]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
316670eb | 2 | * Copyright (c) 2010 Apple Computer, Inc. All rights reserved. |
1c79356b | 3 | * |
2d21ac55 | 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
1c79356b | 5 | * |
2d21ac55 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
8f6c56a5 | 14 | * |
2d21ac55 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
8f6c56a5 | 25 | * |
2d21ac55 | 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
1c79356b A |
27 | */ |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
91447636 | 31 | |
1c79356b | 32 | #include <kern/lock.h> |
1c79356b | 33 | #include <kern/ledger.h> |
91447636 | 34 | #include <kern/kalloc.h> |
316670eb | 35 | #include <kern/task.h> |
91447636 | 36 | |
316670eb A |
37 | #include <kern/processor.h> |
38 | #include <kern/machine.h> | |
39 | #include <kern/queue.h> | |
40 | #include <sys/errno.h> | |
1c79356b | 41 | |
316670eb A |
42 | #include <libkern/OSAtomic.h> |
43 | #include <mach/mach_types.h> | |
1c79356b | 44 | |
316670eb A |
45 | /* |
46 | * Ledger entry flags. Bits in second nibble (masked by 0xF0) are used for | |
47 | * ledger actions (LEDGER_ACTION_BLOCK, etc). | |
48 | */ | |
39236c6e A |
49 | #define LF_ENTRY_ACTIVE 0x0001 /* entry is active if set */ |
50 | #define LF_WAKE_NEEDED 0x0100 /* one or more threads are asleep */ | |
51 | #define LF_WAKE_INPROGRESS 0x0200 /* the wait queue is being processed */ | |
52 | #define LF_REFILL_SCHEDULED 0x0400 /* a refill timer has been set */ | |
53 | #define LF_REFILL_INPROGRESS 0x0800 /* the ledger is being refilled */ | |
54 | #define LF_CALLED_BACK 0x1000 /* callback was called for balance in deficit */ | |
55 | #define LF_WARNED 0x2000 /* callback was called for balance warning */ | |
56 | #define LF_TRACKING_MAX 0x4000 /* track max balance over user-specfied time */ | |
1c79356b | 57 | |
316670eb A |
58 | /* Determine whether a ledger entry exists and has been initialized and active */ |
59 | #define ENTRY_VALID(l, e) \ | |
60 | (((l) != NULL) && ((e) >= 0) && ((e) < (l)->l_size) && \ | |
39236c6e | 61 | (((l)->l_entries[e].le_flags & LF_ENTRY_ACTIVE) == LF_ENTRY_ACTIVE)) |
316670eb A |
62 | |
63 | #ifdef LEDGER_DEBUG | |
64 | int ledger_debug = 0; | |
65 | ||
66 | #define ASSERT(a) assert(a) | |
67 | #define lprintf(a) if (ledger_debug) { \ | |
68 | printf("%lld ", abstime_to_nsecs(mach_absolute_time() / 1000000)); \ | |
69 | printf a ; \ | |
70 | } | |
71 | #else | |
72 | #define lprintf(a) | |
73 | #define ASSERT(a) | |
74 | #endif | |
75 | ||
76 | struct ledger_callback { | |
77 | ledger_callback_t lc_func; | |
78 | const void *lc_param0; | |
79 | const void *lc_param1; | |
80 | }; | |
81 | ||
82 | struct entry_template { | |
83 | char et_key[LEDGER_NAME_MAX]; | |
84 | char et_group[LEDGER_NAME_MAX]; | |
85 | char et_units[LEDGER_NAME_MAX]; | |
86 | uint32_t et_flags; | |
87 | struct ledger_callback *et_callback; | |
88 | }; | |
89 | ||
90 | lck_grp_t ledger_lck_grp; | |
91 | ||
92 | /* | |
93 | * Modifying the reference count, table size, or table contents requires | |
94 | * holding the lt_lock. Modfying the table address requires both lt_lock | |
95 | * and setting the inuse bit. This means that the lt_entries field can be | |
96 | * safely dereferenced if you hold either the lock or the inuse bit. The | |
97 | * inuse bit exists solely to allow us to swap in a new, larger entries | |
98 | * table without requiring a full lock to be acquired on each lookup. | |
99 | * Accordingly, the inuse bit should never be held for longer than it takes | |
100 | * to extract a value from the table - i.e., 2 or 3 memory references. | |
101 | */ | |
102 | struct ledger_template { | |
103 | const char *lt_name; | |
104 | int lt_refs; | |
105 | int lt_cnt; | |
106 | int lt_table_size; | |
107 | volatile uint32_t lt_inuse; | |
108 | lck_mtx_t lt_lock; | |
109 | struct entry_template *lt_entries; | |
110 | }; | |
111 | ||
112 | #define template_lock(template) lck_mtx_lock(&(template)->lt_lock) | |
113 | #define template_unlock(template) lck_mtx_unlock(&(template)->lt_lock) | |
114 | ||
115 | #define TEMPLATE_INUSE(s, t) { \ | |
116 | s = splsched(); \ | |
117 | while (OSCompareAndSwap(0, 1, &((t)->lt_inuse))) \ | |
118 | ; \ | |
119 | } | |
120 | ||
121 | #define TEMPLATE_IDLE(s, t) { \ | |
122 | (t)->lt_inuse = 0; \ | |
123 | splx(s); \ | |
124 | } | |
125 | ||
39236c6e A |
126 | /* |
127 | * Use 2 "tocks" to track the rolling maximum balance of a ledger entry. | |
128 | */ | |
129 | #define NTOCKS 2 | |
316670eb A |
130 | /* |
131 | * The explicit alignment is to ensure that atomic operations don't panic | |
132 | * on ARM. | |
133 | */ | |
134 | struct ledger_entry { | |
39236c6e A |
135 | volatile uint32_t le_flags; |
136 | ledger_amount_t le_limit; | |
137 | ledger_amount_t le_warn_level; | |
138 | volatile ledger_amount_t le_credit __attribute__((aligned(8))); | |
139 | volatile ledger_amount_t le_debit __attribute__((aligned(8))); | |
140 | union { | |
141 | struct { | |
142 | /* | |
143 | * XXX - the following two fields can go away if we move all of | |
144 | * the refill logic into process policy | |
145 | */ | |
146 | uint64_t le_refill_period; | |
147 | uint64_t le_last_refill; | |
148 | } le_refill; | |
149 | struct _le_peak { | |
150 | uint32_t le_max; /* Lower 32-bits of observed max balance */ | |
151 | uint32_t le_time; /* time when this peak was observed */ | |
152 | } le_peaks[NTOCKS]; | |
153 | } _le; | |
316670eb A |
154 | } __attribute__((aligned(8))); |
155 | ||
156 | struct ledger { | |
157 | int l_id; | |
158 | struct ledger_template *l_template; | |
159 | int l_refs; | |
160 | int l_size; | |
161 | struct ledger_entry *l_entries; | |
162 | }; | |
163 | ||
164 | static int ledger_cnt = 0; | |
165 | /* ledger ast helper functions */ | |
166 | static uint32_t ledger_check_needblock(ledger_t l, uint64_t now); | |
167 | static kern_return_t ledger_perform_blocking(ledger_t l); | |
168 | static uint32_t flag_set(volatile uint32_t *flags, uint32_t bit); | |
169 | static uint32_t flag_clear(volatile uint32_t *flags, uint32_t bit); | |
170 | ||
171 | #if 0 | |
172 | static void | |
173 | debug_callback(const void *p0, __unused const void *p1) | |
1c79356b | 174 | { |
316670eb A |
175 | printf("ledger: resource exhausted [%s] for task %p\n", |
176 | (const char *)p0, p1); | |
177 | } | |
178 | #endif | |
b0d623f7 | 179 | |
316670eb A |
180 | /************************************/ |
181 | ||
182 | static uint64_t | |
183 | abstime_to_nsecs(uint64_t abstime) | |
184 | { | |
185 | uint64_t nsecs; | |
186 | ||
187 | absolutetime_to_nanoseconds(abstime, &nsecs); | |
188 | return (nsecs); | |
189 | } | |
190 | ||
191 | static uint64_t | |
192 | nsecs_to_abstime(uint64_t nsecs) | |
193 | { | |
194 | uint64_t abstime; | |
195 | ||
196 | nanoseconds_to_absolutetime(nsecs, &abstime); | |
197 | return (abstime); | |
198 | } | |
199 | ||
200 | void | |
201 | ledger_init(void) | |
202 | { | |
203 | lck_grp_init(&ledger_lck_grp, "ledger", LCK_GRP_ATTR_NULL); | |
204 | } | |
205 | ||
