next_map = NULL;
11394 next_offset = 0;
6d2010ae 11395 next_skip = 0;
91447636 11396 next_depth = 0;
6d2010ae
A
11397 next_max_below = -1;
11398 next_max_above = -1;
91447636 11399
3e170ce0
A
11400 if (curr_entry->is_sub_map &&
11401 curr_depth < user_max_depth) {
11402 /*
11403 * We're not as deep as we could be: we must have
11404 * gone back up after not finding anything mapped
11405 * below the original top-level map entry's.
11406 * Let's move "curr_address" forward and recurse again.
11407 */
11408 user_address = curr_address;
11409 goto recurse_again;
11410 }
11411
91447636 11412 *nesting_depth = curr_depth;
6d2010ae
A
11413 *size = curr_max_above + curr_max_below;
11414 *address = user_address + curr_skip - curr_max_below;
91447636 11415
b0d623f7
A
11416// LP64todo: all the current tools are 32bit, obviously never worked for 64b
11417// so probably should be a real 32b ID vs. ptr.
11418// Current users just check for equality
39236c6e 11419#define INFO_MAKE_OBJECT_ID(p) ((uint32_t)(uintptr_t)VM_KERNEL_ADDRPERM(p))
b0d623f7 11420
2d21ac55 11421 if (look_for_pages) {
3e170ce0
A
11422 submap_info->user_tag = VME_ALIAS(curr_entry);
11423 submap_info->offset = VME_OFFSET(curr_entry);
2d21ac55
A
11424 submap_info->protection = curr_entry->protection;
11425 submap_info->inheritance = curr_entry->inheritance;
11426 submap_info->max_protection = curr_entry->max_protection;
11427 submap_info->behavior = curr_entry->behavior;
11428 submap_info->user_wired_count = curr_entry->user_wired_count;
11429 submap_info->is_submap = curr_entry->is_sub_map;
3e170ce0 11430 submap_info->object_id = INFO_MAKE_OBJECT_ID(VME_OBJECT(curr_entry));
2d21ac55 11431 } else {
3e170ce0
A
11432 short_info->user_tag = VME_ALIAS(curr_entry);
11433 short_info->offset = VME_OFFSET(curr_entry);
2d21ac55
A
11434 short_info->protection = curr_entry->protection;
11435 short_info->inheritance = curr_entry->inheritance;
11436 short_info->max_protection = curr_entry->max_protection;
11437 short_info->behavior = curr_entry->behavior;
11438 short_info->user_wired_count = curr_entry->user_wired_count;
11439 short_info->is_submap = curr_entry->is_sub_map;
3e170ce0 11440 short_info->object_id = INFO_MAKE_OBJECT_ID(VME_OBJECT(curr_entry));
2d21ac55 11441 }
91447636
A
11442
11443 extended.pages_resident = 0;
11444 extended.pages_swapped_out = 0;
11445 extended.pages_shared_now_private = 0;
11446 extended.pages_dirtied = 0;
39236c6e 11447 extended.pages_reusable = 0;
91447636
A
11448 extended.external_pager = 0;
11449 extended.shadow_depth = 0;
3e170ce0
A
11450 extended.share_mode = SM_EMPTY;
11451 extended.ref_count = 0;
91447636
A
11452
11453 if (not_in_kdp) {
11454 if (!curr_entry->is_sub_map) {
6d2010ae
A
11455 vm_map_offset_t range_start, range_end;
11456 range_start = MAX((curr_address - curr_max_below),
11457 curr_entry->vme_start);
11458 range_end = MIN((curr_address + curr_max_above),
11459 curr_entry->vme_end);
91447636 11460 vm_map_region_walk(curr_map,
6d2010ae 11461 range_start,
91447636 11462 curr_entry,
3e170ce0 11463 (VME_OFFSET(curr_entry) +
6d2010ae
A
11464 (range_start -
11465 curr_entry->vme_start)),
11466 range_end - range_start,
2d21ac55 11467 &extended,
39236c6e 11468 look_for_pages, VM_REGION_EXTENDED_INFO_COUNT);
91447636
A
11469 if (extended.external_pager &&
11470 extended.ref_count == 2 &&
11471 extended.share_mode == SM_SHARED) {
2d21ac55 11472 extended.share_mode = SM_PRIVATE;
91447636 11473 }
91447636
A
11474 } else {
11475 if (curr_entry->use_pmap) {
2d21ac55 11476 extended.share_mode = SM_TRUESHARED;
91447636 11477 } else {
2d21ac55 11478 extended.share_mode = SM_PRIVATE;
91447636 11479 }
3e170ce0 11480 extended.ref_count = VME_SUBMAP(curr_entry)->ref_count;
91447636
A
11481 }
11482 }
11483
2d21ac55
A
11484 if (look_for_pages) {
11485 submap_info->pages_resident = extended.pages_resident;
11486 submap_info->pages_swapped_out = extended.pages_swapped_out;
11487 submap_info->pages_shared_now_private =
11488 extended.pages_shared_now_private;
11489 submap_info->pages_dirtied = extended.pages_dirtied;
11490 submap_info->external_pager = extended.external_pager;
11491 submap_info->shadow_depth = extended.shadow_depth;
11492 submap_info->share_mode = extended.share_mode;
11493 submap_info->ref_count = extended.ref_count;
39236c6e
A
11494
11495 if (original_count >= VM_REGION_SUBMAP_INFO_V1_COUNT_64) {
11496 submap_info->pages_reusable = extended.pages_reusable;
11497 }
2d21ac55
A
11498 } else {
11499 short_info->external_pager = extended.external_pager;
11500 short_info->shadow_depth = extended.shadow_depth;
11501 short_info->share_mode = extended.share_mode;
11502 short_info->ref_count = extended.ref_count;
11503 }
91447636
A
11504
11505 if (not_in_kdp) {
11506 vm_map_unlock_read(curr_map);
11507 }
11508
11509 return KERN_SUCCESS;
11510}
11511
1c79356b
A
11512/*
11513 * vm_region:
11514 *
11515 * User call to obtain information about a region in
11516 * a task's address map. Currently, only one flavor is
11517 * supported.
11518 *
11519 * XXX The reserved and behavior fields cannot be filled
11520 * in until the vm merge from the IK is completed, and
11521 * vm_reserve is implemented.
1c79356b
A
11522 */
11523
11524kern_return_t
91447636 11525vm_map_region(
1c79356b 11526 vm_map_t map,
91447636
A
11527 vm_map_offset_t *address, /* IN/OUT */
11528 vm_map_size_t *size, /* OUT */
1c79356b
A
11529 vm_region_flavor_t flavor, /* IN */
11530 vm_region_info_t info, /* OUT */
91447636
A
11531 mach_msg_type_number_t *count, /* IN/OUT */
11532 mach_port_t *object_name) /* OUT */
1c79356b
A
11533{
11534 vm_map_entry_t tmp_entry;
1c79356b 11535 vm_map_entry_t entry;
91447636 11536 vm_map_offset_t start;
1c79356b
A
11537
11538 if (map == VM_MAP_NULL)
11539 return(KERN_INVALID_ARGUMENT);
11540
11541 switch (flavor) {
91447636 11542
1c79356b 11543 case VM_REGION_BASIC_INFO:
2d21ac55 11544 /* legacy for old 32-bit objects info */
1c79356b 11545 {
2d21ac55 11546 vm_region_basic_info_t basic;
91447636 11547
2d21ac55
A
11548 if (*count < VM_REGION_BASIC_INFO_COUNT)
11549 return(KERN_INVALID_ARGUMENT);
1c79356b 11550
2d21ac55
A
11551 basic = (vm_region_basic_info_t) info;
11552 *count = VM_REGION_BASIC_INFO_COUNT;
1c79356b 11553
2d21ac55 11554 vm_map_lock_read(map);
1c79356b 11555
2d21ac55
A
11556 start = *address;
11557 if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
11558 if ((entry = tmp_entry->vme_next) == vm_map_to_entry(map)) {
11559 vm_map_unlock_read(map);
11560 return(KERN_INVALID_ADDRESS);
11561 }
11562 } else {
11563 entry = tmp_entry;
1c79356b 11564 }
1c79356b 11565
2d21ac55 11566 start = entry->vme_start;
1c79356b 11567
3e170ce0 11568 basic->offset = (uint32_t)VME_OFFSET(entry);
2d21ac55
A
11569 basic->protection = entry->protection;
11570 basic->inheritance = entry->inheritance;
11571 basic->max_protection = entry->max_protection;
11572 basic->behavior = entry->behavior;
11573 basic->user_wired_count = entry->user_wired_count;
11574 basic->reserved = entry->is_sub_map;
11575 *address = start;
11576 *size = (entry->vme_end - start);
91447636 11577
2d21ac55
A
11578 if (object_name) *object_name = IP_NULL;
11579 if (entry->is_sub_map) {
11580 basic->shared = FALSE;
11581 } else {
11582 basic->shared = entry->is_shared;
11583 }
91447636 11584
2d21ac55
A
11585 vm_map_unlock_read(map);
11586 return(KERN_SUCCESS);
91447636
A
11587 }
11588
11589 case VM_REGION_BASIC_INFO_64:
11590 {
2d21ac55 11591 vm_region_basic_info_64_t basic;
91447636 11592
2d21ac55
A
11593 if (*count < VM_REGION_BASIC_INFO_COUNT_64)
11594 return(KERN_INVALID_ARGUMENT);
11595
11596 basic = (vm_region_basic_info_64_t) info;
11597 *count = VM_REGION_BASIC_INFO_COUNT_64;
11598
11599 vm_map_lock_read(map);
11600
11601 start = *address;
11602 if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
11603 if ((entry = tmp_entry->vme_next) == vm_map_to_entry(map)) {
11604 vm_map_unlock_read(map);
11605 return(KERN_INVALID_ADDRESS);
11606 }
11607 } else {
11608 entry = tmp_entry;
11609 }
91447636 11610
2d21ac55 11611 start = entry->vme_start;
91447636 11612
3e170ce0 11613 basic->offset = VME_OFFSET(entry);
2d21ac55
A
11614 basic->protection = entry->protection;
11615 basic->inheritance = entry->inheritance;
11616 basic->max_protection = entry->max_protection;
11617 basic->behavior = entry->behavior;
11618 basic->user_wired_count = entry->user_wired_count;
11619 basic->reserved = entry->is_sub_map;
11620 *address = start;
11621 *size = (entry->vme_end - start);
91447636 11622
2d21ac55
A
11623 if (object_name) *object_name = IP_NULL;
11624 if (entry->is_sub_map) {
11625 basic->shared = FALSE;
11626 } else {
11627 basic->shared = entry->is_shared;
91447636 11628 }
2d21ac55
A
11629
11630 vm_map_unlock_read(map);
11631 return(KERN_SUCCESS);
1c79356b
A
11632 }
11633 case VM_REGION_EXTENDED_INFO:
2d21ac55
A
11634 if (*count < VM_REGION_EXTENDED_INFO_COUNT)
11635 return(KERN_INVALID_ARGUMENT);
39236c6e
A
11636 /*fallthru*/
11637 case VM_REGION_EXTENDED_INFO__legacy:
11638 if (*count < VM_REGION_EXTENDED_INFO_COUNT__legacy)
11639 return KERN_INVALID_ARGUMENT;
11640
11641 {
11642 vm_region_extended_info_t extended;
11643 mach_msg_type_number_t original_count;
1c79356b 11644
2d21ac55 11645 extended = (vm_region_extended_info_t) info;
1c79356b 11646
2d21ac55 11647 vm_map_lock_read(map);
1c79356b 11648
2d21ac55
A
11649 start = *address;
11650 if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
11651 if ((entry = tmp_entry->vme_next) == vm_map_to_entry(map)) {
11652 vm_map_unlock_read(map);
11653 return(KERN_INVALID_ADDRESS);
11654 }
11655 } else {
11656 entry = tmp_entry;
1c79356b 11657 }
2d21ac55 11658 start = entry->vme_start;
1c79356b 11659
2d21ac55 11660 extended->protection = entry->protection;
3e170ce0 11661 extended->user_tag = VME_ALIAS(entry);
2d21ac55
A
11662 extended->pages_resident = 0;
11663 extended->pages_swapped_out = 0;
11664 extended->pages_shared_now_private = 0;
11665 extended->pages_dirtied = 0;
11666 extended->external_pager = 0;
11667 extended->shadow_depth = 0;
1c79356b 11668
39236c6e
A
11669 original_count = *count;
11670 if (flavor == VM_REGION_EXTENDED_INFO__legacy) {
11671 *count = VM_REGION_EXTENDED_INFO_COUNT__legacy;
11672 } else {
11673 extended->pages_reusable = 0;
11674 *count = VM_REGION_EXTENDED_INFO_COUNT;
11675 }
11676
3e170ce0 11677 vm_map_region_walk(map, start, entry, VME_OFFSET(entry), entry->vme_end - start, extended, TRUE, *count);
1c79356b 11678
2d21ac55
A
11679 if (extended->external_pager && extended->ref_count == 2 && extended->share_mode == SM_SHARED)
11680 extended->share_mode = SM_PRIVATE;
1c79356b 11681
2d21ac55
A
11682 if (object_name)
11683 *object_name = IP_NULL;
11684 *address = start;
11685 *size = (entry->vme_end - start);
1c79356b 11686
2d21ac55
A
11687 vm_map_unlock_read(map);
11688 return(KERN_SUCCESS);
1c79356b
A
11689 }
11690 case VM_REGION_TOP_INFO:
11691 {
2d21ac55 11692 vm_region_top_info_t top;
1c79356b 11693
2d21ac55
A
11694 if (*count < VM_REGION_TOP_INFO_COUNT)
11695 return(KERN_INVALID_ARGUMENT);
1c79356b 11696
2d21ac55
A
11697 top = (vm_region_top_info_t) info;
11698 *count = VM_REGION_TOP_INFO_COUNT;
1c79356b 11699
2d21ac55 11700 vm_map_lock_read(map);
1c79356b 11701
2d21ac55
A
11702 start = *address;
11703 if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
11704 if ((entry = tmp_entry->vme_next) == vm_map_to_entry(map)) {
11705 vm_map_unlock_read(map);
11706 return(KERN_INVALID_ADDRESS);
11707 }
11708 } else {
11709 entry = tmp_entry;
1c79356b 11710
2d21ac55
A
11711 }
11712 start = entry->vme_start;
1c79356b 11713
2d21ac55
A
11714 top->private_pages_resident = 0;
11715 top->shared_pages_resident = 0;
1c79356b 11716
2d21ac55 11717 vm_map_region_top_walk(entry, top);
1c79356b 11718
2d21ac55
A
11719 if (object_name)
11720 *object_name = IP_NULL;
11721 *address = start;
11722 *size = (entry->vme_end - start);
1c79356b 11723
2d21ac55
A
11724 vm_map_unlock_read(map);
11725 return(KERN_SUCCESS);
1c79356b
A
11726 }
11727 default:
2d21ac55 11728 return(KERN_INVALID_ARGUMENT);
1c79356b
A
11729 }
11730}
11731
b0d623f7
A
11732#define OBJ_RESIDENT_COUNT(obj, entry_size) \
11733 MIN((entry_size), \
11734 ((obj)->all_reusable ? \
11735 (obj)->wired_page_count : \
11736 (obj)->resident_page_count - (obj)->reusable_page_count))
2d21ac55 11737
0c530ab8 11738void
91447636
A
11739vm_map_region_top_walk(
11740 vm_map_entry_t entry,
11741 vm_region_top_info_t top)
1c79356b 11742{
1c79356b 11743
3e170ce0 11744 if (VME_OBJECT(entry) == 0 || entry->is_sub_map) {
2d21ac55
A
11745 top->share_mode = SM_EMPTY;
11746 top->ref_count = 0;
11747 top->obj_id = 0;
11748 return;
1c79356b 11749 }
2d21ac55 11750
91447636 11751 {
2d21ac55
A
11752 struct vm_object *obj, *tmp_obj;
11753 int ref_count;
11754 uint32_t entry_size;
1c79356b 11755
b0d623f7 11756 entry_size = (uint32_t) ((entry->vme_end - entry->vme_start) / PAGE_SIZE_64);
1c79356b 11757
3e170ce0 11758 obj = VME_OBJECT(entry);
1c79356b 11759
2d21ac55
A
11760 vm_object_lock(obj);
11761
11762 if ((ref_count = obj->ref_count) > 1 && obj->paging_in_progress)
11763 ref_count--;
11764
b0d623f7 11765 assert(obj->reusable_page_count <= obj->resident_page_count);
2d21ac55
A
11766 if (obj->shadow) {
11767 if (ref_count == 1)
b0d623f7
A
11768 top->private_pages_resident =
11769 OBJ_RESIDENT_COUNT(obj, entry_size);
2d21ac55 11770 else
b0d623f7
A
11771 top->shared_pages_resident =
11772 OBJ_RESIDENT_COUNT(obj, entry_size);
2d21ac55
A
11773 top->ref_count = ref_count;
11774 top->share_mode = SM_COW;
91447636 11775
2d21ac55
A
11776 while ((tmp_obj = obj->shadow)) {
11777 vm_object_lock(tmp_obj);
11778 vm_object_unlock(obj);
11779 obj = tmp_obj;
1c79356b 11780
2d21ac55
A
11781 if ((ref_count = obj->ref_count) > 1 && obj->paging_in_progress)
11782 ref_count--;
1c79356b 11783
b0d623f7
A
11784 assert(obj->reusable_page_count <= obj->resident_page_count);
11785 top->shared_pages_resident +=
11786 OBJ_RESIDENT_COUNT(obj, entry_size);
2d21ac55
A
11787 top->ref_count += ref_count - 1;
11788 }
1c79356b 11789 } else {
6d2010ae
A
11790 if (entry->superpage_size) {
11791 top->share_mode = SM_LARGE_PAGE;
11792 top->shared_pages_resident = 0;
11793 top->private_pages_resident = entry_size;
11794 } else if (entry->needs_copy) {
2d21ac55 11795 top->share_mode = SM_COW;
b0d623f7
A
11796 top->shared_pages_resident =
11797 OBJ_RESIDENT_COUNT(obj, entry_size);
2d21ac55
A
11798 } else {
11799 if (ref_count == 1 ||
11800 (ref_count == 2 && !(obj->pager_trusted) && !(obj->internal))) {
11801 top->share_mode = SM_PRIVATE;
39236c6e
A
11802 top->private_pages_resident =
11803 OBJ_RESIDENT_COUNT(obj,
11804 entry_size);
2d21ac55
A
11805 } else {
11806 top->share_mode = SM_SHARED;
b0d623f7
A
11807 top->shared_pages_resident =
11808 OBJ_RESIDENT_COUNT(obj,
11809 entry_size);
2d21ac55
A
11810 }
11811 }
11812 top->ref_count = ref_count;
1c79356b 11813 }
b0d623f7 11814 /* XXX K64: obj_id will be truncated */
39236c6e 11815 top->obj_id = (unsigned int) (uintptr_t)VM_KERNEL_ADDRPERM(obj);
1c79356b 11816
2d21ac55 11817 vm_object_unlock(obj);
1c79356b 11818 }
91447636
A
11819}
11820
0c530ab8 11821void
91447636
A
11822vm_map_region_walk(
11823 vm_map_t map,
2d21ac55
A
11824 vm_map_offset_t va,
11825 vm_map_entry_t entry,
91447636
A
11826 vm_object_offset_t offset,
11827 vm_object_size_t range,
2d21ac55 11828 vm_region_extended_info_t extended,
39236c6e
A
11829 boolean_t look_for_pages,
11830 mach_msg_type_number_t count)
91447636
A
11831{
11832 register struct vm_object *obj, *tmp_obj;
11833 register vm_map_offset_t last_offset;
11834 register int i;
11835 register int ref_count;
11836 struct vm_object *shadow_object;
11837 int shadow_depth;
11838
3e170ce0 11839 if ((VME_OBJECT(entry) == 0) ||
2d21ac55 11840 (entry->is_sub_map) ||
3e170ce0 11841 (VME_OBJECT(entry)->phys_contiguous &&
6d2010ae 11842 !entry->superpage_size)) {
2d21ac55
A
11843 extended->share_mode = SM_EMPTY;
11844 extended->ref_count = 0;
11845 return;
1c79356b 11846 }
6d2010ae
A
11847
11848 if (entry->superpage_size) {
11849 extended->shadow_depth = 0;
11850 extended->share_mode = SM_LARGE_PAGE;
11851 extended->ref_count = 1;
11852 extended->external_pager = 0;
11853 extended->pages_resident = (unsigned int)(range >> PAGE_SHIFT);
11854 extended->shadow_depth = 0;
11855 return;
11856 }
11857
91447636 11858 {
3e170ce0 11859 obj = VME_OBJECT(entry);
2d21ac55
A
11860
11861 vm_object_lock(obj);
11862
11863 if ((ref_count = obj->ref_count) > 1 && obj->paging_in_progress)
11864 ref_count--;
11865
11866 if (look_for_pages) {
11867 for (last_offset = offset + range;
11868 offset < last_offset;
39236c6e
A
11869 offset += PAGE_SIZE_64, va += PAGE_SIZE) {
11870 vm_map_region_look_for_page(map, va, obj,
11871 offset, ref_count,
11872 0, extended, count);
11873 }
b0d623f7
A
11874 } else {
11875 shadow_object = obj->shadow;
11876 shadow_depth = 0;
11877
11878 if ( !(obj->pager_trusted) && !(obj->internal))
11879 extended->external_pager = 1;
11880
11881 if (shadow_object != VM_OBJECT_NULL) {
11882 vm_object_lock(shadow_object);
11883 for (;
11884 shadow_object != VM_OBJECT_NULL;
11885 shadow_depth++) {
11886 vm_object_t next_shadow;
11887
11888 if ( !(shadow_object->pager_trusted) &&
11889 !(shadow_object->internal))
11890 extended->external_pager = 1;
11891
11892 next_shadow = shadow_object->shadow;
11893 if (next_shadow) {
11894 vm_object_lock(next_shadow);
11895 }
11896 vm_object_unlock(shadow_object);
11897 shadow_object = next_shadow;
2d21ac55 11898 }
2d21ac55 11899 }
b0d623f7 11900 extended->shadow_depth = shadow_depth;
2d21ac55 11901 }
2d21ac55
A
11902
11903 if (extended->shadow_depth || entry->needs_copy)
11904 extended->share_mode = SM_COW;
91447636 11905 else {
2d21ac55
A
11906 if (ref_count == 1)
11907 extended->share_mode = SM_PRIVATE;
11908 else {
11909 if (obj->true_share)
11910 extended->share_mode = SM_TRUESHARED;
11911 else
11912 extended->share_mode = SM_SHARED;
11913 }
91447636 11914 }
2d21ac55 11915 extended->ref_count = ref_count - extended->shadow_depth;
91447636 11916
2d21ac55
A
