]>
Commit | Line | Data |
---|---|---|
1c79356b A |
1 | /* |
2 | * Copyright (c) 2000 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * The contents of this file constitute Original Code as defined in and | |
7 | * are subject to the Apple Public Source License Version 1.1 (the | |
8 | * "License"). You may not use this file except in compliance with the | |
9 | * License. Please obtain a copy of the License at | |
10 | * http://www.apple.com/publicsource and read it before using this file. | |
11 | * | |
12 | * This Original Code and all software distributed under the License are | |
13 | * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
14 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
15 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
16 | * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the | |
17 | * License for the specific language governing rights and limitations | |
18 | * under the License. | |
19 | * | |
20 | * @APPLE_LICENSE_HEADER_END@ | |
21 | */ | |
22 | /* | |
23 | * @OSF_COPYRIGHT@ | |
24 | */ | |
25 | /* | |
26 | * Mach Operating System | |
27 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
28 | * All Rights Reserved. | |
29 | * | |
30 | * Permission to use, copy, modify and distribute this software and its | |
31 | * documentation is hereby granted, provided that both the copyright | |
32 | * notice and this permission notice appear in all copies of the | |
33 | * software, derivative works or modified versions, and any portions | |
34 | * thereof, and that both notices appear in supporting documentation. | |
35 | * | |
36 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
37 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
38 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
39 | * | |
40 | * Carnegie Mellon requests users of this software to return to | |
41 | * | |
42 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
43 | * School of Computer Science | |
44 | * Carnegie Mellon University | |
45 | * Pittsburgh PA 15213-3890 | |
46 | * | |
47 | * any improvements or extensions that they make and grant Carnegie Mellon | |
48 | * the rights to redistribute these changes. | |
49 | */ | |
50 | /* | |
51 | */ | |
52 | /* | |
53 | * File: vm/vm_object.c | |
54 | * Author: Avadis Tevanian, Jr., Michael Wayne Young | |
55 | * | |
56 | * Virtual memory object module. | |
57 | */ | |
58 | ||
59 | #ifdef MACH_BSD | |
60 | /* remove as part of compoenent support merge */ | |
61 | extern int vnode_pager_workaround; | |
62 | #endif | |
63 | ||
64 | #include <mach_pagemap.h> | |
65 | #include <task_swapper.h> | |
66 | ||
67 | #include <mach/memory_object.h> | |
68 | #include <mach/memory_object_default.h> | |
69 | #include <mach/memory_object_control_server.h> | |
70 | #include <mach/vm_param.h> | |
71 | #include <ipc/ipc_port.h> | |
72 | #include <ipc/ipc_space.h> | |
73 | #include <kern/assert.h> | |
74 | #include <kern/lock.h> | |
75 | #include <kern/queue.h> | |
76 | #include <kern/xpr.h> | |
77 | #include <kern/zalloc.h> | |
78 | #include <kern/host.h> | |
79 | #include <kern/host_statistics.h> | |
80 | #include <kern/processor.h> | |
81 | #include <vm/memory_object.h> | |
82 | #include <vm/vm_fault.h> | |
83 | #include <vm/vm_map.h> | |
84 | #include <vm/vm_object.h> | |
85 | #include <vm/vm_page.h> | |
86 | #include <vm/vm_pageout.h> | |
87 | #include <kern/misc_protos.h> | |
88 | ||
89 | ||
90 | ||
91 | /* | |
92 | * Virtual memory objects maintain the actual data | |
93 | * associated with allocated virtual memory. A given | |
94 | * page of memory exists within exactly one object. | |
95 | * | |
96 | * An object is only deallocated when all "references" | |
97 | * are given up. Only one "reference" to a given | |
98 | * region of an object should be writeable. | |
99 | * | |
100 | * Associated with each object is a list of all resident | |
101 | * memory pages belonging to that object; this list is | |
102 | * maintained by the "vm_page" module, but locked by the object's | |
103 | * lock. | |
104 | * | |
105 | * Each object also records the memory object port | |
106 | * that is used by the kernel to request and write | |
107 | * back data (the memory object port, field "pager"), | |
108 | * and the ports provided to the memory manager, the server that | |
109 | * manages that data, to return data and control its | |
110 | * use (the memory object control port, field "pager_request") | |
111 | * and for naming (the memory object name port, field "pager_name"). | |
112 | * | |
113 | * Virtual memory objects are allocated to provide | |
114 | * zero-filled memory (vm_allocate) or map a user-defined | |
115 | * memory object into a virtual address space (vm_map). | |
116 | * | |
117 | * Virtual memory objects that refer to a user-defined | |
118 | * memory object are called "permanent", because all changes | |
119 | * made in virtual memory are reflected back to the | |
120 | * memory manager, which may then store it permanently. | |
121 | * Other virtual memory objects are called "temporary", | |
122 | * meaning that changes need be written back only when | |
123 | * necessary to reclaim pages, and that storage associated | |
124 | * with the object can be discarded once it is no longer | |
125 | * mapped. | |
126 | * | |
127 | * A permanent memory object may be mapped into more | |
128 | * than one virtual address space. Moreover, two threads | |
129 | * may attempt to make the first mapping of a memory | |
130 | * object concurrently. Only one thread is allowed to | |
131 | * complete this mapping; all others wait for the | |
132 | * "pager_initialized" field is asserted, indicating | |
133 | * that the first thread has initialized all of the | |
134 | * necessary fields in the virtual memory object structure. | |
135 | * | |
136 | * The kernel relies on a *default memory manager* to | |
137 | * provide backing storage for the zero-filled virtual | |
138 | * memory objects. The memory object ports associated | |
139 | * with these temporary virtual memory objects are only | |
140 | * generated and passed to the default memory manager | |
141 | * when it becomes necessary. Virtual memory objects | |
142 | * that depend on the default memory manager are called | |
143 | * "internal". The "pager_created" field is provided to | |
144 | * indicate whether these ports have ever been allocated. | |
145 | * | |
146 | * The kernel may also create virtual memory objects to | |
147 | * hold changed pages after a copy-on-write operation. | |
148 | * In this case, the virtual memory object (and its | |
149 | * backing storage -- its memory object) only contain | |
150 | * those pages that have been changed. The "shadow" | |
151 | * field refers to the virtual memory object that contains | |
152 | * the remainder of the contents. The "shadow_offset" | |
153 | * field indicates where in the "shadow" these contents begin. | |
154 | * The "copy" field refers to a virtual memory object | |
155 | * to which changed pages must be copied before changing | |
156 | * this object, in order to implement another form | |
157 | * of copy-on-write optimization. | |
158 | * | |
159 | * The virtual memory object structure also records | |
160 | * the attributes associated with its memory object. | |
161 | * The "pager_ready", "can_persist" and "copy_strategy" | |
162 | * fields represent those attributes. The "cached_list" | |
163 | * field is used in the implementation of the persistence | |
164 | * attribute. | |
165 | * | |
166 | * ZZZ Continue this comment. | |
167 | */ | |
168 | ||
169 | /* Forward declarations for internal functions. */ | |
170 | extern void _vm_object_allocate( | |
171 | vm_object_size_t size, | |
172 | vm_object_t object); | |
173 | ||
174 | extern kern_return_t vm_object_terminate( | |
175 | vm_object_t object); | |
176 | ||
177 | extern void vm_object_remove( | |
178 | vm_object_t object); | |
179 | ||
180 | extern vm_object_t vm_object_cache_trim( | |
181 | boolean_t called_from_vm_object_deallocate); | |
182 | ||
183 | extern void vm_object_deactivate_pages( | |
184 | vm_object_t object); | |
185 | ||
186 | extern void vm_object_abort_activity( | |
187 | vm_object_t object); | |
188 | ||
189 | extern kern_return_t vm_object_copy_call( | |
190 | vm_object_t src_object, | |
191 | vm_object_offset_t src_offset, | |
192 | vm_object_size_t size, | |
193 | vm_object_t *_result_object); | |
194 | ||
195 | extern void vm_object_do_collapse( | |
196 | vm_object_t object, | |
197 | vm_object_t backing_object); | |
198 | ||
199 | extern void vm_object_do_bypass( | |
200 | vm_object_t object, | |
201 | vm_object_t backing_object); | |
202 | ||
203 | extern void memory_object_release( | |
204 | ipc_port_t pager, | |
205 | pager_request_t pager_request); | |
206 | ||
207 | zone_t vm_object_zone; /* vm backing store zone */ | |
208 | ||
209 | /* | |
210 | * All wired-down kernel memory belongs to a single virtual | |
211 | * memory object (kernel_object) to avoid wasting data structures. | |
212 | */ | |
213 | struct vm_object kernel_object_store; | |
214 | vm_object_t kernel_object = &kernel_object_store; | |
215 | ||
216 | /* | |
217 | * The submap object is used as a placeholder for vm_map_submap | |
218 | * operations. The object is declared in vm_map.c because it | |
219 | * is exported by the vm_map module. The storage is declared | |
220 | * here because it must be initialized here. | |
221 | */ | |
222 | struct vm_object vm_submap_object_store; | |
223 | ||
224 | /* | |
225 | * Virtual memory objects are initialized from | |
226 | * a template (see vm_object_allocate). | |
227 | * | |
228 | * When adding a new field to the virtual memory | |
229 | * object structure, be sure to add initialization | |
230 | * (see vm_object_init). | |
231 | */ | |
232 | struct vm_object vm_object_template; | |
233 | ||
234 | /* | |
235 | * Virtual memory objects that are not referenced by | |
236 | * any address maps, but that are allowed to persist | |
237 | * (an attribute specified by the associated memory manager), | |
238 | * are kept in a queue (vm_object_cached_list). | |
239 | * | |
240 | * When an object from this queue is referenced again, | |
241 | * for example to make another address space mapping, | |
242 | * it must be removed from the queue. That is, the | |
243 | * queue contains *only* objects with zero references. | |
244 | * | |
245 | * The kernel may choose to terminate objects from this | |
246 | * queue in order to reclaim storage. The current policy | |
247 | * is to permit a fixed maximum number of unreferenced | |
248 | * objects (vm_object_cached_max). | |
249 | * | |
250 | * A spin lock (accessed by routines | |
251 | * vm_object_cache_{lock,lock_try,unlock}) governs the | |