206 | ledger_template_t | |
207 | ledger_template_create(const char *name) | |
208 | { | |
209 | ledger_template_t template; | |
210 | ||
211 | template = (ledger_template_t)kalloc(sizeof (*template)); | |
212 | if (template == NULL) | |
213 | return (NULL); | |
214 | ||
215 | template->lt_name = name; | |
216 | template->lt_refs = 1; | |
217 | template->lt_cnt = 0; | |
218 | template->lt_table_size = 1; | |
219 | template->lt_inuse = 0; | |
220 | lck_mtx_init(&template->lt_lock, &ledger_lck_grp, LCK_ATTR_NULL); | |
221 | ||
222 | template->lt_entries = (struct entry_template *) | |
223 | kalloc(sizeof (struct entry_template) * template->lt_table_size); | |
224 | if (template->lt_entries == NULL) { | |
225 | kfree(template, sizeof (*template)); | |
226 | template = NULL; | |
227 | } | |
228 | ||
229 | return (template); | |
230 | } | |
231 | ||
232 | void | |
233 | ledger_template_dereference(ledger_template_t template) | |
234 | { | |
235 | template_lock(template); | |
236 | template->lt_refs--; | |
237 | template_unlock(template); | |
238 | ||
239 | if (template->lt_refs == 0) | |
240 | kfree(template, sizeof (*template)); | |
241 | } | |
242 | ||
243 | /* | |
244 | * Add a new entry to the list of entries in a ledger template. There is | |
245 | * currently no mechanism to remove an entry. Implementing such a mechanism | |
246 | * would require us to maintain per-entry reference counts, which we would | |
247 | * prefer to avoid if possible. | |
248 | */ | |
249 | int | |
250 | ledger_entry_add(ledger_template_t template, const char *key, | |
251 | const char *group, const char *units) | |
252 | { | |
253 | int idx; | |
254 | struct entry_template *et; | |
255 | ||
256 | if ((key == NULL) || (strlen(key) >= LEDGER_NAME_MAX)) | |
257 | return (-1); | |
258 | ||
259 | template_lock(template); | |
260 | ||
261 | /* If the table is full, attempt to double its size */ | |
262 | if (template->lt_cnt == template->lt_table_size) { | |
263 | struct entry_template *new_entries, *old_entries; | |
264 | int old_cnt, old_sz; | |
265 | spl_t s; | |
266 | ||
267 | old_cnt = template->lt_table_size; | |
268 | old_sz = (int)(old_cnt * sizeof (struct entry_template)); | |
269 | new_entries = kalloc(old_sz * 2); | |
270 | if (new_entries == NULL) { | |
271 | template_unlock(template); | |
272 | return (-1); | |
1c79356b | 273 | } |
316670eb A |
274 | memcpy(new_entries, template->lt_entries, old_sz); |
275 | memset(((char *)new_entries) + old_sz, 0, old_sz); | |
276 | template->lt_table_size = old_cnt * 2; | |
277 | ||
278 | old_entries = template->lt_entries; | |
279 | ||
280 | TEMPLATE_INUSE(s, template); | |
281 | template->lt_entries = new_entries; | |
282 | TEMPLATE_IDLE(s, template); | |
283 | ||
284 | kfree(old_entries, old_sz); | |
1c79356b | 285 | } |
316670eb A |
286 | |
287 | et = &template->lt_entries[template->lt_cnt]; | |
288 | strlcpy(et->et_key, key, LEDGER_NAME_MAX); | |
289 | strlcpy(et->et_group, group, LEDGER_NAME_MAX); | |
290 | strlcpy(et->et_units, units, LEDGER_NAME_MAX); | |
39236c6e | 291 | et->et_flags = LF_ENTRY_ACTIVE; |
316670eb A |
292 | et->et_callback = NULL; |
293 | ||
294 | idx = template->lt_cnt++; | |
295 | template_unlock(template); | |
296 | ||
297 | return (idx); | |
298 | } | |
299 | ||
300 | ||
301 | kern_return_t | |
302 | ledger_entry_setactive(ledger_t ledger, int entry) | |
303 | { | |
304 | struct ledger_entry *le; | |
305 | ||
306 | if ((ledger == NULL) || (entry < 0) || (entry >= ledger->l_size)) | |
307 | return (KERN_INVALID_ARGUMENT); | |
308 | ||
309 | le = &ledger->l_entries[entry]; | |
39236c6e A |
310 | if ((le->le_flags & LF_ENTRY_ACTIVE) == 0) { |
311 | flag_set(&le->le_flags, LF_ENTRY_ACTIVE); | |
1c79356b | 312 | } |
316670eb | 313 | return (KERN_SUCCESS); |
1c79356b A |
314 | } |
315 | ||
316670eb A |
316 | |
317 | int | |
318 | ledger_key_lookup(ledger_template_t template, const char *key) | |
1c79356b | 319 | { |
316670eb A |
320 | int idx; |
321 | ||
322 | template_lock(template); | |
323 | for (idx = 0; idx < template->lt_cnt; idx++) | |
324 | if (template->lt_entries[idx].et_key && | |
325 | (strcmp(key, template->lt_entries[idx].et_key) == 0)) | |
326 | break; | |
1c79356b | 327 | |
316670eb A |
328 | if (idx >= template->lt_cnt) |
329 | idx = -1; | |
330 | template_unlock(template); | |
331 | ||
332 | return (idx); | |
333 | } | |
1c79356b | 334 | |
316670eb A |
335 | /* |
336 | * Create a new ledger based on the specified template. As part of the | |
337 | * ledger creation we need to allocate space for a table of ledger entries. | |
338 | * The size of the table is based on the size of the template at the time | |
339 | * the ledger is created. If additional entries are added to the template | |
340 | * after the ledger is created, they will not be tracked in this ledger. | |
341 | */ | |
342 | ledger_t | |
343 | ledger_instantiate(ledger_template_t template, int entry_type) | |
344 | { | |
345 | ledger_t ledger; | |
346 | size_t sz; | |
347 | int i; | |
348 | ||
349 | ledger = (ledger_t)kalloc(sizeof (struct ledger)); | |
350 | if (ledger == NULL) | |
351 | return (LEDGER_NULL); | |
352 | ||
353 | ledger->l_template = template; | |
354 | ledger->l_id = ledger_cnt++; | |
355 | ledger->l_refs = 1; | |
356 | ||
357 | template_lock(template); | |
358 | template->lt_refs++; | |
359 | ledger->l_size = template->lt_cnt; | |
360 | template_unlock(template); | |
361 | ||
362 | sz = ledger->l_size * sizeof (struct ledger_entry); | |
363 | ledger->l_entries = kalloc(sz); | |
364 | if (sz && (ledger->l_entries == NULL)) { | |
365 | ledger_template_dereference(template); | |
366 | kfree(ledger, sizeof(struct ledger)); | |
367 | return (LEDGER_NULL); | |
2d21ac55 | 368 | } |
1c79356b | 369 | |
316670eb A |
370 | template_lock(template); |
371 | assert(ledger->l_size <= template->lt_cnt); | |
372 | for (i = 0; i < ledger->l_size; i++) { | |
373 | struct ledger_entry *le = &ledger->l_entries[i]; | |
374 | struct entry_template *et = &template->lt_entries[i]; | |
1c79356b | 375 | |
316670eb A |
376 | le->le_flags = et->et_flags; |
377 | /* make entry inactive by removing active bit */ | |
378 | if (entry_type == LEDGER_CREATE_INACTIVE_ENTRIES) | |
39236c6e | 379 | flag_clear(&le->le_flags, LF_ENTRY_ACTIVE); |
316670eb A |
380 | /* |
381 | * If template has a callback, this entry is opted-in, | |
382 | * by default. | |
383 | */ | |
384 | if (et->et_callback != NULL) | |
385 | flag_set(&le->le_flags, LEDGER_ACTION_CALLBACK); | |
39236c6e A |
386 | le->le_credit = 0; |
387 | le->le_debit = 0; | |
388 | le->le_limit = LEDGER_LIMIT_INFINITY; | |
389 | le->le_warn_level = LEDGER_LIMIT_INFINITY; | |
390 | le->_le.le_refill.le_refill_period = 0; | |
391 | le->_le.le_refill.le_last_refill = 0; | |
316670eb A |
392 | } |
393 | template_unlock(template); | |
394 | ||
395 | return (ledger); | |
1c79356b A |
396 | } |
397 | ||
316670eb A |
398 | static uint32_t |
399 | flag_set(volatile uint32_t *flags, uint32_t bit) | |
1c79356b | 400 | { |
316670eb A |
401 | return (OSBitOrAtomic(bit, flags)); |