11917 for (i = 0; i < extended->shadow_depth; i++) {
11918 if ((tmp_obj = obj->shadow) == 0)
11919 break;
11920 vm_object_lock(tmp_obj);
11921 vm_object_unlock(obj);
1c79356b 11922
2d21ac55
A
11923 if ((ref_count = tmp_obj->ref_count) > 1 && tmp_obj->paging_in_progress)
11924 ref_count--;
1c79356b 11925
2d21ac55
A
11926 extended->ref_count += ref_count;
11927 obj = tmp_obj;
11928 }
11929 vm_object_unlock(obj);
1c79356b 11930
2d21ac55
A
11931 if (extended->share_mode == SM_SHARED) {
11932 register vm_map_entry_t cur;
11933 register vm_map_entry_t last;
11934 int my_refs;
91447636 11935
3e170ce0 11936 obj = VME_OBJECT(entry);
2d21ac55
A
11937 last = vm_map_to_entry(map);
11938 my_refs = 0;
91447636 11939
2d21ac55
A
11940 if ((ref_count = obj->ref_count) > 1 && obj->paging_in_progress)
11941 ref_count--;
11942 for (cur = vm_map_first_entry(map); cur != last; cur = cur->vme_next)
11943 my_refs += vm_map_region_count_obj_refs(cur, obj);
91447636 11944
2d21ac55
A
11945 if (my_refs == ref_count)
11946 extended->share_mode = SM_PRIVATE_ALIASED;
11947 else if (my_refs > 1)
11948 extended->share_mode = SM_SHARED_ALIASED;
11949 }
91447636 11950 }
1c79356b
A
11951}
11952
1c79356b 11953
91447636
A
11954/* object is locked on entry and locked on return */
11955
11956
11957static void
11958vm_map_region_look_for_page(
11959 __unused vm_map_t map,
2d21ac55
A
11960 __unused vm_map_offset_t va,
11961 vm_object_t object,
11962 vm_object_offset_t offset,
91447636
A
11963 int max_refcnt,
11964 int depth,
39236c6e
A
11965 vm_region_extended_info_t extended,
11966 mach_msg_type_number_t count)
1c79356b 11967{
2d21ac55
A
11968 register vm_page_t p;
11969 register vm_object_t shadow;
11970 register int ref_count;
11971 vm_object_t caller_object;
2d21ac55 11972 kern_return_t kr;
91447636
A
11973 shadow = object->shadow;
11974 caller_object = object;
1c79356b 11975
91447636
A
11976
11977 while (TRUE) {
1c79356b 11978
91447636 11979 if ( !(object->pager_trusted) && !(object->internal))
2d21ac55 11980 extended->external_pager = 1;
1c79356b 11981
91447636
A
11982 if ((p = vm_page_lookup(object, offset)) != VM_PAGE_NULL) {
11983 if (shadow && (max_refcnt == 1))
11984 extended->pages_shared_now_private++;
1c79356b 11985
39236c6e 11986 if (!p->fictitious &&
91447636
A
11987 (p->dirty || pmap_is_modified(p->phys_page)))
11988 extended->pages_dirtied++;
39236c6e
A
11989 else if (count >= VM_REGION_EXTENDED_INFO_COUNT) {
11990 if (p->reusable || p->object->all_reusable) {
11991 extended->pages_reusable++;
11992 }
11993 }
1c79356b 11994
39236c6e 11995 extended->pages_resident++;
91447636
A
11996
11997 if(object != caller_object)
2d21ac55 11998 vm_object_unlock(object);
91447636
A
11999
12000 return;
1c79356b 12001 }
2d21ac55 12002#if MACH_PAGEMAP
91447636
A
12003 if (object->existence_map) {
12004 if (vm_external_state_get(object->existence_map, offset) == VM_EXTERNAL_STATE_EXISTS) {
1c79356b 12005
91447636 12006 extended->pages_swapped_out++;
1c79356b 12007
91447636 12008 if(object != caller_object)
2d21ac55 12009 vm_object_unlock(object);
1c79356b 12010
91447636
A
12011 return;
12012 }
39236c6e
A
12013 } else
12014#endif /* MACH_PAGEMAP */
12015 if (object->internal &&
12016 object->alive &&
12017 !object->terminating &&
12018 object->pager_ready) {
12019
12020 if (COMPRESSED_PAGER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE) {
12021 if (VM_COMPRESSOR_PAGER_STATE_GET(object,
12022 offset)
12023 == VM_EXTERNAL_STATE_EXISTS) {
12024 /* the pager has that page */
12025 extended->pages_swapped_out++;
12026 if (object != caller_object)
12027 vm_object_unlock(object);
12028 return;
12029 }
12030 } else {
12031 memory_object_t pager;
2d21ac55 12032
39236c6e
A
12033 vm_object_paging_begin(object);
12034 pager = object->pager;
12035 vm_object_unlock(object);
2d21ac55 12036
39236c6e
A
12037 kr = memory_object_data_request(
12038 pager,
12039 offset + object->paging_offset,
12040 0, /* just poke the pager */
12041 VM_PROT_READ,
12042 NULL);
2d21ac55 12043
39236c6e
A
12044 vm_object_lock(object);
12045 vm_object_paging_end(object);
12046
12047 if (kr == KERN_SUCCESS) {
12048 /* the pager has that page */
12049 extended->pages_swapped_out++;
12050 if (object != caller_object)
12051 vm_object_unlock(object);
12052 return;
12053 }
2d21ac55 12054 }
1c79356b 12055 }
2d21ac55 12056
91447636 12057 if (shadow) {
2d21ac55 12058 vm_object_lock(shadow);
1c79356b 12059
91447636
A
12060 if ((ref_count = shadow->ref_count) > 1 && shadow->paging_in_progress)
12061 ref_count--;
1c79356b 12062
91447636
A
12063 if (++depth > extended->shadow_depth)
12064 extended->shadow_depth = depth;
1c79356b 12065
91447636
A
12066 if (ref_count > max_refcnt)
12067 max_refcnt = ref_count;
12068
12069 if(object != caller_object)
2d21ac55 12070 vm_object_unlock(object);
91447636 12071
6d2010ae 12072 offset = offset + object->vo_shadow_offset;
91447636
A
12073 object = shadow;
12074 shadow = object->shadow;
12075 continue;
1c79356b 12076 }
91447636 12077 if(object != caller_object)
2d21ac55 12078 vm_object_unlock(object);
91447636
A
12079 break;
12080 }
12081}
1c79356b 12082
91447636
A
12083static int
12084vm_map_region_count_obj_refs(
12085 vm_map_entry_t entry,
12086 vm_object_t object)
12087{
12088 register int ref_count;
12089 register vm_object_t chk_obj;
12090 register vm_object_t tmp_obj;
1c79356b 12091
3e170ce0 12092 if (VME_OBJECT(entry) == 0)
2d21ac55 12093 return(0);
1c79356b 12094
91447636 12095 if (entry->is_sub_map)
2d21ac55 12096 return(0);
91447636 12097 else {
2d21ac55 12098 ref_count = 0;
1c79356b 12099
3e170ce0 12100 chk_obj = VME_OBJECT(entry);
2d21ac55 12101 vm_object_lock(chk_obj);
1c79356b 12102
2d21ac55
A
12103 while (chk_obj) {
12104 if (chk_obj == object)
12105 ref_count++;
12106 tmp_obj = chk_obj->shadow;
12107 if (tmp_obj)
12108 vm_object_lock(tmp_obj);
12109 vm_object_unlock(chk_obj);
1c79356b 12110
2d21ac55
A
12111 chk_obj = tmp_obj;
12112 }
1c79356b 12113 }
91447636 12114 return(ref_count);
1c79356b
A
12115}
12116
12117
12118/*
91447636
A
12119 * Routine: vm_map_simplify
12120 *
12121 * Description:
12122 * Attempt to simplify the map representation in
12123 * the vicinity of the given starting address.
12124 * Note:
12125 * This routine is intended primarily to keep the
12126 * kernel maps more compact -- they generally don't
12127 * benefit from the "expand a map entry" technology
12128 * at allocation time because the adjacent entry
12129 * is often wired down.
1c79356b 12130 */
91447636
A
12131void
12132vm_map_simplify_entry(
12133 vm_map_t map,
12134 vm_map_entry_t this_entry)
1c79356b 12135{
91447636 12136 vm_map_entry_t prev_entry;
1c79356b 12137
91447636 12138 counter(c_vm_map_simplify_entry_called++);
1c79356b 12139
91447636 12140 prev_entry = this_entry->vme_prev;
1c79356b 12141
91447636 12142 if ((this_entry != vm_map_to_entry(map)) &&
2d21ac55 12143 (prev_entry != vm_map_to_entry(map)) &&
1c79356b 12144
91447636 12145 (prev_entry->vme_end == this_entry->vme_start) &&
1c79356b 12146
2d21ac55 12147 (prev_entry->is_sub_map == this_entry->is_sub_map) &&
3e170ce0
A
12148 (VME_OBJECT(prev_entry) == VME_OBJECT(this_entry)) &&
12149 ((VME_OFFSET(prev_entry) + (prev_entry->vme_end -
91447636 12150 prev_entry->vme_start))
3e170ce0 12151 == VME_OFFSET(this_entry)) &&
1c79356b 12152
fe8ab488
A
12153 (prev_entry->behavior == this_entry->behavior) &&
12154 (prev_entry->needs_copy == this_entry->needs_copy) &&
91447636
A
12155 (prev_entry->protection == this_entry->protection) &&
12156 (prev_entry->max_protection == this_entry->max_protection) &&
fe8ab488
A
12157 (prev_entry->inheritance == this_entry->inheritance) &&
12158 (prev_entry->use_pmap == this_entry->use_pmap) &&
3e170ce0 12159 (VME_ALIAS(prev_entry) == VME_ALIAS(this_entry)) &&
2d21ac55 12160 (prev_entry->no_cache == this_entry->no_cache) &&
fe8ab488
A
12161 (prev_entry->permanent == this_entry->permanent) &&
12162 (prev_entry->map_aligned == this_entry->map_aligned) &&
12163 (prev_entry->zero_wired_pages == this_entry->zero_wired_pages) &&
12164 (prev_entry->used_for_jit == this_entry->used_for_jit) &&
12165 /* from_reserved_zone: OK if that field doesn't match */
12166 (prev_entry->iokit_acct == this_entry->iokit_acct) &&
3e170ce0
A
12167 (prev_entry->vme_resilient_codesign ==
12168 this_entry->vme_resilient_codesign) &&
12169 (prev_entry->vme_resilient_media ==
12170 this_entry->vme_resilient_media) &&
fe8ab488 12171
91447636
A
12172 (prev_entry->wired_count == this_entry->wired_count) &&
12173 (prev_entry->user_wired_count == this_entry->user_wired_count) &&
1c79356b 12174
91447636
A
12175 (prev_entry->in_transition == FALSE) &&
12176 (this_entry->in_transition == FALSE) &&
12177 (prev_entry->needs_wakeup == FALSE) &&
12178 (this_entry->needs_wakeup == FALSE) &&
12179 (prev_entry->is_shared == FALSE) &&
fe8ab488
A
12180 (this_entry->is_shared == FALSE) &&
12181 (prev_entry->superpage_size == FALSE) &&
12182 (this_entry->superpage_size == FALSE)
2d21ac55 12183 ) {
316670eb 12184 vm_map_store_entry_unlink(map, prev_entry);
e2d2fc5c 12185 assert(prev_entry->vme_start < this_entry->vme_end);
39236c6e
A
12186 if (prev_entry->map_aligned)
12187 assert(VM_MAP_PAGE_ALIGNED(prev_entry->vme_start,
12188 VM_MAP_PAGE_MASK(map)));
91447636 12189 this_entry->vme_start = prev_entry->vme_start;
3e170ce0
A
12190 VME_OFFSET_SET(this_entry, VME_OFFSET(prev_entry));
12191
12192 if (map->holelistenabled) {
12193 vm_map_store_update_first_free(map, this_entry, TRUE);
12194 }
12195
2d21ac55 12196 if (prev_entry->is_sub_map) {
3e170ce0 12197 vm_map_deallocate(VME_SUBMAP(prev_entry));
2d21ac55 12198 } else {
3e170ce0 12199 vm_object_deallocate(VME_OBJECT(prev_entry));
2d21ac55 12200 }
91447636 12201 vm_map_entry_dispose(map, prev_entry);
0c530ab8 12202 SAVE_HINT_MAP_WRITE(map, this_entry);
91447636 12203 counter(c_vm_map_simplified++);
1c79356b 12204 }
91447636 12205}
1c79356b 12206
91447636
A
12207void
12208vm_map_simplify(
12209 vm_map_t map,
12210 vm_map_offset_t start)
12211{
12212 vm_map_entry_t this_entry;
1c79356b 12213
91447636
A
12214 vm_map_lock(map);
12215 if (vm_map_lookup_entry(map, start, &this_entry)) {
12216 vm_map_simplify_entry(map, this_entry);
12217 vm_map_simplify_entry(map, this_entry->vme_next);
12218 }
12219 counter(c_vm_map_simplify_called++);
12220 vm_map_unlock(map);
12221}
1c79356b 12222
91447636
A
12223static void
12224vm_map_simplify_range(
12225 vm_map_t map,
12226 vm_map_offset_t start,
12227 vm_map_offset_t end)
12228{
12229 vm_map_entry_t entry;
1c79356b 12230
91447636
A
12231 /*
12232 * The map should be locked (for "write") by the caller.
12233 */
1c79356b 12234
91447636
A
12235 if (start >= end) {
12236 /* invalid address range */
12237 return;
12238 }
1c79356b 12239
39236c6e
A
12240 start = vm_map_trunc_page(start,
12241 VM_MAP_PAGE_MASK(map));
12242 end = vm_map_round_page(end,
12243 VM_MAP_PAGE_MASK(map));
2d21ac55 12244
91447636
A
12245 if (!vm_map_lookup_entry(map, start, &entry)) {
12246 /* "start" is not mapped and "entry" ends before "start" */
12247 if (entry == vm_map_to_entry(map)) {
12248 /* start with first entry in the map */
12249 entry = vm_map_first_entry(map);
12250 } else {
12251 /* start with next entry */
12252 entry = entry->vme_next;
12253 }
12254 }
12255
12256 while (entry != vm_map_to_entry(map) &&
12257 entry->vme_start <= end) {
12258 /* try and coalesce "entry" with its previous entry */
12259 vm_map_simplify_entry(map, entry);
12260 entry = entry->vme_next;
12261 }
12262}
1c79356b 12263
1c79356b 12264
91447636
A
12265/*
12266 * Routine: vm_map_machine_attribute
12267 * Purpose:
12268 * Provide machine-specific attributes to mappings,
12269 * such as cachability etc. for machines that provide
12270 * them. NUMA architectures and machines with big/strange
12271 * caches will use this.
12272 * Note:
12273 * Responsibilities for locking and checking are handled here,
12274 * everything else in the pmap module. If any non-volatile
12275 * information must be kept, the pmap module should handle
12276 * it itself. [This assumes that attributes do not
12277 * need to be inherited, which seems ok to me]
12278 */
12279kern_return_t
12280vm_map_machine_attribute(
12281 vm_map_t map,
12282 vm_map_offset_t start,
12283 vm_map_offset_t end,
12284 vm_machine_attribute_t attribute,
12285 vm_machine_attribute_val_t* value) /* IN/OUT */
12286{
12287 kern_return_t ret;
12288 vm_map_size_t sync_size;
12289 vm_map_entry_t entry;
12290
12291 if (start < vm_map_min(map) || end > vm_map_max(map))
12292 return KERN_INVALID_ADDRESS;
1c79356b 12293
91447636
A
12294 /* Figure how much memory we need to flush (in page increments) */
12295 sync_size = end - start;
1c79356b 12296
91447636
A
12297 vm_map_lock(map);
12298
12299 if (attribute != MATTR_CACHE) {
12300 /* If we don't have to find physical addresses, we */
12301 /* don't have to do an explicit traversal here. */
12302 ret = pmap_attribute(map->pmap, start, end-start,
12303 attribute, value);
12304 vm_map_unlock(map);
12305 return ret;
12306 }
1c79356b 12307
91447636 12308 ret = KERN_SUCCESS; /* Assume it all worked */
1c79356b 12309
91447636
A
12310 while(sync_size) {
12311 if (vm_map_lookup_entry(map, start, &entry)) {
12312 vm_map_size_t sub_size;
12313 if((entry->vme_end - start) > sync_size) {
12314 sub_size = sync_size;
12315 sync_size = 0;
12316 } else {
12317 sub_size = entry->vme_end - start;
2d21ac55 12318 sync_size -= sub_size;
91447636
A
12319 }
12320 if(entry->is_sub_map) {
12321 vm_map_offset_t sub_start;
12322 vm_map_offset_t sub_end;
1c79356b 12323
91447636 12324 sub_start = (start - entry->vme_start)
3e170ce0 12325 + VME_OFFSET(entry);
91447636
A
12326 sub_end = sub_start + sub_size;
12327 vm_map_machine_attribute(
3e170ce0 12328 VME_SUBMAP(entry),
91447636
A
12329 sub_start,
12330 sub_end,
12331 attribute, value);
12332 } else {
3e170ce0 12333 if (VME_OBJECT(entry)) {
91447636
A
12334 vm_page_t m;
12335 vm_object_t object;
12336 vm_object_t base_object;
12337 vm_object_t last_object;
12338 vm_object_offset_t offset;
12339 vm_object_offset_t base_offset;
12340 vm_map_size_t range;
12341 range = sub_size;
12342 offset = (start - entry->vme_start)
3e170ce0 12343 + VME_OFFSET(entry);
91447636 12344 base_offset = offset;
3e170ce0 12345 object = VME_OBJECT(entry);
91447636
A
12346 base_object = object;
12347 last_object = NULL;
1c79356b 12348
91447636 12349 vm_object_lock(object);
1c79356b 12350
91447636
A
12351 while (range) {
12352 m = vm_page_lookup(
12353 object, offset);
1c79356b 12354
91447636
A
12355 if (m && !m->fictitious) {
12356 ret =
2d21ac55
A
12357 pmap_attribute_cache_sync(
12358 m->phys_page,
12359 PAGE_SIZE,
12360 attribute, value);
91447636
A
12361
12362 } else if (object->shadow) {
6d2010ae 12363 offset = offset + object->vo_shadow_offset;
91447636
A
12364 last_object = object;
12365 object = object->shadow;
12366 vm_object_lock(last_object->shadow);
12367 vm_object_unlock(last_object);
12368 continue;
12369 }
12370 range -= PAGE_SIZE;
1c79356b 12371
91447636
A
12372 if (base_object != object) {
12373 vm_object_unlock(object);
12374 vm_object_lock(base_object);
12375 object = base_object;
12376 }
12377 /* Bump to the next page */
12378 base_offset += PAGE_SIZE;
12379 offset = base_offset;
12380 }
12381 vm_object_unlock(object);
12382 }
12383 }
12384 start += sub_size;
12385 } else {
12386 vm_map_unlock(map);
12387 return KERN_FAILURE;
12388 }
12389
1c79356b 12390 }
e5568f75 12391
91447636 12392 vm_map_unlock(map);
e5568f75 12393
91447636
A
12394 return ret;
12395}
e5568f75 12396
91447636
A
12397/*
12398 * vm_map_behavior_set:
12399 *
12400 * Sets the paging reference behavior of the specified address
12401 * range in the target map. Paging reference behavior affects
12402 * how pagein operations resulting from faults on the map will be
12403 * clustered.
12404 */
12405kern_return_t
12406vm_map_behavior_set(
12407 vm_map_t map,
12408 vm_map_offset_t start,
12409 vm_map_offset_t end,
12410 vm_behavior_t new_behavior)
12411{
12412 register vm_map_entry_t entry;
12413 vm_map_entry_t temp_entry;
e5568f75 12414
91447636 12415 XPR(XPR_VM_MAP,
2d21ac55 12416 "vm_map_behavior_set, 0x%X start 0x%X end 0x%X behavior %d",
b0d623f7 12417 map, start, end, new_behavior, 0);
e5568f75 12418
6d2010ae
A
12419 if (start > end ||
12420 start < vm_map_min(map) ||
12421 end > vm_map_max(map)) {
12422 return KERN_NO_SPACE;
12423 }
12424
91447636 12425 switch (new_behavior) {
b0d623f7
A
12426
12427 /*
12428 * This first block of behaviors all set a persistent state on the specified
12429 * memory range. All we have to do here is to record the desired behavior
12430 * in the vm_map_entry_t's.
12431 */
12432
91447636
A
12433 case VM_BEHAVIOR_DEFAULT:
12434 case VM_BEHAVIOR_RANDOM:
12435 case VM_BEHAVIOR_SEQUENTIAL:
12436 case VM_BEHAVIOR_RSEQNTL:
b0d623f7
A
12437 case VM_BEHAVIOR_ZERO_WIRED_PAGES:
12438 vm_map_lock(map);
12439
12440 /*
12441 * The entire address range must be valid for the map.
12442 * Note that vm_map_range_check() does a
12443 * vm_map_lookup_entry() internally and returns the
12444 * entry containing the start of the address range if
12445 * the entire range is valid.
12446 */
12447 if (vm_map_range_check(map, start, end, &temp_entry)) {
12448 entry = temp_entry;
12449 vm_map_clip_start(map, entry, start);
12450 }
12451 else {
12452 vm_map_unlock(map);
12453 return(KERN_INVALID_ADDRESS);
12454 }
12455
12456 while ((entry != vm_map_to_entry(map)) && (entry->vme_start < end)) {
12457 vm_map_clip_end(map, entry, end);
fe8ab488
A
12458 if (entry->is_sub_map) {
12459 assert(!entry->use_pmap);
12460 }
b0d623f7
A
12461
12462 if( new_behavior == VM_BEHAVIOR_ZERO_WIRED_PAGES ) {
12463 entry->zero_wired_pages = TRUE;
12464 } else {
12465 entry->behavior = new_behavior;
12466 }
12467 entry = entry->vme_next;
12468 }
12469
12470 vm_map_unlock(map);
91447636 12471 break;
b0d623f7
A
12472
12473 /*
12474 * The rest of these are different from the above in that they cause
12475 * an immediate action to take place as opposed to setting a behavior that
12476 * affects future actions.
