]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
2d21ac55 | 2 | * Copyright (c) 2000-2007 Apple Inc. All rights reserved. |
1c79356b | 3 | * |
2d21ac55 | 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
1c79356b | 5 | * |
2d21ac55 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
8f6c56a5 | 14 | * |
2d21ac55 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
8f6c56a5 | 25 | * |
2d21ac55 | 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
1c79356b A |
27 | */ |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | * Mach Operating System | |
33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
35 | * | |
36 | * Permission to use, copy, modify and distribute this software and its | |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
41 | * | |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
45 | * | |
46 | * Carnegie Mellon requests users of this software to return to | |
47 | * | |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
52 | * | |
53 | * any improvements or extensions that they make and grant Carnegie Mellon | |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | /* | |
57 | */ | |
58 | /* | |
59 | * File: vm/vm_object.c | |
60 | * Author: Avadis Tevanian, Jr., Michael Wayne Young | |
61 | * | |
62 | * Virtual memory object module. | |
63 | */ | |
64 | ||
2d21ac55 | 65 | #include <debug.h> |
1c79356b A |
66 | #include <mach_pagemap.h> |
67 | #include <task_swapper.h> | |
68 | ||
0b4e3aa0 | 69 | #include <mach/mach_types.h> |
1c79356b A |
70 | #include <mach/memory_object.h> |
71 | #include <mach/memory_object_default.h> | |
72 | #include <mach/memory_object_control_server.h> | |
73 | #include <mach/vm_param.h> | |
91447636 | 74 | |
316670eb A |
75 | #include <mach/sdt.h> |
76 | ||
91447636 | 77 | #include <ipc/ipc_types.h> |
1c79356b | 78 | #include <ipc/ipc_port.h> |
91447636 A |
79 | |
80 | #include <kern/kern_types.h> | |
1c79356b A |
81 | #include <kern/assert.h> |
82 | #include <kern/lock.h> | |
83 | #include <kern/queue.h> | |
84 | #include <kern/xpr.h> | |
6d2010ae | 85 | #include <kern/kalloc.h> |
1c79356b A |
86 | #include <kern/zalloc.h> |
87 | #include <kern/host.h> | |
88 | #include <kern/host_statistics.h> | |
89 | #include <kern/processor.h> | |
91447636 A |
90 | #include <kern/misc_protos.h> |
91 | ||
1c79356b | 92 | #include <vm/memory_object.h> |
39236c6e | 93 | #include <vm/vm_compressor_pager.h> |
1c79356b A |
94 | #include <vm/vm_fault.h> |
95 | #include <vm/vm_map.h> | |
96 | #include <vm/vm_object.h> | |
97 | #include <vm/vm_page.h> | |
98 | #include <vm/vm_pageout.h> | |
91447636 | 99 | #include <vm/vm_protos.h> |
2d21ac55 | 100 | #include <vm/vm_purgeable_internal.h> |
1c79356b | 101 | |
39236c6e A |
102 | #include <vm/vm_compressor.h> |
103 | ||
1c79356b A |
104 | /* |
105 | * Virtual memory objects maintain the actual data | |
106 | * associated with allocated virtual memory. A given | |
107 | * page of memory exists within exactly one object. | |
108 | * | |
109 | * An object is only deallocated when all "references" | |
0b4e3aa0 | 110 | * are given up. |
1c79356b A |
111 | * |
112 | * Associated with each object is a list of all resident | |
113 | * memory pages belonging to that object; this list is | |
114 | * maintained by the "vm_page" module, but locked by the object's | |
115 | * lock. | |
116 | * | |
0b4e3aa0 | 117 | * Each object also records the memory object reference |
1c79356b | 118 | * that is used by the kernel to request and write |
0b4e3aa0 | 119 | * back data (the memory object, field "pager"), etc... |
1c79356b A |
120 | * |
121 | * Virtual memory objects are allocated to provide | |
122 | * zero-filled memory (vm_allocate) or map a user-defined | |
123 | * memory object into a virtual address space (vm_map). | |
124 | * | |
125 | * Virtual memory objects that refer to a user-defined | |
126 | * memory object are called "permanent", because all changes | |
127 | * made in virtual memory are reflected back to the | |
128 | * memory manager, which may then store it permanently. | |
129 | * Other virtual memory objects are called "temporary", | |
130 | * meaning that changes need be written back only when | |
131 | * necessary to reclaim pages, and that storage associated | |
132 | * with the object can be discarded once it is no longer | |
133 | * mapped. | |
134 | * | |
135 | * A permanent memory object may be mapped into more | |
136 | * than one virtual address space. Moreover, two threads | |
137 | * may attempt to make the first mapping of a memory | |
138 | * object concurrently. Only one thread is allowed to | |
139 | * complete this mapping; all others wait for the | |
140 | * "pager_initialized" field is asserted, indicating | |
141 | * that the first thread has initialized all of the | |
142 | * necessary fields in the virtual memory object structure. | |
143 | * | |
144 | * The kernel relies on a *default memory manager* to | |
145 | * provide backing storage for the zero-filled virtual | |
0b4e3aa0 | 146 | * memory objects. The pager memory objects associated |
1c79356b | 147 | * with these temporary virtual memory objects are only |
0b4e3aa0 A |
148 | * requested from the default memory manager when it |
149 | * becomes necessary. Virtual memory objects | |
1c79356b A |
150 | * that depend on the default memory manager are called |
151 | * "internal". The "pager_created" field is provided to | |
152 | * indicate whether these ports have ever been allocated. | |
153 | * | |
154 | * The kernel may also create virtual memory objects to | |
155 | * hold changed pages after a copy-on-write operation. | |
156 | * In this case, the virtual memory object (and its | |
157 | * backing storage -- its memory object) only contain | |
158 | * those pages that have been changed. The "shadow" | |
159 | * field refers to the virtual memory object that contains | |
160 | * the remainder of the contents. The "shadow_offset" | |
161 | * field indicates where in the "shadow" these contents begin. | |
162 | * The "copy" field refers to a virtual memory object | |
163 | * to which changed pages must be copied before changing | |
164 | * this object, in order to implement another form | |
165 | * of copy-on-write optimization. | |
166 | * | |
167 | * The virtual memory object structure also records | |
168 | * the attributes associated with its memory object. | |
169 | * The "pager_ready", "can_persist" and "copy_strategy" | |
170 | * fields represent those attributes. The "cached_list" | |
171 | * field is used in the implementation of the persistence | |
172 | * attribute. | |
173 | * | |
174 | * ZZZ Continue this comment. | |
175 | */ | |
176 | ||
177 | /* Forward declarations for internal functions. */ | |
0b4e3aa0 | 178 | static kern_return_t vm_object_terminate( |
1c79356b A |
179 | vm_object_t object); |
180 | ||
181 | extern void vm_object_remove( | |
182 | vm_object_t object); | |
183 | ||
0b4e3aa0 | 184 | static kern_return_t vm_object_copy_call( |
1c79356b A |
185 | vm_object_t src_object, |
186 | vm_object_offset_t src_offset, | |
187 | vm_object_size_t size, | |
188 | vm_object_t *_result_object); | |
189 | ||
0b4e3aa0 | 190 | static void vm_object_do_collapse( |
1c79356b A |
191 | vm_object_t object, |
192 | vm_object_t backing_object); | |
193 | ||
0b4e3aa0 | 194 | static void vm_object_do_bypass( |
1c79356b A |
195 | vm_object_t object, |
196 | vm_object_t backing_object); | |
197 | ||
0b4e3aa0 | 198 | static void vm_object_release_pager( |
b0d623f7 A |
199 | memory_object_t pager, |
200 | boolean_t hashed); | |
1c79356b | 201 | |
0b4e3aa0 | 202 | static zone_t vm_object_zone; /* vm backing store zone */ |
1c79356b A |
203 | |
204 | /* | |
205 | * All wired-down kernel memory belongs to a single virtual | |
206 | * memory object (kernel_object) to avoid wasting data structures. | |
207 | */ | |
0b4e3aa0 | 208 | static struct vm_object kernel_object_store; |
0c530ab8 | 209 | vm_object_t kernel_object; |
1c79356b | 210 | |
39236c6e A |
211 | static struct vm_object compressor_object_store; |
212 | vm_object_t compressor_object = &compressor_object_store; | |
2d21ac55 | 213 | |
1c79356b A |
214 | /* |
215 | * The submap object is used as a placeholder for vm_map_submap | |
216 | * operations. The object is declared in vm_map.c because it | |
217 | * is exported by the vm_map module. The storage is declared | |
218 | * here because it must be initialized here. | |
219 | */ | |
0b4e3aa0 | 220 | static struct vm_object vm_submap_object_store; |
1c79356b A |
221 | |
222 | /* | |
223 | * Virtual memory objects are initialized from | |
224 | * a template (see vm_object_allocate). | |
225 | * | |
226 | * When adding a new field to the virtual memory | |
227 | * object structure, be sure to add initialization | |
0b4e3aa0 | 228 | * (see _vm_object_allocate()). |
1c79356b | 229 | */ |
0b4e3aa0 | 230 | static struct vm_object vm_object_template; |
1c79356b | 231 | |
b0d623f7 A |
232 | unsigned int vm_page_purged_wired = 0; |
233 | unsigned int vm_page_purged_busy = 0; | |
234 | unsigned int vm_page_purged_others = 0; | |
235 | ||
236 | #if VM_OBJECT_CACHE | |
1c79356b A |
237 | /* |
238 | * Virtual memory objects that are not referenced by | |
239 | * any address maps, but that are allowed to persist | |
240 | * (an attribute specified by the associated memory manager), | |
241 | * are kept in a queue (vm_object_cached_list). | |
242 | * | |
243 | * When an object from this queue is referenced again, | |
244 | * for example to make another address space mapping, | |
245 | * it must be removed from the queue. That is, the | |
246 | * queue contains *only* objects with zero references. | |
247 | * | |
248 | * The kernel may choose to terminate objects from this | |
249 | * queue in order to reclaim storage. The current policy | |
250 | * is to permit a fixed maximum number of unreferenced | |
251 | * objects (vm_object_cached_max). | |
252 | * | |
253 | * A spin lock (accessed by routines | |
254 | * vm_object_cache_{lock,lock_try,unlock}) governs the | |
255 | * object cache. It must be held when objects are | |
256 | * added to or removed from the cache (in vm_object_terminate). | |
257 | * The routines that acquire a reference to a virtual | |
258 | * memory object based on one of the memory object ports | |
259 | * must also lock the cache. | |
260 | * | |
261 | * Ideally, the object cache should be more isolated | |
262 | * from the reference mechanism, so that the lock need | |
263 | * not be held to make simple references. | |
264 | */ | |
b0d623f7 A |
265 | static vm_object_t vm_object_cache_trim( |
266 | boolean_t called_from_vm_object_deallocate); | |
267 | ||
6d2010ae A |
268 | static void vm_object_deactivate_all_pages( |
269 | vm_object_t object); | |
270 | ||
0b4e3aa0 A |
271 | static int vm_object_cached_high; /* highest # cached objects */ |
272 | static int vm_object_cached_max = 512; /* may be patched*/ | |
1c79356b | 273 | |
1c79356b | 274 | #define vm_object_cache_lock() \ |
b0d623f7 A |
275 | lck_mtx_lock(&vm_object_cached_lock_data) |
276 | #define vm_object_cache_lock_try() \ | |
277 | lck_mtx_try_lock(&vm_object_cached_lock_data) | |
6d2010ae A |
278 | |
279 | #endif /* VM_OBJECT_CACHE */ | |
280 | ||
281 | static queue_head_t vm_object_cached_list; | |
282 | static uint32_t vm_object_cache_pages_freed = 0; | |
283 | static uint32_t vm_object_cache_pages_moved = 0; | |
284 | static uint32_t vm_object_cache_pages_skipped = 0; | |
285 | static uint32_t vm_object_cache_adds = 0; | |
286 | static uint32_t vm_object_cached_count = 0; | |
287 | static lck_mtx_t vm_object_cached_lock_data; | |
288 | static lck_mtx_ext_t vm_object_cached_lock_data_ext; | |
289 | ||
290 | static uint32_t vm_object_page_grab_failed = 0; | |
291 | static uint32_t vm_object_page_grab_skipped = 0; | |
292 | static uint32_t vm_object_page_grab_returned = 0; | |
293 | static uint32_t vm_object_page_grab_pmapped = 0; | |
294 | static uint32_t vm_object_page_grab_reactivations = 0; | |
295 | ||
b0d623f7 A |
296 | #define vm_object_cache_lock_spin() \ |
297 | lck_mtx_lock_spin(&vm_object_cached_lock_data) | |
1c79356b | 298 | #define vm_object_cache_unlock() \ |
b0d623f7 A |
299 | lck_mtx_unlock(&vm_object_cached_lock_data) |
300 | ||
6d2010ae | 301 | static void vm_object_cache_remove_locked(vm_object_t); |
b0d623f7 | 302 | |
1c79356b A |
303 | |
304 | #define VM_OBJECT_HASH_COUNT 1024 | |
b0d623f7 A |
305 | #define VM_OBJECT_HASH_LOCK_COUNT 512 |
306 | ||
d1ecb069 A |
307 | static lck_mtx_t vm_object_hashed_lock_data[VM_OBJECT_HASH_LOCK_COUNT]; |
308 | static lck_mtx_ext_t vm_object_hashed_lock_data_ext[VM_OBJECT_HASH_LOCK_COUNT]; | |
b0d623f7 | 309 | |
0b4e3aa0 | 310 | static queue_head_t vm_object_hashtable[VM_OBJECT_HASH_COUNT]; |
b0d623f7 | 311 | static struct zone *vm_object_hash_zone; |
1c79356b A |
312 | |
313 | struct vm_object_hash_entry { | |
314 | queue_chain_t hash_link; /* hash chain link */ | |
0b4e3aa0 | 315 | memory_object_t pager; /* pager we represent */ |
1c79356b A |
316 | vm_object_t object; /* corresponding object */ |
317 | boolean_t waiting; /* someone waiting for | |
318 | * termination */ | |
319 | }; | |
320 | ||
321 | typedef struct vm_object_hash_entry *vm_object_hash_entry_t; | |
322 | #define VM_OBJECT_HASH_ENTRY_NULL ((vm_object_hash_entry_t) 0) | |
323 | ||
b0d623f7 | 324 | #define VM_OBJECT_HASH_SHIFT 5 |
1c79356b | 325 | #define vm_object_hash(pager) \ |
b0d623f7 A |
326 | ((int)((((uintptr_t)pager) >> VM_OBJECT_HASH_SHIFT) % VM_OBJECT_HASH_COUNT)) |
327 | ||
328 | #define vm_object_lock_hash(pager) \ | |
329 | ((int)((((uintptr_t)pager) >> VM_OBJECT_HASH_SHIFT) % VM_OBJECT_HASH_LOCK_COUNT)) | |
1c79356b | 330 | |
91447636 A |
331 | void vm_object_hash_entry_free( |
332 | vm_object_hash_entry_t entry); | |
333 | ||
8f6c56a5 A |
334 | static void vm_object_reap(vm_object_t object); |
335 | static void vm_object_reap_async(vm_object_t object); | |
336 | static void vm_object_reaper_thread(void); | |
b0d623f7 A |
337 | |
338 | static lck_mtx_t vm_object_reaper_lock_data; | |
339 | static lck_mtx_ext_t vm_object_reaper_lock_data_ext; | |
340 | ||
341 | static queue_head_t vm_object_reaper_queue; /* protected by vm_object_reaper_lock() */ | |
8f6c56a5 A |
342 | unsigned int vm_object_reap_count = 0; |
343 | unsigned int vm_object_reap_count_async = 0; | |
344 | ||
b0d623f7 A |
345 | #define vm_object_reaper_lock() \ |
346 | lck_mtx_lock(&vm_object_reaper_lock_data) | |
347 | #define vm_object_reaper_lock_spin() \ | |
348 | lck_mtx_lock_spin(&vm_object_reaper_lock_data) | |
349 | #define vm_object_reaper_unlock() \ | |
350 | lck_mtx_unlock(&vm_object_reaper_lock_data) | |
351 | ||
6d2010ae A |
352 | #if 0 |
353 | #undef KERNEL_DEBUG | |
354 | #define KERNEL_DEBUG KERNEL_DEBUG_CONSTANT | |
355 | #endif | |
b0d623f7 A |
356 | |
357 | ||
358 | static lck_mtx_t * | |
359 | vm_object_hash_lock_spin( | |
360 | memory_object_t pager) | |
361 | { | |
362 | int index; | |
363 | ||
364 | index = vm_object_lock_hash(pager); | |
365 | ||
366 | lck_mtx_lock_spin(&vm_object_hashed_lock_data[index]); | |
367 | ||
368 | return (&vm_object_hashed_lock_data[index]); | |
369 | } | |
370 | ||
371 | static void | |
372 | vm_object_hash_unlock(lck_mtx_t *lck) | |
373 | { | |
374 | lck_mtx_unlock(lck); | |
375 | } | |
376 | ||
377 | ||
1c79356b A |
378 | /* |
379 | * vm_object_hash_lookup looks up a pager in the hashtable | |
380 | * and returns the corresponding entry, with optional removal. | |
381 | */ | |
0b4e3aa0 | 382 | static vm_object_hash_entry_t |
1c79356b | 383 | vm_object_hash_lookup( |
0b4e3aa0 | 384 | memory_object_t pager, |
1c79356b A |
385 | boolean_t remove_entry) |
386 | { | |
b0d623f7 A |
387 | queue_t bucket; |
388 | vm_object_hash_entry_t entry; | |
1c79356b A |
389 | |
390 | bucket = &vm_object_hashtable[vm_object_hash(pager)]; | |
391 | ||
392 | entry = (vm_object_hash_entry_t)queue_first(bucket); | |
393 | while (!queue_end(bucket, (queue_entry_t)entry)) { | |
b0d623f7 A |
394 | if (entry->pager == pager) { |
395 | if (remove_entry) { | |
396 | queue_remove(bucket, entry, | |
397 | vm_object_hash_entry_t, hash_link); | |
398 | } | |
1c79356b A |
399 | return(entry); |
400 | } | |
1c79356b A |
401 | entry = (vm_object_hash_entry_t)queue_next(&entry->hash_link); |
402 | } | |
1c79356b A |
403 | return(VM_OBJECT_HASH_ENTRY_NULL); |
404 | } | |
405 | ||
406 | /* | |
407 | * vm_object_hash_enter enters the specified | |
408 | * pager / cache object association in the hashtable. | |
409 | */ | |
410 | ||
0b4e3aa0 | 411 | static void |
1c79356b | 412 | vm_object_hash_insert( |
b0d623f7 A |
413 | vm_object_hash_entry_t entry, |
414 | vm_object_t object) | |
1c79356b | 415 | { |
b0d623f7 | 416 | queue_t bucket; |
1c79356b A |
417 | |
418 | bucket = &vm_object_hashtable[vm_object_hash(entry->pager)]; | |
419 | ||
420 | queue_enter(bucket, entry, vm_object_hash_entry_t, hash_link); | |
b0d623f7 A |
421 | |
422 | entry->object = object; | |
423 | object->hashed = TRUE; | |
1c79356b A |
424 | } |
425 | ||
0b4e3aa0 | 426 | static vm_object_hash_entry_t |
1c79356b | 427 | vm_object_hash_entry_alloc( |
0b4e3aa0 | 428 | memory_object_t pager) |
1c79356b A |
429 | { |
430 | vm_object_hash_entry_t entry; | |
431 | ||
432 | entry = (vm_object_hash_entry_t)zalloc(vm_object_hash_zone); | |
433 | entry->pager = pager; | |
434 | entry->object = VM_OBJECT_NULL; | |
435 | entry->waiting = FALSE; | |
436 | ||
437 | return(entry); | |
438 | } | |
439 | ||
440 | void | |
441 | vm_object_hash_entry_free( | |
442 | vm_object_hash_entry_t entry) | |
443 | { | |
91447636 | 444 | zfree(vm_object_hash_zone, entry); |
1c79356b A |
445 | } |
446 | ||
447 | /* | |
448 | * vm_object_allocate: | |
449 | * | |
450 | * Returns a new object with the given size. | |
451 | */ | |
452 | ||
91447636 | 453 | __private_extern__ void |
1c79356b A |
454 | _vm_object_allocate( |
455 | vm_object_size_t size, | |
456 | vm_object_t object) | |
457 | { | |
458 | XPR(XPR_VM_OBJECT, | |
459 | "vm_object_allocate, object 0x%X size 0x%X\n", | |
b0d623f7 | 460 | object, size, 0,0,0); |
1c79356b A |
461 | |
462 | *object = vm_object_template; | |
463 | queue_init(&object->memq); | |
464 | queue_init(&object->msr_q); | |
b0d623f7 | 465 | #if UPL_DEBUG |
1c79356b | 466 | queue_init(&object->uplq); |
91447636 | 467 | #endif /* UPL_DEBUG */ |
1c79356b | 468 | vm_object_lock_init(object); |
6d2010ae | 469 | object->vo_size = size; |
1c79356b A |
470 | } |
471 | ||
0b4e3aa0 | 472 | __private_extern__ vm_object_t |
1c79356b A |
473 | vm_object_allocate( |
474 | vm_object_size_t size) | |
475 | { | |
476 | register vm_object_t object; | |
1c79356b A |
477 | |
478 | object = (vm_object_t) zalloc(vm_object_zone); | |
479 | ||
0b4e3aa0 A |
480 | // dbgLog(object, size, 0, 2); /* (TEST/DEBUG) */ |
481 | ||
482 | if (object != VM_OBJECT_NULL) | |
483 | _vm_object_allocate(size, object); | |
1c79356b A |
484 | |
485 | return object; | |
486 | } | |
487 | ||
2d21ac55 | 488 | |
b0d623f7 | 489 | lck_grp_t vm_object_lck_grp; |
6d2010ae A |
490 | lck_grp_t vm_object_cache_lck_grp; |
491 | lck_grp_attr_t vm_object_lck_grp_attr; | |
b0d623f7 A |
492 | lck_attr_t vm_object_lck_attr; |
493 | lck_attr_t kernel_object_lck_attr; | |
39236c6e | 494 | lck_attr_t compressor_object_lck_attr; |
2d21ac55 | 495 | |
1c79356b A |
496 | /* |
497 | * vm_object_bootstrap: | |
498 | * | |
499 | * Initialize the VM objects module. | |
500 | */ | |
0b4e3aa0 | 501 | __private_extern__ void |
1c79356b A |
502 | vm_object_bootstrap(void) |
503 | { | |
91447636 | 504 | register int i; |
1c79356b A |
505 | |
506 | vm_object_zone = zinit((vm_size_t) sizeof(struct vm_object), | |
b0d623f7 A |
507 | round_page(512*1024), |
508 | round_page(12*1024), | |
1c79356b | 509 | "vm objects"); |
6d2010ae | 510 | zone_change(vm_object_zone, Z_CALLERACCT, FALSE); /* don't charge caller */ |
0b4c1975 | 511 | zone_change(vm_object_zone, Z_NOENCRYPT, TRUE); |
1c79356b | 512 | |
b0d623f7 A |
513 | vm_object_init_lck_grp(); |
514 | ||
1c79356b | 515 | queue_init(&vm_object_cached_list); |
b0d623f7 A |
516 | |
517 | lck_mtx_init_ext(&vm_object_cached_lock_data, | |
518 | &vm_object_cached_lock_data_ext, | |
6d2010ae | 519 | &vm_object_cache_lck_grp, |
b0d623f7 | 520 | &vm_object_lck_attr); |
6d2010ae | 521 | |
b0d623f7 A |
522 | queue_init(&vm_object_reaper_queue); |
523 | ||
524 | for (i = 0; i < VM_OBJECT_HASH_LOCK_COUNT; i++) { | |
525 | lck_mtx_init_ext(&vm_object_hashed_lock_data[i], | |
526 | &vm_object_hashed_lock_data_ext[i], | |
527 | &vm_object_lck_grp, | |
528 | &vm_object_lck_attr); | |
529 | } | |
530 | lck_mtx_init_ext(&vm_object_reaper_lock_data, | |
531 | &vm_object_reaper_lock_data_ext, | |
532 | &vm_object_lck_grp, | |
533 | &vm_object_lck_attr); | |
1c79356b A |
534 | |
535 | vm_object_hash_zone = | |
536 | zinit((vm_size_t) sizeof (struct vm_object_hash_entry), | |
b0d623f7 A |
537 | round_page(512*1024), |
538 | round_page(12*1024), | |
1c79356b | 539 | "vm object hash entries"); |
6d2010ae | 540 | zone_change(vm_object_hash_zone, Z_CALLERACCT, FALSE); |
0b4c1975 | 541 | zone_change(vm_object_hash_zone, Z_NOENCRYPT, TRUE); |
1c79356b A |
542 | |
543 | for (i = 0; i < VM_OBJECT_HASH_COUNT; i++) | |
544 | queue_init(&vm_object_hashtable[i]); | |
545 | ||
2d21ac55 | 546 | |
1c79356b A |
547 | /* |
548 | * Fill in a template object, for quick initialization | |
549 | */ | |
550 | ||
551 | /* memq; Lock; init after allocation */ | |
2d21ac55 A |
552 | vm_object_template.memq.prev = NULL; |
553 | vm_object_template.memq.next = NULL; | |
554 | #if 0 | |
555 | /* | |
556 | * We can't call vm_object_lock_init() here because that will | |
557 | * allocate some memory and VM is not fully initialized yet. | |
b0d623f7 | 558 | * The lock will be initialized for each allocated object in |
2d21ac55 A |
559 | * _vm_object_allocate(), so we don't need to initialize it in |
560 | * the vm_object_template. | |
561 | */ | |
562 | vm_object_lock_init(&vm_object_template); | |
563 | #endif | |
6d2010ae | 564 | vm_object_template.vo_size = 0; |
91447636 | 565 | vm_object_template.memq_hint = VM_PAGE_NULL; |
1c79356b A |
566 | vm_object_template.ref_count = 1; |
567 | #if TASK_SWAPPER | |
568 | vm_object_template.res_count = 1; | |
569 | #endif /* TASK_SWAPPER */ | |
570 | vm_object_template.resident_page_count = 0; | |
b0d623f7 A |
571 | vm_object_template.wired_page_count = 0; |
572 | vm_object_template.reusable_page_count = 0; | |
1c79356b A |
573 | vm_object_template.copy = VM_OBJECT_NULL; |
574 | vm_object_template.shadow = VM_OBJECT_NULL; | |
6d2010ae | 575 | vm_object_template.vo_shadow_offset = (vm_object_offset_t) 0; |
0b4e3aa0 | 576 | vm_object_template.pager = MEMORY_OBJECT_NULL; |
1c79356b | 577 | vm_object_template.paging_offset = 0; |
91447636 | 578 | vm_object_template.pager_control = MEMORY_OBJECT_CONTROL_NULL; |
1c79356b | 579 | vm_object_template.copy_strategy = MEMORY_OBJECT_COPY_SYMMETRIC; |
1c79356b | 580 | vm_object_template.paging_in_progress = 0; |
b0d623f7 | 581 | vm_object_template.activity_in_progress = 0; |
1c79356b A |
582 | |
583 | /* Begin bitfields */ | |
584 | vm_object_template.all_wanted = 0; /* all bits FALSE */ | |
585 | vm_object_template.pager_created = FALSE; | |
586 | vm_object_template.pager_initialized = FALSE; | |
587 | vm_object_template.pager_ready = FALSE; | |
588 | vm_object_template.pager_trusted = FALSE; | |
589 | vm_object_template.can_persist = FALSE; | |
590 | vm_object_template.internal = TRUE; | |
591 | vm_object_template.temporary = TRUE; | |
592 | vm_object_template.private = FALSE; | |
593 | vm_object_template.pageout = FALSE; | |
594 | vm_object_template.alive = TRUE; | |
2d21ac55 | 595 | vm_object_template.purgable = VM_PURGABLE_DENY; |
39236c6e | 596 | vm_object_template.purgeable_when_ripe = FALSE; |
2d21ac55 | 597 | vm_object_template.shadowed = FALSE; |
1c79356b | 598 | vm_object_template.advisory_pageout = FALSE; |
2d21ac55 | 599 | vm_object_template.true_share = FALSE; |
1c79356b | 600 | vm_object_template.terminating = FALSE; |
2d21ac55 | 601 | vm_object_template.named = FALSE; |
1c79356b A |
602 | vm_object_template.shadow_severed = FALSE; |
603 | vm_object_template.phys_contiguous = FALSE; | |
0b4e3aa0 | 604 | vm_object_template.nophyscache = FALSE; |
1c79356b A |
605 | /* End bitfields */ |
606 | ||
2d21ac55 A |
607 | vm_object_template.cached_list.prev = NULL; |
608 | vm_object_template.cached_list.next = NULL; | |
609 | vm_object_template.msr_q.prev = NULL; | |
610 | vm_object_template.msr_q.next = NULL; | |
611 | ||
1c79356b | 612 | vm_object_template.last_alloc = (vm_object_offset_t) 0; |
2d21ac55 A |
613 | vm_object_template.sequential = (vm_object_offset_t) 0; |
614 | vm_object_template.pages_created = 0; | |
615 | vm_object_template.pages_used = 0; | |
6d2010ae | 616 | vm_object_template.scan_collisions = 0; |
2d21ac55 | 617 | |
1c79356b A |
618 | #if MACH_PAGEMAP |
619 | vm_object_template.existence_map = VM_EXTERNAL_NULL; | |
620 | #endif /* MACH_PAGEMAP */ | |
2d21ac55 | 621 | vm_object_template.cow_hint = ~(vm_offset_t)0; |
1c79356b A |
622 | #if MACH_ASSERT |
623 | vm_object_template.paging_object = VM_OBJECT_NULL; | |
624 | #endif /* MACH_ASSERT */ | |
625 | ||
2d21ac55 | 626 | /* cache bitfields */ |
6d2010ae A |
627 | vm_object_template.wimg_bits = VM_WIMG_USE_DEFAULT; |
628 | vm_object_template.set_cache_attr = FALSE; | |
39236c6e | 629 | vm_object_template.object_slid = FALSE; |
2d21ac55 | 630 | vm_object_template.code_signed = FALSE; |
b0d623f7 A |
631 | vm_object_template.hashed = FALSE; |
632 | vm_object_template.transposed = FALSE; | |
593a1d5f | 633 | vm_object_template.mapping_in_progress = FALSE; |
b0d623f7 A |
634 | vm_object_template.volatile_empty = FALSE; |
635 | vm_object_template.volatile_fault = FALSE; | |
636 | vm_object_template.all_reusable = FALSE; | |
637 | vm_object_template.blocked_access = FALSE; | |
638 | vm_object_template.__object2_unused_bits = 0; | |
639 | #if UPL_DEBUG | |
2d21ac55 A |
640 | vm_object_template.uplq.prev = NULL; |
641 | vm_object_template.uplq.next = NULL; | |
642 | #endif /* UPL_DEBUG */ | |
643 | #ifdef VM_PIP_DEBUG | |
644 | bzero(&vm_object_template.pip_holders, | |
645 | sizeof (vm_object_template.pip_holders)); | |
646 | #endif /* VM_PIP_DEBUG */ | |
647 | ||
648 | vm_object_template.objq.next=NULL; | |
649 | vm_object_template.objq.prev=NULL; | |
650 | ||
39236c6e A |
651 | vm_object_template.purgeable_queue_type = PURGEABLE_Q_TYPE_MAX; |
652 | vm_object_template.purgeable_queue_group = 0; | |
653 | ||
6d2010ae | 654 | vm_object_template.vo_cache_ts = 0; |
2d21ac55 | 655 | |
1c79356b A |
656 | /* |
657 | * Initialize the "kernel object" | |
658 | */ | |
659 | ||
660 | kernel_object = &kernel_object_store; | |
661 | ||
662 | /* | |
663 | * Note that in the following size specifications, we need to add 1 because | |
55e303ae | 664 | * VM_MAX_KERNEL_ADDRESS (vm_last_addr) is a maximum address, not a size. |
1c79356b | 665 | */ |
55e303ae A |
666 | |
667 | #ifdef ppc | |
b0d623f7 A |
668 | _vm_object_allocate(vm_last_addr + 1, |
669 | kernel_object); | |
55e303ae | 670 | #else |
b0d623f7 A |
671 | _vm_object_allocate(VM_MAX_KERNEL_ADDRESS + 1, |
672 | kernel_object); | |
39236c6e A |
673 | |
674 | _vm_object_allocate(VM_MAX_KERNEL_ADDRESS + 1, | |
675 | compressor_object); | |
55e303ae A |
676 | #endif |
677 | kernel_object->copy_strategy = MEMORY_OBJECT_COPY_NONE; | |
39236c6e | 678 | compressor_object->copy_strategy = MEMORY_OBJECT_COPY_NONE; |
1c79356b A |
679 | |
680 | /* | |
681 | * Initialize the "submap object". Make it as large as the | |
682 | * kernel object so that no limit is imposed on submap sizes. | |
683 | */ | |
684 | ||
685 | vm_submap_object = &vm_submap_object_store; | |
55e303ae | 686 | #ifdef ppc |
b0d623f7 A |
687 | _vm_object_allocate(vm_last_addr + 1, |
688 | vm_submap_object); | |
55e303ae | 689 | #else |
b0d623f7 A |
690 | _vm_object_allocate(VM_MAX_KERNEL_ADDRESS + 1, |
691 | vm_submap_object); | |
55e303ae A |
692 | #endif |
693 | vm_submap_object->copy_strategy = MEMORY_OBJECT_COPY_NONE; | |
694 | ||
1c79356b A |
695 | /* |
696 | * Create an "extra" reference to this object so that we never | |
697 | * try to deallocate it; zfree doesn't like to be called with | |
698 | * non-zone memory. | |
699 | */ | |
700 | vm_object_reference(vm_submap_object); | |
701 | ||
702 | #if MACH_PAGEMAP | |
703 | vm_external_module_initialize(); | |
704 | #endif /* MACH_PAGEMAP */ | |
705 | } | |
706 | ||
8f6c56a5 A |
707 | void |
708 | vm_object_reaper_init(void) | |
709 | { | |
710 | kern_return_t kr; | |
711 | thread_t thread; | |
712 | ||
8f6c56a5 A |
713 | kr = kernel_thread_start_priority( |
714 | (thread_continue_t) vm_object_reaper_thread, | |
715 | NULL, | |
716 | BASEPRI_PREEMPT - 1, | |
717 | &thread); | |
718 | if (kr != KERN_SUCCESS) { | |
2d21ac55 | 719 | panic("failed to launch vm_object_reaper_thread kr=0x%x", kr); |
8f6c56a5 A |
720 | } |
721 | thread_deallocate(thread); | |
722 | } | |
723 | ||
0b4e3aa0 | 724 | __private_extern__ void |
1c79356b A |
725 | vm_object_init(void) |
726 | { | |
727 | /* | |
728 | * Finish initializing the kernel object. | |
729 | */ | |
730 | } | |
731 | ||
2d21ac55 A |
732 | |
733 | __private_extern__ void | |
734 | vm_object_init_lck_grp(void) | |
735 | { | |
b0d623f7 | 736 | /* |
2d21ac55 A |
737 | * initialze the vm_object lock world |
738 | */ | |
b0d623f7 | 739 | lck_grp_attr_setdefault(&vm_object_lck_grp_attr); |
2d21ac55 | 740 | lck_grp_init(&vm_object_lck_grp, "vm_object", &vm_object_lck_grp_attr); |
6d2010ae | 741 | lck_grp_init(&vm_object_cache_lck_grp, "vm_object_cache", &vm_object_lck_grp_attr); |
2d21ac55 A |
742 | lck_attr_setdefault(&vm_object_lck_attr); |
743 | lck_attr_setdefault(&kernel_object_lck_attr); | |
744 | lck_attr_cleardebug(&kernel_object_lck_attr); | |
39236c6e A |
745 | lck_attr_setdefault(&compressor_object_lck_attr); |
746 | lck_attr_cleardebug(&compressor_object_lck_attr); | |
2d21ac55 A |
747 | } |
748 | ||
b0d623f7 | 749 | #if VM_OBJECT_CACHE |
1c79356b A |
750 | #define MIGHT_NOT_CACHE_SHADOWS 1 |
751 | #if MIGHT_NOT_CACHE_SHADOWS | |
0b4e3aa0 | 752 | static int cache_shadows = TRUE; |
1c79356b | 753 | #endif /* MIGHT_NOT_CACHE_SHADOWS */ |
b0d623f7 | 754 | #endif |
1c79356b A |
755 | |
756 | /* | |
757 | * vm_object_deallocate: | |
758 | * | |
759 | * Release a reference to the specified object, | |
760 | * gained either through a vm_object_allocate | |
761 | * or a vm_object_reference call. When all references | |
762 | * are gone, storage associated with this object | |
763 | * may be relinquished. | |
764 | * | |
765 | * No object may be locked. | |
766 | */ | |
2d21ac55 A |
767 | unsigned long vm_object_deallocate_shared_successes = 0; |
768 | unsigned long vm_object_deallocate_shared_failures = 0; | |
769 | unsigned long vm_object_deallocate_shared_swap_failures = 0; | |
0b4e3aa0 | 770 | __private_extern__ void |
1c79356b A |
771 | vm_object_deallocate( |
772 | register vm_object_t object) | |
773 | { | |
b0d623f7 | 774 | #if VM_OBJECT_CACHE |
2d21ac55 | 775 | boolean_t retry_cache_trim = FALSE; |
2d21ac55 | 776 | uint32_t try_failed_count = 0; |
b0d623f7 A |
777 | #endif |
778 | vm_object_t shadow = VM_OBJECT_NULL; | |
1c79356b A |
779 | |
780 | // if(object)dbgLog(object, object->ref_count, object->can_persist, 3); /* (TEST/DEBUG) */ | |
781 | // else dbgLog(object, 0, 0, 3); /* (TEST/DEBUG) */ | |
782 | ||
2d21ac55 A |
783 | if (object == VM_OBJECT_NULL) |
784 | return; | |
785 | ||
39236c6e | 786 | if (object == kernel_object || object == compressor_object) { |
b0d623f7 A |
787 | vm_object_lock_shared(object); |
788 | ||
789 | OSAddAtomic(-1, &object->ref_count); | |
790 | ||
791 | if (object->ref_count == 0) { | |
39236c6e A |
792 | if (object == kernel_object) |
793 | panic("vm_object_deallocate: losing kernel_object\n"); | |
794 | else | |
795 | panic("vm_object_deallocate: losing compressor_object\n"); | |
2d21ac55 | 796 | } |
b0d623f7 | 797 | vm_object_unlock(object); |
2d21ac55 A |
798 | return; |
799 | } | |
800 | ||
801 | if (object->ref_count > 2 || | |
802 | (!object->named && object->ref_count > 1)) { | |
803 | UInt32 original_ref_count; | |
804 | volatile UInt32 *ref_count_p; | |
805 | Boolean atomic_swap; | |
806 | ||
807 | /* | |
808 | * The object currently looks like it is not being | |
809 | * kept alive solely by the reference we're about to release. | |
810 | * Let's try and release our reference without taking | |
811 | * all the locks we would need if we had to terminate the | |
812 | * object (cache lock + exclusive object lock). | |
813 | * Lock the object "shared" to make sure we don't race with | |
814 | * anyone holding it "exclusive". | |
815 | */ | |
816 | vm_object_lock_shared(object); | |
817 | ref_count_p = (volatile UInt32 *) &object->ref_count; | |
818 | original_ref_count = object->ref_count; | |
819 | /* | |
820 | * Test again as "ref_count" could have changed. | |
821 | * "named" shouldn't change. | |
822 | */ | |
823 | if (original_ref_count > 2 || | |
824 | (!object->named && original_ref_count > 1)) { | |
825 | atomic_swap = OSCompareAndSwap( | |
826 | original_ref_count, | |
827 | original_ref_count - 1, | |
828 | (UInt32 *) &object->ref_count); | |
829 | if (atomic_swap == FALSE) { | |
830 | vm_object_deallocate_shared_swap_failures++; | |
831 | } | |
832 | ||
833 | } else { | |
834 | atomic_swap = FALSE; | |
835 | } | |
836 | vm_object_unlock(object); | |
837 | ||
838 | if (atomic_swap) { | |
b0d623f7 A |
839 | /* |
840 | * ref_count was updated atomically ! | |
841 | */ | |
2d21ac55 A |
842 | vm_object_deallocate_shared_successes++; |
843 | return; | |
844 | } | |
845 | ||
846 | /* | |
847 | * Someone else updated the ref_count at the same | |
848 | * time and we lost the race. Fall back to the usual | |
849 | * slow but safe path... | |
850 | */ | |
851 | vm_object_deallocate_shared_failures++; | |
852 | } | |
1c79356b A |
853 | |
854 | while (object != VM_OBJECT_NULL) { | |
855 | ||
b0d623f7 | 856 | vm_object_lock(object); |
2d21ac55 | 857 | |
0b4e3aa0 A |
858 | assert(object->ref_count > 0); |
859 | ||
860 | /* | |
861 | * If the object has a named reference, and only | |
862 | * that reference would remain, inform the pager | |
863 | * about the last "mapping" reference going away. | |
864 | */ | |
865 | if ((object->ref_count == 2) && (object->named)) { | |
866 | memory_object_t pager = object->pager; | |
867 | ||
868 | /* Notify the Pager that there are no */ | |
869 | /* more mappers for this object */ | |
870 | ||
871 | if (pager != MEMORY_OBJECT_NULL) { | |
593a1d5f A |
872 | vm_object_mapping_wait(object, THREAD_UNINT); |
873 | vm_object_mapping_begin(object); | |
0b4e3aa0 | 874 | vm_object_unlock(object); |
2d21ac55 | 875 | |
b0d623f7 | 876 | memory_object_last_unmap(pager); |
593a1d5f | 877 | |
b0d623f7 | 878 | vm_object_lock(object); |
593a1d5f | 879 | vm_object_mapping_end(object); |
0b4e3aa0 | 880 | } |
b0d623f7 | 881 | assert(object->ref_count > 0); |
0b4e3aa0 | 882 | } |
1c79356b A |
883 | |
884 | /* | |
885 | * Lose the reference. If other references | |
886 | * remain, then we are done, unless we need | |
887 | * to retry a cache trim. | |
888 | * If it is the last reference, then keep it | |
889 | * until any pending initialization is completed. | |
890 | */ | |
891 | ||
0b4e3aa0 A |
892 | /* if the object is terminating, it cannot go into */ |
893 | /* the cache and we obviously should not call */ | |
894 | /* terminate again. */ | |
895 | ||
896 | if ((object->ref_count > 1) || object->terminating) { | |
2d21ac55 | 897 | vm_object_lock_assert_exclusive(object); |
1c79356b | 898 | object->ref_count--; |
1c79356b | 899 | vm_object_res_deallocate(object); |
91447636 A |
900 | |
901 | if (object->ref_count == 1 && | |
902 | object->shadow != VM_OBJECT_NULL) { | |
903 | /* | |
0c530ab8 A |
904 | * There's only one reference left on this |
905 | * VM object. We can't tell if it's a valid | |
906 | * one (from a mapping for example) or if this | |
907 | * object is just part of a possibly stale and | |
908 | * useless shadow chain. | |
909 | * We would like to try and collapse it into | |
910 | * its parent, but we don't have any pointers | |
911 | * back to this parent object. | |
91447636 A |
912 | * But we can try and collapse this object with |
913 | * its own shadows, in case these are useless | |
914 | * too... | |
0c530ab8 A |
915 | * We can't bypass this object though, since we |
916 | * don't know if this last reference on it is | |
917 | * meaningful or not. | |
91447636 | 918 | */ |
0c530ab8 | 919 | vm_object_collapse(object, 0, FALSE); |
91447636 | 920 | } |
91447636 | 921 | vm_object_unlock(object); |
b0d623f7 | 922 | #if VM_OBJECT_CACHE |
1c79356b A |
923 | if (retry_cache_trim && |
924 | ((object = vm_object_cache_trim(TRUE)) != | |
925 | VM_OBJECT_NULL)) { | |
926 | continue; | |
927 | } | |
b0d623f7 | 928 | #endif |
1c79356b A |
929 | return; |
930 | } | |
931 | ||
932 | /* | |
933 | * We have to wait for initialization | |
934 | * before destroying or caching the object. | |
935 | */ | |
936 | ||
937 | if (object->pager_created && ! object->pager_initialized) { | |
938 | assert(! object->can_persist); | |
939 | vm_object_assert_wait(object, | |
940 | VM_OBJECT_EVENT_INITIALIZED, | |
941 | THREAD_UNINT); | |
942 | vm_object_unlock(object); | |
b0d623f7 | 943 | |
9bccf70c | 944 | thread_block(THREAD_CONTINUE_NULL); |
1c79356b A |
945 | continue; |
946 | } | |
947 | ||
b0d623f7 | 948 | #if VM_OBJECT_CACHE |
1c79356b A |
949 | /* |
950 | * If this object can persist, then enter it in | |
951 | * the cache. Otherwise, terminate it. | |
952 | * | |
953 | * NOTE: Only permanent objects are cached, and | |
954 | * permanent objects cannot have shadows. This | |
955 | * affects the residence counting logic in a minor | |
956 | * way (can do it in-line, mostly). | |
957 | */ | |
958 | ||
0b4e3aa0 | 959 | if ((object->can_persist) && (object->alive)) { |
1c79356b A |
960 | /* |
961 | * Now it is safe to decrement reference count, | |
962 | * and to return if reference count is > 0. | |
963 | */ | |
b0d623f7 | 964 | |
2d21ac55 | 965 | vm_object_lock_assert_exclusive(object); |
1c79356b A |