402 | } | |
1c79356b | 403 | |
316670eb A |
404 | static uint32_t |
405 | flag_clear(volatile uint32_t *flags, uint32_t bit) | |
406 | { | |
407 | return (OSBitAndAtomic(~bit, flags)); | |
408 | } | |
409 | ||
410 | /* | |
411 | * Take a reference on a ledger | |
412 | */ | |
413 | kern_return_t | |
414 | ledger_reference(ledger_t ledger) | |
415 | { | |
416 | if (!LEDGER_VALID(ledger)) | |
417 | return (KERN_INVALID_ARGUMENT); | |
418 | OSIncrementAtomic(&ledger->l_refs); | |
419 | return (KERN_SUCCESS); | |
1c79356b A |
420 | } |
421 | ||
316670eb A |
422 | int |
423 | ledger_reference_count(ledger_t ledger) | |
424 | { | |
425 | if (!LEDGER_VALID(ledger)) | |
426 | return (-1); | |
427 | ||
428 | return (ledger->l_refs); | |
429 | } | |
1c79356b A |
430 | |
431 | /* | |
316670eb A |
432 | * Remove a reference on a ledger. If this is the last reference, |
433 | * deallocate the unused ledger. | |
1c79356b | 434 | */ |
316670eb A |
435 | kern_return_t |
436 | ledger_dereference(ledger_t ledger) | |
1c79356b | 437 | { |
316670eb A |
438 | int v; |
439 | ||
440 | if (!LEDGER_VALID(ledger)) | |
441 | return (KERN_INVALID_ARGUMENT); | |
442 | ||
443 | v = OSDecrementAtomic(&ledger->l_refs); | |
444 | ASSERT(v >= 1); | |
1c79356b | 445 | |
316670eb A |
446 | /* Just released the last reference. Free it. */ |
447 | if (v == 1) { | |
448 | kfree(ledger->l_entries, | |
449 | ledger->l_size * sizeof (struct ledger_entry)); | |
450 | kfree(ledger, sizeof (*ledger)); | |
451 | } | |
452 | ||
453 | return (KERN_SUCCESS); | |
454 | } | |
455 | ||
39236c6e A |
456 | /* |
457 | * Determine whether an entry has exceeded its warning level. | |
458 | */ | |
459 | static inline int | |
460 | warn_level_exceeded(struct ledger_entry *le) | |
461 | { | |
462 | ledger_amount_t balance; | |
463 | ||
464 | assert((le->le_credit >= 0) && (le->le_debit >= 0)); | |
465 | ||
466 | /* | |
467 | * XXX - Currently, we only support warnings for ledgers which | |
468 | * use positive limits. | |
469 | */ | |
470 | balance = le->le_credit - le->le_debit; | |
471 | if ((le->le_warn_level != LEDGER_LIMIT_INFINITY) && (balance > le->le_warn_level)) | |
472 | return (1); | |
473 | return (0); | |
474 | } | |
475 | ||
316670eb A |
476 | /* |
477 | * Determine whether an entry has exceeded its limit. | |
478 | */ | |
479 | static inline int | |
480 | limit_exceeded(struct ledger_entry *le) | |
481 | { | |
482 | ledger_amount_t balance; | |
483 | ||
39236c6e A |
484 | assert((le->le_credit >= 0) && (le->le_debit >= 0)); |
485 | ||
316670eb A |
486 | balance = le->le_credit - le->le_debit; |
487 | if ((le->le_limit <= 0) && (balance < le->le_limit)) | |
488 | return (1); | |
489 | ||
490 | if ((le->le_limit > 0) && (balance > le->le_limit)) | |
491 | return (1); | |
492 | return (0); | |
493 | } | |
494 | ||
495 | static inline struct ledger_callback * | |
496 | entry_get_callback(ledger_t ledger, int entry) | |
497 | { | |
498 | struct ledger_callback *callback; | |
499 | spl_t s; | |
500 | ||
501 | TEMPLATE_INUSE(s, ledger->l_template); | |
502 | callback = ledger->l_template->lt_entries[entry].et_callback; | |
503 | TEMPLATE_IDLE(s, ledger->l_template); | |
504 | ||
505 | return (callback); | |
506 | } | |
507 | ||
508 | /* | |
509 | * If the ledger value is positive, wake up anybody waiting on it. | |
510 | */ | |
511 | static inline void | |
512 | ledger_limit_entry_wakeup(struct ledger_entry *le) | |
513 | { | |
514 | uint32_t flags; | |
515 | ||
516 | if (!limit_exceeded(le)) { | |
39236c6e | 517 | flags = flag_clear(&le->le_flags, LF_CALLED_BACK); |
316670eb | 518 | |
39236c6e A |
519 | while (le->le_flags & LF_WAKE_NEEDED) { |
520 | flag_clear(&le->le_flags, LF_WAKE_NEEDED); | |
316670eb A |
521 | thread_wakeup((event_t)le); |
522 | } | |
523 | } | |
1c79356b A |
524 | } |
525 | ||
526 | /* | |
316670eb | 527 | * Refill the coffers. |
1c79356b | 528 | */ |
316670eb A |
529 | static void |
530 | ledger_refill(uint64_t now, ledger_t ledger, int entry) | |
1c79356b | 531 | { |
316670eb A |
532 | uint64_t elapsed, period, periods; |
533 | struct ledger_entry *le; | |
534 | ledger_amount_t balance, due; | |
1c79356b | 535 | |
316670eb | 536 | le = &ledger->l_entries[entry]; |
1c79356b | 537 | |
39236c6e A |
538 | assert(le->le_limit != LEDGER_LIMIT_INFINITY); |
539 | ||
1c79356b | 540 | /* |
316670eb | 541 | * If another thread is handling the refill already, we're not |
39236c6e A |
542 | * needed. |
543 | */ | |
544 | if (flag_set(&le->le_flags, LF_REFILL_INPROGRESS) & LF_REFILL_INPROGRESS) { | |
545 | return; | |
546 | } | |
547 | ||
548 | /* | |
549 | * If the timestamp we're about to use to refill is older than the | |
550 | * last refill, then someone else has already refilled this ledger | |
551 | * and there's nothing for us to do here. | |
1c79356b | 552 | */ |
39236c6e A |
553 | if (now <= le->_le.le_refill.le_last_refill) { |
554 | flag_clear(&le->le_flags, LF_REFILL_INPROGRESS); | |
316670eb | 555 | return; |
1c79356b A |
556 | } |
557 | ||
316670eb A |
558 | /* |
559 | * See how many refill periods have passed since we last | |
560 | * did a refill. | |
561 | */ | |
39236c6e A |
562 | period = le->_le.le_refill.le_refill_period; |
563 | elapsed = now - le->_le.le_refill.le_last_refill; | |
316670eb | 564 | if ((period == 0) || (elapsed < period)) { |
39236c6e | 565 | flag_clear(&le->le_flags, LF_REFILL_INPROGRESS); |
316670eb | 566 | return; |
1c79356b | 567 | } |
316670eb A |
568 | |
569 | /* | |
570 | * Optimize for the most common case of only one or two | |
571 | * periods elapsing. | |
572 | */ | |
573 | periods = 0; | |
574 | while ((periods < 2) && (elapsed > 0)) { | |
575 | periods++; | |
576 | elapsed -= period; | |
577 | } | |
578 | ||
579 | /* | |
580 | * OK, it's been a long time. Do a divide to figure out | |
581 | * how long. | |
582 | */ | |
583 | if (elapsed > 0) | |
39236c6e | 584 | periods = (now - le->_le.le_refill.le_last_refill) / period; |
316670eb A |
585 | |
586 | balance = le->le_credit - le->le_debit; | |
587 | due = periods * le->le_limit; | |
588 | if (balance - due < 0) | |
589 | due = balance; | |
39236c6e A |
590 | |
591 | assert(due >= 0); | |
592 | ||
316670eb A |
593 | OSAddAtomic64(due, &le->le_debit); |
594 | ||
39236c6e A |
595 | assert(le->le_debit >= 0); |
596 | ||
1c79356b | 597 | /* |
316670eb A |
598 | * If we've completely refilled the pool, set the refill time to now. |
599 | * Otherwise set it to the time at which it last should have been | |
600 | * fully refilled. | |
1c79356b | 601 | */ |
316670eb | 602 | if (balance == due) |
39236c6e | 603 | le->_le.le_refill.le_last_refill = now; |
316670eb | 604 | else |
39236c6e | 605 | le->_le.le_refill.le_last_refill += (le->_le.le_refill.le_refill_period * periods); |
316670eb | 606 | |
39236c6e | 607 | flag_clear(&le->le_flags, LF_REFILL_INPROGRESS); |
316670eb A |
608 | |
609 | lprintf(("Refill %lld %lld->%lld\n", periods, balance, balance - due)); | |
610 | if (!limit_exceeded(le)) | |
611 | ledger_limit_entry_wakeup(le); | |
612 | } | |