12477 */
12478
91447636 12479 case VM_BEHAVIOR_WILLNEED:
b0d623f7
A
12480 return vm_map_willneed(map, start, end);
12481
91447636 12482 case VM_BEHAVIOR_DONTNEED:
b0d623f7
A
12483 return vm_map_msync(map, start, end - start, VM_SYNC_DEACTIVATE | VM_SYNC_CONTIGUOUS);
12484
12485 case VM_BEHAVIOR_FREE:
12486 return vm_map_msync(map, start, end - start, VM_SYNC_KILLPAGES | VM_SYNC_CONTIGUOUS);
12487
12488 case VM_BEHAVIOR_REUSABLE:
12489 return vm_map_reusable_pages(map, start, end);
12490
12491 case VM_BEHAVIOR_REUSE:
12492 return vm_map_reuse_pages(map, start, end);
12493
12494 case VM_BEHAVIOR_CAN_REUSE:
12495 return vm_map_can_reuse(map, start, end);
12496
3e170ce0
A
12497#if MACH_ASSERT
12498 case VM_BEHAVIOR_PAGEOUT:
12499 return vm_map_pageout(map, start, end);
12500#endif /* MACH_ASSERT */
12501
1c79356b 12502 default:
91447636 12503 return(KERN_INVALID_ARGUMENT);
1c79356b 12504 }
1c79356b 12505
b0d623f7
A
12506 return(KERN_SUCCESS);
12507}
12508
12509
12510/*
12511 * Internals for madvise(MADV_WILLNEED) system call.
12512 *
12513 * The present implementation is to do a read-ahead if the mapping corresponds
12514 * to a mapped regular file. If it's an anonymous mapping, then we do nothing
12515 * and basically ignore the "advice" (which we are always free to do).
12516 */
12517
12518
12519static kern_return_t
12520vm_map_willneed(
12521 vm_map_t map,
12522 vm_map_offset_t start,
12523 vm_map_offset_t end
12524)
12525{
12526 vm_map_entry_t entry;
12527 vm_object_t object;
12528 memory_object_t pager;
12529 struct vm_object_fault_info fault_info;
12530 kern_return_t kr;
12531 vm_object_size_t len;
12532 vm_object_offset_t offset;
1c79356b 12533
91447636 12534 /*
b0d623f7
A
12535 * Fill in static values in fault_info. Several fields get ignored by the code
12536 * we call, but we'll fill them in anyway since uninitialized fields are bad
12537 * when it comes to future backwards compatibility.
91447636 12538 */
b0d623f7
A
12539
12540 fault_info.interruptible = THREAD_UNINT; /* ignored value */
12541 fault_info.behavior = VM_BEHAVIOR_SEQUENTIAL;
12542 fault_info.no_cache = FALSE; /* ignored value */
12543 fault_info.stealth = TRUE;
6d2010ae
A
12544 fault_info.io_sync = FALSE;
12545 fault_info.cs_bypass = FALSE;
0b4c1975 12546 fault_info.mark_zf_absent = FALSE;
316670eb 12547 fault_info.batch_pmap_op = FALSE;
b0d623f7
A
12548
12549 /*
12550 * The MADV_WILLNEED operation doesn't require any changes to the
12551 * vm_map_entry_t's, so the read lock is sufficient.
12552 */
12553
12554 vm_map_lock_read(map);
12555
12556 /*
12557 * The madvise semantics require that the address range be fully
12558 * allocated with no holes. Otherwise, we're required to return
12559 * an error.
12560 */
12561
6d2010ae
A
12562 if (! vm_map_range_check(map, start, end, &entry)) {
12563 vm_map_unlock_read(map);
12564 return KERN_INVALID_ADDRESS;
12565 }
b0d623f7 12566
6d2010ae
A
12567 /*
12568 * Examine each vm_map_entry_t in the range.
12569 */
12570 for (; entry != vm_map_to_entry(map) && start < end; ) {
12571
b0d623f7 12572 /*
6d2010ae
A
12573 * The first time through, the start address could be anywhere
12574 * within the vm_map_entry we found. So adjust the offset to
12575 * correspond. After that, the offset will always be zero to
12576 * correspond to the beginning of the current vm_map_entry.
b0d623f7 12577 */
3e170ce0 12578 offset = (start - entry->vme_start) + VME_OFFSET(entry);
b0d623f7 12579
6d2010ae
A
12580 /*
12581 * Set the length so we don't go beyond the end of the
12582 * map_entry or beyond the end of the range we were given.
12583 * This range could span also multiple map entries all of which
12584 * map different files, so make sure we only do the right amount
12585 * of I/O for each object. Note that it's possible for there
12586 * to be multiple map entries all referring to the same object
12587 * but with different page permissions, but it's not worth
12588 * trying to optimize that case.
12589 */
12590 len = MIN(entry->vme_end - start, end - start);
b0d623f7 12591
6d2010ae
A
12592 if ((vm_size_t) len != len) {
12593 /* 32-bit overflow */
12594 len = (vm_size_t) (0 - PAGE_SIZE);
12595 }
12596 fault_info.cluster_size = (vm_size_t) len;
12597 fault_info.lo_offset = offset;
12598 fault_info.hi_offset = offset + len;
3e170ce0 12599 fault_info.user_tag = VME_ALIAS(entry);
fe8ab488
A
12600 fault_info.pmap_options = 0;
12601 if (entry->iokit_acct ||
12602 (!entry->is_sub_map && !entry->use_pmap)) {
12603 fault_info.pmap_options |= PMAP_OPTIONS_ALT_ACCT;
12604 }
b0d623f7 12605
6d2010ae
A
12606 /*
12607 * If there's no read permission to this mapping, then just
12608 * skip it.
12609 */
12610 if ((entry->protection & VM_PROT_READ) == 0) {
12611 entry = entry->vme_next;
12612 start = entry->vme_start;
12613 continue;
12614 }
b0d623f7 12615
6d2010ae
A
12616 /*
12617 * Find the file object backing this map entry. If there is
12618 * none, then we simply ignore the "will need" advice for this
12619 * entry and go on to the next one.
12620 */
12621 if ((object = find_vnode_object(entry)) == VM_OBJECT_NULL) {
12622 entry = entry->vme_next;
12623 start = entry->vme_start;
12624 continue;
12625 }
b0d623f7 12626
6d2010ae
A
12627 /*
12628 * The data_request() could take a long time, so let's
12629 * release the map lock to avoid blocking other threads.
12630 */
12631 vm_map_unlock_read(map);
b0d623f7 12632
6d2010ae
A
12633 vm_object_paging_begin(object);
12634 pager = object->pager;
12635 vm_object_unlock(object);
b0d623f7 12636
6d2010ae
A
12637 /*
12638 * Get the data from the object asynchronously.
12639 *
12640 * Note that memory_object_data_request() places limits on the
12641 * amount of I/O it will do. Regardless of the len we
fe8ab488 12642 * specified, it won't do more than MAX_UPL_TRANSFER_BYTES and it
6d2010ae
A
12643 * silently truncates the len to that size. This isn't
12644 * necessarily bad since madvise shouldn't really be used to
12645 * page in unlimited amounts of data. Other Unix variants
12646 * limit the willneed case as well. If this turns out to be an
12647 * issue for developers, then we can always adjust the policy
12648 * here and still be backwards compatible since this is all
12649 * just "advice".
12650 */
12651 kr = memory_object_data_request(
12652 pager,
12653 offset + object->paging_offset,
12654 0, /* ignored */
12655 VM_PROT_READ,
12656 (memory_object_fault_info_t)&fault_info);
b0d623f7 12657
6d2010ae
A
12658 vm_object_lock(object);
12659 vm_object_paging_end(object);
12660 vm_object_unlock(object);
b0d623f7 12661
6d2010ae
A
12662 /*
12663 * If we couldn't do the I/O for some reason, just give up on
12664 * the madvise. We still return success to the user since
12665 * madvise isn't supposed to fail when the advice can't be
12666 * taken.
12667 */
12668 if (kr != KERN_SUCCESS) {
12669 return KERN_SUCCESS;
12670 }
b0d623f7 12671
6d2010ae
A
12672 start += len;
12673 if (start >= end) {
12674 /* done */
12675 return KERN_SUCCESS;
12676 }
b0d623f7 12677
6d2010ae
A
12678 /* look up next entry */
12679 vm_map_lock_read(map);
12680 if (! vm_map_lookup_entry(map, start, &entry)) {
b0d623f7 12681 /*
6d2010ae 12682 * There's a new hole in the address range.
b0d623f7 12683 */
6d2010ae
A
12684 vm_map_unlock_read(map);
12685 return KERN_INVALID_ADDRESS;
b0d623f7 12686 }
6d2010ae 12687 }
b0d623f7
A
12688
12689 vm_map_unlock_read(map);
6d2010ae 12690 return KERN_SUCCESS;
b0d623f7
A
12691}
12692
12693static boolean_t
12694vm_map_entry_is_reusable(
12695 vm_map_entry_t entry)
12696{
3e170ce0
A
12697 /* Only user map entries */
12698
b0d623f7
A
12699 vm_object_t object;
12700
2dced7af
A
12701 if (entry->is_sub_map) {
12702 return FALSE;
12703 }
12704
3e170ce0 12705 switch (VME_ALIAS(entry)) {
39236c6e
A
12706 case VM_MEMORY_MALLOC:
12707 case VM_MEMORY_MALLOC_SMALL:
12708 case VM_MEMORY_MALLOC_LARGE:
12709 case VM_MEMORY_REALLOC:
12710 case VM_MEMORY_MALLOC_TINY:
12711 case VM_MEMORY_MALLOC_LARGE_REUSABLE:
12712 case VM_MEMORY_MALLOC_LARGE_REUSED:
12713 /*
12714 * This is a malloc() memory region: check if it's still
12715 * in its original state and can be re-used for more
12716 * malloc() allocations.
12717 */
12718 break;
12719 default:
12720 /*
12721 * Not a malloc() memory region: let the caller decide if
12722 * it's re-usable.
12723 */
12724 return TRUE;
12725 }
12726
b0d623f7
A
12727 if (entry->is_shared ||
12728 entry->is_sub_map ||
12729 entry->in_transition ||
12730 entry->protection != VM_PROT_DEFAULT ||
12731 entry->max_protection != VM_PROT_ALL ||
12732 entry->inheritance != VM_INHERIT_DEFAULT ||
12733 entry->no_cache ||
12734 entry->permanent ||
39236c6e 12735 entry->superpage_size != FALSE ||
b0d623f7
A
12736 entry->zero_wired_pages ||
12737 entry->wired_count != 0 ||
12738 entry->user_wired_count != 0) {
12739 return FALSE;
91447636 12740 }
b0d623f7 12741
3e170ce0 12742 object = VME_OBJECT(entry);
b0d623f7
A
12743 if (object == VM_OBJECT_NULL) {
12744 return TRUE;
12745 }
316670eb
A
12746 if (
12747#if 0
12748 /*
12749 * Let's proceed even if the VM object is potentially
12750 * shared.
12751 * We check for this later when processing the actual
12752 * VM pages, so the contents will be safe if shared.
12753 *
12754 * But we can still mark this memory region as "reusable" to
12755 * acknowledge that the caller did let us know that the memory
12756 * could be re-used and should not be penalized for holding
12757 * on to it. This allows its "resident size" to not include
12758 * the reusable range.
12759 */
12760 object->ref_count == 1 &&
12761#endif
b0d623f7
A
12762 object->wired_page_count == 0 &&
12763 object->copy == VM_OBJECT_NULL &&
12764 object->shadow == VM_OBJECT_NULL &&
12765 object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC &&
12766 object->internal &&
12767 !object->true_share &&
6d2010ae 12768 object->wimg_bits == VM_WIMG_USE_DEFAULT &&
b0d623f7
A
12769 !object->code_signed) {
12770 return TRUE;
1c79356b 12771 }
b0d623f7
A
12772 return FALSE;
12773
12774
12775}
1c79356b 12776
b0d623f7
A
12777static kern_return_t
12778vm_map_reuse_pages(
12779 vm_map_t map,
12780 vm_map_offset_t start,
12781 vm_map_offset_t end)
12782{
12783 vm_map_entry_t entry;
12784 vm_object_t object;
12785 vm_object_offset_t start_offset, end_offset;
12786
12787 /*
12788 * The MADV_REUSE operation doesn't require any changes to the
12789 * vm_map_entry_t's, so the read lock is sufficient.
12790 */
0b4e3aa0 12791
b0d623f7 12792 vm_map_lock_read(map);
3e170ce0 12793 assert(map->pmap != kernel_pmap); /* protect alias access */
1c79356b 12794
b0d623f7
A
12795 /*
12796 * The madvise semantics require that the address range be fully
12797 * allocated with no holes. Otherwise, we're required to return
12798 * an error.
12799 */
12800
12801 if (!vm_map_range_check(map, start, end, &entry)) {
12802 vm_map_unlock_read(map);
12803 vm_page_stats_reusable.reuse_pages_failure++;
12804 return KERN_INVALID_ADDRESS;
1c79356b 12805 }
91447636 12806
b0d623f7
A
12807 /*
12808 * Examine each vm_map_entry_t in the range.
12809 */
12810 for (; entry != vm_map_to_entry(map) && entry->vme_start < end;
12811 entry = entry->vme_next) {
12812 /*
12813 * Sanity check on the VM map entry.
12814 */
12815 if (! vm_map_entry_is_reusable(entry)) {
12816 vm_map_unlock_read(map);
12817 vm_page_stats_reusable.reuse_pages_failure++;
12818 return KERN_INVALID_ADDRESS;
12819 }
12820
12821 /*
12822 * The first time through, the start address could be anywhere
12823 * within the vm_map_entry we found. So adjust the offset to
12824 * correspond.
12825 */
12826 if (entry->vme_start < start) {
12827 start_offset = start - entry->vme_start;
12828 } else {
12829 start_offset = 0;
12830 }
12831 end_offset = MIN(end, entry->vme_end) - entry->vme_start;
3e170ce0
A
12832 start_offset += VME_OFFSET(entry);
12833 end_offset += VME_OFFSET(entry);
b0d623f7 12834
2dced7af 12835 assert(!entry->is_sub_map);
3e170ce0 12836 object = VME_OBJECT(entry);
b0d623f7
A
12837 if (object != VM_OBJECT_NULL) {
12838 vm_object_lock(object);
12839 vm_object_reuse_pages(object, start_offset, end_offset,
12840 TRUE);
12841 vm_object_unlock(object);
12842 }
12843
3e170ce0 12844 if (VME_ALIAS(entry) == VM_MEMORY_MALLOC_LARGE_REUSABLE) {
b0d623f7
A
12845 /*
12846 * XXX
12847 * We do not hold the VM map exclusively here.
12848 * The "alias" field is not that critical, so it's
12849 * safe to update it here, as long as it is the only
12850 * one that can be modified while holding the VM map
12851 * "shared".
12852 */
3e170ce0 12853 VME_ALIAS_SET(entry, VM_MEMORY_MALLOC_LARGE_REUSED);
b0d623f7
A
12854 }
12855 }
12856
12857 vm_map_unlock_read(map);
12858 vm_page_stats_reusable.reuse_pages_success++;
12859 return KERN_SUCCESS;
1c79356b
A
12860}
12861
1c79356b 12862
b0d623f7
A
12863static kern_return_t
12864vm_map_reusable_pages(
12865 vm_map_t map,
12866 vm_map_offset_t start,
12867 vm_map_offset_t end)
12868{
12869 vm_map_entry_t entry;
12870 vm_object_t object;
12871 vm_object_offset_t start_offset, end_offset;
3e170ce0 12872 vm_map_offset_t pmap_offset;
b0d623f7
A
12873
12874 /*
12875 * The MADV_REUSABLE operation doesn't require any changes to the
12876 * vm_map_entry_t's, so the read lock is sufficient.
12877 */
12878
12879 vm_map_lock_read(map);
3e170ce0 12880 assert(map->pmap != kernel_pmap); /* protect alias access */
b0d623f7
A
12881
12882 /*
12883 * The madvise semantics require that the address range be fully
12884 * allocated with no holes. Otherwise, we're required to return
12885 * an error.
12886 */
12887
12888 if (!vm_map_range_check(map, start, end, &entry)) {
12889 vm_map_unlock_read(map);
12890 vm_page_stats_reusable.reusable_pages_failure++;
12891 return KERN_INVALID_ADDRESS;
12892 }
12893
12894 /*
12895 * Examine each vm_map_entry_t in the range.
12896 */
12897 for (; entry != vm_map_to_entry(map) && entry->vme_start < end;
12898 entry = entry->vme_next) {
12899 int kill_pages = 0;
12900
12901 /*
12902 * Sanity check on the VM map entry.
12903 */
12904 if (! vm_map_entry_is_reusable(entry)) {
12905 vm_map_unlock_read(map);
12906 vm_page_stats_reusable.reusable_pages_failure++;
12907 return KERN_INVALID_ADDRESS;
12908 }
12909
12910 /*
12911 * The first time through, the start address could be anywhere
12912 * within the vm_map_entry we found. So adjust the offset to
12913 * correspond.
12914 */
12915 if (entry->vme_start < start) {
12916 start_offset = start - entry->vme_start;
3e170ce0 12917 pmap_offset = start;
b0d623f7
A
12918 } else {
12919 start_offset = 0;
3e170ce0 12920 pmap_offset = entry->vme_start;
b0d623f7
A
12921 }
12922 end_offset = MIN(end, entry->vme_end) - entry->vme_start;
3e170ce0
A
12923 start_offset += VME_OFFSET(entry);
12924 end_offset += VME_OFFSET(entry);
b0d623f7 12925
2dced7af 12926 assert(!entry->is_sub_map);
3e170ce0 12927 object = VME_OBJECT(entry);
b0d623f7
A
12928 if (object == VM_OBJECT_NULL)
12929 continue;
12930
12931
12932 vm_object_lock(object);
fe8ab488
A
12933 if (object->ref_count == 1 &&
12934 !object->shadow &&
12935 /*
12936 * "iokit_acct" entries are billed for their virtual size
12937 * (rather than for their resident pages only), so they
12938 * wouldn't benefit from making pages reusable, and it
12939 * would be hard to keep track of pages that are both
12940 * "iokit_acct" and "reusable" in the pmap stats and ledgers.
12941 */
12942 !(entry->iokit_acct ||
12943 (!entry->is_sub_map && !entry->use_pmap)))
b0d623f7
A
12944 kill_pages = 1;
12945 else
12946 kill_pages = -1;
12947 if (kill_pages != -1) {
12948 vm_object_deactivate_pages(object,
12949 start_offset,
12950 end_offset - start_offset,
12951 kill_pages,
3e170ce0
A
12952 TRUE /*reusable_pages*/,
12953 map->pmap,
12954 pmap_offset);
b0d623f7
A
12955 } else {
12956 vm_page_stats_reusable.reusable_pages_shared++;
12957 }
12958 vm_object_unlock(object);
12959
3e170ce0
A
12960 if (VME_ALIAS(entry) == VM_MEMORY_MALLOC_LARGE ||
12961 VME_ALIAS(entry) == VM_MEMORY_MALLOC_LARGE_REUSED) {
b0d623f7
A
12962 /*
12963 * XXX
12964 * We do not hold the VM map exclusively here.
12965 * The "alias" field is not that critical, so it's
12966 * safe to update it here, as long as it is the only
12967 * one that can be modified while holding the VM map
12968 * "shared".
12969 */
3e170ce0 12970 VME_ALIAS_SET(entry, VM_MEMORY_MALLOC_LARGE_REUSABLE);
b0d623f7
A
12971 }
12972 }
12973
12974 vm_map_unlock_read(map);
12975 vm_page_stats_reusable.reusable_pages_success++;
12976 return KERN_SUCCESS;
12977}
12978
12979
12980static kern_return_t
12981vm_map_can_reuse(
12982 vm_map_t map,
12983 vm_map_offset_t start,
12984 vm_map_offset_t end)
12985{
12986 vm_map_entry_t entry;
12987
12988 /*
12989 * The MADV_REUSABLE operation doesn't require any changes to the
12990 * vm_map_entry_t's, so the read lock is sufficient.
12991 */
12992
12993 vm_map_lock_read(map);
3e170ce0 12994 assert(map->pmap != kernel_pmap); /* protect alias access */
b0d623f7
A
12995
12996 /*
12997 * The madvise semantics require that the address range be fully
12998 * allocated with no holes. Otherwise, we're required to return
12999 * an error.
13000 */
13001
13002 if (!vm_map_range_check(map, start, end, &entry)) {
13003 vm_map_unlock_read(map);
13004 vm_page_stats_reusable.can_reuse_failure++;
13005 return KERN_INVALID_ADDRESS;
13006 }
13007
13008 /*
13009 * Examine each vm_map_entry_t in the range.
13010 */
13011 for (; entry != vm_map_to_entry(map) && entry->vme_start < end;
13012 entry = entry->vme_next) {
13013 /*
13014 * Sanity check on the VM map entry.
13015 */
13016 if (! vm_map_entry_is_reusable(entry)) {
13017 vm_map_unlock_read(map);
13018 vm_page_stats_reusable.can_reuse_failure++;
13019 return KERN_INVALID_ADDRESS;
13020 }
13021 }
13022
13023 vm_map_unlock_read(map);
13024 vm_page_stats_reusable.can_reuse_success++;
13025 return KERN_SUCCESS;
13026}
13027
13028
3e170ce0
A
13029#if MACH_ASSERT
13030static kern_return_t
13031vm_map_pageout(
13032 vm_map_t map,
13033 vm_map_offset_t start,
13034 vm_map_offset_t end)
13035{
13036 vm_map_entry_t entry;
13037
13038 /*
13039 * The MADV_PAGEOUT operation doesn't require any changes to the
13040 * vm_map_entry_t's, so the read lock is sufficient.
13041 */
13042
13043 vm_map_lock_read(map);
13044
13045 /*
13046 * The madvise semantics require that the address range be fully
13047 * allocated with no holes. Otherwise, we're required to return
13048 * an error.
13049 */
13050
13051 if (!vm_map_range_check(map, start, end, &entry)) {
13052 vm_map_unlock_read(map);
13053 return KERN_INVALID_ADDRESS;
13054 }
13055
13056 /*
13057 * Examine each vm_map_entry_t in the range.
13058 */
13059 for (; entry != vm_map_to_entry(map) && entry->vme_start < end;
13060 entry = entry->vme_next) {
13061 vm_object_t object;
13062
13063 /*
13064 * Sanity check on the VM map entry.
