]> git.saurik.com Git - apple/xnu.git/blame - iokit/IOKit/IOMemoryDescriptor.h
xnu-2422.100.13.tar.gz
[apple/xnu.git] / iokit / IOKit / IOMemoryDescriptor.h
CommitLineData
1c79356b
A
1/*
2 * Copyright (c) 1998-2000 Apple Computer, Inc. All rights reserved.
3 *
2d21ac55 4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
1c79356b 5 *
2d21ac55
A
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
8f6c56a5 14 *
2d21ac55
A
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
8f6c56a5
A
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
2d21ac55
A
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
8f6c56a5 25 *
2d21ac55 26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
1c79356b
A
27 */
28#ifndef _IOMEMORYDESCRIPTOR_H
29#define _IOMEMORYDESCRIPTOR_H
30
55e303ae
A
31#include <sys/cdefs.h>
32
1c79356b 33#include <IOKit/IOTypes.h>
2d21ac55 34#include <IOKit/IOLocks.h>
1c79356b
A
35#include <libkern/c++/OSContainers.h>
36
55e303ae 37#include <mach/memory_object_types.h>
1c79356b
A
38
39class IOMemoryMap;
55e303ae 40class IOMapper;
99c3a104 41class IOService;
1c79356b
A
42
43/*
44 * Direction of transfer, with respect to the described memory.
45 */
b0d623f7
A
46#ifdef __LP64__
47enum
48#else /* !__LP64__ */
1c79356b 49enum IODirection
b0d623f7 50#endif /* !__LP64__ */
1c79356b
A
51{
52 kIODirectionNone = 0x0, // same as VM_PROT_NONE
53 kIODirectionIn = 0x1, // User land 'read', same as VM_PROT_READ
54 kIODirectionOut = 0x2, // User land 'write', same as VM_PROT_WRITE
55e303ae 55 kIODirectionOutIn = kIODirectionOut | kIODirectionIn,
39236c6e
A
56 kIODirectionInOut = kIODirectionIn | kIODirectionOut,
57
58 // these flags are valid for the prepare() method only
15129b1c
A
59 kIODirectionPrepareToPhys32 = 0x00000004,
60 kIODirectionPrepareNoFault = 0x00000008,
61 kIODirectionPrepareReserved1 = 0x00000010,
62#define IODIRECTIONPREPARENONCOHERENTDEFINED 1
63 kIODirectionPrepareNonCoherent = 0x00000020,
55e303ae 64};
b0d623f7
A
65#ifdef __LP64__
66typedef IOOptionBits IODirection;
67#endif /* __LP64__ */
55e303ae
A
68
69/*
91447636 70 * IOOptionBits used in the withOptions variant
55e303ae
A
71 */
72enum {
73 kIOMemoryDirectionMask = 0x00000007,
b0d623f7 74#ifdef XNU_KERNEL_PRIVATE
55e303ae 75 kIOMemoryAutoPrepare = 0x00000008, // Shared with Buffer MD
b0d623f7
A
76#endif
77
55e303ae
A
78 kIOMemoryTypeVirtual = 0x00000010,
79 kIOMemoryTypePhysical = 0x00000020,
80 kIOMemoryTypeUPL = 0x00000030,
91447636
A
81 kIOMemoryTypePersistentMD = 0x00000040, // Persistent Memory Descriptor
82 kIOMemoryTypeUIO = 0x00000050,
b0d623f7
A
83#ifdef __LP64__
84 kIOMemoryTypeVirtual64 = kIOMemoryTypeVirtual,
85 kIOMemoryTypePhysical64 = kIOMemoryTypePhysical,
86#else /* !__LP64__ */
0c530ab8
A
87 kIOMemoryTypeVirtual64 = 0x00000060,
88 kIOMemoryTypePhysical64 = 0x00000070,
b0d623f7 89#endif /* !__LP64__ */
55e303ae
A
90 kIOMemoryTypeMask = 0x000000f0,
91
92 kIOMemoryAsReference = 0x00000100,
93 kIOMemoryBufferPageable = 0x00000400,
99c3a104
A
94 kIOMemoryMapperNone = 0x00000800, // Shared with Buffer MD
95 kIOMemoryHostOnly = 0x00001000, // Never DMA accessible
c910b4d9
A
96#ifdef XNU_KERNEL_PRIVATE
97 kIOMemoryRedirected = 0x00004000,
98 kIOMemoryPreparedReadOnly = 0x00008000,
99#endif
2d21ac55 100 kIOMemoryPersistent = 0x00010000,
c910b4d9
A
101#ifdef XNU_KERNEL_PRIVATE
102 kIOMemoryReserved6156215 = 0x00020000,
103#endif
104 kIOMemoryThreadSafe = 0x00100000, // Shared with Buffer MD
0b4c1975 105 kIOMemoryClearEncrypt = 0x00200000, // Shared with Buffer MD
1c79356b
A
106};
107
55e303ae
A
108#define kIOMapperSystem ((IOMapper *) 0)
109
91447636
A
110enum
111{
112 kIOMemoryPurgeableKeepCurrent = 1,
39236c6e 113
91447636
A
114 kIOMemoryPurgeableNonVolatile = 2,
115 kIOMemoryPurgeableVolatile = 3,
39236c6e
A
116 kIOMemoryPurgeableEmpty = 4,
117
118 // modifiers for kIOMemoryPurgeableVolatile behavior
119 kIOMemoryPurgeableVolatileGroup0 = VM_VOLATILE_GROUP_0,
120 kIOMemoryPurgeableVolatileGroup1 = VM_VOLATILE_GROUP_1,
121 kIOMemoryPurgeableVolatileGroup2 = VM_VOLATILE_GROUP_2,
122 kIOMemoryPurgeableVolatileGroup3 = VM_VOLATILE_GROUP_3,
123 kIOMemoryPurgeableVolatileGroup4 = VM_VOLATILE_GROUP_4,
124 kIOMemoryPurgeableVolatileGroup5 = VM_VOLATILE_GROUP_5,
125 kIOMemoryPurgeableVolatileGroup6 = VM_VOLATILE_GROUP_6,
126 kIOMemoryPurgeableVolatileGroup7 = VM_VOLATILE_GROUP_7,
127 kIOMemoryPurgeableVolatileBehaviorFifo = VM_PURGABLE_BEHAVIOR_FIFO,
128 kIOMemoryPurgeableVolatileBehaviorLifo = VM_PURGABLE_BEHAVIOR_LIFO,
129 kIOMemoryPurgeableVolatileOrderingObsolete = VM_PURGABLE_ORDERING_OBSOLETE,
130 kIOMemoryPurgeableVolatileOrderingNormal = VM_PURGABLE_ORDERING_NORMAL,
91447636
A
131};
132enum
133{
134 kIOMemoryIncoherentIOFlush = 1,
135 kIOMemoryIncoherentIOStore = 2,
0b4c1975
A
136
137 kIOMemoryClearEncrypted = 50,
138 kIOMemorySetEncrypted = 51,
91447636
A
139};
140
0c530ab8
A
141#define IOMEMORYDESCRIPTOR_SUPPORTS_DMACOMMAND 1
142
99c3a104
A
143struct IODMAMapSpecification
144{
145 uint64_t alignment;
146 IOService * device;
147 uint32_t options;
148 uint8_t numAddressBits;
149 uint8_t resvA[3];
150 uint32_t resvB[4];
151};
152
153enum
154{
155 kIODMAMapWriteAccess = 0x00000002,
156 kIODMAMapPhysicallyContiguous = 0x00000010,
157 kIODMAMapDeviceMemory = 0x00000020,
158 kIODMAMapPagingPath = 0x00000040,
159 kIODMAMapIdentityMap = 0x00000080,
160};
161
162
b0d623f7
A
163enum
164{
165 kIOPreparationIDUnprepared = 0,
166 kIOPreparationIDUnsupported = 1,
7e4a7d39 167 kIOPreparationIDAlwaysPrepared = 2,
b0d623f7 168};
0c530ab8 169
1c79356b
A
170/*! @class IOMemoryDescriptor : public OSObject
171 @abstract An abstract base class defining common methods for describing physical or virtual memory.