252 | * object cache. It must be held when objects are | |
253 | * added to or removed from the cache (in vm_object_terminate). | |
254 | * The routines that acquire a reference to a virtual | |
255 | * memory object based on one of the memory object ports | |
256 | * must also lock the cache. | |
257 | * | |
258 | * Ideally, the object cache should be more isolated | |
259 | * from the reference mechanism, so that the lock need | |
260 | * not be held to make simple references. | |
261 | */ | |
262 | queue_head_t vm_object_cached_list; | |
263 | int vm_object_cached_count; | |
264 | int vm_object_cached_high; /* highest # of cached objects */ | |
265 | int vm_object_cached_max = 500; /* may be patched*/ | |
266 | ||
267 | decl_mutex_data(,vm_object_cached_lock_data) | |
268 | ||
269 | #define vm_object_cache_lock() \ | |
270 | mutex_lock(&vm_object_cached_lock_data) | |
271 | #define vm_object_cache_lock_try() \ | |
272 | mutex_try(&vm_object_cached_lock_data) | |
273 | #define vm_object_cache_unlock() \ | |
274 | mutex_unlock(&vm_object_cached_lock_data) | |
275 | ||
276 | #define VM_OBJECT_HASH_COUNT 1024 | |
277 | queue_head_t vm_object_hashtable[VM_OBJECT_HASH_COUNT]; | |
278 | struct zone *vm_object_hash_zone; | |
279 | ||
280 | struct vm_object_hash_entry { | |
281 | queue_chain_t hash_link; /* hash chain link */ | |
282 | ipc_port_t pager; /* pager we represent */ | |
283 | vm_object_t object; /* corresponding object */ | |
284 | boolean_t waiting; /* someone waiting for | |
285 | * termination */ | |
286 | }; | |
287 | ||
288 | typedef struct vm_object_hash_entry *vm_object_hash_entry_t; | |
289 | #define VM_OBJECT_HASH_ENTRY_NULL ((vm_object_hash_entry_t) 0) | |
290 | ||
291 | #define VM_OBJECT_HASH_SHIFT 8 | |
292 | #define vm_object_hash(pager) \ | |
293 | ((((unsigned)pager) >> VM_OBJECT_HASH_SHIFT) % VM_OBJECT_HASH_COUNT) | |
294 | ||
295 | /* | |
296 | * vm_object_hash_lookup looks up a pager in the hashtable | |
297 | * and returns the corresponding entry, with optional removal. | |
298 | */ | |
299 | ||
300 | vm_object_hash_entry_t | |
301 | vm_object_hash_lookup( | |
302 | ipc_port_t pager, | |
303 | boolean_t remove_entry) | |
304 | { | |
305 | register queue_t bucket; | |
306 | register vm_object_hash_entry_t entry; | |
307 | ||
308 | bucket = &vm_object_hashtable[vm_object_hash(pager)]; | |
309 | ||
310 | entry = (vm_object_hash_entry_t)queue_first(bucket); | |
311 | while (!queue_end(bucket, (queue_entry_t)entry)) { | |
312 | if (entry->pager == pager && !remove_entry) | |
313 | return(entry); | |
314 | else if (entry->pager == pager) { | |
315 | queue_remove(bucket, entry, | |
316 | vm_object_hash_entry_t, hash_link); | |
317 | return(entry); | |
318 | } | |
319 | ||
320 | entry = (vm_object_hash_entry_t)queue_next(&entry->hash_link); | |
321 | } | |
322 | ||
323 | return(VM_OBJECT_HASH_ENTRY_NULL); | |
324 | } | |
325 | ||
326 | /* | |
327 | * vm_object_hash_enter enters the specified | |
328 | * pager / cache object association in the hashtable. | |
329 | */ | |
330 | ||
331 | void | |
332 | vm_object_hash_insert( | |
333 | vm_object_hash_entry_t entry) | |
334 | { | |
335 | register queue_t bucket; | |
336 | ||
337 | bucket = &vm_object_hashtable[vm_object_hash(entry->pager)]; | |
338 | ||
339 | queue_enter(bucket, entry, vm_object_hash_entry_t, hash_link); | |
340 | } | |
341 | ||
342 | vm_object_hash_entry_t | |
343 | vm_object_hash_entry_alloc( | |
344 | ipc_port_t pager) | |
345 | { | |
346 | vm_object_hash_entry_t entry; | |
347 | ||
348 | entry = (vm_object_hash_entry_t)zalloc(vm_object_hash_zone); | |
349 | entry->pager = pager; | |
350 | entry->object = VM_OBJECT_NULL; | |
351 | entry->waiting = FALSE; | |
352 | ||
353 | return(entry); | |
354 | } | |
355 | ||
356 | void | |
357 | vm_object_hash_entry_free( | |
358 | vm_object_hash_entry_t entry) | |
359 | { | |
360 | zfree(vm_object_hash_zone, (vm_offset_t)entry); | |
361 | } | |
362 | ||
363 | /* | |
364 | * vm_object_allocate: | |
365 | * | |
366 | * Returns a new object with the given size. | |
367 | */ | |
368 | ||
369 | void | |
370 | _vm_object_allocate( | |
371 | vm_object_size_t size, | |
372 | vm_object_t object) | |
373 | { | |
374 | XPR(XPR_VM_OBJECT, | |
375 | "vm_object_allocate, object 0x%X size 0x%X\n", | |
376 | (integer_t)object, size, 0,0,0); | |
377 | ||
378 | *object = vm_object_template; | |
379 | queue_init(&object->memq); | |
380 | queue_init(&object->msr_q); | |
381 | #ifdef UBC_DEBUG | |
382 | queue_init(&object->uplq); | |
383 | #endif /* UBC_DEBUG */ | |
384 | vm_object_lock_init(object); | |
385 | object->size = size; | |
386 | } | |
387 | ||
388 | vm_object_t | |
389 | vm_object_allocate( | |
390 | vm_object_size_t size) | |
391 | { | |
392 | register vm_object_t object; | |
393 | register ipc_port_t port; | |
394 | ||
395 | object = (vm_object_t) zalloc(vm_object_zone); | |
396 | ||
397 | // dbgLog(object, size, 0, 2); /* (TEST/DEBUG) */ | |
398 | ||
399 | _vm_object_allocate(size, object); | |
400 | ||
401 | return object; | |
402 | } | |
403 | ||
404 | /* | |
405 | * vm_object_bootstrap: | |
406 | * | |
407 | * Initialize the VM objects module. | |
408 | */ | |
409 | void | |
410 | vm_object_bootstrap(void) | |
411 | { | |
412 | register i; | |
413 | ||
414 | vm_object_zone = zinit((vm_size_t) sizeof(struct vm_object), | |
415 | round_page(512*1024), | |
416 | round_page(12*1024), | |
417 | "vm objects"); | |
418 | ||
419 | queue_init(&vm_object_cached_list); | |
420 | mutex_init(&vm_object_cached_lock_data, ETAP_VM_OBJ_CACHE); | |
421 | ||
422 | vm_object_hash_zone = | |
423 | zinit((vm_size_t) sizeof (struct vm_object_hash_entry), | |
424 | round_page(512*1024), | |
425 | round_page(12*1024), | |
426 | "vm object hash entries"); | |
427 | ||
428 | for (i = 0; i < VM_OBJECT_HASH_COUNT; i++) | |
429 | queue_init(&vm_object_hashtable[i]); | |
430 | ||
431 | /* | |
432 | * Fill in a template object, for quick initialization | |
433 | */ | |
434 | ||
435 | /* memq; Lock; init after allocation */ | |
436 | vm_object_template.size = 0; | |
437 | vm_object_template.frozen_size = 0; | |
438 | vm_object_template.ref_count = 1; | |
439 | #if TASK_SWAPPER | |
440 | vm_object_template.res_count = 1; | |
441 | #endif /* TASK_SWAPPER */ | |
442 | vm_object_template.resident_page_count = 0; | |
443 | vm_object_template.copy = VM_OBJECT_NULL; | |
444 | vm_object_template.shadow = VM_OBJECT_NULL; | |
445 | vm_object_template.shadow_offset = (vm_object_offset_t) 0; | |
446 | vm_object_template.true_share = FALSE; | |
447 | ||
448 | vm_object_template.pager = IP_NULL; | |
449 | vm_object_template.paging_offset = 0; | |
450 | vm_object_template.pager_request = PAGER_REQUEST_NULL; | |
451 | /* msr_q; init after allocation */ | |
452 | ||
453 | vm_object_template.copy_strategy = MEMORY_OBJECT_COPY_SYMMETRIC; | |
454 | vm_object_template.absent_count = 0; | |
455 | vm_object_template.paging_in_progress = 0; | |
456 | ||
457 | /* Begin bitfields */ | |
458 | vm_object_template.all_wanted = 0; /* all bits FALSE */ | |
459 | vm_object_template.pager_created = FALSE; | |
460 | vm_object_template.pager_initialized = FALSE; | |
461 | vm_object_template.pager_ready = FALSE; | |
462 | vm_object_template.pager_trusted = FALSE; | |
463 | vm_object_template.can_persist = FALSE; | |
464 | vm_object_template.internal = TRUE; | |
465 | vm_object_template.temporary = TRUE; | |
466 | vm_object_template.private = FALSE; | |
467 | vm_object_template.pageout = FALSE; | |
468 | vm_object_template.alive = TRUE; | |
469 | vm_object_template.lock_in_progress = FALSE; | |
470 | vm_object_template.lock_restart = FALSE; | |
471 | vm_object_template.silent_overwrite = FALSE; | |
472 | vm_object_template.advisory_pageout = FALSE; | |
473 | vm_object_template.shadowed = FALSE; | |
474 | vm_object_template.terminating = FALSE; | |
475 | vm_object_template.shadow_severed = FALSE; | |
476 | vm_object_template.phys_contiguous = FALSE; | |
477 | /* End bitfields */ | |
478 | ||
479 | /* cached_list; init after allocation */ | |
480 | vm_object_template.last_alloc = (vm_object_offset_t) 0; | |
481 | vm_object_template.cluster_size = 0; | |
482 | #if MACH_PAGEMAP | |
483 | vm_object_template.existence_map = VM_EXTERNAL_NULL; | |
484 | #endif /* MACH_PAGEMAP */ | |
485 | #if MACH_ASSERT | |
486 | vm_object_template.paging_object = VM_OBJECT_NULL; | |
487 | #endif /* MACH_ASSERT */ | |
488 | ||
489 | /* | |
490 | * Initialize the "kernel object" | |
491 | */ | |
492 | ||
493 | kernel_object = &kernel_object_store; | |
494 | ||
495 | /* | |
496 | * Note that in the following size specifications, we need to add 1 because | |
497 | * VM_MAX_KERNEL_ADDRESS is a maximum address, not a size. | |
498 | */ | |
499 | _vm_object_allocate((VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) + 1, | |
500 | kernel_object); | |
501 | ||
502 | /* | |
503 | * Initialize the "submap object". Make it as large as the | |
504 | * kernel object so that no limit is imposed on submap sizes. | |
505 | */ | |
506 | ||
507 | vm_submap_object = &vm_submap_object_store; | |
508 | _vm_object_allocate((VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) + 1, | |
509 | vm_submap_object); | |
510 | /* | |
511 | * Create an "extra" reference to this object so that we never | |
512 | * try to deallocate it; zfree doesn't like to be called with | |
513 | * non-zone memory. | |
514 | */ | |
515 | vm_object_reference(vm_submap_object); | |
516 | ||
517 | #if MACH_PAGEMAP | |
518 | vm_external_module_initialize(); | |
519 | #endif /* MACH_PAGEMAP */ | |
520 | } | |
521 | ||
522 | void | |
523 | vm_object_init(void) | |
524 | { | |
525 | /* | |
526 | * Finish initializing the kernel object. | |
527 | */ | |
528 | } | |
529 | ||
530 | #if TASK_SWAPPER | |
531 | /* | |
532 | * vm_object_res_deallocate | |
533 | * | |
534 | * (recursively) decrement residence counts on vm objects and their shadows. | |
535 | * Called from vm_object_deallocate and when swapping out an object. | |
536 | * | |
537 | * The object is locked, and remains locked throughout the function, | |
538 | * even as we iterate down the shadow chain. Locks on intermediate objects | |
539 | * will be dropped, but not the original object. | |
540 | * | |
541 | * NOTE: this function used to use recursion, rather than iteration. | |
542 | */ | |
543 | ||
544 | void | |
545 | vm_object_res_deallocate( | |
546 | vm_object_t object) | |
547 | { | |
548 | vm_object_t orig_object = object; | |
549 | /* | |
550 | * Object is locked so it can be called directly | |
551 | * from vm_object_deallocate. Original object is never | |
552 | * unlocked. | |
553 | */ | |
554 | assert(object->res_count > 0); | |
555 | while (--object->res_count == 0) { | |
556 | assert(object->ref_count >= object->res_count); | |