13065 */
13066 if (entry->is_sub_map) {
13067 vm_map_t submap;
13068 vm_map_offset_t submap_start;
13069 vm_map_offset_t submap_end;
13070 vm_map_entry_t submap_entry;
13071
13072 submap = VME_SUBMAP(entry);
13073 submap_start = VME_OFFSET(entry);
13074 submap_end = submap_start + (entry->vme_end -
13075 entry->vme_start);
13076
13077 vm_map_lock_read(submap);
13078
13079 if (! vm_map_range_check(submap,
13080 submap_start,
13081 submap_end,
13082 &submap_entry)) {
13083 vm_map_unlock_read(submap);
13084 vm_map_unlock_read(map);
13085 return KERN_INVALID_ADDRESS;
13086 }
13087
13088 object = VME_OBJECT(submap_entry);
13089 if (submap_entry->is_sub_map ||
13090 object == VM_OBJECT_NULL ||
13091 !object->internal) {
13092 vm_map_unlock_read(submap);
13093 continue;
13094 }
13095
13096 vm_object_pageout(object);
13097
13098 vm_map_unlock_read(submap);
13099 submap = VM_MAP_NULL;
13100 submap_entry = VM_MAP_ENTRY_NULL;
13101 continue;
13102 }
13103
13104 object = VME_OBJECT(entry);
13105 if (entry->is_sub_map ||
13106 object == VM_OBJECT_NULL ||
13107 !object->internal) {
13108 continue;
13109 }
13110
13111 vm_object_pageout(object);
13112 }
13113
13114 vm_map_unlock_read(map);
13115 return KERN_SUCCESS;
13116}
13117#endif /* MACH_ASSERT */
13118
13119
1c79356b 13120/*
91447636
A
13121 * Routine: vm_map_entry_insert
13122 *
13123 * Descritpion: This routine inserts a new vm_entry in a locked map.
1c79356b 13124 */
91447636
A
13125vm_map_entry_t
13126vm_map_entry_insert(
13127 vm_map_t map,
13128 vm_map_entry_t insp_entry,
13129 vm_map_offset_t start,
13130 vm_map_offset_t end,
13131 vm_object_t object,
13132 vm_object_offset_t offset,
13133 boolean_t needs_copy,
13134 boolean_t is_shared,
13135 boolean_t in_transition,
13136 vm_prot_t cur_protection,
13137 vm_prot_t max_protection,
13138 vm_behavior_t behavior,
13139 vm_inherit_t inheritance,
2d21ac55 13140 unsigned wired_count,
b0d623f7
A
13141 boolean_t no_cache,
13142 boolean_t permanent,
39236c6e 13143 unsigned int superpage_size,
fe8ab488
A
13144 boolean_t clear_map_aligned,
13145 boolean_t is_submap)
1c79356b 13146{
91447636 13147 vm_map_entry_t new_entry;
1c79356b 13148
91447636 13149 assert(insp_entry != (vm_map_entry_t)0);
1c79356b 13150
7ddcb079 13151 new_entry = vm_map_entry_create(map, !map->hdr.entries_pageable);
1c79356b 13152
39236c6e
A
13153 if (VM_MAP_PAGE_SHIFT(map) != PAGE_SHIFT) {
13154 new_entry->map_aligned = TRUE;
13155 } else {
13156 new_entry->map_aligned = FALSE;
13157 }
13158 if (clear_map_aligned &&
fe8ab488
A
13159 (! VM_MAP_PAGE_ALIGNED(start, VM_MAP_PAGE_MASK(map)) ||
13160 ! VM_MAP_PAGE_ALIGNED(end, VM_MAP_PAGE_MASK(map)))) {
39236c6e
A
13161 new_entry->map_aligned = FALSE;
13162 }
13163
91447636
A
13164 new_entry->vme_start = start;
13165 new_entry->vme_end = end;
13166 assert(page_aligned(new_entry->vme_start));
13167 assert(page_aligned(new_entry->vme_end));
39236c6e 13168 if (new_entry->map_aligned) {
fe8ab488
A
13169 assert(VM_MAP_PAGE_ALIGNED(new_entry->vme_start,
13170 VM_MAP_PAGE_MASK(map)));
39236c6e
A
13171 assert(VM_MAP_PAGE_ALIGNED(new_entry->vme_end,
13172 VM_MAP_PAGE_MASK(map)));
13173 }
e2d2fc5c 13174 assert(new_entry->vme_start < new_entry->vme_end);
1c79356b 13175
3e170ce0
A
13176 VME_OBJECT_SET(new_entry, object);
13177 VME_OFFSET_SET(new_entry, offset);
91447636 13178 new_entry->is_shared = is_shared;
fe8ab488 13179 new_entry->is_sub_map = is_submap;
91447636
A
13180 new_entry->needs_copy = needs_copy;
13181 new_entry->in_transition = in_transition;
13182 new_entry->needs_wakeup = FALSE;
13183 new_entry->inheritance = inheritance;
13184 new_entry->protection = cur_protection;
13185 new_entry->max_protection = max_protection;
13186 new_entry->behavior = behavior;
13187 new_entry->wired_count = wired_count;
13188 new_entry->user_wired_count = 0;
fe8ab488
A
13189 if (is_submap) {
13190 /*
13191 * submap: "use_pmap" means "nested".
13192 * default: false.
13193 */
13194 new_entry->use_pmap = FALSE;
13195 } else {
13196 /*
13197 * object: "use_pmap" means "use pmap accounting" for footprint.
13198 * default: true.
13199 */
13200 new_entry->use_pmap = TRUE;
13201 }
3e170ce0 13202 VME_ALIAS_SET(new_entry, 0);
b0d623f7 13203 new_entry->zero_wired_pages = FALSE;
2d21ac55 13204 new_entry->no_cache = no_cache;
b0d623f7 13205 new_entry->permanent = permanent;
39236c6e
A
13206 if (superpage_size)
13207 new_entry->superpage_size = TRUE;
13208 else
13209 new_entry->superpage_size = FALSE;
6d2010ae 13210 new_entry->used_for_jit = FALSE;
fe8ab488 13211 new_entry->iokit_acct = FALSE;
3e170ce0
A
13212 new_entry->vme_resilient_codesign = FALSE;
13213 new_entry->vme_resilient_media = FALSE;
1c79356b 13214
91447636
A
13215 /*
13216 * Insert the new entry into the list.
13217 */
1c79356b 13218
6d2010ae 13219 vm_map_store_entry_link(map, insp_entry, new_entry);
91447636
A
13220 map->size += end - start;
13221
13222 /*
13223 * Update the free space hint and the lookup hint.
13224 */
13225
0c530ab8 13226 SAVE_HINT_MAP_WRITE(map, new_entry);
91447636 13227 return new_entry;
1c79356b
A
13228}
13229
13230/*
91447636
A
13231 * Routine: vm_map_remap_extract
13232 *
13233 * Descritpion: This routine returns a vm_entry list from a map.
1c79356b 13234 */
91447636
A
13235static kern_return_t
13236vm_map_remap_extract(
13237 vm_map_t map,
13238 vm_map_offset_t addr,
13239 vm_map_size_t size,
13240 boolean_t copy,
13241 struct vm_map_header *map_header,
13242 vm_prot_t *cur_protection,
13243 vm_prot_t *max_protection,
13244 /* What, no behavior? */
13245 vm_inherit_t inheritance,
13246 boolean_t pageable)
1c79356b 13247{
91447636
A
13248 kern_return_t result;
13249 vm_map_size_t mapped_size;
13250 vm_map_size_t tmp_size;
13251 vm_map_entry_t src_entry; /* result of last map lookup */
13252 vm_map_entry_t new_entry;
13253 vm_object_offset_t offset;
13254 vm_map_offset_t map_address;
13255 vm_map_offset_t src_start; /* start of entry to map */
13256 vm_map_offset_t src_end; /* end of region to be mapped */
13257 vm_object_t object;
13258 vm_map_version_t version;
13259 boolean_t src_needs_copy;
13260 boolean_t new_entry_needs_copy;
1c79356b 13261
91447636 13262 assert(map != VM_MAP_NULL);
39236c6e
A
13263 assert(size != 0);
13264 assert(size == vm_map_round_page(size, PAGE_MASK));
91447636
A
13265 assert(inheritance == VM_INHERIT_NONE ||
13266 inheritance == VM_INHERIT_COPY ||
13267 inheritance == VM_INHERIT_SHARE);
1c79356b 13268
91447636
A
13269 /*
13270 * Compute start and end of region.
13271 */
39236c6e
A
13272 src_start = vm_map_trunc_page(addr, PAGE_MASK);
13273 src_end = vm_map_round_page(src_start + size, PAGE_MASK);
13274
1c79356b 13275
91447636
A
13276 /*
13277 * Initialize map_header.
13278 */
13279 map_header->links.next = (struct vm_map_entry *)&map_header->links;
13280 map_header->links.prev = (struct vm_map_entry *)&map_header->links;
13281 map_header->nentries = 0;
13282 map_header->entries_pageable = pageable;
39236c6e 13283 map_header->page_shift = PAGE_SHIFT;
1c79356b 13284
6d2010ae
A
13285 vm_map_store_init( map_header );
13286
91447636
A
13287 *cur_protection = VM_PROT_ALL;
13288 *max_protection = VM_PROT_ALL;
1c79356b 13289
91447636
A
13290 map_address = 0;
13291 mapped_size = 0;
13292 result = KERN_SUCCESS;
1c79356b 13293
91447636
A
13294 /*
13295 * The specified source virtual space might correspond to
13296 * multiple map entries, need to loop on them.
13297 */
13298 vm_map_lock(map);
13299 while (mapped_size != size) {
13300 vm_map_size_t entry_size;
1c79356b 13301
91447636
A
13302 /*
13303 * Find the beginning of the region.
13304 */
13305 if (! vm_map_lookup_entry(map, src_start, &src_entry)) {
13306 result = KERN_INVALID_ADDRESS;
13307 break;
13308 }
1c79356b 13309
91447636
A
13310 if (src_start < src_entry->vme_start ||
13311 (mapped_size && src_start != src_entry->vme_start)) {
13312 result = KERN_INVALID_ADDRESS;
13313 break;
13314 }
1c79356b 13315
91447636
A
13316 tmp_size = size - mapped_size;
13317 if (src_end > src_entry->vme_end)
13318 tmp_size -= (src_end - src_entry->vme_end);
1c79356b 13319
91447636 13320 entry_size = (vm_map_size_t)(src_entry->vme_end -
2d21ac55 13321 src_entry->vme_start);
1c79356b 13322
91447636 13323 if(src_entry->is_sub_map) {
3e170ce0 13324 vm_map_reference(VME_SUBMAP(src_entry));
91447636
A
13325 object = VM_OBJECT_NULL;
13326 } else {
3e170ce0 13327 object = VME_OBJECT(src_entry);
fe8ab488
A
13328 if (src_entry->iokit_acct) {
13329 /*
13330 * This entry uses "IOKit accounting".
13331 */
13332 } else if (object != VM_OBJECT_NULL &&
13333 object->purgable != VM_PURGABLE_DENY) {
13334 /*
13335 * Purgeable objects have their own accounting:
13336 * no pmap accounting for them.
13337 */
13338 assert(!src_entry->use_pmap);
13339 } else {
13340 /*
13341 * Not IOKit or purgeable:
13342 * must be accounted by pmap stats.
13343 */
13344 assert(src_entry->use_pmap);
13345 }
55e303ae 13346
91447636
A
13347 if (object == VM_OBJECT_NULL) {
13348 object = vm_object_allocate(entry_size);
3e170ce0
A
13349 VME_OFFSET_SET(src_entry, 0);
13350 VME_OBJECT_SET(src_entry, object);
91447636
A
13351 } else if (object->copy_strategy !=
13352 MEMORY_OBJECT_COPY_SYMMETRIC) {
13353 /*
13354 * We are already using an asymmetric
13355 * copy, and therefore we already have
13356 * the right object.
13357 */
13358 assert(!src_entry->needs_copy);
13359 } else if (src_entry->needs_copy || object->shadowed ||
13360 (object->internal && !object->true_share &&
2d21ac55 13361 !src_entry->is_shared &&
6d2010ae 13362 object->vo_size > entry_size)) {
1c79356b 13363
3e170ce0 13364 VME_OBJECT_SHADOW(src_entry, entry_size);
1c79356b 13365
91447636
A
13366 if (!src_entry->needs_copy &&
13367 (src_entry->protection & VM_PROT_WRITE)) {
0c530ab8
A
13368 vm_prot_t prot;
13369
13370 prot = src_entry->protection & ~VM_PROT_WRITE;
2d21ac55 13371
3e170ce0
A
13372 if (override_nx(map,
13373 VME_ALIAS(src_entry))
13374 && prot)
0c530ab8 13375 prot |= VM_PROT_EXECUTE;
2d21ac55 13376
316670eb 13377 if(map->mapped_in_other_pmaps) {
2d21ac55 13378 vm_object_pmap_protect(
3e170ce0
A
13379 VME_OBJECT(src_entry),
13380 VME_OFFSET(src_entry),
2d21ac55
A
13381 entry_size,
13382 PMAP_NULL,
0c530ab8 13383 src_entry->vme_start,
0c530ab8 13384 prot);
2d21ac55
A
13385 } else {
13386 pmap_protect(vm_map_pmap(map),
13387 src_entry->vme_start,
13388 src_entry->vme_end,
13389 prot);
91447636
A
13390 }
13391 }
1c79356b 13392
3e170ce0 13393 object = VME_OBJECT(src_entry);
91447636
A
13394 src_entry->needs_copy = FALSE;
13395 }
1c79356b 13396
1c79356b 13397
91447636 13398 vm_object_lock(object);
2d21ac55 13399 vm_object_reference_locked(object); /* object ref. for new entry */
91447636 13400 if (object->copy_strategy ==
2d21ac55 13401 MEMORY_OBJECT_COPY_SYMMETRIC) {
91447636
A
13402 object->copy_strategy =
13403 MEMORY_OBJECT_COPY_DELAY;
13404 }
13405 vm_object_unlock(object);
13406 }
1c79356b 13407
3e170ce0
A
13408 offset = (VME_OFFSET(src_entry) +
13409 (src_start - src_entry->vme_start));
1c79356b 13410
7ddcb079 13411 new_entry = _vm_map_entry_create(map_header, !map_header->entries_pageable);
91447636 13412 vm_map_entry_copy(new_entry, src_entry);
fe8ab488
A
13413 if (new_entry->is_sub_map) {
13414 /* clr address space specifics */
13415 new_entry->use_pmap = FALSE;
13416 }
1c79356b 13417
39236c6e
A
13418 new_entry->map_aligned = FALSE;
13419
91447636
A
13420 new_entry->vme_start = map_address;
13421 new_entry->vme_end = map_address + tmp_size;
e2d2fc5c 13422 assert(new_entry->vme_start < new_entry->vme_end);
91447636 13423 new_entry->inheritance = inheritance;
3e170ce0 13424 VME_OFFSET_SET(new_entry, offset);
1c79356b 13425
91447636
A
13426 /*
13427 * The new region has to be copied now if required.
13428 */
13429 RestartCopy:
13430 if (!copy) {
316670eb
A
13431 /*
13432 * Cannot allow an entry describing a JIT
13433 * region to be shared across address spaces.
13434 */
13435 if (src_entry->used_for_jit == TRUE) {
13436 result = KERN_INVALID_ARGUMENT;
13437 break;
13438 }
91447636
A
13439 src_entry->is_shared = TRUE;
13440 new_entry->is_shared = TRUE;
13441 if (!(new_entry->is_sub_map))
13442 new_entry->needs_copy = FALSE;
1c79356b 13443
91447636
A
13444 } else if (src_entry->is_sub_map) {
13445 /* make this a COW sub_map if not already */
3e170ce0 13446 assert(new_entry->wired_count == 0);
91447636
A
13447 new_entry->needs_copy = TRUE;
13448 object = VM_OBJECT_NULL;
13449 } else if (src_entry->wired_count == 0 &&
3e170ce0
A
13450 vm_object_copy_quickly(&VME_OBJECT(new_entry),
13451 VME_OFFSET(new_entry),
2d21ac55
A
13452 (new_entry->vme_end -
13453 new_entry->vme_start),
13454 &src_needs_copy,
13455 &new_entry_needs_copy)) {
55e303ae 13456
91447636
A
13457 new_entry->needs_copy = new_entry_needs_copy;
13458 new_entry->is_shared = FALSE;
1c79356b 13459
91447636
A
13460 /*
13461 * Handle copy_on_write semantics.
13462 */
13463 if (src_needs_copy && !src_entry->needs_copy) {
0c530ab8
A
13464 vm_prot_t prot;
13465
13466 prot = src_entry->protection & ~VM_PROT_WRITE;
2d21ac55 13467
3e170ce0
A
13468 if (override_nx(map,
13469 VME_ALIAS(src_entry))
13470 && prot)
0c530ab8 13471 prot |= VM_PROT_EXECUTE;
2d21ac55 13472
91447636
A
13473 vm_object_pmap_protect(object,
13474 offset,
13475 entry_size,
13476 ((src_entry->is_shared
316670eb 13477 || map->mapped_in_other_pmaps) ?
91447636
A
13478 PMAP_NULL : map->pmap),
13479 src_entry->vme_start,
0c530ab8 13480 prot);
1c79356b 13481
3e170ce0 13482 assert(src_entry->wired_count == 0);
91447636
A
13483 src_entry->needs_copy = TRUE;
13484 }
13485 /*
13486 * Throw away the old object reference of the new entry.
13487 */
13488 vm_object_deallocate(object);
1c79356b 13489
91447636
A
13490 } else {
13491 new_entry->is_shared = FALSE;
1c79356b 13492
91447636
A
13493 /*
13494 * The map can be safely unlocked since we
13495 * already hold a reference on the object.
13496 *
13497 * Record the timestamp of the map for later
13498 * verification, and unlock the map.
13499 */
13500 version.main_timestamp = map->timestamp;
13501 vm_map_unlock(map); /* Increments timestamp once! */
55e303ae 13502
91447636
A
13503 /*
13504 * Perform the copy.
13505 */
13506 if (src_entry->wired_count > 0) {
13507 vm_object_lock(object);
13508 result = vm_object_copy_slowly(
2d21ac55
A
13509 object,
13510 offset,
13511 entry_size,
13512 THREAD_UNINT,
3e170ce0 13513 &VME_OBJECT(new_entry));
1c79356b 13514
3e170ce0 13515 VME_OFFSET_SET(new_entry, 0);
91447636
A
13516 new_entry->needs_copy = FALSE;
13517 } else {
3e170ce0
A
13518 vm_object_offset_t new_offset;
13519
13520 new_offset = VME_OFFSET(new_entry);
91447636 13521 result = vm_object_copy_strategically(
2d21ac55
A
13522 object,
13523 offset,
13524 entry_size,
3e170ce0
A
13525 &VME_OBJECT(new_entry),
13526 &new_offset,
2d21ac55 13527 &new_entry_needs_copy);
3e170ce0
A
13528 if (new_offset != VME_OFFSET(new_entry)) {
13529 VME_OFFSET_SET(new_entry, new_offset);
13530 }
1c79356b 13531
91447636
A
13532 new_entry->needs_copy = new_entry_needs_copy;
13533 }
1c79356b 13534
91447636
A
13535 /*
13536 * Throw away the old object reference of the new entry.
13537 */
13538 vm_object_deallocate(object);
1c79356b 13539
91447636
A
13540 if (result != KERN_SUCCESS &&
13541 result != KERN_MEMORY_RESTART_COPY) {
13542 _vm_map_entry_dispose(map_header, new_entry);
13543 break;
13544 }
1c79356b 13545
91447636
A
13546 /*
13547 * Verify that the map has not substantially
13548 * changed while the copy was being made.
13549 */
1c79356b 13550
91447636
A
13551 vm_map_lock(map);
13552 if (version.main_timestamp + 1 != map->timestamp) {
13553 /*
13554 * Simple version comparison failed.
13555 *
13556 * Retry the lookup and verify that the
13557 * same object/offset are still present.
13558 */
3e170ce0 13559 vm_object_deallocate(VME_OBJECT(new_entry));
91447636
A
13560 _vm_map_entry_dispose(map_header, new_entry);
13561 if (result == KERN_MEMORY_RESTART_COPY)
13562 result = KERN_SUCCESS;
13563 continue;
13564 }
1c79356b 13565
91447636
A
13566 if (result == KERN_MEMORY_RESTART_COPY) {
13567 vm_object_reference(object);
13568 goto RestartCopy;
13569 }
13570 }
1c79356b 13571
6d2010ae 13572 _vm_map_store_entry_link(map_header,
91447636 13573 map_header->links.prev, new_entry);
1c79356b 13574
6d2010ae
A
13575 /*Protections for submap mapping are irrelevant here*/
13576 if( !src_entry->is_sub_map ) {
13577 *cur_protection &= src_entry->protection;
13578 *max_protection &= src_entry->max_protection;
13579 }
91447636
A
13580 map_address += tmp_size;
13581 mapped_size += tmp_size;
13582 src_start += tmp_size;
1c79356b 13583
91447636 13584 } /* end while */
1c79356b 13585
91447636
A
13586 vm_map_unlock(map);
13587 if (result != KERN_SUCCESS) {
13588 /*
13589 * Free all allocated elements.
13590 */
13591 for (src_entry = map_header->links.next;
13592 src_entry != (struct vm_map_entry *)&map_header->links;
13593 src_entry = new_entry) {
13594 new_entry = src_entry->vme_next;
6d2010ae 13595 _vm_map_store_entry_unlink(map_header, src_entry);
39236c6e 13596 if (src_entry->is_sub_map) {
3e170ce0 13597 vm_map_deallocate(VME_SUBMAP(src_entry));
39236c6e 13598 } else {
3e170ce0 13599 vm_object_deallocate(VME_OBJECT(src_entry));
39236c6e 13600 }
91447636
A
13601 _vm_map_entry_dispose(map_header, src_entry);
13602 }
13603 }
13604 return result;
1c79356b
A
13605}
13606
13607/*
91447636 13608 * Routine: vm_remap
1c79356b 13609 *
91447636
A
13610 * Map portion of a task's address space.
13611 * Mapped region must not overlap more than
13612 * one vm memory object. Protections and
13613 * inheritance attributes remain the same
13614 * as in the original task and are out parameters.