172 @discussion The IOMemoryDescriptor object represents a buffer or range of memory, specified as one or more physical or virtual address ranges. It contains methods to return the memory's physically contiguous segments (fragments), for use with the IOMemoryCursor, and methods to map the memory into any address space with caching and placed mapping options. */
173
174class IOMemoryDescriptor : public OSObject
175{
b0d623f7 176 friend class IOMemoryMap;
1c79356b
A
177
178 OSDeclareDefaultStructors(IOMemoryDescriptor);
179
180protected:
1c79356b
A
181
182/*! @var reserved
183 Reserved for future use. (Internal use only) */
316670eb 184 struct IOMemoryDescriptorReserved * reserved;
1c79356b
A
185
186protected:
187 OSSet * _mappings;
188 IOOptionBits _flags;
189 void * _memEntry;
190
b0d623f7
A
191#ifdef __LP64__
192 uint64_t __iomd_reserved1;
193 uint64_t __iomd_reserved2;
194 uint64_t __iomd_reserved3;
195 uint64_t __iomd_reserved4;
196#else /* !__LP64__ */
197 IODirection _direction; /* use _flags instead */
198#endif /* !__LP64__ */
1c79356b
A
199 IOByteCount _length; /* length of all ranges */
200 IOOptionBits _tag;
201
0b4e3aa0 202public:
0c530ab8 203typedef IOOptionBits DMACommandOps;
b0d623f7 204#ifndef __LP64__
0b4e3aa0 205 virtual IOPhysicalAddress getSourceSegment( IOByteCount offset,
b0d623f7
A
206 IOByteCount * length ) APPLE_KEXT_DEPRECATED;
207#endif /* !__LP64__ */
55e303ae
A
208
209/*! @function initWithOptions
210 @abstract Master initialiser for all variants of memory descriptors. For a more complete description see IOMemoryDescriptor::withOptions.
211 @discussion Note this function can be used to re-init a previously created memory descriptor.
212 @result true on success, false on failure. */
213 virtual bool initWithOptions(void * buffers,
214 UInt32 count,
215 UInt32 offset,
216 task_t task,
217 IOOptionBits options,
0c530ab8 218 IOMapper * mapper = kIOMapperSystem);
55e303ae 219
b0d623f7 220#ifndef __LP64__
91447636 221 virtual addr64_t getPhysicalSegment64( IOByteCount offset,
b0d623f7
A
222 IOByteCount * length ) APPLE_KEXT_DEPRECATED; /* use getPhysicalSegment() and kIOMemoryMapperNone instead */
223#endif /* !__LP64__ */
91447636
A
224
225/*! @function setPurgeable
226 @abstract Control the purgeable status of a memory descriptors memory.
227 @discussion Buffers may be allocated with the ability to have their purgeable status changed - IOBufferMemoryDescriptor with the kIOMemoryPurgeable option, VM_FLAGS_PURGEABLE may be passed to vm_allocate() in user space to allocate such buffers. The purgeable status of such a buffer may be controlled with setPurgeable(). The process of making a purgeable memory descriptor non-volatile and determining its previous state is atomic - if a purgeable memory descriptor is made nonvolatile and the old state is returned as kIOMemoryPurgeableVolatile, then the memory's previous contents are completely intact and will remain so until the memory is made volatile again. If the old state is returned as kIOMemoryPurgeableEmpty then the memory was reclaimed while it was in a volatile state and its previous contents have been lost.
228 @param newState - the desired new purgeable state of the memory:<br>
229 kIOMemoryPurgeableKeepCurrent - make no changes to the memory's purgeable state.<br>
230 kIOMemoryPurgeableVolatile - make the memory volatile - the memory may be reclaimed by the VM system without saving its contents to backing store.<br>
231 kIOMemoryPurgeableNonVolatile - make the memory nonvolatile - the memory is treated as with usual allocations and must be saved to backing store if paged.<br>
232 kIOMemoryPurgeableEmpty - make the memory volatile, and discard any pages allocated to it.
233 @param oldState - if non-NULL, the previous purgeable state of the memory is returned here:<br>
234 kIOMemoryPurgeableNonVolatile - the memory was nonvolatile.<br>
235 kIOMemoryPurgeableVolatile - the memory was volatile but its content has not been discarded by the VM system.<br>
236 kIOMemoryPurgeableEmpty - the memory was volatile and has been discarded by the VM system.<br>
237 @result An IOReturn code. */
238
239 virtual IOReturn setPurgeable( IOOptionBits newState,
240 IOOptionBits * oldState );
39236c6e
A
241
242
243/*! @function getPageCounts
244 @abstract Retrieve the number of resident and/or dirty pages encompassed by an IOMemoryDescriptor.
245 @discussion This method returns the number of resident and/or dirty pages encompassed by an IOMemoryDescriptor.
246 @param residentPageCount - If non-null, a pointer to a byte count that will return the number of resident pages encompassed by this IOMemoryDescriptor.
247 @param dirtyPageCount - If non-null, a pointer to a byte count that will return the number of dirty pages encompassed by this IOMemoryDescriptor.
248 @result An IOReturn code. */
249
250 IOReturn getPageCounts( IOByteCount * residentPageCount,
251 IOByteCount * dirtyPageCount);
91447636
A
252
253/*! @function performOperation
254 @abstract Perform an operation on the memory descriptor's memory.
255 @discussion This method performs some operation on a range of the memory descriptor's memory. When a memory descriptor's memory is not mapped, it should be more efficient to use this method than mapping the memory to perform the operation virtually.
256 @param options The operation to perform on the memory:<br>
257 kIOMemoryIncoherentIOFlush - pass this option to store to memory and flush any data in the processor cache for the memory range, with synchronization to ensure the data has passed through all levels of processor cache. It may not be supported on all architectures. This type of flush may be used for non-coherent I/O such as AGP - it is NOT required for PCI coherent operations. The memory descriptor must have been previously prepared.<br>
258 kIOMemoryIncoherentIOStore - pass this option to store to memory any data in the processor cache for the memory range, with synchronization to ensure the data has passed through all levels of processor cache. It may not be supported on all architectures. This type of flush may be used for non-coherent I/O such as AGP - it is NOT required for PCI coherent operations. The memory descriptor must have been previously prepared.
259 @param offset A byte offset into the memory descriptor's memory.