966 | if (--object->ref_count > 0) { |
967 | vm_object_res_deallocate(object); | |
968 | vm_object_unlock(object); | |
b0d623f7 | 969 | |
1c79356b A |
970 | if (retry_cache_trim && |
971 | ((object = vm_object_cache_trim(TRUE)) != | |
972 | VM_OBJECT_NULL)) { | |
973 | continue; | |
974 | } | |
975 | return; | |
976 | } | |
977 | ||
978 | #if MIGHT_NOT_CACHE_SHADOWS | |
979 | /* | |
980 | * Remove shadow now if we don't | |
981 | * want to cache shadows. | |
982 | */ | |
983 | if (! cache_shadows) { | |
984 | shadow = object->shadow; | |
985 | object->shadow = VM_OBJECT_NULL; | |
986 | } | |
987 | #endif /* MIGHT_NOT_CACHE_SHADOWS */ | |
988 | ||
989 | /* | |
990 | * Enter the object onto the queue of | |
991 | * cached objects, and deactivate | |
992 | * all of its pages. | |
993 | */ | |
994 | assert(object->shadow == VM_OBJECT_NULL); | |
995 | VM_OBJ_RES_DECR(object); | |
996 | XPR(XPR_VM_OBJECT, | |
997 | "vm_o_deallocate: adding %x to cache, queue = (%x, %x)\n", | |
b0d623f7 A |
998 | object, |
999 | vm_object_cached_list.next, | |
1000 | vm_object_cached_list.prev,0,0); | |
1001 | ||
1002 | ||
1003 | vm_object_unlock(object); | |
1004 | ||
1005 | try_failed_count = 0; | |
1006 | for (;;) { | |
1007 | vm_object_cache_lock(); | |
1008 | ||
1009 | /* | |
1010 | * if we try to take a regular lock here | |
1011 | * we risk deadlocking against someone | |
1012 | * holding a lock on this object while | |
1013 | * trying to vm_object_deallocate a different | |
1014 | * object | |
1015 | */ | |
1016 | if (vm_object_lock_try(object)) | |
1017 | break; | |
1018 | vm_object_cache_unlock(); | |
1019 | try_failed_count++; | |
1c79356b | 1020 | |
b0d623f7 A |
1021 | mutex_pause(try_failed_count); /* wait a bit */ |
1022 | } | |
1c79356b A |
1023 | vm_object_cached_count++; |
1024 | if (vm_object_cached_count > vm_object_cached_high) | |
1025 | vm_object_cached_high = vm_object_cached_count; | |
1026 | queue_enter(&vm_object_cached_list, object, | |
1027 | vm_object_t, cached_list); | |
1028 | vm_object_cache_unlock(); | |
b0d623f7 | 1029 | |
0b4e3aa0 | 1030 | vm_object_deactivate_all_pages(object); |
1c79356b A |
1031 | vm_object_unlock(object); |
1032 | ||
1033 | #if MIGHT_NOT_CACHE_SHADOWS | |
1034 | /* | |
1035 | * If we have a shadow that we need | |
1036 | * to deallocate, do so now, remembering | |
1037 | * to trim the cache later. | |
1038 | */ | |
1039 | if (! cache_shadows && shadow != VM_OBJECT_NULL) { | |
1040 | object = shadow; | |
1041 | retry_cache_trim = TRUE; | |
1042 | continue; | |
1043 | } | |
1044 | #endif /* MIGHT_NOT_CACHE_SHADOWS */ | |
1045 | ||
1046 | /* | |
1047 | * Trim the cache. If the cache trim | |
1048 | * returns with a shadow for us to deallocate, | |
1049 | * then remember to retry the cache trim | |
1050 | * when we are done deallocating the shadow. | |
1051 | * Otherwise, we are done. | |
1052 | */ | |
1053 | ||
1054 | object = vm_object_cache_trim(TRUE); | |
1055 | if (object == VM_OBJECT_NULL) { | |
1056 | return; | |
1057 | } | |
1058 | retry_cache_trim = TRUE; | |
b0d623f7 A |
1059 | } else |
1060 | #endif /* VM_OBJECT_CACHE */ | |
1061 | { | |
1c79356b A |
1062 | /* |
1063 | * This object is not cachable; terminate it. | |
1064 | */ | |
1065 | XPR(XPR_VM_OBJECT, | |
91447636 | 1066 | "vm_o_deallocate: !cacheable 0x%X res %d paging_ops %d thread 0x%p ref %d\n", |
b0d623f7 | 1067 | object, object->resident_page_count, |
91447636 A |
1068 | object->paging_in_progress, |
1069 | (void *)current_thread(),object->ref_count); | |
1c79356b A |
1070 | |
1071 | VM_OBJ_RES_DECR(object); /* XXX ? */ | |
1072 | /* | |
1073 | * Terminate this object. If it had a shadow, | |
1074 | * then deallocate it; otherwise, if we need | |
1075 | * to retry a cache trim, do so now; otherwise, | |
1076 | * we are done. "pageout" objects have a shadow, | |
1077 | * but maintain a "paging reference" rather than | |
1078 | * a normal reference. | |
1079 | */ | |
1080 | shadow = object->pageout?VM_OBJECT_NULL:object->shadow; | |
b0d623f7 A |
1081 | |
1082 | if (vm_object_terminate(object) != KERN_SUCCESS) { | |
1c79356b A |
1083 | return; |
1084 | } | |
1085 | if (shadow != VM_OBJECT_NULL) { | |
1086 | object = shadow; | |
1087 | continue; | |
1088 | } | |
b0d623f7 | 1089 | #if VM_OBJECT_CACHE |
1c79356b A |
1090 | if (retry_cache_trim && |
1091 | ((object = vm_object_cache_trim(TRUE)) != | |
1092 | VM_OBJECT_NULL)) { | |
1093 | continue; | |
1094 | } | |
b0d623f7 | 1095 | #endif |
1c79356b A |
1096 | return; |
1097 | } | |
1098 | } | |
b0d623f7 | 1099 | #if VM_OBJECT_CACHE |
1c79356b | 1100 | assert(! retry_cache_trim); |
b0d623f7 | 1101 | #endif |
1c79356b A |
1102 | } |
1103 | ||
b0d623f7 | 1104 | |
6d2010ae A |
1105 | |
1106 | vm_page_t | |
1107 | vm_object_page_grab( | |
1108 | vm_object_t object) | |
1109 | { | |
1110 | vm_page_t p, next_p; | |
1111 | int p_limit = 0; | |
1112 | int p_skipped = 0; | |
1113 | ||
1114 | vm_object_lock_assert_exclusive(object); | |
1115 | ||
1116 | next_p = (vm_page_t)queue_first(&object->memq); | |
1117 | p_limit = MIN(50, object->resident_page_count); | |
1118 | ||
1119 | while (!queue_end(&object->memq, (queue_entry_t)next_p) && --p_limit > 0) { | |
1120 | ||
1121 | p = next_p; | |
1122 | next_p = (vm_page_t)queue_next(&next_p->listq); | |
1123 | ||
316670eb | 1124 | if (VM_PAGE_WIRED(p) || p->busy || p->cleaning || p->laundry || p->fictitious) |
6d2010ae A |
1125 | goto move_page_in_obj; |
1126 | ||
1127 | if (p->pmapped || p->dirty || p->precious) { | |
1128 | vm_page_lockspin_queues(); | |
1129 | ||
1130 | if (p->pmapped) { | |
1131 | int refmod_state; | |
1132 | ||
1133 | vm_object_page_grab_pmapped++; | |
1134 | ||
1135 | if (p->reference == FALSE || p->dirty == FALSE) { | |
1136 | ||
1137 | refmod_state = pmap_get_refmod(p->phys_page); | |
1138 | ||
1139 | if (refmod_state & VM_MEM_REFERENCED) | |
1140 | p->reference = TRUE; | |
316670eb A |
1141 | if (refmod_state & VM_MEM_MODIFIED) { |
1142 | SET_PAGE_DIRTY(p, FALSE); | |
1143 | } | |
6d2010ae A |
1144 | } |
1145 | if (p->dirty == FALSE && p->precious == FALSE) { | |
1146 | ||
1147 | refmod_state = pmap_disconnect(p->phys_page); | |
1148 | ||
1149 | if (refmod_state & VM_MEM_REFERENCED) | |
1150 | p->reference = TRUE; | |
316670eb A |
1151 | if (refmod_state & VM_MEM_MODIFIED) { |
1152 | SET_PAGE_DIRTY(p, FALSE); | |
1153 | } | |
6d2010ae A |
1154 | |
1155 | if (p->dirty == FALSE) | |
1156 | goto take_page; | |
1157 | } | |
1158 | } | |
1159 | if (p->inactive && p->reference == TRUE) { | |
1160 | vm_page_activate(p); | |
1161 | ||
1162 | VM_STAT_INCR(reactivations); | |
1163 | vm_object_page_grab_reactivations++; | |
1164 | } | |
1165 | vm_page_unlock_queues(); | |
1166 | move_page_in_obj: | |
1167 | queue_remove(&object->memq, p, vm_page_t, listq); | |
1168 | queue_enter(&object->memq, p, vm_page_t, listq); | |
1169 | ||
1170 | p_skipped++; | |
1171 | continue; | |
1172 | } | |
1173 | vm_page_lockspin_queues(); | |
1174 | take_page: | |
1175 | vm_page_free_prepare_queues(p); | |
1176 | vm_object_page_grab_returned++; | |
1177 | vm_object_page_grab_skipped += p_skipped; | |
1178 | ||
1179 | vm_page_unlock_queues(); | |
1180 | ||
1181 | vm_page_free_prepare_object(p, TRUE); | |
1182 | ||
1183 | return (p); | |
1184 | } | |
1185 | vm_object_page_grab_skipped += p_skipped; | |
1186 | vm_object_page_grab_failed++; | |
1187 | ||
1188 | return (NULL); | |
1189 | } | |
1190 | ||
1191 | ||
1192 | ||
1193 | #define EVICT_PREPARE_LIMIT 64 | |
1194 | #define EVICT_AGE 10 | |
1195 | ||
1196 | static clock_sec_t vm_object_cache_aging_ts = 0; | |
1197 | ||
1198 | static void | |
1199 | vm_object_cache_remove_locked( | |
1200 | vm_object_t object) | |
1201 | { | |
1202 | queue_remove(&vm_object_cached_list, object, vm_object_t, objq); | |
1203 | object->objq.next = NULL; | |
1204 | object->objq.prev = NULL; | |
1205 | ||
1206 | vm_object_cached_count--; | |
1207 | } | |
1208 | ||
1209 | void | |
1210 | vm_object_cache_remove( | |
1211 | vm_object_t object) | |
1212 | { | |
1213 | vm_object_cache_lock_spin(); | |
1214 | ||
1215 | if (object->objq.next || object->objq.prev) | |
1216 | vm_object_cache_remove_locked(object); | |
1217 | ||
1218 | vm_object_cache_unlock(); | |
1219 | } | |
1220 | ||
1221 | void | |
1222 | vm_object_cache_add( | |
1223 | vm_object_t object) | |
1224 | { | |
1225 | clock_sec_t sec; | |
1226 | clock_nsec_t nsec; | |
1227 | ||
1228 | if (object->resident_page_count == 0) | |
1229 | return; | |
1230 | clock_get_system_nanotime(&sec, &nsec); | |
1231 | ||
1232 | vm_object_cache_lock_spin(); | |
1233 | ||
1234 | if (object->objq.next == NULL && object->objq.prev == NULL) { | |
1235 | queue_enter(&vm_object_cached_list, object, vm_object_t, objq); | |
1236 | object->vo_cache_ts = sec + EVICT_AGE; | |
1237 | object->vo_cache_pages_to_scan = object->resident_page_count; | |
1238 | ||
1239 | vm_object_cached_count++; | |
1240 | vm_object_cache_adds++; | |
1241 | } | |
1242 | vm_object_cache_unlock(); | |
1243 | } | |
1244 | ||
1245 | int | |
1246 | vm_object_cache_evict( | |
1247 | int num_to_evict, | |
1248 | int max_objects_to_examine) | |
1249 | { | |
1250 | vm_object_t object = VM_OBJECT_NULL; | |
1251 | vm_object_t next_obj = VM_OBJECT_NULL; | |
1252 | vm_page_t local_free_q = VM_PAGE_NULL; | |
1253 | vm_page_t p; | |
1254 | vm_page_t next_p; | |
1255 | int object_cnt = 0; | |
1256 | vm_page_t ep_array[EVICT_PREPARE_LIMIT]; | |
1257 | int ep_count; | |
1258 | int ep_limit; | |
1259 | int ep_index; | |
1260 | int ep_freed = 0; | |
1261 | int ep_moved = 0; | |
1262 | uint32_t ep_skipped = 0; | |
1263 | clock_sec_t sec; | |
1264 | clock_nsec_t nsec; | |
1265 | ||
1266 | KERNEL_DEBUG(0x13001ec | DBG_FUNC_START, 0, 0, 0, 0, 0); | |
1267 | /* | |
1268 | * do a couple of quick checks to see if it's | |
1269 | * worthwhile grabbing the lock | |
1270 | */ | |
1271 | if (queue_empty(&vm_object_cached_list)) { | |
1272 | KERNEL_DEBUG(0x13001ec | DBG_FUNC_END, 0, 0, 0, 0, 0); | |
1273 | return (0); | |
1274 | } | |
1275 | clock_get_system_nanotime(&sec, &nsec); | |
1276 | ||
1277 | /* | |
1278 | * the object on the head of the queue has not | |
1279 | * yet sufficiently aged | |
1280 | */ | |
1281 | if (sec < vm_object_cache_aging_ts) { | |
1282 | KERNEL_DEBUG(0x13001ec | DBG_FUNC_END, 0, 0, 0, 0, 0); | |
1283 | return (0); | |
1284 | } | |
1285 | /* | |
1286 | * don't need the queue lock to find | |
1287 | * and lock an object on the cached list | |
1288 | */ | |
1289 | vm_page_unlock_queues(); | |
1290 | ||
1291 | vm_object_cache_lock_spin(); | |
1292 | ||
1293 | for (;;) { | |
1294 | next_obj = (vm_object_t)queue_first(&vm_object_cached_list); | |
1295 | ||
1296 | while (!queue_end(&vm_object_cached_list, (queue_entry_t)next_obj) && object_cnt++ < max_objects_to_examine) { | |
1297 | ||
1298 | object = next_obj; | |
1299 | next_obj = (vm_object_t)queue_next(&next_obj->objq); | |
1300 | ||
1301 | if (sec < object->vo_cache_ts) { | |
1302 | KERNEL_DEBUG(0x130020c, object, object->resident_page_count, object->vo_cache_ts, sec, 0); | |
1303 | ||
1304 | vm_object_cache_aging_ts = object->vo_cache_ts; | |
1305 | object = VM_OBJECT_NULL; | |
1306 | break; | |
1307 | } | |
1308 | if (!vm_object_lock_try_scan(object)) { | |
1309 | /* | |
1310 | * just skip over this guy for now... if we find | |
1311 | * an object to steal pages from, we'll revist in a bit... | |
1312 | * hopefully, the lock will have cleared | |
1313 | */ | |
1314 | KERNEL_DEBUG(0x13001f8, object, object->resident_page_count, 0, 0, 0); | |
1315 | ||
1316 | object = VM_OBJECT_NULL; | |
1317 | continue; | |
1318 | } | |
1319 | if (queue_empty(&object->memq) || object->vo_cache_pages_to_scan == 0) { | |
1320 | /* | |
1321 | * this case really shouldn't happen, but it's not fatal | |
1322 | * so deal with it... if we don't remove the object from | |
1323 | * the list, we'll never move past it. | |
1324 | */ | |
1325 | KERNEL_DEBUG(0x13001fc, object, object->resident_page_count, ep_freed, ep_moved, 0); | |
1326 | ||
1327 | vm_object_cache_remove_locked(object); | |
1328 | vm_object_unlock(object); | |
1329 | object = VM_OBJECT_NULL; | |
1330 | continue; | |
1331 | } | |
1332 | /* | |
1333 | * we have a locked object with pages... | |
1334 | * time to start harvesting | |
1335 | */ | |
1336 | break; | |
1337 | } | |
1338 | vm_object_cache_unlock(); | |
1339 | ||
1340 | if (object == VM_OBJECT_NULL) | |
1341 | break; | |
1342 | ||
1343 | /* | |
1344 | * object is locked at this point and | |
1345 | * has resident pages | |
1346 | */ | |
1347 | next_p = (vm_page_t)queue_first(&object->memq); | |
1348 | ||
1349 | /* | |
1350 | * break the page scan into 2 pieces to minimize the time spent | |
1351 | * behind the page queue lock... | |
1352 | * the list of pages on these unused objects is likely to be cold | |
1353 | * w/r to the cpu cache which increases the time to scan the list | |
1354 | * tenfold... and we may have a 'run' of pages we can't utilize that | |
1355 | * needs to be skipped over... | |
1356 | */ | |
1357 | if ((ep_limit = num_to_evict - (ep_freed + ep_moved)) > EVICT_PREPARE_LIMIT) | |
1358 | ep_limit = EVICT_PREPARE_LIMIT; | |
1359 | ep_count = 0; | |
1360 | ||
1361 | while (!queue_end(&object->memq, (queue_entry_t)next_p) && object->vo_cache_pages_to_scan && ep_count < ep_limit) { | |
1362 | ||
1363 | p = next_p; | |
1364 | next_p = (vm_page_t)queue_next(&next_p->listq); | |
1365 | ||
1366 | object->vo_cache_pages_to_scan--; | |
1367 | ||
316670eb | 1368 | if (VM_PAGE_WIRED(p) || p->busy || p->cleaning || p->laundry) { |
6d2010ae A |
1369 | queue_remove(&object->memq, p, vm_page_t, listq); |
1370 | queue_enter(&object->memq, p, vm_page_t, listq); | |
1371 | ||
1372 | ep_skipped++; | |
1373 | continue; | |
1374 | } | |
1375 | if (p->wpmapped || p->dirty || p->precious) { | |
1376 | queue_remove(&object->memq, p, vm_page_t, listq); | |
1377 | queue_enter(&object->memq, p, vm_page_t, listq); | |
1378 | ||
1379 | pmap_clear_reference(p->phys_page); | |
1380 | } | |
1381 | ep_array[ep_count++] = p; | |
1382 | } | |
1383 | KERNEL_DEBUG(0x13001f4 | DBG_FUNC_START, object, object->resident_page_count, ep_freed, ep_moved, 0); | |
1384 | ||
1385 | vm_page_lockspin_queues(); | |
1386 | ||
1387 | for (ep_index = 0; ep_index < ep_count; ep_index++) { | |
1388 | ||
1389 | p = ep_array[ep_index]; | |
1390 | ||
1391 | if (p->wpmapped || p->dirty || p->precious) { | |
1392 | p->reference = FALSE; | |
1393 | p->no_cache = FALSE; | |
1394 | ||
316670eb A |
1395 | /* |
1396 | * we've already filtered out pages that are in the laundry | |
1397 | * so if we get here, this page can't be on the pageout queue | |
1398 | */ | |
1399 | assert(!p->pageout_queue); | |
1400 | ||
6d2010ae A |
1401 | VM_PAGE_QUEUES_REMOVE(p); |
1402 | VM_PAGE_ENQUEUE_INACTIVE(p, TRUE); | |
1403 | ||
1404 | ep_moved++; | |
1405 | } else { | |
1406 | vm_page_free_prepare_queues(p); | |
1407 | ||
1408 | assert(p->pageq.next == NULL && p->pageq.prev == NULL); | |
1409 | /* | |
1410 | * Add this page to our list of reclaimed pages, | |
1411 | * to be freed later. | |
1412 | */ | |
1413 | p->pageq.next = (queue_entry_t) local_free_q; | |
1414 | local_free_q = p; | |
1415 | ||
1416 | ep_freed++; | |
1417 | } | |
1418 | } | |
1419 | vm_page_unlock_queues(); | |
1420 | ||
1421 | KERNEL_DEBUG(0x13001f4 | DBG_FUNC_END, object, object->resident_page_count, ep_freed, ep_moved, 0); | |
1422 | ||
1423 | if (local_free_q) { | |
1424 | vm_page_free_list(local_free_q, TRUE); | |
1425 | local_free_q = VM_PAGE_NULL; | |
1426 | } | |
1427 | if (object->vo_cache_pages_to_scan == 0) { | |
1428 | KERNEL_DEBUG(0x1300208, object, object->resident_page_count, ep_freed, ep_moved, 0); | |
1429 | ||
1430 | vm_object_cache_remove(object); | |
1431 | ||
1432 | KERNEL_DEBUG(0x13001fc, object, object->resident_page_count, ep_freed, ep_moved, 0); | |
1433 | } | |
1434 | /* | |
1435 | * done with this object | |
1436 | */ | |
1437 | vm_object_unlock(object); | |
1438 | object = VM_OBJECT_NULL; | |
1439 | ||
1440 | /* | |
1441 | * at this point, we are not holding any locks | |
1442 | */ | |
1443 | if ((ep_freed + ep_moved) >= num_to_evict) { | |
1444 | /* | |
1445 | * we've reached our target for the | |
1446 | * number of pages to evict | |
1447 | */ | |
1448 | break; | |
1449 | } | |
1450 | vm_object_cache_lock_spin(); | |
1451 | } | |
1452 | /* | |
1453 | * put the page queues lock back to the caller's | |
1454 | * idea of it | |
1455 | */ | |
1456 | vm_page_lock_queues(); | |
1457 | ||
1458 | vm_object_cache_pages_freed += ep_freed; | |
1459 | vm_object_cache_pages_moved += ep_moved; | |
1460 | vm_object_cache_pages_skipped += ep_skipped; | |
1461 | ||
1462 | KERNEL_DEBUG(0x13001ec | DBG_FUNC_END, ep_freed, 0, 0, 0, 0); | |
1463 | return (ep_freed); | |
1464 | } | |
1465 | ||
1466 | ||
b0d623f7 | 1467 | #if VM_OBJECT_CACHE |
1c79356b A |
1468 | /* |
1469 | * Check to see whether we really need to trim | |
1470 | * down the cache. If so, remove an object from | |
1471 | * the cache, terminate it, and repeat. | |
1472 | * | |
1473 | * Called with, and returns with, cache lock unlocked. | |
1474 | */ | |
1475 | vm_object_t | |
1476 | vm_object_cache_trim( | |
1477 | boolean_t called_from_vm_object_deallocate) | |
1478 | { | |
1479 | register vm_object_t object = VM_OBJECT_NULL; | |
1480 | vm_object_t shadow; | |
1481 | ||
1482 | for (;;) { | |
1483 | ||
1484 | /* | |
1485 | * If we no longer need to trim the cache, | |
1486 | * then we are done. | |
1487 | */ | |
b0d623f7 A |
1488 | if (vm_object_cached_count <= vm_object_cached_max) |
1489 | return VM_OBJECT_NULL; | |
1c79356b A |
1490 | |
1491 | vm_object_cache_lock(); | |
1492 | if (vm_object_cached_count <= vm_object_cached_max) { | |
1493 | vm_object_cache_unlock(); | |
1494 | return VM_OBJECT_NULL; | |
1495 | } | |
1496 | ||
1497 | /* | |
1498 | * We must trim down the cache, so remove | |
1499 | * the first object in the cache. | |
1500 | */ | |
1501 | XPR(XPR_VM_OBJECT, | |
1502 | "vm_object_cache_trim: removing from front of cache (%x, %x)\n", | |
b0d623f7 A |
1503 | vm_object_cached_list.next, |
1504 | vm_object_cached_list.prev, 0, 0, 0); | |
1c79356b A |
1505 | |
1506 | object = (vm_object_t) queue_first(&vm_object_cached_list); | |
9bccf70c A |
1507 | if(object == (vm_object_t) &vm_object_cached_list) { |
1508 | /* something's wrong with the calling parameter or */ | |
1509 | /* the value of vm_object_cached_count, just fix */ | |
1510 | /* and return */ | |
1511 | if(vm_object_cached_max < 0) | |
1512 | vm_object_cached_max = 0; | |
1513 | vm_object_cached_count = 0; | |
1514 | vm_object_cache_unlock(); | |
1515 | return VM_OBJECT_NULL; | |
1516 | } | |
1c79356b A |
1517 | vm_object_lock(object); |
1518 | queue_remove(&vm_object_cached_list, object, vm_object_t, | |
1519 | cached_list); | |
1520 | vm_object_cached_count--; | |
1521 | ||
b0d623f7 | 1522 | vm_object_cache_unlock(); |
1c79356b A |
1523 | /* |
1524 | * Since this object is in the cache, we know | |
1525 | * that it is initialized and has no references. | |
1526 | * Take a reference to avoid recursive deallocations. | |
1527 | */ | |
1528 | ||
1529 | assert(object->pager_initialized); | |
1530 | assert(object->ref_count == 0); | |
2d21ac55 | 1531 | vm_object_lock_assert_exclusive(object); |
1c79356b A |
1532 | object->ref_count++; |
1533 | ||
1534 | /* | |
1535 | * Terminate the object. | |
1536 | * If the object had a shadow, we let vm_object_deallocate | |
1537 | * deallocate it. "pageout" objects have a shadow, but | |
1538 | * maintain a "paging reference" rather than a normal | |
1539 | * reference. | |
1540 | * (We are careful here to limit recursion.) | |
1541 | */ | |
1542 | shadow = object->pageout?VM_OBJECT_NULL:object->shadow; | |
b0d623f7 | 1543 | |
1c79356b A |
1544 | if(vm_object_terminate(object) != KERN_SUCCESS) |
1545 | continue; | |
b0d623f7 | 1546 | |
1c79356b A |
1547 | if (shadow != VM_OBJECT_NULL) { |
1548 | if (called_from_vm_object_deallocate) { | |
1549 | return shadow; | |
1550 | } else { | |
1551 | vm_object_deallocate(shadow); | |
1552 | } | |
1553 | } | |
1554 | } | |
1555 | } | |
b0d623f7 | 1556 | #endif |
1c79356b | 1557 | |
1c79356b A |
1558 | |
1559 | /* | |
1560 | * Routine: vm_object_terminate | |
1561 | * Purpose: | |
1562 | * Free all resources associated with a vm_object. | |
1563 | * In/out conditions: | |
0b4e3aa0 | 1564 | * Upon entry, the object must be locked, |
1c79356b A |
1565 | * and the object must have exactly one reference. |
1566 | * | |
1567 | * The shadow object reference is left alone. | |
1568 | * | |
1569 | * The object must be unlocked if its found that pages | |
1570 | * must be flushed to a backing object. If someone | |
1571 | * manages to map the object while it is being flushed | |
1572 | * the object is returned unlocked and unchanged. Otherwise, | |
1573 | * upon exit, the cache will be unlocked, and the | |
1574 | * object will cease to exist. | |
1575 | */ | |
0b4e3aa0 | 1576 | static kern_return_t |
1c79356b | 1577 | vm_object_terminate( |
b0d623f7 | 1578 | vm_object_t object) |
1c79356b | 1579 | { |
b0d623f7 | 1580 | vm_object_t shadow_object; |
1c79356b A |
1581 | |
1582 | XPR(XPR_VM_OBJECT, "vm_object_terminate, object 0x%X ref %d\n", | |
b0d623f7 A |
1583 | object, object->ref_count, 0, 0, 0); |
1584 | ||
1585 | if (!object->pageout && (!object->temporary || object->can_persist) && | |
1586 | (object->pager != NULL || object->shadow_severed)) { | |
1c79356b A |
1587 | /* |
1588 | * Clear pager_trusted bit so that the pages get yanked | |
1589 | * out of the object instead of cleaned in place. This | |
1590 | * prevents a deadlock in XMM and makes more sense anyway. | |
1591 | */ | |
1592 | object->pager_trusted = FALSE; | |
1593 | ||
b0d623f7 | 1594 | vm_object_reap_pages(object, REAP_TERMINATE); |
1c79356b | 1595 | } |
0b4e3aa0 A |
1596 | /* |
1597 | * Make sure the object isn't already being terminated | |
1598 | */ | |
b0d623f7 | 1599 | if (object->terminating) { |
2d21ac55 A |
1600 | vm_object_lock_assert_exclusive(object); |
1601 | object->ref_count--; | |
0b4e3aa0 | 1602 | assert(object->ref_count > 0); |
0b4e3aa0 A |
1603 | vm_object_unlock(object); |
1604 | return KERN_FAILURE; | |
1605 | } | |
1606 | ||
1607 | /* | |
1608 | * Did somebody get a reference to the object while we were | |
1609 | * cleaning it? | |
1610 | */ | |
b0d623f7 | 1611 | if (object->ref_count != 1) { |
2d21ac55 A |
1612 | vm_object_lock_assert_exclusive(object); |
1613 | object->ref_count--; | |
0b4e3aa0 | 1614 | assert(object->ref_count > 0); |
1c79356b | 1615 | vm_object_res_deallocate(object); |
1c79356b A |
1616 | vm_object_unlock(object); |
1617 | return KERN_FAILURE; | |
1618 | } | |
1619 | ||
1c79356b A |
1620 | /* |
1621 | * Make sure no one can look us up now. | |
1622 | */ | |
1623 | ||
0b4e3aa0 A |
1624 | object->terminating = TRUE; |
1625 | object->alive = FALSE; | |
1c79356b | 1626 | |
6d2010ae A |
1627 | if ( !object->internal && (object->objq.next || object->objq.prev)) |
1628 | vm_object_cache_remove(object); | |
1629 | ||
b0d623f7 A |
1630 | if (object->hashed) { |
1631 | lck_mtx_t *lck; | |
1632 | ||
1633 | lck = vm_object_hash_lock_spin(object->pager); | |
1634 | vm_object_remove(object); | |
1635 | vm_object_hash_unlock(lck); | |
1636 | } | |
1c79356b A |
1637 | /* |
1638 | * Detach the object from its shadow if we are the shadow's | |
55e303ae A |
1639 | * copy. The reference we hold on the shadow must be dropped |
1640 | * by our caller. | |
1c79356b A |
1641 | */ |
1642 | if (((shadow_object = object->shadow) != VM_OBJECT_NULL) && | |
1643 | !(object->pageout)) { | |
1644 | vm_object_lock(shadow_object); | |
55e303ae A |
1645 | if (shadow_object->copy == object) |
1646 | shadow_object->copy = VM_OBJECT_NULL; | |
1c79356b A |
1647 | vm_object_unlock(shadow_object); |
1648 | } | |
1649 | ||
b0d623f7 A |
1650 | if (object->paging_in_progress != 0 || |
1651 | object->activity_in_progress != 0) { | |
8f6c56a5 A |
1652 | /* |
1653 | * There are still some paging_in_progress references | |
1654 | * on this object, meaning that there are some paging | |
1655 | * or other I/O operations in progress for this VM object. | |
1656 | * Such operations take some paging_in_progress references | |
1657 | * up front to ensure that the object doesn't go away, but | |
1658 | * they may also need to acquire a reference on the VM object, | |
1659 | * to map it in kernel space, for example. That means that | |
1660 | * they may end up releasing the last reference on the VM | |
1661 | * object, triggering its termination, while still holding | |
1662 | * paging_in_progress references. Waiting for these | |
1663 | * pending paging_in_progress references to go away here would | |
1664 | * deadlock. | |
1665 | * | |
1666 | * To avoid deadlocking, we'll let the vm_object_reaper_thread | |
1667 | * complete the VM object termination if it still holds | |
1668 | * paging_in_progress references at this point. | |
1669 | * | |
1670 | * No new paging_in_progress should appear now that the | |
1671 | * VM object is "terminating" and not "alive". | |
1672 | */ | |
1673 | vm_object_reap_async(object); | |
8f6c56a5 | 1674 | vm_object_unlock(object); |
6601e61a A |
1675 | /* |
1676 | * Return KERN_FAILURE to let the caller know that we | |
1677 | * haven't completed the termination and it can't drop this | |
1678 | * object's reference on its shadow object yet. | |
1679 | * The reaper thread will take care of that once it has | |
1680 | * completed this object's termination. | |
1681 | */ | |
1682 | return KERN_FAILURE; | |
8f6c56a5 | 1683 | } |
b0d623f7 A |
1684 | /* |
1685 | * complete the VM object termination | |
1686 | */ | |
8f6c56a5 A |
1687 | vm_object_reap(object); |
1688 | object = VM_OBJECT_NULL; | |
8f6c56a5 | 1689 | |
2d21ac55 | 1690 | /* |
b0d623f7 A |
1691 | * the object lock was released by vm_object_reap() |
1692 | * | |
2d21ac55 A |
1693 | * KERN_SUCCESS means that this object has been terminated |
1694 | * and no longer needs its shadow object but still holds a | |
1695 | * reference on it. | |
1696 | * The caller is responsible for dropping that reference. | |
1697 | * We can't call vm_object_deallocate() here because that | |
1698 | * would create a recursion. | |
1699 | */ | |
8f6c56a5 A |
1700 | return KERN_SUCCESS; |
1701 | } | |
1702 | ||
b0d623f7 | 1703 | |
8f6c56a5 A |
1704 | /* |
1705 | * vm_object_reap(): | |
1706 | * | |
1707 | * Complete the termination of a VM object after it's been marked | |
1708 | * as "terminating" and "!alive" by vm_object_terminate(). | |
1709 | * | |
b0d623f7 A |
1710 | * The VM object must be locked by caller. |
1711 | * The lock will be released on return and the VM object is no longer valid. | |
8f6c56a5 A |
1712 | */ |
1713 | void | |
1714 | vm_object_reap( | |
1715 | vm_object_t object) | |
1716 | { | |
1717 | memory_object_t pager; | |
8f6c56a5 | 1718 | |
2d21ac55 A |
1719 | vm_object_lock_assert_exclusive(object); |
1720 | assert(object->paging_in_progress == 0); | |
b0d623f7 | 1721 | assert(object->activity_in_progress == 0); |
8f6c56a5 A |
1722 | |
1723 | vm_object_reap_count++; | |
1724 | ||
0b4e3aa0 A |
1725 | pager = object->pager; |
1726 | object->pager = MEMORY_OBJECT_NULL; | |
1727 | ||
1728 | if (pager != MEMORY_OBJECT_NULL) | |
91447636 | 1729 | memory_object_control_disable(object->pager_control); |
0b4e3aa0 | 1730 | |
1c79356b A |
1731 | object->ref_count--; |
1732 | #if TASK_SWAPPER | |
1733 | assert(object->res_count == 0); | |
1734 | #endif /* TASK_SWAPPER */ | |
1735 | ||
1c79356b A |
1736 | assert (object->ref_count == 0); |
1737 | ||
b0d623f7 A |
1738 | /* |
1739 | * remove from purgeable queue if it's on | |
1740 | */ | |
6d2010ae | 1741 | if (object->internal && (object->objq.next || object->objq.prev)) { |
2d21ac55 A |
1742 | purgeable_q_t queue = vm_purgeable_object_remove(object); |
1743 | assert(queue); | |
1744 | ||
39236c6e A |
1745 | if (object->purgeable_when_ripe) { |
1746 | /* | |
1747 | * Must take page lock for this - | |
1748 | * using it to protect token queue | |
1749 | */ | |
1750 | vm_page_lock_queues(); | |
1751 | vm_purgeable_token_delete_first(queue); | |
2d21ac55 | 1752 | |
39236c6e A |
1753 | assert(queue->debug_count_objects>=0); |
1754 | vm_page_unlock_queues(); | |
1755 | } | |
2d21ac55 A |
1756 | } |
1757 | ||
1c79356b A |
1758 | /* |
1759 | * Clean or free the pages, as appropriate. | |
1760 | * It is possible for us to find busy/absent pages, | |
1761 | * if some faults on this object were aborted. | |
1762 | */ | |
1763 | if (object->pageout) { | |
8f6c56a5 | 1764 | assert(object->shadow != VM_OBJECT_NULL); |
1c79356b A |
1765 | |
1766 | vm_pageout_object_terminate(object); | |
1767 | ||
b0d623f7 | 1768 | } else if (((object->temporary && !object->can_persist) || (pager == MEMORY_OBJECT_NULL))) { |
2d21ac55 | 1769 | |
b0d623f7 | 1770 | vm_object_reap_pages(object, REAP_REAP); |
1c79356b | 1771 | } |
b0d623f7 | 1772 | assert(queue_empty(&object->memq)); |
1c79356b | 1773 | assert(object->paging_in_progress == 0); |
b0d623f7 | 1774 | assert(object->activity_in_progress == 0); |
1c79356b A |
1775 | assert(object->ref_count == 0); |
1776 | ||
1c79356b | 1777 | /* |
0b4e3aa0 A |
1778 | * If the pager has not already been released by |
1779 | * vm_object_destroy, we need to terminate it and | |
1780 | * release our reference to it here. | |
1c79356b | 1781 | */ |
0b4e3aa0 A |
1782 | if (pager != MEMORY_OBJECT_NULL) { |
1783 | vm_object_unlock(object); | |
b0d623f7 | 1784 | vm_object_release_pager(pager, object->hashed); |
0b4e3aa0 | 1785 | vm_object_lock(object); |
1c79356b | 1786 | } |
0b4e3aa0 | 1787 | |
1c79356b | 1788 | /* kick off anyone waiting on terminating */ |
0b4e3aa0 | 1789 | object->terminating = FALSE; |
1c79356b A |
1790 | vm_object_paging_begin(object); |
1791 | vm_object_paging_end(object); | |
1792 | vm_object_unlock(object); | |
1793 | ||
1794 | #if MACH_PAGEMAP | |
6d2010ae | 1795 | vm_external_destroy(object->existence_map, object->vo_size); |
1c79356b A |
1796 | #endif /* MACH_PAGEMAP */ |
1797 | ||
6601e61a A |
1798 | object->shadow = VM_OBJECT_NULL; |
1799 | ||
2d21ac55 | 1800 | vm_object_lock_destroy(object); |
1c79356b A |
1801 | /* |
1802 | * Free the space for the object. | |
1803 | */ | |
91447636 | 1804 | zfree(vm_object_zone, object); |
8f6c56a5 A |
1805 | object = VM_OBJECT_NULL; |
1806 | } | |
1807 | ||
8f6c56a5 | 1808 | |
6d2010ae | 1809 | unsigned int vm_max_batch = 256; |
8f6c56a5 | 1810 | |
b0d623f7 A |
1811 | #define V_O_R_MAX_BATCH 128 |
1812 | ||
6d2010ae A |
1813 | #define BATCH_LIMIT(max) (vm_max_batch >= max ? max : vm_max_batch) |
1814 | ||
b0d623f7 A |
1815 | |
1816 | #define VM_OBJ_REAP_FREELIST(_local_free_q, do_disconnect) \ | |
1817 | MACRO_BEGIN \ | |
1818 | if (_local_free_q) { \ | |
1819 | if (do_disconnect) { \ | |
1820 | vm_page_t m; \ | |
1821 | for (m = _local_free_q; \ | |
1822 | m != VM_PAGE_NULL; \ | |
1823 | m = (vm_page_t) m->pageq.next) { \ | |
1824 | if (m->pmapped) { \ | |
1825 | pmap_disconnect(m->phys_page); \ | |
1826 | } \ | |
1827 | } \ | |
1828 | } \ | |
1829 | vm_page_free_list(_local_free_q, TRUE); \ | |
1830 | _local_free_q = VM_PAGE_NULL; \ | |
1831 | } \ | |
1832 | MACRO_END | |
1833 | ||
8f6c56a5 A |
1834 | |
1835 | void | |
b0d623f7 A |
1836 | vm_object_reap_pages( |
1837 | vm_object_t object, | |
1838 | int reap_type) | |
8f6c56a5 | 1839 | { |
b0d623f7 A |
1840 | vm_page_t p; |
1841 | vm_page_t next; | |
1842 | vm_page_t local_free_q = VM_PAGE_NULL; | |
1843 | int loop_count; | |
1844 | boolean_t disconnect_on_release; | |
39236c6e | 1845 | pmap_flush_context pmap_flush_context_storage; |
8f6c56a5 | 1846 | |
b0d623f7 | 1847 | if (reap_type == REAP_DATA_FLUSH) { |
2d21ac55 | 1848 | /* |
b0d623f7 A |
1849 | * We need to disconnect pages from all pmaps before |
1850 | * releasing them to the free list | |
2d21ac55 | 1851 | */ |
b0d623f7 A |
1852 | disconnect_on_release = TRUE; |
1853 | } else { | |
1854 | /* | |
1855 | * Either the caller has already disconnected the pages | |
1856 | * from all pmaps, or we disconnect them here as we add | |
1857 | * them to out local list of pages to be released. | |
1858 | * No need to re-disconnect them when we release the pages | |
1859 | * to the free list. | |
1860 | */ | |
1861 | disconnect_on_release = FALSE; | |
1862 | } | |
1863 | ||
1864 | restart_after_sleep: | |
1865 | if (queue_empty(&object->memq)) | |
1866 | return; | |
316670eb | 1867 | loop_count = BATCH_LIMIT(V_O_R_MAX_BATCH); |
b0d623f7 | 1868 | |
39236c6e A |
1869 | if (reap_type == REAP_PURGEABLE) |
1870 | pmap_flush_context_init(&pmap_flush_context_storage); | |
1871 | ||
b0d623f7 A |
1872 | vm_page_lockspin_queues(); |
1873 | ||
1874 | next = (vm_page_t)queue_first(&object->memq); | |
1875 | ||
1876 | while (!queue_end(&object->memq, (queue_entry_t)next)) { | |
1877 | ||
1878 | p = next; | |
1879 | next = (vm_page_t)queue_next(&next->listq); | |
1880 | ||
1881 | if (--loop_count == 0) { | |
1882 | ||
1883 | vm_page_unlock_queues(); | |
1884 | ||
1885 | if (local_free_q) { | |
39236c6e A |
1886 | |
1887 | if (reap_type == REAP_PURGEABLE) { | |
1888 | pmap_flush(&pmap_flush_context_storage); | |
1889 | pmap_flush_context_init(&pmap_flush_context_storage); | |
1890 | } | |
b0d623f7 A |
1891 | /* |
1892 | * Free the pages we reclaimed so far | |
1893 | * and take a little break to avoid | |
1894 | * hogging the page queue lock too long | |
1895 | */ | |
1896 | VM_OBJ_REAP_FREELIST(local_free_q, | |
1897 | disconnect_on_release); | |
1898 | } else | |
1899 | mutex_pause(0); | |
1900 | ||
316670eb | 1901 | loop_count = BATCH_LIMIT(V_O_R_MAX_BATCH); |
b0d623f7 A |
1902 | |
1903 | vm_page_lockspin_queues(); | |
1904 | } | |
1905 | if (reap_type == REAP_DATA_FLUSH || reap_type == REAP_TERMINATE) { | |
1906 | ||
316670eb | 1907 | if (p->busy || p->cleaning) { |
b0d623f7 A |
1908 | |
1909 | vm_page_unlock_queues(); | |
1910 | /* | |
1911 | * free the pages reclaimed so far | |
1912 | */ | |
1913 | VM_OBJ_REAP_FREELIST(local_free_q, | |
1914 | disconnect_on_release); | |
1915 | ||
1916 | PAGE_SLEEP(object, p, THREAD_UNINT); | |
1917 | ||
1918 | goto restart_after_sleep; | |
1919 | } | |
316670eb A |
1920 | if (p->laundry) { |
1921 | p->pageout = FALSE; | |
1922 | ||
1923 | vm_pageout_steal_laundry(p, TRUE); | |
1924 | } | |
b0d623f7 A |
1925 | } |
1926 | switch (reap_type) { | |
1927 | ||
1928 | case REAP_DATA_FLUSH: | |
1929 | if (VM_PAGE_WIRED(p)) { | |
1930 | /* | |
1931 | * this is an odd case... perhaps we should | |
1932 | * zero-fill this page since we're conceptually | |
1933 | * tossing its data at this point, but leaving | |
1934 | * it on the object to honor the 'wire' contract | |
1935 | */ | |
1936 | continue; | |
1937 | } | |
1938 | break; | |
1939 | ||
1940 | case REAP_PURGEABLE: | |
1941 | if (VM_PAGE_WIRED(p)) { | |
316670eb A |
1942 | /* |
1943 | * can't purge a wired page | |
1944 | */ | |
b0d623f7 A |
1945 | vm_page_purged_wired++; |
1946 | continue; | |
1947 | } | |
316670eb A |
1948 | if (p->laundry && !p->busy && !p->cleaning) { |
1949 | p->pageout = FALSE; | |
b0d623f7 | 1950 | |
316670eb A |
1951 | vm_pageout_steal_laundry(p, TRUE); |
1952 | } | |
1953 | if (p->cleaning || p->laundry) { | |
1954 | /* | |
1955 | * page is being acted upon, | |
1956 | * so don't mess with it | |
1957 | */ | |
1958 | vm_page_purged_others++; | |
1959 | continue; | |
1960 | } | |
b0d623f7 A |
1961 | if (p->busy) { |
1962 | /* | |
1963 | * We can't reclaim a busy page but we can | |
316670eb | 1964 | * make it more likely to be paged (it's not wired) to make |
b0d623f7 A |
1965 | * sure that it gets considered by |
1966 | * vm_pageout_scan() later. | |
1967 | */ | |
1968 | vm_page_deactivate(p); | |
1969 | vm_page_purged_busy++; | |
1970 | continue; | |
1971 | } | |
1972 | ||
b0d623f7 A |
1973 | assert(p->object != kernel_object); |
1974 | ||
1975 | /* | |
1976 | * we can discard this page... | |
1977 | */ | |
1978 | if (p->pmapped == TRUE) { | |
b0d623f7 A |
1979 | /* |
1980 | * unmap the page | |
1981 | */ | |
39236c6e | 1982 | pmap_disconnect_options(p->phys_page, PMAP_OPTIONS_NOFLUSH | PMAP_OPTIONS_NOREFMOD, (void *)&pmap_flush_context_storage); |
b0d623f7 | 1983 | } |
39236c6e | 1984 | vm_page_purged_count++; |
b0d623f7 A |
1985 | |
1986 | break; | |
1987 | ||
1988 | case REAP_TERMINATE: | |
1989 | if (p->absent || p->private) { | |
1990 | /* | |
1991 | * For private pages, VM_PAGE_FREE just | |
1992 | * leaves the page structure around for | |
1993 | * its owner to clean up. For absent | |
1994 | * pages, the structure is returned to | |
1995 | * the appropriate pool. | |
1996 | */ | |
1997 | break; | |
1998 | } | |
1999 | if (p->fictitious) { | |
2000 | assert (p->phys_page == vm_page_guard_addr); | |
2001 | break; | |
2002 | } | |
2003 | if (!p->dirty && p->wpmapped) | |
2004 | p->dirty = pmap_is_modified(p->phys_page); | |
2005 | ||
2006 | if ((p->dirty || p->precious) && !p->error && object->alive) { | |
2007 | ||
316670eb A |
2008 | if (!p->laundry) { |
2009 | VM_PAGE_QUEUES_REMOVE(p); | |
2010 | /* | |
2011 | * flush page... page will be freed | |
2012 | * upon completion of I/O | |
2013 | */ | |
2014 | vm_pageout_cluster(p, TRUE); | |
2015 | } | |
b0d623f7 A |
2016 | vm_page_unlock_queues(); |
2017 | /* | |
2018 | * free the pages reclaimed so far | |
2019 | */ | |
2020 | VM_OBJ_REAP_FREELIST(local_free_q, | |
2021 | disconnect_on_release); | |
2022 | ||
b0d623f7 A |
2023 | vm_object_paging_wait(object, THREAD_UNINT); |
2024 | ||
2025 | goto restart_after_sleep; | |
2026 | } | |
2027 | break; | |
2028 | ||
2029 | case REAP_REAP: | |
2030 | break; | |
2031 | } | |
2032 | vm_page_free_prepare_queues(p); | |
2033 | assert(p->pageq.next == NULL && p->pageq.prev == NULL); | |
2034 | /* | |
2035 | * Add this page to our list of reclaimed pages, | |
2036 | * to be freed later. | |
2037 | */ | |
2038 | p->pageq.next = (queue_entry_t) local_free_q; | |
2039 | local_free_q = p; | |
2040 | } | |
2041 | vm_page_unlock_queues(); | |
2042 | ||
2043 | /* | |
2044 | * Free the remaining reclaimed pages | |
2045 | */ | |
39236c6e A |
2046 | if (reap_type == REAP_PURGEABLE) |
2047 | pmap_flush(&pmap_flush_context_storage); | |
2048 | ||
b0d623f7 A |