13615 * Source and Target task can be identical
13616 * Other attributes are identical as for vm_map()
1c79356b
A
13617 */
13618kern_return_t
91447636
A
13619vm_map_remap(
13620 vm_map_t target_map,
13621 vm_map_address_t *address,
13622 vm_map_size_t size,
13623 vm_map_offset_t mask,
060df5ea 13624 int flags,
91447636
A
13625 vm_map_t src_map,
13626 vm_map_offset_t memory_address,
1c79356b 13627 boolean_t copy,
1c79356b
A
13628 vm_prot_t *cur_protection,
13629 vm_prot_t *max_protection,
91447636 13630 vm_inherit_t inheritance)
1c79356b
A
13631{
13632 kern_return_t result;
91447636 13633 vm_map_entry_t entry;
0c530ab8 13634 vm_map_entry_t insp_entry = VM_MAP_ENTRY_NULL;
1c79356b 13635 vm_map_entry_t new_entry;
91447636 13636 struct vm_map_header map_header;
39236c6e 13637 vm_map_offset_t offset_in_mapping;
1c79356b 13638
91447636
A
13639 if (target_map == VM_MAP_NULL)
13640 return KERN_INVALID_ARGUMENT;
1c79356b 13641
91447636 13642 switch (inheritance) {
2d21ac55
A
13643 case VM_INHERIT_NONE:
13644 case VM_INHERIT_COPY:
13645 case VM_INHERIT_SHARE:
91447636
A
13646 if (size != 0 && src_map != VM_MAP_NULL)
13647 break;
13648 /*FALL THRU*/
2d21ac55 13649 default:
91447636
A
13650 return KERN_INVALID_ARGUMENT;
13651 }
1c79356b 13652
39236c6e
A
13653 /*
13654 * If the user is requesting that we return the address of the
13655 * first byte of the data (rather than the base of the page),
13656 * then we use different rounding semantics: specifically,
13657 * we assume that (memory_address, size) describes a region
13658 * all of whose pages we must cover, rather than a base to be truncated
13659 * down and a size to be added to that base. So we figure out
13660 * the highest page that the requested region includes and make
13661 * sure that the size will cover it.
13662 *
13663 * The key example we're worried about it is of the form:
13664 *
13665 * memory_address = 0x1ff0, size = 0x20
13666 *
13667 * With the old semantics, we round down the memory_address to 0x1000
13668 * and round up the size to 0x1000, resulting in our covering *only*
13669 * page 0x1000. With the new semantics, we'd realize that the region covers
13670 * 0x1ff0-0x2010, and compute a size of 0x2000. Thus, we cover both page
13671 * 0x1000 and page 0x2000 in the region we remap.
13672 */
13673 if ((flags & VM_FLAGS_RETURN_DATA_ADDR) != 0) {
13674 offset_in_mapping = memory_address - vm_map_trunc_page(memory_address, PAGE_MASK);
13675 size = vm_map_round_page(memory_address + size - vm_map_trunc_page(memory_address, PAGE_MASK), PAGE_MASK);
13676 } else {
13677 size = vm_map_round_page(size, PAGE_MASK);
13678 }
1c79356b 13679
91447636 13680 result = vm_map_remap_extract(src_map, memory_address,
2d21ac55
A
13681 size, copy, &map_header,
13682 cur_protection,
13683 max_protection,
13684 inheritance,
39236c6e 13685 target_map->hdr.entries_pageable);
1c79356b 13686
91447636
A
13687 if (result != KERN_SUCCESS) {
13688 return result;
13689 }
1c79356b 13690
91447636
A
13691 /*
13692 * Allocate/check a range of free virtual address
13693 * space for the target
1c79356b 13694 */
39236c6e
A
13695 *address = vm_map_trunc_page(*address,
13696 VM_MAP_PAGE_MASK(target_map));
91447636
A
13697 vm_map_lock(target_map);
13698 result = vm_map_remap_range_allocate(target_map, address, size,
060df5ea 13699 mask, flags, &insp_entry);
1c79356b 13700
91447636
A
13701 for (entry = map_header.links.next;
13702 entry != (struct vm_map_entry *)&map_header.links;
13703 entry = new_entry) {
13704 new_entry = entry->vme_next;
6d2010ae 13705 _vm_map_store_entry_unlink(&map_header, entry);
91447636 13706 if (result == KERN_SUCCESS) {
3e170ce0
A
13707 if (flags & VM_FLAGS_RESILIENT_CODESIGN) {
13708 /* no codesigning -> read-only access */
13709 assert(!entry->used_for_jit);
13710 entry->max_protection = VM_PROT_READ;
13711 entry->protection = VM_PROT_READ;
13712 entry->vme_resilient_codesign = TRUE;
13713 }
91447636
A
13714 entry->vme_start += *address;
13715 entry->vme_end += *address;
39236c6e 13716 assert(!entry->map_aligned);
6d2010ae 13717 vm_map_store_entry_link(target_map, insp_entry, entry);
91447636
A
13718 insp_entry = entry;
13719 } else {
13720 if (!entry->is_sub_map) {
3e170ce0 13721 vm_object_deallocate(VME_OBJECT(entry));
91447636 13722 } else {
3e170ce0 13723 vm_map_deallocate(VME_SUBMAP(entry));
2d21ac55 13724 }
91447636 13725 _vm_map_entry_dispose(&map_header, entry);
1c79356b 13726 }
91447636 13727 }
1c79356b 13728
3e170ce0
A
13729 if (flags & VM_FLAGS_RESILIENT_CODESIGN) {
13730 *cur_protection = VM_PROT_READ;
13731 *max_protection = VM_PROT_READ;
13732 }
13733
6d2010ae
A
13734 if( target_map->disable_vmentry_reuse == TRUE) {
13735 if( target_map->highest_entry_end < insp_entry->vme_end ){
13736 target_map->highest_entry_end = insp_entry->vme_end;
13737 }
13738 }
13739
91447636
A
13740 if (result == KERN_SUCCESS) {
13741 target_map->size += size;
0c530ab8 13742 SAVE_HINT_MAP_WRITE(target_map, insp_entry);
91447636
A
13743 }
13744 vm_map_unlock(target_map);
1c79356b 13745
91447636
A
13746 if (result == KERN_SUCCESS && target_map->wiring_required)
13747 result = vm_map_wire(target_map, *address,
3e170ce0
A
13748 *address + size, *cur_protection | VM_PROT_MEMORY_TAG_MAKE(VM_KERN_MEMORY_MLOCK),
13749 TRUE);
39236c6e
A
13750
13751 /*
13752 * If requested, return the address of the data pointed to by the
13753 * request, rather than the base of the resulting page.
13754 */
13755 if ((flags & VM_FLAGS_RETURN_DATA_ADDR) != 0) {
13756 *address += offset_in_mapping;
13757 }
13758
91447636
A
13759 return result;
13760}
1c79356b 13761
91447636
A
13762/*
13763 * Routine: vm_map_remap_range_allocate
13764 *
13765 * Description:
13766 * Allocate a range in the specified virtual address map.
13767 * returns the address and the map entry just before the allocated
13768 * range
13769 *
13770 * Map must be locked.
13771 */
1c79356b 13772
91447636
A
13773static kern_return_t
13774vm_map_remap_range_allocate(
13775 vm_map_t map,
13776 vm_map_address_t *address, /* IN/OUT */
13777 vm_map_size_t size,
13778 vm_map_offset_t mask,
060df5ea 13779 int flags,
91447636
A
13780 vm_map_entry_t *map_entry) /* OUT */
13781{
060df5ea
A
13782 vm_map_entry_t entry;
13783 vm_map_offset_t start;
13784 vm_map_offset_t end;
13785 kern_return_t kr;
3e170ce0 13786 vm_map_entry_t hole_entry;
1c79356b 13787
2d21ac55 13788StartAgain: ;
1c79356b 13789
2d21ac55 13790 start = *address;
1c79356b 13791
060df5ea 13792 if (flags & VM_FLAGS_ANYWHERE)
2d21ac55
A
13793 {
13794 /*
13795 * Calculate the first possible address.
13796 */
1c79356b 13797
2d21ac55
A
13798 if (start < map->min_offset)
13799 start = map->min_offset;
13800 if (start > map->max_offset)
13801 return(KERN_NO_SPACE);
91447636 13802
2d21ac55
A
13803 /*
13804 * Look for the first possible address;
13805 * if there's already something at this
13806 * address, we have to start after it.
13807 */
1c79356b 13808
6d2010ae
A
13809 if( map->disable_vmentry_reuse == TRUE) {
13810 VM_MAP_HIGHEST_ENTRY(map, entry, start);
2d21ac55 13811 } else {
3e170ce0
A
13812
13813 if (map->holelistenabled) {
13814 hole_entry = (vm_map_entry_t)map->holes_list;
13815
13816 if (hole_entry == NULL) {
13817 /*
13818 * No more space in the map?
13819 */
13820 return(KERN_NO_SPACE);
13821 } else {
13822
13823 boolean_t found_hole = FALSE;
13824
13825 do {
13826 if (hole_entry->vme_start >= start) {
13827 start = hole_entry->vme_start;
13828 found_hole = TRUE;
13829 break;
13830 }
13831
13832 if (hole_entry->vme_end > start) {
13833 found_hole = TRUE;
13834 break;
13835 }
13836 hole_entry = hole_entry->vme_next;
13837
13838 } while (hole_entry != (vm_map_entry_t) map->holes_list);
13839
13840 if (found_hole == FALSE) {
13841 return (KERN_NO_SPACE);
13842 }
13843
13844 entry = hole_entry;
13845 }
6d2010ae 13846 } else {
3e170ce0
A
13847 assert(first_free_is_valid(map));
13848 if (start == map->min_offset) {
13849 if ((entry = map->first_free) != vm_map_to_entry(map))
13850 start = entry->vme_end;
13851 } else {
13852 vm_map_entry_t tmp_entry;
13853 if (vm_map_lookup_entry(map, start, &tmp_entry))
13854 start = tmp_entry->vme_end;
13855 entry = tmp_entry;
13856 }
6d2010ae 13857 }
39236c6e
A
13858 start = vm_map_round_page(start,
13859 VM_MAP_PAGE_MASK(map));
2d21ac55 13860 }
91447636 13861
2d21ac55
A
13862 /*
13863 * In any case, the "entry" always precedes
13864 * the proposed new region throughout the
13865 * loop:
13866 */
1c79356b 13867
2d21ac55
A
13868 while (TRUE) {
13869 register vm_map_entry_t next;
13870
13871 /*
13872 * Find the end of the proposed new region.
13873 * Be sure we didn't go beyond the end, or
13874 * wrap around the address.
13875 */
13876
13877 end = ((start + mask) & ~mask);
39236c6e
A
13878 end = vm_map_round_page(end,
13879 VM_MAP_PAGE_MASK(map));
2d21ac55
A
13880 if (end < start)
13881 return(KERN_NO_SPACE);
13882 start = end;
13883 end += size;
13884
13885 if ((end > map->max_offset) || (end < start)) {
13886 if (map->wait_for_space) {
13887 if (size <= (map->max_offset -
13888 map->min_offset)) {
13889 assert_wait((event_t) map, THREAD_INTERRUPTIBLE);
13890 vm_map_unlock(map);
13891 thread_block(THREAD_CONTINUE_NULL);
13892 vm_map_lock(map);
13893 goto StartAgain;
13894 }
13895 }
91447636 13896
2d21ac55
A
13897 return(KERN_NO_SPACE);
13898 }
1c79356b 13899
2d21ac55 13900 next = entry->vme_next;
1c79356b 13901
3e170ce0
A
13902 if (map->holelistenabled) {
13903 if (entry->vme_end >= end)
13904 break;
13905 } else {
13906 /*
13907 * If there are no more entries, we must win.
13908 *
13909 * OR
13910 *
13911 * If there is another entry, it must be
13912 * after the end of the potential new region.
13913 */
1c79356b 13914
3e170ce0
A
13915 if (next == vm_map_to_entry(map))
13916 break;
13917
13918 if (next->vme_start >= end)
13919 break;
13920 }
1c79356b 13921
2d21ac55
A
13922 /*
13923 * Didn't fit -- move to the next entry.
13924 */
1c79356b 13925
2d21ac55 13926 entry = next;
3e170ce0
A
13927
13928 if (map->holelistenabled) {
13929 if (entry == (vm_map_entry_t) map->holes_list) {
13930 /*
13931 * Wrapped around
13932 */
13933 return(KERN_NO_SPACE);
13934 }
13935 start = entry->vme_start;
13936 } else {
13937 start = entry->vme_end;
13938 }
13939 }
13940
13941 if (map->holelistenabled) {
13942
13943 if (vm_map_lookup_entry(map, entry->vme_start, &entry)) {
13944 panic("Found an existing entry (%p) instead of potential hole at address: 0x%llx.\n", entry, (unsigned long long)entry->vme_start);
13945 }
2d21ac55 13946 }
3e170ce0 13947
2d21ac55 13948 *address = start;
3e170ce0 13949
2d21ac55
A
13950 } else {
13951 vm_map_entry_t temp_entry;
91447636 13952
2d21ac55
A
13953 /*
13954 * Verify that:
13955 * the address doesn't itself violate
13956 * the mask requirement.
13957 */
1c79356b 13958
2d21ac55
A
13959 if ((start & mask) != 0)
13960 return(KERN_NO_SPACE);
1c79356b 13961
1c79356b 13962
2d21ac55
A
13963 /*
13964 * ... the address is within bounds
13965 */
1c79356b 13966
2d21ac55 13967 end = start + size;
1c79356b 13968
2d21ac55
A
13969 if ((start < map->min_offset) ||
13970 (end > map->max_offset) ||
13971 (start >= end)) {
13972 return(KERN_INVALID_ADDRESS);
13973 }
1c79356b 13974
060df5ea
A
13975 /*
13976 * If we're asked to overwrite whatever was mapped in that
13977 * range, first deallocate that range.
13978 */
13979 if (flags & VM_FLAGS_OVERWRITE) {
13980 vm_map_t zap_map;
13981
13982 /*
13983 * We use a "zap_map" to avoid having to unlock
13984 * the "map" in vm_map_delete(), which would compromise
13985 * the atomicity of the "deallocate" and then "remap"
13986 * combination.
13987 */
13988 zap_map = vm_map_create(PMAP_NULL,
13989 start,
316670eb 13990 end,
060df5ea
A
13991 map->hdr.entries_pageable);
13992 if (zap_map == VM_MAP_NULL) {
13993 return KERN_RESOURCE_SHORTAGE;
13994 }
39236c6e 13995 vm_map_set_page_shift(zap_map, VM_MAP_PAGE_SHIFT(map));
3e170ce0 13996 vm_map_disable_hole_optimization(zap_map);
060df5ea
A
13997
13998 kr = vm_map_delete(map, start, end,
fe8ab488
A
13999 (VM_MAP_REMOVE_SAVE_ENTRIES |
14000 VM_MAP_REMOVE_NO_MAP_ALIGN),
060df5ea
A
14001 zap_map);
14002 if (kr == KERN_SUCCESS) {
14003 vm_map_destroy(zap_map,
14004 VM_MAP_REMOVE_NO_PMAP_CLEANUP);
14005 zap_map = VM_MAP_NULL;
14006 }
14007 }
14008
2d21ac55
A
14009 /*
14010 * ... the starting address isn't allocated
14011 */
91447636 14012
2d21ac55
A
14013 if (vm_map_lookup_entry(map, start, &temp_entry))
14014 return(KERN_NO_SPACE);
91447636 14015
2d21ac55 14016 entry = temp_entry;
91447636 14017
2d21ac55
A
14018 /*
14019 * ... the next region doesn't overlap the
14020 * end point.
14021 */
1c79356b 14022
2d21ac55
A
14023 if ((entry->vme_next != vm_map_to_entry(map)) &&
14024 (entry->vme_next->vme_start < end))
14025 return(KERN_NO_SPACE);
14026 }
14027 *map_entry = entry;
14028 return(KERN_SUCCESS);
91447636 14029}
1c79356b 14030
91447636
A
14031/*
14032 * vm_map_switch:
14033 *
14034 * Set the address map for the current thread to the specified map
14035 */
1c79356b 14036
91447636
A
14037vm_map_t
14038vm_map_switch(
14039 vm_map_t map)
14040{
14041 int mycpu;
14042 thread_t thread = current_thread();
14043 vm_map_t oldmap = thread->map;
1c79356b 14044
91447636
A
14045 mp_disable_preemption();
14046 mycpu = cpu_number();
1c79356b 14047
91447636
A
14048 /*
14049 * Deactivate the current map and activate the requested map
14050 */
14051 PMAP_SWITCH_USER(thread, map, mycpu);
1c79356b 14052
91447636
A
14053 mp_enable_preemption();
14054 return(oldmap);
14055}
1c79356b 14056
1c79356b 14057
91447636
A
14058/*
14059 * Routine: vm_map_write_user
14060 *
14061 * Description:
14062 * Copy out data from a kernel space into space in the
14063 * destination map. The space must already exist in the
14064 * destination map.
14065 * NOTE: This routine should only be called by threads
14066 * which can block on a page fault. i.e. kernel mode user
14067 * threads.
14068 *
14069 */
14070kern_return_t
14071vm_map_write_user(
14072 vm_map_t map,
14073 void *src_p,
14074 vm_map_address_t dst_addr,
14075 vm_size_t size)
14076{
14077 kern_return_t kr = KERN_SUCCESS;
1c79356b 14078
91447636
A
14079 if(current_map() == map) {
14080 if (copyout(src_p, dst_addr, size)) {
14081 kr = KERN_INVALID_ADDRESS;
14082 }
14083 } else {
14084 vm_map_t oldmap;
1c79356b 14085
91447636
A
14086 /* take on the identity of the target map while doing */
14087 /* the transfer */
1c79356b 14088
91447636
A
14089 vm_map_reference(map);
14090 oldmap = vm_map_switch(map);
14091 if (copyout(src_p, dst_addr, size)) {
14092 kr = KERN_INVALID_ADDRESS;
1c79356b 14093 }
91447636
A
14094 vm_map_switch(oldmap);
14095 vm_map_deallocate(map);
1c79356b 14096 }
91447636 14097 return kr;
1c79356b
A
14098}
14099
14100/*
91447636
A
14101 * Routine: vm_map_read_user
14102 *
14103 * Description:
14104 * Copy in data from a user space source map into the
14105 * kernel map. The space must already exist in the
14106 * kernel map.
14107 * NOTE: This routine should only be called by threads
14108 * which can block on a page fault. i.e. kernel mode user
14109 * threads.
1c79356b 14110 *
1c79356b
A
14111 */
14112kern_return_t
91447636
A
14113vm_map_read_user(
14114 vm_map_t map,
14115 vm_map_address_t src_addr,
14116 void *dst_p,
14117 vm_size_t size)
1c79356b 14118{
91447636 14119 kern_return_t kr = KERN_SUCCESS;
1c79356b 14120
91447636
A
14121 if(current_map() == map) {
14122 if (copyin(src_addr, dst_p, size)) {
14123 kr = KERN_INVALID_ADDRESS;
14124 }
14125 } else {
14126 vm_map_t oldmap;
1c79356b 14127
91447636
A
14128 /* take on the identity of the target map while doing */
14129 /* the transfer */
14130
14131 vm_map_reference(map);
14132 oldmap = vm_map_switch(map);
14133 if (copyin(src_addr, dst_p, size)) {
14134 kr = KERN_INVALID_ADDRESS;
14135 }
14136 vm_map_switch(oldmap);
14137 vm_map_deallocate(map);
1c79356b 14138 }
91447636
A
14139 return kr;
14140}
14141
1c79356b 14142
91447636
A
14143/*
14144 * vm_map_check_protection:
14145 *
14146 * Assert that the target map allows the specified
14147 * privilege on the entire address region given.
14148 * The entire region must be allocated.
14149 */
2d21ac55
A
14150boolean_t
14151vm_map_check_protection(vm_map_t map, vm_map_offset_t start,
14152 vm_map_offset_t end, vm_prot_t protection)
91447636 14153{
2d21ac55
A
14154 vm_map_entry_t entry;
14155 vm_map_entry_t tmp_entry;
1c79356b 14156
91447636 14157 vm_map_lock(map);
1c79356b 14158
2d21ac55 14159 if (start < vm_map_min(map) || end > vm_map_max(map) || start > end)
91447636 14160 {
2d21ac55
A
14161 vm_map_unlock(map);
14162 return (FALSE);
1c79356b
A
14163 }
14164
91447636
A
14165 if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
14166 vm_map_unlock(map);
14167 return(FALSE);
14168 }
1c79356b 14169
91447636
A
14170 entry = tmp_entry;
14171
14172 while (start < end) {
14173 if (entry == vm_map_to_entry(map)) {
14174 vm_map_unlock(map);
14175 return(FALSE);
1c79356b 14176 }
1c79356b 14177
91447636
A
14178 /*
14179 * No holes allowed!
14180 */
1c79356b 14181
91447636
A
14182 if (start < entry->vme_start) {
14183 vm_map_unlock(map);
14184 return(FALSE);
14185 }
14186
14187 /*
14188 * Check protection associated with entry.
14189 */
14190
14191 if ((entry->protection & protection) != protection) {
14192 vm_map_unlock(map);
14193 return(FALSE);
14194 }
14195
14196 /* go to next entry */
14197
14198 start = entry->vme_end;
14199 entry = entry->vme_next;
14200 }
14201 vm_map_unlock(map);
14202 return(TRUE);
1c79356b
A
14203}
14204
1c79356b 14205kern_return_t
91447636
A
14206vm_map_purgable_control(
14207 vm_map_t map,
14208 vm_map_offset_t address,
14209 vm_purgable_t control,
14210 int *state)
1c79356b 14211{
91447636
A
14212 vm_map_entry_t entry;
14213 vm_object_t object;
14214 kern_return_t kr;
fe8ab488 14215 boolean_t was_nonvolatile;
1c79356b 14216
1c79356b 14217 /*
91447636
A
14218 * Vet all the input parameters and current type and state of the
14219 * underlaying object. Return with an error if anything is amiss.