260 @param length The length of the data range.
261 @result An IOReturn code. */
262
263 virtual IOReturn performOperation( IOOptionBits options,
264 IOByteCount offset, IOByteCount length );
91447636 265
0c530ab8
A
266 // Used for dedicated communications for IODMACommand
267 virtual IOReturn dmaCommandOperation(DMACommandOps op, void *vData, UInt dataSize) const;
6601e61a 268
b0d623f7
A
269/*! @function getPhysicalSegment
270 @abstract Break a memory descriptor into its physically contiguous segments.
271 @discussion This method returns the physical address of the byte at the given offset into the memory, and optionally the length of the physically contiguous segment from that offset.
272 @param offset A byte offset into the memory whose physical address to return.
273 @param length If non-zero, getPhysicalSegment will store here the length of the physically contiguous segement at the given offset.
274 @result A physical address, or zero if the offset is beyond the length of the memory. */
275
276#ifdef __LP64__
277 virtual addr64_t getPhysicalSegment( IOByteCount offset,
278 IOByteCount * length,
279 IOOptionBits options = 0 ) = 0;
280#else /* !__LP64__ */
281 virtual addr64_t getPhysicalSegment( IOByteCount offset,
282 IOByteCount * length,
283 IOOptionBits options );
284#endif /* !__LP64__ */
285
286 virtual uint64_t getPreparationID( void );
316670eb
A
287 void setPreparationID( void );
288
289#ifdef XNU_KERNEL_PRIVATE
290 IOMemoryDescriptorReserved * getKernelReserved( void );
99c3a104
A
291 IOReturn dmaMap(
292 IOMapper * mapper,
293 const IODMAMapSpecification * mapSpec,
294 uint64_t offset,
295 uint64_t length,
296 uint64_t * address,
297 ppnum_t * mapPages);
316670eb 298#endif
b0d623f7 299
0c530ab8 300private:
b0d623f7
A
301 OSMetaClassDeclareReservedUsed(IOMemoryDescriptor, 0);
302#ifdef __LP64__
303 OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 1);
304 OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 2);
305 OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 3);
306 OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 4);
307 OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 5);
1c79356b
A
308 OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 6);
309 OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 7);
b0d623f7
A
310#else /* !__LP64__ */
311 OSMetaClassDeclareReservedUsed(IOMemoryDescriptor, 1);
312 OSMetaClassDeclareReservedUsed(IOMemoryDescriptor, 2);
313 OSMetaClassDeclareReservedUsed(IOMemoryDescriptor, 3);
314 OSMetaClassDeclareReservedUsed(IOMemoryDescriptor, 4);
315 OSMetaClassDeclareReservedUsed(IOMemoryDescriptor, 5);
316 OSMetaClassDeclareReservedUsed(IOMemoryDescriptor, 6);
317 OSMetaClassDeclareReservedUsed(IOMemoryDescriptor, 7);
318#endif /* !__LP64__ */
1c79356b
A
319 OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 8);
320 OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 9);
321 OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 10);
322 OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 11);
323 OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 12);
324 OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 13);
325 OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 14);
326 OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 15);
327
328protected:
329 virtual void free();
330public:
331 static void initialize( void );
332
333public:
334/*! @function withAddress
335 @abstract Create an IOMemoryDescriptor to describe one virtual range of the kernel task.
b0d623f7 336 @discussion This method creates and initializes an IOMemoryDescriptor for memory consisting of a single virtual memory range mapped into the kernel map. This memory descriptor needs to be prepared before it can be used to extract data from the memory described.
1c79356b
A
337 @param address The virtual address of the first byte in the memory.
338 @param withLength The length of memory.
339 @param withDirection An I/O direction to be associated with the descriptor, which may affect the operation of the prepare and complete methods on some architectures.
340 @result The created IOMemoryDescriptor on success, to be released by the caller, or zero on failure. */
341
342 static IOMemoryDescriptor * withAddress(void * address,
343 IOByteCount withLength,
344 IODirection withDirection);
345
b0d623f7
A
346#ifndef __LP64__
347 static IOMemoryDescriptor * withAddress(IOVirtualAddress address,
1c79356b
A
348 IOByteCount withLength,
349 IODirection withDirection,
b0d623f7
A
350 task_t withTask) APPLE_KEXT_DEPRECATED; /* use withAddressRange() and prepare() instead */
351#endif /* !__LP64__ */
1c79356b
A
352
353/*! @function withPhysicalAddress
354 @abstract Create an IOMemoryDescriptor to describe one physical range.
355 @discussion This method creates and initializes an IOMemoryDescriptor for memory consisting of a single physical memory range.
356 @param address The physical address of the first byte in the memory.
357 @param withLength The length of memory.
358 @param withDirection An I/O direction to be associated with the descriptor, which may affect the operation of the prepare and complete methods on some architectures.
359 @result The created IOMemoryDescriptor on success, to be released by the caller, or zero on failure. */
360
361 static IOMemoryDescriptor * withPhysicalAddress(
362 IOPhysicalAddress address,
363 IOByteCount withLength,
364 IODirection withDirection );
365
b0d623f7 366#ifndef __LP64__
55e303ae
A
367 static IOMemoryDescriptor * withRanges(IOVirtualRange * ranges,
368 UInt32 withCount,
369 IODirection withDirection,
370 task_t withTask,
b0d623f7
A
371 bool asReference = false) APPLE_KEXT_DEPRECATED; /* use withAddressRanges() instead */
372#endif /* !__LP64__ */
55e303ae 373
0c530ab8
A
374/*! @function withAddressRange
375 @abstract Create an IOMemoryDescriptor to describe one virtual range of the specified map.
b0d623f7 376 @discussion This method creates and initializes an IOMemoryDescriptor for memory consisting of a single virtual memory range mapped into the specified map. This memory descriptor needs to be prepared before it can be used to extract data from the memory described.
0c530ab8
A
377 @param address The virtual address of the first byte in the memory.
378 @param withLength The length of memory.
379 @param options
2d21ac55 380 kIOMemoryDirectionMask (options:direction) This nibble indicates the I/O direction to be associated with the descriptor, which may affect the operation of the prepare and complete methods on some architectures.
6d2010ae 381 @param task The task the virtual ranges are mapped into. Note that unlike IOMemoryDescriptor::withAddress(), kernel_task memory must be explicitly prepared when passed to this api. The task argument may be NULL to specify memory by physical address.
0c530ab8
A
382 @result The created IOMemoryDescriptor on success, to be released by the caller, or zero on failure. */
383
384 static IOMemoryDescriptor * withAddressRange(
2d21ac55
A
385 mach_vm_address_t address,
386 mach_vm_size_t length,
387 IOOptionBits options,
388 task_t task);
0c530ab8
A
389
390/*! @function withAddressRanges
391 @abstract Create an IOMemoryDescriptor to describe one or more virtual ranges.
b0d623f7 392 @discussion This method creates and initializes an IOMemoryDescriptor for memory consisting of an array of virtual memory ranges each mapped into a specified source task. This memory descriptor needs to be prepared before it can be used to extract data from the memory described.
0c530ab8
A
393 @param ranges An array of IOAddressRange structures which specify the virtual ranges in the specified map which make up the memory to be described. IOAddressRange is the 64bit version of IOVirtualRange.