2049 | VM_OBJ_REAP_FREELIST(local_free_q, |
2050 | disconnect_on_release); | |
2051 | } | |
2052 | ||
2053 | ||
2054 | void | |
2055 | vm_object_reap_async( | |
2056 | vm_object_t object) | |
2057 | { | |
2058 | vm_object_lock_assert_exclusive(object); | |
2059 | ||
2060 | vm_object_reaper_lock_spin(); | |
2061 | ||
2062 | vm_object_reap_count_async++; | |
2063 | ||
2064 | /* enqueue the VM object... */ | |
2065 | queue_enter(&vm_object_reaper_queue, object, | |
2066 | vm_object_t, cached_list); | |
2067 | ||
2068 | vm_object_reaper_unlock(); | |
2069 | ||
2070 | /* ... and wake up the reaper thread */ | |
2071 | thread_wakeup((event_t) &vm_object_reaper_queue); | |
2072 | } | |
2073 | ||
2074 | ||
2075 | void | |
2076 | vm_object_reaper_thread(void) | |
2077 | { | |
2078 | vm_object_t object, shadow_object; | |
2079 | ||
2080 | vm_object_reaper_lock_spin(); | |
2081 | ||
2082 | while (!queue_empty(&vm_object_reaper_queue)) { | |
2083 | queue_remove_first(&vm_object_reaper_queue, | |
2084 | object, | |
2085 | vm_object_t, | |
2086 | cached_list); | |
2087 | ||
2088 | vm_object_reaper_unlock(); | |
2089 | vm_object_lock(object); | |
2090 | ||
2091 | assert(object->terminating); | |
2092 | assert(!object->alive); | |
2093 | ||
2094 | /* | |
2095 | * The pageout daemon might be playing with our pages. | |
2096 | * Now that the object is dead, it won't touch any more | |
2097 | * pages, but some pages might already be on their way out. | |
2098 | * Hence, we wait until the active paging activities have | |
2099 | * ceased before we break the association with the pager | |
2100 | * itself. | |
2101 | */ | |
2102 | while (object->paging_in_progress != 0 || | |
2103 | object->activity_in_progress != 0) { | |
2104 | vm_object_wait(object, | |
2105 | VM_OBJECT_EVENT_PAGING_IN_PROGRESS, | |
2106 | THREAD_UNINT); | |
2107 | vm_object_lock(object); | |
2108 | } | |
2109 | ||
2110 | shadow_object = | |
2111 | object->pageout ? VM_OBJECT_NULL : object->shadow; | |
6601e61a | 2112 | |
8f6c56a5 A |
2113 | vm_object_reap(object); |
2114 | /* cache is unlocked and object is no longer valid */ | |
2115 | object = VM_OBJECT_NULL; | |
2116 | ||
6601e61a A |
2117 | if (shadow_object != VM_OBJECT_NULL) { |
2118 | /* | |
2119 | * Drop the reference "object" was holding on | |
2120 | * its shadow object. | |
2121 | */ | |
2122 | vm_object_deallocate(shadow_object); | |
2123 | shadow_object = VM_OBJECT_NULL; | |
2124 | } | |
b0d623f7 | 2125 | vm_object_reaper_lock_spin(); |
8f6c56a5 A |
2126 | } |
2127 | ||
2128 | /* wait for more work... */ | |
2129 | assert_wait((event_t) &vm_object_reaper_queue, THREAD_UNINT); | |
b0d623f7 A |
2130 | |
2131 | vm_object_reaper_unlock(); | |
2132 | ||
8f6c56a5 A |
2133 | thread_block((thread_continue_t) vm_object_reaper_thread); |
2134 | /*NOTREACHED*/ | |
1c79356b A |
2135 | } |
2136 | ||
2137 | /* | |
2138 | * Routine: vm_object_pager_wakeup | |
2139 | * Purpose: Wake up anyone waiting for termination of a pager. | |
2140 | */ | |
2141 | ||
0b4e3aa0 | 2142 | static void |
1c79356b | 2143 | vm_object_pager_wakeup( |
0b4e3aa0 | 2144 | memory_object_t pager) |
1c79356b A |
2145 | { |
2146 | vm_object_hash_entry_t entry; | |
2147 | boolean_t waiting = FALSE; | |
b0d623f7 | 2148 | lck_mtx_t *lck; |
1c79356b A |
2149 | |
2150 | /* | |
2151 | * If anyone was waiting for the memory_object_terminate | |
2152 | * to be queued, wake them up now. | |
2153 | */ | |
b0d623f7 | 2154 | lck = vm_object_hash_lock_spin(pager); |
1c79356b A |
2155 | entry = vm_object_hash_lookup(pager, TRUE); |
2156 | if (entry != VM_OBJECT_HASH_ENTRY_NULL) | |
2157 | waiting = entry->waiting; | |
b0d623f7 A |
2158 | vm_object_hash_unlock(lck); |
2159 | ||
1c79356b A |
2160 | if (entry != VM_OBJECT_HASH_ENTRY_NULL) { |
2161 | if (waiting) | |
2162 | thread_wakeup((event_t) pager); | |
2163 | vm_object_hash_entry_free(entry); | |
2164 | } | |
2165 | } | |
2166 | ||
2167 | /* | |
0b4e3aa0 A |
2168 | * Routine: vm_object_release_pager |
2169 | * Purpose: Terminate the pager and, upon completion, | |
2170 | * release our last reference to it. | |
2171 | * just like memory_object_terminate, except | |
2172 | * that we wake up anyone blocked in vm_object_enter | |
2173 | * waiting for termination message to be queued | |
2174 | * before calling memory_object_init. | |
1c79356b | 2175 | */ |
0b4e3aa0 A |
2176 | static void |
2177 | vm_object_release_pager( | |
b0d623f7 A |
2178 | memory_object_t pager, |
2179 | boolean_t hashed) | |
1c79356b | 2180 | { |
1c79356b | 2181 | |
0b4e3aa0 A |
2182 | /* |
2183 | * Terminate the pager. | |
2184 | */ | |
1c79356b | 2185 | |
0b4e3aa0 | 2186 | (void) memory_object_terminate(pager); |
1c79356b | 2187 | |
b0d623f7 A |
2188 | if (hashed == TRUE) { |
2189 | /* | |
2190 | * Wakeup anyone waiting for this terminate | |
2191 | * and remove the entry from the hash | |
2192 | */ | |
2193 | vm_object_pager_wakeup(pager); | |
2194 | } | |
0b4e3aa0 A |
2195 | /* |
2196 | * Release reference to pager. | |
2197 | */ | |
2198 | memory_object_deallocate(pager); | |
2199 | } | |
1c79356b | 2200 | |
1c79356b | 2201 | /* |
0b4e3aa0 | 2202 | * Routine: vm_object_destroy |
1c79356b | 2203 | * Purpose: |
0b4e3aa0 | 2204 | * Shut down a VM object, despite the |
1c79356b A |
2205 | * presence of address map (or other) references |
2206 | * to the vm_object. | |
2207 | */ | |
2208 | kern_return_t | |
0b4e3aa0 A |
2209 | vm_object_destroy( |
2210 | vm_object_t object, | |
91447636 | 2211 | __unused kern_return_t reason) |
1c79356b | 2212 | { |
0b4e3aa0 | 2213 | memory_object_t old_pager; |
1c79356b A |
2214 | |
2215 | if (object == VM_OBJECT_NULL) | |
2216 | return(KERN_SUCCESS); | |
2217 | ||
2218 | /* | |
0b4e3aa0 | 2219 | * Remove the pager association immediately. |
1c79356b A |
2220 | * |
2221 | * This will prevent the memory manager from further | |
2222 | * meddling. [If it wanted to flush data or make | |
2223 | * other changes, it should have done so before performing | |
2224 | * the destroy call.] | |
2225 | */ | |
2226 | ||
1c79356b | 2227 | vm_object_lock(object); |
1c79356b A |
2228 | object->can_persist = FALSE; |
2229 | object->named = FALSE; | |
0b4e3aa0 | 2230 | object->alive = FALSE; |
1c79356b | 2231 | |
b0d623f7 A |
2232 | if (object->hashed) { |
2233 | lck_mtx_t *lck; | |
2234 | /* | |
2235 | * Rip out the pager from the vm_object now... | |
2236 | */ | |
2237 | lck = vm_object_hash_lock_spin(object->pager); | |
2238 | vm_object_remove(object); | |
2239 | vm_object_hash_unlock(lck); | |
2240 | } | |
0b4e3aa0 A |
2241 | old_pager = object->pager; |
2242 | object->pager = MEMORY_OBJECT_NULL; | |
2243 | if (old_pager != MEMORY_OBJECT_NULL) | |
91447636 | 2244 | memory_object_control_disable(object->pager_control); |
1c79356b A |
2245 | |
2246 | /* | |
b0d623f7 A |
2247 | * Wait for the existing paging activity (that got |
2248 | * through before we nulled out the pager) to subside. | |
2249 | */ | |
2250 | ||
2251 | vm_object_paging_wait(object, THREAD_UNINT); | |
2252 | vm_object_unlock(object); | |
2253 | ||
2254 | /* | |
2255 | * Terminate the object now. | |
2256 | */ | |
2257 | if (old_pager != MEMORY_OBJECT_NULL) { | |
2258 | vm_object_release_pager(old_pager, object->hashed); | |
2259 | ||
2260 | /* | |
2261 | * JMM - Release the caller's reference. This assumes the | |
2262 | * caller had a reference to release, which is a big (but | |
2263 | * currently valid) assumption if this is driven from the | |
2264 | * vnode pager (it is holding a named reference when making | |
2265 | * this call).. | |
2266 | */ | |
2267 | vm_object_deallocate(object); | |
2268 | ||
2269 | } | |
2270 | return(KERN_SUCCESS); | |
2271 | } | |
2272 | ||
2273 | ||
6d2010ae A |
2274 | #if VM_OBJECT_CACHE |
2275 | ||
b0d623f7 A |
2276 | #define VM_OBJ_DEACT_ALL_STATS DEBUG |
2277 | #if VM_OBJ_DEACT_ALL_STATS | |
2278 | uint32_t vm_object_deactivate_all_pages_batches = 0; | |
2279 | uint32_t vm_object_deactivate_all_pages_pages = 0; | |
2280 | #endif /* VM_OBJ_DEACT_ALL_STATS */ | |
2281 | /* | |
2282 | * vm_object_deactivate_all_pages | |
2283 | * | |
2284 | * Deactivate all pages in the specified object. (Keep its pages | |
2285 | * in memory even though it is no longer referenced.) | |
2286 | * | |
2287 | * The object must be locked. | |
2288 | */ | |
2289 | static void | |
2290 | vm_object_deactivate_all_pages( | |
2291 | register vm_object_t object) | |
2292 | { | |
2293 | register vm_page_t p; | |
2294 | int loop_count; | |
2295 | #if VM_OBJ_DEACT_ALL_STATS | |
2296 | int pages_count; | |
2297 | #endif /* VM_OBJ_DEACT_ALL_STATS */ | |
2298 | #define V_O_D_A_P_MAX_BATCH 256 | |
2299 | ||
6d2010ae | 2300 | loop_count = BATCH_LIMIT(V_O_D_A_P_MAX_BATCH); |
b0d623f7 A |
2301 | #if VM_OBJ_DEACT_ALL_STATS |
2302 | pages_count = 0; | |
2303 | #endif /* VM_OBJ_DEACT_ALL_STATS */ | |
2304 | vm_page_lock_queues(); | |
2305 | queue_iterate(&object->memq, p, vm_page_t, listq) { | |
2306 | if (--loop_count == 0) { | |
2307 | #if VM_OBJ_DEACT_ALL_STATS | |
2308 | hw_atomic_add(&vm_object_deactivate_all_pages_batches, | |
2309 | 1); | |
2310 | hw_atomic_add(&vm_object_deactivate_all_pages_pages, | |
2311 | pages_count); | |
2312 | pages_count = 0; | |
2313 | #endif /* VM_OBJ_DEACT_ALL_STATS */ | |
2314 | lck_mtx_yield(&vm_page_queue_lock); | |
6d2010ae | 2315 | loop_count = BATCH_LIMIT(V_O_D_A_P_MAX_BATCH); |
b0d623f7 A |
2316 | } |
2317 | if (!p->busy && !p->throttled) { | |
2318 | #if VM_OBJ_DEACT_ALL_STATS | |
2319 | pages_count++; | |
2320 | #endif /* VM_OBJ_DEACT_ALL_STATS */ | |
2321 | vm_page_deactivate(p); | |
2322 | } | |
2323 | } | |
2324 | #if VM_OBJ_DEACT_ALL_STATS | |
2325 | if (pages_count) { | |
2326 | hw_atomic_add(&vm_object_deactivate_all_pages_batches, 1); | |
2327 | hw_atomic_add(&vm_object_deactivate_all_pages_pages, | |
2328 | pages_count); | |
2329 | pages_count = 0; | |
2330 | } | |
2331 | #endif /* VM_OBJ_DEACT_ALL_STATS */ | |
2332 | vm_page_unlock_queues(); | |
2333 | } | |
6d2010ae | 2334 | #endif /* VM_OBJECT_CACHE */ |
b0d623f7 A |
2335 | |
2336 | ||
2337 | ||
2338 | /* | |
2339 | * The "chunk" macros are used by routines below when looking for pages to deactivate. These | |
2340 | * exist because of the need to handle shadow chains. When deactivating pages, we only | |
2341 | * want to deactive the ones at the top most level in the object chain. In order to do | |
2342 | * this efficiently, the specified address range is divided up into "chunks" and we use | |
2343 | * a bit map to keep track of which pages have already been processed as we descend down | |
2344 | * the shadow chain. These chunk macros hide the details of the bit map implementation | |
2345 | * as much as we can. | |
2346 | * | |
2347 | * For convenience, we use a 64-bit data type as the bit map, and therefore a chunk is | |
2348 | * set to 64 pages. The bit map is indexed from the low-order end, so that the lowest | |
2349 | * order bit represents page 0 in the current range and highest order bit represents | |
2350 | * page 63. | |
2351 | * | |
2352 | * For further convenience, we also use negative logic for the page state in the bit map. | |
2353 | * The bit is set to 1 to indicate it has not yet been seen, and to 0 to indicate it has | |
2354 | * been processed. This way we can simply test the 64-bit long word to see if it's zero | |
2355 | * to easily tell if the whole range has been processed. Therefore, the bit map starts | |
2356 | * out with all the bits set. The macros below hide all these details from the caller. | |
2357 | */ | |
2358 | ||
2359 | #define PAGES_IN_A_CHUNK 64 /* The number of pages in the chunk must */ | |
2360 | /* be the same as the number of bits in */ | |
2361 | /* the chunk_state_t type. We use 64 */ | |
2362 | /* just for convenience. */ | |
2363 | ||
2364 | #define CHUNK_SIZE (PAGES_IN_A_CHUNK * PAGE_SIZE_64) /* Size of a chunk in bytes */ | |
2365 | ||
2366 | typedef uint64_t chunk_state_t; | |
2367 | ||
2368 | /* | |
2369 | * The bit map uses negative logic, so we start out with all 64 bits set to indicate | |
2370 | * that no pages have been processed yet. Also, if len is less than the full CHUNK_SIZE, | |
2371 | * then we mark pages beyond the len as having been "processed" so that we don't waste time | |
2372 | * looking at pages in that range. This can save us from unnecessarily chasing down the | |
2373 | * shadow chain. | |
2374 | */ | |
2375 | ||
2376 | #define CHUNK_INIT(c, len) \ | |
2377 | MACRO_BEGIN \ | |
2378 | uint64_t p; \ | |
2379 | \ | |
2380 | (c) = 0xffffffffffffffffLL; \ | |
2381 | \ | |
2382 | for (p = (len) / PAGE_SIZE_64; p < PAGES_IN_A_CHUNK; p++) \ | |
2383 | MARK_PAGE_HANDLED(c, p); \ | |
2384 | MACRO_END | |
2385 | ||
6d2010ae | 2386 | |
b0d623f7 A |
2387 | /* |
2388 | * Return true if all pages in the chunk have not yet been processed. | |
2389 | */ | |
2390 | ||
2391 | #define CHUNK_NOT_COMPLETE(c) ((c) != 0) | |
2392 | ||
2393 | /* | |
2394 | * Return true if the page at offset 'p' in the bit map has already been handled | |
2395 | * while processing a higher level object in the shadow chain. | |
2396 | */ | |
2397 | ||
2398 | #define PAGE_ALREADY_HANDLED(c, p) (((c) & (1LL << (p))) == 0) | |
2399 | ||
2400 | /* | |
2401 | * Mark the page at offset 'p' in the bit map as having been processed. | |
2402 | */ | |
2403 | ||
2404 | #define MARK_PAGE_HANDLED(c, p) \ | |
2405 | MACRO_BEGIN \ | |
2406 | (c) = (c) & ~(1LL << (p)); \ | |
2407 | MACRO_END | |
2408 | ||
2409 | ||
2410 | /* | |
2411 | * Return true if the page at the given offset has been paged out. Object is | |
2412 | * locked upon entry and returned locked. | |
2413 | */ | |
2414 | ||
2415 | static boolean_t | |
2416 | page_is_paged_out( | |
2417 | vm_object_t object, | |
2418 | vm_object_offset_t offset) | |
2419 | { | |
2420 | kern_return_t kr; | |
2421 | memory_object_t pager; | |
2422 | ||
2423 | /* | |
2424 | * Check the existence map for the page if we have one, otherwise | |
2425 | * ask the pager about this page. | |
2426 | */ | |
2427 | ||
2428 | #if MACH_PAGEMAP | |
2429 | if (object->existence_map) { | |
2430 | if (vm_external_state_get(object->existence_map, offset) | |
2431 | == VM_EXTERNAL_STATE_EXISTS) { | |
2432 | /* | |
2433 | * We found the page | |
2434 | */ | |
2435 | ||
2436 | return TRUE; | |
2437 | } | |
2438 | } else | |
39236c6e A |
2439 | #endif /* MACH_PAGEMAP */ |
2440 | if (object->internal && | |
2441 | object->alive && | |
2442 | !object->terminating && | |
2443 | object->pager_ready) { | |
2444 | ||
2445 | if (COMPRESSED_PAGER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE) { | |
2446 | if (VM_COMPRESSOR_PAGER_STATE_GET(object, offset) | |
2447 | == VM_EXTERNAL_STATE_EXISTS) { | |
2448 | return TRUE; | |
2449 | } else { | |
2450 | return FALSE; | |
2451 | } | |
2452 | } | |
b0d623f7 A |
2453 | |
2454 | /* | |
2455 | * We're already holding a "paging in progress" reference | |
2456 | * so the object can't disappear when we release the lock. | |
2457 | */ | |
2458 | ||
2459 | assert(object->paging_in_progress); | |
2460 | pager = object->pager; | |
2461 | vm_object_unlock(object); | |
2462 | ||
2463 | kr = memory_object_data_request( | |
2464 | pager, | |
2465 | offset + object->paging_offset, | |
2466 | 0, /* just poke the pager */ | |
2467 | VM_PROT_READ, | |
2468 | NULL); | |
2469 | ||
2470 | vm_object_lock(object); | |
2471 | ||
2472 | if (kr == KERN_SUCCESS) { | |
2473 | ||
2474 | /* | |
2475 | * We found the page | |
2476 | */ | |
2477 | ||
2478 | return TRUE; | |
2479 | } | |
2480 | } | |
2481 | ||
2482 | return FALSE; | |
2483 | } | |
2484 | ||
2485 | ||
6d2010ae | 2486 | |
39236c6e A |
2487 | /* |
2488 | * madvise_free_debug | |
2489 | * | |
2490 | * To help debug madvise(MADV_FREE*) mis-usage, this triggers a | |
2491 | * zero-fill as soon as a page is affected by a madvise(MADV_FREE*), to | |
2492 | * simulate the loss of the page's contents as if the page had been | |
2493 | * reclaimed and then re-faulted. | |
2494 | */ | |
2495 | #if DEVELOPMENT || DEBUG | |
2496 | int madvise_free_debug = 1; | |
2497 | #else /* DEBUG */ | |
2498 | int madvise_free_debug = 0; | |
2499 | #endif /* DEBUG */ | |
2500 | ||
b0d623f7 A |
2501 | /* |
2502 | * Deactivate the pages in the specified object and range. If kill_page is set, also discard any | |
2503 | * page modified state from the pmap. Update the chunk_state as we go along. The caller must specify | |
2504 | * a size that is less than or equal to the CHUNK_SIZE. | |
2505 | */ | |
2506 | ||
2507 | static void | |
2508 | deactivate_pages_in_object( | |
2509 | vm_object_t object, | |
2510 | vm_object_offset_t offset, | |
2511 | vm_object_size_t size, | |
2512 | boolean_t kill_page, | |
2513 | boolean_t reusable_page, | |
b0d623f7 | 2514 | boolean_t all_reusable, |
39236c6e A |
2515 | chunk_state_t *chunk_state, |
2516 | pmap_flush_context *pfc) | |
b0d623f7 A |
2517 | { |
2518 | vm_page_t m; | |
2519 | int p; | |
6d2010ae A |
2520 | struct vm_page_delayed_work dw_array[DEFAULT_DELAYED_WORK_LIMIT]; |
2521 | struct vm_page_delayed_work *dwp; | |
b0d623f7 | 2522 | int dw_count; |
6d2010ae | 2523 | int dw_limit; |
b0d623f7 A |
2524 | unsigned int reusable = 0; |
2525 | ||
b0d623f7 A |
2526 | /* |
2527 | * Examine each page in the chunk. The variable 'p' is the page number relative to the start of the | |
2528 | * chunk. Since this routine is called once for each level in the shadow chain, the chunk_state may | |
2529 | * have pages marked as having been processed already. We stop the loop early if we find we've handled | |
2530 | * all the pages in the chunk. | |
2531 | */ | |
2532 | ||
2533 | dwp = &dw_array[0]; | |
2534 | dw_count = 0; | |
6d2010ae | 2535 | dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT); |
b0d623f7 A |
2536 | |
2537 | for(p = 0; size && CHUNK_NOT_COMPLETE(*chunk_state); p++, size -= PAGE_SIZE_64, offset += PAGE_SIZE_64) { | |
2538 | ||
2539 | /* | |
2540 | * If this offset has already been found and handled in a higher level object, then don't | |
2541 | * do anything with it in the current shadow object. | |
2542 | */ | |
2543 | ||
2544 | if (PAGE_ALREADY_HANDLED(*chunk_state, p)) | |
2545 | continue; | |
2546 | ||
2547 | /* | |
2548 | * See if the page at this offset is around. First check to see if the page is resident, | |
2549 | * then if not, check the existence map or with the pager. | |
2550 | */ | |
2551 | ||
2552 | if ((m = vm_page_lookup(object, offset)) != VM_PAGE_NULL) { | |
2553 | ||
2554 | /* | |
2555 | * We found a page we were looking for. Mark it as "handled" now in the chunk_state | |
2556 | * so that we won't bother looking for a page at this offset again if there are more | |
2557 | * shadow objects. Then deactivate the page. | |
2558 | */ | |
2559 | ||
2560 | MARK_PAGE_HANDLED(*chunk_state, p); | |
2561 | ||
316670eb | 2562 | if (( !VM_PAGE_WIRED(m)) && (!m->private) && (!m->gobbled) && (!m->busy) && (!m->laundry)) { |
b0d623f7 A |
2563 | int clear_refmod; |
2564 | ||
39236c6e A |
2565 | dwp->dw_mask = 0; |
2566 | ||
b0d623f7 | 2567 | clear_refmod = VM_MEM_REFERENCED; |
39236c6e | 2568 | dwp->dw_mask |= DW_clear_reference; |
b0d623f7 A |
2569 | |
2570 | if ((kill_page) && (object->internal)) { | |
39236c6e A |
2571 | if (madvise_free_debug) { |
2572 | /* | |
2573 | * zero-fill the page now | |
2574 | * to simulate it being | |
2575 | * reclaimed and re-faulted. | |
2576 | */ | |
2577 | pmap_zero_page(m->phys_page); | |
2578 | } | |
b0d623f7 A |
2579 | m->precious = FALSE; |
2580 | m->dirty = FALSE; | |
2581 | ||
2582 | clear_refmod |= VM_MEM_MODIFIED; | |
d1ecb069 A |
2583 | if (m->throttled) { |
2584 | /* | |
2585 | * This page is now clean and | |
2586 | * reclaimable. Move it out | |
2587 | * of the throttled queue, so | |
2588 | * that vm_pageout_scan() can | |
2589 | * find it. | |
2590 | */ | |
2591 | dwp->dw_mask |= DW_move_page; | |
2592 | } | |
b0d623f7 A |
2593 | #if MACH_PAGEMAP |
2594 | vm_external_state_clr(object->existence_map, offset); | |
2595 | #endif /* MACH_PAGEMAP */ | |
39236c6e A |
2596 | VM_COMPRESSOR_PAGER_STATE_CLR(object, |
2597 | offset); | |
b0d623f7 A |
2598 | |
2599 | if (reusable_page && !m->reusable) { | |
2600 | assert(!all_reusable); | |
2601 | assert(!object->all_reusable); | |
2602 | m->reusable = TRUE; | |
2603 | object->reusable_page_count++; | |
2604 | assert(object->resident_page_count >= object->reusable_page_count); | |
2605 | reusable++; | |
2606 | } | |
2607 | } | |
39236c6e | 2608 | pmap_clear_refmod_options(m->phys_page, clear_refmod, PMAP_OPTIONS_NOFLUSH, (void *)pfc); |
b0d623f7 A |
2609 | |
2610 | if (!m->throttled && !(reusable_page || all_reusable)) | |
2611 | dwp->dw_mask |= DW_move_page; | |
6d2010ae | 2612 | |
39236c6e A |
2613 | if (dwp->dw_mask) |
2614 | VM_PAGE_ADD_DELAYED_WORK(dwp, m, | |
2615 | dw_count); | |
b0d623f7 | 2616 | |
6d2010ae | 2617 | if (dw_count >= dw_limit) { |
b0d623f7 A |
2618 | if (reusable) { |
2619 | OSAddAtomic(reusable, | |
2620 | &vm_page_stats_reusable.reusable_count); | |
2621 | vm_page_stats_reusable.reusable += reusable; | |
2622 | reusable = 0; | |
2623 | } | |
6d2010ae | 2624 | vm_page_do_delayed_work(object, &dw_array[0], dw_count); |
b0d623f7 A |
2625 | |
2626 | dwp = &dw_array[0]; | |
2627 | dw_count = 0; | |
2628 | } | |
2629 | } | |
2630 | ||
2631 | } else { | |
2632 | ||
2633 | /* | |
2634 | * The page at this offset isn't memory resident, check to see if it's | |
2635 | * been paged out. If so, mark it as handled so we don't bother looking | |
2636 | * for it in the shadow chain. | |
2637 | */ | |
2638 | ||
2639 | if (page_is_paged_out(object, offset)) { | |
2640 | MARK_PAGE_HANDLED(*chunk_state, p); | |
2641 | ||
2642 | /* | |
2643 | * If we're killing a non-resident page, then clear the page in the existence | |
2644 | * map so we don't bother paging it back in if it's touched again in the future. | |
2645 | */ | |
2646 | ||
2647 | if ((kill_page) && (object->internal)) { | |
2648 | #if MACH_PAGEMAP | |
2649 | vm_external_state_clr(object->existence_map, offset); | |
2650 | #endif /* MACH_PAGEMAP */ | |
39236c6e A |
2651 | VM_COMPRESSOR_PAGER_STATE_CLR(object, |
2652 | offset); | |
b0d623f7 A |
2653 | } |
2654 | } | |
2655 | } | |
2656 | } | |
2657 | ||
2658 | if (reusable) { | |
2659 | OSAddAtomic(reusable, &vm_page_stats_reusable.reusable_count); | |
2660 | vm_page_stats_reusable.reusable += reusable; | |
2661 | reusable = 0; | |
2662 | } | |
2663 | ||
2664 | if (dw_count) | |
6d2010ae | 2665 | vm_page_do_delayed_work(object, &dw_array[0], dw_count); |
b0d623f7 A |
2666 | } |
2667 | ||
2668 | ||
2669 | /* | |
2670 | * Deactive a "chunk" of the given range of the object starting at offset. A "chunk" | |
2671 | * will always be less than or equal to the given size. The total range is divided up | |
2672 | * into chunks for efficiency and performance related to the locks and handling the shadow | |
2673 | * chain. This routine returns how much of the given "size" it actually processed. It's | |
2674 | * up to the caler to loop and keep calling this routine until the entire range they want | |
2675 | * to process has been done. | |
2676 | */ | |
2677 | ||
2678 | static vm_object_size_t | |
2679 | deactivate_a_chunk( | |
2680 | vm_object_t orig_object, | |
2681 | vm_object_offset_t offset, | |
2682 | vm_object_size_t size, | |
2683 | boolean_t kill_page, | |
2684 | boolean_t reusable_page, | |
39236c6e A |
2685 | boolean_t all_reusable, |
2686 | pmap_flush_context *pfc) | |
b0d623f7 A |
2687 | { |
2688 | vm_object_t object; | |
2689 | vm_object_t tmp_object; | |
2690 | vm_object_size_t length; | |
2691 | chunk_state_t chunk_state; | |
2692 | ||
2693 | ||
2694 | /* | |
2695 | * Get set to do a chunk. We'll do up to CHUNK_SIZE, but no more than the | |
2696 | * remaining size the caller asked for. | |
2697 | */ | |
2698 | ||
2699 | length = MIN(size, CHUNK_SIZE); | |
2700 | ||
2701 | /* | |
2702 | * The chunk_state keeps track of which pages we've already processed if there's | |
2703 | * a shadow chain on this object. At this point, we haven't done anything with this | |
2704 | * range of pages yet, so initialize the state to indicate no pages processed yet. | |
1c79356b A |
2705 | */ |
2706 | ||
b0d623f7 A |
2707 | CHUNK_INIT(chunk_state, length); |
2708 | object = orig_object; | |
1c79356b A |
2709 | |
2710 | /* | |
b0d623f7 A |
2711 | * Start at the top level object and iterate around the loop once for each object |
2712 | * in the shadow chain. We stop processing early if we've already found all the pages | |
2713 | * in the range. Otherwise we stop when we run out of shadow objects. | |
1c79356b | 2714 | */ |
0b4e3aa0 | 2715 | |
b0d623f7 A |
2716 | while (object && CHUNK_NOT_COMPLETE(chunk_state)) { |
2717 | vm_object_paging_begin(object); | |
2718 | ||
39236c6e | 2719 | deactivate_pages_in_object(object, offset, length, kill_page, reusable_page, all_reusable, &chunk_state, pfc); |
b0d623f7 A |
2720 | |
2721 | vm_object_paging_end(object); | |
2722 | ||
2723 | /* | |
2724 | * We've finished with this object, see if there's a shadow object. If | |
2725 | * there is, update the offset and lock the new object. We also turn off | |
2726 | * kill_page at this point since we only kill pages in the top most object. | |
0b4e3aa0 | 2727 | */ |
1c79356b | 2728 | |
b0d623f7 A |
2729 | tmp_object = object->shadow; |
2730 | ||
2731 | if (tmp_object) { | |
2732 | kill_page = FALSE; | |
2733 | reusable_page = FALSE; | |
2734 | all_reusable = FALSE; | |
6d2010ae | 2735 | offset += object->vo_shadow_offset; |
b0d623f7 A |
2736 | vm_object_lock(tmp_object); |
2737 | } | |
2738 | ||
2739 | if (object != orig_object) | |
2740 | vm_object_unlock(object); | |
2741 | ||
2742 | object = tmp_object; | |
1c79356b | 2743 | } |
b0d623f7 A |
2744 | |
2745 | if (object && object != orig_object) | |
2746 | vm_object_unlock(object); | |
2747 | ||
2748 | return length; | |
1c79356b A |
2749 | } |
2750 | ||
b0d623f7 A |
2751 | |
2752 | ||
1c79356b | 2753 | /* |
b0d623f7 A |
2754 | * Move any resident pages in the specified range to the inactive queue. If kill_page is set, |
2755 | * we also clear the modified status of the page and "forget" any changes that have been made | |
2756 | * to the page. | |
1c79356b | 2757 | */ |
1c79356b | 2758 | |
0b4e3aa0 A |
2759 | __private_extern__ void |
2760 | vm_object_deactivate_pages( | |
2761 | vm_object_t object, | |
2762 | vm_object_offset_t offset, | |
2763 | vm_object_size_t size, | |
b0d623f7 A |
2764 | boolean_t kill_page, |
2765 | boolean_t reusable_page) | |
0b4e3aa0 | 2766 | { |
b0d623f7 A |
2767 | vm_object_size_t length; |
2768 | boolean_t all_reusable; | |
39236c6e | 2769 | pmap_flush_context pmap_flush_context_storage; |
0b4e3aa0 A |
2770 | |
2771 | /* | |
b0d623f7 A |
2772 | * We break the range up into chunks and do one chunk at a time. This is for |
2773 | * efficiency and performance while handling the shadow chains and the locks. | |
2774 | * The deactivate_a_chunk() function returns how much of the range it processed. | |
2775 | * We keep calling this routine until the given size is exhausted. | |
0b4e3aa0 | 2776 | */ |
0b4e3aa0 | 2777 | |
0b4e3aa0 | 2778 | |
b0d623f7 A |
2779 | all_reusable = FALSE; |
2780 | if (reusable_page && | |
6d2010ae A |
2781 | object->internal && |
2782 | object->vo_size != 0 && | |
2783 | object->vo_size == size && | |
b0d623f7 A |
2784 | object->reusable_page_count == 0) { |
2785 | all_reusable = TRUE; | |
2786 | reusable_page = FALSE; | |
2787 | } | |
0b4e3aa0 | 2788 | |
d1ecb069 A |
2789 | if ((reusable_page || all_reusable) && object->all_reusable) { |
2790 | /* This means MADV_FREE_REUSABLE has been called twice, which | |
2791 | * is probably illegal. */ | |
2792 | return; | |
2793 | } | |
d1ecb069 | 2794 | |
39236c6e A |
2795 | pmap_flush_context_init(&pmap_flush_context_storage); |
2796 | ||
b0d623f7 | 2797 | while (size) { |
39236c6e | 2798 | length = deactivate_a_chunk(object, offset, size, kill_page, reusable_page, all_reusable, &pmap_flush_context_storage); |
0b4e3aa0 | 2799 | |
b0d623f7 A |
2800 | size -= length; |
2801 | offset += length; | |
2802 | } | |
39236c6e | 2803 | pmap_flush(&pmap_flush_context_storage); |
91447636 | 2804 | |
b0d623f7 A |
2805 | if (all_reusable) { |
2806 | if (!object->all_reusable) { | |
2807 | unsigned int reusable; | |
2808 | ||
2809 | object->all_reusable = TRUE; | |
2810 | assert(object->reusable_page_count == 0); | |
2811 | /* update global stats */ | |
2812 | reusable = object->resident_page_count; | |
2813 | OSAddAtomic(reusable, | |
2814 | &vm_page_stats_reusable.reusable_count); | |
2815 | vm_page_stats_reusable.reusable += reusable; | |
2816 | vm_page_stats_reusable.all_reusable_calls++; | |
2817 | } | |
2818 | } else if (reusable_page) { | |
2819 | vm_page_stats_reusable.partial_reusable_calls++; | |
2820 | } | |
2821 | } | |
0b4e3aa0 | 2822 | |
b0d623f7 A |
2823 | void |
2824 | vm_object_reuse_pages( | |
2825 | vm_object_t object, | |
2826 | vm_object_offset_t start_offset, | |
2827 | vm_object_offset_t end_offset, | |
2828 | boolean_t allow_partial_reuse) | |
2829 | { | |
2830 | vm_object_offset_t cur_offset; | |
2831 | vm_page_t m; | |
2832 | unsigned int reused, reusable; | |
0b4e3aa0 | 2833 | |
b0d623f7 A |
2834 | #define VM_OBJECT_REUSE_PAGE(object, m, reused) \ |
2835 | MACRO_BEGIN \ | |
2836 | if ((m) != VM_PAGE_NULL && \ | |
2837 | (m)->reusable) { \ | |
2838 | assert((object)->reusable_page_count <= \ | |
2839 | (object)->resident_page_count); \ | |
2840 | assert((object)->reusable_page_count > 0); \ | |
2841 | (object)->reusable_page_count--; \ | |
2842 | (m)->reusable = FALSE; \ | |
2843 | (reused)++; \ | |
2844 | } \ | |
2845 | MACRO_END | |
2d21ac55 | 2846 | |
b0d623f7 A |
2847 | reused = 0; |
2848 | reusable = 0; | |
0b4e3aa0 | 2849 | |
b0d623f7 | 2850 | vm_object_lock_assert_exclusive(object); |
0b4e3aa0 | 2851 | |
b0d623f7 A |
2852 | if (object->all_reusable) { |
2853 | assert(object->reusable_page_count == 0); | |
2854 | object->all_reusable = FALSE; | |
6d2010ae | 2855 | if (end_offset - start_offset == object->vo_size || |
b0d623f7 A |
2856 | !allow_partial_reuse) { |
2857 | vm_page_stats_reusable.all_reuse_calls++; | |
2858 | reused = object->resident_page_count; | |
2859 | } else { | |
2860 | vm_page_stats_reusable.partial_reuse_calls++; | |
2861 | queue_iterate(&object->memq, m, vm_page_t, listq) { | |
2862 | if (m->offset < start_offset || | |
2863 | m->offset >= end_offset) { | |
2864 | m->reusable = TRUE; | |
2865 | object->reusable_page_count++; | |
2866 | assert(object->resident_page_count >= object->reusable_page_count); | |
2867 | continue; | |
2868 | } else { | |
2869 | assert(!m->reusable); | |
2870 | reused++; | |
0b4e3aa0 A |
2871 | } |
2872 | } | |
2873 | } | |
b0d623f7 A |
2874 | } else if (object->resident_page_count > |
2875 | ((end_offset - start_offset) >> PAGE_SHIFT)) { | |
2876 | vm_page_stats_reusable.partial_reuse_calls++; | |
2877 | for (cur_offset = start_offset; | |
2878 | cur_offset < end_offset; | |
2879 | cur_offset += PAGE_SIZE_64) { | |
2880 | if (object->reusable_page_count == 0) { | |
2881 | break; | |
2882 | } | |
2883 | m = vm_page_lookup(object, cur_offset); | |
2884 | VM_OBJECT_REUSE_PAGE(object, m, reused); | |
2885 | } | |
2886 | } else { | |
2887 | vm_page_stats_reusable.partial_reuse_calls++; | |
2888 | queue_iterate(&object->memq, m, vm_page_t, listq) { | |
2889 | if (object->reusable_page_count == 0) { | |
2890 | break; | |
2891 | } | |
2892 | if (m->offset < start_offset || | |
2893 | m->offset >= end_offset) { | |
2894 | continue; | |
2895 | } | |
2896 | VM_OBJECT_REUSE_PAGE(object, m, reused); | |
2897 | } | |
0b4e3aa0 | 2898 | } |
b0d623f7 A |
2899 | |
2900 | /* update global stats */ | |
2901 | OSAddAtomic(reusable-reused, &vm_page_stats_reusable.reusable_count); | |
2902 | vm_page_stats_reusable.reused += reused; | |
2903 | vm_page_stats_reusable.reusable += reusable; | |
0b4e3aa0 | 2904 | } |
1c79356b A |
2905 | |
2906 | /* | |
2907 | * Routine: vm_object_pmap_protect | |
2908 | * | |
2909 | * Purpose: | |
2910 | * Reduces the permission for all physical | |
2911 | * pages in the specified object range. | |
2912 | * | |
2913 | * If removing write permission only, it is | |
2914 | * sufficient to protect only the pages in | |
2915 | * the top-level object; only those pages may | |
2916 | * have write permission. | |
2917 | * | |
2918 | * If removing all access, we must follow the | |
2919 | * shadow chain from the top-level object to | |
2920 | * remove access to all pages in shadowed objects. | |
2921 | * | |
2922 | * The object must *not* be locked. The object must | |
2923 | * be temporary/internal. | |
2924 | * | |
2925 | * If pmap is not NULL, this routine assumes that | |
2926 | * the only mappings for the pages are in that | |
2927 | * pmap. | |
2928 | */ | |
2929 | ||
0b4e3aa0 | 2930 | __private_extern__ void |
1c79356b A |
2931 | vm_object_pmap_protect( |
2932 | register vm_object_t object, | |
2933 | register vm_object_offset_t offset, | |
91447636 | 2934 | vm_object_size_t size, |
1c79356b | 2935 | pmap_t pmap, |
91447636 | 2936 | vm_map_offset_t pmap_start, |
1c79356b A |
2937 | vm_prot_t prot) |
2938 | { | |
39236c6e A |
2939 | vm_object_pmap_protect_options(object, offset, size, |
2940 | pmap, pmap_start, prot, 0); | |
2941 | } | |
2942 | ||
2943 | __private_extern__ void | |
2944 | vm_object_pmap_protect_options( | |
2945 | register vm_object_t object, | |
2946 | register vm_object_offset_t offset, | |
2947 | vm_object_size_t size, | |
2948 | pmap_t pmap, | |
2949 | vm_map_offset_t pmap_start, | |
2950 | vm_prot_t prot, | |
2951 | int options) | |
2952 | { | |
2953 | pmap_flush_context pmap_flush_context_storage; | |
2954 | boolean_t delayed_pmap_flush = FALSE; | |
2955 | ||
1c79356b | 2956 | if (object == VM_OBJECT_NULL) |
39236c6e | 2957 | return; |
91447636 A |
2958 | size = vm_object_round_page(size); |
2959 | offset = vm_object_trunc_page(offset); | |
1c79356b A |
2960 | |
2961 | vm_object_lock(object); | |
2962 | ||
2d21ac55 A |
2963 | if (object->phys_contiguous) { |
2964 | if (pmap != NULL) { | |
2965 | vm_object_unlock(object); | |
39236c6e A |
2966 | pmap_protect_options(pmap, |
2967 | pmap_start, | |
2968 | pmap_start + size, | |
2969 | prot, | |
2970 | options & ~PMAP_OPTIONS_NOFLUSH, | |
2971 | NULL); | |
2d21ac55 A |
2972 | } else { |
2973 | vm_object_offset_t phys_start, phys_end, phys_addr; | |
2974 | ||
6d2010ae | 2975 | phys_start = object->vo_shadow_offset + offset; |
2d21ac55 A |
2976 | phys_end = phys_start + size; |
2977 | assert(phys_start <= phys_end); | |
6d2010ae | 2978 | assert(phys_end <= object->vo_shadow_offset + object->vo_size); |
2d21ac55 A |
2979 | vm_object_unlock(object); |
2980 | ||
39236c6e A |
2981 | pmap_flush_context_init(&pmap_flush_context_storage); |
2982 | delayed_pmap_flush = FALSE; | |
2983 | ||
2d21ac55 A |
2984 | for (phys_addr = phys_start; |
2985 | phys_addr < phys_end; | |
2986 | phys_addr += PAGE_SIZE_64) { | |
39236c6e A |
2987 | pmap_page_protect_options( |
2988 | (ppnum_t) (phys_addr >> PAGE_SHIFT), | |
2989 | prot, | |
2990 | options | PMAP_OPTIONS_NOFLUSH, | |
2991 | (void *)&pmap_flush_context_storage); | |
2992 | delayed_pmap_flush = TRUE; | |
2d21ac55 | 2993 | } |
39236c6e A |
2994 | if (delayed_pmap_flush == TRUE) |
2995 | pmap_flush(&pmap_flush_context_storage); | |
2d21ac55 A |
2996 | } |
2997 | return; | |
2998 | } | |
2999 | ||
55e303ae | 3000 | assert(object->internal); |
de355530 | 3001 | |
1c79356b | 3002 | while (TRUE) { |
91447636 | 3003 | if (ptoa_64(object->resident_page_count) > size/2 && pmap != PMAP_NULL) { |
1c79356b | 3004 | vm_object_unlock(object); |
39236c6e A |
3005 | pmap_protect_options(pmap, pmap_start, pmap_start + size, prot, |
3006 | options & ~PMAP_OPTIONS_NOFLUSH, NULL); | |
1c79356b A |
3007 | return; |
3008 | } | |
3009 | ||
39236c6e A |
3010 | pmap_flush_context_init(&pmap_flush_context_storage); |
3011 | delayed_pmap_flush = FALSE; | |
3012 | ||
3013 | /* | |
3014 | * if we are doing large ranges with respect to resident | |
3015 | * page count then we should interate over pages otherwise | |
3016 | * inverse page look-up will be faster | |
3017 | */ | |
91447636 | 3018 | if (ptoa_64(object->resident_page_count / 4) < size) { |
9bccf70c A |
3019 | vm_page_t p; |
3020 | vm_object_offset_t end; | |
1c79356b A |
3021 | |
3022 | end = offset + size; | |
3023 | ||
39236c6e A |
3024 | queue_iterate(&object->memq, p, vm_page_t, listq) { |
3025 | if (!p->fictitious && (offset <= p->offset) && (p->offset < end)) { | |
3026 | vm_map_offset_t start; | |
1c79356b | 3027 | |
39236c6e | 3028 | start = pmap_start + p->offset - offset; |
1c79356b | 3029 | |
39236c6e A |
3030 | if (pmap != PMAP_NULL) |
3031 | pmap_protect_options( | |
3032 | pmap, | |
3033 | start, | |
3034 | start + PAGE_SIZE_64, | |
3035 | prot, | |
3036 | options | PMAP_OPTIONS_NOFLUSH, | |
3037 | &pmap_flush_context_storage); | |
3038 | else | |
3039 | pmap_page_protect_options( | |
3040 | p->phys_page, | |
3041 | prot, | |
3042 | options | PMAP_OPTIONS_NOFLUSH, | |
3043 | &pmap_flush_context_storage); | |
3044 | delayed_pmap_flush = TRUE; | |
3045 | } | |
1c79356b | 3046 | } |
39236c6e | 3047 | |
9bccf70c A |
3048 | } else { |
3049 | vm_page_t p; | |
3050 | vm_object_offset_t end; | |
3051 | vm_object_offset_t target_off; | |
3052 | ||
3053 | end = offset + size; | |
3054 | ||
39236c6e A |
3055 | for (target_off = offset; |
3056 | target_off < end; target_off += PAGE_SIZE) { | |
3057 | ||
3058 | p = vm_page_lookup(object, target_off); | |
3059 | ||
3060 | if (p != VM_PAGE_NULL) { | |
3061 | vm_object_offset_t start; | |
3062 | ||
3063 | start = pmap_start + (p->offset - offset); | |
3064 | ||
3065 | if (pmap != PMAP_NULL) | |
3066 | pmap_protect_options( | |
3067 | pmap, | |
3068 | start, | |
3069 | start + PAGE_SIZE_64, | |
3070 | prot, | |
3071 | options | PMAP_OPTIONS_NOFLUSH, | |
3072 | &pmap_flush_context_storage); | |
3073 | else | |
3074 | pmap_page_protect_options( | |
3075 | p->phys_page, | |
3076 | prot, | |
3077 | options | PMAP_OPTIONS_NOFLUSH, | |
3078 | &pmap_flush_context_storage); | |
3079 | delayed_pmap_flush = TRUE; | |
9bccf70c A |
3080 | } |
3081 | } | |
39236c6e A |
3082 | } |