557 | vm_object_deactivate_pages(object); | |
558 | /* iterate on shadow, if present */ | |
559 | if (object->shadow != VM_OBJECT_NULL) { | |
560 | vm_object_t tmp_object = object->shadow; | |
561 | vm_object_lock(tmp_object); | |
562 | if (object != orig_object) | |
563 | vm_object_unlock(object); | |
564 | object = tmp_object; | |
565 | assert(object->res_count > 0); | |
566 | } else | |
567 | break; | |
568 | } | |
569 | if (object != orig_object) | |
570 | vm_object_unlock(object); | |
571 | } | |
572 | ||
573 | /* | |
574 | * vm_object_res_reference | |
575 | * | |
576 | * Internal function to increment residence count on a vm object | |
577 | * and its shadows. It is called only from vm_object_reference, and | |
578 | * when swapping in a vm object, via vm_map_swap. | |
579 | * | |
580 | * The object is locked, and remains locked throughout the function, | |
581 | * even as we iterate down the shadow chain. Locks on intermediate objects | |
582 | * will be dropped, but not the original object. | |
583 | * | |
584 | * NOTE: this function used to use recursion, rather than iteration. | |
585 | */ | |
586 | ||
587 | void | |
588 | vm_object_res_reference( | |
589 | vm_object_t object) | |
590 | { | |
591 | vm_object_t orig_object = object; | |
592 | /* | |
593 | * Object is locked, so this can be called directly | |
594 | * from vm_object_reference. This lock is never released. | |
595 | */ | |
596 | while ((++object->res_count == 1) && | |
597 | (object->shadow != VM_OBJECT_NULL)) { | |
598 | vm_object_t tmp_object = object->shadow; | |
599 | ||
600 | assert(object->ref_count >= object->res_count); | |
601 | vm_object_lock(tmp_object); | |
602 | if (object != orig_object) | |
603 | vm_object_unlock(object); | |
604 | object = tmp_object; | |
605 | } | |
606 | if (object != orig_object) | |
607 | vm_object_unlock(object); | |
608 | assert(orig_object->ref_count >= orig_object->res_count); | |
609 | } | |
610 | #endif /* TASK_SWAPPER */ | |
611 | ||
612 | #if MACH_ASSERT | |
613 | /* | |
614 | * vm_object_reference: | |
615 | * | |
616 | * Gets another reference to the given object. | |
617 | */ | |
618 | void | |
619 | vm_object_reference( | |
620 | register vm_object_t object) | |
621 | { | |
622 | if (object == VM_OBJECT_NULL) | |
623 | return; | |
624 | ||
625 | vm_object_lock(object); | |
626 | assert(object->ref_count > 0); | |
627 | object->ref_count++; | |
628 | vm_object_res_reference(object); | |
629 | vm_object_unlock(object); | |
630 | } | |
631 | #endif /* MACH_ASSERT */ | |
632 | ||
633 | /* remove the typedef below when emergency work-around is taken out */ | |
634 | typedef struct vnode_pager { | |
635 | ipc_port_t pager; /* pager */ | |
636 | ipc_port_t pager_handle; /* pager handle */ | |
637 | ipc_port_t vm_obj_handle; /* memory object's control handle */ | |
638 | void *vnode_handle; /* vnode handle */ | |
639 | } *vnode_pager_t; | |
640 | ||
641 | #define MIGHT_NOT_CACHE_SHADOWS 1 | |
642 | #if MIGHT_NOT_CACHE_SHADOWS | |
643 | int cache_shadows = TRUE; | |
644 | #endif /* MIGHT_NOT_CACHE_SHADOWS */ | |
645 | ||
646 | /* | |
647 | * vm_object_deallocate: | |
648 | * | |
649 | * Release a reference to the specified object, | |
650 | * gained either through a vm_object_allocate | |
651 | * or a vm_object_reference call. When all references | |
652 | * are gone, storage associated with this object | |
653 | * may be relinquished. | |
654 | * | |
655 | * No object may be locked. | |
656 | */ | |
657 | void | |
658 | vm_object_deallocate( | |
659 | register vm_object_t object) | |
660 | { | |
661 | boolean_t retry_cache_trim = FALSE; | |
662 | vm_object_t shadow; | |
663 | ||
664 | // if(object)dbgLog(object, object->ref_count, object->can_persist, 3); /* (TEST/DEBUG) */ | |
665 | // else dbgLog(object, 0, 0, 3); /* (TEST/DEBUG) */ | |
666 | ||
667 | ||
668 | while (object != VM_OBJECT_NULL) { | |
669 | ||
670 | /* | |
671 | * The cache holds a reference (uncounted) to | |
672 | * the object; we must lock it before removing | |
673 | * the object. | |
674 | */ | |
675 | ||
676 | vm_object_cache_lock(); | |
677 | vm_object_lock(object); | |
678 | assert(object->alive); | |
679 | ||
680 | /* | |
681 | * Lose the reference. If other references | |
682 | * remain, then we are done, unless we need | |
683 | * to retry a cache trim. | |
684 | * If it is the last reference, then keep it | |
685 | * until any pending initialization is completed. | |
686 | */ | |
687 | ||
688 | assert(object->ref_count > 0); | |
689 | if ((object->ref_count > 1) || (object->terminating)) { | |
690 | /* if the object is terminating, it cannot go into */ | |
691 | /* the cache and we obviously should not call */ | |
692 | /* terminate again. */ | |
693 | object->ref_count--; | |
694 | { | |
695 | /* The following is an emergency work-around for */ | |
696 | /* no-mappings left notification to UBC. This fix */ | |
697 | /* violates numerous layering boundaries, is not */ | |
698 | /* provable with respect to races for new mappings */ | |
699 | /* from the UBC layer and is just plain ugly. The */ | |
700 | /* proper fix requires a guarantee of state */ | |
701 | /* between the vnode and the memory object and a */ | |
702 | /* sequenced delivery of empty status. This can */ | |
703 | /* be provided by the object_named interface and */ | |
704 | /* the effort to convert over should be undertaken */ | |
705 | /* at the earliest possible moment. */ | |
706 | if(object->ref_count == 1) { | |
707 | vnode_pager_t vnode_pager; | |
708 | if(object->pager) { | |
709 | vnode_pager = (vnode_pager_t) | |
710 | vnode_port_hash_lookup( | |
711 | object->pager); | |
712 | if(vnode_pager) { | |
713 | extern void ubc_unmap(void *); | |
714 | ubc_unmap(vnode_pager->vnode_handle); | |
715 | } | |
716 | } | |
717 | } | |
718 | } | |
719 | vm_object_res_deallocate(object); | |
720 | vm_object_unlock(object); | |
721 | vm_object_cache_unlock(); | |
722 | if (retry_cache_trim && | |
723 | ((object = vm_object_cache_trim(TRUE)) != | |
724 | VM_OBJECT_NULL)) { | |
725 | continue; | |
726 | } | |
727 | return; | |
728 | } | |
729 | ||
730 | /* | |
731 | * We have to wait for initialization | |
732 | * before destroying or caching the object. | |
733 | */ | |
734 | ||
735 | if (object->pager_created && ! object->pager_initialized) { | |
736 | assert(! object->can_persist); | |
737 | vm_object_assert_wait(object, | |
738 | VM_OBJECT_EVENT_INITIALIZED, | |
739 | THREAD_UNINT); | |
740 | vm_object_unlock(object); | |
741 | vm_object_cache_unlock(); | |
742 | thread_block((void (*)(void))0); | |
743 | continue; | |
744 | } | |
745 | ||
746 | /* | |
747 | * If this object can persist, then enter it in | |
748 | * the cache. Otherwise, terminate it. | |
749 | * | |
750 | * NOTE: Only permanent objects are cached, and | |
751 | * permanent objects cannot have shadows. This | |
752 | * affects the residence counting logic in a minor | |
753 | * way (can do it in-line, mostly). | |
754 | */ | |
755 | ||
756 | if (object->can_persist) { | |
757 | /* | |
758 | * Now it is safe to decrement reference count, | |
759 | * and to return if reference count is > 0. | |
760 | */ | |
761 | if (--object->ref_count > 0) { | |
762 | vm_object_res_deallocate(object); | |
763 | vm_object_unlock(object); | |
764 | vm_object_cache_unlock(); | |
765 | if (retry_cache_trim && | |
766 | ((object = vm_object_cache_trim(TRUE)) != | |
767 | VM_OBJECT_NULL)) { | |
768 | continue; | |
769 | } | |
770 | return; | |
771 | } | |
772 | ||
773 | #if MIGHT_NOT_CACHE_SHADOWS | |
774 | /* | |
775 | * Remove shadow now if we don't | |
776 | * want to cache shadows. | |
777 | */ | |
778 | if (! cache_shadows) { | |
779 | shadow = object->shadow; | |
780 | object->shadow = VM_OBJECT_NULL; | |
781 | } | |
782 | #endif /* MIGHT_NOT_CACHE_SHADOWS */ | |
783 | ||
784 | /* | |
785 | * Enter the object onto the queue of | |
786 | * cached objects, and deactivate | |
787 | * all of its pages. | |
788 | */ | |
789 | assert(object->shadow == VM_OBJECT_NULL); | |
790 | VM_OBJ_RES_DECR(object); | |
791 | XPR(XPR_VM_OBJECT, | |
792 | "vm_o_deallocate: adding %x to cache, queue = (%x, %x)\n", | |
793 | (integer_t)object, | |
794 | (integer_t)vm_object_cached_list.next, | |
795 | (integer_t)vm_object_cached_list.prev,0,0); | |
796 | ||
797 | vm_object_cached_count++; | |
798 | if (vm_object_cached_count > vm_object_cached_high) | |
799 | vm_object_cached_high = vm_object_cached_count; | |
800 | queue_enter(&vm_object_cached_list, object, | |
801 | vm_object_t, cached_list); | |
802 | vm_object_cache_unlock(); | |
803 | vm_object_deactivate_pages(object); | |
804 | vm_object_unlock(object); | |
805 | ||
806 | #if MIGHT_NOT_CACHE_SHADOWS | |
807 | /* | |
808 | * If we have a shadow that we need | |
809 | * to deallocate, do so now, remembering | |
810 | * to trim the cache later. | |
811 | */ | |
812 | if (! cache_shadows && shadow != VM_OBJECT_NULL) { | |
813 | object = shadow; | |
814 | retry_cache_trim = TRUE; | |
815 | continue; | |
816 | } | |
817 | #endif /* MIGHT_NOT_CACHE_SHADOWS */ | |
818 | ||
819 | /* | |
820 | * Trim the cache. If the cache trim | |
821 | * returns with a shadow for us to deallocate, | |
822 | * then remember to retry the cache trim | |
823 | * when we are done deallocating the shadow. | |
824 | * Otherwise, we are done. | |
825 | */ | |
826 | ||
827 | object = vm_object_cache_trim(TRUE); | |
828 | if (object == VM_OBJECT_NULL) { | |
829 | return; | |
830 | } | |
831 | retry_cache_trim = TRUE; | |
832 | ||
833 | } else { | |
834 | /* | |
835 | * This object is not cachable; terminate it. | |
836 | */ | |
837 | XPR(XPR_VM_OBJECT, | |
838 | "vm_o_deallocate: !cacheable 0x%X res %d paging_ops %d thread 0x%lX ref %d\n", | |
839 | (integer_t)object, object->resident_page_count, | |
840 | object->paging_in_progress, | |
841 | (natural_t)current_thread(),object->ref_count); | |
842 | ||
843 | VM_OBJ_RES_DECR(object); /* XXX ? */ | |
844 | /* | |
845 | * Terminate this object. If it had a shadow, | |
846 | * then deallocate it; otherwise, if we need | |
847 | * to retry a cache trim, do so now; otherwise, | |
848 | * we are done. "pageout" objects have a shadow, | |
849 | * but maintain a "paging reference" rather than | |
850 | * a normal reference. | |
851 | */ | |
852 | shadow = object->pageout?VM_OBJECT_NULL:object->shadow; | |
853 | if(vm_object_terminate(object) != KERN_SUCCESS) { | |
854 | return; | |
855 | } | |
856 | if (shadow != VM_OBJECT_NULL) { | |
857 | object = shadow; | |
858 | continue; | |
859 | } | |
860 | if (retry_cache_trim && | |
861 | ((object = vm_object_cache_trim(TRUE)) != | |
862 | VM_OBJECT_NULL)) { | |
863 | continue; | |
864 | } | |
865 | return; | |
866 | } | |
867 | } | |