394 @param rangeCount The member count of the ranges array.
395 @param options
2d21ac55
A
396 kIOMemoryDirectionMask (options:direction) This nibble indicates the I/O direction to be associated with the descriptor, which may affect the operation of the prepare and complete methods on some architectures.
397 kIOMemoryAsReference For options:type = Virtual or Physical this indicate that the memory descriptor need not copy the ranges array into local memory. This is an optimisation to try to minimise unnecessary allocations.
6d2010ae 398 @param task The task each of the virtual ranges are mapped into. Note that unlike IOMemoryDescriptor::withAddress(), kernel_task memory must be explicitly prepared when passed to this api. The task argument may be NULL to specify memory by physical address.
0c530ab8
A
399 @result The created IOMemoryDescriptor on success, to be released by the caller, or zero on failure. */
400
401 static IOMemoryDescriptor * withAddressRanges(
2d21ac55
A
402 IOAddressRange * ranges,
403 UInt32 rangeCount,
404 IOOptionBits options,
b0d623f7 405 task_t task);
0c530ab8 406
55e303ae
A
407/*! @function withOptions
408 @abstract Master initialiser for all variants of memory descriptors.
b0d623f7 409 @discussion This method creates and initializes an IOMemoryDescriptor for memory it has three main variants: Virtual, Physical & mach UPL. These variants are selected with the options parameter, see below. This memory descriptor needs to be prepared before it can be used to extract data from the memory described.
55e303ae
A
410
411
b0d623f7 412 @param buffers A pointer to an array of IOAddressRange when options:type is kIOMemoryTypeVirtual64 or kIOMemoryTypePhysical64 or a 64bit kernel. For type UPL it is a upl_t returned by the mach/memory_object_types.h apis, primarily used internally by the UBC. IOVirtualRanges or IOPhysicalRanges are 32 bit only types for use when options:type is kIOMemoryTypeVirtual or kIOMemoryTypePhysical on 32bit kernels.
55e303ae
A
413
414 @param count options:type = Virtual or Physical count contains a count of the number of entires in the buffers array. For options:type = UPL this field contains a total length.
415
416 @param offset Only used when options:type = UPL, in which case this field contains an offset for the memory within the buffers upl.
417
418 @param task Only used options:type = Virtual, The task each of the virtual ranges are mapped into.
419
420 @param options
421 kIOMemoryDirectionMask (options:direction) This nibble indicates the I/O direction to be associated with the descriptor, which may affect the operation of the prepare and complete methods on some architectures.
b0d623f7 422 kIOMemoryTypeMask (options:type) kIOMemoryTypeVirtual64, kIOMemoryTypeVirtual, kIOMemoryTypePhysical64, kIOMemoryTypePhysical, kIOMemoryTypeUPL Indicates that what type of memory basic memory descriptor to use. This sub-field also controls the interpretation of the buffers, count, offset & task parameters.
55e303ae
A
423 kIOMemoryAsReference For options:type = Virtual or Physical this indicate that the memory descriptor need not copy the ranges array into local memory. This is an optimisation to try to minimise unnecessary allocations.
424 kIOMemoryBufferPageable Only used by the IOBufferMemoryDescriptor as an indication that the kernel virtual memory is in fact pageable and we need to use the kernel pageable submap rather than the default map.
55e303ae
A
425
426 @param mapper Which IOMapper should be used to map the in-memory physical addresses into I/O space addresses. Defaults to 0 which indicates that the system mapper is to be used, if present.
427
428 @result The created IOMemoryDescriptor on success, to be released by the caller, or zero on failure. */
429
430 static IOMemoryDescriptor *withOptions(void * buffers,
431 UInt32 count,
432 UInt32 offset,
433 task_t task,
434 IOOptionBits options,
0c530ab8 435 IOMapper * mapper = kIOMapperSystem);
1c79356b 436
b0d623f7 437#ifndef __LP64__
1c79356b
A
438 static IOMemoryDescriptor * withPhysicalRanges(
439 IOPhysicalRange * ranges,
440 UInt32 withCount,
55e303ae 441 IODirection withDirection,
b0d623f7
A
442 bool asReference = false) APPLE_KEXT_DEPRECATED; /* use withOptions() and kIOMemoryTypePhysical instead */
443#endif /* !__LP64__ */
1c79356b 444
b0d623f7 445#ifndef __LP64__
55e303ae
A
446 static IOMemoryDescriptor * withSubRange(IOMemoryDescriptor *of,
447 IOByteCount offset,
448 IOByteCount length,
b0d623f7
A
449 IODirection withDirection) APPLE_KEXT_DEPRECATED; /* use IOSubMemoryDescriptor::withSubRange() and kIOMemoryThreadSafe instead */
450#endif /* !__LP64__ */
1c79356b 451
91447636
A
452/*! @function withPersistentMemoryDescriptor
453 @abstract Copy constructor that generates a new memory descriptor if the backing memory for the same task's virtual address and length has changed.
454 @discussion If the original memory descriptor's address and length is still backed by the same real memory, i.e. the user hasn't deallocated and the reallocated memory at the same address then the original memory descriptor is returned with a additional reference. Otherwise we build a totally new memory descriptor with the same characteristics as the previous one but with a new view of the vm. Note not legal to call this function with anything except an IOGeneralMemoryDescriptor that was created with the kIOMemoryPersistent option.
455 @param originalMD The memory descriptor to be duplicated.
456 @result Either the original memory descriptor with an additional retain or a new memory descriptor, 0 for a bad original memory descriptor or some other resource shortage. */
457 static IOMemoryDescriptor *
458 withPersistentMemoryDescriptor(IOMemoryDescriptor *originalMD);
459
b0d623f7
A
460#ifndef __LP64__
461 // obsolete initializers
462 // - initWithOptions is the designated initializer
1c79356b
A
463 virtual bool initWithAddress(void * address,
464 IOByteCount withLength,
b0d623f7
A
465 IODirection withDirection) APPLE_KEXT_DEPRECATED; /* use initWithOptions() instead */
466 virtual bool initWithAddress(IOVirtualAddress address,
1c79356b
A
467 IOByteCount withLength,
468 IODirection withDirection,
b0d623f7 469 task_t withTask) APPLE_KEXT_DEPRECATED; /* use initWithOptions() instead */
1c79356b
A
470 virtual bool initWithPhysicalAddress(
471 IOPhysicalAddress address,
472 IOByteCount withLength,
b0d623f7 473 IODirection withDirection ) APPLE_KEXT_DEPRECATED; /* use initWithOptions() instead */
55e303ae
A
474 virtual bool initWithRanges(IOVirtualRange * ranges,
475 UInt32 withCount,
476 IODirection withDirection,
477 task_t withTask,
b0d623f7 478 bool asReference = false) APPLE_KEXT_DEPRECATED; /* use initWithOptions() instead */
1c79356b
A
479 virtual bool initWithPhysicalRanges(IOPhysicalRange * ranges,
480 UInt32 withCount,
481 IODirection withDirection,
b0d623f7
A
482 bool asReference = false) APPLE_KEXT_DEPRECATED; /* use initWithOptions() instead */
483#endif /* __LP64__ */
1c79356b
A
484
485/*! @function getDirection
486 @abstract Accessor to get the direction the memory descriptor was created with.