3083 | if (delayed_pmap_flush == TRUE) | |
3084 | pmap_flush(&pmap_flush_context_storage); | |
1c79356b A |
3085 | |
3086 | if (prot == VM_PROT_NONE) { | |
3087 | /* | |
3088 | * Must follow shadow chain to remove access | |
3089 | * to pages in shadowed objects. | |
3090 | */ | |
3091 | register vm_object_t next_object; | |
3092 | ||
3093 | next_object = object->shadow; | |
3094 | if (next_object != VM_OBJECT_NULL) { | |
6d2010ae | 3095 | offset += object->vo_shadow_offset; |
1c79356b A |
3096 | vm_object_lock(next_object); |
3097 | vm_object_unlock(object); | |
3098 | object = next_object; | |
3099 | } | |
3100 | else { | |
3101 | /* | |
3102 | * End of chain - we are done. | |
3103 | */ | |
3104 | break; | |
3105 | } | |
3106 | } | |
3107 | else { | |
3108 | /* | |
3109 | * Pages in shadowed objects may never have | |
3110 | * write permission - we may stop here. | |
3111 | */ | |
3112 | break; | |
3113 | } | |
3114 | } | |
3115 | ||
3116 | vm_object_unlock(object); | |
3117 | } | |
3118 | ||
3119 | /* | |
3120 | * Routine: vm_object_copy_slowly | |
3121 | * | |
3122 | * Description: | |
3123 | * Copy the specified range of the source | |
3124 | * virtual memory object without using | |
3125 | * protection-based optimizations (such | |
3126 | * as copy-on-write). The pages in the | |
3127 | * region are actually copied. | |
3128 | * | |
3129 | * In/out conditions: | |
3130 | * The caller must hold a reference and a lock | |
3131 | * for the source virtual memory object. The source | |
3132 | * object will be returned *unlocked*. | |
3133 | * | |
3134 | * Results: | |
3135 | * If the copy is completed successfully, KERN_SUCCESS is | |
3136 | * returned. If the caller asserted the interruptible | |
3137 | * argument, and an interruption occurred while waiting | |
3138 | * for a user-generated event, MACH_SEND_INTERRUPTED is | |
3139 | * returned. Other values may be returned to indicate | |
3140 | * hard errors during the copy operation. | |
3141 | * | |
3142 | * A new virtual memory object is returned in a | |
3143 | * parameter (_result_object). The contents of this | |
3144 | * new object, starting at a zero offset, are a copy | |
3145 | * of the source memory region. In the event of | |
3146 | * an error, this parameter will contain the value | |
3147 | * VM_OBJECT_NULL. | |
3148 | */ | |
0b4e3aa0 | 3149 | __private_extern__ kern_return_t |
1c79356b A |
3150 | vm_object_copy_slowly( |
3151 | register vm_object_t src_object, | |
3152 | vm_object_offset_t src_offset, | |
3153 | vm_object_size_t size, | |
3154 | boolean_t interruptible, | |
3155 | vm_object_t *_result_object) /* OUT */ | |
3156 | { | |
3157 | vm_object_t new_object; | |
3158 | vm_object_offset_t new_offset; | |
3159 | ||
2d21ac55 | 3160 | struct vm_object_fault_info fault_info; |
1c79356b A |
3161 | |
3162 | XPR(XPR_VM_OBJECT, "v_o_c_slowly obj 0x%x off 0x%x size 0x%x\n", | |
3163 | src_object, src_offset, size, 0, 0); | |
3164 | ||
3165 | if (size == 0) { | |
3166 | vm_object_unlock(src_object); | |
3167 | *_result_object = VM_OBJECT_NULL; | |
3168 | return(KERN_INVALID_ARGUMENT); | |
3169 | } | |
3170 | ||
3171 | /* | |
3172 | * Prevent destruction of the source object while we copy. | |
3173 | */ | |
3174 | ||
2d21ac55 | 3175 | vm_object_reference_locked(src_object); |
1c79356b A |
3176 | vm_object_unlock(src_object); |
3177 | ||
3178 | /* | |
3179 | * Create a new object to hold the copied pages. | |
3180 | * A few notes: | |
3181 | * We fill the new object starting at offset 0, | |
3182 | * regardless of the input offset. | |
3183 | * We don't bother to lock the new object within | |
3184 | * this routine, since we have the only reference. | |
3185 | */ | |
3186 | ||
3187 | new_object = vm_object_allocate(size); | |
3188 | new_offset = 0; | |
3189 | ||
3190 | assert(size == trunc_page_64(size)); /* Will the loop terminate? */ | |
3191 | ||
2d21ac55 A |
3192 | fault_info.interruptible = interruptible; |
3193 | fault_info.behavior = VM_BEHAVIOR_SEQUENTIAL; | |
3194 | fault_info.user_tag = 0; | |
3195 | fault_info.lo_offset = src_offset; | |
3196 | fault_info.hi_offset = src_offset + size; | |
3197 | fault_info.no_cache = FALSE; | |
b0d623f7 | 3198 | fault_info.stealth = TRUE; |
6d2010ae A |
3199 | fault_info.io_sync = FALSE; |
3200 | fault_info.cs_bypass = FALSE; | |
0b4c1975 | 3201 | fault_info.mark_zf_absent = FALSE; |
316670eb | 3202 | fault_info.batch_pmap_op = FALSE; |
2d21ac55 | 3203 | |
1c79356b A |
3204 | for ( ; |
3205 | size != 0 ; | |
3206 | src_offset += PAGE_SIZE_64, | |
3207 | new_offset += PAGE_SIZE_64, size -= PAGE_SIZE_64 | |
3208 | ) { | |
3209 | vm_page_t new_page; | |
3210 | vm_fault_return_t result; | |
3211 | ||
2d21ac55 A |
3212 | vm_object_lock(new_object); |
3213 | ||
1c79356b A |
3214 | while ((new_page = vm_page_alloc(new_object, new_offset)) |
3215 | == VM_PAGE_NULL) { | |
2d21ac55 A |
3216 | |
3217 | vm_object_unlock(new_object); | |
3218 | ||
1c79356b A |
3219 | if (!vm_page_wait(interruptible)) { |
3220 | vm_object_deallocate(new_object); | |
91447636 | 3221 | vm_object_deallocate(src_object); |
1c79356b A |
3222 | *_result_object = VM_OBJECT_NULL; |
3223 | return(MACH_SEND_INTERRUPTED); | |
3224 | } | |
2d21ac55 | 3225 | vm_object_lock(new_object); |
1c79356b | 3226 | } |
2d21ac55 | 3227 | vm_object_unlock(new_object); |
1c79356b A |
3228 | |
3229 | do { | |
3230 | vm_prot_t prot = VM_PROT_READ; | |
3231 | vm_page_t _result_page; | |
3232 | vm_page_t top_page; | |
3233 | register | |
3234 | vm_page_t result_page; | |
3235 | kern_return_t error_code; | |
3236 | ||
3237 | vm_object_lock(src_object); | |
3238 | vm_object_paging_begin(src_object); | |
3239 | ||
b0d623f7 A |
3240 | if (size > (vm_size_t) -1) { |
3241 | /* 32-bit overflow */ | |
3242 | fault_info.cluster_size = (vm_size_t) (0 - PAGE_SIZE); | |
3243 | } else { | |
3244 | fault_info.cluster_size = (vm_size_t) size; | |
3245 | assert(fault_info.cluster_size == size); | |
3246 | } | |
2d21ac55 | 3247 | |
1c79356b | 3248 | XPR(XPR_VM_FAULT,"vm_object_copy_slowly -> vm_fault_page",0,0,0,0,0); |
39236c6e | 3249 | _result_page = VM_PAGE_NULL; |
1c79356b | 3250 | result = vm_fault_page(src_object, src_offset, |
2d21ac55 | 3251 | VM_PROT_READ, FALSE, |
39236c6e | 3252 | FALSE, /* page not looked up */ |
1c79356b A |
3253 | &prot, &_result_page, &top_page, |
3254 | (int *)0, | |
2d21ac55 | 3255 | &error_code, FALSE, FALSE, &fault_info); |
1c79356b A |
3256 | |
3257 | switch(result) { | |
b0d623f7 A |
3258 | case VM_FAULT_SUCCESS: |
3259 | result_page = _result_page; | |
1c79356b | 3260 | |
b0d623f7 | 3261 | /* |
b0d623f7 A |
3262 | * Copy the page to the new object. |
3263 | * | |
3264 | * POLICY DECISION: | |
3265 | * If result_page is clean, | |
3266 | * we could steal it instead | |
3267 | * of copying. | |
3268 | */ | |
1c79356b | 3269 | |
b0d623f7 | 3270 | vm_page_copy(result_page, new_page); |
316670eb | 3271 | vm_object_unlock(result_page->object); |
1c79356b | 3272 | |
b0d623f7 A |
3273 | /* |
3274 | * Let go of both pages (make them | |
3275 | * not busy, perform wakeup, activate). | |
3276 | */ | |
3277 | vm_object_lock(new_object); | |
316670eb | 3278 | SET_PAGE_DIRTY(new_page, FALSE); |
b0d623f7 A |
3279 | PAGE_WAKEUP_DONE(new_page); |
3280 | vm_object_unlock(new_object); | |
1c79356b | 3281 | |
b0d623f7 A |
3282 | vm_object_lock(result_page->object); |
3283 | PAGE_WAKEUP_DONE(result_page); | |
1c79356b | 3284 | |
b0d623f7 A |
3285 | vm_page_lockspin_queues(); |
3286 | if (!result_page->active && | |
3287 | !result_page->inactive && | |
3288 | !result_page->throttled) | |
3289 | vm_page_activate(result_page); | |
3290 | vm_page_activate(new_page); | |
3291 | vm_page_unlock_queues(); | |
1c79356b | 3292 | |
b0d623f7 A |
3293 | /* |
3294 | * Release paging references and | |
3295 | * top-level placeholder page, if any. | |
3296 | */ | |
3297 | ||
3298 | vm_fault_cleanup(result_page->object, | |
3299 | top_page); | |
3300 | ||
3301 | break; | |
1c79356b | 3302 | |
b0d623f7 A |
3303 | case VM_FAULT_RETRY: |
3304 | break; | |
3305 | ||
b0d623f7 A |
3306 | case VM_FAULT_MEMORY_SHORTAGE: |
3307 | if (vm_page_wait(interruptible)) | |
1c79356b | 3308 | break; |
b0d623f7 | 3309 | /* fall thru */ |
1c79356b | 3310 | |
b0d623f7 A |
3311 | case VM_FAULT_INTERRUPTED: |
3312 | vm_object_lock(new_object); | |
3313 | VM_PAGE_FREE(new_page); | |
3314 | vm_object_unlock(new_object); | |
3315 | ||
3316 | vm_object_deallocate(new_object); | |
3317 | vm_object_deallocate(src_object); | |
3318 | *_result_object = VM_OBJECT_NULL; | |
3319 | return(MACH_SEND_INTERRUPTED); | |
1c79356b | 3320 | |
b0d623f7 A |
3321 | case VM_FAULT_SUCCESS_NO_VM_PAGE: |
3322 | /* success but no VM page: fail */ | |
3323 | vm_object_paging_end(src_object); | |
3324 | vm_object_unlock(src_object); | |
3325 | /*FALLTHROUGH*/ | |
3326 | case VM_FAULT_MEMORY_ERROR: | |
3327 | /* | |
3328 | * A policy choice: | |
3329 | * (a) ignore pages that we can't | |
3330 | * copy | |
3331 | * (b) return the null object if | |
3332 | * any page fails [chosen] | |
3333 | */ | |
593a1d5f | 3334 | |
b0d623f7 A |
3335 | vm_object_lock(new_object); |
3336 | VM_PAGE_FREE(new_page); | |
3337 | vm_object_unlock(new_object); | |
1c79356b | 3338 | |
b0d623f7 A |
3339 | vm_object_deallocate(new_object); |
3340 | vm_object_deallocate(src_object); | |
3341 | *_result_object = VM_OBJECT_NULL; | |
3342 | return(error_code ? error_code: | |
3343 | KERN_MEMORY_ERROR); | |
1c79356b | 3344 | |
b0d623f7 A |
3345 | default: |
3346 | panic("vm_object_copy_slowly: unexpected error" | |
3347 | " 0x%x from vm_fault_page()\n", result); | |
1c79356b A |
3348 | } |
3349 | } while (result != VM_FAULT_SUCCESS); | |
3350 | } | |
3351 | ||
3352 | /* | |
3353 | * Lose the extra reference, and return our object. | |
3354 | */ | |
1c79356b A |
3355 | vm_object_deallocate(src_object); |
3356 | *_result_object = new_object; | |
3357 | return(KERN_SUCCESS); | |
3358 | } | |
3359 | ||
3360 | /* | |
3361 | * Routine: vm_object_copy_quickly | |
3362 | * | |
3363 | * Purpose: | |
3364 | * Copy the specified range of the source virtual | |
3365 | * memory object, if it can be done without waiting | |
3366 | * for user-generated events. | |
3367 | * | |
3368 | * Results: | |
3369 | * If the copy is successful, the copy is returned in | |
3370 | * the arguments; otherwise, the arguments are not | |
3371 | * affected. | |
3372 | * | |
3373 | * In/out conditions: | |
3374 | * The object should be unlocked on entry and exit. | |
3375 | */ | |
3376 | ||
3377 | /*ARGSUSED*/ | |
0b4e3aa0 | 3378 | __private_extern__ boolean_t |
1c79356b A |
3379 | vm_object_copy_quickly( |
3380 | vm_object_t *_object, /* INOUT */ | |
91447636 A |
3381 | __unused vm_object_offset_t offset, /* IN */ |
3382 | __unused vm_object_size_t size, /* IN */ | |
1c79356b A |
3383 | boolean_t *_src_needs_copy, /* OUT */ |
3384 | boolean_t *_dst_needs_copy) /* OUT */ | |
3385 | { | |
3386 | vm_object_t object = *_object; | |
3387 | memory_object_copy_strategy_t copy_strategy; | |
3388 | ||
3389 | XPR(XPR_VM_OBJECT, "v_o_c_quickly obj 0x%x off 0x%x size 0x%x\n", | |
3390 | *_object, offset, size, 0, 0); | |
3391 | if (object == VM_OBJECT_NULL) { | |
3392 | *_src_needs_copy = FALSE; | |
3393 | *_dst_needs_copy = FALSE; | |
3394 | return(TRUE); | |
3395 | } | |
3396 | ||
3397 | vm_object_lock(object); | |
3398 | ||
3399 | copy_strategy = object->copy_strategy; | |
3400 | ||
3401 | switch (copy_strategy) { | |
3402 | case MEMORY_OBJECT_COPY_SYMMETRIC: | |
3403 | ||
3404 | /* | |
3405 | * Symmetric copy strategy. | |
3406 | * Make another reference to the object. | |
3407 | * Leave object/offset unchanged. | |
3408 | */ | |
3409 | ||
2d21ac55 | 3410 | vm_object_reference_locked(object); |
1c79356b A |
3411 | object->shadowed = TRUE; |
3412 | vm_object_unlock(object); | |
3413 | ||
3414 | /* | |
3415 | * Both source and destination must make | |
3416 | * shadows, and the source must be made | |
3417 | * read-only if not already. | |
3418 | */ | |
3419 | ||
3420 | *_src_needs_copy = TRUE; | |
3421 | *_dst_needs_copy = TRUE; | |
3422 | ||
3423 | break; | |
3424 | ||
3425 | case MEMORY_OBJECT_COPY_DELAY: | |
3426 | vm_object_unlock(object); | |
3427 | return(FALSE); | |
3428 | ||
3429 | default: | |
3430 | vm_object_unlock(object); | |
3431 | return(FALSE); | |
3432 | } | |
3433 | return(TRUE); | |
3434 | } | |
3435 | ||
0b4e3aa0 A |
3436 | static int copy_call_count = 0; |
3437 | static int copy_call_sleep_count = 0; | |
3438 | static int copy_call_restart_count = 0; | |
1c79356b A |
3439 | |
3440 | /* | |
3441 | * Routine: vm_object_copy_call [internal] | |
3442 | * | |
3443 | * Description: | |
3444 | * Copy the source object (src_object), using the | |
3445 | * user-managed copy algorithm. | |
3446 | * | |
3447 | * In/out conditions: | |
3448 | * The source object must be locked on entry. It | |
3449 | * will be *unlocked* on exit. | |
3450 | * | |
3451 | * Results: | |
3452 | * If the copy is successful, KERN_SUCCESS is returned. | |
3453 | * A new object that represents the copied virtual | |
3454 | * memory is returned in a parameter (*_result_object). | |
3455 | * If the return value indicates an error, this parameter | |
3456 | * is not valid. | |
3457 | */ | |
0b4e3aa0 | 3458 | static kern_return_t |
1c79356b A |
3459 | vm_object_copy_call( |
3460 | vm_object_t src_object, | |
3461 | vm_object_offset_t src_offset, | |
3462 | vm_object_size_t size, | |
3463 | vm_object_t *_result_object) /* OUT */ | |
3464 | { | |
3465 | kern_return_t kr; | |
3466 | vm_object_t copy; | |
3467 | boolean_t check_ready = FALSE; | |
2d21ac55 | 3468 | uint32_t try_failed_count = 0; |
1c79356b A |
3469 | |
3470 | /* | |
3471 | * If a copy is already in progress, wait and retry. | |
3472 | * | |
3473 | * XXX | |
3474 | * Consider making this call interruptable, as Mike | |
3475 | * intended it to be. | |
3476 | * | |
3477 | * XXXO | |
3478 | * Need a counter or version or something to allow | |
3479 | * us to use the copy that the currently requesting | |
3480 | * thread is obtaining -- is it worth adding to the | |
3481 | * vm object structure? Depends how common this case it. | |
3482 | */ | |
3483 | copy_call_count++; | |
3484 | while (vm_object_wanted(src_object, VM_OBJECT_EVENT_COPY_CALL)) { | |
9bccf70c | 3485 | vm_object_sleep(src_object, VM_OBJECT_EVENT_COPY_CALL, |
1c79356b | 3486 | THREAD_UNINT); |
1c79356b A |
3487 | copy_call_restart_count++; |
3488 | } | |
3489 | ||
3490 | /* | |
3491 | * Indicate (for the benefit of memory_object_create_copy) | |
3492 | * that we want a copy for src_object. (Note that we cannot | |
3493 | * do a real assert_wait before calling memory_object_copy, | |
3494 | * so we simply set the flag.) | |
3495 | */ | |
3496 | ||
3497 | vm_object_set_wanted(src_object, VM_OBJECT_EVENT_COPY_CALL); | |
3498 | vm_object_unlock(src_object); | |
3499 | ||
3500 | /* | |
3501 | * Ask the memory manager to give us a memory object | |
3502 | * which represents a copy of the src object. | |
3503 | * The memory manager may give us a memory object | |
3504 | * which we already have, or it may give us a | |
3505 | * new memory object. This memory object will arrive | |
3506 | * via memory_object_create_copy. | |
3507 | */ | |
3508 | ||
3509 | kr = KERN_FAILURE; /* XXX need to change memory_object.defs */ | |
3510 | if (kr != KERN_SUCCESS) { | |
3511 | return kr; | |
3512 | } | |
3513 | ||
3514 | /* | |
3515 | * Wait for the copy to arrive. | |
3516 | */ | |
3517 | vm_object_lock(src_object); | |
3518 | while (vm_object_wanted(src_object, VM_OBJECT_EVENT_COPY_CALL)) { | |
9bccf70c | 3519 | vm_object_sleep(src_object, VM_OBJECT_EVENT_COPY_CALL, |
1c79356b | 3520 | THREAD_UNINT); |
1c79356b A |
3521 | copy_call_sleep_count++; |
3522 | } | |
3523 | Retry: | |
3524 | assert(src_object->copy != VM_OBJECT_NULL); | |
3525 | copy = src_object->copy; | |
3526 | if (!vm_object_lock_try(copy)) { | |
3527 | vm_object_unlock(src_object); | |
2d21ac55 A |
3528 | |
3529 | try_failed_count++; | |
3530 | mutex_pause(try_failed_count); /* wait a bit */ | |
3531 | ||
1c79356b A |
3532 | vm_object_lock(src_object); |
3533 | goto Retry; | |
3534 | } | |
6d2010ae A |
3535 | if (copy->vo_size < src_offset+size) |
3536 | copy->vo_size = src_offset+size; | |
1c79356b A |
3537 | |
3538 | if (!copy->pager_ready) | |
3539 | check_ready = TRUE; | |
3540 | ||
3541 | /* | |
3542 | * Return the copy. | |
3543 | */ | |
3544 | *_result_object = copy; | |
3545 | vm_object_unlock(copy); | |
3546 | vm_object_unlock(src_object); | |
3547 | ||
3548 | /* Wait for the copy to be ready. */ | |
3549 | if (check_ready == TRUE) { | |
3550 | vm_object_lock(copy); | |
3551 | while (!copy->pager_ready) { | |
9bccf70c | 3552 | vm_object_sleep(copy, VM_OBJECT_EVENT_PAGER_READY, THREAD_UNINT); |
1c79356b A |
3553 | } |
3554 | vm_object_unlock(copy); | |
3555 | } | |
3556 | ||
3557 | return KERN_SUCCESS; | |
3558 | } | |
3559 | ||
0b4e3aa0 A |
3560 | static int copy_delayed_lock_collisions = 0; |
3561 | static int copy_delayed_max_collisions = 0; | |
3562 | static int copy_delayed_lock_contention = 0; | |
3563 | static int copy_delayed_protect_iterate = 0; | |
1c79356b A |
3564 | |
3565 | /* | |
3566 | * Routine: vm_object_copy_delayed [internal] | |
3567 | * | |
3568 | * Description: | |
3569 | * Copy the specified virtual memory object, using | |
3570 | * the asymmetric copy-on-write algorithm. | |
3571 | * | |
3572 | * In/out conditions: | |
55e303ae A |
3573 | * The src_object must be locked on entry. It will be unlocked |
3574 | * on exit - so the caller must also hold a reference to it. | |
1c79356b A |
3575 | * |
3576 | * This routine will not block waiting for user-generated | |
3577 | * events. It is not interruptible. | |
3578 | */ | |
0b4e3aa0 | 3579 | __private_extern__ vm_object_t |
1c79356b A |
3580 | vm_object_copy_delayed( |
3581 | vm_object_t src_object, | |
3582 | vm_object_offset_t src_offset, | |
2d21ac55 A |
3583 | vm_object_size_t size, |
3584 | boolean_t src_object_shared) | |
1c79356b A |
3585 | { |
3586 | vm_object_t new_copy = VM_OBJECT_NULL; | |
3587 | vm_object_t old_copy; | |
3588 | vm_page_t p; | |
55e303ae | 3589 | vm_object_size_t copy_size = src_offset + size; |
39236c6e A |
3590 | pmap_flush_context pmap_flush_context_storage; |
3591 | boolean_t delayed_pmap_flush = FALSE; | |
1c79356b | 3592 | |
2d21ac55 | 3593 | |
1c79356b A |
3594 | int collisions = 0; |
3595 | /* | |
3596 | * The user-level memory manager wants to see all of the changes | |
3597 | * to this object, but it has promised not to make any changes on | |
3598 | * its own. | |
3599 | * | |
3600 | * Perform an asymmetric copy-on-write, as follows: | |
3601 | * Create a new object, called a "copy object" to hold | |
3602 | * pages modified by the new mapping (i.e., the copy, | |
3603 | * not the original mapping). | |
3604 | * Record the original object as the backing object for | |
3605 | * the copy object. If the original mapping does not | |
3606 | * change a page, it may be used read-only by the copy. | |
3607 | * Record the copy object in the original object. | |
3608 | * When the original mapping causes a page to be modified, | |
3609 | * it must be copied to a new page that is "pushed" to | |
3610 | * the copy object. | |
3611 | * Mark the new mapping (the copy object) copy-on-write. | |
3612 | * This makes the copy object itself read-only, allowing | |
3613 | * it to be reused if the original mapping makes no | |
3614 | * changes, and simplifying the synchronization required | |
3615 | * in the "push" operation described above. | |
3616 | * | |
3617 | * The copy-on-write is said to be assymetric because the original | |
3618 | * object is *not* marked copy-on-write. A copied page is pushed | |
3619 | * to the copy object, regardless which party attempted to modify | |
3620 | * the page. | |
3621 | * | |
3622 | * Repeated asymmetric copy operations may be done. If the | |
3623 | * original object has not been changed since the last copy, its | |
3624 | * copy object can be reused. Otherwise, a new copy object can be | |
3625 | * inserted between the original object and its previous copy | |
3626 | * object. Since any copy object is read-only, this cannot affect | |
3627 | * affect the contents of the previous copy object. | |
3628 | * | |
3629 | * Note that a copy object is higher in the object tree than the | |
3630 | * original object; therefore, use of the copy object recorded in | |
3631 | * the original object must be done carefully, to avoid deadlock. | |
3632 | */ | |
3633 | ||
3634 | Retry: | |
1c79356b | 3635 | |
55e303ae A |
3636 | /* |
3637 | * Wait for paging in progress. | |
3638 | */ | |
b0d623f7 A |
3639 | if (!src_object->true_share && |
3640 | (src_object->paging_in_progress != 0 || | |
3641 | src_object->activity_in_progress != 0)) { | |
2d21ac55 A |
3642 | if (src_object_shared == TRUE) { |
3643 | vm_object_unlock(src_object); | |
2d21ac55 A |
3644 | vm_object_lock(src_object); |
3645 | src_object_shared = FALSE; | |
b0d623f7 | 3646 | goto Retry; |
2d21ac55 | 3647 | } |
55e303ae | 3648 | vm_object_paging_wait(src_object, THREAD_UNINT); |
2d21ac55 | 3649 | } |
1c79356b A |
3650 | /* |
3651 | * See whether we can reuse the result of a previous | |
3652 | * copy operation. | |
3653 | */ | |
3654 | ||
3655 | old_copy = src_object->copy; | |
3656 | if (old_copy != VM_OBJECT_NULL) { | |
2d21ac55 A |
3657 | int lock_granted; |
3658 | ||
1c79356b A |
3659 | /* |
3660 | * Try to get the locks (out of order) | |
3661 | */ | |
2d21ac55 A |
3662 | if (src_object_shared == TRUE) |
3663 | lock_granted = vm_object_lock_try_shared(old_copy); | |
3664 | else | |
3665 | lock_granted = vm_object_lock_try(old_copy); | |
3666 | ||
3667 | if (!lock_granted) { | |
1c79356b | 3668 | vm_object_unlock(src_object); |
1c79356b | 3669 | |
1c79356b A |
3670 | if (collisions++ == 0) |
3671 | copy_delayed_lock_contention++; | |
2d21ac55 A |
3672 | mutex_pause(collisions); |
3673 | ||
3674 | /* Heisenberg Rules */ | |
3675 | copy_delayed_lock_collisions++; | |
1c79356b A |
3676 | |
3677 | if (collisions > copy_delayed_max_collisions) | |
3678 | copy_delayed_max_collisions = collisions; | |
3679 | ||
2d21ac55 A |
3680 | if (src_object_shared == TRUE) |
3681 | vm_object_lock_shared(src_object); | |
3682 | else | |
3683 | vm_object_lock(src_object); | |
3684 | ||
1c79356b A |
3685 | goto Retry; |
3686 | } | |
3687 | ||
3688 | /* | |
3689 | * Determine whether the old copy object has | |
3690 | * been modified. | |
3691 | */ | |
3692 | ||
3693 | if (old_copy->resident_page_count == 0 && | |
3694 | !old_copy->pager_created) { | |
3695 | /* | |
3696 | * It has not been modified. | |
3697 | * | |
3698 | * Return another reference to | |
55e303ae A |
3699 | * the existing copy-object if |
3700 | * we can safely grow it (if | |
3701 | * needed). | |
de355530 | 3702 | */ |
1c79356b | 3703 | |
6d2010ae | 3704 | if (old_copy->vo_size < copy_size) { |
2d21ac55 A |
3705 | if (src_object_shared == TRUE) { |
3706 | vm_object_unlock(old_copy); | |
3707 | vm_object_unlock(src_object); | |
3708 | ||
3709 | vm_object_lock(src_object); | |
3710 | src_object_shared = FALSE; | |
3711 | goto Retry; | |
3712 | } | |
55e303ae A |
3713 | /* |
3714 | * We can't perform a delayed copy if any of the | |
3715 | * pages in the extended range are wired (because | |
3716 | * we can't safely take write permission away from | |
3717 | * wired pages). If the pages aren't wired, then | |
3718 | * go ahead and protect them. | |
3719 | */ | |
3720 | copy_delayed_protect_iterate++; | |
2d21ac55 | 3721 | |
39236c6e A |
3722 | pmap_flush_context_init(&pmap_flush_context_storage); |
3723 | delayed_pmap_flush = FALSE; | |
3724 | ||
55e303ae A |
3725 | queue_iterate(&src_object->memq, p, vm_page_t, listq) { |
3726 | if (!p->fictitious && | |
6d2010ae | 3727 | p->offset >= old_copy->vo_size && |
55e303ae | 3728 | p->offset < copy_size) { |
b0d623f7 | 3729 | if (VM_PAGE_WIRED(p)) { |
55e303ae A |
3730 | vm_object_unlock(old_copy); |
3731 | vm_object_unlock(src_object); | |
91447636 A |
3732 | |
3733 | if (new_copy != VM_OBJECT_NULL) { | |
3734 | vm_object_unlock(new_copy); | |
3735 | vm_object_deallocate(new_copy); | |
3736 | } | |
39236c6e A |
3737 | if (delayed_pmap_flush == TRUE) |
3738 | pmap_flush(&pmap_flush_context_storage); | |
91447636 | 3739 | |
55e303ae A |
3740 | return VM_OBJECT_NULL; |
3741 | } else { | |
39236c6e A |
3742 | pmap_page_protect_options(p->phys_page, (VM_PROT_ALL & ~VM_PROT_WRITE), |
3743 | PMAP_OPTIONS_NOFLUSH, (void *)&pmap_flush_context_storage); | |
3744 | delayed_pmap_flush = TRUE; | |
55e303ae A |
3745 | } |
3746 | } | |
3747 | } | |
39236c6e A |
3748 | if (delayed_pmap_flush == TRUE) |
3749 | pmap_flush(&pmap_flush_context_storage); | |
3750 | ||
6d2010ae | 3751 | old_copy->vo_size = copy_size; |
55e303ae | 3752 | } |
2d21ac55 A |
3753 | if (src_object_shared == TRUE) |
3754 | vm_object_reference_shared(old_copy); | |
3755 | else | |
3756 | vm_object_reference_locked(old_copy); | |
d7e50217 A |
3757 | vm_object_unlock(old_copy); |
3758 | vm_object_unlock(src_object); | |
91447636 A |
3759 | |
3760 | if (new_copy != VM_OBJECT_NULL) { | |
3761 | vm_object_unlock(new_copy); | |
3762 | vm_object_deallocate(new_copy); | |
3763 | } | |
55e303ae | 3764 | return(old_copy); |
d7e50217 | 3765 | } |
2d21ac55 A |
3766 | |
3767 | ||
de355530 A |
3768 | |
3769 | /* | |
3770 | * Adjust the size argument so that the newly-created | |
3771 | * copy object will be large enough to back either the | |
55e303ae | 3772 | * old copy object or the new mapping. |
de355530 | 3773 | */ |
6d2010ae A |
3774 | if (old_copy->vo_size > copy_size) |
3775 | copy_size = old_copy->vo_size; | |
55e303ae A |
3776 | |
3777 | if (new_copy == VM_OBJECT_NULL) { | |
3778 | vm_object_unlock(old_copy); | |
3779 | vm_object_unlock(src_object); | |
3780 | new_copy = vm_object_allocate(copy_size); | |
3781 | vm_object_lock(src_object); | |
3782 | vm_object_lock(new_copy); | |
2d21ac55 A |
3783 | |
3784 | src_object_shared = FALSE; | |
55e303ae A |
3785 | goto Retry; |
3786 | } | |
6d2010ae | 3787 | new_copy->vo_size = copy_size; |
1c79356b A |
3788 | |
3789 | /* | |
3790 | * The copy-object is always made large enough to | |
3791 | * completely shadow the original object, since | |
3792 | * it may have several users who want to shadow | |
3793 | * the original object at different points. | |
3794 | */ | |
3795 | ||
3796 | assert((old_copy->shadow == src_object) && | |
6d2010ae | 3797 | (old_copy->vo_shadow_offset == (vm_object_offset_t) 0)); |
1c79356b | 3798 | |
55e303ae A |
3799 | } else if (new_copy == VM_OBJECT_NULL) { |
3800 | vm_object_unlock(src_object); | |
3801 | new_copy = vm_object_allocate(copy_size); | |
3802 | vm_object_lock(src_object); | |
3803 | vm_object_lock(new_copy); | |
2d21ac55 A |
3804 | |
3805 | src_object_shared = FALSE; | |
55e303ae A |
3806 | goto Retry; |
3807 | } | |
3808 | ||
3809 | /* | |
3810 | * We now have the src object locked, and the new copy object | |
3811 | * allocated and locked (and potentially the old copy locked). | |
3812 | * Before we go any further, make sure we can still perform | |
3813 | * a delayed copy, as the situation may have changed. | |
3814 | * | |
3815 | * Specifically, we can't perform a delayed copy if any of the | |
3816 | * pages in the range are wired (because we can't safely take | |
3817 | * write permission away from wired pages). If the pages aren't | |
3818 | * wired, then go ahead and protect them. | |
3819 | */ | |
3820 | copy_delayed_protect_iterate++; | |
2d21ac55 | 3821 | |
39236c6e A |
3822 | pmap_flush_context_init(&pmap_flush_context_storage); |
3823 | delayed_pmap_flush = FALSE; | |
3824 | ||
55e303ae A |
3825 | queue_iterate(&src_object->memq, p, vm_page_t, listq) { |
3826 | if (!p->fictitious && p->offset < copy_size) { | |
b0d623f7 | 3827 | if (VM_PAGE_WIRED(p)) { |
55e303ae A |
3828 | if (old_copy) |
3829 | vm_object_unlock(old_copy); | |
3830 | vm_object_unlock(src_object); | |
3831 | vm_object_unlock(new_copy); | |
3832 | vm_object_deallocate(new_copy); | |
39236c6e A |
3833 | |
3834 | if (delayed_pmap_flush == TRUE) | |
3835 | pmap_flush(&pmap_flush_context_storage); | |
3836 | ||
55e303ae A |
3837 | return VM_OBJECT_NULL; |
3838 | } else { | |
39236c6e A |
3839 | pmap_page_protect_options(p->phys_page, (VM_PROT_ALL & ~VM_PROT_WRITE), |
3840 | PMAP_OPTIONS_NOFLUSH, (void *)&pmap_flush_context_storage); | |
3841 | delayed_pmap_flush = TRUE; | |
55e303ae A |
3842 | } |
3843 | } | |
3844 | } | |
39236c6e A |
3845 | if (delayed_pmap_flush == TRUE) |
3846 | pmap_flush(&pmap_flush_context_storage); | |
3847 | ||
55e303ae | 3848 | if (old_copy != VM_OBJECT_NULL) { |
1c79356b A |
3849 | /* |
3850 | * Make the old copy-object shadow the new one. | |
3851 | * It will receive no more pages from the original | |
3852 | * object. | |
3853 | */ | |
3854 | ||
2d21ac55 A |
3855 | /* remove ref. from old_copy */ |
3856 | vm_object_lock_assert_exclusive(src_object); | |
3857 | src_object->ref_count--; | |
1c79356b | 3858 | assert(src_object->ref_count > 0); |
2d21ac55 | 3859 | vm_object_lock_assert_exclusive(old_copy); |
1c79356b | 3860 | old_copy->shadow = new_copy; |
2d21ac55 | 3861 | vm_object_lock_assert_exclusive(new_copy); |
1c79356b A |
3862 | assert(new_copy->ref_count > 0); |
3863 | new_copy->ref_count++; /* for old_copy->shadow ref. */ | |
3864 | ||
3865 | #if TASK_SWAPPER | |
3866 | if (old_copy->res_count) { | |
3867 | VM_OBJ_RES_INCR(new_copy); | |
3868 | VM_OBJ_RES_DECR(src_object); | |
3869 | } | |
3870 | #endif | |
3871 | ||
3872 | vm_object_unlock(old_copy); /* done with old_copy */ | |
1c79356b A |
3873 | } |
3874 | ||
3875 | /* | |
3876 | * Point the new copy at the existing object. | |
3877 | */ | |
2d21ac55 | 3878 | vm_object_lock_assert_exclusive(new_copy); |
1c79356b | 3879 | new_copy->shadow = src_object; |
6d2010ae | 3880 | new_copy->vo_shadow_offset = 0; |
1c79356b | 3881 | new_copy->shadowed = TRUE; /* caller must set needs_copy */ |
2d21ac55 A |
3882 | |
3883 | vm_object_lock_assert_exclusive(src_object); | |
3884 | vm_object_reference_locked(src_object); | |
1c79356b | 3885 | src_object->copy = new_copy; |
55e303ae | 3886 | vm_object_unlock(src_object); |
1c79356b A |
3887 | vm_object_unlock(new_copy); |
3888 | ||
1c79356b A |
3889 | XPR(XPR_VM_OBJECT, |
3890 | "vm_object_copy_delayed: used copy object %X for source %X\n", | |
b0d623f7 | 3891 | new_copy, src_object, 0, 0, 0); |
1c79356b | 3892 | |
2d21ac55 | 3893 | return new_copy; |
1c79356b A |
3894 | } |
3895 | ||
3896 | /* | |
3897 | * Routine: vm_object_copy_strategically | |
3898 | * | |
3899 | * Purpose: | |
3900 | * Perform a copy according to the source object's | |
3901 | * declared strategy. This operation may block, | |
3902 | * and may be interrupted. | |
3903 | */ | |
0b4e3aa0 | 3904 | __private_extern__ kern_return_t |
1c79356b A |
3905 | vm_object_copy_strategically( |
3906 | register vm_object_t src_object, | |
3907 | vm_object_offset_t src_offset, | |
3908 | vm_object_size_t size, | |
3909 | vm_object_t *dst_object, /* OUT */ | |
3910 | vm_object_offset_t *dst_offset, /* OUT */ | |
3911 | boolean_t *dst_needs_copy) /* OUT */ | |
3912 | { | |
3913 | boolean_t result; | |
3914 | boolean_t interruptible = THREAD_ABORTSAFE; /* XXX */ | |
2d21ac55 | 3915 | boolean_t object_lock_shared = FALSE; |
1c79356b A |
3916 | memory_object_copy_strategy_t copy_strategy; |
3917 | ||
3918 | assert(src_object != VM_OBJECT_NULL); | |
3919 | ||
2d21ac55 A |
3920 | copy_strategy = src_object->copy_strategy; |
3921 | ||
3922 | if (copy_strategy == MEMORY_OBJECT_COPY_DELAY) { | |
3923 | vm_object_lock_shared(src_object); | |
3924 | object_lock_shared = TRUE; | |
3925 | } else | |
3926 | vm_object_lock(src_object); | |
1c79356b A |
3927 | |
3928 | /* | |
3929 | * The copy strategy is only valid if the memory manager | |
3930 | * is "ready". Internal objects are always ready. | |
3931 | */ | |
3932 | ||
3933 | while (!src_object->internal && !src_object->pager_ready) { | |
9bccf70c | 3934 | wait_result_t wait_result; |
1c79356b | 3935 | |
2d21ac55 A |
3936 | if (object_lock_shared == TRUE) { |
3937 | vm_object_unlock(src_object); | |
3938 | vm_object_lock(src_object); | |
3939 | object_lock_shared = FALSE; | |
3940 | continue; | |
3941 | } | |
9bccf70c A |
3942 | wait_result = vm_object_sleep( src_object, |
3943 | VM_OBJECT_EVENT_PAGER_READY, | |
3944 | interruptible); | |
3945 | if (wait_result != THREAD_AWAKENED) { | |
3946 | vm_object_unlock(src_object); | |
1c79356b A |
3947 | *dst_object = VM_OBJECT_NULL; |
3948 | *dst_offset = 0; | |
3949 | *dst_needs_copy = FALSE; | |
3950 | return(MACH_SEND_INTERRUPTED); | |
3951 | } | |
1c79356b A |
3952 | } |
3953 | ||
1c79356b A |
3954 | /* |
3955 | * Use the appropriate copy strategy. | |
3956 | */ | |
3957 | ||
3958 | switch (copy_strategy) { | |
55e303ae A |
3959 | case MEMORY_OBJECT_COPY_DELAY: |
3960 | *dst_object = vm_object_copy_delayed(src_object, | |
2d21ac55 | 3961 | src_offset, size, object_lock_shared); |
55e303ae A |
3962 | if (*dst_object != VM_OBJECT_NULL) { |
3963 | *dst_offset = src_offset; | |
3964 | *dst_needs_copy = TRUE; | |
3965 | result = KERN_SUCCESS; | |
3966 | break; | |
3967 | } | |
3968 | vm_object_lock(src_object); | |
3969 | /* fall thru when delayed copy not allowed */ | |
3970 | ||
1c79356b A |
3971 | case MEMORY_OBJECT_COPY_NONE: |
3972 | result = vm_object_copy_slowly(src_object, src_offset, size, | |
3973 | interruptible, dst_object); | |
3974 | if (result == KERN_SUCCESS) { | |
3975 | *dst_offset = 0; | |
3976 | *dst_needs_copy = FALSE; | |
3977 | } | |
3978 | break; | |
3979 | ||
3980 | case MEMORY_OBJECT_COPY_CALL: | |
3981 | result = vm_object_copy_call(src_object, src_offset, size, | |
3982 | dst_object); | |
3983 | if (result == KERN_SUCCESS) { | |
3984 | *dst_offset = src_offset; | |
3985 | *dst_needs_copy = TRUE; | |
3986 | } | |
3987 | break; | |
3988 | ||
1c79356b | 3989 | case MEMORY_OBJECT_COPY_SYMMETRIC: |
b0d623f7 | 3990 | XPR(XPR_VM_OBJECT, "v_o_c_strategically obj 0x%x off 0x%x size 0x%x\n", src_object, src_offset, size, 0, 0); |
1c79356b A |
3991 | vm_object_unlock(src_object); |
3992 | result = KERN_MEMORY_RESTART_COPY; | |
3993 | break; | |
3994 | ||
3995 | default: | |
3996 | panic("copy_strategically: bad strategy"); | |
3997 | result = KERN_INVALID_ARGUMENT; | |
3998 | } | |
3999 | return(result); | |
4000 | } | |
4001 | ||
4002 | /* | |
4003 | * vm_object_shadow: | |
4004 | * | |
4005 | * Create a new object which is backed by the | |
4006 | * specified existing object range. The source | |
4007 | * object reference is deallocated. | |
4008 | * | |
4009 | * The new object and offset into that object | |
4010 | * are returned in the source parameters. | |
4011 | */ | |
6d2010ae | 4012 | boolean_t vm_object_shadow_check = TRUE; |
1c79356b | 4013 | |
0b4e3aa0 | 4014 | __private_extern__ boolean_t |
1c79356b A |
4015 | vm_object_shadow( |
4016 | vm_object_t *object, /* IN/OUT */ | |
4017 | vm_object_offset_t *offset, /* IN/OUT */ | |
4018 | vm_object_size_t length) | |
4019 | { | |
4020 | register vm_object_t source; | |
4021 | register vm_object_t result; | |
4022 | ||
4023 | source = *object; | |
e2d2fc5c A |
4024 | assert(source != VM_OBJECT_NULL); |
4025 | if (source == VM_OBJECT_NULL) | |
4026 | return FALSE; | |
4027 | ||
2d21ac55 A |
4028 | #if 0 |
4029 | /* | |
4030 | * XXX FBDP | |
4031 | * This assertion is valid but it gets triggered by Rosetta for example | |
4032 | * due to a combination of vm_remap() that changes a VM object's | |
4033 | * copy_strategy from SYMMETRIC to DELAY and vm_protect(VM_PROT_COPY) | |
4034 | * that then sets "needs_copy" on its map entry. This creates a | |
4035 | * mapping situation that VM should never see and doesn't know how to | |
4036 | * handle. | |
4037 | * It's not clear if this can create any real problem but we should | |
4038 | * look into fixing this, probably by having vm_protect(VM_PROT_COPY) | |
4039 | * do more than just set "needs_copy" to handle the copy-on-write... | |
4040 | * In the meantime, let's disable the assertion. | |
4041 | */ | |
1c79356b | 4042 | assert(source->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC); |
2d21ac55 | 4043 | #endif |
1c79356b A |
4044 | |
4045 | /* | |
4046 | * Determine if we really need a shadow. | |
6d2010ae A |
4047 | * |
4048 | * If the source object is larger than what we are trying | |
4049 | * to create, then force the shadow creation even if the | |
4050 | * ref count is 1. This will allow us to [potentially] | |
4051 | * collapse the underlying object away in the future | |
4052 | * (freeing up the extra data it might contain and that | |
4053 | * we don't need). | |
1c79356b | 4054 | */ |
6d2010ae A |
4055 | if (vm_object_shadow_check && |
4056 | source->vo_size == length && | |
4057 | source->ref_count == 1 && | |
1c79356b | 4058 | (source->shadow == VM_OBJECT_NULL || |
6d2010ae | 4059 | source->shadow->copy == VM_OBJECT_NULL) ) |
1c79356b A |
4060 | { |
4061 | source->shadowed = FALSE; | |
4062 | return FALSE; | |
4063 | } | |
4064 | ||
4065 | /* | |
4066 | * Allocate a new object with the given length | |
4067 | */ | |
4068 | ||
4069 | if ((result = vm_object_allocate(length)) == VM_OBJECT_NULL) | |
4070 | panic("vm_object_shadow: no object for shadowing"); | |
4071 | ||
4072 | /* | |
4073 | * The new object shadows the source object, adding | |
4074 | * a reference to it. Our caller changes his reference | |
4075 | * to point to the new object, removing a reference to | |
4076 | * the source object. Net result: no change of reference | |
4077 | * count. | |
4078 | */ | |
4079 | result->shadow = source; | |
4080 | ||
4081 | /* | |
4082 | * Store the offset into the source object, | |
4083 | * and fix up the offset into the new object. | |
4084 | */ | |
4085 | ||
6d2010ae | 4086 | result->vo_shadow_offset = *offset; |
1c79356b A |
4087 | |
4088 | /* | |
4089 | * Return the new things | |
4090 | */ | |
4091 | ||
4092 | *offset = 0; | |
4093 | *object = result; | |
4094 | return TRUE; | |
4095 | } | |
4096 | ||
4097 | /* | |
4098 | * The relationship between vm_object structures and | |
0b4e3aa0 | 4099 | * the memory_object requires careful synchronization. |