613 | ||
39236c6e A |
614 | /* |
615 | * In tenths of a second, the length of one lookback period (a "tock") for | |
616 | * ledger rolling maximum calculations. The effective lookback window will be this times | |
617 | * NTOCKS. | |
618 | * | |
619 | * Use a tock length of 2.5 seconds to get a total lookback period of 5 seconds. | |
620 | * | |
621 | * XXX Could make this caller-definable, at the point that rolling max tracking | |
622 | * is enabled for the entry. | |
623 | */ | |
624 | #define TOCKLEN 25 | |
625 | ||
626 | /* | |
627 | * How many sched_tick's are there in one tock (one of our lookback periods)? | |
628 | * | |
629 | * X sched_ticks 2.5 sec N sched_ticks | |
630 | * --------------- = ---------- * ------------- | |
631 | * tock tock sec | |
632 | * | |
633 | * where N sched_ticks/sec is calculated via 1 << SCHED_TICK_SHIFT (see sched_prim.h) | |
634 | * | |
635 | * This should give us 20 sched_tick's in one 2.5 second-long tock. | |
636 | */ | |
637 | #define SCHED_TICKS_PER_TOCK ((TOCKLEN * (1 << SCHED_TICK_SHIFT)) / 10) | |
638 | ||
639 | /* | |
640 | * Rolling max timestamps use their own unit (let's call this a "tock"). One tock is the | |
641 | * length of one lookback period that we use for our rolling max calculation. | |
642 | * | |
643 | * Calculate the current time in tocks from sched_tick (which runs at a some | |
644 | * fixed rate). | |
645 | */ | |
646 | #define CURRENT_TOCKSTAMP() (sched_tick / SCHED_TICKS_PER_TOCK) | |
647 | ||
648 | /* | |
649 | * Does the given tockstamp fall in either the current or the previous tocks? | |
650 | */ | |
651 | #define TOCKSTAMP_IS_STALE(now, tock) ((((now) - (tock)) < NTOCKS) ? FALSE : TRUE) | |
652 | ||
316670eb A |
653 | static void |
654 | ledger_check_new_balance(ledger_t ledger, int entry) | |
655 | { | |
656 | struct ledger_entry *le; | |
316670eb A |
657 | |
658 | le = &ledger->l_entries[entry]; | |
659 | ||
39236c6e A |
660 | if (le->le_flags & LF_TRACKING_MAX) { |
661 | ledger_amount_t balance = le->le_credit - le->le_debit; | |
662 | uint32_t now = CURRENT_TOCKSTAMP(); | |
663 | struct _le_peak *p = &le->_le.le_peaks[now % NTOCKS]; | |
664 | ||
665 | if (!TOCKSTAMP_IS_STALE(now, p->le_time) || (balance > p->le_max)) { | |
666 | /* | |
667 | * The current balance is greater than the previously | |
668 | * observed peak for the current time block, *or* we | |
669 | * haven't yet recorded a peak for the current time block -- | |
670 | * so this is our new peak. | |
671 | * | |
672 | * (We only track the lower 32-bits of a balance for rolling | |
673 | * max purposes.) | |
674 | */ | |
675 | p->le_max = (uint32_t)balance; | |
676 | p->le_time = now; | |
677 | } | |
678 | } | |
679 | ||
316670eb | 680 | /* Check to see whether we're due a refill */ |
39236c6e A |
681 | if (le->le_flags & LF_REFILL_SCHEDULED) { |
682 | uint64_t now = mach_absolute_time(); | |
683 | if ((now - le->_le.le_refill.le_last_refill) > le->_le.le_refill.le_refill_period) | |
316670eb A |
684 | ledger_refill(now, ledger, entry); |
685 | } | |
686 | ||
687 | if (limit_exceeded(le)) { | |
688 | /* | |
689 | * We've exceeded the limit for this entry. There | |
690 | * are several possible ways to handle it. We can block, | |
691 | * we can execute a callback, or we can ignore it. In | |
692 | * either of the first two cases, we want to set the AST | |
693 | * flag so we can take the appropriate action just before | |
694 | * leaving the kernel. The one caveat is that if we have | |
695 | * already called the callback, we don't want to do it | |
696 | * again until it gets rearmed. | |
697 | */ | |
698 | if ((le->le_flags & LEDGER_ACTION_BLOCK) || | |
39236c6e | 699 | (!(le->le_flags & LF_CALLED_BACK) && |
316670eb A |
700 | entry_get_callback(ledger, entry))) { |
701 | set_astledger(current_thread()); | |
1c79356b | 702 | } |
316670eb A |
703 | } else { |
704 | /* | |
39236c6e A |
705 | * The balance on the account is below the limit. |
706 | * | |
707 | * If there are any threads blocked on this entry, now would | |
316670eb A |
708 | * be a good time to wake them up. |
709 | */ | |
39236c6e | 710 | if (le->le_flags & LF_WAKE_NEEDED) |
316670eb | 711 | ledger_limit_entry_wakeup(le); |
39236c6e A |
712 | |
713 | if (le->le_flags & LEDGER_ACTION_CALLBACK) { | |
714 | /* | |
715 | * Client has requested that a callback be invoked whenever | |
716 | * the ledger's balance crosses into or out of the warning | |
717 | * level. | |
718 | */ | |
719 | if (warn_level_exceeded(le)) { | |
720 | /* | |
721 | * This ledger's balance is above the warning level. | |
722 | */ | |
723 | if ((le->le_flags & LF_WARNED) == 0) { | |
724 | /* | |
725 | * If we are above the warning level and | |
726 | * have not yet invoked the callback, | |
727 | * set the AST so it can be done before returning | |
728 | * to userland. | |
729 | */ | |
730 | set_astledger(current_thread()); | |
731 | } | |
732 | } else { | |
733 | /* | |
734 | * This ledger's balance is below the warning level. | |
735 | */ | |
736 | if (le->le_flags & LF_WARNED) { | |
737 | /* | |
738 | * If we are below the warning level and | |
739 | * the LF_WARNED flag is still set, we need | |
740 | * to invoke the callback to let the client | |
741 | * know the ledger balance is now back below | |
742 | * the warning level. | |
743 | */ | |
744 | set_astledger(current_thread()); | |
745 | } | |
746 | } | |
747 | } | |
1c79356b | 748 | } |
316670eb | 749 | } |
1c79356b | 750 | |
316670eb A |
751 | /* |
752 | * Add value to an entry in a ledger. | |
753 | */ | |
754 | kern_return_t | |
755 | ledger_credit(ledger_t ledger, int entry, ledger_amount_t amount) | |
756 | { | |
757 | ledger_amount_t old, new; | |
758 | struct ledger_entry *le; | |
1c79356b | 759 | |
316670eb A |
760 | if (!ENTRY_VALID(ledger, entry) || (amount < 0)) |
761 | return (KERN_INVALID_VALUE); | |
762 | ||
763 | if (amount == 0) | |
764 | return (KERN_SUCCESS); | |
765 | ||
766 | le = &ledger->l_entries[entry]; | |
767 | ||
768 | old = OSAddAtomic64(amount, &le->le_credit); | |
769 | new = old + amount; | |
770 | lprintf(("%p Credit %lld->%lld\n", current_thread(), old, new)); | |
771 | ledger_check_new_balance(ledger, entry); | |
772 | ||
773 | return (KERN_SUCCESS); | |
1c79356b A |
774 | } |
775 | ||
39236c6e A |
776 | /* |
777 | * Zero the balance of a ledger by adding to its credit or debit, whichever is smaller. | |
778 | * Note that some clients of ledgers (notably, task wakeup statistics) require that | |
779 | * le_credit only ever increase as a function of ledger_credit(). | |
780 | */ | |
781 | kern_return_t | |
782 | ledger_zero_balance(ledger_t ledger, int entry) | |
783 | { | |
784 | struct ledger_entry *le; | |
785 | ||
786 | if (!ENTRY_VALID(ledger, entry)) | |
787 | return (KERN_INVALID_VALUE); | |
788 | ||
789 | le = &ledger->l_entries[entry]; | |
790 | ||
791 | top: | |
792 | if (le->le_credit > le->le_debit) { | |
793 | if (!OSCompareAndSwap64(le->le_debit, le->le_credit, &le->le_debit)) | |
794 | goto top; | |