487 @discussion This method returns the direction the memory descriptor was created with.
488 @result The direction. */
489
490 virtual IODirection getDirection() const;
491
492/*! @function getLength
493 @abstract Accessor to get the length of the memory descriptor (over all its ranges).
494 @discussion This method returns the total length of the memory described by the descriptor, ie. the sum of its ranges' lengths.
495 @result The byte count. */
496
497 virtual IOByteCount getLength() const;
498
499/*! @function setTag
500 @abstract Set the tag for the memory descriptor.
501 @discussion This method sets the tag for the memory descriptor. Tag bits are not interpreted by IOMemoryDescriptor.
502 @param tag The tag. */
503
504 virtual void setTag( IOOptionBits tag );
505
506/*! @function getTag
507 @abstract Accessor to the retrieve the tag for the memory descriptor.
508 @discussion This method returns the tag for the memory descriptor. Tag bits are not interpreted by IOMemoryDescriptor.
509 @result The tag. */
510
511 virtual IOOptionBits getTag( void );
512
513/*! @function readBytes
514 @abstract Copy data from the memory descriptor's buffer to the specified buffer.
2d21ac55 515 @discussion This method copies data from the memory descriptor's memory at the given offset, to the caller's buffer. The memory descriptor MUST have the kIODirectionOut direcction bit set and be prepared. kIODirectionOut means that this memory descriptor will be output to an external device, so readBytes is used to get memory into a local buffer for a PIO transfer to the device.
1c79356b
A
516 @param offset A byte offset into the memory descriptor's memory.
517 @param bytes The caller supplied buffer to copy the data to.
518 @param withLength The length of the data to copy.
b0d623f7 519 @result The number of bytes copied, zero will be returned if the specified offset is beyond the length of the descriptor. Development/debug kernel builds will assert if the offset is beyond the length of the descriptor. */
1c79356b
A
520
521 virtual IOByteCount readBytes(IOByteCount offset,
0b4e3aa0 522 void * bytes, IOByteCount withLength);
1c79356b
A
523
524/*! @function writeBytes
525 @abstract Copy data to the memory descriptor's buffer from the specified buffer.
2d21ac55 526 @discussion This method copies data to the memory descriptor's memory at the given offset, from the caller's buffer. The memory descriptor MUST have the kIODirectionIn direcction bit set and be prepared. kIODirectionIn means that this memory descriptor will be input from an external device, so writeBytes is used to write memory into the descriptor for PIO drivers.
1c79356b
A
527 @param offset A byte offset into the memory descriptor's memory.
528 @param bytes The caller supplied buffer to copy the data from.
529 @param withLength The length of the data to copy.
b0d623f7 530 @result The number of bytes copied, zero will be returned if the specified offset is beyond the length of the descriptor. Development/debug kernel builds will assert if the offset is beyond the length of the descriptor. */
1c79356b
A
531
532 virtual IOByteCount writeBytes(IOByteCount offset,
0b4e3aa0 533 const void * bytes, IOByteCount withLength);
1c79356b 534
b0d623f7 535#ifndef __LP64__
1c79356b 536 virtual IOPhysicalAddress getPhysicalSegment(IOByteCount offset,
b0d623f7
A
537 IOByteCount * length);
538#endif /* !__LP64__ */
1c79356b
A
539
540/*! @function getPhysicalAddress
541 @abstract Return the physical address of the first byte in the memory.
542 @discussion This method returns the physical address of the first byte in the memory. It is most useful on memory known to be physically contiguous.
543 @result A physical address. */
544
b0d623f7 545 IOPhysicalAddress getPhysicalAddress();
1c79356b 546
b0d623f7
A
547#ifndef __LP64__
548 virtual void * getVirtualSegment(IOByteCount offset,
549 IOByteCount * length) APPLE_KEXT_DEPRECATED; /* use map() and getVirtualAddress() instead */
550#endif /* !__LP64__ */
1c79356b
A
551
552/*! @function prepare
553 @abstract Prepare the memory for an I/O transfer.
55e303ae 554 @discussion This involves paging in the memory, if necessary, and wiring it down for the duration of the transfer. The complete() method completes the processing of the memory after the I/O transfer finishes. Note that the prepare call is not thread safe and it is expected that the client will more easily be able to guarantee single threading a particular memory descriptor.
1c79356b
A
555 @param forDirection The direction of the I/O just completed, or kIODirectionNone for the direction specified by the memory descriptor.
556 @result An IOReturn code. */
557
558 virtual IOReturn prepare(IODirection forDirection = kIODirectionNone) = 0;
559
560/*! @function complete
561 @abstract Complete processing of the memory after an I/O transfer finishes.
55e303ae
A
562 @discussion This method should not be called unless a prepare was previously issued; the prepare() and complete() must occur in pairs, before and after an I/O transfer involving pageable memory. In 10.3 or greater systems the direction argument to complete is not longer respected. The direction is totally determined at prepare() time.
563 @param forDirection DEPRECATED The direction of the I/O just completed, or kIODirectionNone for the direction specified by the memory descriptor.
1c79356b
A
564 @result An IOReturn code. */
565
566 virtual IOReturn complete(IODirection forDirection = kIODirectionNone) = 0;
567
568 /*
569 * Mapping functions.
570 */
571
2d21ac55 572/*! @function createMappingInTask
1c79356b
A
573 @abstract Maps a IOMemoryDescriptor into a task.
574 @discussion This is the general purpose method to map all or part of the memory described by a memory descriptor into a task at any available address, or at a fixed address if possible. Caching & read-only options may be set for the mapping. The mapping is represented as a returned reference to a IOMemoryMap object, which may be shared if the mapping is compatible with an existing mapping of the IOMemoryDescriptor. The IOMemoryMap object returned should be released only when the caller has finished accessing the mapping, as freeing the object destroys the mapping.
575 @param intoTask Sets the target task for the mapping. Pass kernel_task for the kernel address space.
576 @param atAddress If a placed mapping is requested, atAddress specifies its address, and the kIOMapAnywhere should not be set. Otherwise, atAddress is ignored.
577 @param options Mapping options are defined in IOTypes.h,<br>
578 kIOMapAnywhere should be passed if the mapping can be created anywhere. If not set, the atAddress parameter sets the location of the mapping, if it is available in the target map.<br>
579 kIOMapDefaultCache to inhibit the cache in I/O areas, kIOMapCopybackCache in general purpose RAM.<br>
580 kIOMapInhibitCache, kIOMapWriteThruCache, kIOMapCopybackCache to set the appropriate caching.<br>
581 kIOMapReadOnly to allow only read only accesses to the memory - writes will cause and access fault.<br>
582 kIOMapReference will only succeed if the mapping already exists, and the IOMemoryMap object is just an extra reference, ie. no new mapping will be created.<br>
91447636 583 kIOMapUnique allows a special kind of mapping to be created that may be used with the IOMemoryMap::redirect() API. These mappings will not be shared as is the default - there will always be a unique mapping created for the caller, not an existing mapping with an extra reference.<br>
1c79356b
A
584 @param offset Is a beginning offset into the IOMemoryDescriptor's memory where the mapping starts. Zero is the default to map all the memory.
