]>
Commit | Line | Data |
---|---|---|
55e303ae | 1 | /* |
21362eb3 | 2 | * Copyright (c) 2003 Apple Computer, Inc. All rights reserved. |
55e303ae | 3 | * |
8f6c56a5 | 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
55e303ae | 5 | * |
8f6c56a5 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
8ad349bb | 24 | * limitations under the License. |
8f6c56a5 A |
25 | * |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
55e303ae A |
27 | */ |
28 | ||
29 | #define ASSEMBLER | |
30 | #include <sys/appleapiopts.h> | |
31 | #include <ppc/asm.h> // EXT, LEXT | |
32 | #include <machine/cpu_capabilities.h> | |
33 | #include <machine/commpage.h> | |
34 | ||
21362eb3 A |
35 | #define USEC_PER_SEC 1000000 |
36 | ||
37 | ||
55e303ae A |
38 | /* The red zone is used to move data between GPRs and FPRs: */ |
39 | ||
40 | #define rzTicks -8 // elapsed ticks since timestamp (double) | |
41 | #define rzSeconds -16 // seconds since timestamp (double) | |
42 | #define rzUSeconds -24 // useconds since timestamp (double) | |
43 | ||
44 | ||
45 | .text | |
46 | .align 2 | |
55e303ae A |
47 | |
48 | ||
49 | // ********************************* | |
50 | // * G E T T I M E O F D A Y _ 3 2 * | |
51 | // ********************************* | |
52 | // | |
53 | // This is a subroutine of gettimeofday.c that gets the seconds and microseconds | |
54 | // in user mode, usually without having to make a system call. We do not deal with | |
55 | // the timezone. The kernel maintains the following values in the comm page: | |
56 | // | |
21362eb3 | 57 | // _COMM_PAGE_TIMESTAMP = a BSD-style pair of uint_32's for seconds and microseconds |
55e303ae A |
58 | // |
59 | // _COMM_PAGE_TIMEBASE = the timebase at which the timestamp was valid | |
60 | // | |
61 | // _COMM_PAGE_SEC_PER_TICK = multiply timebase ticks by this to get seconds (double) | |
62 | // | |
63 | // _COMM_PAGE_2_TO_52 = double precision constant 2**52 | |
64 | // | |
65 | // _COMM_PAGE_10_TO_6 = double precision constant 10**6 | |
66 | // | |
67 | // We have to be careful to read these values atomically. The kernel updates them | |
68 | // asynchronously to account for drift or time changes (eg, ntp.) We adopt the | |
69 | // convention that (timebase==0) means the timestamp is invalid, in which case we | |
70 | // return a bad status so our caller can make the system call. | |
71 | // | |
72 | // r3 = ptr to user's timeval structure (should not be null) | |
73 | ||
91447636 | 74 | gettimeofday_32: // int gettimeofday(timeval *tp); |
55e303ae A |
75 | 0: |
76 | lwz r5,_COMM_PAGE_TIMEBASE+0(0) // r5,r6 = TBR at timestamp | |
77 | lwz r6,_COMM_PAGE_TIMEBASE+4(0) | |
21362eb3 A |
78 | lwz r7,_COMM_PAGE_TIMESTAMP+0(0) // r7 = timestamp seconds |
79 | lwz r8,_COMM_PAGE_TIMESTAMP+4(0) // r8 = timestamp microseconds | |
55e303ae A |
80 | lfd f1,_COMM_PAGE_SEC_PER_TICK(0) |
81 | 1: | |
82 | mftbu r10 // r10,r11 = current timebase | |
83 | mftb r11 | |
84 | mftbu r12 | |
85 | cmplw r10,r12 | |
86 | bne- 1b | |
87 | or. r0,r5,r6 // timebase 0? (ie, is timestamp invalid?) | |
88 | ||
89 | sync // create a barrier (patched to NOP if UP) | |
90 | ||
91 | lwz r0,_COMM_PAGE_TIMEBASE+0(0) // then load data a 2nd time | |