795 | lprintf(("%p zeroed %lld->%lld\n", current_thread(), le->le_debit, le->le_credit)); | |
796 | } else if (le->le_credit < le->le_debit) { | |
797 | if (!OSCompareAndSwap64(le->le_credit, le->le_debit, &le->le_credit)) | |
798 | goto top; | |
799 | lprintf(("%p zeroed %lld->%lld\n", current_thread(), le->le_credit, le->le_debit)); | |
800 | } | |
801 | ||
802 | return (KERN_SUCCESS); | |
803 | } | |
804 | ||
805 | kern_return_t | |
806 | ledger_get_limit(ledger_t ledger, int entry, ledger_amount_t *limit) | |
807 | { | |
808 | struct ledger_entry *le; | |
809 | ||
810 | if (!ENTRY_VALID(ledger, entry)) | |
811 | return (KERN_INVALID_VALUE); | |
812 | ||
813 | le = &ledger->l_entries[entry]; | |
814 | *limit = le->le_limit; | |
815 | ||
816 | lprintf(("ledger_get_limit: %lld\n", *limit)); | |
817 | ||
818 | return (KERN_SUCCESS); | |
819 | } | |
316670eb | 820 | |
1c79356b | 821 | /* |
316670eb A |
822 | * Adjust the limit of a limited resource. This does not affect the |
823 | * current balance, so the change doesn't affect the thread until the | |
824 | * next refill. | |
39236c6e A |
825 | * |
826 | * warn_level: If non-zero, causes the callback to be invoked when | |
827 | * the balance exceeds this level. Specified as a percentage [of the limit]. | |
1c79356b | 828 | */ |
316670eb | 829 | kern_return_t |
39236c6e A |
830 | ledger_set_limit(ledger_t ledger, int entry, ledger_amount_t limit, |
831 | uint8_t warn_level_percentage) | |
1c79356b | 832 | { |
316670eb | 833 | struct ledger_entry *le; |
1c79356b | 834 | |
316670eb A |
835 | if (!ENTRY_VALID(ledger, entry)) |
836 | return (KERN_INVALID_VALUE); | |
837 | ||
39236c6e | 838 | lprintf(("ledger_set_limit: %lld\n", limit)); |
316670eb | 839 | le = &ledger->l_entries[entry]; |
39236c6e A |
840 | |
841 | if (limit == LEDGER_LIMIT_INFINITY) { | |
842 | /* | |
843 | * Caller wishes to disable the limit. This will implicitly | |
844 | * disable automatic refill, as refills implicitly depend | |
845 | * on the limit. | |
846 | */ | |
847 | ledger_disable_refill(ledger, entry); | |
848 | } | |
849 | ||
316670eb | 850 | le->le_limit = limit; |
39236c6e A |
851 | le->_le.le_refill.le_last_refill = 0; |
852 | flag_clear(&le->le_flags, LF_CALLED_BACK); | |
853 | flag_clear(&le->le_flags, LF_WARNED); | |
316670eb A |
854 | ledger_limit_entry_wakeup(le); |
855 | ||
39236c6e A |
856 | if (warn_level_percentage != 0) { |
857 | assert(warn_level_percentage <= 100); | |
858 | assert(limit > 0); /* no negative limit support for warnings */ | |
859 | assert(limit != LEDGER_LIMIT_INFINITY); /* warn % without limit makes no sense */ | |
860 | le->le_warn_level = (le->le_limit * warn_level_percentage) / 100; | |
861 | } else { | |
862 | le->le_warn_level = LEDGER_LIMIT_INFINITY; | |
863 | } | |
864 | ||
865 | return (KERN_SUCCESS); | |
866 | } | |
867 | ||
868 | kern_return_t | |
869 | ledger_get_maximum(ledger_t ledger, int entry, | |
870 | ledger_amount_t *max_observed_balance) | |
871 | { | |
872 | struct ledger_entry *le; | |
873 | uint32_t now = CURRENT_TOCKSTAMP(); | |
874 | int i; | |
875 | ||
876 | le = &ledger->l_entries[entry]; | |
877 | ||
878 | if (!ENTRY_VALID(ledger, entry) || !(le->le_flags & LF_TRACKING_MAX)) { | |
879 | return (KERN_INVALID_VALUE); | |
880 | } | |
881 | ||
882 | /* | |
883 | * Start with the current balance; if neither of the recorded peaks are | |
884 | * within recent history, we use this. | |
885 | */ | |
886 | *max_observed_balance = le->le_credit - le->le_debit; | |
887 | ||
888 | for (i = 0; i < NTOCKS; i++) { | |
889 | if (!TOCKSTAMP_IS_STALE(now, le->_le.le_peaks[i].le_time) && | |
890 | (le->_le.le_peaks[i].le_max > *max_observed_balance)) { | |
891 | /* | |
892 | * The peak for this time block isn't stale, and it | |
893 | * is greater than the current balance -- so use it. | |
894 | */ | |
895 | *max_observed_balance = le->_le.le_peaks[i].le_max; | |
896 | } | |
897 | } | |
898 | ||
899 | lprintf(("ledger_get_maximum: %lld\n", *max_observed_balance)); | |
900 | ||
901 | return (KERN_SUCCESS); | |
902 | } | |
903 | ||
904 | /* | |
905 | * Enable tracking of periodic maximums for this ledger entry. | |
906 | */ | |
907 | kern_return_t | |
908 | ledger_track_maximum(ledger_template_t template, int entry, | |
909 | __unused int period_in_secs) | |
910 | { | |
911 | template_lock(template); | |
912 | ||
913 | if ((entry < 0) || (entry >= template->lt_cnt)) { | |
914 | template_unlock(template); | |
915 | return (KERN_INVALID_VALUE); | |
916 | } | |
917 | ||
918 | template->lt_entries[entry].et_flags |= LF_TRACKING_MAX; | |
919 | template_unlock(template); | |
920 | ||
316670eb A |
921 | return (KERN_SUCCESS); |
922 | } | |
923 | ||
924 | /* | |
39236c6e | 925 | * Add a callback to be executed when the resource goes into deficit. |
316670eb A |
926 | */ |
927 | kern_return_t | |
928 | ledger_set_callback(ledger_template_t template, int entry, | |
929 | ledger_callback_t func, const void *param0, const void *param1) | |
930 | { | |
931 | struct entry_template *et; | |
932 | struct ledger_callback *old_cb, *new_cb; | |
933 | ||
934 | if ((entry < 0) || (entry >= template->lt_cnt)) | |
935 | return (KERN_INVALID_VALUE); | |
936 | ||
937 | if (func) { | |
938 | new_cb = (struct ledger_callback *)kalloc(sizeof (*new_cb)); | |
939 | new_cb->lc_func = func; | |
940 | new_cb->lc_param0 = param0; | |
941 | new_cb->lc_param1 = param1; | |
942 | } else { | |
943 | new_cb = NULL; | |
1c79356b | 944 | } |
1c79356b | 945 | |
316670eb A |
946 | template_lock(template); |
947 | et = &template->lt_entries[entry]; | |
948 | old_cb = et->et_callback; | |
949 | et->et_callback = new_cb; | |
950 | template_unlock(template); | |
951 | if (old_cb) | |
952 | kfree(old_cb, sizeof (*old_cb)); | |
1c79356b | 953 | |
316670eb A |
954 | return (KERN_SUCCESS); |
955 | } | |
1c79356b | 956 | |
316670eb A |
957 | /* |
958 | * Disable callback notification for a specific ledger entry. | |
959 | * | |
960 | * Otherwise, if using a ledger template which specified a | |
961 | * callback function (ledger_set_callback()), it will be invoked when | |
962 | * the resource goes into deficit. | |
963 | */ | |
964 | kern_return_t | |
965 | ledger_disable_callback(ledger_t ledger, int entry) | |
966 | { | |
967 | if (!ENTRY_VALID(ledger, entry)) | |
968 | return (KERN_INVALID_VALUE); | |
969 | ||
39236c6e A |
970 | /* |
971 | * le_warn_level is used to indicate *if* this ledger has a warning configured, | |
972 | * in addition to what that warning level is set to. | |
973 | * This means a side-effect of ledger_disable_callback() is that the | |
974 | * warning level is forgotten. | |
975 | */ | |
976 | ledger->l_entries[entry].le_warn_level = LEDGER_LIMIT_INFINITY; | |
316670eb A |
977 | flag_clear(&ledger->l_entries[entry].le_flags, LEDGER_ACTION_CALLBACK); |
978 | return (KERN_SUCCESS); | |
1c79356b A |
979 | } |
980 | ||
981 | /* | |
39236c6e A |
982 | * Enable callback notification for a specific ledger entry. |
983 | * | |
984 | * This is only needed if ledger_disable_callback() has previously | |