585 @param length Is the length of the mapping requested for a subset of the IOMemoryDescriptor. Zero is the default to map all the memory.
586 @result A reference to an IOMemoryMap object representing the mapping, which can supply the virtual address of the mapping and other information. The mapping may be shared with multiple callers - multiple maps are avoided if a compatible one exists. The IOMemoryMap object returned should be released only when the caller has finished accessing the mapping, as freeing the object destroys the mapping. The IOMemoryMap instance also retains the IOMemoryDescriptor it maps while it exists. */
587
2d21ac55
A
588 IOMemoryMap * createMappingInTask(
589 task_t intoTask,
590 mach_vm_address_t atAddress,
591 IOOptionBits options,
592 mach_vm_size_t offset = 0,
593 mach_vm_size_t length = 0 );
594
b0d623f7 595#ifndef __LP64__
1c79356b
A
596 virtual IOMemoryMap * map(
597 task_t intoTask,
598 IOVirtualAddress atAddress,
599 IOOptionBits options,
600 IOByteCount offset = 0,
b0d623f7
A
601 IOByteCount length = 0 ) APPLE_KEXT_DEPRECATED; /* use createMappingInTask() instead */
602#endif /* !__LP64__ */
2d21ac55 603
1c79356b
A
604/*! @function map
605 @abstract Maps a IOMemoryDescriptor into the kernel map.
2d21ac55
A
606 @discussion This is a shortcut method to map all the memory described by a memory descriptor into the kernel map at any available address. See the full version of the createMappingInTask method for further details.
607 @param options Mapping options as in the full version of the createMappingInTask method, with kIOMapAnywhere assumed.
608 @result See the full version of the createMappingInTask method. */
1c79356b
A
609
610 virtual IOMemoryMap * map(
611 IOOptionBits options = 0 );
612
613/*! @function setMapping
614 @abstract Establishes an already existing mapping.
615 @discussion This method tells the IOMemoryDescriptor about a mapping that exists, but was created elsewhere. It allows later callers of the map method to share this externally created mapping. The IOMemoryMap object returned is created to represent it. This method is not commonly needed.
616 @param task Address space in which the mapping exists.
617 @param mapAddress Virtual address of the mapping.
618 @param options Caching and read-only attributes of the mapping.
619 @result A IOMemoryMap object created to represent the mapping. */
620
621 virtual IOMemoryMap * setMapping(
622 task_t task,
623 IOVirtualAddress mapAddress,
624 IOOptionBits options = 0 );
625
e3027f41
A
626 // Following methods are private implementation
627
b0d623f7
A
628#ifdef __LP64__
629 virtual
630#endif /* __LP64__ */
e3027f41
A
631 IOReturn redirect( task_t safeTask, bool redirect );
632
0b4e3aa0
A
633 IOReturn handleFault(
634 void * pager,
635 vm_map_t addressMap,
2d21ac55
A
636 mach_vm_address_t address,
637 mach_vm_size_t sourceOffset,
638 mach_vm_size_t length,
0b4e3aa0
A
639 IOOptionBits options );
640
1c79356b
A
641 virtual IOMemoryMap * makeMapping(
642 IOMemoryDescriptor * owner,
2d21ac55 643 task_t intoTask,
1c79356b
A
644 IOVirtualAddress atAddress,
645 IOOptionBits options,
646 IOByteCount offset,
647 IOByteCount length );
648
b0d623f7 649protected:
1c79356b
A
650 virtual void addMapping(
651 IOMemoryMap * mapping );
652
653 virtual void removeMapping(
654 IOMemoryMap * mapping );
655
656 virtual IOReturn doMap(
657 vm_map_t addressMap,
658 IOVirtualAddress * atAddress,
659 IOOptionBits options,
660 IOByteCount sourceOffset = 0,
661 IOByteCount length = 0 );
662
663 virtual IOReturn doUnmap(
664 vm_map_t addressMap,
665 IOVirtualAddress logical,
666 IOByteCount length );
667};
668
669/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
670
671/*! @class IOMemoryMap : public OSObject
b0d623f7 672 @abstract A class defining common methods for describing a memory mapping.
1c79356b
A
673 @discussion The IOMemoryMap object represents a mapped range of memory, described by a IOMemoryDescriptor. The mapping may be in the kernel or a non-kernel task and has processor cache mode attributes. IOMemoryMap instances are created by IOMemoryDescriptor when it creates mappings in its map method, and returned to the caller. */
674
675class IOMemoryMap : public OSObject
676{
b0d623f7
A
677 OSDeclareDefaultStructors(IOMemoryMap)
678#ifdef XNU_KERNEL_PRIVATE
679public:
680 IOMemoryDescriptor * fMemory;
681 IOMemoryMap * fSuperMap;
682 mach_vm_size_t fOffset;
683 mach_vm_address_t fAddress;
684 mach_vm_size_t fLength;
685 task_t fAddressTask;
686 vm_map_t fAddressMap;
687 IOOptionBits fOptions;
688 upl_t fRedirUPL;
689 ipc_port_t fRedirEntry;
690 IOMemoryDescriptor * fOwner;
691 uint8_t fUserClientUnmap;
692#endif /* XNU_KERNEL_PRIVATE */
693
694protected:
695 virtual void taggedRelease(const void *tag = 0) const;
696 virtual void free();
1c79356b
A
697
698public:
699/*! @function getVirtualAddress
700 @abstract Accessor to the virtual address of the first byte in the mapping.
6d2010ae 701 @discussion This method returns the virtual address of the first byte in the mapping. Since the IOVirtualAddress is only 32bit in 32bit kernels, the getAddress() method should be used for compatibility with 64bit task mappings.
1c79356b
A
702 @result A virtual address. */
703
b0d623f7 704 virtual IOVirtualAddress getVirtualAddress();
1c79356b
A
705
706/*! @function getPhysicalSegment
707 @abstract Break a mapping into its physically contiguous segments.
708 @discussion This method returns the physical address of the byte at the given offset into the mapping, and optionally the length of the physically contiguous segment from that offset. It functions similarly to IOMemoryDescriptor::getPhysicalSegment.
709 @param offset A byte offset into the mapping whose physical address to return.
710 @param length If non-zero, getPhysicalSegment will store here the length of the physically contiguous segement at the given offset.
711 @result A physical address, or zero if the offset is beyond the length of the mapping. */
712
b0d623f7 713#ifdef __LP64__
1c79356b 714 virtual IOPhysicalAddress getPhysicalSegment(IOByteCount offset,
b0d623f7
A
715 IOByteCount * length,
716 IOOptionBits options = 0);
717#else /* !__LP64__ */
718 virtual IOPhysicalAddress getPhysicalSegment(IOByteCount offset,
719 IOByteCount * length);
720#endif /* !__LP64__ */
1c79356b
A
721
722/*! @function getPhysicalAddress
723 @abstract Return the physical address of the first byte in the mapping.
724 @discussion This method returns the physical address of the first byte in the mapping. It is most useful on mappings known to be physically contiguous.
725 @result A physical address. */
726
b0d623f7 727 IOPhysicalAddress getPhysicalAddress();
1c79356b
A
728
729/*! @function getLength
730 @abstract Accessor to the length of the mapping.