92 | lwz r12,_COMM_PAGE_TIMEBASE+4(0) | |
21362eb3 | 93 | lwz r2,_COMM_PAGE_TIMESTAMP+0(0) |
55e303ae A |
94 | lwz r9,_COMM_PAGE_TIMESTAMP+4(0) |
95 | cmplw cr6,r5,r0 // did we read a consistent set? | |
96 | cmplw cr7,r6,r12 | |
97 | beq- 3f // timestamp is disabled so return bad status | |
21362eb3 | 98 | cmplw cr1,r2,r7 |
55e303ae A |
99 | cmplw cr5,r9,r8 |
100 | crand cr0_eq,cr6_eq,cr7_eq | |
21362eb3 A |
101 | crand cr1_eq,cr1_eq,cr5_eq |
102 | crand cr0_eq,cr0_eq,cr1_eq | |
55e303ae A |
103 | bne- 0b // loop until we have a consistent set of data |
104 | ||
105 | subfc r11,r6,r11 // compute ticks since timestamp | |
106 | lwz r9,_COMM_PAGE_2_TO_52(0) // get exponent for (2**52) | |
107 | subfe r10,r5,r10 // complete 64-bit subtract | |
21362eb3 | 108 | lfd f2,_COMM_PAGE_2_TO_52(0) // f3 <- (2**52) |
55e303ae A |
109 | srwi. r0,r10,2 // if more than 2**34 ticks have elapsed... |
110 | stw r11,rzTicks+4(r1) // store elapsed ticks into red zone | |
111 | or r10,r10,r9 // convert long-long in (r10,r11) into double | |
112 | bne- 3f // ...call kernel to reprime timestamp | |
113 | ||
114 | stw r10,rzTicks(r1) // complete double | |
21362eb3 A |
115 | lis r12,hi16(USEC_PER_SEC) |
116 | ori r12,r12,lo16(USEC_PER_SEC) | |
117 | ||
55e303ae A |
118 | lfd f3,rzTicks(r1) // get elapsed ticks since timestamp + 2**52 |
119 | fsub f4,f3,f2 // subtract 2**52 and normalize | |
120 | fmul f5,f4,f1 // f5 <- elapsed seconds since timestamp | |
121 | lfd f3,_COMM_PAGE_10_TO_6(0) // get 10**6 | |
122 | fctiwz f6,f5 // convert to integer | |
123 | stfd f6,rzSeconds(r1) // store integer seconds into red zone | |
124 | stw r9,rzSeconds(r1) // prepare to reload as floating pt | |
125 | lfd f6,rzSeconds(r1) // get seconds + 2**52 | |
126 | fsub f6,f6,f2 // f6 <- integral seconds | |
127 | fsub f6,f5,f6 // f6 <- fractional part of elapsed seconds | |
128 | fmul f6,f6,f3 // f6 <- fractional elapsed useconds | |
129 | fctiwz f6,f6 // convert useconds to integer | |
130 | stfd f6,rzUSeconds(r1) // store useconds into red zone | |
131 | ||
132 | lwz r5,rzSeconds+4(r1) // r5 <- seconds since timestamp | |
21362eb3 A |
133 | lwz r6,rzUSeconds+4(r1) // r6 <- useconds since timestamp |
134 | add r7,r7,r5 // add elapsed seconds to timestamp seconds | |
135 | add r8,r8,r6 // ditto useconds | |
55e303ae | 136 | |
21362eb3 A |
137 | cmplw r8,r12 // r8 >= USEC_PER_SEC ? |
138 | blt 2f // no | |
139 | addi r7,r7,1 // add 1 to secs | |
140 | sub r8,r8,r12 // subtract USEC_PER_SEC from usecs | |
141 | 2: | |
142 | stw r7,0(r3) // store secs//usecs into user's timeval | |
143 | stw r8,4(r3) | |
55e303ae A |
144 | li r3,0 // return success |
145 | blr | |
146 | 3: // too long since last timestamp or this code is disabled | |
147 | li r3,1 // return bad status so our caller will make syscall | |
148 | blr | |
149 | ||
91447636 | 150 | COMMPAGE_DESCRIPTOR(gettimeofday_32,_COMM_PAGE_GETTIMEOFDAY,0,k64Bit,kCommPageSYNC+kCommPage32) |
55e303ae A |
151 | |
152 | ||
91447636 A |
153 | // *************************************** |
154 | // * G E T T I M E O F D A Y _ G 5 _ 3 2 * | |
155 | // *************************************** | |
156 | // | |