868 | assert(! retry_cache_trim); | |
869 | } | |
870 | ||
871 | /* | |
872 | * Check to see whether we really need to trim | |
873 | * down the cache. If so, remove an object from | |
874 | * the cache, terminate it, and repeat. | |
875 | * | |
876 | * Called with, and returns with, cache lock unlocked. | |
877 | */ | |
878 | vm_object_t | |
879 | vm_object_cache_trim( | |
880 | boolean_t called_from_vm_object_deallocate) | |
881 | { | |
882 | register vm_object_t object = VM_OBJECT_NULL; | |
883 | vm_object_t shadow; | |
884 | ||
885 | for (;;) { | |
886 | ||
887 | /* | |
888 | * If we no longer need to trim the cache, | |
889 | * then we are done. | |
890 | */ | |
891 | ||
892 | vm_object_cache_lock(); | |
893 | if (vm_object_cached_count <= vm_object_cached_max) { | |
894 | vm_object_cache_unlock(); | |
895 | return VM_OBJECT_NULL; | |
896 | } | |
897 | ||
898 | /* | |
899 | * We must trim down the cache, so remove | |
900 | * the first object in the cache. | |
901 | */ | |
902 | XPR(XPR_VM_OBJECT, | |
903 | "vm_object_cache_trim: removing from front of cache (%x, %x)\n", | |
904 | (integer_t)vm_object_cached_list.next, | |
905 | (integer_t)vm_object_cached_list.prev, 0, 0, 0); | |
906 | ||
907 | object = (vm_object_t) queue_first(&vm_object_cached_list); | |
908 | vm_object_lock(object); | |
909 | queue_remove(&vm_object_cached_list, object, vm_object_t, | |
910 | cached_list); | |
911 | vm_object_cached_count--; | |
912 | ||
913 | /* | |
914 | * Since this object is in the cache, we know | |
915 | * that it is initialized and has no references. | |
916 | * Take a reference to avoid recursive deallocations. | |
917 | */ | |
918 | ||
919 | assert(object->pager_initialized); | |
920 | assert(object->ref_count == 0); | |
921 | object->ref_count++; | |
922 | ||
923 | /* | |
924 | * Terminate the object. | |
925 | * If the object had a shadow, we let vm_object_deallocate | |
926 | * deallocate it. "pageout" objects have a shadow, but | |
927 | * maintain a "paging reference" rather than a normal | |
928 | * reference. | |
929 | * (We are careful here to limit recursion.) | |
930 | */ | |
931 | shadow = object->pageout?VM_OBJECT_NULL:object->shadow; | |
932 | if(vm_object_terminate(object) != KERN_SUCCESS) | |
933 | continue; | |
934 | if (shadow != VM_OBJECT_NULL) { | |
935 | if (called_from_vm_object_deallocate) { | |
936 | return shadow; | |
937 | } else { | |
938 | vm_object_deallocate(shadow); | |
939 | } | |
940 | } | |
941 | } | |
942 | } | |
943 | ||
944 | boolean_t vm_object_terminate_remove_all = FALSE; | |
945 | ||
946 | /* | |
947 | * Routine: vm_object_terminate | |
948 | * Purpose: | |
949 | * Free all resources associated with a vm_object. | |
950 | * In/out conditions: | |
951 | * Upon entry, the object and the cache must be locked, | |
952 | * and the object must have exactly one reference. | |
953 | * | |
954 | * The shadow object reference is left alone. | |
955 | * | |
956 | * The object must be unlocked if its found that pages | |
957 | * must be flushed to a backing object. If someone | |
958 | * manages to map the object while it is being flushed | |
959 | * the object is returned unlocked and unchanged. Otherwise, | |
960 | * upon exit, the cache will be unlocked, and the | |
961 | * object will cease to exist. | |
962 | */ | |
963 | kern_return_t | |
964 | vm_object_terminate( | |
965 | register vm_object_t object) | |
966 | { | |
967 | register vm_page_t p; | |
968 | vm_object_t shadow_object; | |
969 | ||
970 | XPR(XPR_VM_OBJECT, "vm_object_terminate, object 0x%X ref %d\n", | |
971 | (integer_t)object, object->ref_count, 0, 0, 0); | |
972 | ||
973 | /* | |
974 | * Make sure the object isn't already being terminated | |
975 | */ | |
976 | ||
977 | assert(object->alive); | |
978 | if(object->terminating) { | |
979 | vm_object_cache_unlock(); | |
980 | object->ref_count -= 1; | |
981 | vm_object_unlock(object); | |
982 | return KERN_FAILURE; | |
983 | } | |
984 | object->terminating = TRUE; | |
985 | ||
986 | vm_object_cache_unlock(); | |
987 | if (!object->pageout && (!object->temporary || object->can_persist) | |
988 | && (object->pager != NULL || object->shadow_severed)) { | |
989 | while (!queue_empty(&object->memq)) { | |
990 | /* | |
991 | * Clear pager_trusted bit so that the pages get yanked | |
992 | * out of the object instead of cleaned in place. This | |
993 | * prevents a deadlock in XMM and makes more sense anyway. | |
994 | */ | |
995 | object->pager_trusted = FALSE; | |
996 | ||
997 | p = (vm_page_t) queue_first(&object->memq); | |
998 | ||
999 | VM_PAGE_CHECK(p); | |
1000 | ||
1001 | if (p->busy || p->cleaning) { | |
1002 | if(p->cleaning || p->absent) { | |
1003 | vm_object_paging_wait(object, THREAD_UNINT); | |
1004 | continue; | |
1005 | } else { | |
1006 | panic("vm_object_terminate.3 0x%x 0x%x", object, p); | |
1007 | } | |
1008 | } | |
1009 | ||
1010 | vm_page_lock_queues(); | |
1011 | VM_PAGE_QUEUES_REMOVE(p); | |
1012 | vm_page_unlock_queues(); | |
1013 | ||
1014 | if (p->absent || p->private) { | |
1015 | ||
1016 | /* | |
1017 | * For private pages, VM_PAGE_FREE just | |
1018 | * leaves the page structure around for | |
1019 | * its owner to clean up. For absent | |
1020 | * pages, the structure is returned to | |
1021 | * the appropriate pool. | |
1022 | */ | |
1023 | ||
1024 | goto free_page; | |
1025 | } | |
1026 | ||
1027 | if (p->fictitious) | |
1028 | panic("vm_object_terminate.4 0x%x 0x%x", object, p); | |
1029 | ||
1030 | if (!p->dirty) | |
1031 | p->dirty = pmap_is_modified(p->phys_addr); | |
1032 | ||
1033 | if (p->dirty || p->precious) { | |
1034 | p->busy = TRUE; | |
1035 | vm_object_paging_begin(object); | |
1036 | /* protect the object from re-use/caching while it */ | |
1037 | /* is unlocked */ | |
1038 | vm_object_unlock(object); | |
1039 | vm_pageout_cluster(p); /* flush page */ | |
1040 | vm_object_lock(object); | |
1041 | vm_object_paging_wait(object, THREAD_UNINT); | |
1042 | XPR(XPR_VM_OBJECT, | |
1043 | "vm_object_terminate restart, object 0x%X ref %d\n", | |
1044 | (integer_t)object, object->ref_count, 0, 0, 0); | |
1045 | } else { | |
1046 | free_page: | |
1047 | VM_PAGE_FREE(p); | |
1048 | } | |
1049 | } | |
1050 | } | |
1051 | if(object->ref_count != 1) { | |
1052 | object->ref_count -= 1; | |
1053 | vm_object_res_deallocate(object); | |
1054 | object->terminating = FALSE; | |
1055 | /* kick off anyone waiting on terminating */ | |
1056 | vm_object_paging_begin(object); | |
1057 | vm_object_paging_end(object); | |
1058 | vm_object_unlock(object); | |
1059 | return KERN_FAILURE; | |
1060 | } | |
1061 | ||
1062 | object->alive = FALSE; | |
1063 | ||
1064 | /* | |
1065 | * Make sure no one can look us up now. | |
1066 | */ | |
1067 | ||
1068 | vm_object_cache_lock(); | |
1069 | ||
1070 | if(object->pager != IP_NULL) { | |
1071 | vm_object_hash_entry_t entry; | |
1072 | ||
1073 | entry = vm_object_hash_lookup(object->pager, FALSE); | |
1074 | if (entry != VM_OBJECT_HASH_ENTRY_NULL) | |
1075 | entry->object = VM_OBJECT_NULL; | |
1076 | } | |
1077 | ||
1078 | vm_object_cache_unlock(); | |
1079 | ||
1080 | /* | |
1081 | * Detach the object from its shadow if we are the shadow's | |
1082 | * copy. | |
1083 | */ | |
1084 | if (((shadow_object = object->shadow) != VM_OBJECT_NULL) && | |
1085 | !(object->pageout)) { | |
1086 | vm_object_lock(shadow_object); | |
1087 | assert((shadow_object->copy == object) || | |
1088 | (shadow_object->copy == VM_OBJECT_NULL)); | |
1089 | shadow_object->copy = VM_OBJECT_NULL; | |
1090 | vm_object_unlock(shadow_object); | |
1091 | } | |
1092 | ||
1093 | /* | |
1094 | * The pageout daemon might be playing with our pages. | |
1095 | * Now that the object is dead, it won't touch any more | |
1096 | * pages, but some pages might already be on their way out. | |
1097 | * Hence, we wait until the active paging activities have ceased. | |
1098 | */ | |
1099 | vm_object_paging_wait(object, THREAD_UNINT); | |
1100 | object->ref_count--; | |
1101 | #if TASK_SWAPPER | |
1102 | assert(object->res_count == 0); | |
1103 | #endif /* TASK_SWAPPER */ | |
1104 | ||
1105 | Restart: | |
1106 | assert (object->ref_count == 0); | |
1107 | ||
1108 | /* | |
1109 | * Clean or free the pages, as appropriate. | |
1110 | * It is possible for us to find busy/absent pages, | |
1111 | * if some faults on this object were aborted. | |
1112 | */ | |
1113 | if (object->pageout) { | |
1114 | assert(shadow_object != VM_OBJECT_NULL); | |
1115 | assert(shadow_object == object->shadow); | |
1116 | ||
1117 | vm_pageout_object_terminate(object); | |
1118 | ||
1119 | } else if (object->temporary && ! object->can_persist || | |
1120 | object->pager == IP_NULL) { | |
1121 | while (!queue_empty(&object->memq)) { | |
1122 | p = (vm_page_t) queue_first(&object->memq); | |
1123 | ||
1124 | VM_PAGE_CHECK(p); | |
1125 | VM_PAGE_FREE(p); | |
1126 | } | |
1127 | } else if (!queue_empty(&object->memq)) { | |
1128 | panic("vm_object_terminate: queue just emptied isn't"); | |
1129 | } | |
1130 | ||
1131 | assert(object->paging_in_progress == 0); | |
1132 | assert(object->ref_count == 0); | |
1133 | ||
1134 | vm_object_remove(object); | |
1135 | ||
1136 | /* | |
1137 | * Throw away port rights... note that they may | |
1138 | * already have been thrown away (by vm_object_destroy | |
1139 | * or memory_object_destroy). | |
1140 | * | |
1141 | * Instead of destroying the control port, | |
1142 | * we send all rights off to the memory manager, | |
1143 | * using memory_object_terminate. | |
1144 | */ | |
1145 | ||
1146 | vm_object_unlock(object); | |
1147 | if (object->pager != IP_NULL) { | |
1148 | /* consumes our rights for pager, pager_request */ | |
1149 | memory_object_release(object->pager, object->pager_request); | |
1150 | } | |
1151 | /* kick off anyone waiting on terminating */ | |
1152 | vm_object_lock(object); | |
1153 | vm_object_paging_begin(object); | |
1154 | vm_object_paging_end(object); | |
1155 | vm_object_unlock(object); | |
1156 | ||
1157 | #if MACH_PAGEMAP | |
1158 | vm_external_destroy(object->existence_map, object->size); | |
1159 | #endif /* MACH_PAGEMAP */ | |
1160 | ||
1161 | /* | |
1162 | * Free the space for the object. | |
1163 | */ | |
1164 | ||
1165 | zfree(vm_object_zone, (vm_offset_t) object); | |
1166 | return KERN_SUCCESS; | |
1167 | } | |
1168 | ||
1169 | /* | |
1170 | * Routine: vm_object_pager_wakeup | |
1171 | * Purpose: Wake up anyone waiting for termination of a pager. | |
1172 | */ | |
1173 | ||
1174 | void | |
1175 | vm_object_pager_wakeup( | |
1176 | ipc_port_t pager) | |
1177 | { | |
1178 | vm_object_hash_entry_t entry; | |
1179 | boolean_t waiting = FALSE; | |
1180 | ||
1181 | /* | |
1182 | * If anyone was waiting for the memory_object_terminate | |