731 @discussion This method returns the length of the mapping.
732 @result A byte count. */
733
b0d623f7 734 virtual IOByteCount getLength();
1c79356b
A
735
736/*! @function getAddressTask
737 @abstract Accessor to the task of the mapping.
738 @discussion This method returns the mach task the mapping exists in.
739 @result A mach task_t. */
740
b0d623f7 741 virtual task_t getAddressTask();
1c79356b
A
742
743/*! @function getMemoryDescriptor
744 @abstract Accessor to the IOMemoryDescriptor the mapping was created from.
745 @discussion This method returns the IOMemoryDescriptor the mapping was created from.
746 @result An IOMemoryDescriptor reference, which is valid while the IOMemoryMap object is retained. It should not be released by the caller. */
747
b0d623f7 748 virtual IOMemoryDescriptor * getMemoryDescriptor();
1c79356b
A
749
750/*! @function getMapOptions
751 @abstract Accessor to the options the mapping was created with.
752 @discussion This method returns the options to IOMemoryDescriptor::map the mapping was created with.
753 @result Options for the mapping, including cache settings. */
754
b0d623f7 755 virtual IOOptionBits getMapOptions();
1c79356b
A
756
757/*! @function unmap
758 @abstract Force the IOMemoryMap to unmap, without destroying the object.
759 @discussion IOMemoryMap instances will unmap themselves upon free, ie. when the last client with a reference calls release. This method forces the IOMemoryMap to destroy the mapping it represents, regardless of the number of clients. It is not generally used.
760 @result An IOReturn code. */
761
b0d623f7 762 virtual IOReturn unmap();
1c79356b 763
b0d623f7 764 virtual void taskDied();
91447636
A
765
766/*! @function redirect
767 @abstract Replace the memory mapped in a process with new backing memory.
768 @discussion An IOMemoryMap created with the kIOMapUnique option to IOMemoryDescriptor::map() can remapped to a new IOMemoryDescriptor backing object. If the new IOMemoryDescriptor is specified as NULL, client access to the memory map is blocked until a new backing object has been set. By blocking access and copying data, the caller can create atomic copies of the memory while the client is potentially reading or writing the memory.
769 @param newBackingMemory The IOMemoryDescriptor that represents the physical memory that is to be now mapped in the virtual range the IOMemoryMap represents. If newBackingMemory is NULL, any access to the mapping will hang (in vm_fault()) until access has been restored by a new call to redirect() with non-NULL newBackingMemory argument.
770 @param options Mapping options are defined in IOTypes.h, and are documented in IOMemoryDescriptor::map()
771 @param offset As with IOMemoryDescriptor::map(), a beginning offset into the IOMemoryDescriptor's memory where the mapping starts. Zero is the default.
772 @result An IOReturn code. */
773
b0d623f7
A
774#ifndef __LP64__
775// For 32 bit XNU, there is a 32 bit (IOByteCount) and a 64 bit (mach_vm_size_t) interface;
776// for 64 bit, these fall together on the 64 bit one.
91447636
A
777 virtual IOReturn redirect(IOMemoryDescriptor * newBackingMemory,
778 IOOptionBits options,
b0d623f7
A
779 IOByteCount offset = 0);
780#endif
2d21ac55
A
781 virtual IOReturn redirect(IOMemoryDescriptor * newBackingMemory,
782 IOOptionBits options,
b0d623f7
A
783 mach_vm_size_t offset = 0);
784
785#ifdef __LP64__
6d2010ae
A
786/*! @function getAddress
787 @abstract Accessor to the virtual address of the first byte in the mapping.
788 @discussion This method returns the virtual address of the first byte in the mapping.
789 @result A virtual address. */
790/*! @function getSize
791 @abstract Accessor to the length of the mapping.
792 @discussion This method returns the length of the mapping.
793 @result A byte count. */
b0d623f7
A
794 inline mach_vm_address_t getAddress() __attribute__((always_inline));
795 inline mach_vm_size_t getSize() __attribute__((always_inline));
796#else /* !__LP64__ */
6d2010ae
A
797/*! @function getAddress
798 @abstract Accessor to the virtual address of the first byte in the mapping.
799 @discussion This method returns the virtual address of the first byte in the mapping.
800 @result A virtual address. */
801/*! @function getSize
802 @abstract Accessor to the length of the mapping.
803 @discussion This method returns the length of the mapping.
804 @result A byte count. */
b0d623f7
A
805 virtual mach_vm_address_t getAddress();
806 virtual mach_vm_size_t getSize();
807#endif /* !__LP64__ */
808
809#ifdef XNU_KERNEL_PRIVATE
810 // for IOMemoryDescriptor use
811 IOMemoryMap * copyCompatible( IOMemoryMap * newMapping );
812
813 bool init(
814 task_t intoTask,
815 mach_vm_address_t toAddress,
816 IOOptionBits options,
817 mach_vm_size_t offset,
818 mach_vm_size_t length );
819
820 bool setMemoryDescriptor(IOMemoryDescriptor * _memory, mach_vm_size_t _offset);
821
822 IOReturn redirect(
823 task_t intoTask, bool redirect );
2d21ac55 824
b0d623f7
A
825 IOReturn userClientUnmap();
826#endif /* XNU_KERNEL_PRIVATE */
827
99c3a104
A
828 IOReturn wireRange(
829 uint32_t options,
830 mach_vm_size_t offset,
831 mach_vm_size_t length);
832
b0d623f7
A
833 OSMetaClassDeclareReservedUnused(IOMemoryMap, 0);
834 OSMetaClassDeclareReservedUnused(IOMemoryMap, 1);
835 OSMetaClassDeclareReservedUnused(IOMemoryMap, 2);
836 OSMetaClassDeclareReservedUnused(IOMemoryMap, 3);
837 OSMetaClassDeclareReservedUnused(IOMemoryMap, 4);
838 OSMetaClassDeclareReservedUnused(IOMemoryMap, 5);
839 OSMetaClassDeclareReservedUnused(IOMemoryMap, 6);
840 OSMetaClassDeclareReservedUnused(IOMemoryMap, 7);
1c79356b
A
841};
842
843/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
b0d623f7
A
844#ifdef XNU_KERNEL_PRIVATE
845// Also these flags should not overlap with the options to
846// IOMemoryDescriptor::initWithRanges(... IOOptionsBits options);
847enum {
848 _kIOMemorySourceSegment = 0x00002000
849};
850#endif /* XNU_KERNEL_PRIVATE */
851
e3027f41 852// The following classes are private implementation of IOMemoryDescriptor - they
0b4e3aa0
A
853// should not be referenced directly, just through the public API's in the
854// IOMemoryDescriptor class. For example, an IOGeneralMemoryDescriptor instance
b0d623f7 855// might be created by IOMemoryDescriptor::withAddressRange(), but there should be
0b4e3aa0 856// no need to reference as anything but a generic IOMemoryDescriptor *.