985 | * been invoked against an entry; there must already be a callback | |
986 | * configured. | |
1c79356b | 987 | */ |
316670eb | 988 | kern_return_t |
39236c6e | 989 | ledger_enable_callback(ledger_t ledger, int entry) |
1c79356b | 990 | { |
316670eb A |
991 | if (!ENTRY_VALID(ledger, entry)) |
992 | return (KERN_INVALID_VALUE); | |
1c79356b | 993 | |
39236c6e A |
994 | assert(entry_get_callback(ledger, entry) != NULL); |
995 | ||
996 | flag_set(&ledger->l_entries[entry].le_flags, LEDGER_ACTION_CALLBACK); | |
997 | return (KERN_SUCCESS); | |
998 | } | |
999 | ||
1000 | /* | |
1001 | * Query the automatic refill period for this ledger entry. | |
1002 | * | |
1003 | * A period of 0 means this entry has none configured. | |
1004 | */ | |
1005 | kern_return_t | |
1006 | ledger_get_period(ledger_t ledger, int entry, uint64_t *period) | |
1007 | { | |
1008 | struct ledger_entry *le; | |
1009 | ||
1010 | if (!ENTRY_VALID(ledger, entry)) | |
1011 | return (KERN_INVALID_VALUE); | |
1012 | ||
1013 | le = &ledger->l_entries[entry]; | |
1014 | *period = abstime_to_nsecs(le->_le.le_refill.le_refill_period); | |
1015 | lprintf(("ledger_get_period: %llx\n", *period)); | |
316670eb | 1016 | return (KERN_SUCCESS); |
1c79356b A |
1017 | } |
1018 | ||
1019 | /* | |
316670eb | 1020 | * Adjust the automatic refill period. |
1c79356b | 1021 | */ |
316670eb A |
1022 | kern_return_t |
1023 | ledger_set_period(ledger_t ledger, int entry, uint64_t period) | |
1c79356b | 1024 | { |
316670eb | 1025 | struct ledger_entry *le; |
1c79356b | 1026 | |
316670eb A |
1027 | lprintf(("ledger_set_period: %llx\n", period)); |
1028 | if (!ENTRY_VALID(ledger, entry)) | |
1029 | return (KERN_INVALID_VALUE); | |
1c79356b | 1030 | |
316670eb | 1031 | le = &ledger->l_entries[entry]; |
1c79356b | 1032 | |
39236c6e A |
1033 | /* |
1034 | * A refill period refills the ledger in multiples of the limit, | |
1035 | * so if you haven't set one yet, you need a lesson on ledgers. | |
1036 | */ | |
1037 | assert(le->le_limit != LEDGER_LIMIT_INFINITY); | |
1038 | ||
1039 | if (le->le_flags & LF_TRACKING_MAX) { | |
1040 | /* | |
1041 | * Refill is incompatible with rolling max tracking. | |
1042 | */ | |
1043 | return (KERN_INVALID_VALUE); | |
1044 | } | |
1045 | ||
1046 | le->_le.le_refill.le_refill_period = nsecs_to_abstime(period); | |
1047 | ||
1048 | /* | |
1049 | * Set the 'starting time' for the next refill to now. Since | |
1050 | * we're resetting the balance to zero here, we consider this | |
1051 | * moment the starting time for accumulating a balance that | |
1052 | * counts towards the limit. | |
1053 | */ | |
1054 | le->_le.le_refill.le_last_refill = mach_absolute_time(); | |
1055 | ledger_zero_balance(ledger, entry); | |
1056 | ||
1057 | flag_set(&le->le_flags, LF_REFILL_SCHEDULED); | |
1058 | ||
1059 | return (KERN_SUCCESS); | |
1060 | } | |
1061 | ||
1062 | /* | |
1063 | * Disable automatic refill. | |
1064 | */ | |
1065 | kern_return_t | |
1066 | ledger_disable_refill(ledger_t ledger, int entry) | |
1067 | { | |
1068 | struct ledger_entry *le; | |
1069 | ||
1070 | if (!ENTRY_VALID(ledger, entry)) | |
1071 | return (KERN_INVALID_VALUE); | |
1072 | ||
1073 | le = &ledger->l_entries[entry]; | |
1074 | ||
1075 | flag_clear(&le->le_flags, LF_REFILL_SCHEDULED); | |
1076 | ||
1077 | return (KERN_SUCCESS); | |
1078 | } | |
1079 | ||
1080 | kern_return_t | |
1081 | ledger_get_actions(ledger_t ledger, int entry, int *actions) | |
1082 | { | |
1083 | if (!ENTRY_VALID(ledger, entry)) | |
1084 | return (KERN_INVALID_VALUE); | |
1085 | ||
1086 | *actions = ledger->l_entries[entry].le_flags & LEDGER_ACTION_MASK; | |
1087 | lprintf(("ledger_get_actions: %#x\n", *actions)); | |
316670eb A |
1088 | return (KERN_SUCCESS); |
1089 | } | |
1090 | ||
1091 | kern_return_t | |
1092 | ledger_set_action(ledger_t ledger, int entry, int action) | |
1093 | { | |
39236c6e | 1094 | lprintf(("ledger_set_action: %#x\n", action)); |
316670eb A |
1095 | if (!ENTRY_VALID(ledger, entry)) |
1096 | return (KERN_INVALID_VALUE); | |
1097 | ||
1098 | flag_set(&ledger->l_entries[entry].le_flags, action); | |
1099 | return (KERN_SUCCESS); | |
1100 | } | |
1101 | ||
1102 | void | |
1103 | set_astledger(thread_t thread) | |
1104 | { | |
1105 | spl_t s = splsched(); | |
1106 | ||
1107 | if (thread == current_thread()) { | |
1108 | thread_ast_set(thread, AST_LEDGER); | |
1109 | ast_propagate(thread->ast); | |
1110 | } else { | |
1111 | processor_t p; | |
1112 | ||
1113 | thread_lock(thread); | |
1114 | thread_ast_set(thread, AST_LEDGER); | |
1115 | p = thread->last_processor; | |
1116 | if ((p != PROCESSOR_NULL) && (p->state == PROCESSOR_RUNNING) && | |
1117 | (p->active_thread == thread)) | |
1118 | cause_ast_check(p); | |
1119 | thread_unlock(thread); | |
1c79356b | 1120 | } |
316670eb A |
1121 | |
1122 | splx(s); | |
1123 | } | |
1124 | ||
1125 | kern_return_t | |
1126 | ledger_debit(ledger_t ledger, int entry, ledger_amount_t amount) | |
1127 | { | |
1128 | struct ledger_entry *le; | |
1129 | ledger_amount_t old, new; | |
1130 | ||
1131 | if (!ENTRY_VALID(ledger, entry) || (amount < 0)) | |
1132 | return (KERN_INVALID_ARGUMENT); | |
1133 | ||
1134 | if (amount == 0) | |
1135 | return (KERN_SUCCESS); | |
1136 | ||
1137 | le = &ledger->l_entries[entry]; | |
1138 | ||
1139 | old = OSAddAtomic64(amount, &le->le_debit); | |
1140 | new = old + amount; | |
1141 | ||
1142 | lprintf(("%p Debit %lld->%lld\n", thread, old, new)); | |
1143 | ledger_check_new_balance(ledger, entry); | |
1144 | return (KERN_SUCCESS); | |
1c79356b | 1145 | |
316670eb A |
1146 | } |
1147 | ||
1148 | void | |
1149 | ledger_ast(thread_t thread) | |
1150 | { | |
39236c6e A |
1151 | struct ledger *l = thread->t_ledger; |
1152 | struct ledger *thl; | |
1153 | uint32_t block; | |
1154 | uint64_t now; | |
1155 | uint8_t task_flags; | |
1156 | uint8_t task_percentage; | |
1157 | uint64_t task_interval; | |
1158 | ||
316670eb A |
1159 | kern_return_t ret; |
1160 | task_t task = thread->task; | |
1161 | ||
1162 | lprintf(("Ledger AST for %p\n", thread)); | |
1163 | ||
1164 | ASSERT(task != NULL); | |
1165 | ASSERT(thread == current_thread()); | |
1166 | ||
1167 | top: | |
39236c6e A |
1168 | /* |
1169 | * Take a self-consistent snapshot of the CPU usage monitor parameters. The task | |
1170 | * can change them at any point (with the task locked). | |
1171 | */ | |
1172 | task_lock(task); | |
1173 | task_flags = task->rusage_cpu_flags; | |
1174 | task_percentage = task->rusage_cpu_perthr_percentage; | |
1175 | task_interval = task->rusage_cpu_perthr_interval; | |
1176 | task_unlock(task); | |
1177 | ||
316670eb A |
1178 | /* |
1179 | * Make sure this thread is up to date with regards to any task-wide per-thread | |
39236c6e | 1180 | * CPU limit, but only if it doesn't have a thread-private blocking CPU limit. |
316670eb | 1181 | */ |
39236c6e A |
1182 | if (((task_flags & TASK_RUSECPU_FLAGS_PERTHR_LIMIT) != 0) && |
1183 | ((thread->options & TH_OPT_PRVT_CPULIMIT) == 0)) { | |
1184 | uint8_t percentage; | |
1185 | uint64_t interval; | |
1186 | int action; | |