1c79356b 14220 */
91447636
A
14221 if (map == VM_MAP_NULL)
14222 return(KERN_INVALID_ARGUMENT);
1c79356b 14223
91447636 14224 if (control != VM_PURGABLE_SET_STATE &&
b0d623f7
A
14225 control != VM_PURGABLE_GET_STATE &&
14226 control != VM_PURGABLE_PURGE_ALL)
91447636 14227 return(KERN_INVALID_ARGUMENT);
1c79356b 14228
b0d623f7
A
14229 if (control == VM_PURGABLE_PURGE_ALL) {
14230 vm_purgeable_object_purge_all();
14231 return KERN_SUCCESS;
14232 }
14233
91447636 14234 if (control == VM_PURGABLE_SET_STATE &&
b0d623f7 14235 (((*state & ~(VM_PURGABLE_ALL_MASKS)) != 0) ||
2d21ac55 14236 ((*state & VM_PURGABLE_STATE_MASK) > VM_PURGABLE_STATE_MASK)))
91447636
A
14237 return(KERN_INVALID_ARGUMENT);
14238
b0d623f7 14239 vm_map_lock_read(map);
91447636
A
14240
14241 if (!vm_map_lookup_entry(map, address, &entry) || entry->is_sub_map) {
14242
14243 /*
14244 * Must pass a valid non-submap address.
14245 */
b0d623f7 14246 vm_map_unlock_read(map);
91447636
A
14247 return(KERN_INVALID_ADDRESS);
14248 }
14249
14250 if ((entry->protection & VM_PROT_WRITE) == 0) {
14251 /*
14252 * Can't apply purgable controls to something you can't write.
14253 */
b0d623f7 14254 vm_map_unlock_read(map);
91447636
A
14255 return(KERN_PROTECTION_FAILURE);
14256 }
14257
3e170ce0 14258 object = VME_OBJECT(entry);
fe8ab488
A
14259 if (object == VM_OBJECT_NULL ||
14260 object->purgable == VM_PURGABLE_DENY) {
91447636 14261 /*
fe8ab488 14262 * Object must already be present and be purgeable.
91447636 14263 */
b0d623f7 14264 vm_map_unlock_read(map);
91447636
A
14265 return KERN_INVALID_ARGUMENT;
14266 }
14267
14268 vm_object_lock(object);
14269
39236c6e 14270#if 00
3e170ce0 14271 if (VME_OFFSET(entry) != 0 ||
6d2010ae 14272 entry->vme_end - entry->vme_start != object->vo_size) {
91447636
A
14273 /*
14274 * Can only apply purgable controls to the whole (existing)
14275 * object at once.
14276 */
b0d623f7 14277 vm_map_unlock_read(map);
91447636
A
14278 vm_object_unlock(object);
14279 return KERN_INVALID_ARGUMENT;
1c79356b 14280 }
39236c6e 14281#endif
fe8ab488
A
14282
14283 assert(!entry->is_sub_map);
14284 assert(!entry->use_pmap); /* purgeable has its own accounting */
14285
b0d623f7 14286 vm_map_unlock_read(map);
1c79356b 14287
fe8ab488
A
14288 was_nonvolatile = (object->purgable == VM_PURGABLE_NONVOLATILE);
14289
91447636 14290 kr = vm_object_purgable_control(object, control, state);
1c79356b 14291
fe8ab488
A
14292 if (was_nonvolatile &&
14293 object->purgable != VM_PURGABLE_NONVOLATILE &&
14294 map->pmap == kernel_pmap) {
14295#if DEBUG
14296 object->vo_purgeable_volatilizer = kernel_task;
14297#endif /* DEBUG */
14298 }
14299
91447636 14300 vm_object_unlock(object);
1c79356b 14301
91447636
A
14302 return kr;
14303}
1c79356b 14304
91447636 14305kern_return_t
b0d623f7 14306vm_map_page_query_internal(
2d21ac55 14307 vm_map_t target_map,
91447636 14308 vm_map_offset_t offset,
2d21ac55
A
14309 int *disposition,
14310 int *ref_count)
91447636 14311{
b0d623f7
A
14312 kern_return_t kr;
14313 vm_page_info_basic_data_t info;
14314 mach_msg_type_number_t count;
14315
14316 count = VM_PAGE_INFO_BASIC_COUNT;
14317 kr = vm_map_page_info(target_map,
14318 offset,
14319 VM_PAGE_INFO_BASIC,
14320 (vm_page_info_t) &info,
14321 &count);
14322 if (kr == KERN_SUCCESS) {
14323 *disposition = info.disposition;
14324 *ref_count = info.ref_count;
14325 } else {
14326 *disposition = 0;
14327 *ref_count = 0;
14328 }
2d21ac55 14329
b0d623f7
A
14330 return kr;
14331}
14332
14333kern_return_t
14334vm_map_page_info(
14335 vm_map_t map,
14336 vm_map_offset_t offset,
14337 vm_page_info_flavor_t flavor,
14338 vm_page_info_t info,
14339 mach_msg_type_number_t *count)
14340{
14341 vm_map_entry_t map_entry;
14342 vm_object_t object;
14343 vm_page_t m;
14344 kern_return_t kr;
14345 kern_return_t retval = KERN_SUCCESS;
14346 boolean_t top_object;
14347 int disposition;
14348 int ref_count;
b0d623f7
A
14349 vm_page_info_basic_t basic_info;
14350 int depth;
6d2010ae 14351 vm_map_offset_t offset_in_page;
2d21ac55 14352
b0d623f7
A
14353 switch (flavor) {
14354 case VM_PAGE_INFO_BASIC:
14355 if (*count != VM_PAGE_INFO_BASIC_COUNT) {
6d2010ae
A
14356 /*
14357 * The "vm_page_info_basic_data" structure was not
14358 * properly padded, so allow the size to be off by
14359 * one to maintain backwards binary compatibility...
14360 */
14361 if (*count != VM_PAGE_INFO_BASIC_COUNT - 1)
14362 return KERN_INVALID_ARGUMENT;
b0d623f7
A
14363 }
14364 break;
14365 default:
14366 return KERN_INVALID_ARGUMENT;
91447636 14367 }
2d21ac55 14368
b0d623f7
A
14369 disposition = 0;
14370 ref_count = 0;
b0d623f7
A
14371 top_object = TRUE;
14372 depth = 0;
14373
14374 retval = KERN_SUCCESS;
6d2010ae 14375 offset_in_page = offset & PAGE_MASK;
39236c6e 14376 offset = vm_map_trunc_page(offset, PAGE_MASK);
b0d623f7
A
14377
14378 vm_map_lock_read(map);
14379
14380 /*
14381 * First, find the map entry covering "offset", going down
14382 * submaps if necessary.
14383 */
14384 for (;;) {
14385 if (!vm_map_lookup_entry(map, offset, &map_entry)) {
14386 vm_map_unlock_read(map);
14387 return KERN_INVALID_ADDRESS;
14388 }
14389 /* compute offset from this map entry's start */
14390 offset -= map_entry->vme_start;
14391 /* compute offset into this map entry's object (or submap) */
3e170ce0 14392 offset += VME_OFFSET(map_entry);
b0d623f7
A
14393
14394 if (map_entry->is_sub_map) {
14395 vm_map_t sub_map;
2d21ac55 14396
3e170ce0 14397 sub_map = VME_SUBMAP(map_entry);
2d21ac55 14398 vm_map_lock_read(sub_map);
b0d623f7 14399 vm_map_unlock_read(map);
2d21ac55 14400
b0d623f7
A
14401 map = sub_map;
14402
14403 ref_count = MAX(ref_count, map->ref_count);
14404 continue;
1c79356b 14405 }
b0d623f7 14406 break;
91447636 14407 }
b0d623f7 14408
3e170ce0 14409 object = VME_OBJECT(map_entry);
b0d623f7
A
14410 if (object == VM_OBJECT_NULL) {
14411 /* no object -> no page */
14412 vm_map_unlock_read(map);
14413 goto done;
14414 }
14415
91447636 14416 vm_object_lock(object);
b0d623f7
A
14417 vm_map_unlock_read(map);
14418
14419 /*
14420 * Go down the VM object shadow chain until we find the page
14421 * we're looking for.
14422 */
14423 for (;;) {
14424 ref_count = MAX(ref_count, object->ref_count);
2d21ac55 14425
91447636 14426 m = vm_page_lookup(object, offset);
2d21ac55 14427
91447636 14428 if (m != VM_PAGE_NULL) {
b0d623f7 14429 disposition |= VM_PAGE_QUERY_PAGE_PRESENT;
91447636
A
14430 break;
14431 } else {
2d21ac55
A
14432#if MACH_PAGEMAP
14433 if (object->existence_map) {
b0d623f7
A
14434 if (vm_external_state_get(object->existence_map,
14435 offset) ==
14436 VM_EXTERNAL_STATE_EXISTS) {
2d21ac55
A
14437 /*
14438 * this page has been paged out
14439 */
b0d623f7 14440 disposition |= VM_PAGE_QUERY_PAGE_PAGED_OUT;
2d21ac55
A
14441 break;
14442 }
14443 } else
14444#endif
39236c6e
A
14445 if (object->internal &&
14446 object->alive &&
14447 !object->terminating &&
14448 object->pager_ready) {
14449
14450 if (COMPRESSED_PAGER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE) {
14451 if (VM_COMPRESSOR_PAGER_STATE_GET(
14452 object,
14453 offset)
14454 == VM_EXTERNAL_STATE_EXISTS) {
14455 /* the pager has that page */
14456 disposition |= VM_PAGE_QUERY_PAGE_PAGED_OUT;
14457 break;
14458 }
14459 } else {
b0d623f7 14460 memory_object_t pager;
2d21ac55 14461
b0d623f7
A
14462 vm_object_paging_begin(object);
14463 pager = object->pager;
14464 vm_object_unlock(object);
2d21ac55 14465
2d21ac55 14466 /*
b0d623f7
A
14467 * Ask the default pager if
14468 * it has this page.
2d21ac55 14469 */
b0d623f7
A
14470 kr = memory_object_data_request(
14471 pager,
14472 offset + object->paging_offset,
14473 0, /* just poke the pager */
14474 VM_PROT_READ,
14475 NULL);
14476
14477 vm_object_lock(object);
14478 vm_object_paging_end(object);
14479
14480 if (kr == KERN_SUCCESS) {
14481 /* the default pager has it */
14482 disposition |= VM_PAGE_QUERY_PAGE_PAGED_OUT;
14483 break;
14484 }
2d21ac55
A
14485 }
14486 }
b0d623f7 14487
2d21ac55
A
14488 if (object->shadow != VM_OBJECT_NULL) {
14489 vm_object_t shadow;
14490
6d2010ae 14491 offset += object->vo_shadow_offset;
2d21ac55
A
14492 shadow = object->shadow;
14493
14494 vm_object_lock(shadow);
14495 vm_object_unlock(object);
14496
14497 object = shadow;
14498 top_object = FALSE;
b0d623f7 14499 depth++;
2d21ac55 14500 } else {
b0d623f7
A
14501// if (!object->internal)
14502// break;
14503// retval = KERN_FAILURE;
14504// goto done_with_object;
14505 break;
91447636 14506 }
91447636
A
14507 }
14508 }
91447636
A
14509 /* The ref_count is not strictly accurate, it measures the number */
14510 /* of entities holding a ref on the object, they may not be mapping */
14511 /* the object or may not be mapping the section holding the */
14512 /* target page but its still a ball park number and though an over- */
14513 /* count, it picks up the copy-on-write cases */
1c79356b 14514
91447636
A
14515 /* We could also get a picture of page sharing from pmap_attributes */
14516 /* but this would under count as only faulted-in mappings would */
14517 /* show up. */
1c79356b 14518
2d21ac55 14519 if (top_object == TRUE && object->shadow)
b0d623f7
A
14520 disposition |= VM_PAGE_QUERY_PAGE_COPIED;
14521
14522 if (! object->internal)
14523 disposition |= VM_PAGE_QUERY_PAGE_EXTERNAL;
2d21ac55
A
14524
14525 if (m == VM_PAGE_NULL)
b0d623f7 14526 goto done_with_object;
2d21ac55 14527
91447636 14528 if (m->fictitious) {
b0d623f7
A
14529 disposition |= VM_PAGE_QUERY_PAGE_FICTITIOUS;
14530 goto done_with_object;
91447636 14531 }
2d21ac55 14532 if (m->dirty || pmap_is_modified(m->phys_page))
b0d623f7 14533 disposition |= VM_PAGE_QUERY_PAGE_DIRTY;
1c79356b 14534
2d21ac55 14535 if (m->reference || pmap_is_referenced(m->phys_page))
b0d623f7 14536 disposition |= VM_PAGE_QUERY_PAGE_REF;
1c79356b 14537
2d21ac55 14538 if (m->speculative)
b0d623f7 14539 disposition |= VM_PAGE_QUERY_PAGE_SPECULATIVE;
1c79356b 14540
593a1d5f 14541 if (m->cs_validated)
b0d623f7 14542 disposition |= VM_PAGE_QUERY_PAGE_CS_VALIDATED;
593a1d5f 14543 if (m->cs_tainted)
b0d623f7 14544 disposition |= VM_PAGE_QUERY_PAGE_CS_TAINTED;
c18c124e
A
14545 if (m->cs_nx)
14546 disposition |= VM_PAGE_QUERY_PAGE_CS_NX;
593a1d5f 14547
b0d623f7 14548done_with_object:
2d21ac55 14549 vm_object_unlock(object);
b0d623f7
A
14550done:
14551
14552 switch (flavor) {
14553 case VM_PAGE_INFO_BASIC:
14554 basic_info = (vm_page_info_basic_t) info;
14555 basic_info->disposition = disposition;
14556 basic_info->ref_count = ref_count;
39236c6e
A
14557 basic_info->object_id = (vm_object_id_t) (uintptr_t)
14558 VM_KERNEL_ADDRPERM(object);
6d2010ae
A
14559 basic_info->offset =
14560 (memory_object_offset_t) offset + offset_in_page;
b0d623f7
A
14561 basic_info->depth = depth;
14562 break;
14563 }
0c530ab8 14564
2d21ac55 14565 return retval;
91447636
A
14566}
14567
14568/*
14569 * vm_map_msync
14570 *
14571 * Synchronises the memory range specified with its backing store
14572 * image by either flushing or cleaning the contents to the appropriate
14573 * memory manager engaging in a memory object synchronize dialog with
14574 * the manager. The client doesn't return until the manager issues
14575 * m_o_s_completed message. MIG Magically converts user task parameter
14576 * to the task's address map.
14577 *
14578 * interpretation of sync_flags
14579 * VM_SYNC_INVALIDATE - discard pages, only return precious
14580 * pages to manager.
14581 *
14582 * VM_SYNC_INVALIDATE & (VM_SYNC_SYNCHRONOUS | VM_SYNC_ASYNCHRONOUS)
14583 * - discard pages, write dirty or precious
14584 * pages back to memory manager.
14585 *
14586 * VM_SYNC_SYNCHRONOUS | VM_SYNC_ASYNCHRONOUS
14587 * - write dirty or precious pages back to
14588 * the memory manager.
14589 *
14590 * VM_SYNC_CONTIGUOUS - does everything normally, but if there
14591 * is a hole in the region, and we would
14592 * have returned KERN_SUCCESS, return
14593 * KERN_INVALID_ADDRESS instead.
14594 *
14595 * NOTE
14596 * The memory object attributes have not yet been implemented, this
14597 * function will have to deal with the invalidate attribute
14598 *
14599 * RETURNS
14600 * KERN_INVALID_TASK Bad task parameter
14601 * KERN_INVALID_ARGUMENT both sync and async were specified.
14602 * KERN_SUCCESS The usual.
14603 * KERN_INVALID_ADDRESS There was a hole in the region.
14604 */
14605
14606kern_return_t
14607vm_map_msync(
14608 vm_map_t map,
14609 vm_map_address_t address,
14610 vm_map_size_t size,
14611 vm_sync_t sync_flags)
14612{
14613 msync_req_t msr;
14614 msync_req_t new_msr;
14615 queue_chain_t req_q; /* queue of requests for this msync */
14616 vm_map_entry_t entry;
14617 vm_map_size_t amount_left;
14618 vm_object_offset_t offset;
14619 boolean_t do_sync_req;
91447636 14620 boolean_t had_hole = FALSE;
2d21ac55 14621 memory_object_t pager;
3e170ce0 14622 vm_map_offset_t pmap_offset;
91447636
A
14623
14624 if ((sync_flags & VM_SYNC_ASYNCHRONOUS) &&
14625 (sync_flags & VM_SYNC_SYNCHRONOUS))
14626 return(KERN_INVALID_ARGUMENT);
1c79356b
A
14627
14628 /*
91447636 14629 * align address and size on page boundaries
1c79356b 14630 */
39236c6e
A
14631 size = (vm_map_round_page(address + size,
14632 VM_MAP_PAGE_MASK(map)) -
14633 vm_map_trunc_page(address,
14634 VM_MAP_PAGE_MASK(map)));
14635 address = vm_map_trunc_page(address,
14636 VM_MAP_PAGE_MASK(map));
1c79356b 14637
91447636
A
14638 if (map == VM_MAP_NULL)
14639 return(KERN_INVALID_TASK);
1c79356b 14640
91447636
A
14641 if (size == 0)
14642 return(KERN_SUCCESS);
1c79356b 14643
91447636
A
14644 queue_init(&req_q);
14645 amount_left = size;
1c79356b 14646
91447636
A
14647 while (amount_left > 0) {
14648 vm_object_size_t flush_size;
14649 vm_object_t object;
1c79356b 14650
91447636
A
14651 vm_map_lock(map);
14652 if (!vm_map_lookup_entry(map,
3e170ce0 14653 address,
39236c6e 14654 &entry)) {
91447636 14655
2d21ac55 14656 vm_map_size_t skip;
91447636
A
14657
14658 /*
14659 * hole in the address map.
14660 */
14661 had_hole = TRUE;
14662
14663 /*
14664 * Check for empty map.
14665 */
14666 if (entry == vm_map_to_entry(map) &&
14667 entry->vme_next == entry) {
14668 vm_map_unlock(map);
14669 break;
14670 }
14671 /*
14672 * Check that we don't wrap and that
14673 * we have at least one real map entry.
14674 */
14675 if ((map->hdr.nentries == 0) ||
14676 (entry->vme_next->vme_start < address)) {
14677 vm_map_unlock(map);
14678 break;
14679 }
14680 /*
14681 * Move up to the next entry if needed
14682 */
14683 skip = (entry->vme_next->vme_start - address);
14684 if (skip >= amount_left)
14685 amount_left = 0;
14686 else
14687 amount_left -= skip;
14688 address = entry->vme_next->vme_start;
14689 vm_map_unlock(map);
14690 continue;
14691 }
1c79356b 14692
91447636 14693 offset = address - entry->vme_start;
3e170ce0 14694 pmap_offset = address;
1c79356b 14695
91447636
A
14696 /*
14697 * do we have more to flush than is contained in this
14698 * entry ?
14699 */
14700 if (amount_left + entry->vme_start + offset > entry->vme_end) {
14701 flush_size = entry->vme_end -
2d21ac55 14702 (entry->vme_start + offset);
91447636
A
14703 } else {
14704 flush_size = amount_left;
14705 }
14706 amount_left -= flush_size;
14707 address += flush_size;
1c79356b 14708
91447636
A
14709 if (entry->is_sub_map == TRUE) {
14710 vm_map_t local_map;
14711 vm_map_offset_t local_offset;
1c79356b 14712
3e170ce0
A
14713 local_map = VME_SUBMAP(entry);
14714 local_offset = VME_OFFSET(entry);
91447636
A
14715 vm_map_unlock(map);
14716 if (vm_map_msync(
2d21ac55
A
14717 local_map,
14718 local_offset,
14719 flush_size,
14720 sync_flags) == KERN_INVALID_ADDRESS) {
91447636
A
14721 had_hole = TRUE;
14722 }
14723 continue;
14724 }
3e170ce0 14725 object = VME_OBJECT(entry);
1c79356b 14726
91447636
A
14727 /*
14728 * We can't sync this object if the object has not been
14729 * created yet
14730 */
14731 if (object == VM_OBJECT_NULL) {
14732 vm_map_unlock(map);
14733 continue;
14734 }
3e170ce0 14735 offset += VME_OFFSET(entry);
1c79356b 14736
91447636 14737 vm_object_lock(object);
1c79356b 14738
91447636 14739 if (sync_flags & (VM_SYNC_KILLPAGES | VM_SYNC_DEACTIVATE)) {
b0d623f7
A
14740 int kill_pages = 0;
14741 boolean_t reusable_pages = FALSE;
91447636
A
14742
14743 if (sync_flags & VM_SYNC_KILLPAGES) {
b0d623f7 14744 if (object->ref_count == 1 && !object->shadow)
91447636
A
14745 kill_pages = 1;
14746 else
14747 kill_pages = -1;
14748 }
14749 if (kill_pages != -1)
3e170ce0
A
14750 vm_object_deactivate_pages(
14751 object,
14752 offset,
14753 (vm_object_size_t) flush_size,
14754 kill_pages,
14755 reusable_pages,
14756 map->pmap,
14757 pmap_offset);
91447636
A
14758 vm_object_unlock(object);
14759 vm_map_unlock(map);
14760 continue;
1c79356b 14761 }
91447636
A
14762 /*
14763 * We can't sync this object if there isn't a pager.
14764 * Don't bother to sync internal objects, since there can't
14765 * be any "permanent" storage for these objects anyway.
14766 */
14767 if ((object->pager == MEMORY_OBJECT_NULL) ||
14768 (object->internal) || (object->private)) {
14769 vm_object_unlock(object);
14770 vm_map_unlock(map);
14771 continue;
14772 }
14773 /*
14774 * keep reference on the object until syncing is done
14775 */
2d21ac55 14776 vm_object_reference_locked(object);
91447636 14777 vm_object_unlock(object);
1c79356b 14778
91447636 14779 vm_map_unlock(map);
1c79356b 14780
91447636 14781 do_sync_req = vm_object_sync(object,
2d21ac55
A
14782 offset,
14783 flush_size,
14784 sync_flags & VM_SYNC_INVALIDATE,
b0d623f7
A
14785 ((sync_flags & VM_SYNC_SYNCHRONOUS) ||
14786 (sync_flags & VM_SYNC_ASYNCHRONOUS)),
2d21ac55 14787 sync_flags & VM_SYNC_SYNCHRONOUS);
91447636
A
14788 /*
14789 * only send a m_o_s if we returned pages or if the entry
14790 * is writable (ie dirty pages may have already been sent back)
14791 */
b0d623f7 14792 if (!do_sync_req) {
2d21ac55
A
14793 if ((sync_flags & VM_SYNC_INVALIDATE) && object->resident_page_count == 0) {
14794 /*
14795 * clear out the clustering and read-ahead hints
14796 */
14797 vm_object_lock(object);
14798
14799 object->pages_created = 0;
14800 object->pages_used = 0;
14801 object->sequential = 0;
14802 object->last_alloc = 0;
14803
14804 vm_object_unlock(object);
14805 }
91447636
A
14806 vm_object_deallocate(object);
14807 continue;
1c79356b 14808 }
91447636 14809 msync_req_alloc(new_msr);
1c79356b 14810
91447636
A
14811 vm_object_lock(object);
14812 offset += object->paging_offset;
1c79356b 14813
91447636
A
14814 new_msr->offset = offset;
14815 new_msr->length = flush_size;
14816 new_msr->object = object;
14817 new_msr->flag = VM_MSYNC_SYNCHRONIZING;
2d21ac55
A
14818 re_iterate:
14819
14820 /*
14821 * We can't sync this object if there isn't a pager. The
14822 * pager can disappear anytime we're not holding the object
14823 * lock. So this has to be checked anytime we goto re_iterate.