1183 | * to be queued, wake them up now. | |
1184 | */ | |
1185 | vm_object_cache_lock(); | |
1186 | entry = vm_object_hash_lookup(pager, TRUE); | |
1187 | if (entry != VM_OBJECT_HASH_ENTRY_NULL) | |
1188 | waiting = entry->waiting; | |
1189 | vm_object_cache_unlock(); | |
1190 | if (entry != VM_OBJECT_HASH_ENTRY_NULL) { | |
1191 | if (waiting) | |
1192 | thread_wakeup((event_t) pager); | |
1193 | vm_object_hash_entry_free(entry); | |
1194 | } | |
1195 | } | |
1196 | ||
1197 | /* | |
1198 | * memory_object_release_name: | |
1199 | * Enforces name semantic on memory_object reference count decrement | |
1200 | * This routine should not be called unless the caller holds a name | |
1201 | * reference gained through the memory_object_named_create or the | |
1202 | * memory_object_rename call. | |
1203 | * If the TERMINATE_IDLE flag is set, the call will return if the | |
1204 | * reference count is not 1. i.e. idle with the only remaining reference | |
1205 | * being the name. | |
1206 | * If the decision is made to proceed the name field flag is set to | |
1207 | * false and the reference count is decremented. If the RESPECT_CACHE | |
1208 | * flag is set and the reference count has gone to zero, the | |
1209 | * memory_object is checked to see if it is cacheable otherwise when | |
1210 | * the reference count is zero, it is simply terminated. | |
1211 | */ | |
1212 | ||
1213 | kern_return_t | |
1214 | memory_object_release_name( | |
1215 | vm_object_t object, | |
1216 | int flags) | |
1217 | { | |
1218 | vm_object_t shadow; | |
1219 | boolean_t original_object = TRUE; | |
1220 | ||
1221 | while (object != VM_OBJECT_NULL) { | |
1222 | ||
1223 | /* | |
1224 | * The cache holds a reference (uncounted) to | |
1225 | * the object. We must locke it before removing | |
1226 | * the object. | |
1227 | * | |
1228 | */ | |
1229 | ||
1230 | vm_object_cache_lock(); | |
1231 | vm_object_lock(object); | |
1232 | assert(object->alive); | |
1233 | if(original_object) | |
1234 | assert(object->named); | |
1235 | assert(object->ref_count > 0); | |
1236 | ||
1237 | /* | |
1238 | * We have to wait for initialization before | |
1239 | * destroying or caching the object. | |
1240 | */ | |
1241 | ||
1242 | if (object->pager_created && !object->pager_initialized) { | |
1243 | assert(!object->can_persist); | |
1244 | vm_object_assert_wait(object, | |
1245 | VM_OBJECT_EVENT_INITIALIZED, | |
1246 | THREAD_UNINT); | |
1247 | vm_object_unlock(object); | |
1248 | vm_object_cache_unlock(); | |
1249 | thread_block((void (*)(void)) 0); | |
1250 | continue; | |
1251 | } | |
1252 | ||
1253 | if (((object->ref_count > 1) | |
1254 | && (flags & MEMORY_OBJECT_TERMINATE_IDLE)) | |
1255 | || (object->terminating)) { | |
1256 | vm_object_unlock(object); | |
1257 | vm_object_cache_unlock(); | |
1258 | return KERN_FAILURE; | |
1259 | } else { | |
1260 | if (flags & MEMORY_OBJECT_RELEASE_NO_OP) { | |
1261 | vm_object_unlock(object); | |
1262 | vm_object_cache_unlock(); | |
1263 | return KERN_SUCCESS; | |
1264 | } | |
1265 | } | |
1266 | ||
1267 | if ((flags & MEMORY_OBJECT_RESPECT_CACHE) && | |
1268 | (object->ref_count == 1)) { | |
1269 | if(original_object) | |
1270 | object->named = FALSE; | |
1271 | vm_object_unlock(object); | |
1272 | vm_object_cache_unlock(); | |
1273 | /* let vm_object_deallocate push this thing into */ | |
1274 | /* the cache, if that it is where it is bound */ | |
1275 | vm_object_deallocate(object); | |
1276 | return KERN_SUCCESS; | |
1277 | } | |
1278 | VM_OBJ_RES_DECR(object); | |
1279 | shadow = object->pageout?VM_OBJECT_NULL:object->shadow; | |
1280 | if(object->ref_count == 1) { | |
1281 | if(vm_object_terminate(object) != KERN_SUCCESS) { | |
1282 | if(original_object) { | |
1283 | return KERN_FAILURE; | |
1284 | } else { | |
1285 | return KERN_SUCCESS; | |
1286 | } | |
1287 | } | |
1288 | if (shadow != VM_OBJECT_NULL) { | |
1289 | original_object = FALSE; | |
1290 | object = shadow; | |
1291 | continue; | |
1292 | } | |
1293 | return KERN_SUCCESS; | |
1294 | } else { | |
1295 | object->ref_count--; | |
1296 | if(original_object) | |
1297 | object->named = FALSE; | |
1298 | vm_object_unlock(object); | |
1299 | vm_object_cache_unlock(); | |
1300 | return KERN_SUCCESS; | |
1301 | } | |
1302 | } | |
1303 | } | |
1304 | ||
1305 | /* | |
1306 | * Routine: memory_object_release | |
1307 | * Purpose: Terminate the pager and release port rights, | |
1308 | * just like memory_object_terminate, except | |
1309 | * that we wake up anyone blocked in vm_object_enter | |
1310 | * waiting for termination message to be queued | |
1311 | * before calling memory_object_init. | |
1312 | */ | |
1313 | void | |
1314 | memory_object_release( | |
1315 | ipc_port_t pager, | |
1316 | pager_request_t pager_request) | |
1317 | { | |
1318 | #ifdef MACH_BSD | |
1319 | kern_return_t vnode_pager_terminate(ipc_port_t, ipc_port_t); | |
1320 | #endif | |
1321 | ||
1322 | /* | |
1323 | * Keep a reference to pager port; | |
1324 | * the terminate might otherwise release all references. | |
1325 | */ | |
1326 | ipc_port_copy_send(pager); | |
1327 | ||
1328 | /* | |
1329 | * Terminate the pager. | |
1330 | */ | |
1331 | ||
1332 | #ifdef MACH_BSD | |
1333 | if(((rpc_subsystem_t)pager_mux_hash_lookup(pager)) == | |
1334 | ((rpc_subsystem_t) &vnode_pager_workaround)) { | |
1335 | (void) vnode_pager_terminate(pager, pager_request); | |
1336 | } else { | |
1337 | (void) memory_object_terminate(pager, pager_request); | |
1338 | } | |
1339 | #else | |
1340 | (void) memory_object_terminate(pager, pager_request); | |
1341 | #endif | |
1342 | ||
1343 | /* | |
1344 | * Wakeup anyone waiting for this terminate | |
1345 | */ | |
1346 | vm_object_pager_wakeup(pager); | |
1347 | ||
1348 | /* | |
1349 | * Release reference to pager port. | |
1350 | */ | |
1351 | ipc_port_release_send(pager); | |
1352 | } | |
1353 | ||
1354 | /* | |
1355 | * Routine: vm_object_abort_activity [internal use only] | |
1356 | * Purpose: | |
1357 | * Abort paging requests pending on this object. | |
1358 | * In/out conditions: | |
1359 | * The object is locked on entry and exit. | |
1360 | */ | |
1361 | void | |
1362 | vm_object_abort_activity( | |
1363 | vm_object_t object) | |
1364 | { | |
1365 | register | |
1366 | vm_page_t p; | |
1367 | vm_page_t next; | |
1368 | ||
1369 | XPR(XPR_VM_OBJECT, "vm_object_abort_activity, object 0x%X\n", | |
1370 | (integer_t)object, 0, 0, 0, 0); | |
1371 | ||
1372 | /* | |
1373 | * Abort all activity that would be waiting | |
1374 | * for a result on this memory object. | |
1375 | * | |
1376 | * We could also choose to destroy all pages | |
1377 | * that we have in memory for this object, but | |
1378 | * we don't. | |
1379 | */ | |
1380 | ||
1381 | p = (vm_page_t) queue_first(&object->memq); | |
1382 | while (!queue_end(&object->memq, (queue_entry_t) p)) { | |
1383 | next = (vm_page_t) queue_next(&p->listq); | |
1384 | ||
1385 | /* | |
1386 | * If it's being paged in, destroy it. | |
1387 | * If an unlock has been requested, start it again. | |
1388 | */ | |
1389 | ||
1390 | if (p->busy && p->absent) { | |
1391 | VM_PAGE_FREE(p); | |
1392 | } | |
1393 | else { | |
1394 | if (p->unlock_request != VM_PROT_NONE) | |
1395 | p->unlock_request = VM_PROT_NONE; | |
1396 | PAGE_WAKEUP(p); | |
1397 | } | |
1398 | ||
1399 | p = next; | |
1400 | } | |
1401 | ||
1402 | /* | |
1403 | * Wake up threads waiting for the memory object to | |
1404 | * become ready. | |
1405 | */ | |
1406 | ||
1407 | object->pager_ready = TRUE; | |
1408 | vm_object_wakeup(object, VM_OBJECT_EVENT_PAGER_READY); | |
1409 | } | |
1410 | ||
1411 | /* | |
1412 | * Routine: memory_object_destroy [user interface] | |
1413 | * Purpose: | |
1414 | * Shut down a memory object, despite the | |
1415 | * presence of address map (or other) references | |
1416 | * to the vm_object. | |
1417 | */ | |
1418 | kern_return_t | |
1419 | memory_object_destroy( | |
1420 | register vm_object_t object, | |
1421 | kern_return_t reason) | |
1422 | { | |
1423 | ipc_port_t old_object; | |
1424 | pager_request_t old_pager_request; | |
1425 | ||
1426 | #ifdef lint | |
1427 | reason++; | |
1428 | #endif /* lint */ | |
1429 | ||
1430 | if (object == VM_OBJECT_NULL) | |
1431 | return(KERN_SUCCESS); | |
1432 | ||
1433 | /* | |
1434 | * Remove the port associations immediately. | |
1435 | * | |
1436 | * This will prevent the memory manager from further | |
1437 | * meddling. [If it wanted to flush data or make | |
1438 | * other changes, it should have done so before performing | |
1439 | * the destroy call.] | |
1440 | */ | |
1441 | ||
1442 | vm_object_cache_lock(); | |
1443 | vm_object_lock(object); | |
1444 | vm_object_remove(object); | |
1445 | object->can_persist = FALSE; | |
1446 | object->named = FALSE; | |
1447 | vm_object_cache_unlock(); | |
1448 | ||
1449 | /* | |
1450 | * Rip out the ports from the vm_object now... this | |
1451 | * will prevent new memory_object calls from succeeding. | |
1452 | */ | |
1453 | ||
1454 | old_object = object->pager; | |
1455 | old_pager_request = object->pager_request; | |
1456 | ||
1457 | object->pager = IP_NULL; | |
1458 | object->pager_request = PAGER_REQUEST_NULL; | |
1459 | ||
1460 | /* | |
1461 | * Wait for existing paging activity (that might | |
1462 | * have the old ports) to subside. | |
1463 | */ | |
1464 | ||
1465 | vm_object_paging_wait(object, THREAD_UNINT); | |
1466 | vm_object_unlock(object); | |
1467 | ||
1468 | /* | |
1469 | * Shut down the ports now. | |
1470 | * | |
1471 | * [Paging operations may be proceeding concurrently -- | |
1472 | * they'll get the null values established above.] | |
1473 | */ | |
1474 | ||
1475 | if (old_object != IP_NULL) { | |
1476 | /* consumes our rights for object, control */ | |
1477 | memory_object_release(old_object, old_pager_request); | |
1478 | } | |
1479 | ||
1480 | /* | |
1481 | * Lose the reference that was donated for this routine | |
1482 | */ | |
1483 | ||
1484 | vm_object_deallocate(object); | |
1485 | ||
1486 | return(KERN_SUCCESS); | |
1487 | } | |
1488 | ||
1489 | /* | |
1490 | * vm_object_deactivate_pages | |
1491 | * | |
1492 | * Deactivate all pages in the specified object. (Keep its pages | |
1493 | * in memory even though it is no longer referenced.) | |
1494 | * | |
1495 | * The object must be locked. | |
1496 | */ | |
1497 | void | |
1498 | vm_object_deactivate_pages( | |
1499 | register vm_object_t object) | |
1500 | { | |
1501 | register vm_page_t p; | |
1502 | ||
1503 | queue_iterate(&object->memq, p, vm_page_t, listq) { | |
1504 | vm_page_lock_queues(); | |
1505 | if (!p->busy) | |
1506 | vm_page_deactivate(p); | |
1507 | vm_page_unlock_queues(); | |
1508 | } | |
1509 | } | |
1510 | ||
1511 | ||
1512 | /* | |
1513 | * Routine: vm_object_pmap_protect | |
1514 | * | |