1c79356b | 4100 | * |
0b4e3aa0 A |
4101 | * All associations are created by memory_object_create_named |
4102 | * for external pagers and vm_object_pager_create for internal | |
4103 | * objects as follows: | |
4104 | * | |
4105 | * pager: the memory_object itself, supplied by | |
1c79356b A |
4106 | * the user requesting a mapping (or the kernel, |
4107 | * when initializing internal objects); the | |
4108 | * kernel simulates holding send rights by keeping | |
4109 | * a port reference; | |
0b4e3aa0 | 4110 | * |
1c79356b A |
4111 | * pager_request: |
4112 | * the memory object control port, | |
4113 | * created by the kernel; the kernel holds | |
4114 | * receive (and ownership) rights to this | |
4115 | * port, but no other references. | |
1c79356b A |
4116 | * |
4117 | * When initialization is complete, the "initialized" field | |
4118 | * is asserted. Other mappings using a particular memory object, | |
4119 | * and any references to the vm_object gained through the | |
4120 | * port association must wait for this initialization to occur. | |
4121 | * | |
4122 | * In order to allow the memory manager to set attributes before | |
4123 | * requests (notably virtual copy operations, but also data or | |
4124 | * unlock requests) are made, a "ready" attribute is made available. | |
4125 | * Only the memory manager may affect the value of this attribute. | |
4126 | * Its value does not affect critical kernel functions, such as | |
4127 | * internal object initialization or destruction. [Furthermore, | |
4128 | * memory objects created by the kernel are assumed to be ready | |
4129 | * immediately; the default memory manager need not explicitly | |
4130 | * set the "ready" attribute.] | |
4131 | * | |
4132 | * [Both the "initialized" and "ready" attribute wait conditions | |
4133 | * use the "pager" field as the wait event.] | |
4134 | * | |
4135 | * The port associations can be broken down by any of the | |
4136 | * following routines: | |
4137 | * vm_object_terminate: | |
4138 | * No references to the vm_object remain, and | |
4139 | * the object cannot (or will not) be cached. | |
4140 | * This is the normal case, and is done even | |
4141 | * though one of the other cases has already been | |
4142 | * done. | |
1c79356b A |
4143 | * memory_object_destroy: |
4144 | * The memory manager has requested that the | |
0b4e3aa0 A |
4145 | * kernel relinquish references to the memory |
4146 | * object. [The memory manager may not want to | |
4147 | * destroy the memory object, but may wish to | |
4148 | * refuse or tear down existing memory mappings.] | |
4149 | * | |
1c79356b A |
4150 | * Each routine that breaks an association must break all of |
4151 | * them at once. At some later time, that routine must clear | |
0b4e3aa0 | 4152 | * the pager field and release the memory object references. |
1c79356b A |
4153 | * [Furthermore, each routine must cope with the simultaneous |
4154 | * or previous operations of the others.] | |
4155 | * | |
b0d623f7 | 4156 | * In addition to the lock on the object, the vm_object_hash_lock |
0b4e3aa0 | 4157 | * governs the associations. References gained through the |
b0d623f7 | 4158 | * association require use of the hash lock. |
1c79356b | 4159 | * |
0b4e3aa0 | 4160 | * Because the pager field may be cleared spontaneously, it |
1c79356b A |
4161 | * cannot be used to determine whether a memory object has |
4162 | * ever been associated with a particular vm_object. [This | |
2d21ac55 A |
4163 | * knowledge is important to the shadow object mechanism.] |
4164 | * For this reason, an additional "created" attribute is | |
4165 | * provided. | |
4166 | * | |
4167 | * During various paging operations, the pager reference found in the | |
4168 | * vm_object must be valid. To prevent this from being released, | |
4169 | * (other than being removed, i.e., made null), routines may use | |
4170 | * the vm_object_paging_begin/end routines [actually, macros]. | |
4171 | * The implementation uses the "paging_in_progress" and "wanted" fields. | |
4172 | * [Operations that alter the validity of the pager values include the | |
4173 | * termination routines and vm_object_collapse.] | |
4174 | */ | |
1c79356b | 4175 | |
1c79356b A |
4176 | |
4177 | /* | |
4178 | * Routine: vm_object_enter | |
4179 | * Purpose: | |
4180 | * Find a VM object corresponding to the given | |
4181 | * pager; if no such object exists, create one, | |
4182 | * and initialize the pager. | |
4183 | */ | |
4184 | vm_object_t | |
4185 | vm_object_enter( | |
0b4e3aa0 | 4186 | memory_object_t pager, |
1c79356b A |
4187 | vm_object_size_t size, |
4188 | boolean_t internal, | |
4189 | boolean_t init, | |
0b4e3aa0 | 4190 | boolean_t named) |
1c79356b A |
4191 | { |
4192 | register vm_object_t object; | |
4193 | vm_object_t new_object; | |
4194 | boolean_t must_init; | |
1c79356b | 4195 | vm_object_hash_entry_t entry, new_entry; |
2d21ac55 | 4196 | uint32_t try_failed_count = 0; |
b0d623f7 | 4197 | lck_mtx_t *lck; |
1c79356b | 4198 | |
0b4e3aa0 | 4199 | if (pager == MEMORY_OBJECT_NULL) |
1c79356b A |
4200 | return(vm_object_allocate(size)); |
4201 | ||
4202 | new_object = VM_OBJECT_NULL; | |
4203 | new_entry = VM_OBJECT_HASH_ENTRY_NULL; | |
4204 | must_init = init; | |
4205 | ||
4206 | /* | |
4207 | * Look for an object associated with this port. | |
4208 | */ | |
2d21ac55 | 4209 | Retry: |
b0d623f7 | 4210 | lck = vm_object_hash_lock_spin(pager); |
55e303ae | 4211 | do { |
1c79356b A |
4212 | entry = vm_object_hash_lookup(pager, FALSE); |
4213 | ||
55e303ae A |
4214 | if (entry == VM_OBJECT_HASH_ENTRY_NULL) { |
4215 | if (new_object == VM_OBJECT_NULL) { | |
4216 | /* | |
4217 | * We must unlock to create a new object; | |
4218 | * if we do so, we must try the lookup again. | |
4219 | */ | |
b0d623f7 | 4220 | vm_object_hash_unlock(lck); |
55e303ae A |
4221 | assert(new_entry == VM_OBJECT_HASH_ENTRY_NULL); |
4222 | new_entry = vm_object_hash_entry_alloc(pager); | |
4223 | new_object = vm_object_allocate(size); | |
b0d623f7 | 4224 | lck = vm_object_hash_lock_spin(pager); |
55e303ae A |
4225 | } else { |
4226 | /* | |
4227 | * Lookup failed twice, and we have something | |
4228 | * to insert; set the object. | |
4229 | */ | |
b0d623f7 | 4230 | vm_object_hash_insert(new_entry, new_object); |
55e303ae | 4231 | entry = new_entry; |
55e303ae A |
4232 | new_entry = VM_OBJECT_HASH_ENTRY_NULL; |
4233 | new_object = VM_OBJECT_NULL; | |
4234 | must_init = TRUE; | |
4235 | } | |
4236 | } else if (entry->object == VM_OBJECT_NULL) { | |
4237 | /* | |
4238 | * If a previous object is being terminated, | |
4239 | * we must wait for the termination message | |
4240 | * to be queued (and lookup the entry again). | |
4241 | */ | |
1c79356b | 4242 | entry->waiting = TRUE; |
55e303ae | 4243 | entry = VM_OBJECT_HASH_ENTRY_NULL; |
1c79356b | 4244 | assert_wait((event_t) pager, THREAD_UNINT); |
b0d623f7 A |
4245 | vm_object_hash_unlock(lck); |
4246 | ||
91447636 | 4247 | thread_block(THREAD_CONTINUE_NULL); |
b0d623f7 | 4248 | lck = vm_object_hash_lock_spin(pager); |
1c79356b | 4249 | } |
55e303ae | 4250 | } while (entry == VM_OBJECT_HASH_ENTRY_NULL); |
1c79356b A |
4251 | |
4252 | object = entry->object; | |
4253 | assert(object != VM_OBJECT_NULL); | |
4254 | ||
4255 | if (!must_init) { | |
b0d623f7 | 4256 | if ( !vm_object_lock_try(object)) { |
2d21ac55 | 4257 | |
b0d623f7 | 4258 | vm_object_hash_unlock(lck); |
2d21ac55 A |
4259 | |
4260 | try_failed_count++; | |
4261 | mutex_pause(try_failed_count); /* wait a bit */ | |
2d21ac55 A |
4262 | goto Retry; |
4263 | } | |
1c79356b | 4264 | assert(!internal || object->internal); |
b0d623f7 | 4265 | #if VM_OBJECT_CACHE |
1c79356b | 4266 | if (object->ref_count == 0) { |
b0d623f7 A |
4267 | if ( !vm_object_cache_lock_try()) { |
4268 | ||
4269 | vm_object_hash_unlock(lck); | |
4270 | vm_object_unlock(object); | |
4271 | ||
4272 | try_failed_count++; | |
4273 | mutex_pause(try_failed_count); /* wait a bit */ | |
4274 | goto Retry; | |
4275 | } | |
1c79356b | 4276 | XPR(XPR_VM_OBJECT_CACHE, |
b0d623f7 A |
4277 | "vm_object_enter: removing %x from cache, head (%x, %x)\n", |
4278 | object, | |
4279 | vm_object_cached_list.next, | |
4280 | vm_object_cached_list.prev, 0,0); | |
1c79356b A |
4281 | queue_remove(&vm_object_cached_list, object, |
4282 | vm_object_t, cached_list); | |
4283 | vm_object_cached_count--; | |
b0d623f7 A |
4284 | |
4285 | vm_object_cache_unlock(); | |
4286 | } | |
4287 | #endif | |
4288 | if (named) { | |
4289 | assert(!object->named); | |
4290 | object->named = TRUE; | |
1c79356b | 4291 | } |
2d21ac55 | 4292 | vm_object_lock_assert_exclusive(object); |
1c79356b A |
4293 | object->ref_count++; |
4294 | vm_object_res_reference(object); | |
b0d623f7 A |
4295 | |
4296 | vm_object_hash_unlock(lck); | |
1c79356b A |
4297 | vm_object_unlock(object); |
4298 | ||
2d21ac55 | 4299 | VM_STAT_INCR(hits); |
b0d623f7 A |
4300 | } else |
4301 | vm_object_hash_unlock(lck); | |
4302 | ||
1c79356b A |
4303 | assert(object->ref_count > 0); |
4304 | ||
2d21ac55 | 4305 | VM_STAT_INCR(lookups); |
1c79356b | 4306 | |
1c79356b A |
4307 | XPR(XPR_VM_OBJECT, |
4308 | "vm_o_enter: pager 0x%x obj 0x%x must_init %d\n", | |
b0d623f7 | 4309 | pager, object, must_init, 0, 0); |
1c79356b A |
4310 | |
4311 | /* | |
4312 | * If we raced to create a vm_object but lost, let's | |
4313 | * throw away ours. | |
4314 | */ | |
4315 | ||
4316 | if (new_object != VM_OBJECT_NULL) | |
4317 | vm_object_deallocate(new_object); | |
4318 | ||
4319 | if (new_entry != VM_OBJECT_HASH_ENTRY_NULL) | |
4320 | vm_object_hash_entry_free(new_entry); | |
4321 | ||
4322 | if (must_init) { | |
91447636 | 4323 | memory_object_control_t control; |
1c79356b A |
4324 | |
4325 | /* | |
4326 | * Allocate request port. | |
4327 | */ | |
4328 | ||
91447636 A |
4329 | control = memory_object_control_allocate(object); |
4330 | assert (control != MEMORY_OBJECT_CONTROL_NULL); | |
1c79356b A |
4331 | |
4332 | vm_object_lock(object); | |
91447636 | 4333 | assert(object != kernel_object); |
1c79356b A |
4334 | |
4335 | /* | |
0b4e3aa0 | 4336 | * Copy the reference we were given. |
1c79356b A |
4337 | */ |
4338 | ||
0b4e3aa0 | 4339 | memory_object_reference(pager); |
1c79356b A |
4340 | object->pager_created = TRUE; |
4341 | object->pager = pager; | |
4342 | object->internal = internal; | |
4343 | object->pager_trusted = internal; | |
4344 | if (!internal) { | |
4345 | /* copy strategy invalid until set by memory manager */ | |
4346 | object->copy_strategy = MEMORY_OBJECT_COPY_INVALID; | |
4347 | } | |
91447636 | 4348 | object->pager_control = control; |
1c79356b A |
4349 | object->pager_ready = FALSE; |
4350 | ||
1c79356b A |
4351 | vm_object_unlock(object); |
4352 | ||
4353 | /* | |
4354 | * Let the pager know we're using it. | |
4355 | */ | |
4356 | ||
0b4e3aa0 | 4357 | (void) memory_object_init(pager, |
91447636 | 4358 | object->pager_control, |
0b4e3aa0 | 4359 | PAGE_SIZE); |
1c79356b A |
4360 | |
4361 | vm_object_lock(object); | |
0b4e3aa0 A |
4362 | if (named) |
4363 | object->named = TRUE; | |
1c79356b A |
4364 | if (internal) { |
4365 | object->pager_ready = TRUE; | |
4366 | vm_object_wakeup(object, VM_OBJECT_EVENT_PAGER_READY); | |
4367 | } | |
4368 | ||
4369 | object->pager_initialized = TRUE; | |
4370 | vm_object_wakeup(object, VM_OBJECT_EVENT_INITIALIZED); | |
4371 | } else { | |
4372 | vm_object_lock(object); | |
4373 | } | |
4374 | ||
4375 | /* | |
4376 | * [At this point, the object must be locked] | |
4377 | */ | |
4378 | ||
4379 | /* | |
4380 | * Wait for the work above to be done by the first | |
4381 | * thread to map this object. | |
4382 | */ | |
4383 | ||
4384 | while (!object->pager_initialized) { | |
9bccf70c | 4385 | vm_object_sleep(object, |
1c79356b A |
4386 | VM_OBJECT_EVENT_INITIALIZED, |
4387 | THREAD_UNINT); | |
1c79356b A |
4388 | } |
4389 | vm_object_unlock(object); | |
4390 | ||
4391 | XPR(XPR_VM_OBJECT, | |
4392 | "vm_object_enter: vm_object %x, memory_object %x, internal %d\n", | |
b0d623f7 | 4393 | object, object->pager, internal, 0,0); |
1c79356b A |
4394 | return(object); |
4395 | } | |
4396 | ||
4397 | /* | |
4398 | * Routine: vm_object_pager_create | |
4399 | * Purpose: | |
4400 | * Create a memory object for an internal object. | |
4401 | * In/out conditions: | |
4402 | * The object is locked on entry and exit; | |
4403 | * it may be unlocked within this call. | |
4404 | * Limitations: | |
4405 | * Only one thread may be performing a | |
4406 | * vm_object_pager_create on an object at | |
4407 | * a time. Presumably, only the pageout | |
4408 | * daemon will be using this routine. | |
4409 | */ | |
4410 | ||
4411 | void | |
4412 | vm_object_pager_create( | |
4413 | register vm_object_t object) | |
4414 | { | |
0b4e3aa0 | 4415 | memory_object_t pager; |
1c79356b | 4416 | vm_object_hash_entry_t entry; |
b0d623f7 | 4417 | lck_mtx_t *lck; |
1c79356b A |
4418 | #if MACH_PAGEMAP |
4419 | vm_object_size_t size; | |
4420 | vm_external_map_t map; | |
4421 | #endif /* MACH_PAGEMAP */ | |
4422 | ||
4423 | XPR(XPR_VM_OBJECT, "vm_object_pager_create, object 0x%X\n", | |
b0d623f7 | 4424 | object, 0,0,0,0); |
1c79356b | 4425 | |
91447636 A |
4426 | assert(object != kernel_object); |
4427 | ||
1c79356b A |
4428 | if (memory_manager_default_check() != KERN_SUCCESS) |
4429 | return; | |
4430 | ||
4431 | /* | |
4432 | * Prevent collapse or termination by holding a paging reference | |
4433 | */ | |
4434 | ||
4435 | vm_object_paging_begin(object); | |
4436 | if (object->pager_created) { | |
4437 | /* | |
4438 | * Someone else got to it first... | |
4439 | * wait for them to finish initializing the ports | |
4440 | */ | |
4441 | while (!object->pager_initialized) { | |
9bccf70c A |
4442 | vm_object_sleep(object, |
4443 | VM_OBJECT_EVENT_INITIALIZED, | |
4444 | THREAD_UNINT); | |
1c79356b A |
4445 | } |
4446 | vm_object_paging_end(object); | |
4447 | return; | |
4448 | } | |
4449 | ||
4450 | /* | |
4451 | * Indicate that a memory object has been assigned | |
4452 | * before dropping the lock, to prevent a race. | |
4453 | */ | |
4454 | ||
4455 | object->pager_created = TRUE; | |
4456 | object->paging_offset = 0; | |
4457 | ||
4458 | #if MACH_PAGEMAP | |
6d2010ae | 4459 | size = object->vo_size; |
1c79356b A |
4460 | #endif /* MACH_PAGEMAP */ |
4461 | vm_object_unlock(object); | |
4462 | ||
4463 | #if MACH_PAGEMAP | |
39236c6e A |
4464 | if (DEFAULT_PAGER_IS_ACTIVE) { |
4465 | map = vm_external_create(size); | |
4466 | vm_object_lock(object); | |
4467 | assert(object->vo_size == size); | |
4468 | object->existence_map = map; | |
4469 | vm_object_unlock(object); | |
4470 | } | |
1c79356b A |
4471 | #endif /* MACH_PAGEMAP */ |
4472 | ||
6d2010ae | 4473 | if ((uint32_t) object->vo_size != object->vo_size) { |
b0d623f7 | 4474 | panic("vm_object_pager_create(): object size 0x%llx >= 4GB\n", |
6d2010ae | 4475 | (uint64_t) object->vo_size); |
b0d623f7 A |
4476 | } |
4477 | ||
1c79356b | 4478 | /* |
0b4e3aa0 | 4479 | * Create the [internal] pager, and associate it with this object. |
1c79356b | 4480 | * |
0b4e3aa0 | 4481 | * We make the association here so that vm_object_enter() |
1c79356b A |
4482 | * can look up the object to complete initializing it. No |
4483 | * user will ever map this object. | |
4484 | */ | |
4485 | { | |
0b4e3aa0 | 4486 | memory_object_default_t dmm; |
1c79356b | 4487 | |
0b4e3aa0 | 4488 | /* acquire a reference for the default memory manager */ |
2d21ac55 | 4489 | dmm = memory_manager_default_reference(); |
1c79356b | 4490 | |
1c79356b A |
4491 | assert(object->temporary); |
4492 | ||
0b4e3aa0 | 4493 | /* create our new memory object */ |
6d2010ae A |
4494 | assert((vm_size_t) object->vo_size == object->vo_size); |
4495 | (void) memory_object_create(dmm, (vm_size_t) object->vo_size, | |
b0d623f7 | 4496 | &pager); |
0b4e3aa0 A |
4497 | |
4498 | memory_object_default_deallocate(dmm); | |
1c79356b A |
4499 | } |
4500 | ||
4501 | entry = vm_object_hash_entry_alloc(pager); | |
4502 | ||
b0d623f7 A |
4503 | lck = vm_object_hash_lock_spin(pager); |
4504 | vm_object_hash_insert(entry, object); | |
4505 | vm_object_hash_unlock(lck); | |
1c79356b A |
4506 | |
4507 | /* | |
0b4e3aa0 | 4508 | * A reference was returned by |
1c79356b A |
4509 | * memory_object_create(), and it is |
4510 | * copied by vm_object_enter(). | |
4511 | */ | |
4512 | ||
6d2010ae | 4513 | if (vm_object_enter(pager, object->vo_size, TRUE, TRUE, FALSE) != object) |
1c79356b A |
4514 | panic("vm_object_pager_create: mismatch"); |
4515 | ||
4516 | /* | |
0b4e3aa0 | 4517 | * Drop the reference we were passed. |
1c79356b | 4518 | */ |
0b4e3aa0 | 4519 | memory_object_deallocate(pager); |
1c79356b A |
4520 | |
4521 | vm_object_lock(object); | |
4522 | ||
4523 | /* | |
4524 | * Release the paging reference | |
4525 | */ | |
4526 | vm_object_paging_end(object); | |
4527 | } | |
4528 | ||
39236c6e A |
4529 | void |
4530 | vm_object_compressor_pager_create( | |
4531 | register vm_object_t object) | |
4532 | { | |
4533 | memory_object_t pager; | |
4534 | vm_object_hash_entry_t entry; | |
4535 | lck_mtx_t *lck; | |
4536 | ||
4537 | assert(object != kernel_object); | |
4538 | ||
4539 | /* | |
4540 | * Prevent collapse or termination by holding a paging reference | |
4541 | */ | |
4542 | ||
4543 | vm_object_paging_begin(object); | |
4544 | if (object->pager_created) { | |
4545 | /* | |
4546 | * Someone else got to it first... | |
4547 | * wait for them to finish initializing the ports | |
4548 | */ | |
4549 | while (!object->pager_initialized) { | |
4550 | vm_object_sleep(object, | |
4551 | VM_OBJECT_EVENT_INITIALIZED, | |
4552 | THREAD_UNINT); | |
4553 | } | |
4554 | vm_object_paging_end(object); | |
4555 | return; | |
4556 | } | |
4557 | ||
4558 | /* | |
4559 | * Indicate that a memory object has been assigned | |
4560 | * before dropping the lock, to prevent a race. | |
4561 | */ | |
4562 | ||
4563 | object->pager_created = TRUE; | |
4564 | object->paging_offset = 0; | |
4565 | ||
4566 | vm_object_unlock(object); | |
4567 | ||
4568 | if ((uint32_t) object->vo_size != object->vo_size) { | |
4569 | panic("vm_object_compressor_pager_create(): object size 0x%llx >= 4GB\n", | |
4570 | (uint64_t) object->vo_size); | |
4571 | } | |
4572 | ||
4573 | /* | |
4574 | * Create the [internal] pager, and associate it with this object. | |
4575 | * | |
4576 | * We make the association here so that vm_object_enter() | |
4577 | * can look up the object to complete initializing it. No | |
4578 | * user will ever map this object. | |
4579 | */ | |
4580 | { | |
4581 | assert(object->temporary); | |
4582 | ||
4583 | /* create our new memory object */ | |
4584 | assert((vm_size_t) object->vo_size == object->vo_size); | |
4585 | (void) compressor_memory_object_create( | |
4586 | (vm_size_t) object->vo_size, | |
4587 | &pager); | |
4588 | } | |
4589 | ||
4590 | entry = vm_object_hash_entry_alloc(pager); | |
4591 | ||
4592 | lck = vm_object_hash_lock_spin(pager); | |
4593 | vm_object_hash_insert(entry, object); | |
4594 | vm_object_hash_unlock(lck); | |
4595 | ||
4596 | /* | |
4597 | * A reference was returned by | |
4598 | * memory_object_create(), and it is | |
4599 | * copied by vm_object_enter(). | |
4600 | */ | |
4601 | ||
4602 | if (vm_object_enter(pager, object->vo_size, TRUE, TRUE, FALSE) != object) | |
4603 | panic("vm_object_compressor_pager_create: mismatch"); | |
4604 | ||
4605 | /* | |
4606 | * Drop the reference we were passed. | |
4607 | */ | |
4608 | memory_object_deallocate(pager); | |
4609 | ||
4610 | vm_object_lock(object); | |
4611 | ||
4612 | /* | |
4613 | * Release the paging reference | |
4614 | */ | |
4615 | vm_object_paging_end(object); | |
4616 | } | |
4617 | ||
1c79356b A |
4618 | /* |
4619 | * Routine: vm_object_remove | |
4620 | * Purpose: | |
4621 | * Eliminate the pager/object association | |
4622 | * for this pager. | |
4623 | * Conditions: | |
4624 | * The object cache must be locked. | |
4625 | */ | |
0b4e3aa0 | 4626 | __private_extern__ void |
1c79356b A |
4627 | vm_object_remove( |
4628 | vm_object_t object) | |
4629 | { | |
0b4e3aa0 | 4630 | memory_object_t pager; |
1c79356b | 4631 | |
0b4e3aa0 | 4632 | if ((pager = object->pager) != MEMORY_OBJECT_NULL) { |
1c79356b A |
4633 | vm_object_hash_entry_t entry; |
4634 | ||
0b4e3aa0 | 4635 | entry = vm_object_hash_lookup(pager, FALSE); |
1c79356b A |
4636 | if (entry != VM_OBJECT_HASH_ENTRY_NULL) |
4637 | entry->object = VM_OBJECT_NULL; | |
4638 | } | |
4639 | ||
1c79356b A |
4640 | } |
4641 | ||
4642 | /* | |
4643 | * Global variables for vm_object_collapse(): | |
4644 | * | |
4645 | * Counts for normal collapses and bypasses. | |
4646 | * Debugging variables, to watch or disable collapse. | |
4647 | */ | |
0b4e3aa0 A |
4648 | static long object_collapses = 0; |
4649 | static long object_bypasses = 0; | |
1c79356b | 4650 | |
0b4e3aa0 A |
4651 | static boolean_t vm_object_collapse_allowed = TRUE; |
4652 | static boolean_t vm_object_bypass_allowed = TRUE; | |
4653 | ||
2d21ac55 | 4654 | #if MACH_PAGEMAP |
0b4e3aa0 A |
4655 | static int vm_external_discarded; |
4656 | static int vm_external_collapsed; | |
2d21ac55 | 4657 | #endif |
1c79356b | 4658 | |
91447636 A |
4659 | unsigned long vm_object_collapse_encrypted = 0; |
4660 | ||
1c79356b | 4661 | /* |
0b4e3aa0 A |
4662 | * Routine: vm_object_do_collapse |
4663 | * Purpose: | |
4664 | * Collapse an object with the object backing it. | |
4665 | * Pages in the backing object are moved into the | |
4666 | * parent, and the backing object is deallocated. | |
4667 | * Conditions: | |
4668 | * Both objects and the cache are locked; the page | |
4669 | * queues are unlocked. | |
1c79356b A |
4670 | * |
4671 | */ | |
0b4e3aa0 | 4672 | static void |
1c79356b A |
4673 | vm_object_do_collapse( |
4674 | vm_object_t object, | |
4675 | vm_object_t backing_object) | |
4676 | { | |
4677 | vm_page_t p, pp; | |
4678 | vm_object_offset_t new_offset, backing_offset; | |
4679 | vm_object_size_t size; | |
4680 | ||
b0d623f7 A |
4681 | vm_object_lock_assert_exclusive(object); |
4682 | vm_object_lock_assert_exclusive(backing_object); | |
4683 | ||
6d2010ae A |
4684 | backing_offset = object->vo_shadow_offset; |
4685 | size = object->vo_size; | |
1c79356b | 4686 | |
1c79356b A |
4687 | /* |
4688 | * Move all in-memory pages from backing_object | |
4689 | * to the parent. Pages that have been paged out | |
4690 | * will be overwritten by any of the parent's | |
4691 | * pages that shadow them. | |
4692 | */ | |
4693 | ||
4694 | while (!queue_empty(&backing_object->memq)) { | |
4695 | ||
4696 | p = (vm_page_t) queue_first(&backing_object->memq); | |
4697 | ||
4698 | new_offset = (p->offset - backing_offset); | |
4699 | ||
4700 | assert(!p->busy || p->absent); | |
91447636 | 4701 | |
1c79356b A |
4702 | /* |
4703 | * If the parent has a page here, or if | |
4704 | * this page falls outside the parent, | |
4705 | * dispose of it. | |
4706 | * | |
4707 | * Otherwise, move it as planned. | |
4708 | */ | |
4709 | ||
4710 | if (p->offset < backing_offset || new_offset >= size) { | |
4711 | VM_PAGE_FREE(p); | |
4712 | } else { | |
91447636 A |
4713 | /* |
4714 | * ENCRYPTED SWAP: | |
4715 | * The encryption key includes the "pager" and the | |
2d21ac55 A |
4716 | * "paging_offset". These will not change during the |
4717 | * object collapse, so we can just move an encrypted | |
4718 | * page from one object to the other in this case. | |
4719 | * We can't decrypt the page here, since we can't drop | |
91447636 | 4720 | * the object lock. |
91447636 | 4721 | */ |
2d21ac55 A |
4722 | if (p->encrypted) { |
4723 | vm_object_collapse_encrypted++; | |
4724 | } | |
1c79356b A |
4725 | pp = vm_page_lookup(object, new_offset); |
4726 | if (pp == VM_PAGE_NULL) { | |
4727 | ||
4728 | /* | |
4729 | * Parent now has no page. | |
4730 | * Move the backing object's page up. | |
4731 | */ | |
4732 | ||
2d21ac55 | 4733 | vm_page_rename(p, object, new_offset, TRUE); |
1c79356b A |
4734 | #if MACH_PAGEMAP |
4735 | } else if (pp->absent) { | |
4736 | ||
4737 | /* | |
4738 | * Parent has an absent page... | |
4739 | * it's not being paged in, so | |
4740 | * it must really be missing from | |
4741 | * the parent. | |
4742 | * | |
4743 | * Throw out the absent page... | |
4744 | * any faults looking for that | |
4745 | * page will restart with the new | |
4746 | * one. | |
4747 | */ | |
4748 | ||
4749 | VM_PAGE_FREE(pp); | |
2d21ac55 | 4750 | vm_page_rename(p, object, new_offset, TRUE); |
1c79356b A |
4751 | #endif /* MACH_PAGEMAP */ |
4752 | } else { | |
4753 | assert(! pp->absent); | |
4754 | ||
4755 | /* | |
4756 | * Parent object has a real page. | |
4757 | * Throw away the backing object's | |
4758 | * page. | |
4759 | */ | |
4760 | VM_PAGE_FREE(p); | |
4761 | } | |
4762 | } | |
4763 | } | |
4764 | ||
55e303ae | 4765 | #if !MACH_PAGEMAP |
2d21ac55 | 4766 | assert((!object->pager_created && (object->pager == MEMORY_OBJECT_NULL)) |
55e303ae | 4767 | || (!backing_object->pager_created |
2d21ac55 | 4768 | && (backing_object->pager == MEMORY_OBJECT_NULL))); |
55e303ae A |
4769 | #else |
4770 | assert(!object->pager_created && object->pager == MEMORY_OBJECT_NULL); | |
4771 | #endif /* !MACH_PAGEMAP */ | |
1c79356b | 4772 | |
0b4e3aa0 | 4773 | if (backing_object->pager != MEMORY_OBJECT_NULL) { |
1c79356b A |
4774 | vm_object_hash_entry_t entry; |
4775 | ||
39236c6e A |
4776 | #if 00 |
4777 | if (COMPRESSED_PAGER_IS_ACTIVE) { | |
4778 | panic("vm_object_do_collapse(%p,%p): " | |
4779 | "backing_object has a compressor pager", | |
4780 | object, backing_object); | |
4781 | } | |
4782 | #endif | |
4783 | ||
1c79356b A |
4784 | /* |
4785 | * Move the pager from backing_object to object. | |
4786 | * | |
4787 | * XXX We're only using part of the paging space | |
4788 | * for keeps now... we ought to discard the | |
4789 | * unused portion. | |
4790 | */ | |
4791 | ||
55e303ae | 4792 | assert(!object->paging_in_progress); |
b0d623f7 | 4793 | assert(!object->activity_in_progress); |
1c79356b | 4794 | object->pager = backing_object->pager; |
b0d623f7 A |
4795 | |
4796 | if (backing_object->hashed) { | |
4797 | lck_mtx_t *lck; | |
4798 | ||
4799 | lck = vm_object_hash_lock_spin(backing_object->pager); | |
4800 | entry = vm_object_hash_lookup(object->pager, FALSE); | |
4801 | assert(entry != VM_OBJECT_HASH_ENTRY_NULL); | |
4802 | entry->object = object; | |
4803 | vm_object_hash_unlock(lck); | |
4804 | ||
4805 | object->hashed = TRUE; | |
4806 | } | |
1c79356b | 4807 | object->pager_created = backing_object->pager_created; |
91447636 | 4808 | object->pager_control = backing_object->pager_control; |
1c79356b A |
4809 | object->pager_ready = backing_object->pager_ready; |
4810 | object->pager_initialized = backing_object->pager_initialized; | |
1c79356b A |
4811 | object->paging_offset = |
4812 | backing_object->paging_offset + backing_offset; | |
91447636 A |
4813 | if (object->pager_control != MEMORY_OBJECT_CONTROL_NULL) { |
4814 | memory_object_control_collapse(object->pager_control, | |
0b4e3aa0 | 4815 | object); |
1c79356b A |
4816 | } |
4817 | } | |
4818 | ||
1c79356b A |
4819 | #if MACH_PAGEMAP |
4820 | /* | |
4821 | * If the shadow offset is 0, the use the existence map from | |
4822 | * the backing object if there is one. If the shadow offset is | |
4823 | * not zero, toss it. | |
4824 | * | |
4825 | * XXX - If the shadow offset is not 0 then a bit copy is needed | |
4826 | * if the map is to be salvaged. For now, we just just toss the | |
4827 | * old map, giving the collapsed object no map. This means that | |
4828 | * the pager is invoked for zero fill pages. If analysis shows | |
4829 | * that this happens frequently and is a performance hit, then | |
4830 | * this code should be fixed to salvage the map. | |
4831 | */ | |
4832 | assert(object->existence_map == VM_EXTERNAL_NULL); | |
6d2010ae | 4833 | if (backing_offset || (size != backing_object->vo_size)) { |
1c79356b A |
4834 | vm_external_discarded++; |
4835 | vm_external_destroy(backing_object->existence_map, | |
6d2010ae | 4836 | backing_object->vo_size); |
1c79356b A |
4837 | } |
4838 | else { | |
4839 | vm_external_collapsed++; | |
4840 | object->existence_map = backing_object->existence_map; | |
4841 | } | |
4842 | backing_object->existence_map = VM_EXTERNAL_NULL; | |
4843 | #endif /* MACH_PAGEMAP */ | |
4844 | ||
4845 | /* | |
4846 | * Object now shadows whatever backing_object did. | |
4847 | * Note that the reference to backing_object->shadow | |
4848 | * moves from within backing_object to within object. | |
4849 | */ | |
4850 | ||
91447636 A |
4851 | assert(!object->phys_contiguous); |
4852 | assert(!backing_object->phys_contiguous); | |
1c79356b | 4853 | object->shadow = backing_object->shadow; |
91447636 | 4854 | if (object->shadow) { |
6d2010ae | 4855 | object->vo_shadow_offset += backing_object->vo_shadow_offset; |
91447636 A |
4856 | } else { |
4857 | /* no shadow, therefore no shadow offset... */ | |
6d2010ae | 4858 | object->vo_shadow_offset = 0; |
91447636 | 4859 | } |
1c79356b | 4860 | assert((object->shadow == VM_OBJECT_NULL) || |
55e303ae | 4861 | (object->shadow->copy != backing_object)); |
1c79356b A |
4862 | |
4863 | /* | |
4864 | * Discard backing_object. | |
4865 | * | |
4866 | * Since the backing object has no pages, no | |
4867 | * pager left, and no object references within it, | |
4868 | * all that is necessary is to dispose of it. | |
4869 | */ | |
4870 | ||
4871 | assert((backing_object->ref_count == 1) && | |
4872 | (backing_object->resident_page_count == 0) && | |
b0d623f7 A |
4873 | (backing_object->paging_in_progress == 0) && |
4874 | (backing_object->activity_in_progress == 0)); | |
1c79356b | 4875 | |
1c79356b A |
4876 | backing_object->alive = FALSE; |
4877 | vm_object_unlock(backing_object); | |
4878 | ||
4879 | XPR(XPR_VM_OBJECT, "vm_object_collapse, collapsed 0x%X\n", | |
b0d623f7 | 4880 | backing_object, 0,0,0,0); |
1c79356b | 4881 | |
2d21ac55 A |
4882 | vm_object_lock_destroy(backing_object); |
4883 | ||
91447636 | 4884 | zfree(vm_object_zone, backing_object); |
1c79356b A |
4885 | |
4886 | object_collapses++; | |
4887 | } | |
4888 | ||
0b4e3aa0 | 4889 | static void |
1c79356b A |
4890 | vm_object_do_bypass( |
4891 | vm_object_t object, | |
4892 | vm_object_t backing_object) | |
4893 | { | |
4894 | /* | |
4895 | * Make the parent shadow the next object | |
4896 | * in the chain. | |
4897 | */ | |
4898 | ||
b0d623f7 | 4899 | vm_object_lock_assert_exclusive(object); |
2d21ac55 A |
4900 | vm_object_lock_assert_exclusive(backing_object); |
4901 | ||
1c79356b A |
4902 | #if TASK_SWAPPER |
4903 | /* | |
4904 | * Do object reference in-line to | |
4905 | * conditionally increment shadow's | |
4906 | * residence count. If object is not | |
4907 | * resident, leave residence count | |
4908 | * on shadow alone. | |
4909 | */ | |
4910 | if (backing_object->shadow != VM_OBJECT_NULL) { | |
4911 | vm_object_lock(backing_object->shadow); | |
2d21ac55 | 4912 | vm_object_lock_assert_exclusive(backing_object->shadow); |
1c79356b A |
4913 | backing_object->shadow->ref_count++; |
4914 | if (object->res_count != 0) | |
4915 | vm_object_res_reference(backing_object->shadow); | |
4916 | vm_object_unlock(backing_object->shadow); | |
4917 | } | |
4918 | #else /* TASK_SWAPPER */ | |
4919 | vm_object_reference(backing_object->shadow); | |
4920 | #endif /* TASK_SWAPPER */ | |
4921 | ||
91447636 A |
4922 | assert(!object->phys_contiguous); |
4923 | assert(!backing_object->phys_contiguous); | |
1c79356b | 4924 | object->shadow = backing_object->shadow; |
91447636 | 4925 | if (object->shadow) { |
6d2010ae | 4926 | object->vo_shadow_offset += backing_object->vo_shadow_offset; |
91447636 A |
4927 | } else { |
4928 | /* no shadow, therefore no shadow offset... */ | |
6d2010ae | 4929 | object->vo_shadow_offset = 0; |
91447636 | 4930 | } |
1c79356b A |
4931 | |
4932 | /* | |
4933 | * Backing object might have had a copy pointer | |
4934 | * to us. If it did, clear it. | |
4935 | */ | |
4936 | if (backing_object->copy == object) { | |
4937 | backing_object->copy = VM_OBJECT_NULL; | |
4938 | } | |
4939 | ||
4940 | /* | |
4941 | * Drop the reference count on backing_object. | |
4942 | #if TASK_SWAPPER | |
4943 | * Since its ref_count was at least 2, it | |
4944 | * will not vanish; so we don't need to call | |
4945 | * vm_object_deallocate. | |
593a1d5f | 4946 | * [with a caveat for "named" objects] |
1c79356b A |
4947 | * |
4948 | * The res_count on the backing object is | |
4949 | * conditionally decremented. It's possible | |
4950 | * (via vm_pageout_scan) to get here with | |
4951 | * a "swapped" object, which has a 0 res_count, | |
4952 | * in which case, the backing object res_count | |
4953 | * is already down by one. | |
4954 | #else | |
4955 | * Don't call vm_object_deallocate unless | |
4956 | * ref_count drops to zero. | |
4957 | * | |
4958 | * The ref_count can drop to zero here if the | |
4959 | * backing object could be bypassed but not | |
4960 | * collapsed, such as when the backing object | |
4961 | * is temporary and cachable. | |
4962 | #endif | |
4963 | */ | |
593a1d5f A |
4964 | if (backing_object->ref_count > 2 || |
4965 | (!backing_object->named && backing_object->ref_count > 1)) { | |
2d21ac55 | 4966 | vm_object_lock_assert_exclusive(backing_object); |
1c79356b A |
4967 | backing_object->ref_count--; |
4968 | #if TASK_SWAPPER | |
4969 | if (object->res_count != 0) | |
4970 | vm_object_res_deallocate(backing_object); | |
4971 | assert(backing_object->ref_count > 0); | |
4972 | #endif /* TASK_SWAPPER */ | |
4973 | vm_object_unlock(backing_object); | |
4974 | } else { | |
4975 | ||
4976 | /* | |
4977 | * Drop locks so that we can deallocate | |
4978 | * the backing object. | |
4979 | */ | |
4980 | ||
4981 | #if TASK_SWAPPER | |
4982 | if (object->res_count == 0) { | |
4983 | /* XXX get a reference for the deallocate below */ | |
4984 | vm_object_res_reference(backing_object); | |
4985 | } | |
4986 | #endif /* TASK_SWAPPER */ | |
316670eb A |
4987 | /* |
4988 | * vm_object_collapse (the caller of this function) is | |
4989 | * now called from contexts that may not guarantee that a | |
4990 | * valid reference is held on the object... w/o a valid | |
4991 | * reference, it is unsafe and unwise (you will definitely | |
4992 | * regret it) to unlock the object and then retake the lock | |
4993 | * since the object may be terminated and recycled in between. | |
4994 | * The "activity_in_progress" reference will keep the object | |
4995 | * 'stable'. | |
4996 | */ | |
4997 | vm_object_activity_begin(object); | |
1c79356b | 4998 | vm_object_unlock(object); |
316670eb | 4999 | |
1c79356b A |
5000 | vm_object_unlock(backing_object); |
5001 | vm_object_deallocate(backing_object); | |
5002 | ||
5003 | /* | |
5004 | * Relock object. We don't have to reverify | |
5005 | * its state since vm_object_collapse will | |
5006 | * do that for us as it starts at the | |
5007 | * top of its loop. | |
5008 | */ | |
5009 | ||
5010 | vm_object_lock(object); | |
316670eb | 5011 | vm_object_activity_end(object); |
1c79356b A |
5012 | } |
5013 | ||
5014 | object_bypasses++; | |
5015 | } | |
0b4e3aa0 | 5016 | |
1c79356b A |
5017 | |
5018 | /* | |
5019 | * vm_object_collapse: | |
5020 | * | |
5021 | * Perform an object collapse or an object bypass if appropriate. | |
5022 | * The real work of collapsing and bypassing is performed in | |
5023 | * the routines vm_object_do_collapse and vm_object_do_bypass. | |
5024 | * | |
5025 | * Requires that the object be locked and the page queues be unlocked. | |
5026 | * | |
5027 | */ | |
91447636 A |
5028 | static unsigned long vm_object_collapse_calls = 0; |
5029 | static unsigned long vm_object_collapse_objects = 0; | |
5030 | static unsigned long vm_object_collapse_do_collapse = 0; | |
5031 | static unsigned long vm_object_collapse_do_bypass = 0; | |
99c3a104 | 5032 | |
0b4e3aa0 | 5033 | __private_extern__ void |
1c79356b | 5034 | vm_object_collapse( |
55e303ae | 5035 | register vm_object_t object, |
0c530ab8 A |
5036 | register vm_object_offset_t hint_offset, |
5037 | boolean_t can_bypass) | |
1c79356b A |
5038 | { |
5039 | register vm_object_t backing_object; | |
55e303ae A |
5040 | register unsigned int rcount; |
5041 | register unsigned int size; | |
91447636 | 5042 | vm_object_t original_object; |
b0d623f7 A |
5043 | int object_lock_type; |
5044 | int backing_object_lock_type; | |
91447636 A |
5045 | |
5046 | vm_object_collapse_calls++; | |
0b4e3aa0 | 5047 | |
0c530ab8 A |
5048 | if (! vm_object_collapse_allowed && |
5049 | ! (can_bypass && vm_object_bypass_allowed)) { | |
1c79356b A |
5050 | return; |
5051 | } | |
5052 | ||
5053 | XPR(XPR_VM_OBJECT, "vm_object_collapse, obj 0x%X\n", | |
b0d623f7 | 5054 | object, 0,0,0,0); |
1c79356b | 5055 | |
91447636 A |
5056 | if (object == VM_OBJECT_NULL) |
5057 | return; | |
5058 | ||
5059 | original_object = object; | |
5060 | ||
b0d623f7 A |
5061 | /* |
5062 | * The top object was locked "exclusive" by the caller. | |
5063 | * In the first pass, to determine if we can collapse the shadow chain, | |
5064 | * take a "shared" lock on the shadow objects. If we can collapse, | |
5065 | * we'll have to go down the chain again with exclusive locks. | |
5066 | */ | |
5067 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
5068 | backing_object_lock_type = OBJECT_LOCK_SHARED; | |
5069 | ||
5070 | retry: | |
5071 | object = original_object; | |
5072 | vm_object_lock_assert_exclusive(object); | |
5073 | ||
1c79356b | 5074 | while (TRUE) { |
91447636 | 5075 | vm_object_collapse_objects++; |
1c79356b A |
5076 | /* |
5077 | * Verify that the conditions are right for either | |
5078 | * collapse or bypass: | |
1c79356b | 5079 | */ |
1c79356b A |
5080 | |
5081 | /* | |
5082 | * There is a backing object, and | |
5083 | */ | |
5084 | ||
91447636 A |
5085 | backing_object = object->shadow; |
5086 | if (backing_object == VM_OBJECT_NULL) { | |
5087 | if (object != original_object) { | |
5088 | vm_object_unlock(object); | |
5089 | } | |
1c79356b | 5090 | return; |
91447636 | 5091 | } |
b0d623f7 A |
5092 | if (backing_object_lock_type == OBJECT_LOCK_SHARED) { |
5093 | vm_object_lock_shared(backing_object); | |
5094 | } else { | |
5095 | vm_object_lock(backing_object); | |