14824 */
14825
14826 pager = object->pager;
14827
14828 if (pager == MEMORY_OBJECT_NULL) {
14829 vm_object_unlock(object);
14830 vm_object_deallocate(object);
39236c6e
A
14831 msync_req_free(new_msr);
14832 new_msr = NULL;
2d21ac55
A
14833 continue;
14834 }
14835
91447636
A
14836 queue_iterate(&object->msr_q, msr, msync_req_t, msr_q) {
14837 /*
14838 * need to check for overlapping entry, if found, wait
14839 * on overlapping msr to be done, then reiterate
14840 */
14841 msr_lock(msr);
14842 if (msr->flag == VM_MSYNC_SYNCHRONIZING &&
14843 ((offset >= msr->offset &&
14844 offset < (msr->offset + msr->length)) ||
14845 (msr->offset >= offset &&
14846 msr->offset < (offset + flush_size))))
14847 {
14848 assert_wait((event_t) msr,THREAD_INTERRUPTIBLE);
14849 msr_unlock(msr);
14850 vm_object_unlock(object);
14851 thread_block(THREAD_CONTINUE_NULL);
14852 vm_object_lock(object);
14853 goto re_iterate;
14854 }
14855 msr_unlock(msr);
14856 }/* queue_iterate */
1c79356b 14857
91447636 14858 queue_enter(&object->msr_q, new_msr, msync_req_t, msr_q);
2d21ac55
A
14859
14860 vm_object_paging_begin(object);
91447636 14861 vm_object_unlock(object);
1c79356b 14862
91447636
A
14863 queue_enter(&req_q, new_msr, msync_req_t, req_q);
14864
14865 (void) memory_object_synchronize(
2d21ac55
A
14866 pager,
14867 offset,
14868 flush_size,
14869 sync_flags & ~VM_SYNC_CONTIGUOUS);
14870
14871 vm_object_lock(object);
14872 vm_object_paging_end(object);
14873 vm_object_unlock(object);
91447636
A
14874 }/* while */
14875
14876 /*
14877 * wait for memory_object_sychronize_completed messages from pager(s)
14878 */
14879
14880 while (!queue_empty(&req_q)) {
14881 msr = (msync_req_t)queue_first(&req_q);
14882 msr_lock(msr);
14883 while(msr->flag != VM_MSYNC_DONE) {
14884 assert_wait((event_t) msr, THREAD_INTERRUPTIBLE);
14885 msr_unlock(msr);
14886 thread_block(THREAD_CONTINUE_NULL);
14887 msr_lock(msr);
14888 }/* while */
14889 queue_remove(&req_q, msr, msync_req_t, req_q);
14890 msr_unlock(msr);
14891 vm_object_deallocate(msr->object);
14892 msync_req_free(msr);
14893 }/* queue_iterate */
14894
14895 /* for proper msync() behaviour */
14896 if (had_hole == TRUE && (sync_flags & VM_SYNC_CONTIGUOUS))
14897 return(KERN_INVALID_ADDRESS);
14898
14899 return(KERN_SUCCESS);
14900}/* vm_msync */
1c79356b 14901
1c79356b 14902/*
91447636
A
14903 * Routine: convert_port_entry_to_map
14904 * Purpose:
14905 * Convert from a port specifying an entry or a task
14906 * to a map. Doesn't consume the port ref; produces a map ref,
14907 * which may be null. Unlike convert_port_to_map, the
14908 * port may be task or a named entry backed.
14909 * Conditions:
14910 * Nothing locked.
1c79356b 14911 */
1c79356b 14912
1c79356b 14913
91447636
A
14914vm_map_t
14915convert_port_entry_to_map(
14916 ipc_port_t port)
14917{
14918 vm_map_t map;
14919 vm_named_entry_t named_entry;
2d21ac55 14920 uint32_t try_failed_count = 0;
1c79356b 14921
91447636
A
14922 if(IP_VALID(port) && (ip_kotype(port) == IKOT_NAMED_ENTRY)) {
14923 while(TRUE) {
14924 ip_lock(port);
14925 if(ip_active(port) && (ip_kotype(port)
2d21ac55 14926 == IKOT_NAMED_ENTRY)) {
91447636 14927 named_entry =
2d21ac55 14928 (vm_named_entry_t)port->ip_kobject;
b0d623f7 14929 if (!(lck_mtx_try_lock(&(named_entry)->Lock))) {
91447636 14930 ip_unlock(port);
2d21ac55
A
14931
14932 try_failed_count++;
14933 mutex_pause(try_failed_count);
91447636
A
14934 continue;
14935 }
14936 named_entry->ref_count++;
b0d623f7 14937 lck_mtx_unlock(&(named_entry)->Lock);
91447636
A
14938 ip_unlock(port);
14939 if ((named_entry->is_sub_map) &&
2d21ac55
A
14940 (named_entry->protection
14941 & VM_PROT_WRITE)) {
91447636
A
14942 map = named_entry->backing.map;
14943 } else {
14944 mach_destroy_memory_entry(port);
14945 return VM_MAP_NULL;
14946 }
14947 vm_map_reference_swap(map);
14948 mach_destroy_memory_entry(port);
14949 break;
14950 }
14951 else
14952 return VM_MAP_NULL;
14953 }
1c79356b 14954 }
91447636
A
14955 else
14956 map = convert_port_to_map(port);
1c79356b 14957
91447636
A
14958 return map;
14959}
1c79356b 14960
91447636
A
14961/*
14962 * Routine: convert_port_entry_to_object
14963 * Purpose:
14964 * Convert from a port specifying a named entry to an
14965 * object. Doesn't consume the port ref; produces a map ref,
14966 * which may be null.
14967 * Conditions:
14968 * Nothing locked.
14969 */
1c79356b 14970
1c79356b 14971
91447636
A
14972vm_object_t
14973convert_port_entry_to_object(
14974 ipc_port_t port)
14975{
39236c6e 14976 vm_object_t object = VM_OBJECT_NULL;
91447636 14977 vm_named_entry_t named_entry;
39236c6e
A
14978 uint32_t try_failed_count = 0;
14979
14980 if (IP_VALID(port) &&
14981 (ip_kotype(port) == IKOT_NAMED_ENTRY)) {
14982 try_again:
14983 ip_lock(port);
14984 if (ip_active(port) &&
14985 (ip_kotype(port) == IKOT_NAMED_ENTRY)) {
14986 named_entry = (vm_named_entry_t)port->ip_kobject;
14987 if (!(lck_mtx_try_lock(&(named_entry)->Lock))) {
91447636 14988 ip_unlock(port);
39236c6e
A
14989 try_failed_count++;
14990 mutex_pause(try_failed_count);
14991 goto try_again;
14992 }
14993 named_entry->ref_count++;
14994 lck_mtx_unlock(&(named_entry)->Lock);
14995 ip_unlock(port);
14996 if (!(named_entry->is_sub_map) &&
14997 !(named_entry->is_pager) &&
14998 !(named_entry->is_copy) &&
14999 (named_entry->protection & VM_PROT_WRITE)) {
15000 object = named_entry->backing.object;
15001 vm_object_reference(object);
91447636 15002 }
39236c6e 15003 mach_destroy_memory_entry(port);
1c79356b 15004 }
1c79356b 15005 }
91447636
A
15006
15007 return object;
1c79356b 15008}
9bccf70c
A
15009
15010/*
91447636
A
15011 * Export routines to other components for the things we access locally through
15012 * macros.
9bccf70c 15013 */
91447636
A
15014#undef current_map
15015vm_map_t
15016current_map(void)
9bccf70c 15017{
91447636 15018 return (current_map_fast());
9bccf70c
A
15019}
15020
15021/*
15022 * vm_map_reference:
15023 *
15024 * Most code internal to the osfmk will go through a
15025 * macro defining this. This is always here for the
15026 * use of other kernel components.
15027 */
15028#undef vm_map_reference
15029void
15030vm_map_reference(
15031 register vm_map_t map)
15032{
15033 if (map == VM_MAP_NULL)
15034 return;
15035
b0d623f7 15036 lck_mtx_lock(&map->s_lock);
9bccf70c
A
15037#if TASK_SWAPPER
15038 assert(map->res_count > 0);
15039 assert(map->ref_count >= map->res_count);
15040 map->res_count++;
15041#endif
15042 map->ref_count++;
b0d623f7 15043 lck_mtx_unlock(&map->s_lock);
9bccf70c
A
15044}
15045
15046/*
15047 * vm_map_deallocate:
15048 *
15049 * Removes a reference from the specified map,
15050 * destroying it if no references remain.
15051 * The map should not be locked.
15052 */
15053void
15054vm_map_deallocate(
15055 register vm_map_t map)
15056{
15057 unsigned int ref;
15058
15059 if (map == VM_MAP_NULL)
15060 return;
15061
b0d623f7 15062 lck_mtx_lock(&map->s_lock);
9bccf70c
A
15063 ref = --map->ref_count;
15064 if (ref > 0) {
15065 vm_map_res_deallocate(map);
b0d623f7 15066 lck_mtx_unlock(&map->s_lock);
9bccf70c
A
15067 return;
15068 }
15069 assert(map->ref_count == 0);
b0d623f7 15070 lck_mtx_unlock(&map->s_lock);
9bccf70c
A
15071
15072#if TASK_SWAPPER
15073 /*
15074 * The map residence count isn't decremented here because
15075 * the vm_map_delete below will traverse the entire map,
15076 * deleting entries, and the residence counts on objects
15077 * and sharing maps will go away then.
15078 */
15079#endif
15080
2d21ac55 15081 vm_map_destroy(map, VM_MAP_NO_FLAGS);
0c530ab8 15082}
91447636 15083
91447636 15084
0c530ab8
A
15085void
15086vm_map_disable_NX(vm_map_t map)
15087{
15088 if (map == NULL)
15089 return;
15090 if (map->pmap == NULL)
15091 return;
15092
15093 pmap_disable_NX(map->pmap);
15094}
15095
6d2010ae
A
15096void
15097vm_map_disallow_data_exec(vm_map_t map)
15098{
15099 if (map == NULL)
15100 return;
15101
15102 map->map_disallow_data_exec = TRUE;
15103}
15104
0c530ab8
A
15105/* XXX Consider making these constants (VM_MAX_ADDRESS and MACH_VM_MAX_ADDRESS)
15106 * more descriptive.
15107 */
15108void
15109vm_map_set_32bit(vm_map_t map)
15110{
15111 map->max_offset = (vm_map_offset_t)VM_MAX_ADDRESS;
15112}
15113
15114
15115void
15116vm_map_set_64bit(vm_map_t map)
15117{
15118 map->max_offset = (vm_map_offset_t)MACH_VM_MAX_ADDRESS;
15119}
15120
15121vm_map_offset_t
3e170ce0 15122vm_compute_max_offset(boolean_t is64)
0c530ab8
A
15123{
15124 return (is64 ? (vm_map_offset_t)MACH_VM_MAX_ADDRESS : (vm_map_offset_t)VM_MAX_ADDRESS);
15125}
15126
39236c6e
A
15127uint64_t
15128vm_map_get_max_aslr_slide_pages(vm_map_t map)
15129{
15130 return (1 << (vm_map_is_64bit(map) ? 16 : 8));
15131}
15132
0c530ab8 15133boolean_t
2d21ac55
A
15134vm_map_is_64bit(
15135 vm_map_t map)
15136{
15137 return map->max_offset > ((vm_map_offset_t)VM_MAX_ADDRESS);
15138}
15139
15140boolean_t
316670eb
A
15141vm_map_has_hard_pagezero(
15142 vm_map_t map,
15143 vm_map_offset_t pagezero_size)
0c530ab8
A
15144{
15145 /*
15146 * XXX FBDP
15147 * We should lock the VM map (for read) here but we can get away
15148 * with it for now because there can't really be any race condition:
15149 * the VM map's min_offset is changed only when the VM map is created
15150 * and when the zero page is established (when the binary gets loaded),
15151 * and this routine gets called only when the task terminates and the
15152 * VM map is being torn down, and when a new map is created via
15153 * load_machfile()/execve().
15154 */
316670eb 15155 return (map->min_offset >= pagezero_size);
0c530ab8
A
15156}
15157
316670eb
A
15158/*
15159 * Raise a VM map's maximun offset.
15160 */
15161kern_return_t
15162vm_map_raise_max_offset(
15163 vm_map_t map,
15164 vm_map_offset_t new_max_offset)
15165{
15166 kern_return_t ret;
15167
15168 vm_map_lock(map);
15169 ret = KERN_INVALID_ADDRESS;
15170
15171 if (new_max_offset >= map->max_offset) {
15172 if (!vm_map_is_64bit(map)) {
15173 if (new_max_offset <= (vm_map_offset_t)VM_MAX_ADDRESS) {
15174 map->max_offset = new_max_offset;
15175 ret = KERN_SUCCESS;
15176 }
15177 } else {
15178 if (new_max_offset <= (vm_map_offset_t)MACH_VM_MAX_ADDRESS) {
15179 map->max_offset = new_max_offset;
15180 ret = KERN_SUCCESS;
15181 }
15182 }
15183 }
15184
15185 vm_map_unlock(map);
15186 return ret;
15187}
15188
15189
0c530ab8
A
15190/*
15191 * Raise a VM map's minimum offset.
15192 * To strictly enforce "page zero" reservation.
15193 */
15194kern_return_t
15195vm_map_raise_min_offset(
15196 vm_map_t map,
15197 vm_map_offset_t new_min_offset)
15198{
15199 vm_map_entry_t first_entry;
15200
39236c6e
A
15201 new_min_offset = vm_map_round_page(new_min_offset,
15202 VM_MAP_PAGE_MASK(map));
0c530ab8
A
15203
15204 vm_map_lock(map);
15205
15206 if (new_min_offset < map->min_offset) {
15207 /*
15208 * Can't move min_offset backwards, as that would expose
15209 * a part of the address space that was previously, and for
15210 * possibly good reasons, inaccessible.
15211 */
15212 vm_map_unlock(map);
15213 return KERN_INVALID_ADDRESS;
15214 }
3e170ce0
A
15215 if (new_min_offset >= map->max_offset) {
15216 /* can't go beyond the end of the address space */
15217 vm_map_unlock(map);
15218 return KERN_INVALID_ADDRESS;
15219 }
0c530ab8
A
15220
15221 first_entry = vm_map_first_entry(map);
15222 if (first_entry != vm_map_to_entry(map) &&
15223 first_entry->vme_start < new_min_offset) {
15224 /*
15225 * Some memory was already allocated below the new
15226 * minimun offset. It's too late to change it now...
15227 */
15228 vm_map_unlock(map);
15229 return KERN_NO_SPACE;
15230 }
15231
15232 map->min_offset = new_min_offset;
15233
3e170ce0
A
15234 assert(map->holes_list);
15235 map->holes_list->start = new_min_offset;
15236 assert(new_min_offset < map->holes_list->end);
15237
0c530ab8
A
15238 vm_map_unlock(map);
15239
15240 return KERN_SUCCESS;
15241}
2d21ac55
A
15242
15243/*
15244 * Set the limit on the maximum amount of user wired memory allowed for this map.
15245 * This is basically a copy of the MEMLOCK rlimit value maintained by the BSD side of
15246 * the kernel. The limits are checked in the mach VM side, so we keep a copy so we
15247 * don't have to reach over to the BSD data structures.
15248 */
15249
15250void
15251vm_map_set_user_wire_limit(vm_map_t map,
15252 vm_size_t limit)
15253{
15254 map->user_wire_limit = limit;
15255}
593a1d5f 15256
b0d623f7
A
15257
15258void vm_map_switch_protect(vm_map_t map,
15259 boolean_t val)
593a1d5f
A
15260{
15261 vm_map_lock(map);
b0d623f7 15262 map->switch_protect=val;
593a1d5f 15263 vm_map_unlock(map);
b0d623f7 15264}
b7266188 15265
39236c6e
A
15266/*
15267 * IOKit has mapped a region into this map; adjust the pmap's ledgers appropriately.
15268 * phys_footprint is a composite limit consisting of iokit + physmem, so we need to
15269 * bump both counters.
15270 */
15271void
15272vm_map_iokit_mapped_region(vm_map_t map, vm_size_t bytes)
15273{
15274 pmap_t pmap = vm_map_pmap(map);
15275
fe8ab488 15276 ledger_credit(pmap->ledger, task_ledgers.iokit_mapped, bytes);
39236c6e
A
15277 ledger_credit(pmap->ledger, task_ledgers.phys_footprint, bytes);
15278}
15279
15280void
15281vm_map_iokit_unmapped_region(vm_map_t map, vm_size_t bytes)
15282{
15283 pmap_t pmap = vm_map_pmap(map);
15284
fe8ab488 15285 ledger_debit(pmap->ledger, task_ledgers.iokit_mapped, bytes);
39236c6e
A
15286 ledger_debit(pmap->ledger, task_ledgers.phys_footprint, bytes);
15287}
15288
b7266188
A
15289/* Add (generate) code signature for memory range */
15290#if CONFIG_DYNAMIC_CODE_SIGNING
15291kern_return_t vm_map_sign(vm_map_t map,
15292 vm_map_offset_t start,
15293 vm_map_offset_t end)
15294{
15295 vm_map_entry_t entry;
15296 vm_page_t m;
15297 vm_object_t object;
15298
15299 /*
15300 * Vet all the input parameters and current type and state of the
15301 * underlaying object. Return with an error if anything is amiss.
15302 */
15303 if (map == VM_MAP_NULL)
15304 return(KERN_INVALID_ARGUMENT);
15305
15306 vm_map_lock_read(map);
15307
15308 if (!vm_map_lookup_entry(map, start, &entry) || entry->is_sub_map) {
15309 /*
15310 * Must pass a valid non-submap address.
15311 */
15312 vm_map_unlock_read(map);
15313 return(KERN_INVALID_ADDRESS);
15314 }
15315
15316 if((entry->vme_start > start) || (entry->vme_end < end)) {
15317 /*
15318 * Map entry doesn't cover the requested range. Not handling
15319 * this situation currently.
15320 */
15321 vm_map_unlock_read(map);
15322 return(KERN_INVALID_ARGUMENT);
15323 }
15324
3e170ce0 15325 object = VME_OBJECT(entry);
b7266188
A
15326 if (object == VM_OBJECT_NULL) {
15327 /*
15328 * Object must already be present or we can't sign.
15329 */
15330 vm_map_unlock_read(map);
15331 return KERN_INVALID_ARGUMENT;
15332 }
15333
15334 vm_object_lock(object);
15335 vm_map_unlock_read(map);
15336
15337 while(start < end) {
15338 uint32_t refmod;
15339
3e170ce0
A
15340 m = vm_page_lookup(object,
15341 start - entry->vme_start + VME_OFFSET(entry));
b7266188
A
15342 if (m==VM_PAGE_NULL) {
15343 /* shoud we try to fault a page here? we can probably
15344 * demand it exists and is locked for this request */
15345 vm_object_unlock(object);
15346 return KERN_FAILURE;
15347 }
15348 /* deal with special page status */
15349 if (m->busy ||
15350 (m->unusual && (m->error || m->restart || m->private || m->absent))) {
15351 vm_object_unlock(object);
15352 return KERN_FAILURE;
15353 }
15354
15355 /* Page is OK... now "validate" it */
15356 /* This is the place where we'll call out to create a code
15357 * directory, later */
15358 m->cs_validated = TRUE;
15359
15360 /* The page is now "clean" for codesigning purposes. That means
15361 * we don't consider it as modified (wpmapped) anymore. But
15362 * we'll disconnect the page so we note any future modification
15363 * attempts. */
15364 m->wpmapped = FALSE;
15365 refmod = pmap_disconnect(m->phys_page);
15366
15367 /* Pull the dirty status from the pmap, since we cleared the
15368 * wpmapped bit */
15369 if ((refmod & VM_MEM_MODIFIED) && !m->dirty) {
316670eb 15370 SET_PAGE_DIRTY(m, FALSE);
b7266188
A
15371 }
15372
15373 /* On to the next page */
15374 start += PAGE_SIZE;
15375 }
15376 vm_object_unlock(object);
15377
15378 return KERN_SUCCESS;
15379}
15380#endif
6d2010ae 15381
fe8ab488
A
15382kern_return_t vm_map_partial_reap(vm_map_t map, unsigned int *reclaimed_resident, unsigned int *reclaimed_compressed)
15383{
15384 vm_map_entry_t entry = VM_MAP_ENTRY_NULL;
15385 vm_map_entry_t next_entry;
15386 kern_return_t kr = KERN_SUCCESS;
15387 vm_map_t zap_map;
15388
15389 vm_map_lock(map);
15390
15391 /*
15392 * We use a "zap_map" to avoid having to unlock
15393 * the "map" in vm_map_delete().
15394 */
15395 zap_map = vm_map_create(PMAP_NULL,
15396 map->min_offset,
15397 map->max_offset,
15398 map->hdr.entries_pageable);
15399
15400 if (zap_map == VM_MAP_NULL) {
15401 return KERN_RESOURCE_SHORTAGE;
15402 }
15403
15404 vm_map_set_page_shift(zap_map,
15405 VM_MAP_PAGE_SHIFT(map));
3e170ce0 15406 vm_map_disable_hole_optimization(zap_map);
fe8ab488
A
15407
15408 for (entry = vm_map_first_entry(map);
15409 entry != vm_map_to_entry(map);
15410 entry = next_entry) {
15411 next_entry = entry->vme_next;
15412
3e170ce0
A
15413 if (VME_OBJECT(entry) &&
15414 !entry->is_sub_map &&
15415 (VME_OBJECT(entry)->internal == TRUE) &&
15416 (VME_OBJECT(entry)->ref_count == 1)) {
fe8ab488 15417
3e170ce0
A
15418 *reclaimed_resident += VME_OBJECT(entry)->resident_page_count;
15419 *reclaimed_compressed += vm_compressor_pager_get_count(VME_OBJECT(entry)->pager);
fe8ab488
A
15420
15421 (void)vm_map_delete(map,
15422 entry->vme_start,
15423 entry->vme_end,
15424 VM_MAP_REMOVE_SAVE_ENTRIES,
15425 zap_map);
15426 }
15427 }
15428
15429 vm_map_unlock(map);
15430
15431 /*
15432 * Get rid of the "zap_maps" and all the map entries that
15433 * they may still contain.