e3027f41 857
1c79356b
A
858class IOGeneralMemoryDescriptor : public IOMemoryDescriptor
859{
860 OSDeclareDefaultStructors(IOGeneralMemoryDescriptor);
861
91447636
A
862public:
863 union Ranges {
0c530ab8
A
864 IOVirtualRange *v;
865 IOAddressRange *v64;
866 IOPhysicalRange *p;
91447636
A
867 void *uio;
868 };
869protected:
870 Ranges _ranges;
1c79356b 871 unsigned _rangesCount; /* number of address ranges in list */
b0d623f7 872#ifndef __LP64__
1c79356b 873 bool _rangesIsAllocated; /* is list allocated by us? */
b0d623f7 874#endif /* !__LP64__ */
1c79356b
A
875
876 task_t _task; /* task where all ranges are mapped to */
877
878 union {
55e303ae
A
879 IOVirtualRange v;
880 IOPhysicalRange p;
1c79356b
A
881 } _singleRange; /* storage space for a single range */
882
883 unsigned _wireCount; /* number of outstanding wires */
884
b0d623f7
A
885#ifndef __LP64__
886 uintptr_t _cachedVirtualAddress;
55e303ae 887
b0d623f7
A
888 IOPhysicalAddress _cachedPhysicalAddress;
889#endif /* !__LP64__ */
1c79356b
A
890
891 bool _initialized; /* has superclass been initialized? */
892
b0d623f7 893public:
1c79356b
A
894 virtual void free();
895
0c530ab8 896 virtual IOReturn dmaCommandOperation(DMACommandOps op, void *vData, UInt dataSize) const;
55e303ae 897
b0d623f7
A
898 virtual uint64_t getPreparationID( void );
899
99c3a104
A
900#ifdef XNU_KERNEL_PRIVATE
901 // Internal APIs may be made virtual at some time in the future.
902 IOReturn wireVirtual(IODirection forDirection);
903 IOReturn dmaMap(
904 IOMapper * mapper,
905 const IODMAMapSpecification * mapSpec,
906 uint64_t offset,
907 uint64_t length,
908 uint64_t * address,
909 ppnum_t * mapPages);
910 bool initMemoryEntries(size_t size, IOMapper * mapper);
911#endif
912
55e303ae 913private:
6601e61a 914
b0d623f7
A
915#ifndef __LP64__
916 virtual void setPosition(IOByteCount position);
917 virtual void mapIntoKernel(unsigned rangeIndex);
918 virtual void unmapFromKernel();
919#endif /* !__LP64__ */
4452a7af 920
0c530ab8
A
921 void *createNamedEntry();
922
923 // Internal
924 OSData * _memoryEntries;
925 unsigned int _pages;
926 ppnum_t _highestPage;
927 uint32_t __iomd_reservedA;
928 uint32_t __iomd_reservedB;
2d21ac55
A
929
930 IOLock * _prepareLock;
0c530ab8 931
1c79356b
A
932public:
933 /*
934 * IOMemoryDescriptor required methods
935 */
936
55e303ae
A
937 // Master initaliser
938 virtual bool initWithOptions(void * buffers,
939 UInt32 count,
940 UInt32 offset,
941 task_t task,
942 IOOptionBits options,
0c530ab8 943 IOMapper * mapper = kIOMapperSystem);
d7e50217 944
b0d623f7 945#ifndef __LP64__
55e303ae
A
946 // Secondary initialisers
947 virtual bool initWithAddress(void * address,
948 IOByteCount withLength,
b0d623f7 949 IODirection withDirection) APPLE_KEXT_DEPRECATED;
55e303ae 950
b0d623f7 951 virtual bool initWithAddress(IOVirtualAddress address,
1c79356b 952 IOByteCount withLength,
55e303ae 953 IODirection withDirection,
b0d623f7 954 task_t withTask) APPLE_KEXT_DEPRECATED;
1c79356b
A
955
956 virtual bool initWithPhysicalAddress(
957 IOPhysicalAddress address,
958 IOByteCount withLength,
b0d623f7 959 IODirection withDirection ) APPLE_KEXT_DEPRECATED;
1c79356b
A
960
961 virtual bool initWithRanges( IOVirtualRange * ranges,
962 UInt32 withCount,
963 IODirection withDirection,
964 task_t withTask,
b0d623f7 965 bool asReference = false) APPLE_KEXT_DEPRECATED;
1c79356b
A
966
967 virtual bool initWithPhysicalRanges(IOPhysicalRange * ranges,
968 UInt32 withCount,
969 IODirection withDirection,
b0d623f7 970 bool asReference = false) APPLE_KEXT_DEPRECATED;
1c79356b 971
0c530ab8 972 virtual addr64_t getPhysicalSegment64( IOByteCount offset,
b0d623f7 973 IOByteCount * length ) APPLE_KEXT_DEPRECATED;
0c530ab8 974
1c79356b
A
975 virtual IOPhysicalAddress getPhysicalSegment(IOByteCount offset,
976 IOByteCount * length);
977
0b4e3aa0 978 virtual IOPhysicalAddress getSourceSegment(IOByteCount offset,
b0d623f7 979 IOByteCount * length) APPLE_KEXT_DEPRECATED;
0b4e3aa0 980
b0d623f7
A
981 virtual void * getVirtualSegment(IOByteCount offset,
982 IOByteCount * length) APPLE_KEXT_DEPRECATED;
983#endif /* !__LP64__ */
984
985 virtual IOReturn setPurgeable( IOOptionBits newState,
986 IOOptionBits * oldState );
39236c6e 987
b0d623f7
A
988 virtual addr64_t getPhysicalSegment( IOByteCount offset,
989 IOByteCount * length,
990#ifdef __LP64__
991 IOOptionBits options = 0 );
992#else /* !__LP64__ */
993 IOOptionBits options );
994#endif /* !__LP64__ */
1c79356b
A
995
996 virtual IOReturn prepare(IODirection forDirection = kIODirectionNone);
997
998 virtual IOReturn complete(IODirection forDirection = kIODirectionNone);
999
1000 virtual IOReturn doMap(
1001 vm_map_t addressMap,
1002 IOVirtualAddress * atAddress,
1003 IOOptionBits options,
1004 IOByteCount sourceOffset = 0,
1005 IOByteCount length = 0 );
1006
1007 virtual IOReturn doUnmap(
1008 vm_map_t addressMap,
1009 IOVirtualAddress logical,
1010 IOByteCount length );
2d21ac55 1011
9bccf70c 1012 virtual bool serialize(OSSerialize *s) const;
91447636
A
1013
1014 // Factory method for cloning a persistent IOMD, see IOMemoryDescriptor
1015 static IOMemoryDescriptor *
1016 withPersistentMemoryDescriptor(IOGeneralMemoryDescriptor *originalMD);
2d21ac55 1017
1c79356b
A
1018};
1019
1020/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
1021
b0d623f7
A
1022#ifdef __LP64__
1023mach_vm_address_t IOMemoryMap::getAddress()
1c79356b 1024{
b0d623f7
A
1025 return (getVirtualAddress());
1026}
1c79356b 1027
b0d623f7
A
1028mach_vm_size_t IOMemoryMap::getSize()
1029{
1030 return (getLength());
1031}
1032#else /* !__LP64__ */
1033#include <IOKit/IOSubMemoryDescriptor.h>
1034#endif /* !__LP64__ */
1c79356b
A
1035
1036/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
1037
1038#endif /* !_IOMEMORYDESCRIPTOR_H */