157 | // This routine is called in 32-bit mode on 64-bit processors. A timeval is a struct of | |
21362eb3 | 158 | // a long seconds and int useconds, so it's size depends on mode. |
55e303ae | 159 | |
91447636 | 160 | gettimeofday_g5_32: // int gettimeofday(timeval *tp); |
55e303ae A |
161 | 0: |
162 | ld r6,_COMM_PAGE_TIMEBASE(0) // r6 = TBR at timestamp | |
21362eb3 | 163 | ld r8,_COMM_PAGE_TIMESTAMP(0) // r8 = timestamp (seconds,useconds) |
55e303ae A |
164 | lfd f1,_COMM_PAGE_SEC_PER_TICK(0) |
165 | mftb r10 // r10 = get current timebase | |
166 | lwsync // create a barrier if MP (patched to NOP if UP) | |
167 | ld r11,_COMM_PAGE_TIMEBASE(0) // then get data a 2nd time | |
168 | ld r12,_COMM_PAGE_TIMESTAMP(0) | |
169 | cmpdi cr1,r6,0 // is the timestamp disabled? | |
170 | cmpld cr6,r6,r11 // did we read a consistent set? | |
171 | cmpld cr7,r8,r12 | |
172 | beq-- cr1,3f // exit if timestamp disabled | |
173 | crand cr6_eq,cr7_eq,cr6_eq | |
174 | sub r11,r10,r6 // compute elapsed ticks from timestamp | |
175 | bne-- cr6,0b // loop until we have a consistent set of data | |
176 | ||
177 | srdi. r0,r11,35 // has it been more than 2**35 ticks since last timestamp? | |
178 | std r11,rzTicks(r1) // put ticks in redzone where we can "lfd" it | |
179 | bne-- 3f // timestamp too old, so reprime | |
180 | ||
181 | lfd f3,rzTicks(r1) // get elapsed ticks since timestamp (fixed pt) | |
182 | fcfid f4,f3 // float the tick count | |
183 | fmul f5,f4,f1 // f5 <- elapsed seconds since timestamp | |
184 | lfd f3,_COMM_PAGE_10_TO_6(0) // get 10**6 | |
185 | fctidz f6,f5 // convert integer seconds to fixed pt | |
186 | stfd f6,rzSeconds(r1) // save fixed pt integer seconds in red zone | |
187 | fcfid f6,f6 // float the integer seconds | |
188 | fsub f6,f5,f6 // f6 <- fractional part of elapsed seconds | |
189 | fmul f6,f6,f3 // f6 <- fractional elapsed useconds | |
190 | fctidz f6,f6 // convert useconds to fixed pt integer | |
191 | stfd f6,rzUSeconds(r1) // store useconds into red zone | |
192 | ||
21362eb3 A |
193 | lis r12,hi16(USEC_PER_SEC) // r12 <- 10**6 |
194 | srdi r7,r8,32 // extract seconds from doubleword timestamp | |
55e303ae | 195 | lwz r5,rzSeconds+4(r1) // r5 <- seconds since timestamp |
21362eb3 A |
196 | ori r12,r12,lo16(USEC_PER_SEC) |
197 | lwz r6,rzUSeconds+4(r1) // r6 <- useconds since timestamp | |
198 | add r7,r7,r5 // add elapsed seconds to timestamp seconds | |
199 | add r8,r8,r6 // ditto useconds | |
55e303ae | 200 | |
21362eb3 A |
201 | cmplw r8,r12 // r8 >= USEC_PER_SEC ? |
202 | blt 2f // no | |
203 | addi r7,r7,1 // add 1 to secs | |
204 | sub r8,r8,r12 // subtract USEC_PER_SEC from usecs | |
205 | 2: | |
206 | stw r7,0(r3) // store secs//usecs into user's timeval | |
207 | stw r8,4(r3) | |
55e303ae A |
208 | li r3,0 // return success |
209 | blr | |
210 | 3: // too long since last timestamp or this code is disabled | |
211 | li r3,1 // return bad status so our caller will make syscall | |
212 | blr | |
213 | ||
91447636 A |
214 | COMMPAGE_DESCRIPTOR(gettimeofday_g5_32,_COMM_PAGE_GETTIMEOFDAY,k64Bit,0,kCommPageSYNC+kCommPage32) |
215 | ||
216 | ||
217 | // *************************************** | |
218 | // * G E T T I M E O F D A Y _ G 5 _ 6 4 * | |