15434 */
15435 if (zap_map != VM_MAP_NULL) {
15436 vm_map_destroy(zap_map, VM_MAP_REMOVE_NO_PMAP_CLEANUP);
15437 zap_map = VM_MAP_NULL;
15438 }
15439
15440 return kr;
15441}
15442
6d2010ae
A
15443#if CONFIG_FREEZE
15444
15445kern_return_t vm_map_freeze_walk(
15446 vm_map_t map,
15447 unsigned int *purgeable_count,
15448 unsigned int *wired_count,
15449 unsigned int *clean_count,
15450 unsigned int *dirty_count,
316670eb 15451 unsigned int dirty_budget,
6d2010ae
A
15452 boolean_t *has_shared)
15453{
15454 vm_map_entry_t entry;
15455
15456 vm_map_lock_read(map);
15457
15458 *purgeable_count = *wired_count = *clean_count = *dirty_count = 0;
15459 *has_shared = FALSE;
15460
15461 for (entry = vm_map_first_entry(map);
15462 entry != vm_map_to_entry(map);
15463 entry = entry->vme_next) {
15464 unsigned int purgeable, clean, dirty, wired;
15465 boolean_t shared;
15466
3e170ce0 15467 if ((VME_OBJECT(entry) == 0) ||
6d2010ae 15468 (entry->is_sub_map) ||
3e170ce0 15469 (VME_OBJECT(entry)->phys_contiguous)) {
6d2010ae
A
15470 continue;
15471 }
15472
3e170ce0 15473 default_freezer_pack(&purgeable, &wired, &clean, &dirty, dirty_budget, &shared, VME_OBJECT(entry), NULL);
6d2010ae
A
15474
15475 *purgeable_count += purgeable;
15476 *wired_count += wired;
15477 *clean_count += clean;
15478 *dirty_count += dirty;
15479
15480 if (shared) {
15481 *has_shared = TRUE;
15482 }
316670eb
A
15483
15484 /* Adjust pageout budget and finish up if reached */
15485 if (dirty_budget) {
15486 dirty_budget -= dirty;
15487 if (dirty_budget == 0) {
15488 break;
15489 }
15490 }
6d2010ae
A
15491 }
15492
15493 vm_map_unlock_read(map);
15494
15495 return KERN_SUCCESS;
15496}
15497
3e170ce0
A
15498int c_freezer_swapout_count;
15499int c_freezer_compression_count = 0;
15500AbsoluteTime c_freezer_last_yield_ts = 0;
15501
6d2010ae
A
15502kern_return_t vm_map_freeze(
15503 vm_map_t map,
15504 unsigned int *purgeable_count,
15505 unsigned int *wired_count,
15506 unsigned int *clean_count,
15507 unsigned int *dirty_count,
316670eb 15508 unsigned int dirty_budget,
6d2010ae
A
15509 boolean_t *has_shared)
15510{
39236c6e
A
15511 vm_map_entry_t entry2 = VM_MAP_ENTRY_NULL;
15512 kern_return_t kr = KERN_SUCCESS;
15513 boolean_t default_freezer_active = TRUE;
6d2010ae
A
15514
15515 *purgeable_count = *wired_count = *clean_count = *dirty_count = 0;
15516 *has_shared = FALSE;
15517
6d2010ae
A
15518 /*
15519 * We need the exclusive lock here so that we can
15520 * block any page faults or lookups while we are
15521 * in the middle of freezing this vm map.
15522 */
15523 vm_map_lock(map);
15524
39236c6e
A
15525 if (COMPRESSED_PAGER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE) {
15526 default_freezer_active = FALSE;
3e170ce0
A
15527
15528 if (vm_compressor_low_on_space() || vm_swap_low_on_space()) {
15529 kr = KERN_NO_SPACE;
15530 goto done;
15531 }
316670eb 15532 }
3e170ce0 15533 assert(default_freezer_active == FALSE);
316670eb 15534
39236c6e
A
15535 if (default_freezer_active) {
15536 if (map->default_freezer_handle == NULL) {
15537 map->default_freezer_handle = default_freezer_handle_allocate();
15538 }
15539
15540 if ((kr = default_freezer_handle_init(map->default_freezer_handle)) != KERN_SUCCESS) {
15541 /*
15542 * Can happen if default_freezer_handle passed in is NULL
15543 * Or, a table has already been allocated and associated
15544 * with this handle, i.e. the map is already frozen.
15545 */
15546 goto done;
15547 }
6d2010ae 15548 }
3e170ce0
A
15549 c_freezer_compression_count = 0;
15550 clock_get_uptime(&c_freezer_last_yield_ts);
15551
6d2010ae
A
15552 for (entry2 = vm_map_first_entry(map);
15553 entry2 != vm_map_to_entry(map);
15554 entry2 = entry2->vme_next) {
15555
3e170ce0 15556 vm_object_t src_object = VME_OBJECT(entry2);
6d2010ae 15557
3e170ce0
A
15558 if (VME_OBJECT(entry2) &&
15559 !entry2->is_sub_map &&
15560 !VME_OBJECT(entry2)->phys_contiguous) {
39236c6e
A
15561 /* If eligible, scan the entry, moving eligible pages over to our parent object */
15562 if (default_freezer_active) {
15563 unsigned int purgeable, clean, dirty, wired;
15564 boolean_t shared;
316670eb 15565
39236c6e
A
15566 default_freezer_pack(&purgeable, &wired, &clean, &dirty, dirty_budget, &shared,
15567 src_object, map->default_freezer_handle);
15568
15569 *purgeable_count += purgeable;
15570 *wired_count += wired;
15571 *clean_count += clean;
15572 *dirty_count += dirty;
15573
15574 /* Adjust pageout budget and finish up if reached */
15575 if (dirty_budget) {
15576 dirty_budget -= dirty;
15577 if (dirty_budget == 0) {
15578 break;
15579 }
316670eb 15580 }
6d2010ae 15581
39236c6e
A
15582 if (shared) {
15583 *has_shared = TRUE;
15584 }
15585 } else {
3e170ce0
A
15586 if (VME_OBJECT(entry2)->internal == TRUE) {
15587
15588 if (DEFAULT_FREEZER_COMPRESSED_PAGER_IS_SWAPBACKED) {
15589 /*
15590 * Pages belonging to this object could be swapped to disk.
15591 * Make sure it's not a shared object because we could end
15592 * up just bringing it back in again.
15593 */
15594 if (VME_OBJECT(entry2)->ref_count > 1) {
15595 continue;
15596 }
15597 }
15598 vm_object_compressed_freezer_pageout(VME_OBJECT(entry2));
15599 }
15600
15601 if (vm_compressor_low_on_space() || vm_swap_low_on_space()) {
15602 kr = KERN_NO_SPACE;
15603 break;
39236c6e 15604 }
6d2010ae
A
15605 }
15606 }
15607 }
15608
39236c6e
A
15609 if (default_freezer_active) {
15610 /* Finally, throw out the pages to swap */
15611 default_freezer_pageout(map->default_freezer_handle);
15612 }
6d2010ae
A
15613
15614done:
15615 vm_map_unlock(map);
6d2010ae 15616
3e170ce0
A
15617 if (!default_freezer_active) {
15618 vm_object_compressed_freezer_done();
15619 }
15620 if (DEFAULT_FREEZER_COMPRESSED_PAGER_IS_SWAPBACKED) {
15621 /*
15622 * reset the counter tracking the # of swapped c_segs
15623 * because we are now done with this freeze session and task.
15624 */
15625 c_freezer_swapout_count = 0;
15626 }
6d2010ae
A
15627 return kr;
15628}
15629
316670eb 15630kern_return_t
6d2010ae
A
15631vm_map_thaw(
15632 vm_map_t map)
15633{
316670eb 15634 kern_return_t kr = KERN_SUCCESS;
6d2010ae 15635
39236c6e
A
15636 if (COMPRESSED_PAGER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE) {
15637 /*
15638 * We will on-demand thaw in the presence of the compressed pager.
15639 */
15640 return kr;
15641 }
15642
6d2010ae
A
15643 vm_map_lock(map);
15644
316670eb 15645 if (map->default_freezer_handle == NULL) {
6d2010ae
A
15646 /*
15647 * This map is not in a frozen state.
15648 */
316670eb 15649 kr = KERN_FAILURE;
6d2010ae
A
15650 goto out;
15651 }
6d2010ae 15652
39236c6e 15653 kr = default_freezer_unpack(map->default_freezer_handle);
6d2010ae
A
15654out:
15655 vm_map_unlock(map);
316670eb
A
15656
15657 return kr;
6d2010ae
A
15658}
15659#endif
e2d2fc5c 15660
e2d2fc5c
A
15661/*
15662 * vm_map_entry_should_cow_for_true_share:
15663 *
15664 * Determines if the map entry should be clipped and setup for copy-on-write
15665 * to avoid applying "true_share" to a large VM object when only a subset is
15666 * targeted.
15667 *
15668 * For now, we target only the map entries created for the Objective C
15669 * Garbage Collector, which initially have the following properties:
15670 * - alias == VM_MEMORY_MALLOC
15671 * - wired_count == 0
15672 * - !needs_copy
15673 * and a VM object with:
15674 * - internal
15675 * - copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC
15676 * - !true_share
15677 * - vo_size == ANON_CHUNK_SIZE
3e170ce0
A
15678 *
15679 * Only non-kernel map entries.
e2d2fc5c
A
15680 */
15681boolean_t
15682vm_map_entry_should_cow_for_true_share(
15683 vm_map_entry_t entry)
15684{
15685 vm_object_t object;
15686
15687 if (entry->is_sub_map) {
15688 /* entry does not point at a VM object */
15689 return FALSE;
15690 }
15691
15692 if (entry->needs_copy) {
15693 /* already set for copy_on_write: done! */
15694 return FALSE;
15695 }
15696
3e170ce0
A
15697 if (VME_ALIAS(entry) != VM_MEMORY_MALLOC &&
15698 VME_ALIAS(entry) != VM_MEMORY_MALLOC_SMALL) {
fe8ab488 15699 /* not a malloc heap or Obj-C Garbage Collector heap */
e2d2fc5c
A
15700 return FALSE;
15701 }
15702
15703 if (entry->wired_count) {
15704 /* wired: can't change the map entry... */
fe8ab488 15705 vm_counters.should_cow_but_wired++;
e2d2fc5c
A
15706 return FALSE;
15707 }
15708
3e170ce0 15709 object = VME_OBJECT(entry);
e2d2fc5c
A
15710
15711 if (object == VM_OBJECT_NULL) {
15712 /* no object yet... */
15713 return FALSE;
15714 }
15715
15716 if (!object->internal) {
15717 /* not an internal object */
15718 return FALSE;
15719 }
15720
15721 if (object->copy_strategy != MEMORY_OBJECT_COPY_SYMMETRIC) {
15722 /* not the default copy strategy */
15723 return FALSE;
15724 }
15725
15726 if (object->true_share) {
15727 /* already true_share: too late to avoid it */
15728 return FALSE;
15729 }
15730
3e170ce0 15731 if (VME_ALIAS(entry) == VM_MEMORY_MALLOC &&
fe8ab488
A
15732 object->vo_size != ANON_CHUNK_SIZE) {
15733 /* ... not an object created for the ObjC Garbage Collector */
15734 return FALSE;
15735 }
15736
3e170ce0 15737 if (VME_ALIAS(entry) == VM_MEMORY_MALLOC_SMALL &&
fe8ab488
A
15738 object->vo_size != 2048 * 4096) {
15739 /* ... not a "MALLOC_SMALL" heap */
e2d2fc5c
A
15740 return FALSE;
15741 }
15742
15743 /*
15744 * All the criteria match: we have a large object being targeted for "true_share".
15745 * To limit the adverse side-effects linked with "true_share", tell the caller to
15746 * try and avoid setting up the entire object for "true_share" by clipping the
15747 * targeted range and setting it up for copy-on-write.
15748 */
15749 return TRUE;
15750}
39236c6e
A
15751
15752vm_map_offset_t
15753vm_map_round_page_mask(
15754 vm_map_offset_t offset,
15755 vm_map_offset_t mask)
15756{
15757 return VM_MAP_ROUND_PAGE(offset, mask);
15758}
15759
15760vm_map_offset_t
15761vm_map_trunc_page_mask(
15762 vm_map_offset_t offset,
15763 vm_map_offset_t mask)
15764{
15765 return VM_MAP_TRUNC_PAGE(offset, mask);
15766}
15767
3e170ce0
A
15768boolean_t
15769vm_map_page_aligned(
15770 vm_map_offset_t offset,
15771 vm_map_offset_t mask)
15772{
15773 return ((offset) & mask) == 0;
15774}
15775
39236c6e
A
15776int
15777vm_map_page_shift(
15778 vm_map_t map)
15779{
15780 return VM_MAP_PAGE_SHIFT(map);
15781}
15782
15783int
15784vm_map_page_size(
15785 vm_map_t map)
15786{
15787 return VM_MAP_PAGE_SIZE(map);
15788}
15789
3e170ce0 15790vm_map_offset_t
39236c6e
A
15791vm_map_page_mask(
15792 vm_map_t map)
15793{
15794 return VM_MAP_PAGE_MASK(map);
15795}
15796
15797kern_return_t
15798vm_map_set_page_shift(
15799 vm_map_t map,
15800 int pageshift)
15801{
15802 if (map->hdr.nentries != 0) {
15803 /* too late to change page size */
15804 return KERN_FAILURE;
15805 }
15806
15807 map->hdr.page_shift = pageshift;
15808
15809 return KERN_SUCCESS;
15810}
15811
fe8ab488
A
15812int
15813vm_map_purge(
15814 vm_map_t map)
15815{
15816 int num_object_purged;
15817 vm_map_entry_t entry;
15818 vm_map_offset_t next_address;
15819 vm_object_t object;
15820 int state;
15821 kern_return_t kr;
15822
15823 num_object_purged = 0;
15824
15825 vm_map_lock_read(map);
15826 entry = vm_map_first_entry(map);
15827 while (entry != vm_map_to_entry(map)) {
15828 if (entry->is_sub_map) {
15829 goto next;
15830 }
15831 if (! (entry->protection & VM_PROT_WRITE)) {
15832 goto next;
15833 }
3e170ce0 15834 object = VME_OBJECT(entry);
fe8ab488
A
15835 if (object == VM_OBJECT_NULL) {
15836 goto next;
15837 }
15838 if (object->purgable != VM_PURGABLE_VOLATILE) {
15839 goto next;
15840 }
15841
15842 vm_object_lock(object);
15843#if 00
3e170ce0 15844 if (VME_OFFSET(entry) != 0 ||
fe8ab488
A
15845 (entry->vme_end - entry->vme_start) != object->vo_size) {
15846 vm_object_unlock(object);
15847 goto next;
15848 }
15849#endif
15850 next_address = entry->vme_end;
15851 vm_map_unlock_read(map);
15852 state = VM_PURGABLE_EMPTY;
15853 kr = vm_object_purgable_control(object,
15854 VM_PURGABLE_SET_STATE,
15855 &state);
15856 if (kr == KERN_SUCCESS) {
15857 num_object_purged++;
15858 }
15859 vm_object_unlock(object);
15860
15861 vm_map_lock_read(map);
15862 if (vm_map_lookup_entry(map, next_address, &entry)) {
15863 continue;
15864 }
15865 next:
15866 entry = entry->vme_next;
15867 }
15868 vm_map_unlock_read(map);
15869
15870 return num_object_purged;
15871}
15872
39236c6e
A
15873kern_return_t
15874vm_map_query_volatile(
15875 vm_map_t map,
15876 mach_vm_size_t *volatile_virtual_size_p,
15877 mach_vm_size_t *volatile_resident_size_p,
3e170ce0
A
15878 mach_vm_size_t *volatile_compressed_size_p,
15879 mach_vm_size_t *volatile_pmap_size_p,
15880 mach_vm_size_t *volatile_compressed_pmap_size_p)
39236c6e
A
15881{
15882 mach_vm_size_t volatile_virtual_size;
15883 mach_vm_size_t volatile_resident_count;
3e170ce0 15884 mach_vm_size_t volatile_compressed_count;
39236c6e 15885 mach_vm_size_t volatile_pmap_count;
3e170ce0 15886 mach_vm_size_t volatile_compressed_pmap_count;
39236c6e 15887 mach_vm_size_t resident_count;
3e170ce0 15888 unsigned int compressed_count;
39236c6e
A
15889 vm_map_entry_t entry;
15890 vm_object_t object;
15891
15892 /* map should be locked by caller */
15893
15894 volatile_virtual_size = 0;
15895 volatile_resident_count = 0;
3e170ce0 15896 volatile_compressed_count = 0;
39236c6e 15897 volatile_pmap_count = 0;
3e170ce0 15898 volatile_compressed_pmap_count = 0;
39236c6e
A
15899
15900 for (entry = vm_map_first_entry(map);
15901 entry != vm_map_to_entry(map);
15902 entry = entry->vme_next) {
15903 if (entry->is_sub_map) {
15904 continue;
15905 }
15906 if (! (entry->protection & VM_PROT_WRITE)) {
15907 continue;
15908 }
3e170ce0 15909 object = VME_OBJECT(entry);
39236c6e
A
15910 if (object == VM_OBJECT_NULL) {
15911 continue;
15912 }
3e170ce0
A
15913 if (object->purgable != VM_PURGABLE_VOLATILE &&
15914 object->purgable != VM_PURGABLE_EMPTY) {
39236c6e
A
15915 continue;
15916 }
3e170ce0 15917 if (VME_OFFSET(entry)) {
39236c6e
A
15918 /*
15919 * If the map entry has been split and the object now
15920 * appears several times in the VM map, we don't want
15921 * to count the object's resident_page_count more than
15922 * once. We count it only for the first one, starting
15923 * at offset 0 and ignore the other VM map entries.
15924 */
15925 continue;
15926 }
15927 resident_count = object->resident_page_count;
3e170ce0 15928 if ((VME_OFFSET(entry) / PAGE_SIZE) >= resident_count) {
39236c6e
A
15929 resident_count = 0;
15930 } else {
3e170ce0 15931 resident_count -= (VME_OFFSET(entry) / PAGE_SIZE);
39236c6e
A
15932 }
15933
15934 volatile_virtual_size += entry->vme_end - entry->vme_start;
15935 volatile_resident_count += resident_count;
3e170ce0
A
15936 if (object->pager) {
15937 volatile_compressed_count +=
15938 vm_compressor_pager_get_count(object->pager);
15939 }
15940 compressed_count = 0;
39236c6e
A
15941 volatile_pmap_count += pmap_query_resident(map->pmap,
15942 entry->vme_start,
3e170ce0
A
15943 entry->vme_end,
15944 &compressed_count);
15945 volatile_compressed_pmap_count += compressed_count;
39236c6e
A
15946 }
15947
15948 /* map is still locked on return */
15949
15950 *volatile_virtual_size_p = volatile_virtual_size;
15951 *volatile_resident_size_p = volatile_resident_count * PAGE_SIZE;
3e170ce0 15952 *volatile_compressed_size_p = volatile_compressed_count * PAGE_SIZE;
39236c6e 15953 *volatile_pmap_size_p = volatile_pmap_count * PAGE_SIZE;
3e170ce0 15954 *volatile_compressed_pmap_size_p = volatile_compressed_pmap_count * PAGE_SIZE;
39236c6e
A
15955
15956 return KERN_SUCCESS;
15957}
fe8ab488 15958
3e170ce0
A
15959void
15960vm_map_sizes(vm_map_t map,
15961 vm_map_size_t * psize,
15962 vm_map_size_t * pfree,
15963 vm_map_size_t * plargest_free)
15964{
15965 vm_map_entry_t entry;
15966 vm_map_offset_t prev;
15967 vm_map_size_t free, total_free, largest_free;
15968 boolean_t end;
15969
15970 total_free = largest_free = 0;
15971
15972 vm_map_lock_read(map);
15973 if (psize) *psize = map->max_offset - map->min_offset;
15974
15975 prev = map->min_offset;
15976 for (entry = vm_map_first_entry(map);; entry = entry->vme_next)
15977 {
15978 end = (entry == vm_map_to_entry(map));
15979
15980 if (end) free = entry->vme_end - prev;
15981 else free = entry->vme_start - prev;
15982
15983 total_free += free;
15984 if (free > largest_free) largest_free = free;
15985
15986 if (end) break;
15987 prev = entry->vme_end;
15988 }
15989 vm_map_unlock_read(map);
15990 if (pfree) *pfree = total_free;
15991 if (plargest_free) *plargest_free = largest_free;
15992}
15993
fe8ab488
A
15994#if VM_SCAN_FOR_SHADOW_CHAIN
15995int vm_map_shadow_max(vm_map_t map);
15996int vm_map_shadow_max(
15997 vm_map_t map)
15998{
15999 int shadows, shadows_max;
16000 vm_map_entry_t entry;
16001 vm_object_t object, next_object;
16002
16003 if (map == NULL)
16004 return 0;
16005
16006 shadows_max = 0;
16007
16008 vm_map_lock_read(map);
16009
16010 for (entry = vm_map_first_entry(map);
16011 entry != vm_map_to_entry(map);
16012 entry = entry->vme_next) {
16013 if (entry->is_sub_map) {
16014 continue;
16015 }
3e170ce0 16016 object = VME_OBJECT(entry);
fe8ab488
A
16017 if (object == NULL) {
16018 continue;
16019 }
16020 vm_object_lock_shared(object);
16021 for (shadows = 0;
16022 object->shadow != NULL;
16023 shadows++, object = next_object) {
16024 next_object = object->shadow;
16025 vm_object_lock_shared(next_object);
16026 vm_object_unlock(object);
16027 }
16028 vm_object_unlock(object);
16029 if (shadows > shadows_max) {
16030 shadows_max = shadows;
16031 }
16032 }
16033
16034 vm_map_unlock_read(map);
16035
16036 return shadows_max;
16037}
16038#endif /* VM_SCAN_FOR_SHADOW_CHAIN */