1187 | ||
1188 | thread_get_cpulimit(&action, &percentage, &interval); | |
1189 | ||
316670eb | 1190 | /* |
39236c6e A |
1191 | * If the thread's CPU limits no longer match the task's, or the |
1192 | * task has a limit but the thread doesn't, update the limit. | |
316670eb | 1193 | */ |
39236c6e A |
1194 | if (((thread->options & TH_OPT_PROC_CPULIMIT) == 0) || |
1195 | (interval != task_interval) || (percentage != task_percentage)) { | |
1196 | thread_set_cpulimit(THREAD_CPULIMIT_EXCEPTION, task_percentage, task_interval); | |
1197 | assert((thread->options & TH_OPT_PROC_CPULIMIT) != 0); | |
1198 | } | |
1199 | } else if (((task_flags & TASK_RUSECPU_FLAGS_PERTHR_LIMIT) == 0) && | |
1200 | (thread->options & TH_OPT_PROC_CPULIMIT)) { | |
1201 | assert((thread->options & TH_OPT_PRVT_CPULIMIT) == 0); | |
1202 | ||
316670eb A |
1203 | /* |
1204 | * Task no longer has a per-thread CPU limit; remove this thread's | |
1205 | * corresponding CPU limit. | |
1206 | */ | |
39236c6e | 1207 | thread_set_cpulimit(THREAD_CPULIMIT_DISABLE, 0, 0); |
316670eb | 1208 | assert((thread->options & TH_OPT_PROC_CPULIMIT) == 0); |
1c79356b | 1209 | } |
316670eb A |
1210 | |
1211 | /* | |
1212 | * If the task or thread is being terminated, let's just get on with it | |
1213 | */ | |
1214 | if ((l == NULL) || !task->active || task->halting || !thread->active) | |
1215 | return; | |
1216 | ||
1217 | /* | |
1218 | * Examine all entries in deficit to see which might be eligble for | |
1219 | * an automatic refill, which require callbacks to be issued, and | |
1220 | * which require blocking. | |
1221 | */ | |
1222 | block = 0; | |
1223 | now = mach_absolute_time(); | |
1224 | ||
39236c6e A |
1225 | /* |
1226 | * Note that thread->t_threadledger may have been changed by the | |
1227 | * thread_set_cpulimit() call above - so don't examine it until afterwards. | |
1228 | */ | |
1229 | thl = thread->t_threadledger; | |
316670eb A |
1230 | if (LEDGER_VALID(thl)) { |
1231 | block |= ledger_check_needblock(thl, now); | |
1c79356b | 1232 | } |
316670eb | 1233 | block |= ledger_check_needblock(l, now); |
1c79356b | 1234 | |
316670eb A |
1235 | /* |
1236 | * If we are supposed to block on the availability of one or more | |
1237 | * resources, find the first entry in deficit for which we should wait. | |
1238 | * Schedule a refill if necessary and then sleep until the resource | |
1239 | * becomes available. | |
1240 | */ | |
1241 | if (block) { | |
1242 | if (LEDGER_VALID(thl)) { | |
1243 | ret = ledger_perform_blocking(thl); | |
1244 | if (ret != KERN_SUCCESS) | |
1245 | goto top; | |
1c79356b | 1246 | } |
316670eb A |
1247 | ret = ledger_perform_blocking(l); |
1248 | if (ret != KERN_SUCCESS) | |
1249 | goto top; | |
1250 | } /* block */ | |
1251 | } | |
1c79356b | 1252 | |
316670eb A |
1253 | static uint32_t |
1254 | ledger_check_needblock(ledger_t l, uint64_t now) | |
1255 | { | |
1256 | int i; | |
1257 | uint32_t flags, block = 0; | |
1258 | struct ledger_entry *le; | |
1259 | struct ledger_callback *lc; | |
1260 | ||
1261 | ||
1262 | for (i = 0; i < l->l_size; i++) { | |
1263 | le = &l->l_entries[i]; | |
39236c6e A |
1264 | |
1265 | lc = entry_get_callback(l, i); | |
1266 | ||
1267 | if (limit_exceeded(le) == FALSE) { | |
1268 | if (le->le_flags & LEDGER_ACTION_CALLBACK) { | |
1269 | /* | |
1270 | * If needed, invoke the callback as a warning. | |
1271 | * This needs to happen both when the balance rises above | |
1272 | * the warning level, and also when it dips back below it. | |
1273 | */ | |
1274 | assert(lc != NULL); | |
1275 | /* | |
1276 | * See comments for matching logic in ledger_check_new_balance(). | |
1277 | */ | |
1278 | if (warn_level_exceeded(le)) { | |
1279 | flags = flag_set(&le->le_flags, LF_WARNED); | |
1280 | if ((flags & LF_WARNED) == 0) { | |
1281 | lc->lc_func(LEDGER_WARNING_ROSE_ABOVE, lc->lc_param0, lc->lc_param1); | |
1282 | } | |
1283 | } else { | |
1284 | flags = flag_clear(&le->le_flags, LF_WARNED); | |
1285 | if (flags & LF_WARNED) { | |
1286 | lc->lc_func(LEDGER_WARNING_DIPPED_BELOW, lc->lc_param0, lc->lc_param1); | |
1287 | } | |
1288 | } | |
1289 | } | |
1290 | ||
316670eb | 1291 | continue; |
39236c6e | 1292 | } |
316670eb | 1293 | |
39236c6e A |
1294 | /* We're over the limit, so refill if we are eligible and past due. */ |
1295 | if (le->le_flags & LF_REFILL_SCHEDULED) { | |
1296 | if ((le->_le.le_refill.le_last_refill + le->_le.le_refill.le_refill_period) > now) { | |
316670eb A |
1297 | ledger_refill(now, l, i); |
1298 | if (limit_exceeded(le) == FALSE) | |
1299 | continue; | |
1300 | } | |
1301 | } | |
1302 | ||
1303 | if (le->le_flags & LEDGER_ACTION_BLOCK) | |
1304 | block = 1; | |
1305 | if ((le->le_flags & LEDGER_ACTION_CALLBACK) == 0) | |
1306 | continue; | |
39236c6e A |
1307 | |
1308 | /* | |
1309 | * If the LEDGER_ACTION_CALLBACK flag is on, we expect there to | |
1310 | * be a registered callback. | |
1311 | */ | |
316670eb | 1312 | assert(lc != NULL); |
39236c6e | 1313 | flags = flag_set(&le->le_flags, LF_CALLED_BACK); |
316670eb | 1314 | /* Callback has already been called */ |
39236c6e | 1315 | if (flags & LF_CALLED_BACK) |
316670eb | 1316 | continue; |
39236c6e | 1317 | lc->lc_func(FALSE, lc->lc_param0, lc->lc_param1); |
1c79356b | 1318 | } |
316670eb A |
1319 | return(block); |
1320 | } | |
1c79356b | 1321 | |
316670eb A |
1322 | |
1323 | /* return KERN_SUCCESS to continue, KERN_FAILURE to restart */ | |
1324 | static kern_return_t | |
1325 | ledger_perform_blocking(ledger_t l) | |
1326 | { | |
1327 | int i; | |
1328 | kern_return_t ret; | |
1329 | struct ledger_entry *le; | |
1330 | ||
1331 | for (i = 0; i < l->l_size; i++) { | |
1332 | le = &l->l_entries[i]; | |
1333 | if ((!limit_exceeded(le)) || | |
1334 | ((le->le_flags & LEDGER_ACTION_BLOCK) == 0)) | |
1335 | continue; | |
1336 | ||
1337 | /* Prepare to sleep until the resource is refilled */ | |
1338 | ret = assert_wait_deadline(le, TRUE, | |
39236c6e | 1339 | le->_le.le_refill.le_last_refill + le->_le.le_refill.le_refill_period); |
316670eb A |
1340 | if (ret != THREAD_WAITING) |
1341 | return(KERN_SUCCESS); | |
1342 | ||
1343 | /* Mark that somebody is waiting on this entry */ | |
39236c6e | 1344 | flag_set(&le->le_flags, LF_WAKE_NEEDED); |
316670eb A |
1345 | |
1346 | ret = thread_block_reason(THREAD_CONTINUE_NULL, NULL, | |
1347 | AST_LEDGER); | |
1348 | if (ret != THREAD_AWAKENED) | |
1349 | return(KERN_SUCCESS); | |
1350 | ||
1351 | /* | |
1352 | * The world may have changed while we were asleep. | |
1353 | * Some other resource we need may have gone into | |
1354 | * deficit. Or maybe we're supposed to die now. | |
1355 | * Go back to the top and reevaluate. | |
1356 | */ | |
1357 | return(KERN_FAILURE); | |
1358 | } | |
1c79356b | 1359 | return(KERN_SUCCESS); |
1c79356b A |
1360 | } |
1361 | ||
1c79356b | 1362 | |
316670eb A |
1363 | kern_return_t |
1364 | ledger_get_entries(ledger_t ledger, int entry, ledger_amount_t *credit, | |
1365 | ledger_amount_t *debit) | |
1366 | { | |
1367 | struct ledger_entry *le; | |
1368 | ||