1515 | * Purpose: | |
1516 | * Reduces the permission for all physical | |
1517 | * pages in the specified object range. | |
1518 | * | |
1519 | * If removing write permission only, it is | |
1520 | * sufficient to protect only the pages in | |
1521 | * the top-level object; only those pages may | |
1522 | * have write permission. | |
1523 | * | |
1524 | * If removing all access, we must follow the | |
1525 | * shadow chain from the top-level object to | |
1526 | * remove access to all pages in shadowed objects. | |
1527 | * | |
1528 | * The object must *not* be locked. The object must | |
1529 | * be temporary/internal. | |
1530 | * | |
1531 | * If pmap is not NULL, this routine assumes that | |
1532 | * the only mappings for the pages are in that | |
1533 | * pmap. | |
1534 | */ | |
1535 | ||
1536 | void | |
1537 | vm_object_pmap_protect( | |
1538 | register vm_object_t object, | |
1539 | register vm_object_offset_t offset, | |
1540 | vm_size_t size, | |
1541 | pmap_t pmap, | |
1542 | vm_offset_t pmap_start, | |
1543 | vm_prot_t prot) | |
1544 | { | |
1545 | if (object == VM_OBJECT_NULL) | |
1546 | return; | |
1547 | ||
1548 | vm_object_lock(object); | |
1549 | ||
1550 | assert(object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC); | |
1551 | ||
1552 | while (TRUE) { | |
1553 | if (object->resident_page_count > atop(size) / 2 && | |
1554 | pmap != PMAP_NULL) { | |
1555 | vm_object_unlock(object); | |
1556 | pmap_protect(pmap, pmap_start, pmap_start + size, prot); | |
1557 | return; | |
1558 | } | |
1559 | ||
1560 | { | |
1561 | register vm_page_t p; | |
1562 | register vm_object_offset_t end; | |
1563 | ||
1564 | end = offset + size; | |
1565 | ||
1566 | if (pmap != PMAP_NULL) { | |
1567 | queue_iterate(&object->memq, p, vm_page_t, listq) { | |
1568 | if (!p->fictitious && | |
1569 | (offset <= p->offset) && (p->offset < end)) { | |
1570 | ||
1571 | vm_offset_t start = pmap_start + | |
1572 | (vm_offset_t)(p->offset - offset); | |
1573 | ||
1574 | pmap_protect(pmap, start, start + PAGE_SIZE, prot); | |
1575 | } | |
1576 | } | |
1577 | } else { | |
1578 | queue_iterate(&object->memq, p, vm_page_t, listq) { | |
1579 | if (!p->fictitious && | |
1580 | (offset <= p->offset) && (p->offset < end)) { | |
1581 | ||
1582 | pmap_page_protect(p->phys_addr, | |
1583 | prot & ~p->page_lock); | |
1584 | } | |
1585 | } | |
1586 | } | |
1587 | } | |
1588 | ||
1589 | if (prot == VM_PROT_NONE) { | |
1590 | /* | |
1591 | * Must follow shadow chain to remove access | |
1592 | * to pages in shadowed objects. | |
1593 | */ | |
1594 | register vm_object_t next_object; | |
1595 | ||
1596 | next_object = object->shadow; | |
1597 | if (next_object != VM_OBJECT_NULL) { | |
1598 | offset += object->shadow_offset; | |
1599 | vm_object_lock(next_object); | |
1600 | vm_object_unlock(object); | |
1601 | object = next_object; | |
1602 | } | |
1603 | else { | |
1604 | /* | |
1605 | * End of chain - we are done. | |
1606 | */ | |
1607 | break; | |
1608 | } | |
1609 | } | |
1610 | else { | |
1611 | /* | |
1612 | * Pages in shadowed objects may never have | |
1613 | * write permission - we may stop here. | |
1614 | */ | |
1615 | break; | |
1616 | } | |
1617 | } | |
1618 | ||
1619 | vm_object_unlock(object); | |
1620 | } | |
1621 | ||
1622 | /* | |
1623 | * Routine: vm_object_copy_slowly | |
1624 | * | |
1625 | * Description: | |
1626 | * Copy the specified range of the source | |
1627 | * virtual memory object without using | |
1628 | * protection-based optimizations (such | |
1629 | * as copy-on-write). The pages in the | |
1630 | * region are actually copied. | |
1631 | * | |
1632 | * In/out conditions: | |
1633 | * The caller must hold a reference and a lock | |
1634 | * for the source virtual memory object. The source | |
1635 | * object will be returned *unlocked*. | |
1636 | * | |
1637 | * Results: | |
1638 | * If the copy is completed successfully, KERN_SUCCESS is | |
1639 | * returned. If the caller asserted the interruptible | |
1640 | * argument, and an interruption occurred while waiting | |
1641 | * for a user-generated event, MACH_SEND_INTERRUPTED is | |
1642 | * returned. Other values may be returned to indicate | |
1643 | * hard errors during the copy operation. | |
1644 | * | |
1645 | * A new virtual memory object is returned in a | |
1646 | * parameter (_result_object). The contents of this | |
1647 | * new object, starting at a zero offset, are a copy | |
1648 | * of the source memory region. In the event of | |
1649 | * an error, this parameter will contain the value | |
1650 | * VM_OBJECT_NULL. | |
1651 | */ | |
1652 | kern_return_t | |
1653 | vm_object_copy_slowly( | |
1654 | register vm_object_t src_object, | |
1655 | vm_object_offset_t src_offset, | |
1656 | vm_object_size_t size, | |
1657 | boolean_t interruptible, | |
1658 | vm_object_t *_result_object) /* OUT */ | |
1659 | { | |
1660 | vm_object_t new_object; | |
1661 | vm_object_offset_t new_offset; | |
1662 | ||
1663 | vm_object_offset_t src_lo_offset = src_offset; | |
1664 | vm_object_offset_t src_hi_offset = src_offset + size; | |
1665 | ||
1666 | XPR(XPR_VM_OBJECT, "v_o_c_slowly obj 0x%x off 0x%x size 0x%x\n", | |
1667 | src_object, src_offset, size, 0, 0); | |
1668 | ||
1669 | if (size == 0) { | |
1670 | vm_object_unlock(src_object); | |
1671 | *_result_object = VM_OBJECT_NULL; | |
1672 | return(KERN_INVALID_ARGUMENT); | |
1673 | } | |
1674 | ||
1675 | /* | |
1676 | * Prevent destruction of the source object while we copy. | |
1677 | */ | |
1678 | ||
1679 | assert(src_object->ref_count > 0); | |
1680 | src_object->ref_count++; | |
1681 | VM_OBJ_RES_INCR(src_object); | |
1682 | vm_object_unlock(src_object); | |
1683 | ||
1684 | /* | |
1685 | * Create a new object to hold the copied pages. | |
1686 | * A few notes: | |
1687 | * We fill the new object starting at offset 0, | |
1688 | * regardless of the input offset. | |
1689 | * We don't bother to lock the new object within | |
1690 | * this routine, since we have the only reference. | |
1691 | */ | |
1692 | ||
1693 | new_object = vm_object_allocate(size); | |
1694 | new_offset = 0; | |
1695 | ||
1696 | assert(size == trunc_page_64(size)); /* Will the loop terminate? */ | |
1697 | ||
1698 | for ( ; | |
1699 | size != 0 ; | |
1700 | src_offset += PAGE_SIZE_64, | |
1701 | new_offset += PAGE_SIZE_64, size -= PAGE_SIZE_64 | |
1702 | ) { | |
1703 | vm_page_t new_page; | |
1704 | vm_fault_return_t result; | |
1705 | ||
1706 | while ((new_page = vm_page_alloc(new_object, new_offset)) | |
1707 | == VM_PAGE_NULL) { | |
1708 | if (!vm_page_wait(interruptible)) { | |
1709 | vm_object_deallocate(new_object); | |
1710 | *_result_object = VM_OBJECT_NULL; | |
1711 | return(MACH_SEND_INTERRUPTED); | |
1712 | } | |
1713 | } | |
1714 | ||
1715 | do { | |
1716 | vm_prot_t prot = VM_PROT_READ; | |
1717 | vm_page_t _result_page; | |
1718 | vm_page_t top_page; | |
1719 | register | |
1720 | vm_page_t result_page; | |
1721 | kern_return_t error_code; | |
1722 | ||
1723 | vm_object_lock(src_object); | |
1724 | vm_object_paging_begin(src_object); | |
1725 | ||
1726 | XPR(XPR_VM_FAULT,"vm_object_copy_slowly -> vm_fault_page",0,0,0,0,0); | |
1727 | result = vm_fault_page(src_object, src_offset, | |
1728 | VM_PROT_READ, FALSE, interruptible, | |
1729 | src_lo_offset, src_hi_offset, | |
1730 | VM_BEHAVIOR_SEQUENTIAL, | |
1731 | &prot, &_result_page, &top_page, | |
1732 | (int *)0, | |
1733 | &error_code, FALSE, FALSE); | |
1734 | ||
1735 | switch(result) { | |
1736 | case VM_FAULT_SUCCESS: | |
1737 | result_page = _result_page; | |
1738 | ||
1739 | /* | |
1740 | * We don't need to hold the object | |
1741 | * lock -- the busy page will be enough. | |
1742 | * [We don't care about picking up any | |
1743 | * new modifications.] | |
1744 | * | |
1745 | * Copy the page to the new object. | |
1746 | * | |
1747 | * POLICY DECISION: | |
1748 | * If result_page is clean, | |
1749 | * we could steal it instead | |
1750 | * of copying. | |
1751 | */ | |
1752 | ||
1753 | vm_object_unlock(result_page->object); | |
1754 | vm_page_copy(result_page, new_page); | |
1755 | ||
1756 | /* | |
1757 | * Let go of both pages (make them | |
1758 | * not busy, perform wakeup, activate). | |
1759 | */ | |
1760 | ||
1761 | new_page->busy = FALSE; | |
1762 | new_page->dirty = TRUE; | |
1763 | vm_object_lock(result_page->object); | |
1764 | PAGE_WAKEUP_DONE(result_page); | |
1765 | ||
1766 | vm_page_lock_queues(); | |
1767 | if (!result_page->active && | |
1768 | !result_page->inactive) | |
1769 | vm_page_activate(result_page); | |
1770 | vm_page_activate(new_page); | |
1771 | vm_page_unlock_queues(); | |
1772 | ||
1773 | /* | |
1774 | * Release paging references and | |
1775 | * top-level placeholder page, if any. | |
1776 | */ | |
1777 | ||
1778 | vm_fault_cleanup(result_page->object, | |
1779 | top_page); | |
1780 | ||
1781 | break; | |
1782 | ||
1783 | case VM_FAULT_RETRY: | |
1784 | break; | |
1785 | ||
1786 | case VM_FAULT_FICTITIOUS_SHORTAGE: | |
1787 | vm_page_more_fictitious(); | |
1788 | break; | |
1789 | ||
1790 | case VM_FAULT_MEMORY_SHORTAGE: | |
1791 | if (vm_page_wait(interruptible)) | |
1792 | break; | |
1793 | /* fall thru */ | |
1794 | ||
1795 | case VM_FAULT_INTERRUPTED: | |
1796 | vm_page_free(new_page); | |
1797 | vm_object_deallocate(new_object); | |
1798 | vm_object_deallocate(src_object); | |
1799 | *_result_object = VM_OBJECT_NULL; | |
1800 | return(MACH_SEND_INTERRUPTED); | |
1801 | ||
1802 | case VM_FAULT_MEMORY_ERROR: | |
1803 | /* | |
1804 | * A policy choice: | |
1805 | * (a) ignore pages that we can't | |
1806 | * copy | |
1807 | * (b) return the null object if | |
1808 | * any page fails [chosen] | |
1809 | */ | |
1810 | ||
1811 | vm_page_lock_queues(); | |
1812 | vm_page_free(new_page); | |
1813 | vm_page_unlock_queues(); | |
1814 | vm_object_deallocate(new_object); | |
1815 | vm_object_deallocate(src_object); | |
1816 | *_result_object = VM_OBJECT_NULL; | |
1817 | return(error_code ? error_code: | |
1818 | KERN_MEMORY_ERROR); | |
1819 | } | |
1820 | } while (result != VM_FAULT_SUCCESS); | |
1821 | } | |
1822 | ||
1823 | /* | |
1824 | * Lose the extra reference, and return our object. | |
1825 | */ | |
1826 | ||
1827 | vm_object_deallocate(src_object); | |
1828 | *_result_object = new_object; | |
1829 | return(KERN_SUCCESS); | |
1830 | } | |
1831 | ||
1832 | /* | |
1833 | * Routine: vm_object_copy_quickly | |
1834 | * | |
1835 | * Purpose: | |
1836 | * Copy the specified range of the source virtual | |
1837 | * memory object, if it can be done without waiting | |
1838 | * for user-generated events. | |
1839 | * | |
1840 | * Results: | |
1841 | * If the copy is successful, the copy is returned in | |
1842 | * the arguments; otherwise, the arguments are not | |
1843 | * affected. | |