5096 | } | |
5097 | ||
91447636 A |
5098 | /* |
5099 | * No pages in the object are currently | |
5100 | * being paged out, and | |
5101 | */ | |
b0d623f7 A |
5102 | if (object->paging_in_progress != 0 || |
5103 | object->activity_in_progress != 0) { | |
91447636 | 5104 | /* try and collapse the rest of the shadow chain */ |
91447636 A |
5105 | if (object != original_object) { |
5106 | vm_object_unlock(object); | |
5107 | } | |
5108 | object = backing_object; | |
b0d623f7 | 5109 | object_lock_type = backing_object_lock_type; |
91447636 A |
5110 | continue; |
5111 | } | |
5112 | ||
1c79356b A |
5113 | /* |
5114 | * ... | |
5115 | * The backing object is not read_only, | |
5116 | * and no pages in the backing object are | |
5117 | * currently being paged out. | |
5118 | * The backing object is internal. | |
5119 | * | |
5120 | */ | |
5121 | ||
5122 | if (!backing_object->internal || | |
b0d623f7 A |
5123 | backing_object->paging_in_progress != 0 || |
5124 | backing_object->activity_in_progress != 0) { | |
91447636 A |
5125 | /* try and collapse the rest of the shadow chain */ |
5126 | if (object != original_object) { | |
5127 | vm_object_unlock(object); | |
5128 | } | |
5129 | object = backing_object; | |
b0d623f7 | 5130 | object_lock_type = backing_object_lock_type; |
91447636 | 5131 | continue; |
1c79356b A |
5132 | } |
5133 | ||
5134 | /* | |
5135 | * The backing object can't be a copy-object: | |
5136 | * the shadow_offset for the copy-object must stay | |
5137 | * as 0. Furthermore (for the 'we have all the | |
5138 | * pages' case), if we bypass backing_object and | |
5139 | * just shadow the next object in the chain, old | |
5140 | * pages from that object would then have to be copied | |
5141 | * BOTH into the (former) backing_object and into the | |
5142 | * parent object. | |
5143 | */ | |
5144 | if (backing_object->shadow != VM_OBJECT_NULL && | |
55e303ae | 5145 | backing_object->shadow->copy == backing_object) { |
91447636 A |
5146 | /* try and collapse the rest of the shadow chain */ |
5147 | if (object != original_object) { | |
5148 | vm_object_unlock(object); | |
5149 | } | |
5150 | object = backing_object; | |
b0d623f7 | 5151 | object_lock_type = backing_object_lock_type; |
91447636 | 5152 | continue; |
1c79356b A |
5153 | } |
5154 | ||
5155 | /* | |
5156 | * We can now try to either collapse the backing | |
5157 | * object (if the parent is the only reference to | |
5158 | * it) or (perhaps) remove the parent's reference | |
5159 | * to it. | |
1c79356b | 5160 | * |
0b4e3aa0 A |
5161 | * If there is exactly one reference to the backing |
5162 | * object, we may be able to collapse it into the | |
5163 | * parent. | |
1c79356b | 5164 | * |
55e303ae A |
5165 | * If MACH_PAGEMAP is defined: |
5166 | * The parent must not have a pager created for it, | |
5167 | * since collapsing a backing_object dumps new pages | |
5168 | * into the parent that its pager doesn't know about | |
5169 | * (and the collapse code can't merge the existence | |
5170 | * maps). | |
5171 | * Otherwise: | |
5172 | * As long as one of the objects is still not known | |
5173 | * to the pager, we can collapse them. | |
1c79356b | 5174 | */ |
1c79356b | 5175 | if (backing_object->ref_count == 1 && |
55e303ae A |
5176 | (!object->pager_created |
5177 | #if !MACH_PAGEMAP | |
39236c6e | 5178 | || (!backing_object->pager_created) |
55e303ae A |
5179 | #endif /*!MACH_PAGEMAP */ |
5180 | ) && vm_object_collapse_allowed) { | |
1c79356b | 5181 | |
1c79356b | 5182 | /* |
b0d623f7 | 5183 | * We need the exclusive lock on the VM objects. |
1c79356b | 5184 | */ |
b0d623f7 A |
5185 | if (backing_object_lock_type != OBJECT_LOCK_EXCLUSIVE) { |
5186 | /* | |
5187 | * We have an object and its shadow locked | |
5188 | * "shared". We can't just upgrade the locks | |
5189 | * to "exclusive", as some other thread might | |
5190 | * also have these objects locked "shared" and | |
5191 | * attempt to upgrade one or the other to | |
5192 | * "exclusive". The upgrades would block | |
5193 | * forever waiting for the other "shared" locks | |
5194 | * to get released. | |
5195 | * So we have to release the locks and go | |
5196 | * down the shadow chain again (since it could | |
5197 | * have changed) with "exclusive" locking. | |
5198 | */ | |
1c79356b | 5199 | vm_object_unlock(backing_object); |
b0d623f7 A |
5200 | if (object != original_object) |
5201 | vm_object_unlock(object); | |
5202 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
5203 | backing_object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
5204 | goto retry; | |
1c79356b A |
5205 | } |
5206 | ||
b0d623f7 A |
5207 | XPR(XPR_VM_OBJECT, |
5208 | "vm_object_collapse: %x to %x, pager %x, pager_control %x\n", | |
5209 | backing_object, object, | |
5210 | backing_object->pager, | |
5211 | backing_object->pager_control, 0); | |
5212 | ||
1c79356b A |
5213 | /* |
5214 | * Collapse the object with its backing | |
5215 | * object, and try again with the object's | |
5216 | * new backing object. | |
5217 | */ | |
5218 | ||
5219 | vm_object_do_collapse(object, backing_object); | |
91447636 | 5220 | vm_object_collapse_do_collapse++; |
1c79356b A |
5221 | continue; |
5222 | } | |
5223 | ||
1c79356b A |
5224 | /* |
5225 | * Collapsing the backing object was not possible | |
5226 | * or permitted, so let's try bypassing it. | |
5227 | */ | |
5228 | ||
0c530ab8 | 5229 | if (! (can_bypass && vm_object_bypass_allowed)) { |
91447636 A |
5230 | /* try and collapse the rest of the shadow chain */ |
5231 | if (object != original_object) { | |
5232 | vm_object_unlock(object); | |
5233 | } | |
5234 | object = backing_object; | |
b0d623f7 | 5235 | object_lock_type = backing_object_lock_type; |
91447636 | 5236 | continue; |
1c79356b A |
5237 | } |
5238 | ||
0b4e3aa0 | 5239 | |
1c79356b | 5240 | /* |
55e303ae A |
5241 | * If the object doesn't have all its pages present, |
5242 | * we have to make sure no pages in the backing object | |
5243 | * "show through" before bypassing it. | |
1c79356b | 5244 | */ |
39236c6e | 5245 | size = (unsigned int)atop(object->vo_size); |
55e303ae | 5246 | rcount = object->resident_page_count; |
99c3a104 | 5247 | |
55e303ae | 5248 | if (rcount != size) { |
55e303ae A |
5249 | vm_object_offset_t offset; |
5250 | vm_object_offset_t backing_offset; | |
5251 | unsigned int backing_rcount; | |
55e303ae A |
5252 | |
5253 | /* | |
5254 | * If the backing object has a pager but no pagemap, | |
5255 | * then we cannot bypass it, because we don't know | |
5256 | * what pages it has. | |
5257 | */ | |
5258 | if (backing_object->pager_created | |
1c79356b | 5259 | #if MACH_PAGEMAP |
b0d623f7 | 5260 | && (backing_object->existence_map == VM_EXTERNAL_NULL) |
1c79356b | 5261 | #endif /* MACH_PAGEMAP */ |
55e303ae | 5262 | ) { |
91447636 A |
5263 | /* try and collapse the rest of the shadow chain */ |
5264 | if (object != original_object) { | |
5265 | vm_object_unlock(object); | |
5266 | } | |
5267 | object = backing_object; | |
b0d623f7 | 5268 | object_lock_type = backing_object_lock_type; |
91447636 | 5269 | continue; |
55e303ae | 5270 | } |
1c79356b | 5271 | |
55e303ae A |
5272 | /* |
5273 | * If the object has a pager but no pagemap, | |
5274 | * then we cannot bypass it, because we don't know | |
5275 | * what pages it has. | |
5276 | */ | |
5277 | if (object->pager_created | |
0b4e3aa0 | 5278 | #if MACH_PAGEMAP |
b0d623f7 | 5279 | && (object->existence_map == VM_EXTERNAL_NULL) |
0b4e3aa0 | 5280 | #endif /* MACH_PAGEMAP */ |
55e303ae | 5281 | ) { |
91447636 A |
5282 | /* try and collapse the rest of the shadow chain */ |
5283 | if (object != original_object) { | |
5284 | vm_object_unlock(object); | |
5285 | } | |
5286 | object = backing_object; | |
b0d623f7 | 5287 | object_lock_type = backing_object_lock_type; |
91447636 | 5288 | continue; |
55e303ae | 5289 | } |
0b4e3aa0 | 5290 | |
99c3a104 A |
5291 | backing_offset = object->vo_shadow_offset; |
5292 | backing_rcount = backing_object->resident_page_count; | |
5293 | ||
5294 | if ( (int)backing_rcount - (int)(atop(backing_object->vo_size) - size) > (int)rcount) { | |
39236c6e | 5295 | /* |
99c3a104 A |
5296 | * we have enough pages in the backing object to guarantee that |
5297 | * at least 1 of them must be 'uncovered' by a resident page | |
5298 | * in the object we're evaluating, so move on and | |
5299 | * try to collapse the rest of the shadow chain | |
5300 | */ | |
39236c6e A |
5301 | if (object != original_object) { |
5302 | vm_object_unlock(object); | |
5303 | } | |
5304 | object = backing_object; | |
5305 | object_lock_type = backing_object_lock_type; | |
5306 | continue; | |
99c3a104 A |
5307 | } |
5308 | ||
55e303ae A |
5309 | /* |
5310 | * If all of the pages in the backing object are | |
5311 | * shadowed by the parent object, the parent | |
5312 | * object no longer has to shadow the backing | |
5313 | * object; it can shadow the next one in the | |
5314 | * chain. | |
5315 | * | |
5316 | * If the backing object has existence info, | |
5317 | * we must check examine its existence info | |
5318 | * as well. | |
5319 | * | |
5320 | */ | |
1c79356b | 5321 | |
2d21ac55 | 5322 | #if MACH_PAGEMAP |
55e303ae | 5323 | #define EXISTS_IN_OBJECT(obj, off, rc) \ |
39236c6e A |
5324 | ((vm_external_state_get((obj)->existence_map, \ |
5325 | (vm_offset_t)(off)) \ | |
5326 | == VM_EXTERNAL_STATE_EXISTS) || \ | |
5327 | (VM_COMPRESSOR_PAGER_STATE_GET((obj), (off)) \ | |
5328 | == VM_EXTERNAL_STATE_EXISTS) || \ | |
5329 | ((rc) && vm_page_lookup((obj), (off)) != VM_PAGE_NULL && (rc)--)) | |
5330 | #else /* MACH_PAGEMAP */ | |
5331 | #define EXISTS_IN_OBJECT(obj, off, rc) \ | |
5332 | ((VM_COMPRESSOR_PAGER_STATE_GET((obj), (off)) \ | |
5333 | == VM_EXTERNAL_STATE_EXISTS) || \ | |
99c3a104 | 5334 | ((rc) && vm_page_lookup((obj), (off)) != VM_PAGE_NULL && (rc)--)) |
2d21ac55 | 5335 | #endif /* MACH_PAGEMAP */ |
55e303ae A |
5336 | |
5337 | /* | |
5338 | * Check the hint location first | |
5339 | * (since it is often the quickest way out of here). | |
5340 | */ | |
5341 | if (object->cow_hint != ~(vm_offset_t)0) | |
5342 | hint_offset = (vm_object_offset_t)object->cow_hint; | |
5343 | else | |
5344 | hint_offset = (hint_offset > 8 * PAGE_SIZE_64) ? | |
5345 | (hint_offset - 8 * PAGE_SIZE_64) : 0; | |
5346 | ||
5347 | if (EXISTS_IN_OBJECT(backing_object, hint_offset + | |
5348 | backing_offset, backing_rcount) && | |
5349 | !EXISTS_IN_OBJECT(object, hint_offset, rcount)) { | |
5350 | /* dependency right at the hint */ | |
b0d623f7 | 5351 | object->cow_hint = (vm_offset_t) hint_offset; /* atomic */ |
91447636 A |
5352 | /* try and collapse the rest of the shadow chain */ |
5353 | if (object != original_object) { | |
5354 | vm_object_unlock(object); | |
5355 | } | |
5356 | object = backing_object; | |
b0d623f7 | 5357 | object_lock_type = backing_object_lock_type; |
91447636 | 5358 | continue; |
0b4e3aa0 | 5359 | } |
55e303ae A |
5360 | |
5361 | /* | |
5362 | * If the object's window onto the backing_object | |
5363 | * is large compared to the number of resident | |
5364 | * pages in the backing object, it makes sense to | |
5365 | * walk the backing_object's resident pages first. | |
5366 | * | |
99c3a104 A |
5367 | * NOTE: Pages may be in both the existence map and/or |
5368 | * resident, so if we don't find a dependency while | |
5369 | * walking the backing object's resident page list | |
5370 | * directly, and there is an existence map, we'll have | |
5371 | * to run the offset based 2nd pass. Because we may | |
5372 | * have to run both passes, we need to be careful | |
5373 | * not to decrement 'rcount' in the 1st pass | |
55e303ae | 5374 | */ |
99c3a104 | 5375 | if (backing_rcount && backing_rcount < (size / 8)) { |
55e303ae A |
5376 | unsigned int rc = rcount; |
5377 | vm_page_t p; | |
5378 | ||
5379 | backing_rcount = backing_object->resident_page_count; | |
5380 | p = (vm_page_t)queue_first(&backing_object->memq); | |
5381 | do { | |
55e303ae | 5382 | offset = (p->offset - backing_offset); |
99c3a104 | 5383 | |
6d2010ae | 5384 | if (offset < object->vo_size && |
55e303ae A |
5385 | offset != hint_offset && |
5386 | !EXISTS_IN_OBJECT(object, offset, rc)) { | |
5387 | /* found a dependency */ | |
b0d623f7 A |
5388 | object->cow_hint = (vm_offset_t) offset; /* atomic */ |
5389 | ||
91447636 | 5390 | break; |
55e303ae | 5391 | } |
91447636 | 5392 | p = (vm_page_t) queue_next(&p->listq); |
55e303ae A |
5393 | |
5394 | } while (--backing_rcount); | |
91447636 A |
5395 | if (backing_rcount != 0 ) { |
5396 | /* try and collapse the rest of the shadow chain */ | |
5397 | if (object != original_object) { | |
5398 | vm_object_unlock(object); | |
5399 | } | |
5400 | object = backing_object; | |
b0d623f7 | 5401 | object_lock_type = backing_object_lock_type; |
91447636 A |
5402 | continue; |
5403 | } | |
0b4e3aa0 | 5404 | } |
55e303ae A |
5405 | |
5406 | /* | |
5407 | * Walk through the offsets looking for pages in the | |
5408 | * backing object that show through to the object. | |
5409 | */ | |
b0d623f7 A |
5410 | if (backing_rcount |
5411 | #if MACH_PAGEMAP | |
5412 | || backing_object->existence_map | |
2d21ac55 | 5413 | #endif /* MACH_PAGEMAP */ |
b0d623f7 | 5414 | ) { |
55e303ae A |
5415 | offset = hint_offset; |
5416 | ||
5417 | while((offset = | |
6d2010ae | 5418 | (offset + PAGE_SIZE_64 < object->vo_size) ? |
55e303ae A |
5419 | (offset + PAGE_SIZE_64) : 0) != hint_offset) { |
5420 | ||
55e303ae A |
5421 | if (EXISTS_IN_OBJECT(backing_object, offset + |
5422 | backing_offset, backing_rcount) && | |
5423 | !EXISTS_IN_OBJECT(object, offset, rcount)) { | |
5424 | /* found a dependency */ | |
b0d623f7 | 5425 | object->cow_hint = (vm_offset_t) offset; /* atomic */ |
91447636 | 5426 | break; |
55e303ae A |
5427 | } |
5428 | } | |
91447636 A |
5429 | if (offset != hint_offset) { |
5430 | /* try and collapse the rest of the shadow chain */ | |
5431 | if (object != original_object) { | |
5432 | vm_object_unlock(object); | |
5433 | } | |
5434 | object = backing_object; | |
b0d623f7 | 5435 | object_lock_type = backing_object_lock_type; |
91447636 A |
5436 | continue; |
5437 | } | |
0b4e3aa0 A |
5438 | } |
5439 | } | |
1c79356b | 5440 | |
b0d623f7 A |
5441 | /* |
5442 | * We need "exclusive" locks on the 2 VM objects. | |
5443 | */ | |
5444 | if (backing_object_lock_type != OBJECT_LOCK_EXCLUSIVE) { | |
5445 | vm_object_unlock(backing_object); | |
5446 | if (object != original_object) | |
5447 | vm_object_unlock(object); | |
5448 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
5449 | backing_object_lock_type = OBJECT_LOCK_EXCLUSIVE; | |
5450 | goto retry; | |
5451 | } | |
5452 | ||
55e303ae A |
5453 | /* reset the offset hint for any objects deeper in the chain */ |
5454 | object->cow_hint = (vm_offset_t)0; | |
1c79356b A |
5455 | |
5456 | /* | |
5457 | * All interesting pages in the backing object | |
5458 | * already live in the parent or its pager. | |
5459 | * Thus we can bypass the backing object. | |
5460 | */ | |
5461 | ||
5462 | vm_object_do_bypass(object, backing_object); | |
91447636 | 5463 | vm_object_collapse_do_bypass++; |
1c79356b A |
5464 | |
5465 | /* | |
5466 | * Try again with this object's new backing object. | |
5467 | */ | |
5468 | ||
5469 | continue; | |
5470 | } | |
91447636 A |
5471 | |
5472 | if (object != original_object) { | |
5473 | vm_object_unlock(object); | |
5474 | } | |
1c79356b A |
5475 | } |
5476 | ||
5477 | /* | |
5478 | * Routine: vm_object_page_remove: [internal] | |
5479 | * Purpose: | |
5480 | * Removes all physical pages in the specified | |
5481 | * object range from the object's list of pages. | |
5482 | * | |
5483 | * In/out conditions: | |
5484 | * The object must be locked. | |
5485 | * The object must not have paging_in_progress, usually | |
5486 | * guaranteed by not having a pager. | |
5487 | */ | |
5488 | unsigned int vm_object_page_remove_lookup = 0; | |
5489 | unsigned int vm_object_page_remove_iterate = 0; | |
5490 | ||
0b4e3aa0 | 5491 | __private_extern__ void |
1c79356b A |
5492 | vm_object_page_remove( |
5493 | register vm_object_t object, | |
5494 | register vm_object_offset_t start, | |
5495 | register vm_object_offset_t end) | |
5496 | { | |
5497 | register vm_page_t p, next; | |
5498 | ||
5499 | /* | |
5500 | * One and two page removals are most popular. | |
5501 | * The factor of 16 here is somewhat arbitrary. | |
5502 | * It balances vm_object_lookup vs iteration. | |
5503 | */ | |
5504 | ||
55e303ae | 5505 | if (atop_64(end - start) < (unsigned)object->resident_page_count/16) { |
1c79356b A |
5506 | vm_object_page_remove_lookup++; |
5507 | ||
5508 | for (; start < end; start += PAGE_SIZE_64) { | |
5509 | p = vm_page_lookup(object, start); | |
5510 | if (p != VM_PAGE_NULL) { | |
316670eb | 5511 | assert(!p->cleaning && !p->pageout && !p->laundry); |
2d21ac55 | 5512 | if (!p->fictitious && p->pmapped) |
91447636 | 5513 | pmap_disconnect(p->phys_page); |
1c79356b A |
5514 | VM_PAGE_FREE(p); |
5515 | } | |
5516 | } | |
5517 | } else { | |
5518 | vm_object_page_remove_iterate++; | |
5519 | ||
5520 | p = (vm_page_t) queue_first(&object->memq); | |
5521 | while (!queue_end(&object->memq, (queue_entry_t) p)) { | |
5522 | next = (vm_page_t) queue_next(&p->listq); | |
5523 | if ((start <= p->offset) && (p->offset < end)) { | |
316670eb | 5524 | assert(!p->cleaning && !p->pageout && !p->laundry); |
2d21ac55 | 5525 | if (!p->fictitious && p->pmapped) |
91447636 | 5526 | pmap_disconnect(p->phys_page); |
1c79356b A |
5527 | VM_PAGE_FREE(p); |
5528 | } | |
5529 | p = next; | |
5530 | } | |
5531 | } | |
5532 | } | |
5533 | ||
0b4e3aa0 | 5534 | |
1c79356b A |
5535 | /* |
5536 | * Routine: vm_object_coalesce | |
5537 | * Function: Coalesces two objects backing up adjoining | |
5538 | * regions of memory into a single object. | |
5539 | * | |
5540 | * returns TRUE if objects were combined. | |
5541 | * | |
5542 | * NOTE: Only works at the moment if the second object is NULL - | |
5543 | * if it's not, which object do we lock first? | |
5544 | * | |
5545 | * Parameters: | |
5546 | * prev_object First object to coalesce | |
5547 | * prev_offset Offset into prev_object | |
5548 | * next_object Second object into coalesce | |
5549 | * next_offset Offset into next_object | |
5550 | * | |
5551 | * prev_size Size of reference to prev_object | |
5552 | * next_size Size of reference to next_object | |
5553 | * | |
5554 | * Conditions: | |
5555 | * The object(s) must *not* be locked. The map must be locked | |
5556 | * to preserve the reference to the object(s). | |
5557 | */ | |
0b4e3aa0 | 5558 | static int vm_object_coalesce_count = 0; |
1c79356b | 5559 | |
0b4e3aa0 | 5560 | __private_extern__ boolean_t |
1c79356b A |
5561 | vm_object_coalesce( |
5562 | register vm_object_t prev_object, | |
5563 | vm_object_t next_object, | |
5564 | vm_object_offset_t prev_offset, | |
91447636 | 5565 | __unused vm_object_offset_t next_offset, |
1c79356b A |
5566 | vm_object_size_t prev_size, |
5567 | vm_object_size_t next_size) | |
5568 | { | |
5569 | vm_object_size_t newsize; | |
5570 | ||
5571 | #ifdef lint | |
5572 | next_offset++; | |
5573 | #endif /* lint */ | |
5574 | ||
5575 | if (next_object != VM_OBJECT_NULL) { | |
5576 | return(FALSE); | |
5577 | } | |
5578 | ||
5579 | if (prev_object == VM_OBJECT_NULL) { | |
5580 | return(TRUE); | |
5581 | } | |
5582 | ||
5583 | XPR(XPR_VM_OBJECT, | |
5584 | "vm_object_coalesce: 0x%X prev_off 0x%X prev_size 0x%X next_size 0x%X\n", | |
b0d623f7 | 5585 | prev_object, prev_offset, prev_size, next_size, 0); |
1c79356b A |
5586 | |
5587 | vm_object_lock(prev_object); | |
5588 | ||
5589 | /* | |
5590 | * Try to collapse the object first | |
5591 | */ | |
0c530ab8 | 5592 | vm_object_collapse(prev_object, prev_offset, TRUE); |
1c79356b A |
5593 | |
5594 | /* | |
5595 | * Can't coalesce if pages not mapped to | |
5596 | * prev_entry may be in use any way: | |
5597 | * . more than one reference | |
5598 | * . paged out | |
5599 | * . shadows another object | |
5600 | * . has a copy elsewhere | |
2d21ac55 | 5601 | * . is purgeable |
1c79356b A |
5602 | * . paging references (pages might be in page-list) |
5603 | */ | |
5604 | ||
5605 | if ((prev_object->ref_count > 1) || | |
5606 | prev_object->pager_created || | |
5607 | (prev_object->shadow != VM_OBJECT_NULL) || | |
5608 | (prev_object->copy != VM_OBJECT_NULL) || | |
5609 | (prev_object->true_share != FALSE) || | |
2d21ac55 | 5610 | (prev_object->purgable != VM_PURGABLE_DENY) || |
b0d623f7 A |
5611 | (prev_object->paging_in_progress != 0) || |
5612 | (prev_object->activity_in_progress != 0)) { | |
1c79356b A |
5613 | vm_object_unlock(prev_object); |
5614 | return(FALSE); | |
5615 | } | |
5616 | ||
5617 | vm_object_coalesce_count++; | |
5618 | ||
5619 | /* | |
5620 | * Remove any pages that may still be in the object from | |
5621 | * a previous deallocation. | |
5622 | */ | |
5623 | vm_object_page_remove(prev_object, | |
5624 | prev_offset + prev_size, | |
5625 | prev_offset + prev_size + next_size); | |
5626 | ||
5627 | /* | |
5628 | * Extend the object if necessary. | |
5629 | */ | |
5630 | newsize = prev_offset + prev_size + next_size; | |
6d2010ae | 5631 | if (newsize > prev_object->vo_size) { |
1c79356b A |
5632 | #if MACH_PAGEMAP |
5633 | /* | |
5634 | * We cannot extend an object that has existence info, | |
5635 | * since the existence info might then fail to cover | |
5636 | * the entire object. | |
5637 | * | |
5638 | * This assertion must be true because the object | |
5639 | * has no pager, and we only create existence info | |
5640 | * for objects with pagers. | |
5641 | */ | |
5642 | assert(prev_object->existence_map == VM_EXTERNAL_NULL); | |
5643 | #endif /* MACH_PAGEMAP */ | |
6d2010ae | 5644 | prev_object->vo_size = newsize; |
1c79356b A |
5645 | } |
5646 | ||
5647 | vm_object_unlock(prev_object); | |
5648 | return(TRUE); | |
5649 | } | |
5650 | ||
5651 | /* | |
5652 | * Attach a set of physical pages to an object, so that they can | |
5653 | * be mapped by mapping the object. Typically used to map IO memory. | |
5654 | * | |
5655 | * The mapping function and its private data are used to obtain the | |
5656 | * physical addresses for each page to be mapped. | |
5657 | */ | |
5658 | void | |
5659 | vm_object_page_map( | |
5660 | vm_object_t object, | |
5661 | vm_object_offset_t offset, | |
5662 | vm_object_size_t size, | |
5663 | vm_object_offset_t (*map_fn)(void *map_fn_data, | |
5664 | vm_object_offset_t offset), | |
5665 | void *map_fn_data) /* private to map_fn */ | |
5666 | { | |
b0d623f7 | 5667 | int64_t num_pages; |
1c79356b A |
5668 | int i; |
5669 | vm_page_t m; | |
5670 | vm_page_t old_page; | |
5671 | vm_object_offset_t addr; | |
5672 | ||
55e303ae | 5673 | num_pages = atop_64(size); |
1c79356b A |
5674 | |
5675 | for (i = 0; i < num_pages; i++, offset += PAGE_SIZE_64) { | |
5676 | ||
5677 | addr = (*map_fn)(map_fn_data, offset); | |
5678 | ||
5679 | while ((m = vm_page_grab_fictitious()) == VM_PAGE_NULL) | |
5680 | vm_page_more_fictitious(); | |
5681 | ||
5682 | vm_object_lock(object); | |
5683 | if ((old_page = vm_page_lookup(object, offset)) | |
5684 | != VM_PAGE_NULL) | |
5685 | { | |
b0d623f7 | 5686 | VM_PAGE_FREE(old_page); |
1c79356b A |
5687 | } |
5688 | ||
b0d623f7 | 5689 | assert((ppnum_t) addr == addr); |
0b4c1975 | 5690 | vm_page_init(m, (ppnum_t) addr, FALSE); |
b0d623f7 A |
5691 | /* |
5692 | * private normally requires lock_queues but since we | |
5693 | * are initializing the page, its not necessary here | |
5694 | */ | |
1c79356b A |
5695 | m->private = TRUE; /* don`t free page */ |
5696 | m->wire_count = 1; | |
5697 | vm_page_insert(m, object, offset); | |
5698 | ||
5699 | PAGE_WAKEUP_DONE(m); | |
5700 | vm_object_unlock(object); | |
5701 | } | |
5702 | } | |
5703 | ||
0b4e3aa0 A |
5704 | kern_return_t |
5705 | vm_object_populate_with_private( | |
55e303ae | 5706 | vm_object_t object, |
0b4e3aa0 | 5707 | vm_object_offset_t offset, |
55e303ae A |
5708 | ppnum_t phys_page, |
5709 | vm_size_t size) | |
0b4e3aa0 | 5710 | { |
55e303ae | 5711 | ppnum_t base_page; |
0b4e3aa0 A |
5712 | vm_object_offset_t base_offset; |
5713 | ||
5714 | ||
316670eb | 5715 | if (!object->private) |
0b4e3aa0 A |
5716 | return KERN_FAILURE; |
5717 | ||
55e303ae | 5718 | base_page = phys_page; |
0b4e3aa0 A |
5719 | |
5720 | vm_object_lock(object); | |
316670eb A |
5721 | |
5722 | if (!object->phys_contiguous) { | |
0b4e3aa0 | 5723 | vm_page_t m; |
316670eb A |
5724 | |
5725 | if ((base_offset = trunc_page_64(offset)) != offset) { | |
0b4e3aa0 A |
5726 | vm_object_unlock(object); |
5727 | return KERN_FAILURE; | |
5728 | } | |
5729 | base_offset += object->paging_offset; | |
316670eb A |
5730 | |
5731 | while (size) { | |
0b4e3aa0 | 5732 | m = vm_page_lookup(object, base_offset); |
316670eb A |
5733 | |
5734 | if (m != VM_PAGE_NULL) { | |
5735 | if (m->fictitious) { | |
b0d623f7 A |
5736 | if (m->phys_page != vm_page_guard_addr) { |
5737 | ||
2d21ac55 | 5738 | vm_page_lockspin_queues(); |
2d21ac55 | 5739 | m->private = TRUE; |
b0d623f7 A |
5740 | vm_page_unlock_queues(); |
5741 | ||
5742 | m->fictitious = FALSE; | |
2d21ac55 | 5743 | m->phys_page = base_page; |
0b4e3aa0 | 5744 | } |
55e303ae | 5745 | } else if (m->phys_page != base_page) { |
316670eb A |
5746 | |
5747 | if ( !m->private) { | |
5748 | /* | |
5749 | * we'd leak a real page... that can't be right | |
5750 | */ | |
5751 | panic("vm_object_populate_with_private - %p not private", m); | |
5752 | } | |
5753 | if (m->pmapped) { | |
2d21ac55 A |
5754 | /* |
5755 | * pmap call to clear old mapping | |
5756 | */ | |
5757 | pmap_disconnect(m->phys_page); | |
5758 | } | |
55e303ae | 5759 | m->phys_page = base_page; |
0b4e3aa0 | 5760 | } |
316670eb A |
5761 | if (m->encrypted) { |
5762 | /* | |
5763 | * we should never see this on a ficticious or private page | |
5764 | */ | |
5765 | panic("vm_object_populate_with_private - %p encrypted", m); | |
5766 | } | |
91447636 | 5767 | |
0b4e3aa0 | 5768 | } else { |
b0d623f7 | 5769 | while ((m = vm_page_grab_fictitious()) == VM_PAGE_NULL) |
0b4e3aa0 | 5770 | vm_page_more_fictitious(); |
b0d623f7 A |
5771 | |
5772 | /* | |
5773 | * private normally requires lock_queues but since we | |
5774 | * are initializing the page, its not necessary here | |
5775 | */ | |
0b4e3aa0 | 5776 | m->private = TRUE; |
b0d623f7 | 5777 | m->fictitious = FALSE; |
55e303ae | 5778 | m->phys_page = base_page; |
0b4e3aa0 | 5779 | m->unusual = TRUE; |
316670eb | 5780 | m->busy = FALSE; |
b0d623f7 | 5781 | |
0b4e3aa0 A |
5782 | vm_page_insert(m, object, base_offset); |
5783 | } | |
55e303ae | 5784 | base_page++; /* Go to the next physical page */ |
0b4e3aa0 A |
5785 | base_offset += PAGE_SIZE; |
5786 | size -= PAGE_SIZE; | |
5787 | } | |
5788 | } else { | |
5789 | /* NOTE: we should check the original settings here */ | |
5790 | /* if we have a size > zero a pmap call should be made */ | |
5791 | /* to disable the range */ | |
5792 | ||
5793 | /* pmap_? */ | |
5794 | ||
5795 | /* shadows on contiguous memory are not allowed */ | |
5796 | /* we therefore can use the offset field */ | |
6d2010ae A |
5797 | object->vo_shadow_offset = (vm_object_offset_t)phys_page << PAGE_SHIFT; |
5798 | object->vo_size = size; | |
0b4e3aa0 A |
5799 | } |
5800 | vm_object_unlock(object); | |
316670eb | 5801 | |
0b4e3aa0 A |
5802 | return KERN_SUCCESS; |
5803 | } | |
5804 | ||
1c79356b A |
5805 | /* |
5806 | * memory_object_free_from_cache: | |
5807 | * | |
5808 | * Walk the vm_object cache list, removing and freeing vm_objects | |
0c530ab8 | 5809 | * which are backed by the pager identified by the caller, (pager_ops). |
1c79356b A |
5810 | * Remove up to "count" objects, if there are that may available |
5811 | * in the cache. | |
0b4e3aa0 | 5812 | * |
1c79356b A |
5813 | * Walk the list at most once, return the number of vm_objects |
5814 | * actually freed. | |
1c79356b A |
5815 | */ |
5816 | ||
0b4e3aa0 | 5817 | __private_extern__ kern_return_t |
1c79356b | 5818 | memory_object_free_from_cache( |
91447636 | 5819 | __unused host_t host, |
b0d623f7 | 5820 | __unused memory_object_pager_ops_t pager_ops, |
1c79356b A |
5821 | int *count) |
5822 | { | |
b0d623f7 | 5823 | #if VM_OBJECT_CACHE |
1c79356b | 5824 | int object_released = 0; |
1c79356b A |
5825 | |
5826 | register vm_object_t object = VM_OBJECT_NULL; | |
5827 | vm_object_t shadow; | |
5828 | ||
5829 | /* | |
5830 | if(host == HOST_NULL) | |
5831 | return(KERN_INVALID_ARGUMENT); | |
5832 | */ | |
5833 | ||
5834 | try_again: | |
5835 | vm_object_cache_lock(); | |
5836 | ||
5837 | queue_iterate(&vm_object_cached_list, object, | |
5838 | vm_object_t, cached_list) { | |
0c530ab8 A |
5839 | if (object->pager && |
5840 | (pager_ops == object->pager->mo_pager_ops)) { | |
1c79356b A |
5841 | vm_object_lock(object); |
5842 | queue_remove(&vm_object_cached_list, object, | |
5843 | vm_object_t, cached_list); | |
5844 | vm_object_cached_count--; | |
5845 | ||
b0d623f7 | 5846 | vm_object_cache_unlock(); |
1c79356b A |
5847 | /* |
5848 | * Since this object is in the cache, we know | |
0b4e3aa0 A |
5849 | * that it is initialized and has only a pager's |
5850 | * (implicit) reference. Take a reference to avoid | |
5851 | * recursive deallocations. | |
1c79356b A |
5852 | */ |
5853 | ||
5854 | assert(object->pager_initialized); | |
5855 | assert(object->ref_count == 0); | |
2d21ac55 | 5856 | vm_object_lock_assert_exclusive(object); |
1c79356b A |
5857 | object->ref_count++; |
5858 | ||
5859 | /* | |
5860 | * Terminate the object. | |
5861 | * If the object had a shadow, we let | |
5862 | * vm_object_deallocate deallocate it. | |
5863 | * "pageout" objects have a shadow, but | |
5864 | * maintain a "paging reference" rather | |
5865 | * than a normal reference. | |
5866 | * (We are careful here to limit recursion.) | |
5867 | */ | |
5868 | shadow = object->pageout?VM_OBJECT_NULL:object->shadow; | |
b0d623f7 | 5869 | |
1c79356b A |
5870 | if ((vm_object_terminate(object) == KERN_SUCCESS) |
5871 | && (shadow != VM_OBJECT_NULL)) { | |
5872 | vm_object_deallocate(shadow); | |
5873 | } | |
5874 | ||
5875 | if(object_released++ == *count) | |
5876 | return KERN_SUCCESS; | |
5877 | goto try_again; | |
5878 | } | |
5879 | } | |
5880 | vm_object_cache_unlock(); | |
5881 | *count = object_released; | |
b0d623f7 A |
5882 | #else |
5883 | *count = 0; | |
5884 | #endif | |
1c79356b A |
5885 | return KERN_SUCCESS; |
5886 | } | |
5887 | ||
0b4e3aa0 | 5888 | |
1c79356b A |
5889 | |
5890 | kern_return_t | |
0b4e3aa0 A |
5891 | memory_object_create_named( |
5892 | memory_object_t pager, | |
5893 | memory_object_offset_t size, | |
5894 | memory_object_control_t *control) | |
1c79356b | 5895 | { |
0b4e3aa0 A |
5896 | vm_object_t object; |
5897 | vm_object_hash_entry_t entry; | |
b0d623f7 | 5898 | lck_mtx_t *lck; |
1c79356b | 5899 | |
0b4e3aa0 A |
5900 | *control = MEMORY_OBJECT_CONTROL_NULL; |
5901 | if (pager == MEMORY_OBJECT_NULL) | |
5902 | return KERN_INVALID_ARGUMENT; | |
1c79356b | 5903 | |
b0d623f7 | 5904 | lck = vm_object_hash_lock_spin(pager); |
0b4e3aa0 | 5905 | entry = vm_object_hash_lookup(pager, FALSE); |
b0d623f7 | 5906 | |
0b4e3aa0 A |
5907 | if ((entry != VM_OBJECT_HASH_ENTRY_NULL) && |
5908 | (entry->object != VM_OBJECT_NULL)) { | |
5909 | if (entry->object->named == TRUE) | |
5910 | panic("memory_object_create_named: caller already holds the right"); } | |
b0d623f7 | 5911 | vm_object_hash_unlock(lck); |
1c79356b | 5912 | |
b0d623f7 | 5913 | if ((object = vm_object_enter(pager, size, FALSE, FALSE, TRUE)) == VM_OBJECT_NULL) { |
0b4e3aa0 A |
5914 | return(KERN_INVALID_OBJECT); |
5915 | } | |
5916 | ||
5917 | /* wait for object (if any) to be ready */ | |
5918 | if (object != VM_OBJECT_NULL) { | |
5919 | vm_object_lock(object); | |
5920 | object->named = TRUE; | |
5921 | while (!object->pager_ready) { | |
9bccf70c A |
5922 | vm_object_sleep(object, |
5923 | VM_OBJECT_EVENT_PAGER_READY, | |
5924 | THREAD_UNINT); | |
0b4e3aa0 | 5925 | } |
91447636 | 5926 | *control = object->pager_control; |
0b4e3aa0 A |
5927 | vm_object_unlock(object); |
5928 | } | |
5929 | return (KERN_SUCCESS); | |
5930 | } | |
1c79356b | 5931 | |
1c79356b | 5932 | |
0b4e3aa0 A |
5933 | /* |
5934 | * Routine: memory_object_recover_named [user interface] | |
5935 | * Purpose: | |
5936 | * Attempt to recover a named reference for a VM object. | |
5937 | * VM will verify that the object has not already started | |
5938 | * down the termination path, and if it has, will optionally | |
5939 | * wait for that to finish. | |
5940 | * Returns: | |
5941 | * KERN_SUCCESS - we recovered a named reference on the object | |
5942 | * KERN_FAILURE - we could not recover a reference (object dead) | |
5943 | * KERN_INVALID_ARGUMENT - bad memory object control | |
5944 | */ | |
5945 | kern_return_t | |
5946 | memory_object_recover_named( | |
5947 | memory_object_control_t control, | |
5948 | boolean_t wait_on_terminating) | |
5949 | { | |
5950 | vm_object_t object; | |
1c79356b | 5951 | |
0b4e3aa0 A |
5952 | object = memory_object_control_to_vm_object(control); |
5953 | if (object == VM_OBJECT_NULL) { | |
0b4e3aa0 A |
5954 | return (KERN_INVALID_ARGUMENT); |
5955 | } | |
0b4e3aa0 A |
5956 | restart: |
5957 | vm_object_lock(object); | |
1c79356b | 5958 | |
0b4e3aa0 | 5959 | if (object->terminating && wait_on_terminating) { |
0b4e3aa0 A |
5960 | vm_object_wait(object, |
5961 | VM_OBJECT_EVENT_PAGING_IN_PROGRESS, | |
5962 | THREAD_UNINT); | |
0b4e3aa0 A |
5963 | goto restart; |
5964 | } | |
5965 | ||
5966 | if (!object->alive) { | |
0b4e3aa0 A |
5967 | vm_object_unlock(object); |
5968 | return KERN_FAILURE; | |
1c79356b A |
5969 | } |
5970 | ||
0b4e3aa0 | 5971 | if (object->named == TRUE) { |
0b4e3aa0 A |
5972 | vm_object_unlock(object); |
5973 | return KERN_SUCCESS; | |
5974 | } | |
b0d623f7 A |
5975 | #if VM_OBJECT_CACHE |
5976 | if ((object->ref_count == 0) && (!object->terminating)) { | |
5977 | if (!vm_object_cache_lock_try()) { | |
5978 | vm_object_unlock(object); | |
5979 | goto restart; | |
5980 | } | |
0b4e3aa0 A |
5981 | queue_remove(&vm_object_cached_list, object, |
5982 | vm_object_t, cached_list); | |
b0d623f7 A |
5983 | vm_object_cached_count--; |
5984 | XPR(XPR_VM_OBJECT_CACHE, | |
5985 | "memory_object_recover_named: removing %X, head (%X, %X)\n", | |
5986 | object, | |
5987 | vm_object_cached_list.next, | |
5988 | vm_object_cached_list.prev, 0,0); | |
5989 | ||
5990 | vm_object_cache_unlock(); | |
0b4e3aa0 | 5991 | } |
b0d623f7 | 5992 | #endif |
0b4e3aa0 | 5993 | object->named = TRUE; |
2d21ac55 | 5994 | vm_object_lock_assert_exclusive(object); |
0b4e3aa0 A |
5995 | object->ref_count++; |
5996 | vm_object_res_reference(object); | |
5997 | while (!object->pager_ready) { | |
9bccf70c A |
5998 | vm_object_sleep(object, |
5999 | VM_OBJECT_EVENT_PAGER_READY, | |
6000 | THREAD_UNINT); | |
0b4e3aa0 A |
6001 | } |
6002 | vm_object_unlock(object); | |
6003 | return (KERN_SUCCESS); | |
1c79356b A |
6004 | } |
6005 | ||
0b4e3aa0 A |
6006 | |
6007 | /* | |
6008 | * vm_object_release_name: | |
6009 | * | |
6010 | * Enforces name semantic on memory_object reference count decrement | |
6011 | * This routine should not be called unless the caller holds a name | |
6012 | * reference gained through the memory_object_create_named. | |
6013 | * | |
6014 | * If the TERMINATE_IDLE flag is set, the call will return if the | |
6015 | * reference count is not 1. i.e. idle with the only remaining reference | |
6016 | * being the name. | |
6017 | * If the decision is made to proceed the name field flag is set to | |
6018 | * false and the reference count is decremented. If the RESPECT_CACHE | |
6019 | * flag is set and the reference count has gone to zero, the | |
6020 | * memory_object is checked to see if it is cacheable otherwise when | |
6021 | * the reference count is zero, it is simply terminated. | |
6022 | */ | |
6023 | ||
6024 | __private_extern__ kern_return_t | |
6025 | vm_object_release_name( | |
6026 | vm_object_t object, | |
6027 | int flags) | |
1c79356b | 6028 | { |
0b4e3aa0 A |
6029 | vm_object_t shadow; |
6030 | boolean_t original_object = TRUE; | |
1c79356b | 6031 | |
0b4e3aa0 | 6032 | while (object != VM_OBJECT_NULL) { |
1c79356b | 6033 | |
0b4e3aa0 | 6034 | vm_object_lock(object); |
b0d623f7 | 6035 | |
0b4e3aa0 | 6036 | assert(object->alive); |
b0d623f7 | 6037 | if (original_object) |
0b4e3aa0 A |
6038 | assert(object->named); |
6039 | assert(object->ref_count > 0); | |
6040 | ||
6041 | /* | |
6042 | * We have to wait for initialization before | |
6043 | * destroying or caching the object. | |
6044 | */ | |
6045 | ||
6046 | if (object->pager_created && !object->pager_initialized) { | |
6047 | assert(!object->can_persist); | |
6048 | vm_object_assert_wait(object, | |
6049 | VM_OBJECT_EVENT_INITIALIZED, | |
6050 | THREAD_UNINT); | |
6051 | vm_object_unlock(object); | |
9bccf70c | 6052 | thread_block(THREAD_CONTINUE_NULL); |
0b4e3aa0 | 6053 | continue; |
1c79356b A |
6054 | } |
6055 | ||
0b4e3aa0 A |
6056 | if (((object->ref_count > 1) |
6057 | && (flags & MEMORY_OBJECT_TERMINATE_IDLE)) | |
6058 | || (object->terminating)) { | |
6059 | vm_object_unlock(object); | |
0b4e3aa0 A |
6060 | return KERN_FAILURE; |
6061 | } else { | |
6062 | if (flags & MEMORY_OBJECT_RELEASE_NO_OP) { | |
6063 | vm_object_unlock(object); | |
0b4e3aa0 | 6064 | return KERN_SUCCESS; |
1c79356b | 6065 | } |
0b4e3aa0 A |
6066 | } |
6067 | ||
6068 | if ((flags & MEMORY_OBJECT_RESPECT_CACHE) && | |
6069 | (object->ref_count == 1)) { | |
b0d623f7 | 6070 | if (original_object) |
0b4e3aa0 | 6071 | object->named = FALSE; |
1c79356b | 6072 | vm_object_unlock(object); |
0b4e3aa0 A |
6073 | /* let vm_object_deallocate push this thing into */ |
6074 | /* the cache, if that it is where it is bound */ | |
6075 | vm_object_deallocate(object); | |
6076 | return KERN_SUCCESS; | |
6077 | } | |
6078 | VM_OBJ_RES_DECR(object); | |
6079 | shadow = object->pageout?VM_OBJECT_NULL:object->shadow; | |
b0d623f7 A |
6080 | |
6081 | if (object->ref_count == 1) { | |
6082 | if (vm_object_terminate(object) != KERN_SUCCESS) { | |
6083 | if (original_object) { | |
0b4e3aa0 A |
6084 | return KERN_FAILURE; |
6085 | } else { | |
6086 | return KERN_SUCCESS; | |
6087 | } | |
6088 | } | |