1369 | if (!ENTRY_VALID(ledger, entry)) | |
1370 | return (KERN_INVALID_ARGUMENT); | |
1371 | ||
1372 | le = &ledger->l_entries[entry]; | |
1373 | ||
1374 | *credit = le->le_credit; | |
1375 | *debit = le->le_debit; | |
1376 | ||
1377 | return (KERN_SUCCESS); | |
1378 | } | |
1379 | ||
39236c6e A |
1380 | kern_return_t |
1381 | ledger_get_balance(ledger_t ledger, int entry, ledger_amount_t *balance) | |
1382 | { | |
1383 | struct ledger_entry *le; | |
1384 | ||
1385 | if (!ENTRY_VALID(ledger, entry)) | |
1386 | return (KERN_INVALID_ARGUMENT); | |
1387 | ||
1388 | le = &ledger->l_entries[entry]; | |
1389 | ||
1390 | assert((le->le_credit >= 0) && (le->le_debit >= 0)); | |
1391 | ||
1392 | *balance = le->le_credit - le->le_debit; | |
1393 | ||
1394 | return (KERN_SUCCESS); | |
1395 | } | |
1396 | ||
316670eb A |
1397 | int |
1398 | ledger_template_info(void **buf, int *len) | |
1c79356b | 1399 | { |
316670eb A |
1400 | struct ledger_template_info *lti; |
1401 | struct entry_template *et; | |
1402 | int i; | |
1403 | ledger_t l; | |
1c79356b | 1404 | |
316670eb A |
1405 | /* |
1406 | * Since all tasks share a ledger template, we'll just use the | |
1407 | * caller's as the source. | |
1408 | */ | |
1409 | l = current_task()->ledger; | |
1410 | if ((*len < 0) || (l == NULL)) | |
1411 | return (EINVAL); | |
1412 | ||
1413 | if (*len > l->l_size) | |
1414 | *len = l->l_size; | |
1415 | lti = kalloc((*len) * sizeof (struct ledger_template_info)); | |
1416 | if (lti == NULL) | |
1417 | return (ENOMEM); | |
1418 | *buf = lti; | |
1419 | ||
1420 | template_lock(l->l_template); | |
1421 | et = l->l_template->lt_entries; | |
1422 | ||
1423 | for (i = 0; i < *len; i++) { | |
1424 | memset(lti, 0, sizeof (*lti)); | |
1425 | strlcpy(lti->lti_name, et->et_key, LEDGER_NAME_MAX); | |
1426 | strlcpy(lti->lti_group, et->et_group, LEDGER_NAME_MAX); | |
1427 | strlcpy(lti->lti_units, et->et_units, LEDGER_NAME_MAX); | |
1428 | et++; | |
1429 | lti++; | |
1c79356b | 1430 | } |
316670eb | 1431 | template_unlock(l->l_template); |
1c79356b | 1432 | |
316670eb | 1433 | return (0); |
1c79356b A |
1434 | } |
1435 | ||
39236c6e A |
1436 | static void |
1437 | ledger_fill_entry_info(struct ledger_entry *le, | |
1438 | struct ledger_entry_info *lei, | |
1439 | uint64_t now) | |
1440 | { | |
1441 | assert(le != NULL); | |
1442 | assert(lei != NULL); | |
1443 | ||
1444 | memset(lei, 0, sizeof (*lei)); | |
1445 | ||
1446 | lei->lei_limit = le->le_limit; | |
1447 | lei->lei_credit = le->le_credit; | |
1448 | lei->lei_debit = le->le_debit; | |
1449 | lei->lei_balance = lei->lei_credit - lei->lei_debit; | |
1450 | lei->lei_refill_period = (le->le_flags & LF_REFILL_SCHEDULED) ? | |
1451 | abstime_to_nsecs(le->_le.le_refill.le_refill_period) : 0; | |
1452 | lei->lei_last_refill = abstime_to_nsecs(now - le->_le.le_refill.le_last_refill); | |
1453 | } | |
1454 | ||
316670eb | 1455 | int |
39236c6e | 1456 | ledger_get_task_entry_info_multiple(task_t task, void **buf, int *len) |
316670eb A |
1457 | { |
1458 | struct ledger_entry_info *lei; | |
1459 | struct ledger_entry *le; | |
1460 | uint64_t now = mach_absolute_time(); | |
1461 | int i; | |
1462 | ledger_t l; | |
1463 | ||
1464 | if ((*len < 0) || ((l = task->ledger) == NULL)) | |
1465 | return (EINVAL); | |
1c79356b | 1466 | |
316670eb A |
1467 | if (*len > l->l_size) |
1468 | *len = l->l_size; | |
1469 | lei = kalloc((*len) * sizeof (struct ledger_entry_info)); | |
1470 | if (lei == NULL) | |
1471 | return (ENOMEM); | |
1472 | *buf = lei; | |
1473 | ||
1474 | le = l->l_entries; | |
1475 | ||
1476 | for (i = 0; i < *len; i++) { | |
39236c6e | 1477 | ledger_fill_entry_info(le, lei, now); |
316670eb A |
1478 | le++; |
1479 | lei++; | |
1480 | } | |
1481 | ||
1482 | return (0); | |
1483 | } | |
1484 | ||
39236c6e A |
1485 | void |
1486 | ledger_get_entry_info(ledger_t ledger, | |
1487 | int entry, | |
1488 | struct ledger_entry_info *lei) | |
1489 | { | |
1490 | uint64_t now = mach_absolute_time(); | |
1491 | ||
1492 | assert(ledger != NULL); | |
1493 | assert(lei != NULL); | |
1494 | assert(entry < ledger->l_size); | |
1495 | ||
1496 | struct ledger_entry *le = &ledger->l_entries[entry]; | |
1497 | ||
1498 | ledger_fill_entry_info(le, lei, now); | |
1499 | } | |
1500 | ||
316670eb A |
1501 | int |
1502 | ledger_info(task_t task, struct ledger_info *info) | |
1c79356b | 1503 | { |
316670eb A |
1504 | ledger_t l; |
1505 | ||
1506 | if ((l = task->ledger) == NULL) | |
1507 | return (ENOENT); | |
1c79356b | 1508 | |
316670eb | 1509 | memset(info, 0, sizeof (*info)); |
1c79356b | 1510 | |
316670eb A |
1511 | strlcpy(info->li_name, l->l_template->lt_name, LEDGER_NAME_MAX); |
1512 | info->li_id = l->l_id; | |
1513 | info->li_entries = l->l_size; | |
1514 | return (0); | |
1c79356b A |
1515 | } |
1516 | ||
316670eb A |
1517 | #ifdef LEDGER_DEBUG |
1518 | int | |
1519 | ledger_limit(task_t task, struct ledger_limit_args *args) | |
1c79356b | 1520 | { |
316670eb A |
1521 | ledger_t l; |
1522 | int64_t limit; | |
1523 | int idx; | |
1524 | ||
1525 | if ((l = task->ledger) == NULL) | |
1526 | return (EINVAL); | |
1527 | ||
1528 | idx = ledger_key_lookup(l->l_template, args->lla_name); | |
1529 | if ((idx < 0) || (idx >= l->l_size)) | |
1530 | return (EINVAL); | |
1531 | ||
1532 | /* | |
1533 | * XXX - this doesn't really seem like the right place to have | |
1534 | * a context-sensitive conversion of userspace units into kernel | |
1535 | * units. For now I'll handwave and say that the ledger() system | |
1536 | * call isn't meant for civilians to use - they should be using | |
1537 | * the process policy interfaces. | |
1538 | */ | |
1539 | if (idx == task_ledgers.cpu_time) { | |
1540 | int64_t nsecs; | |
1541 | ||
1542 | if (args->lla_refill_period) { | |
1543 | /* | |
1544 | * If a refill is scheduled, then the limit is | |
1545 | * specified as a percentage of one CPU. The | |
1546 | * syscall specifies the refill period in terms of | |
1547 | * milliseconds, so we need to convert to nsecs. | |
1548 | */ | |
1549 | args->lla_refill_period *= 1000000; | |
1550 | nsecs = args->lla_limit * | |
1551 | (args->lla_refill_period / 100); | |
1552 | lprintf(("CPU limited to %lld nsecs per second\n", | |
1553 | nsecs)); | |
1554 | } else { | |
1555 | /* | |
1556 | * If no refill is scheduled, then this is a | |
1557 | * fixed amount of CPU time (in nsecs) that can | |
1558 | * be consumed. | |
1559 | */ | |
1560 | nsecs = args->lla_limit; | |
1561 | lprintf(("CPU limited to %lld nsecs\n", nsecs)); | |
1562 | } | |
1563 | limit = nsecs_to_abstime(nsecs); | |
1564 | } else { | |
1565 | limit = args->lla_limit; | |
1566 | lprintf(("%s limited to %lld\n", args->lla_name, limit)); | |
1567 | } | |
1568 | ||
1569 | if (args->lla_refill_period > 0) | |
1570 | ledger_set_period(l, idx, args->lla_refill_period); | |
b0d623f7 | 1571 | |
316670eb A |
1572 | ledger_set_limit(l, idx, limit); |
1573 | flag_set(&l->l_entries[idx].le_flags, LEDGER_ACTION_BLOCK); | |
1574 | return (0); | |
1c79356b | 1575 | } |
316670eb | 1576 | #endif |