1844 | * | |
1845 | * In/out conditions: | |
1846 | * The object should be unlocked on entry and exit. | |
1847 | */ | |
1848 | ||
1849 | /*ARGSUSED*/ | |
1850 | boolean_t | |
1851 | vm_object_copy_quickly( | |
1852 | vm_object_t *_object, /* INOUT */ | |
1853 | vm_object_offset_t offset, /* IN */ | |
1854 | vm_object_size_t size, /* IN */ | |
1855 | boolean_t *_src_needs_copy, /* OUT */ | |
1856 | boolean_t *_dst_needs_copy) /* OUT */ | |
1857 | { | |
1858 | vm_object_t object = *_object; | |
1859 | memory_object_copy_strategy_t copy_strategy; | |
1860 | ||
1861 | XPR(XPR_VM_OBJECT, "v_o_c_quickly obj 0x%x off 0x%x size 0x%x\n", | |
1862 | *_object, offset, size, 0, 0); | |
1863 | if (object == VM_OBJECT_NULL) { | |
1864 | *_src_needs_copy = FALSE; | |
1865 | *_dst_needs_copy = FALSE; | |
1866 | return(TRUE); | |
1867 | } | |
1868 | ||
1869 | vm_object_lock(object); | |
1870 | ||
1871 | copy_strategy = object->copy_strategy; | |
1872 | ||
1873 | switch (copy_strategy) { | |
1874 | case MEMORY_OBJECT_COPY_SYMMETRIC: | |
1875 | ||
1876 | /* | |
1877 | * Symmetric copy strategy. | |
1878 | * Make another reference to the object. | |
1879 | * Leave object/offset unchanged. | |
1880 | */ | |
1881 | ||
1882 | assert(object->ref_count > 0); | |
1883 | object->ref_count++; | |
1884 | vm_object_res_reference(object); | |
1885 | object->shadowed = TRUE; | |
1886 | vm_object_unlock(object); | |
1887 | ||
1888 | /* | |
1889 | * Both source and destination must make | |
1890 | * shadows, and the source must be made | |
1891 | * read-only if not already. | |
1892 | */ | |
1893 | ||
1894 | *_src_needs_copy = TRUE; | |
1895 | *_dst_needs_copy = TRUE; | |
1896 | ||
1897 | break; | |
1898 | ||
1899 | case MEMORY_OBJECT_COPY_DELAY: | |
1900 | vm_object_unlock(object); | |
1901 | return(FALSE); | |
1902 | ||
1903 | default: | |
1904 | vm_object_unlock(object); | |
1905 | return(FALSE); | |
1906 | } | |
1907 | return(TRUE); | |
1908 | } | |
1909 | ||
1910 | int copy_call_count = 0; | |
1911 | int copy_call_sleep_count = 0; | |
1912 | int copy_call_restart_count = 0; | |
1913 | ||
1914 | /* | |
1915 | * Routine: vm_object_copy_call [internal] | |
1916 | * | |
1917 | * Description: | |
1918 | * Copy the source object (src_object), using the | |
1919 | * user-managed copy algorithm. | |
1920 | * | |
1921 | * In/out conditions: | |
1922 | * The source object must be locked on entry. It | |
1923 | * will be *unlocked* on exit. | |
1924 | * | |
1925 | * Results: | |
1926 | * If the copy is successful, KERN_SUCCESS is returned. | |
1927 | * A new object that represents the copied virtual | |
1928 | * memory is returned in a parameter (*_result_object). | |
1929 | * If the return value indicates an error, this parameter | |
1930 | * is not valid. | |
1931 | */ | |
1932 | kern_return_t | |
1933 | vm_object_copy_call( | |
1934 | vm_object_t src_object, | |
1935 | vm_object_offset_t src_offset, | |
1936 | vm_object_size_t size, | |
1937 | vm_object_t *_result_object) /* OUT */ | |
1938 | { | |
1939 | kern_return_t kr; | |
1940 | vm_object_t copy; | |
1941 | boolean_t check_ready = FALSE; | |
1942 | ||
1943 | /* | |
1944 | * If a copy is already in progress, wait and retry. | |
1945 | * | |
1946 | * XXX | |
1947 | * Consider making this call interruptable, as Mike | |
1948 | * intended it to be. | |
1949 | * | |
1950 | * XXXO | |
1951 | * Need a counter or version or something to allow | |
1952 | * us to use the copy that the currently requesting | |
1953 | * thread is obtaining -- is it worth adding to the | |
1954 | * vm object structure? Depends how common this case it. | |
1955 | */ | |
1956 | copy_call_count++; | |
1957 | while (vm_object_wanted(src_object, VM_OBJECT_EVENT_COPY_CALL)) { | |
1958 | vm_object_wait(src_object, VM_OBJECT_EVENT_COPY_CALL, | |
1959 | THREAD_UNINT); | |
1960 | vm_object_lock(src_object); | |
1961 | copy_call_restart_count++; | |
1962 | } | |
1963 | ||
1964 | /* | |
1965 | * Indicate (for the benefit of memory_object_create_copy) | |
1966 | * that we want a copy for src_object. (Note that we cannot | |
1967 | * do a real assert_wait before calling memory_object_copy, | |
1968 | * so we simply set the flag.) | |
1969 | */ | |
1970 | ||
1971 | vm_object_set_wanted(src_object, VM_OBJECT_EVENT_COPY_CALL); | |
1972 | vm_object_unlock(src_object); | |
1973 | ||
1974 | /* | |
1975 | * Ask the memory manager to give us a memory object | |
1976 | * which represents a copy of the src object. | |
1977 | * The memory manager may give us a memory object | |
1978 | * which we already have, or it may give us a | |
1979 | * new memory object. This memory object will arrive | |
1980 | * via memory_object_create_copy. | |
1981 | */ | |
1982 | ||
1983 | kr = KERN_FAILURE; /* XXX need to change memory_object.defs */ | |
1984 | if (kr != KERN_SUCCESS) { | |
1985 | return kr; | |
1986 | } | |
1987 | ||
1988 | /* | |
1989 | * Wait for the copy to arrive. | |
1990 | */ | |
1991 | vm_object_lock(src_object); | |
1992 | while (vm_object_wanted(src_object, VM_OBJECT_EVENT_COPY_CALL)) { | |
1993 | vm_object_wait(src_object, VM_OBJECT_EVENT_COPY_CALL, | |
1994 | THREAD_UNINT); | |
1995 | vm_object_lock(src_object); | |
1996 | copy_call_sleep_count++; | |
1997 | } | |
1998 | Retry: | |
1999 | assert(src_object->copy != VM_OBJECT_NULL); | |
2000 | copy = src_object->copy; | |
2001 | if (!vm_object_lock_try(copy)) { | |
2002 | vm_object_unlock(src_object); | |
2003 | mutex_pause(); /* wait a bit */ | |
2004 | vm_object_lock(src_object); | |
2005 | goto Retry; | |
2006 | } | |
2007 | if (copy->size < src_offset+size) | |
2008 | copy->size = src_offset+size; | |
2009 | ||
2010 | if (!copy->pager_ready) | |
2011 | check_ready = TRUE; | |
2012 | ||
2013 | /* | |
2014 | * Return the copy. | |
2015 | */ | |
2016 | *_result_object = copy; | |
2017 | vm_object_unlock(copy); | |
2018 | vm_object_unlock(src_object); | |
2019 | ||
2020 | /* Wait for the copy to be ready. */ | |
2021 | if (check_ready == TRUE) { | |
2022 | vm_object_lock(copy); | |
2023 | while (!copy->pager_ready) { | |
2024 | vm_object_wait(copy, VM_OBJECT_EVENT_PAGER_READY, | |
2025 | FALSE); | |
2026 | vm_object_lock(copy); | |
2027 | } | |
2028 | vm_object_unlock(copy); | |
2029 | } | |
2030 | ||
2031 | return KERN_SUCCESS; | |
2032 | } | |
2033 | ||
2034 | int copy_delayed_lock_collisions = 0; | |
2035 | int copy_delayed_max_collisions = 0; | |
2036 | int copy_delayed_lock_contention = 0; | |
2037 | int copy_delayed_protect_iterate = 0; | |
2038 | int copy_delayed_protect_lookup = 0; | |
2039 | int copy_delayed_protect_lookup_wait = 0; | |
2040 | ||
2041 | /* | |
2042 | * Routine: vm_object_copy_delayed [internal] | |
2043 | * | |
2044 | * Description: | |
2045 | * Copy the specified virtual memory object, using | |
2046 | * the asymmetric copy-on-write algorithm. | |
2047 | * | |
2048 | * In/out conditions: | |
2049 | * The object must be unlocked on entry. | |
2050 | * | |
2051 | * This routine will not block waiting for user-generated | |
2052 | * events. It is not interruptible. | |
2053 | */ | |
2054 | vm_object_t | |
2055 | vm_object_copy_delayed( | |
2056 | vm_object_t src_object, | |
2057 | vm_object_offset_t src_offset, | |
2058 | vm_object_size_t size) | |
2059 | { | |
2060 | vm_object_t new_copy = VM_OBJECT_NULL; | |
2061 | vm_object_t old_copy; | |
2062 | vm_page_t p; | |
2063 | vm_object_size_t copy_size; | |
2064 | ||
2065 | int collisions = 0; | |
2066 | /* | |
2067 | * The user-level memory manager wants to see all of the changes | |
2068 | * to this object, but it has promised not to make any changes on | |
2069 | * its own. | |
2070 | * | |
2071 | * Perform an asymmetric copy-on-write, as follows: | |
2072 | * Create a new object, called a "copy object" to hold | |
2073 | * pages modified by the new mapping (i.e., the copy, | |
2074 | * not the original mapping). | |
2075 | * Record the original object as the backing object for | |
2076 | * the copy object. If the original mapping does not | |
2077 | * change a page, it may be used read-only by the copy. | |
2078 | * Record the copy object in the original object. | |
2079 | * When the original mapping causes a page to be modified, | |
2080 | * it must be copied to a new page that is "pushed" to | |
2081 | * the copy object. | |
2082 | * Mark the new mapping (the copy object) copy-on-write. | |
2083 | * This makes the copy object itself read-only, allowing | |
2084 | * it to be reused if the original mapping makes no | |
2085 | * changes, and simplifying the synchronization required | |
2086 | * in the "push" operation described above. | |
2087 | * | |
2088 | * The copy-on-write is said to be assymetric because the original | |
2089 | * object is *not* marked copy-on-write. A copied page is pushed | |
2090 | * to the copy object, regardless which party attempted to modify | |
2091 | * the page. | |
2092 | * | |
2093 | * Repeated asymmetric copy operations may be done. If the | |
2094 | * original object has not been changed since the last copy, its | |
2095 | * copy object can be reused. Otherwise, a new copy object can be | |
2096 | * inserted between the original object and its previous copy | |
2097 | * object. Since any copy object is read-only, this cannot affect | |
2098 | * affect the contents of the previous copy object. | |
2099 | * | |
2100 | * Note that a copy object is higher in the object tree than the | |
2101 | * original object; therefore, use of the copy object recorded in | |
2102 | * the original object must be done carefully, to avoid deadlock. | |
2103 | */ | |
2104 | ||
2105 | Retry: | |
2106 | vm_object_lock(src_object); | |
2107 | ||
2108 | /* | |
2109 | * See whether we can reuse the result of a previous | |
2110 | * copy operation. | |
2111 | */ | |
2112 | ||
2113 | old_copy = src_object->copy; | |
2114 | if (old_copy != VM_OBJECT_NULL) { | |
2115 | /* | |
2116 | * Try to get the locks (out of order) | |
2117 | */ | |
2118 | if (!vm_object_lock_try(old_copy)) { | |
2119 | vm_object_unlock(src_object); | |
2120 | mutex_pause(); | |
2121 | ||
2122 | /* Heisenberg Rules */ | |
2123 | copy_delayed_lock_collisions++; | |
2124 | if (collisions++ == 0) | |
2125 | copy_delayed_lock_contention++; | |
2126 | ||
2127 | if (collisions > copy_delayed_max_collisions) | |
2128 | copy_delayed_max_collisions = collisions; | |
2129 | ||
2130 | goto Retry; | |
2131 | } | |
2132 | ||
2133 | /* | |
2134 | * Determine whether the old copy object has | |
2135 | * been modified. | |
2136 | */ | |
2137 | ||
2138 | if (old_copy->resident_page_count == 0 && | |
2139 | !old_copy->pager_created) { | |
2140 | /* | |
2141 | * It has not been modified. | |
2142 | * | |
2143 | * Return another reference to | |
2144 | * the existing copy-object. | |
2145 | */ | |