6089 | if (shadow != VM_OBJECT_NULL) { | |
6090 | original_object = FALSE; | |
6091 | object = shadow; | |
6092 | continue; | |
6093 | } | |
6094 | return KERN_SUCCESS; | |
6095 | } else { | |
2d21ac55 | 6096 | vm_object_lock_assert_exclusive(object); |
0b4e3aa0 A |
6097 | object->ref_count--; |
6098 | assert(object->ref_count > 0); | |
6099 | if(original_object) | |
6100 | object->named = FALSE; | |
6101 | vm_object_unlock(object); | |
0b4e3aa0 | 6102 | return KERN_SUCCESS; |
1c79356b | 6103 | } |
1c79356b | 6104 | } |
91447636 A |
6105 | /*NOTREACHED*/ |
6106 | assert(0); | |
6107 | return KERN_FAILURE; | |
1c79356b A |
6108 | } |
6109 | ||
0b4e3aa0 A |
6110 | |
6111 | __private_extern__ kern_return_t | |
6112 | vm_object_lock_request( | |
6113 | vm_object_t object, | |
6114 | vm_object_offset_t offset, | |
6115 | vm_object_size_t size, | |
6116 | memory_object_return_t should_return, | |
6117 | int flags, | |
6118 | vm_prot_t prot) | |
1c79356b | 6119 | { |
91447636 A |
6120 | __unused boolean_t should_flush; |
6121 | ||
6122 | should_flush = flags & MEMORY_OBJECT_DATA_FLUSH; | |
1c79356b | 6123 | |
0b4e3aa0 A |
6124 | XPR(XPR_MEMORY_OBJECT, |
6125 | "vm_o_lock_request, obj 0x%X off 0x%X size 0x%X flags %X prot %X\n", | |
b0d623f7 | 6126 | object, offset, size, |
0b4e3aa0 | 6127 | (((should_return&1)<<1)|should_flush), prot); |
1c79356b | 6128 | |
0b4e3aa0 A |
6129 | /* |
6130 | * Check for bogus arguments. | |
6131 | */ | |
6132 | if (object == VM_OBJECT_NULL) | |
6133 | return (KERN_INVALID_ARGUMENT); | |
1c79356b | 6134 | |
0b4e3aa0 A |
6135 | if ((prot & ~VM_PROT_ALL) != 0 && prot != VM_PROT_NO_CHANGE) |
6136 | return (KERN_INVALID_ARGUMENT); | |
1c79356b | 6137 | |
55e303ae | 6138 | size = round_page_64(size); |
0b4e3aa0 A |
6139 | |
6140 | /* | |
6141 | * Lock the object, and acquire a paging reference to | |
6142 | * prevent the memory_object reference from being released. | |
6143 | */ | |
6144 | vm_object_lock(object); | |
6145 | vm_object_paging_begin(object); | |
0b4e3aa0 A |
6146 | |
6147 | (void)vm_object_update(object, | |
91447636 | 6148 | offset, size, NULL, NULL, should_return, flags, prot); |
0b4e3aa0 A |
6149 | |
6150 | vm_object_paging_end(object); | |
6151 | vm_object_unlock(object); | |
6152 | ||
6153 | return (KERN_SUCCESS); | |
6154 | } | |
6155 | ||
91447636 | 6156 | /* |
2d21ac55 | 6157 | * Empty a purgeable object by grabbing the physical pages assigned to it and |
91447636 A |
6158 | * putting them on the free queue without writing them to backing store, etc. |
6159 | * When the pages are next touched they will be demand zero-fill pages. We | |
6160 | * skip pages which are busy, being paged in/out, wired, etc. We do _not_ | |
6161 | * skip referenced/dirty pages, pages on the active queue, etc. We're more | |
2d21ac55 | 6162 | * than happy to grab these since this is a purgeable object. We mark the |
91447636 A |
6163 | * object as "empty" after reaping its pages. |
6164 | * | |
b0d623f7 A |
6165 | * On entry the object must be locked and it must be |
6166 | * purgeable with no delayed copies pending. | |
91447636 | 6167 | */ |
b0d623f7 | 6168 | void |
91447636 A |
6169 | vm_object_purge(vm_object_t object) |
6170 | { | |
b0d623f7 | 6171 | vm_object_lock_assert_exclusive(object); |
0b4e3aa0 | 6172 | |
b0d623f7 A |
6173 | if (object->purgable == VM_PURGABLE_DENY) |
6174 | return; | |
91447636 A |
6175 | |
6176 | assert(object->copy == VM_OBJECT_NULL); | |
6177 | assert(object->copy_strategy == MEMORY_OBJECT_COPY_NONE); | |
593a1d5f | 6178 | |
b0d623f7 A |
6179 | if(object->purgable == VM_PURGABLE_VOLATILE) { |
6180 | unsigned int delta; | |
6181 | assert(object->resident_page_count >= | |
6182 | object->wired_page_count); | |
6183 | delta = (object->resident_page_count - | |
6184 | object->wired_page_count); | |
6185 | if (delta != 0) { | |
6186 | assert(vm_page_purgeable_count >= | |
6187 | delta); | |
6188 | OSAddAtomic(-delta, | |
6189 | (SInt32 *)&vm_page_purgeable_count); | |
91447636 | 6190 | } |
b0d623f7 A |
6191 | if (object->wired_page_count != 0) { |
6192 | assert(vm_page_purgeable_wired_count >= | |
6193 | object->wired_page_count); | |
6194 | OSAddAtomic(-object->wired_page_count, | |
6195 | (SInt32 *)&vm_page_purgeable_wired_count); | |
91447636 A |
6196 | } |
6197 | } | |
b0d623f7 A |
6198 | object->purgable = VM_PURGABLE_EMPTY; |
6199 | ||
6200 | vm_object_reap_pages(object, REAP_PURGEABLE); | |
91447636 | 6201 | } |
b0d623f7 | 6202 | |
91447636 A |
6203 | |
6204 | /* | |
2d21ac55 A |
6205 | * vm_object_purgeable_control() allows the caller to control and investigate the |
6206 | * state of a purgeable object. A purgeable object is created via a call to | |
6207 | * vm_allocate() with VM_FLAGS_PURGABLE specified. A purgeable object will | |
6208 | * never be coalesced with any other object -- even other purgeable objects -- | |
6209 | * and will thus always remain a distinct object. A purgeable object has | |
91447636 | 6210 | * special semantics when its reference count is exactly 1. If its reference |
2d21ac55 | 6211 | * count is greater than 1, then a purgeable object will behave like a normal |
91447636 A |
6212 | * object and attempts to use this interface will result in an error return |
6213 | * of KERN_INVALID_ARGUMENT. | |
6214 | * | |
2d21ac55 | 6215 | * A purgeable object may be put into a "volatile" state which will make the |
91447636 A |
6216 | * object's pages elligable for being reclaimed without paging to backing |
6217 | * store if the system runs low on memory. If the pages in a volatile | |
2d21ac55 A |
6218 | * purgeable object are reclaimed, the purgeable object is said to have been |
6219 | * "emptied." When a purgeable object is emptied the system will reclaim as | |
91447636 A |
6220 | * many pages from the object as it can in a convenient manner (pages already |
6221 | * en route to backing store or busy for other reasons are left as is). When | |
2d21ac55 | 6222 | * a purgeable object is made volatile, its pages will generally be reclaimed |
91447636 A |
6223 | * before other pages in the application's working set. This semantic is |
6224 | * generally used by applications which can recreate the data in the object | |
6225 | * faster than it can be paged in. One such example might be media assets | |
6226 | * which can be reread from a much faster RAID volume. | |
6227 | * | |
2d21ac55 | 6228 | * A purgeable object may be designated as "non-volatile" which means it will |
91447636 A |
6229 | * behave like all other objects in the system with pages being written to and |
6230 | * read from backing store as needed to satisfy system memory needs. If the | |
6231 | * object was emptied before the object was made non-volatile, that fact will | |
2d21ac55 | 6232 | * be returned as the old state of the purgeable object (see |
91447636 A |
6233 | * VM_PURGABLE_SET_STATE below). In this case, any pages of the object which |
6234 | * were reclaimed as part of emptying the object will be refaulted in as | |
6235 | * zero-fill on demand. It is up to the application to note that an object | |
6236 | * was emptied and recreate the objects contents if necessary. When a | |
2d21ac55 A |
6237 | * purgeable object is made non-volatile, its pages will generally not be paged |
6238 | * out to backing store in the immediate future. A purgeable object may also | |
91447636 A |
6239 | * be manually emptied. |
6240 | * | |
6241 | * Finally, the current state (non-volatile, volatile, volatile & empty) of a | |
2d21ac55 | 6242 | * volatile purgeable object may be queried at any time. This information may |
91447636 A |
6243 | * be used as a control input to let the application know when the system is |
6244 | * experiencing memory pressure and is reclaiming memory. | |
6245 | * | |
2d21ac55 | 6246 | * The specified address may be any address within the purgeable object. If |
91447636 A |
6247 | * the specified address does not represent any object in the target task's |
6248 | * virtual address space, then KERN_INVALID_ADDRESS will be returned. If the | |
2d21ac55 | 6249 | * object containing the specified address is not a purgeable object, then |
91447636 A |
6250 | * KERN_INVALID_ARGUMENT will be returned. Otherwise, KERN_SUCCESS will be |
6251 | * returned. | |
6252 | * | |
6253 | * The control parameter may be any one of VM_PURGABLE_SET_STATE or | |
6254 | * VM_PURGABLE_GET_STATE. For VM_PURGABLE_SET_STATE, the in/out parameter | |
2d21ac55 A |
6255 | * state is used to set the new state of the purgeable object and return its |
6256 | * old state. For VM_PURGABLE_GET_STATE, the current state of the purgeable | |
91447636 A |
6257 | * object is returned in the parameter state. |
6258 | * | |
6259 | * The in/out parameter state may be one of VM_PURGABLE_NONVOLATILE, | |
6260 | * VM_PURGABLE_VOLATILE or VM_PURGABLE_EMPTY. These, respectively, represent | |
6261 | * the non-volatile, volatile and volatile/empty states described above. | |
2d21ac55 | 6262 | * Setting the state of a purgeable object to VM_PURGABLE_EMPTY will |
91447636 A |
6263 | * immediately reclaim as many pages in the object as can be conveniently |
6264 | * collected (some may have already been written to backing store or be | |
6265 | * otherwise busy). | |
6266 | * | |
2d21ac55 A |
6267 | * The process of making a purgeable object non-volatile and determining its |
6268 | * previous state is atomic. Thus, if a purgeable object is made | |
91447636 | 6269 | * VM_PURGABLE_NONVOLATILE and the old state is returned as |
2d21ac55 | 6270 | * VM_PURGABLE_VOLATILE, then the purgeable object's previous contents are |
91447636 A |
6271 | * completely intact and will remain so until the object is made volatile |
6272 | * again. If the old state is returned as VM_PURGABLE_EMPTY then the object | |
6273 | * was reclaimed while it was in a volatile state and its previous contents | |
6274 | * have been lost. | |
6275 | */ | |
6276 | /* | |
6277 | * The object must be locked. | |
6278 | */ | |
6279 | kern_return_t | |
6280 | vm_object_purgable_control( | |
6281 | vm_object_t object, | |
6282 | vm_purgable_t control, | |
6283 | int *state) | |
6284 | { | |
6285 | int old_state; | |
2d21ac55 | 6286 | int new_state; |
91447636 A |
6287 | |
6288 | if (object == VM_OBJECT_NULL) { | |
6289 | /* | |
2d21ac55 | 6290 | * Object must already be present or it can't be purgeable. |
91447636 A |
6291 | */ |
6292 | return KERN_INVALID_ARGUMENT; | |
6293 | } | |
6294 | ||
6295 | /* | |
2d21ac55 | 6296 | * Get current state of the purgeable object. |
91447636 | 6297 | */ |
2d21ac55 A |
6298 | old_state = object->purgable; |
6299 | if (old_state == VM_PURGABLE_DENY) | |
91447636 A |
6300 | return KERN_INVALID_ARGUMENT; |
6301 | ||
2d21ac55 | 6302 | /* purgeable cant have delayed copies - now or in the future */ |
91447636 A |
6303 | assert(object->copy == VM_OBJECT_NULL); |
6304 | assert(object->copy_strategy == MEMORY_OBJECT_COPY_NONE); | |
6305 | ||
6306 | /* | |
6307 | * Execute the desired operation. | |
6308 | */ | |
6309 | if (control == VM_PURGABLE_GET_STATE) { | |
6310 | *state = old_state; | |
6311 | return KERN_SUCCESS; | |
6312 | } | |
6313 | ||
b0d623f7 A |
6314 | if ((*state) & VM_PURGABLE_DEBUG_EMPTY) { |
6315 | object->volatile_empty = TRUE; | |
6316 | } | |
6317 | if ((*state) & VM_PURGABLE_DEBUG_FAULT) { | |
6318 | object->volatile_fault = TRUE; | |
6319 | } | |
6320 | ||
2d21ac55 | 6321 | new_state = *state & VM_PURGABLE_STATE_MASK; |
b0d623f7 A |
6322 | if (new_state == VM_PURGABLE_VOLATILE && |
6323 | object->volatile_empty) { | |
6324 | new_state = VM_PURGABLE_EMPTY; | |
6325 | } | |
6326 | ||
2d21ac55 A |
6327 | switch (new_state) { |
6328 | case VM_PURGABLE_DENY: | |
91447636 | 6329 | case VM_PURGABLE_NONVOLATILE: |
2d21ac55 A |
6330 | object->purgable = new_state; |
6331 | ||
b0d623f7 A |
6332 | if (old_state == VM_PURGABLE_VOLATILE) { |
6333 | unsigned int delta; | |
6334 | ||
6335 | assert(object->resident_page_count >= | |
6336 | object->wired_page_count); | |
6337 | delta = (object->resident_page_count - | |
6338 | object->wired_page_count); | |
6339 | ||
6340 | assert(vm_page_purgeable_count >= delta); | |
6341 | ||
6342 | if (delta != 0) { | |
6343 | OSAddAtomic(-delta, | |
6344 | (SInt32 *)&vm_page_purgeable_count); | |
6345 | } | |
6346 | if (object->wired_page_count != 0) { | |
6347 | assert(vm_page_purgeable_wired_count >= | |
6348 | object->wired_page_count); | |
6349 | OSAddAtomic(-object->wired_page_count, | |
6350 | (SInt32 *)&vm_page_purgeable_wired_count); | |
6351 | } | |
6352 | ||
2d21ac55 | 6353 | vm_page_lock_queues(); |
b0d623f7 A |
6354 | |
6355 | assert(object->objq.next != NULL && object->objq.prev != NULL); /* object should be on a queue */ | |
6356 | purgeable_q_t queue = vm_purgeable_object_remove(object); | |
6357 | assert(queue); | |
6358 | ||
39236c6e A |
6359 | if (object->purgeable_when_ripe) { |
6360 | vm_purgeable_token_delete_last(queue); | |
6361 | } | |
b0d623f7 A |
6362 | assert(queue->debug_count_objects>=0); |
6363 | ||
2d21ac55 | 6364 | vm_page_unlock_queues(); |
91447636 | 6365 | } |
91447636 A |
6366 | break; |
6367 | ||
6368 | case VM_PURGABLE_VOLATILE: | |
b0d623f7 A |
6369 | if (object->volatile_fault) { |
6370 | vm_page_t p; | |
6371 | int refmod; | |
6372 | ||
6373 | queue_iterate(&object->memq, p, vm_page_t, listq) { | |
6374 | if (p->busy || | |
6375 | VM_PAGE_WIRED(p) || | |
6376 | p->fictitious) { | |
6377 | continue; | |
6378 | } | |
6379 | refmod = pmap_disconnect(p->phys_page); | |
6380 | if ((refmod & VM_MEM_MODIFIED) && | |
6381 | !p->dirty) { | |
316670eb | 6382 | SET_PAGE_DIRTY(p, FALSE); |
b0d623f7 A |
6383 | } |
6384 | } | |
6385 | } | |
6386 | ||
593a1d5f A |
6387 | if (old_state == VM_PURGABLE_EMPTY && |
6388 | object->resident_page_count == 0) | |
2d21ac55 | 6389 | break; |
b0d623f7 | 6390 | |
2d21ac55 A |
6391 | purgeable_q_t queue; |
6392 | ||
6393 | /* find the correct queue */ | |
6394 | if ((*state&VM_PURGABLE_ORDERING_MASK) == VM_PURGABLE_ORDERING_OBSOLETE) | |
593a1d5f | 6395 | queue = &purgeable_queues[PURGEABLE_Q_TYPE_OBSOLETE]; |
2d21ac55 A |
6396 | else { |
6397 | if ((*state&VM_PURGABLE_BEHAVIOR_MASK) == VM_PURGABLE_BEHAVIOR_FIFO) | |
6398 | queue = &purgeable_queues[PURGEABLE_Q_TYPE_FIFO]; | |
6399 | else | |
6400 | queue = &purgeable_queues[PURGEABLE_Q_TYPE_LIFO]; | |
91447636 | 6401 | } |
2d21ac55 | 6402 | |
593a1d5f A |
6403 | if (old_state == VM_PURGABLE_NONVOLATILE || |
6404 | old_state == VM_PURGABLE_EMPTY) { | |
b0d623f7 A |
6405 | unsigned int delta; |
6406 | ||
39236c6e A |
6407 | if ((*state & VM_PURGABLE_NO_AGING_MASK) == |
6408 | VM_PURGABLE_NO_AGING) { | |
6409 | object->purgeable_when_ripe = FALSE; | |
6410 | } else { | |
6411 | object->purgeable_when_ripe = TRUE; | |
6412 | } | |
6413 | ||
6414 | if (object->purgeable_when_ripe) { | |
6415 | kern_return_t result; | |
91447636 | 6416 | |
39236c6e A |
6417 | /* try to add token... this can fail */ |
6418 | vm_page_lock_queues(); | |
6419 | ||
6420 | result = vm_purgeable_token_add(queue); | |
6421 | if (result != KERN_SUCCESS) { | |
6422 | vm_page_unlock_queues(); | |
6423 | return result; | |
6424 | } | |
6425 | vm_page_unlock_queues(); | |
91447636 | 6426 | } |
2d21ac55 | 6427 | |
b0d623f7 A |
6428 | assert(object->resident_page_count >= |
6429 | object->wired_page_count); | |
6430 | delta = (object->resident_page_count - | |
6431 | object->wired_page_count); | |
6432 | ||
6433 | if (delta != 0) { | |
6434 | OSAddAtomic(delta, | |
6435 | &vm_page_purgeable_count); | |
6436 | } | |
6437 | if (object->wired_page_count != 0) { | |
6438 | OSAddAtomic(object->wired_page_count, | |
6439 | &vm_page_purgeable_wired_count); | |
6440 | } | |
6441 | ||
2d21ac55 A |
6442 | object->purgable = new_state; |
6443 | ||
6444 | /* object should not be on a queue */ | |
6445 | assert(object->objq.next == NULL && object->objq.prev == NULL); | |
91447636 | 6446 | } |
2d21ac55 | 6447 | else if (old_state == VM_PURGABLE_VOLATILE) { |
39236c6e A |
6448 | purgeable_q_t old_queue; |
6449 | boolean_t purgeable_when_ripe; | |
6450 | ||
2d21ac55 A |
6451 | /* |
6452 | * if reassigning priorities / purgeable groups, we don't change the | |
6453 | * token queue. So moving priorities will not make pages stay around longer. | |
6454 | * Reasoning is that the algorithm gives most priority to the most important | |
6455 | * object. If a new token is added, the most important object' priority is boosted. | |
6456 | * This biases the system already for purgeable queues that move a lot. | |
6457 | * It doesn't seem more biasing is neccessary in this case, where no new object is added. | |
6458 | */ | |
6459 | assert(object->objq.next != NULL && object->objq.prev != NULL); /* object should be on a queue */ | |
6460 | ||
39236c6e | 6461 | old_queue = vm_purgeable_object_remove(object); |
2d21ac55 A |
6462 | assert(old_queue); |
6463 | ||
39236c6e A |
6464 | if ((*state & VM_PURGABLE_NO_AGING_MASK) == |
6465 | VM_PURGABLE_NO_AGING) { | |
6466 | purgeable_when_ripe = FALSE; | |
6467 | } else { | |
6468 | purgeable_when_ripe = TRUE; | |
6469 | } | |
6470 | ||
6471 | if (old_queue != queue || | |
6472 | (purgeable_when_ripe != | |
6473 | object->purgeable_when_ripe)) { | |
2d21ac55 A |
6474 | kern_return_t result; |
6475 | ||
6476 | /* Changing queue. Have to move token. */ | |
6477 | vm_page_lock_queues(); | |
39236c6e A |
6478 | if (object->purgeable_when_ripe) { |
6479 | vm_purgeable_token_delete_last(old_queue); | |
6480 | } | |
6481 | object->purgeable_when_ripe = purgeable_when_ripe; | |
6482 | if (object->purgeable_when_ripe) { | |
6483 | result = vm_purgeable_token_add(queue); | |
6484 | assert(result==KERN_SUCCESS); /* this should never fail since we just freed a token */ | |
6485 | } | |
2d21ac55 | 6486 | vm_page_unlock_queues(); |
91447636 | 6487 | |
2d21ac55 A |
6488 | } |
6489 | }; | |
6490 | vm_purgeable_object_add(object, queue, (*state&VM_VOLATILE_GROUP_MASK)>>VM_VOLATILE_GROUP_SHIFT ); | |
6491 | ||
6492 | assert(queue->debug_count_objects>=0); | |
6493 | ||
91447636 A |
6494 | break; |
6495 | ||
6496 | ||
6497 | case VM_PURGABLE_EMPTY: | |
b0d623f7 A |
6498 | if (object->volatile_fault) { |
6499 | vm_page_t p; | |
6500 | int refmod; | |
6501 | ||
6502 | queue_iterate(&object->memq, p, vm_page_t, listq) { | |
6503 | if (p->busy || | |
6504 | VM_PAGE_WIRED(p) || | |
6505 | p->fictitious) { | |
6506 | continue; | |
6507 | } | |
6508 | refmod = pmap_disconnect(p->phys_page); | |
6509 | if ((refmod & VM_MEM_MODIFIED) && | |
6510 | !p->dirty) { | |
316670eb | 6511 | SET_PAGE_DIRTY(p, FALSE); |
b0d623f7 | 6512 | } |
2d21ac55 | 6513 | } |
b0d623f7 A |
6514 | } |
6515 | ||
6516 | if (old_state != new_state) { | |
6517 | assert(old_state == VM_PURGABLE_NONVOLATILE || | |
6518 | old_state == VM_PURGABLE_VOLATILE); | |
6519 | if (old_state == VM_PURGABLE_VOLATILE) { | |
6520 | purgeable_q_t old_queue; | |
2d21ac55 | 6521 | |
b0d623f7 A |
6522 | /* object should be on a queue */ |
6523 | assert(object->objq.next != NULL && | |
6524 | object->objq.prev != NULL); | |
6525 | old_queue = vm_purgeable_object_remove(object); | |
6526 | assert(old_queue); | |
39236c6e A |
6527 | if (object->purgeable_when_ripe) { |
6528 | vm_page_lock_queues(); | |
6529 | vm_purgeable_token_delete_first(old_queue); | |
6530 | vm_page_unlock_queues(); | |
6531 | } | |
2d21ac55 A |
6532 | } |
6533 | (void) vm_object_purge(object); | |
91447636 | 6534 | } |
91447636 A |
6535 | break; |
6536 | ||
6537 | } | |
6538 | *state = old_state; | |
6539 | ||
6540 | return KERN_SUCCESS; | |
6541 | } | |
0b4e3aa0 | 6542 | |
39236c6e A |
6543 | kern_return_t |
6544 | vm_object_get_page_counts( | |
6545 | vm_object_t object, | |
6546 | vm_object_offset_t offset, | |
6547 | vm_object_size_t size, | |
6548 | unsigned int *resident_page_count, | |
6549 | unsigned int *dirty_page_count) | |
6550 | { | |
6551 | ||
6552 | kern_return_t kr = KERN_SUCCESS; | |
6553 | boolean_t count_dirty_pages = FALSE; | |
6554 | vm_page_t p = VM_PAGE_NULL; | |
6555 | unsigned int local_resident_count = 0; | |
6556 | unsigned int local_dirty_count = 0; | |
6557 | vm_object_offset_t cur_offset = 0; | |
6558 | vm_object_offset_t end_offset = 0; | |
6559 | ||
6560 | if (object == VM_OBJECT_NULL) | |
6561 | return KERN_INVALID_ARGUMENT; | |
6562 | ||
6563 | ||
6564 | cur_offset = offset; | |
6565 | ||
6566 | end_offset = offset + size; | |
6567 | ||
6568 | vm_object_lock_assert_exclusive(object); | |
6569 | ||
6570 | if (dirty_page_count != NULL) { | |
6571 | ||
6572 | count_dirty_pages = TRUE; | |
6573 | } | |
6574 | ||
6575 | if (resident_page_count != NULL && count_dirty_pages == FALSE) { | |
6576 | /* | |
6577 | * Fast path when: | |
6578 | * - we only want the resident page count, and, | |
6579 | * - the entire object is exactly covered by the request. | |
6580 | */ | |
6581 | if (offset == 0 && (object->vo_size == size)) { | |
6582 | ||
6583 | *resident_page_count = object->resident_page_count; | |
6584 | goto out; | |
6585 | } | |
6586 | } | |
6587 | ||
6588 | if (object->resident_page_count <= (size >> PAGE_SHIFT)) { | |
6589 | ||
6590 | queue_iterate(&object->memq, p, vm_page_t, listq) { | |
6591 | ||
6592 | if (p->offset >= cur_offset && p->offset < end_offset) { | |
6593 | ||
6594 | local_resident_count++; | |
6595 | ||
6596 | if (count_dirty_pages) { | |
6597 | ||
6598 | if (p->dirty || (p->wpmapped && pmap_is_modified(p->phys_page))) { | |
6599 | ||
6600 | local_dirty_count++; | |
6601 | } | |
6602 | } | |
6603 | } | |
6604 | } | |
6605 | } else { | |
6606 | ||
6607 | for (cur_offset = offset; cur_offset < end_offset; cur_offset += PAGE_SIZE_64) { | |
6608 | ||
6609 | p = vm_page_lookup(object, cur_offset); | |
6610 | ||
6611 | if (p != VM_PAGE_NULL) { | |
6612 | ||
6613 | local_resident_count++; | |
6614 | ||
6615 | if (count_dirty_pages) { | |
6616 | ||
6617 | if (p->dirty || (p->wpmapped && pmap_is_modified(p->phys_page))) { | |
6618 | ||
6619 | local_dirty_count++; | |
6620 | } | |
6621 | } | |
6622 | } | |
6623 | } | |
6624 | ||
6625 | } | |
6626 | ||
6627 | if (resident_page_count != NULL) { | |
6628 | *resident_page_count = local_resident_count; | |
6629 | } | |
6630 | ||
6631 | if (dirty_page_count != NULL) { | |
6632 | *dirty_page_count = local_dirty_count; | |
6633 | } | |
6634 | ||
6635 | out: | |
6636 | return kr; | |
6637 | } | |
6638 | ||
6639 | ||
0b4e3aa0 A |
6640 | #if TASK_SWAPPER |
6641 | /* | |
6642 | * vm_object_res_deallocate | |
6643 | * | |
6644 | * (recursively) decrement residence counts on vm objects and their shadows. | |
6645 | * Called from vm_object_deallocate and when swapping out an object. | |
6646 | * | |
6647 | * The object is locked, and remains locked throughout the function, | |
6648 | * even as we iterate down the shadow chain. Locks on intermediate objects | |
6649 | * will be dropped, but not the original object. | |
6650 | * | |
6651 | * NOTE: this function used to use recursion, rather than iteration. | |
6652 | */ | |
6653 | ||
6654 | __private_extern__ void | |
6655 | vm_object_res_deallocate( | |
6656 | vm_object_t object) | |
6657 | { | |
6658 | vm_object_t orig_object = object; | |
6659 | /* | |
6660 | * Object is locked so it can be called directly | |
6661 | * from vm_object_deallocate. Original object is never | |
6662 | * unlocked. | |
6663 | */ | |
6664 | assert(object->res_count > 0); | |
6665 | while (--object->res_count == 0) { | |
6666 | assert(object->ref_count >= object->res_count); | |
6667 | vm_object_deactivate_all_pages(object); | |
6668 | /* iterate on shadow, if present */ | |
6669 | if (object->shadow != VM_OBJECT_NULL) { | |
6670 | vm_object_t tmp_object = object->shadow; | |
6671 | vm_object_lock(tmp_object); | |
6672 | if (object != orig_object) | |
6673 | vm_object_unlock(object); | |
6674 | object = tmp_object; | |
6675 | assert(object->res_count > 0); | |
6676 | } else | |
6677 | break; | |
6678 | } | |
6679 | if (object != orig_object) | |
1c79356b | 6680 | vm_object_unlock(object); |
0b4e3aa0 A |
6681 | } |
6682 | ||
6683 | /* | |
6684 | * vm_object_res_reference | |
6685 | * | |
6686 | * Internal function to increment residence count on a vm object | |
6687 | * and its shadows. It is called only from vm_object_reference, and | |
6688 | * when swapping in a vm object, via vm_map_swap. | |
6689 | * | |
6690 | * The object is locked, and remains locked throughout the function, | |
6691 | * even as we iterate down the shadow chain. Locks on intermediate objects | |
6692 | * will be dropped, but not the original object. | |
6693 | * | |
6694 | * NOTE: this function used to use recursion, rather than iteration. | |
6695 | */ | |
6696 | ||
6697 | __private_extern__ void | |
6698 | vm_object_res_reference( | |
6699 | vm_object_t object) | |
6700 | { | |
6701 | vm_object_t orig_object = object; | |
6702 | /* | |
6703 | * Object is locked, so this can be called directly | |
6704 | * from vm_object_reference. This lock is never released. | |
6705 | */ | |
6706 | while ((++object->res_count == 1) && | |
6707 | (object->shadow != VM_OBJECT_NULL)) { | |
6708 | vm_object_t tmp_object = object->shadow; | |
6709 | ||
6710 | assert(object->ref_count >= object->res_count); | |
6711 | vm_object_lock(tmp_object); | |
6712 | if (object != orig_object) | |
6713 | vm_object_unlock(object); | |
6714 | object = tmp_object; | |
1c79356b | 6715 | } |
0b4e3aa0 A |
6716 | if (object != orig_object) |
6717 | vm_object_unlock(object); | |
6718 | assert(orig_object->ref_count >= orig_object->res_count); | |
1c79356b | 6719 | } |
0b4e3aa0 A |
6720 | #endif /* TASK_SWAPPER */ |
6721 | ||
6722 | /* | |
6723 | * vm_object_reference: | |
6724 | * | |
6725 | * Gets another reference to the given object. | |
6726 | */ | |
6727 | #ifdef vm_object_reference | |
6728 | #undef vm_object_reference | |
6729 | #endif | |
6730 | __private_extern__ void | |
6731 | vm_object_reference( | |
6732 | register vm_object_t object) | |
6733 | { | |
6734 | if (object == VM_OBJECT_NULL) | |
6735 | return; | |
6736 | ||
6737 | vm_object_lock(object); | |
6738 | assert(object->ref_count > 0); | |
6739 | vm_object_reference_locked(object); | |
6740 | vm_object_unlock(object); | |
6741 | } | |
6742 | ||
1c79356b A |
6743 | #ifdef MACH_BSD |
6744 | /* | |
6745 | * Scale the vm_object_cache | |
6746 | * This is required to make sure that the vm_object_cache is big | |
6747 | * enough to effectively cache the mapped file. | |
6748 | * This is really important with UBC as all the regular file vnodes | |
6749 | * have memory object associated with them. Havving this cache too | |
6750 | * small results in rapid reclaim of vnodes and hurts performance a LOT! | |
6751 | * | |
6752 | * This is also needed as number of vnodes can be dynamically scaled. | |
6753 | */ | |
6754 | kern_return_t | |
91447636 A |
6755 | adjust_vm_object_cache( |
6756 | __unused vm_size_t oval, | |
b0d623f7 | 6757 | __unused vm_size_t nval) |
1c79356b | 6758 | { |
b0d623f7 | 6759 | #if VM_OBJECT_CACHE |
1c79356b A |
6760 | vm_object_cached_max = nval; |
6761 | vm_object_cache_trim(FALSE); | |
b0d623f7 | 6762 | #endif |
1c79356b A |
6763 | return (KERN_SUCCESS); |
6764 | } | |
6765 | #endif /* MACH_BSD */ | |
6766 | ||
91447636 A |
6767 | |
6768 | /* | |
6769 | * vm_object_transpose | |
6770 | * | |
6771 | * This routine takes two VM objects of the same size and exchanges | |
6772 | * their backing store. | |
6773 | * The objects should be "quiesced" via a UPL operation with UPL_SET_IO_WIRE | |
6774 | * and UPL_BLOCK_ACCESS if they are referenced anywhere. | |
6775 | * | |
6776 | * The VM objects must not be locked by caller. | |
6777 | */ | |
b0d623f7 | 6778 | unsigned int vm_object_transpose_count = 0; |
91447636 A |
6779 | kern_return_t |
6780 | vm_object_transpose( | |
6781 | vm_object_t object1, | |
6782 | vm_object_t object2, | |
6783 | vm_object_size_t transpose_size) | |
6784 | { | |
6785 | vm_object_t tmp_object; | |
6786 | kern_return_t retval; | |
6787 | boolean_t object1_locked, object2_locked; | |
91447636 A |
6788 | vm_page_t page; |
6789 | vm_object_offset_t page_offset; | |
b0d623f7 A |
6790 | lck_mtx_t *hash_lck; |
6791 | vm_object_hash_entry_t hash_entry; | |
91447636 A |
6792 | |
6793 | tmp_object = VM_OBJECT_NULL; | |
6794 | object1_locked = FALSE; object2_locked = FALSE; | |
91447636 A |
6795 | |
6796 | if (object1 == object2 || | |
6797 | object1 == VM_OBJECT_NULL || | |
6798 | object2 == VM_OBJECT_NULL) { | |
6799 | /* | |
6800 | * If the 2 VM objects are the same, there's | |
6801 | * no point in exchanging their backing store. | |
6802 | */ | |
6803 | retval = KERN_INVALID_VALUE; | |
6804 | goto done; | |
6805 | } | |
6806 | ||
b0d623f7 A |
6807 | /* |
6808 | * Since we need to lock both objects at the same time, | |
6809 | * make sure we always lock them in the same order to | |
6810 | * avoid deadlocks. | |
6811 | */ | |
6812 | if (object1 > object2) { | |
6813 | tmp_object = object1; | |
6814 | object1 = object2; | |
6815 | object2 = tmp_object; | |
6816 | } | |
6817 | ||
6818 | /* | |
6819 | * Allocate a temporary VM object to hold object1's contents | |
6820 | * while we copy object2 to object1. | |
6821 | */ | |
6822 | tmp_object = vm_object_allocate(transpose_size); | |
6823 | vm_object_lock(tmp_object); | |
6824 | tmp_object->can_persist = FALSE; | |
6825 | ||
6826 | ||
6827 | /* | |
6828 | * Grab control of the 1st VM object. | |
6829 | */ | |
91447636 A |
6830 | vm_object_lock(object1); |
6831 | object1_locked = TRUE; | |
2d21ac55 A |
6832 | if (!object1->alive || object1->terminating || |
6833 | object1->copy || object1->shadow || object1->shadowed || | |
6834 | object1->purgable != VM_PURGABLE_DENY) { | |
91447636 A |
6835 | /* |
6836 | * We don't deal with copy or shadow objects (yet). | |
6837 | */ | |
6838 | retval = KERN_INVALID_VALUE; | |
6839 | goto done; | |
6840 | } | |
6841 | /* | |
b0d623f7 A |
6842 | * We're about to mess with the object's backing store and |
6843 | * taking a "paging_in_progress" reference wouldn't be enough | |
91447636 A |
6844 | * to prevent any paging activity on this object, so the caller should |
6845 | * have "quiesced" the objects beforehand, via a UPL operation with | |
6846 | * UPL_SET_IO_WIRE (to make sure all the pages are there and wired) | |
6847 | * and UPL_BLOCK_ACCESS (to mark the pages "busy"). | |
b0d623f7 A |
6848 | * |
6849 | * Wait for any paging operation to complete (but only paging, not | |
6850 | * other kind of activities not linked to the pager). After we're | |
6851 | * statisfied that there's no more paging in progress, we keep the | |
6852 | * object locked, to guarantee that no one tries to access its pager. | |
91447636 | 6853 | */ |
b0d623f7 | 6854 | vm_object_paging_only_wait(object1, THREAD_UNINT); |
91447636 A |
6855 | |
6856 | /* | |
6857 | * Same as above for the 2nd object... | |
6858 | */ | |
6859 | vm_object_lock(object2); | |
6860 | object2_locked = TRUE; | |
2d21ac55 A |
6861 | if (! object2->alive || object2->terminating || |
6862 | object2->copy || object2->shadow || object2->shadowed || | |
6863 | object2->purgable != VM_PURGABLE_DENY) { | |
91447636 A |
6864 | retval = KERN_INVALID_VALUE; |
6865 | goto done; | |
6866 | } | |
b0d623f7 | 6867 | vm_object_paging_only_wait(object2, THREAD_UNINT); |
91447636 | 6868 | |
91447636 | 6869 | |
6d2010ae A |
6870 | if (object1->vo_size != object2->vo_size || |
6871 | object1->vo_size != transpose_size) { | |
91447636 A |
6872 | /* |
6873 | * If the 2 objects don't have the same size, we can't | |
6874 | * exchange their backing stores or one would overflow. | |
6875 | * If their size doesn't match the caller's | |
6876 | * "transpose_size", we can't do it either because the | |
6877 | * transpose operation will affect the entire span of | |
6878 | * the objects. | |
6879 | */ | |
6880 | retval = KERN_INVALID_VALUE; | |
6881 | goto done; | |
6882 | } | |
6883 | ||
6884 | ||
6885 | /* | |
6886 | * Transpose the lists of resident pages. | |
2d21ac55 | 6887 | * This also updates the resident_page_count and the memq_hint. |
91447636 A |
6888 | */ |
6889 | if (object1->phys_contiguous || queue_empty(&object1->memq)) { | |
6890 | /* | |
6891 | * No pages in object1, just transfer pages | |
6892 | * from object2 to object1. No need to go through | |
6893 | * an intermediate object. | |
6894 | */ | |
6895 | while (!queue_empty(&object2->memq)) { | |
6896 | page = (vm_page_t) queue_first(&object2->memq); | |
2d21ac55 | 6897 | vm_page_rename(page, object1, page->offset, FALSE); |
91447636 A |
6898 | } |
6899 | assert(queue_empty(&object2->memq)); | |
6900 | } else if (object2->phys_contiguous || queue_empty(&object2->memq)) { | |
6901 | /* | |
6902 | * No pages in object2, just transfer pages | |
6903 | * from object1 to object2. No need to go through | |
6904 | * an intermediate object. | |
6905 | */ | |
6906 | while (!queue_empty(&object1->memq)) { | |
6907 | page = (vm_page_t) queue_first(&object1->memq); | |
2d21ac55 | 6908 | vm_page_rename(page, object2, page->offset, FALSE); |
91447636 A |
6909 | } |
6910 | assert(queue_empty(&object1->memq)); | |
6911 | } else { | |
6912 | /* transfer object1's pages to tmp_object */ | |
91447636 A |
6913 | while (!queue_empty(&object1->memq)) { |
6914 | page = (vm_page_t) queue_first(&object1->memq); | |
6915 | page_offset = page->offset; | |
b0d623f7 | 6916 | vm_page_remove(page, TRUE); |
91447636 A |
6917 | page->offset = page_offset; |
6918 | queue_enter(&tmp_object->memq, page, vm_page_t, listq); | |
6919 | } | |
91447636 A |
6920 | assert(queue_empty(&object1->memq)); |
6921 | /* transfer object2's pages to object1 */ | |
6922 | while (!queue_empty(&object2->memq)) { | |
6923 | page = (vm_page_t) queue_first(&object2->memq); | |
2d21ac55 | 6924 | vm_page_rename(page, object1, page->offset, FALSE); |
91447636 A |
6925 | } |
6926 | assert(queue_empty(&object2->memq)); | |
6927 | /* transfer tmp_object's pages to object1 */ | |
6928 | while (!queue_empty(&tmp_object->memq)) { | |
6929 | page = (vm_page_t) queue_first(&tmp_object->memq); | |
6930 | queue_remove(&tmp_object->memq, page, | |
6931 | vm_page_t, listq); | |
6932 | vm_page_insert(page, object2, page->offset); | |
6933 | } | |
6934 | assert(queue_empty(&tmp_object->memq)); | |
6935 | } | |
6936 | ||
91447636 A |
6937 | #define __TRANSPOSE_FIELD(field) \ |
6938 | MACRO_BEGIN \ | |
6939 | tmp_object->field = object1->field; \ | |
6940 | object1->field = object2->field; \ | |
6941 | object2->field = tmp_object->field; \ | |
6942 | MACRO_END | |
6943 | ||
b0d623f7 | 6944 | /* "Lock" refers to the object not its contents */ |
2d21ac55 | 6945 | /* "size" should be identical */ |
6d2010ae | 6946 | assert(object1->vo_size == object2->vo_size); |
b0d623f7 | 6947 | /* "memq_hint" was updated above when transposing pages */ |
2d21ac55 A |
6948 | /* "ref_count" refers to the object not its contents */ |
6949 | #if TASK_SWAPPER | |
6950 | /* "res_count" refers to the object not its contents */ | |
6951 | #endif | |
6952 | /* "resident_page_count" was updated above when transposing pages */ | |
b0d623f7 A |
6953 | /* "wired_page_count" was updated above when transposing pages */ |
6954 | /* "reusable_page_count" was updated above when transposing pages */ | |
2d21ac55 | 6955 | /* there should be no "copy" */ |
91447636 A |
6956 | assert(!object1->copy); |
6957 | assert(!object2->copy); | |
2d21ac55 | 6958 | /* there should be no "shadow" */ |
91447636 A |
6959 | assert(!object1->shadow); |
6960 | assert(!object2->shadow); | |
6d2010ae | 6961 | __TRANSPOSE_FIELD(vo_shadow_offset); /* used by phys_contiguous objects */ |
91447636 A |
6962 | __TRANSPOSE_FIELD(pager); |
6963 | __TRANSPOSE_FIELD(paging_offset); | |
91447636 A |
6964 | __TRANSPOSE_FIELD(pager_control); |
6965 | /* update the memory_objects' pointers back to the VM objects */ | |
6966 | if (object1->pager_control != MEMORY_OBJECT_CONTROL_NULL) { | |
6967 | memory_object_control_collapse(object1->pager_control, | |
6968 | object1); | |
6969 | } | |
6970 | if (object2->pager_control != MEMORY_OBJECT_CONTROL_NULL) { | |
6971 | memory_object_control_collapse(object2->pager_control, | |
6972 | object2); | |
6973 | } | |
2d21ac55 A |
6974 | __TRANSPOSE_FIELD(copy_strategy); |
6975 | /* "paging_in_progress" refers to the object not its contents */ | |
b0d623f7 A |
6976 | assert(!object1->paging_in_progress); |
6977 | assert(!object2->paging_in_progress); | |
6978 | assert(object1->activity_in_progress); | |
6979 | assert(object2->activity_in_progress); | |
2d21ac55 | 6980 | /* "all_wanted" refers to the object not its contents */ |
91447636 A |
6981 | __TRANSPOSE_FIELD(pager_created); |
6982 | __TRANSPOSE_FIELD(pager_initialized); | |
6983 | __TRANSPOSE_FIELD(pager_ready); | |
6984 | __TRANSPOSE_FIELD(pager_trusted); | |
2d21ac55 | 6985 | __TRANSPOSE_FIELD(can_persist); |
91447636 A |
6986 | __TRANSPOSE_FIELD(internal); |
6987 | __TRANSPOSE_FIELD(temporary); | |
6988 | __TRANSPOSE_FIELD(private); | |
6989 | __TRANSPOSE_FIELD(pageout); | |
2d21ac55 A |
6990 | /* "alive" should be set */ |
6991 | assert(object1->alive); | |
6992 | assert(object2->alive); | |
6993 | /* "purgeable" should be non-purgeable */ | |
6994 | assert(object1->purgable == VM_PURGABLE_DENY); | |
6995 | assert(object2->purgable == VM_PURGABLE_DENY); | |
6996 | /* "shadowed" refers to the the object not its contents */ | |
39236c6e | 6997 | __TRANSPOSE_FIELD(purgeable_when_ripe); |
2d21ac55 | 6998 | __TRANSPOSE_FIELD(advisory_pageout); |
91447636 | 6999 | __TRANSPOSE_FIELD(true_share); |
2d21ac55 A |
7000 | /* "terminating" should not be set */ |
7001 | assert(!object1->terminating); | |
7002 | assert(!object2->terminating); | |
7003 | __TRANSPOSE_FIELD(named); | |
7004 | /* "shadow_severed" refers to the object not its contents */ | |
91447636 A |
7005 | __TRANSPOSE_FIELD(phys_contiguous); |
7006 | __TRANSPOSE_FIELD(nophyscache); | |
b0d623f7 A |
7007 | /* "cached_list.next" points to transposed object */ |
7008 | object1->cached_list.next = (queue_entry_t) object2; | |
7009 | object2->cached_list.next = (queue_entry_t) object1; | |
7010 | /* "cached_list.prev" should be NULL */ | |
2d21ac55 | 7011 | assert(object1->cached_list.prev == NULL); |
2d21ac55 | 7012 | assert(object2->cached_list.prev == NULL); |