219 | // *************************************** | |
220 | // | |
221 | // This routine is called in 64-bit mode on 64-bit processors. A timeval is a struct of | |
21362eb3 | 222 | // a long seconds and int useconds, so it's size depends on mode. |
91447636 A |
223 | |
224 | gettimeofday_g5_64: // int gettimeofday(timeval *tp); | |
225 | 0: | |
226 | ld r6,_COMM_PAGE_TIMEBASE(0) // r6 = TBR at timestamp | |
21362eb3 | 227 | ld r8,_COMM_PAGE_TIMESTAMP(0) // r8 = timestamp (seconds,useconds) |
91447636 A |
228 | lfd f1,_COMM_PAGE_SEC_PER_TICK(0) |
229 | mftb r10 // r10 = get current timebase | |
230 | lwsync // create a barrier if MP (patched to NOP if UP) | |
231 | ld r11,_COMM_PAGE_TIMEBASE(0) // then get data a 2nd time | |
232 | ld r12,_COMM_PAGE_TIMESTAMP(0) | |
233 | cmpdi cr1,r6,0 // is the timestamp disabled? | |
234 | cmpld cr6,r6,r11 // did we read a consistent set? | |
235 | cmpld cr7,r8,r12 | |
236 | beq-- cr1,3f // exit if timestamp disabled | |
237 | crand cr6_eq,cr7_eq,cr6_eq | |
238 | sub r11,r10,r6 // compute elapsed ticks from timestamp | |
239 | bne-- cr6,0b // loop until we have a consistent set of data | |
240 | ||
241 | srdi. r0,r11,35 // has it been more than 2**35 ticks since last timestamp? | |
242 | std r11,rzTicks(r1) // put ticks in redzone where we can "lfd" it | |
243 | bne-- 3f // timestamp too old, so reprime | |
244 | ||
245 | lfd f3,rzTicks(r1) // get elapsed ticks since timestamp (fixed pt) | |
246 | fcfid f4,f3 // float the tick count | |
247 | fmul f5,f4,f1 // f5 <- elapsed seconds since timestamp | |
248 | lfd f3,_COMM_PAGE_10_TO_6(0) // get 10**6 | |
249 | fctidz f6,f5 // convert integer seconds to fixed pt | |
250 | stfd f6,rzSeconds(r1) // save fixed pt integer seconds in red zone | |
251 | fcfid f6,f6 // float the integer seconds | |
252 | fsub f6,f5,f6 // f6 <- fractional part of elapsed seconds | |
253 | fmul f6,f6,f3 // f6 <- fractional elapsed useconds | |
254 | fctidz f6,f6 // convert useconds to fixed pt integer | |
255 | stfd f6,rzUSeconds(r1) // store useconds into red zone | |
256 | ||
21362eb3 A |
257 | lis r12,hi16(USEC_PER_SEC) // r12 <- 10**6 |
258 | srdi r7,r8,32 // extract seconds from doubleword timestamp | |
91447636 | 259 | lwz r5,rzSeconds+4(r1) // r5 <- seconds since timestamp |
21362eb3 A |
260 | ori r12,r12,lo16(USEC_PER_SEC) |
261 | lwz r6,rzUSeconds+4(r1) // r6 <- useconds since timestamp | |
262 | add r7,r7,r5 // add elapsed seconds to timestamp seconds | |
263 | add r8,r8,r6 // ditto useconds | |
91447636 | 264 | |
21362eb3 A |
265 | cmplw r8,r12 // r8 >= USEC_PER_SEC ? |
266 | blt 2f // no | |
267 | addi r7,r7,1 // add 1 to secs | |
268 | sub r8,r8,r12 // subtract USEC_PER_SEC from usecs | |
269 | 2: | |
270 | std r7,0(r3) // store secs//usecs into user's timeval | |
271 | stw r8,8(r3) | |
91447636 A |
272 | li r3,0 // return success |
273 | blr | |
274 | 3: // too long since last timestamp or this code is disabled | |
275 | li r3,1 // return bad status so our caller will make syscall | |
276 | blr | |
277 | ||
278 | COMMPAGE_DESCRIPTOR(gettimeofday_g5_64,_COMM_PAGE_GETTIMEOFDAY,k64Bit,0,kCommPageSYNC+kCommPage64) | |
55e303ae A |
279 | |
280 |