2d21ac55 A |
7013 | /* "msr_q" is linked to the object not its contents */ |
7014 | assert(queue_empty(&object1->msr_q)); | |
7015 | assert(queue_empty(&object2->msr_q)); | |
91447636 A |
7016 | __TRANSPOSE_FIELD(last_alloc); |
7017 | __TRANSPOSE_FIELD(sequential); | |
2d21ac55 A |
7018 | __TRANSPOSE_FIELD(pages_created); |
7019 | __TRANSPOSE_FIELD(pages_used); | |
6d2010ae | 7020 | __TRANSPOSE_FIELD(scan_collisions); |
2d21ac55 | 7021 | #if MACH_PAGEMAP |
91447636 | 7022 | __TRANSPOSE_FIELD(existence_map); |
2d21ac55 | 7023 | #endif |
91447636 | 7024 | __TRANSPOSE_FIELD(cow_hint); |
2d21ac55 A |
7025 | #if MACH_ASSERT |
7026 | __TRANSPOSE_FIELD(paging_object); | |
7027 | #endif | |
91447636 | 7028 | __TRANSPOSE_FIELD(wimg_bits); |
6d2010ae | 7029 | __TRANSPOSE_FIELD(set_cache_attr); |
2d21ac55 | 7030 | __TRANSPOSE_FIELD(code_signed); |
b0d623f7 A |
7031 | if (object1->hashed) { |
7032 | hash_lck = vm_object_hash_lock_spin(object2->pager); | |
7033 | hash_entry = vm_object_hash_lookup(object2->pager, FALSE); | |
7034 | assert(hash_entry != VM_OBJECT_HASH_ENTRY_NULL); | |
7035 | hash_entry->object = object2; | |
7036 | vm_object_hash_unlock(hash_lck); | |
7037 | } | |
7038 | if (object2->hashed) { | |
7039 | hash_lck = vm_object_hash_lock_spin(object1->pager); | |
7040 | hash_entry = vm_object_hash_lookup(object1->pager, FALSE); | |
7041 | assert(hash_entry != VM_OBJECT_HASH_ENTRY_NULL); | |
7042 | hash_entry->object = object1; | |
7043 | vm_object_hash_unlock(hash_lck); | |
7044 | } | |
7045 | __TRANSPOSE_FIELD(hashed); | |
7046 | object1->transposed = TRUE; | |
7047 | object2->transposed = TRUE; | |
7048 | __TRANSPOSE_FIELD(mapping_in_progress); | |
7049 | __TRANSPOSE_FIELD(volatile_empty); | |
7050 | __TRANSPOSE_FIELD(volatile_fault); | |
7051 | __TRANSPOSE_FIELD(all_reusable); | |
7052 | assert(object1->blocked_access); | |
7053 | assert(object2->blocked_access); | |
7054 | assert(object1->__object2_unused_bits == 0); | |
7055 | assert(object2->__object2_unused_bits == 0); | |
7056 | #if UPL_DEBUG | |
2d21ac55 A |
7057 | /* "uplq" refers to the object not its contents (see upl_transpose()) */ |
7058 | #endif | |
b0d623f7 A |
7059 | assert(object1->objq.next == NULL); |
7060 | assert(object1->objq.prev == NULL); | |
7061 | assert(object2->objq.next == NULL); | |
7062 | assert(object2->objq.prev == NULL); | |
91447636 A |
7063 | |
7064 | #undef __TRANSPOSE_FIELD | |
7065 | ||
7066 | retval = KERN_SUCCESS; | |
7067 | ||
7068 | done: | |
7069 | /* | |
7070 | * Cleanup. | |
7071 | */ | |
7072 | if (tmp_object != VM_OBJECT_NULL) { | |
91447636 A |
7073 | vm_object_unlock(tmp_object); |
7074 | /* | |
7075 | * Re-initialize the temporary object to avoid | |
7076 | * deallocating a real pager. | |
7077 | */ | |
7078 | _vm_object_allocate(transpose_size, tmp_object); | |
7079 | vm_object_deallocate(tmp_object); | |
7080 | tmp_object = VM_OBJECT_NULL; | |
7081 | } | |
7082 | ||
7083 | if (object1_locked) { | |
7084 | vm_object_unlock(object1); | |
7085 | object1_locked = FALSE; | |
7086 | } | |
7087 | if (object2_locked) { | |
7088 | vm_object_unlock(object2); | |
7089 | object2_locked = FALSE; | |
7090 | } | |
b0d623f7 A |
7091 | |
7092 | vm_object_transpose_count++; | |
91447636 A |
7093 | |
7094 | return retval; | |
7095 | } | |
0c530ab8 A |
7096 | |
7097 | ||
2d21ac55 | 7098 | /* |
b0d623f7 | 7099 | * vm_object_cluster_size |
2d21ac55 A |
7100 | * |
7101 | * Determine how big a cluster we should issue an I/O for... | |
7102 | * | |
7103 | * Inputs: *start == offset of page needed | |
7104 | * *length == maximum cluster pager can handle | |
7105 | * Outputs: *start == beginning offset of cluster | |
7106 | * *length == length of cluster to try | |
7107 | * | |
7108 | * The original *start will be encompassed by the cluster | |
7109 | * | |
7110 | */ | |
7111 | extern int speculative_reads_disabled; | |
6d2010ae A |
7112 | extern int ignore_is_ssd; |
7113 | ||
b0d623f7 A |
7114 | unsigned int preheat_pages_max = MAX_UPL_TRANSFER; |
7115 | unsigned int preheat_pages_min = 8; | |
2d21ac55 | 7116 | |
b0d623f7 A |
7117 | uint32_t pre_heat_scaling[MAX_UPL_TRANSFER + 1]; |
7118 | uint32_t pre_heat_cluster[MAX_UPL_TRANSFER + 1]; | |
2d21ac55 | 7119 | |
2d21ac55 A |
7120 | |
7121 | __private_extern__ void | |
7122 | vm_object_cluster_size(vm_object_t object, vm_object_offset_t *start, | |
b0d623f7 | 7123 | vm_size_t *length, vm_object_fault_info_t fault_info, uint32_t *io_streaming) |
2d21ac55 A |
7124 | { |
7125 | vm_size_t pre_heat_size; | |
7126 | vm_size_t tail_size; | |
7127 | vm_size_t head_size; | |
7128 | vm_size_t max_length; | |
7129 | vm_size_t cluster_size; | |
7130 | vm_object_offset_t object_size; | |
7131 | vm_object_offset_t orig_start; | |
7132 | vm_object_offset_t target_start; | |
7133 | vm_object_offset_t offset; | |
7134 | vm_behavior_t behavior; | |
7135 | boolean_t look_behind = TRUE; | |
7136 | boolean_t look_ahead = TRUE; | |
6d2010ae | 7137 | boolean_t isSSD = FALSE; |
b0d623f7 | 7138 | uint32_t throttle_limit; |
2d21ac55 A |
7139 | int sequential_run; |
7140 | int sequential_behavior = VM_BEHAVIOR_SEQUENTIAL; | |
b0d623f7 A |
7141 | unsigned int max_ph_size; |
7142 | unsigned int min_ph_size; | |
6d2010ae | 7143 | unsigned int min_ph_size_in_bytes; |
2d21ac55 A |
7144 | |
7145 | assert( !(*length & PAGE_MASK)); | |
7146 | assert( !(*start & PAGE_MASK_64)); | |
7147 | ||
6d2010ae A |
7148 | /* |
7149 | * remember maxiumum length of run requested | |
7150 | */ | |
7151 | max_length = *length; | |
2d21ac55 A |
7152 | /* |
7153 | * we'll always return a cluster size of at least | |
7154 | * 1 page, since the original fault must always | |
7155 | * be processed | |
7156 | */ | |
7157 | *length = PAGE_SIZE; | |
b0d623f7 | 7158 | *io_streaming = 0; |
2d21ac55 | 7159 | |
6d2010ae | 7160 | if (speculative_reads_disabled || fault_info == NULL) { |
2d21ac55 A |
7161 | /* |
7162 | * no cluster... just fault the page in | |
7163 | */ | |
7164 | return; | |
7165 | } | |
7166 | orig_start = *start; | |
7167 | target_start = orig_start; | |
b0d623f7 | 7168 | cluster_size = round_page(fault_info->cluster_size); |
2d21ac55 A |
7169 | behavior = fault_info->behavior; |
7170 | ||
7171 | vm_object_lock(object); | |
7172 | ||
6d2010ae A |
7173 | if (object->pager == MEMORY_OBJECT_NULL) |
7174 | goto out; /* pager is gone for this object, nothing more to do */ | |
7175 | ||
7176 | if (!ignore_is_ssd) | |
7177 | vnode_pager_get_isSSD(object->pager, &isSSD); | |
7178 | ||
7179 | min_ph_size = preheat_pages_min; | |
7180 | max_ph_size = preheat_pages_max; | |
7181 | ||
7182 | if (isSSD) { | |
7183 | min_ph_size /= 2; | |
7184 | max_ph_size /= 8; | |
7185 | } | |
7186 | if (min_ph_size < 1) | |
7187 | min_ph_size = 1; | |
7188 | ||
7189 | if (max_ph_size < 1) | |
7190 | max_ph_size = 1; | |
7191 | else if (max_ph_size > MAX_UPL_TRANSFER) | |
7192 | max_ph_size = MAX_UPL_TRANSFER; | |
7193 | ||
7194 | if (max_length > (max_ph_size * PAGE_SIZE)) | |
7195 | max_length = max_ph_size * PAGE_SIZE; | |
7196 | ||
7197 | if (max_length <= PAGE_SIZE) | |
7198 | goto out; | |
7199 | ||
7200 | min_ph_size_in_bytes = min_ph_size * PAGE_SIZE; | |
7201 | ||
2d21ac55 | 7202 | if (object->internal) |
6d2010ae | 7203 | object_size = object->vo_size; |
2d21ac55 | 7204 | else |
6d2010ae | 7205 | vnode_pager_get_object_size(object->pager, &object_size); |
2d21ac55 A |
7206 | |
7207 | object_size = round_page_64(object_size); | |
7208 | ||
7209 | if (orig_start >= object_size) { | |
7210 | /* | |
7211 | * fault occurred beyond the EOF... | |
7212 | * we need to punt w/o changing the | |
7213 | * starting offset | |
7214 | */ | |
7215 | goto out; | |
7216 | } | |
7217 | if (object->pages_used > object->pages_created) { | |
7218 | /* | |
7219 | * must have wrapped our 32 bit counters | |
7220 | * so reset | |
7221 | */ | |
7222 | object->pages_used = object->pages_created = 0; | |
7223 | } | |
7224 | if ((sequential_run = object->sequential)) { | |
7225 | if (sequential_run < 0) { | |
7226 | sequential_behavior = VM_BEHAVIOR_RSEQNTL; | |
7227 | sequential_run = 0 - sequential_run; | |
7228 | } else { | |
7229 | sequential_behavior = VM_BEHAVIOR_SEQUENTIAL; | |
7230 | } | |
b0d623f7 | 7231 | |
2d21ac55 | 7232 | } |
6d2010ae | 7233 | switch (behavior) { |
2d21ac55 A |
7234 | |
7235 | default: | |
7236 | behavior = VM_BEHAVIOR_DEFAULT; | |
7237 | ||
7238 | case VM_BEHAVIOR_DEFAULT: | |
7239 | if (object->internal && fault_info->user_tag == VM_MEMORY_STACK) | |
7240 | goto out; | |
7241 | ||
b0d623f7 | 7242 | if (sequential_run >= (3 * PAGE_SIZE)) { |
2d21ac55 A |
7243 | pre_heat_size = sequential_run + PAGE_SIZE; |
7244 | ||
b0d623f7 | 7245 | if (sequential_behavior == VM_BEHAVIOR_SEQUENTIAL) |
2d21ac55 A |
7246 | look_behind = FALSE; |
7247 | else | |
7248 | look_ahead = FALSE; | |
b0d623f7 A |
7249 | |
7250 | *io_streaming = 1; | |
2d21ac55 | 7251 | } else { |
2d21ac55 | 7252 | |
6d2010ae | 7253 | if (object->pages_created < (20 * min_ph_size)) { |
2d21ac55 A |
7254 | /* |
7255 | * prime the pump | |
7256 | */ | |
6d2010ae A |
7257 | pre_heat_size = min_ph_size_in_bytes; |
7258 | } else { | |
7259 | /* | |
7260 | * Linear growth in PH size: The maximum size is max_length... | |
7261 | * this cacluation will result in a size that is neither a | |
7262 | * power of 2 nor a multiple of PAGE_SIZE... so round | |
7263 | * it up to the nearest PAGE_SIZE boundary | |
7264 | */ | |
7265 | pre_heat_size = (max_length * object->pages_used) / object->pages_created; | |
7266 | ||
7267 | if (pre_heat_size < min_ph_size_in_bytes) | |
7268 | pre_heat_size = min_ph_size_in_bytes; | |
7269 | else | |
7270 | pre_heat_size = round_page(pre_heat_size); | |
2d21ac55 | 7271 | } |
2d21ac55 A |
7272 | } |
7273 | break; | |
7274 | ||
7275 | case VM_BEHAVIOR_RANDOM: | |
7276 | if ((pre_heat_size = cluster_size) <= PAGE_SIZE) | |
7277 | goto out; | |
7278 | break; | |
7279 | ||
7280 | case VM_BEHAVIOR_SEQUENTIAL: | |
7281 | if ((pre_heat_size = cluster_size) == 0) | |
7282 | pre_heat_size = sequential_run + PAGE_SIZE; | |
7283 | look_behind = FALSE; | |
b0d623f7 | 7284 | *io_streaming = 1; |
2d21ac55 A |
7285 | |
7286 | break; | |
7287 | ||
7288 | case VM_BEHAVIOR_RSEQNTL: | |
7289 | if ((pre_heat_size = cluster_size) == 0) | |
7290 | pre_heat_size = sequential_run + PAGE_SIZE; | |
7291 | look_ahead = FALSE; | |
b0d623f7 | 7292 | *io_streaming = 1; |
2d21ac55 A |
7293 | |
7294 | break; | |
7295 | ||
7296 | } | |
b0d623f7 A |
7297 | throttle_limit = (uint32_t) max_length; |
7298 | assert(throttle_limit == max_length); | |
7299 | ||
39236c6e | 7300 | if (vnode_pager_get_throttle_io_limit(object->pager, &throttle_limit) == KERN_SUCCESS) { |
b0d623f7 A |
7301 | if (max_length > throttle_limit) |
7302 | max_length = throttle_limit; | |
7303 | } | |
2d21ac55 A |
7304 | if (pre_heat_size > max_length) |
7305 | pre_heat_size = max_length; | |
7306 | ||
6d2010ae | 7307 | if (behavior == VM_BEHAVIOR_DEFAULT && (pre_heat_size > min_ph_size_in_bytes)) { |
316670eb A |
7308 | |
7309 | unsigned int consider_free = vm_page_free_count + vm_page_cleaned_count; | |
7310 | ||
7311 | if (consider_free < vm_page_throttle_limit) { | |
6d2010ae | 7312 | pre_heat_size = trunc_page(pre_heat_size / 16); |
316670eb | 7313 | } else if (consider_free < vm_page_free_target) { |
6d2010ae | 7314 | pre_heat_size = trunc_page(pre_heat_size / 4); |
316670eb A |
7315 | } |
7316 | ||
6d2010ae A |
7317 | if (pre_heat_size < min_ph_size_in_bytes) |
7318 | pre_heat_size = min_ph_size_in_bytes; | |
b0d623f7 | 7319 | } |
2d21ac55 | 7320 | if (look_ahead == TRUE) { |
b0d623f7 A |
7321 | if (look_behind == TRUE) { |
7322 | /* | |
7323 | * if we get here its due to a random access... | |
7324 | * so we want to center the original fault address | |
7325 | * within the cluster we will issue... make sure | |
7326 | * to calculate 'head_size' as a multiple of PAGE_SIZE... | |
7327 | * 'pre_heat_size' is a multiple of PAGE_SIZE but not | |
7328 | * necessarily an even number of pages so we need to truncate | |
7329 | * the result to a PAGE_SIZE boundary | |
7330 | */ | |
7331 | head_size = trunc_page(pre_heat_size / 2); | |
2d21ac55 | 7332 | |
b0d623f7 A |
7333 | if (target_start > head_size) |
7334 | target_start -= head_size; | |
7335 | else | |
7336 | target_start = 0; | |
2d21ac55 | 7337 | |
b0d623f7 A |
7338 | /* |
7339 | * 'target_start' at this point represents the beginning offset | |
7340 | * of the cluster we are considering... 'orig_start' will be in | |
7341 | * the center of this cluster if we didn't have to clip the start | |
7342 | * due to running into the start of the file | |
7343 | */ | |
7344 | } | |
7345 | if ((target_start + pre_heat_size) > object_size) | |
7346 | pre_heat_size = (vm_size_t)(round_page_64(object_size - target_start)); | |
7347 | /* | |
7348 | * at this point caclulate the number of pages beyond the original fault | |
7349 | * address that we want to consider... this is guaranteed not to extend beyond | |
7350 | * the current EOF... | |
7351 | */ | |
7352 | assert((vm_size_t)(orig_start - target_start) == (orig_start - target_start)); | |
7353 | tail_size = pre_heat_size - (vm_size_t)(orig_start - target_start) - PAGE_SIZE; | |
2d21ac55 | 7354 | } else { |
6d2010ae A |
7355 | if (pre_heat_size > target_start) { |
7356 | /* | |
7357 | * since pre_heat_size is always smaller then 2^32, | |
7358 | * if it is larger then target_start (a 64 bit value) | |
7359 | * it is safe to clip target_start to 32 bits | |
7360 | */ | |
7361 | pre_heat_size = (vm_size_t) target_start; | |
7362 | } | |
2d21ac55 A |
7363 | tail_size = 0; |
7364 | } | |
b0d623f7 A |
7365 | assert( !(target_start & PAGE_MASK_64)); |
7366 | assert( !(pre_heat_size & PAGE_MASK)); | |
7367 | ||
2d21ac55 A |
7368 | pre_heat_scaling[pre_heat_size / PAGE_SIZE]++; |
7369 | ||
7370 | if (pre_heat_size <= PAGE_SIZE) | |
7371 | goto out; | |
7372 | ||
7373 | if (look_behind == TRUE) { | |
7374 | /* | |
7375 | * take a look at the pages before the original | |
b0d623f7 A |
7376 | * faulting offset... recalculate this in case |
7377 | * we had to clip 'pre_heat_size' above to keep | |
7378 | * from running past the EOF. | |
2d21ac55 A |
7379 | */ |
7380 | head_size = pre_heat_size - tail_size - PAGE_SIZE; | |
7381 | ||
7382 | for (offset = orig_start - PAGE_SIZE_64; head_size; offset -= PAGE_SIZE_64, head_size -= PAGE_SIZE) { | |
7383 | /* | |
7384 | * don't poke below the lowest offset | |
7385 | */ | |
7386 | if (offset < fault_info->lo_offset) | |
7387 | break; | |
7388 | /* | |
7389 | * for external objects and internal objects w/o an existence map | |
7390 | * vm_externl_state_get will return VM_EXTERNAL_STATE_UNKNOWN | |
7391 | */ | |
7392 | #if MACH_PAGEMAP | |
7393 | if (vm_external_state_get(object->existence_map, offset) == VM_EXTERNAL_STATE_ABSENT) { | |
7394 | /* | |
7395 | * we know for a fact that the pager can't provide the page | |
7396 | * so don't include it or any pages beyond it in this cluster | |
7397 | */ | |
7398 | break; | |
7399 | } | |
39236c6e A |
7400 | #endif /* MACH_PAGEMAP */ |
7401 | if (VM_COMPRESSOR_PAGER_STATE_GET(object, offset) | |
7402 | == VM_EXTERNAL_STATE_ABSENT) { | |
7403 | break; | |
7404 | } | |
2d21ac55 A |
7405 | if (vm_page_lookup(object, offset) != VM_PAGE_NULL) { |
7406 | /* | |
7407 | * don't bridge resident pages | |
7408 | */ | |
7409 | break; | |
7410 | } | |
7411 | *start = offset; | |
7412 | *length += PAGE_SIZE; | |
7413 | } | |
7414 | } | |
7415 | if (look_ahead == TRUE) { | |
7416 | for (offset = orig_start + PAGE_SIZE_64; tail_size; offset += PAGE_SIZE_64, tail_size -= PAGE_SIZE) { | |
7417 | /* | |
7418 | * don't poke above the highest offset | |
7419 | */ | |
7420 | if (offset >= fault_info->hi_offset) | |
7421 | break; | |
b0d623f7 A |
7422 | assert(offset < object_size); |
7423 | ||
2d21ac55 A |
7424 | /* |
7425 | * for external objects and internal objects w/o an existence map | |
7426 | * vm_externl_state_get will return VM_EXTERNAL_STATE_UNKNOWN | |
7427 | */ | |
7428 | #if MACH_PAGEMAP | |
7429 | if (vm_external_state_get(object->existence_map, offset) == VM_EXTERNAL_STATE_ABSENT) { | |
7430 | /* | |
7431 | * we know for a fact that the pager can't provide the page | |
7432 | * so don't include it or any pages beyond it in this cluster | |
7433 | */ | |
7434 | break; | |
7435 | } | |
39236c6e A |
7436 | #endif /* MACH_PAGEMAP */ |
7437 | if (VM_COMPRESSOR_PAGER_STATE_GET(object, offset) | |
7438 | == VM_EXTERNAL_STATE_ABSENT) { | |
7439 | break; | |
7440 | } | |
2d21ac55 A |
7441 | if (vm_page_lookup(object, offset) != VM_PAGE_NULL) { |
7442 | /* | |
7443 | * don't bridge resident pages | |
7444 | */ | |
7445 | break; | |
7446 | } | |
7447 | *length += PAGE_SIZE; | |
7448 | } | |
7449 | } | |
7450 | out: | |
b0d623f7 A |
7451 | if (*length > max_length) |
7452 | *length = max_length; | |
7453 | ||
2d21ac55 A |
7454 | pre_heat_cluster[*length / PAGE_SIZE]++; |
7455 | ||
7456 | vm_object_unlock(object); | |
316670eb A |
7457 | |
7458 | DTRACE_VM1(clustersize, vm_size_t, *length); | |
2d21ac55 A |
7459 | } |
7460 | ||
7461 | ||
7462 | /* | |
7463 | * Allow manipulation of individual page state. This is actually part of | |
7464 | * the UPL regimen but takes place on the VM object rather than on a UPL | |
7465 | */ | |
0c530ab8 A |
7466 | |
7467 | kern_return_t | |
7468 | vm_object_page_op( | |
7469 | vm_object_t object, | |
7470 | vm_object_offset_t offset, | |
7471 | int ops, | |
7472 | ppnum_t *phys_entry, | |
7473 | int *flags) | |
7474 | { | |
7475 | vm_page_t dst_page; | |
7476 | ||
7477 | vm_object_lock(object); | |
7478 | ||
7479 | if(ops & UPL_POP_PHYSICAL) { | |
7480 | if(object->phys_contiguous) { | |
7481 | if (phys_entry) { | |
7482 | *phys_entry = (ppnum_t) | |
6d2010ae | 7483 | (object->vo_shadow_offset >> PAGE_SHIFT); |
0c530ab8 A |
7484 | } |
7485 | vm_object_unlock(object); | |
7486 | return KERN_SUCCESS; | |
7487 | } else { | |
7488 | vm_object_unlock(object); | |
7489 | return KERN_INVALID_OBJECT; | |
7490 | } | |
7491 | } | |
7492 | if(object->phys_contiguous) { | |
7493 | vm_object_unlock(object); | |
7494 | return KERN_INVALID_OBJECT; | |
7495 | } | |
7496 | ||
7497 | while(TRUE) { | |
7498 | if((dst_page = vm_page_lookup(object,offset)) == VM_PAGE_NULL) { | |
7499 | vm_object_unlock(object); | |
7500 | return KERN_FAILURE; | |
7501 | } | |
7502 | ||
7503 | /* Sync up on getting the busy bit */ | |
7504 | if((dst_page->busy || dst_page->cleaning) && | |
7505 | (((ops & UPL_POP_SET) && | |
7506 | (ops & UPL_POP_BUSY)) || (ops & UPL_POP_DUMP))) { | |
7507 | /* someone else is playing with the page, we will */ | |
7508 | /* have to wait */ | |
7509 | PAGE_SLEEP(object, dst_page, THREAD_UNINT); | |
7510 | continue; | |
7511 | } | |
7512 | ||
7513 | if (ops & UPL_POP_DUMP) { | |
2d21ac55 | 7514 | if (dst_page->pmapped == TRUE) |
0c530ab8 | 7515 | pmap_disconnect(dst_page->phys_page); |
0c530ab8 | 7516 | |
b0d623f7 | 7517 | VM_PAGE_FREE(dst_page); |
0c530ab8 A |
7518 | break; |
7519 | } | |
7520 | ||
7521 | if (flags) { | |
7522 | *flags = 0; | |
7523 | ||
7524 | /* Get the condition of flags before requested ops */ | |
7525 | /* are undertaken */ | |
7526 | ||
7527 | if(dst_page->dirty) *flags |= UPL_POP_DIRTY; | |
7528 | if(dst_page->pageout) *flags |= UPL_POP_PAGEOUT; | |
7529 | if(dst_page->precious) *flags |= UPL_POP_PRECIOUS; | |
7530 | if(dst_page->absent) *flags |= UPL_POP_ABSENT; | |
7531 | if(dst_page->busy) *flags |= UPL_POP_BUSY; | |
7532 | } | |
7533 | ||
7534 | /* The caller should have made a call either contingent with */ | |
7535 | /* or prior to this call to set UPL_POP_BUSY */ | |
7536 | if(ops & UPL_POP_SET) { | |
7537 | /* The protection granted with this assert will */ | |
7538 | /* not be complete. If the caller violates the */ | |
7539 | /* convention and attempts to change page state */ | |
7540 | /* without first setting busy we may not see it */ | |
7541 | /* because the page may already be busy. However */ | |
7542 | /* if such violations occur we will assert sooner */ | |
7543 | /* or later. */ | |
7544 | assert(dst_page->busy || (ops & UPL_POP_BUSY)); | |
316670eb A |
7545 | if (ops & UPL_POP_DIRTY) { |
7546 | SET_PAGE_DIRTY(dst_page, FALSE); | |
7547 | } | |
0c530ab8 A |
7548 | if (ops & UPL_POP_PAGEOUT) dst_page->pageout = TRUE; |
7549 | if (ops & UPL_POP_PRECIOUS) dst_page->precious = TRUE; | |
7550 | if (ops & UPL_POP_ABSENT) dst_page->absent = TRUE; | |
7551 | if (ops & UPL_POP_BUSY) dst_page->busy = TRUE; | |
7552 | } | |
7553 | ||
7554 | if(ops & UPL_POP_CLR) { | |
7555 | assert(dst_page->busy); | |
7556 | if (ops & UPL_POP_DIRTY) dst_page->dirty = FALSE; | |
7557 | if (ops & UPL_POP_PAGEOUT) dst_page->pageout = FALSE; | |
7558 | if (ops & UPL_POP_PRECIOUS) dst_page->precious = FALSE; | |
7559 | if (ops & UPL_POP_ABSENT) dst_page->absent = FALSE; | |
7560 | if (ops & UPL_POP_BUSY) { | |
7561 | dst_page->busy = FALSE; | |
7562 | PAGE_WAKEUP(dst_page); | |
7563 | } | |
7564 | } | |
7565 | ||
7566 | if (dst_page->encrypted) { | |
7567 | /* | |
7568 | * ENCRYPTED SWAP: | |
7569 | * We need to decrypt this encrypted page before the | |
7570 | * caller can access its contents. | |
7571 | * But if the caller really wants to access the page's | |
7572 | * contents, they have to keep the page "busy". | |
7573 | * Otherwise, the page could get recycled or re-encrypted | |
7574 | * at any time. | |
7575 | */ | |
7576 | if ((ops & UPL_POP_SET) && (ops & UPL_POP_BUSY) && | |
7577 | dst_page->busy) { | |
7578 | /* | |
7579 | * The page is stable enough to be accessed by | |
7580 | * the caller, so make sure its contents are | |
7581 | * not encrypted. | |
7582 | */ | |
7583 | vm_page_decrypt(dst_page, 0); | |
7584 | } else { | |
7585 | /* | |
7586 | * The page is not busy, so don't bother | |
7587 | * decrypting it, since anything could | |
7588 | * happen to it between now and when the | |
7589 | * caller wants to access it. | |
7590 | * We should not give the caller access | |
7591 | * to this page. | |
7592 | */ | |
7593 | assert(!phys_entry); | |
7594 | } | |
7595 | } | |
7596 | ||
7597 | if (phys_entry) { | |
7598 | /* | |
7599 | * The physical page number will remain valid | |
7600 | * only if the page is kept busy. | |
7601 | * ENCRYPTED SWAP: make sure we don't let the | |
7602 | * caller access an encrypted page. | |
7603 | */ | |
7604 | assert(dst_page->busy); | |
7605 | assert(!dst_page->encrypted); | |
7606 | *phys_entry = dst_page->phys_page; | |
7607 | } | |
7608 | ||
7609 | break; | |
7610 | } | |
7611 | ||
7612 | vm_object_unlock(object); | |
7613 | return KERN_SUCCESS; | |
7614 | ||
7615 | } | |
7616 | ||
7617 | /* | |
7618 | * vm_object_range_op offers performance enhancement over | |
7619 | * vm_object_page_op for page_op functions which do not require page | |
7620 | * level state to be returned from the call. Page_op was created to provide | |
7621 | * a low-cost alternative to page manipulation via UPLs when only a single | |
7622 | * page was involved. The range_op call establishes the ability in the _op | |
7623 | * family of functions to work on multiple pages where the lack of page level | |
7624 | * state handling allows the caller to avoid the overhead of the upl structures. | |
7625 | */ | |
7626 | ||
7627 | kern_return_t | |
7628 | vm_object_range_op( | |
7629 | vm_object_t object, | |
7630 | vm_object_offset_t offset_beg, | |
7631 | vm_object_offset_t offset_end, | |
7632 | int ops, | |
b0d623f7 | 7633 | uint32_t *range) |
0c530ab8 A |
7634 | { |
7635 | vm_object_offset_t offset; | |
7636 | vm_page_t dst_page; | |
7637 | ||
b0d623f7 A |
7638 | if (offset_end - offset_beg > (uint32_t) -1) { |
7639 | /* range is too big and would overflow "*range" */ | |
7640 | return KERN_INVALID_ARGUMENT; | |
7641 | } | |
0c530ab8 A |
7642 | if (object->resident_page_count == 0) { |
7643 | if (range) { | |
b0d623f7 | 7644 | if (ops & UPL_ROP_PRESENT) { |
0c530ab8 | 7645 | *range = 0; |
b0d623f7 A |
7646 | } else { |
7647 | *range = (uint32_t) (offset_end - offset_beg); | |
7648 | assert(*range == (offset_end - offset_beg)); | |
7649 | } | |
0c530ab8 A |
7650 | } |
7651 | return KERN_SUCCESS; | |
7652 | } | |
7653 | vm_object_lock(object); | |
7654 | ||
7655 | if (object->phys_contiguous) { | |
7656 | vm_object_unlock(object); | |
7657 | return KERN_INVALID_OBJECT; | |
7658 | } | |
7659 | ||
2d21ac55 | 7660 | offset = offset_beg & ~PAGE_MASK_64; |
0c530ab8 A |
7661 | |
7662 | while (offset < offset_end) { | |
7663 | dst_page = vm_page_lookup(object, offset); | |
7664 | if (dst_page != VM_PAGE_NULL) { | |
7665 | if (ops & UPL_ROP_DUMP) { | |
316670eb | 7666 | if (dst_page->busy || dst_page->cleaning) { |
6d2010ae | 7667 | /* |
0c530ab8 A |
7668 | * someone else is playing with the |
7669 | * page, we will have to wait | |
7670 | */ | |
2d21ac55 | 7671 | PAGE_SLEEP(object, dst_page, THREAD_UNINT); |
0c530ab8 A |
7672 | /* |
7673 | * need to relook the page up since it's | |
7674 | * state may have changed while we slept | |
7675 | * it might even belong to a different object | |
7676 | * at this point | |
7677 | */ | |
7678 | continue; | |
7679 | } | |
316670eb A |
7680 | if (dst_page->laundry) { |
7681 | dst_page->pageout = FALSE; | |
7682 | ||
7683 | vm_pageout_steal_laundry(dst_page, FALSE); | |
7684 | } | |
2d21ac55 | 7685 | if (dst_page->pmapped == TRUE) |
0c530ab8 | 7686 | pmap_disconnect(dst_page->phys_page); |
0c530ab8 | 7687 | |
b0d623f7 | 7688 | VM_PAGE_FREE(dst_page); |
2d21ac55 | 7689 | |
b0d623f7 | 7690 | } else if ((ops & UPL_ROP_ABSENT) && !dst_page->absent) |
0c530ab8 A |
7691 | break; |
7692 | } else if (ops & UPL_ROP_PRESENT) | |
7693 | break; | |
7694 | ||
7695 | offset += PAGE_SIZE; | |
7696 | } | |
7697 | vm_object_unlock(object); | |
7698 | ||
2d21ac55 A |
7699 | if (range) { |
7700 | if (offset > offset_end) | |
7701 | offset = offset_end; | |
b0d623f7 A |
7702 | if(offset > offset_beg) { |
7703 | *range = (uint32_t) (offset - offset_beg); | |
7704 | assert(*range == (offset - offset_beg)); | |
7705 | } else { | |
7706 | *range = 0; | |
7707 | } | |
2d21ac55 | 7708 | } |
0c530ab8 A |
7709 | return KERN_SUCCESS; |
7710 | } | |
2d21ac55 | 7711 | |
39236c6e A |
7712 | /* |
7713 | * Used to point a pager directly to a range of memory (when the pager may be associated | |
7714 | * with a non-device vnode). Takes a virtual address, an offset, and a size. We currently | |
7715 | * expect that the virtual address will denote the start of a range that is physically contiguous. | |
7716 | */ | |
7717 | kern_return_t pager_map_to_phys_contiguous( | |
7718 | memory_object_control_t object, | |
7719 | memory_object_offset_t offset, | |
7720 | addr64_t base_vaddr, | |
7721 | vm_size_t size) | |
7722 | { | |
7723 | ppnum_t page_num; | |
7724 | boolean_t clobbered_private; | |
7725 | kern_return_t retval; | |
7726 | vm_object_t pager_object; | |
7727 | ||
7728 | page_num = pmap_find_phys(kernel_pmap, base_vaddr); | |
7729 | ||
7730 | if (!page_num) { | |
7731 | retval = KERN_FAILURE; | |
7732 | goto out; | |
7733 | } | |
7734 | ||
7735 | pager_object = memory_object_control_to_vm_object(object); | |
7736 | ||
7737 | if (!pager_object) { | |
7738 | retval = KERN_FAILURE; | |
7739 | goto out; | |
7740 | } | |
7741 | ||
7742 | clobbered_private = pager_object->private; | |
7743 | pager_object->private = TRUE; | |
7744 | retval = vm_object_populate_with_private(pager_object, offset, page_num, size); | |
7745 | ||
7746 | if (retval != KERN_SUCCESS) | |
7747 | pager_object->private = clobbered_private; | |
7748 | ||
7749 | out: | |
7750 | return retval; | |
7751 | } | |
2d21ac55 A |
7752 | |
7753 | uint32_t scan_object_collision = 0; | |
7754 | ||
7755 | void | |
7756 | vm_object_lock(vm_object_t object) | |
7757 | { | |
7758 | if (object == vm_pageout_scan_wants_object) { | |
7759 | scan_object_collision++; | |
7760 | mutex_pause(2); | |
7761 | } | |
7762 | lck_rw_lock_exclusive(&object->Lock); | |
7763 | } | |
7764 | ||
7765 | boolean_t | |
b0d623f7 | 7766 | vm_object_lock_avoid(vm_object_t object) |
2d21ac55 A |
7767 | { |
7768 | if (object == vm_pageout_scan_wants_object) { | |
7769 | scan_object_collision++; | |
b0d623f7 | 7770 | return TRUE; |
2d21ac55 | 7771 | } |
b0d623f7 A |
7772 | return FALSE; |
7773 | } | |
7774 | ||
7775 | boolean_t | |
7776 | _vm_object_lock_try(vm_object_t object) | |
7777 | { | |
2d21ac55 A |
7778 | return (lck_rw_try_lock_exclusive(&object->Lock)); |
7779 | } | |
7780 | ||
b0d623f7 A |
7781 | boolean_t |
7782 | vm_object_lock_try(vm_object_t object) | |
7783 | { | |
6d2010ae A |
7784 | /* |
7785 | * Called from hibernate path so check before blocking. | |
7786 | */ | |
7787 | if (vm_object_lock_avoid(object) && ml_get_interrupts_enabled() && get_preemption_level()==0) { | |
b0d623f7 A |
7788 | mutex_pause(2); |
7789 | } | |
7790 | return _vm_object_lock_try(object); | |
7791 | } | |
6d2010ae | 7792 | |
2d21ac55 A |
7793 | void |
7794 | vm_object_lock_shared(vm_object_t object) | |
7795 | { | |
b0d623f7 | 7796 | if (vm_object_lock_avoid(object)) { |
2d21ac55 A |
7797 | mutex_pause(2); |
7798 | } | |
7799 | lck_rw_lock_shared(&object->Lock); | |
7800 | } | |
7801 | ||
7802 | boolean_t | |
7803 | vm_object_lock_try_shared(vm_object_t object) | |
7804 | { | |
b0d623f7 | 7805 | if (vm_object_lock_avoid(object)) { |
2d21ac55 A |
7806 | mutex_pause(2); |
7807 | } | |
7808 | return (lck_rw_try_lock_shared(&object->Lock)); | |
7809 | } | |
6d2010ae A |
7810 | |
7811 | ||
7812 | unsigned int vm_object_change_wimg_mode_count = 0; | |
7813 | ||
7814 | /* | |
7815 | * The object must be locked | |
7816 | */ | |
7817 | void | |
7818 | vm_object_change_wimg_mode(vm_object_t object, unsigned int wimg_mode) | |
7819 | { | |
7820 | vm_page_t p; | |
7821 | ||
7822 | vm_object_lock_assert_exclusive(object); | |
7823 | ||
7824 | vm_object_paging_wait(object, THREAD_UNINT); | |
7825 | ||
7826 | queue_iterate(&object->memq, p, vm_page_t, listq) { | |
7827 | ||
7828 | if (!p->fictitious) | |
7829 | pmap_set_cache_attributes(p->phys_page, wimg_mode); | |
7830 | } | |
7831 | if (wimg_mode == VM_WIMG_USE_DEFAULT) | |
7832 | object->set_cache_attr = FALSE; | |
7833 | else | |
7834 | object->set_cache_attr = TRUE; | |
7835 | ||
7836 | object->wimg_bits = wimg_mode; | |
7837 | ||
7838 | vm_object_change_wimg_mode_count++; | |
7839 | } | |
7840 | ||
7841 | #if CONFIG_FREEZE | |
7842 | ||
6d2010ae | 7843 | kern_return_t vm_object_pack( |
316670eb A |
7844 | unsigned int *purgeable_count, |
7845 | unsigned int *wired_count, | |
7846 | unsigned int *clean_count, | |
7847 | unsigned int *dirty_count, | |
7848 | unsigned int dirty_budget, | |
7849 | boolean_t *shared, | |
7850 | vm_object_t src_object, | |
7851 | struct default_freezer_handle *df_handle) | |
6d2010ae A |
7852 | { |
7853 | kern_return_t kr = KERN_SUCCESS; | |
7854 | ||
7855 | vm_object_lock(src_object); | |
7856 | ||
7857 | *purgeable_count = *wired_count = *clean_count = *dirty_count = 0; | |
7858 | *shared = FALSE; | |
7859 | ||
7860 | if (!src_object->alive || src_object->terminating){ | |
7861 | kr = KERN_FAILURE; | |
7862 | goto done; | |
7863 | } | |
7864 | ||
7865 | if (src_object->purgable == VM_PURGABLE_VOLATILE) { | |
7866 | *purgeable_count = src_object->resident_page_count; | |
7867 | ||
316670eb A |
7868 | /* If the default freezer handle is null, we're just walking the pages to discover how many can be hibernated */ |
7869 | if (df_handle != NULL) { | |
6d2010ae A |
7870 | purgeable_q_t queue; |
7871 | /* object should be on a queue */ | |
7872 | assert(src_object->objq.next != NULL && | |
7873 | src_object->objq.prev != NULL); | |
7874 | queue = vm_purgeable_object_remove(src_object); | |
7875 | assert(queue); | |
39236c6e A |
7876 | if (src_object->purgeable_when_ripe) { |
7877 | vm_page_lock_queues(); | |
7878 | vm_purgeable_token_delete_first(queue); | |
7879 | vm_page_unlock_queues(); | |
7880 | } | |
6d2010ae A |
7881 | vm_object_purge(src_object); |
7882 | } | |
7883 | goto done; | |
7884 | } | |
7885 | ||
7886 | if (src_object->ref_count == 1) { | |
316670eb | 7887 | vm_object_pack_pages(wired_count, clean_count, dirty_count, dirty_budget, src_object, df_handle); |
6d2010ae A |
7888 | } else { |
7889 | if (src_object->internal) { | |
7890 | *shared = TRUE; | |
7891 | } | |
7892 | } | |
7893 | done: | |
7894 | vm_object_unlock(src_object); | |
7895 | ||
7896 | return kr; | |
7897 | } | |
7898 | ||
7899 | ||
7900 | void | |
7901 | vm_object_pack_pages( | |
316670eb A |
7902 | unsigned int *wired_count, |
7903 | unsigned int *clean_count, | |
7904 | unsigned int *dirty_count, | |
7905 | unsigned int dirty_budget, | |
7906 | vm_object_t src_object, | |
7907 | struct default_freezer_handle *df_handle) | |
6d2010ae A |
7908 | { |
7909 | vm_page_t p, next; | |
7910 | ||
7911 | next = (vm_page_t)queue_first(&src_object->memq); | |
7912 | ||
6d2010ae A |
7913 | while (!queue_end(&src_object->memq, (queue_entry_t)next)) { |
7914 | p = next; | |
7915 | next = (vm_page_t)queue_next(&next->listq); | |
7916 | ||
316670eb A |
7917 | /* Finish up if we've hit our pageout limit */ |
7918 | if (dirty_budget && (dirty_budget == *dirty_count)) { | |
7919 | break; | |
7920 | } | |
7921 | assert(!p->laundry); | |
7922 | ||
6d2010ae A |
7923 | if (p->fictitious || p->busy ) |
7924 | continue; | |
7925 | ||
7926 | if (p->absent || p->unusual || p->error) | |
7927 | continue; | |
7928 | ||
7929 | if (VM_PAGE_WIRED(p)) { | |
7930 | (*wired_count)++; | |
7931 | continue; | |
7932 | } | |
7933 | ||
316670eb | 7934 | if (df_handle == NULL) { |
6d2010ae A |
7935 | if (p->dirty || pmap_is_modified(p->phys_page)) { |
7936 | (*dirty_count)++; | |
7937 | } else { | |
7938 | (*clean_count)++; | |
7939 | } | |
7940 | continue; | |
7941 | } | |
7942 | ||
7943 | if (p->cleaning) { | |
6d2010ae | 7944 | p->pageout = TRUE; |
6d2010ae A |
7945 | continue; |
7946 | } | |
7947 | ||
7948 | if (p->pmapped == TRUE) { | |
7949 | int refmod_state; | |
7950 | refmod_state = pmap_disconnect(p->phys_page); | |
7951 | if (refmod_state & VM_MEM_MODIFIED) { | |
316670eb | 7952 | SET_PAGE_DIRTY(p, FALSE); |
6d2010ae A |
7953 | } |
7954 | } | |
7955 | ||
7956 | if (p->dirty) { | |
316670eb | 7957 | default_freezer_pack_page(p, df_handle); |
6d2010ae A |
7958 | (*dirty_count)++; |
7959 | } | |
7960 | else { | |
7961 | VM_PAGE_FREE(p); | |
7962 | (*clean_count)++; | |
7963 | } | |
7964 | } | |
7965 | } | |
7966 | ||
7967 | void | |
7968 | vm_object_pageout( | |
7969 | vm_object_t object) | |
7970 | { | |
39236c6e A |
7971 | vm_page_t p, next; |
7972 | struct vm_pageout_queue *iq; | |
7973 | ||
7974 | iq = &vm_pageout_queue_internal; | |
6d2010ae A |
7975 | |
7976 | assert(object != VM_OBJECT_NULL ); | |
7977 | ||
7978 | vm_object_lock(object); | |
39236c6e A |
7979 | |
7980 | if (DEFAULT_PAGER_IS_ACTIVE || DEFAULT_FREEZER_IS_ACTIVE) { | |
7981 | if (!object->pager_initialized) { | |
7982 | /* | |
7983 | * If there is no memory object for the page, create | |
7984 | * one and hand it to the default pager. | |
7985 | */ | |
7986 | vm_object_pager_create(object); | |
7987 | } | |
7988 | } | |
7989 | ||
7990 | ReScan: | |
6d2010ae A |
7991 | next = (vm_page_t)queue_first(&object->memq); |
7992 | ||
7993 | while (!queue_end(&object->memq, (queue_entry_t)next)) { | |
7994 | p = next; | |
7995 | next = (vm_page_t)queue_next(&next->listq); | |
7996 | ||
7997 | /* Throw to the pageout queue */ | |
7998 | vm_page_lockspin_queues(); | |
7999 | ||
316670eb A |
8000 | /* |
8001 | * see if page is already in the process of | |
8002 | * being cleaned... if so, leave it alone | |
8003 | */ | |
8004 | if (!p->laundry) { | |
39236c6e A |
8005 | |
8006 | if (COMPRESSED_PAGER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE) { | |
8007 | ||
8008 | if (VM_PAGE_Q_THROTTLED(iq)) { | |
8009 | ||
8010 | iq->pgo_draining = TRUE; | |
8011 | ||
8012 | assert_wait((event_t) (&iq->pgo_laundry + 1), THREAD_INTERRUPTIBLE); | |
8013 | vm_page_unlock_queues(); | |
8014 | vm_object_unlock(object); | |
8015 | ||
8016 | thread_block(THREAD_CONTINUE_NULL); | |
8017 | ||
8018 | vm_object_lock(object); | |
8019 | goto ReScan; | |
8020 | } | |
8021 | ||
8022 | if (p->fictitious || p->busy ) { | |
8023 | vm_page_unlock_queues(); | |
8024 | continue; | |
8025 | } | |
8026 | ||
8027 | if (p->absent || p->unusual || p->error || VM_PAGE_WIRED(p)) { | |
8028 | vm_page_unlock_queues(); | |
8029 | continue; | |
8030 | } | |
8031 | ||
8032 | if (p->cleaning) { | |
8033 | p->pageout = TRUE; | |
8034 | vm_page_unlock_queues(); | |
8035 | continue; | |
8036 | } | |
8037 | ||
8038 | if (p->pmapped == TRUE) { | |
8039 | int refmod_state; | |
8040 | refmod_state = pmap_disconnect_options(p->phys_page, PMAP_OPTIONS_COMPRESSOR, NULL); | |
8041 | if (refmod_state & VM_MEM_MODIFIED) { | |
8042 | SET_PAGE_DIRTY(p, FALSE); | |
8043 | } | |
8044 | } | |
8045 | ||
8046 | if (p->dirty == FALSE) { | |
8047 | vm_page_unlock_queues(); | |
8048 | VM_PAGE_FREE(p); | |
8049 | continue; | |
8050 | } | |
8051 | } | |
8052 | ||
316670eb A |
8053 | VM_PAGE_QUEUES_REMOVE(p); |
8054 | vm_pageout_cluster(p, TRUE); | |
8055 | } | |
6d2010ae A |
8056 | vm_page_unlock_queues(); |
8057 | } | |
8058 | ||
8059 | vm_object_unlock(object); | |
8060 | } | |
8061 | ||
8062 | kern_return_t | |
8063 | vm_object_pagein( | |
8064 | vm_object_t object) | |
8065 | { | |
8066 | memory_object_t pager; | |
8067 | kern_return_t kr; | |
8068 | ||
8069 | vm_object_lock(object); | |
8070 | ||
8071 | pager = object->pager; | |
8072 | ||
8073 | if (!object->pager_ready || pager == MEMORY_OBJECT_NULL) { | |
8074 | vm_object_unlock(object); | |
8075 | return KERN_FAILURE; | |
8076 | } | |
8077 | ||
8078 | vm_object_paging_wait(object, THREAD_UNINT); | |
8079 | vm_object_paging_begin(object); | |
8080 | ||
8081 | object->blocked_access = TRUE; | |
8082 | vm_object_unlock(object); | |
8083 | ||
8084 | kr = memory_object_data_reclaim(pager, TRUE); | |
8085 | ||
8086 | vm_object_lock(object); | |
8087 | ||
8088 | object->blocked_access = FALSE; | |
8089 | vm_object_paging_end(object); | |
8090 | ||
8091 | vm_object_unlock(object); | |
8092 | ||
8093 | return kr; | |
8094 | } | |
6d2010ae | 8095 | #endif /* CONFIG_FREEZE */ |