2146 | assert(old_copy->ref_count > 0); | |
2147 | old_copy->ref_count++; | |
2148 | ||
2149 | if (old_copy->size < src_offset+size) | |
2150 | old_copy->size = src_offset+size; | |
2151 | ||
2152 | #if TASK_SWAPPER | |
2153 | /* | |
2154 | * We have to reproduce some of the code from | |
2155 | * vm_object_res_reference because we've taken | |
2156 | * the locks out of order here, and deadlock | |
2157 | * would result if we simply called that function. | |
2158 | */ | |
2159 | if (++old_copy->res_count == 1) { | |
2160 | assert(old_copy->shadow == src_object); | |
2161 | vm_object_res_reference(src_object); | |
2162 | } | |
2163 | #endif /* TASK_SWAPPER */ | |
2164 | ||
2165 | vm_object_unlock(old_copy); | |
2166 | vm_object_unlock(src_object); | |
2167 | ||
2168 | if (new_copy != VM_OBJECT_NULL) { | |
2169 | vm_object_unlock(new_copy); | |
2170 | vm_object_deallocate(new_copy); | |
2171 | } | |
2172 | ||
2173 | return(old_copy); | |
2174 | } | |
2175 | if (new_copy == VM_OBJECT_NULL) { | |
2176 | vm_object_unlock(old_copy); | |
2177 | vm_object_unlock(src_object); | |
2178 | new_copy = vm_object_allocate(src_offset + size); | |
2179 | vm_object_lock(new_copy); | |
2180 | goto Retry; | |
2181 | } | |
2182 | ||
2183 | /* | |
2184 | * Adjust the size argument so that the newly-created | |
2185 | * copy object will be large enough to back either the | |
2186 | * new old copy object or the new mapping. | |
2187 | */ | |
2188 | if (old_copy->size > src_offset+size) | |
2189 | size = old_copy->size - src_offset; | |
2190 | ||
2191 | /* | |
2192 | * The copy-object is always made large enough to | |
2193 | * completely shadow the original object, since | |
2194 | * it may have several users who want to shadow | |
2195 | * the original object at different points. | |
2196 | */ | |
2197 | ||
2198 | assert((old_copy->shadow == src_object) && | |
2199 | (old_copy->shadow_offset == (vm_object_offset_t) 0)); | |
2200 | ||
2201 | /* | |
2202 | * Make the old copy-object shadow the new one. | |
2203 | * It will receive no more pages from the original | |
2204 | * object. | |
2205 | */ | |
2206 | ||
2207 | src_object->ref_count--; /* remove ref. from old_copy */ | |
2208 | assert(src_object->ref_count > 0); | |
2209 | old_copy->shadow = new_copy; | |
2210 | assert(new_copy->ref_count > 0); | |
2211 | new_copy->ref_count++; /* for old_copy->shadow ref. */ | |
2212 | ||
2213 | #if TASK_SWAPPER | |
2214 | if (old_copy->res_count) { | |
2215 | VM_OBJ_RES_INCR(new_copy); | |
2216 | VM_OBJ_RES_DECR(src_object); | |
2217 | } | |
2218 | #endif | |
2219 | ||
2220 | vm_object_unlock(old_copy); /* done with old_copy */ | |
2221 | } else if (new_copy == VM_OBJECT_NULL) { | |
2222 | vm_object_unlock(src_object); | |
2223 | new_copy = vm_object_allocate(src_offset + size); | |
2224 | vm_object_lock(new_copy); | |
2225 | goto Retry; | |
2226 | } | |
2227 | ||
2228 | /* | |
2229 | * Readjust the copy-object size if necessary. | |
2230 | */ | |
2231 | copy_size = new_copy->size; | |
2232 | if (copy_size < src_offset+size) { | |
2233 | copy_size = src_offset+size; | |
2234 | new_copy->size = copy_size; | |
2235 | } | |
2236 | ||
2237 | /* | |
2238 | * Point the new copy at the existing object. | |
2239 | */ | |
2240 | ||
2241 | new_copy->shadow = src_object; | |
2242 | new_copy->shadow_offset = 0; | |
2243 | new_copy->shadowed = TRUE; /* caller must set needs_copy */ | |
2244 | assert(src_object->ref_count > 0); | |
2245 | src_object->ref_count++; | |
2246 | VM_OBJ_RES_INCR(src_object); | |
2247 | src_object->copy = new_copy; | |
2248 | vm_object_unlock(new_copy); | |
2249 | ||
2250 | /* | |
2251 | * Mark all (current) pages of the existing object copy-on-write. | |
2252 | * This object may have a shadow chain below it, but | |
2253 | * those pages will already be marked copy-on-write. | |
2254 | */ | |
2255 | ||
2256 | vm_object_paging_wait(src_object, THREAD_UNINT); | |
2257 | copy_delayed_protect_iterate++; | |
2258 | queue_iterate(&src_object->memq, p, vm_page_t, listq) { | |
2259 | if (!p->fictitious) | |
2260 | pmap_page_protect(p->phys_addr, | |
2261 | (VM_PROT_ALL & ~VM_PROT_WRITE & | |
2262 | ~p->page_lock)); | |
2263 | } | |
2264 | vm_object_unlock(src_object); | |
2265 | XPR(XPR_VM_OBJECT, | |
2266 | "vm_object_copy_delayed: used copy object %X for source %X\n", | |
2267 | (integer_t)new_copy, (integer_t)src_object, 0, 0, 0); | |
2268 | ||
2269 | return(new_copy); | |
2270 | } | |
2271 | ||
2272 | /* | |
2273 | * Routine: vm_object_copy_strategically | |
2274 | * | |
2275 | * Purpose: | |
2276 | * Perform a copy according to the source object's | |
2277 | * declared strategy. This operation may block, | |
2278 | * and may be interrupted. | |
2279 | */ | |
2280 | kern_return_t | |
2281 | vm_object_copy_strategically( | |
2282 | register vm_object_t src_object, | |
2283 | vm_object_offset_t src_offset, | |
2284 | vm_object_size_t size, | |
2285 | vm_object_t *dst_object, /* OUT */ | |
2286 | vm_object_offset_t *dst_offset, /* OUT */ | |
2287 | boolean_t *dst_needs_copy) /* OUT */ | |
2288 | { | |
2289 | boolean_t result; | |
2290 | boolean_t interruptible = THREAD_ABORTSAFE; /* XXX */ | |
2291 | memory_object_copy_strategy_t copy_strategy; | |
2292 | ||
2293 | assert(src_object != VM_OBJECT_NULL); | |
2294 | ||
2295 | vm_object_lock(src_object); | |
2296 | ||
2297 | /* | |
2298 | * The copy strategy is only valid if the memory manager | |
2299 | * is "ready". Internal objects are always ready. | |
2300 | */ | |
2301 | ||
2302 | while (!src_object->internal && !src_object->pager_ready) { | |
2303 | ||
2304 | vm_object_wait( src_object, | |
2305 | VM_OBJECT_EVENT_PAGER_READY, | |
2306 | interruptible); | |
2307 | if (interruptible && | |
2308 | (current_thread()->wait_result != THREAD_AWAKENED)) { | |
2309 | *dst_object = VM_OBJECT_NULL; | |
2310 | *dst_offset = 0; | |
2311 | *dst_needs_copy = FALSE; | |
2312 | return(MACH_SEND_INTERRUPTED); | |
2313 | } | |
2314 | vm_object_lock(src_object); | |
2315 | } | |
2316 | ||
2317 | copy_strategy = src_object->copy_strategy; | |
2318 | ||
2319 | /* | |
2320 | * Use the appropriate copy strategy. | |
2321 | */ | |
2322 | ||
2323 | switch (copy_strategy) { | |
2324 | case MEMORY_OBJECT_COPY_NONE: | |
2325 | result = vm_object_copy_slowly(src_object, src_offset, size, | |
2326 | interruptible, dst_object); | |
2327 | if (result == KERN_SUCCESS) { | |
2328 | *dst_offset = 0; | |
2329 | *dst_needs_copy = FALSE; | |
2330 | } | |
2331 | break; | |
2332 | ||
2333 | case MEMORY_OBJECT_COPY_CALL: | |
2334 | result = vm_object_copy_call(src_object, src_offset, size, | |
2335 | dst_object); | |
2336 | if (result == KERN_SUCCESS) { | |
2337 | *dst_offset = src_offset; | |
2338 | *dst_needs_copy = TRUE; | |
2339 | } | |
2340 | break; | |
2341 | ||
2342 | case MEMORY_OBJECT_COPY_DELAY: | |
2343 | vm_object_unlock(src_object); | |
2344 | *dst_object = vm_object_copy_delayed(src_object, | |
2345 | src_offset, size); | |
2346 | *dst_offset = src_offset; | |
2347 | *dst_needs_copy = TRUE; | |
2348 | result = KERN_SUCCESS; | |
2349 | break; | |
2350 | ||
2351 | case MEMORY_OBJECT_COPY_SYMMETRIC: | |
2352 | XPR(XPR_VM_OBJECT, "v_o_c_strategically obj 0x%x off 0x%x size 0x%x\n",(natural_t)src_object, src_offset, size, 0, 0); | |
2353 | vm_object_unlock(src_object); | |
2354 | result = KERN_MEMORY_RESTART_COPY; | |
2355 | break; | |
2356 | ||
2357 | default: | |
2358 | panic("copy_strategically: bad strategy"); | |
2359 | result = KERN_INVALID_ARGUMENT; | |
2360 | } | |
2361 | return(result); | |
2362 | } | |
2363 | ||
2364 | /* | |
2365 | * vm_object_shadow: | |
2366 | * | |
2367 | * Create a new object which is backed by the | |
2368 | * specified existing object range. The source | |
2369 | * object reference is deallocated. | |
2370 | * | |
2371 | * The new object and offset into that object | |
2372 | * are returned in the source parameters. | |
2373 | */ | |
2374 | boolean_t vm_object_shadow_check = FALSE; | |
2375 | ||
2376 | boolean_t | |
2377 | vm_object_shadow( | |
2378 | vm_object_t *object, /* IN/OUT */ | |
2379 | vm_object_offset_t *offset, /* IN/OUT */ | |
2380 | vm_object_size_t length) | |
2381 | { | |
2382 | register vm_object_t source; | |
2383 | register vm_object_t result; | |
2384 | ||
2385 | source = *object; | |
2386 | assert(source->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC); | |
2387 | ||
2388 | /* | |
2389 | * Determine if we really need a shadow. | |
2390 | */ | |
2391 | ||
2392 | if (vm_object_shadow_check && source->ref_count == 1 && | |
2393 | (source->shadow == VM_OBJECT_NULL || | |
2394 | source->shadow->copy == VM_OBJECT_NULL)) | |
2395 | { | |
2396 | source->shadowed = FALSE; | |
2397 | return FALSE; | |
2398 | } | |
2399 | ||
2400 | /* | |
2401 | * Allocate a new object with the given length | |
2402 | */ | |
2403 | ||
2404 | if ((result = vm_object_allocate(length)) == VM_OBJECT_NULL) | |
2405 | panic("vm_object_shadow: no object for shadowing"); | |
2406 | ||
2407 | /* | |
2408 | * The new object shadows the source object, adding | |
2409 | * a reference to it. Our caller changes his reference | |
2410 | * to point to the new object, removing a reference to | |
2411 | * the source object. Net result: no change of reference | |
2412 | * count. | |
2413 | */ | |
2414 | result->shadow = source; | |
2415 | ||
2416 | /* | |
2417 | * Store the offset into the source object, | |
2418 | * and fix up the offset into the new object. | |
2419 | */ | |
2420 | ||
2421 | result->shadow_offset = *offset; | |
2422 | ||
2423 | /* | |
2424 | * Return the new things | |
2425 | */ | |
2426 | ||
2427 | *offset = 0; | |
2428 | *object = result; | |
2429 | return TRUE; | |
2430 | } | |
2431 | ||
2432 | /* | |
2433 | * The relationship between vm_object structures and | |
2434 | * the memory_object ports requires careful synchronization. | |
2435 | * | |
2436 | * All associations are created by vm_object_enter. All three | |
2437 | * port fields are filled in, as follows: | |
2438 | * pager: the memory_object port itself, supplied by | |
2439 | * the user requesting a mapping (or the kernel, | |
2440 | * when initializing internal objects); the | |
2441 | * kernel simulates holding send rights by keeping | |
2442 | * a port reference; | |
2443 | * pager_request: | |
2444 | * the memory object control port, | |
2445 | * created by the kernel; the kernel holds | |
2446 | * receive (and ownership) rights to this | |
2447 | * port, but no other references. | |
2448 | * All of the ports are referenced by their global names. | |
2449 | * | |
2450 | * When initialization is complete, the "initialized" field | |
2451 | * is asserted. Other mappings using a particular memory object, | |
2452 | * and any references to the vm_object gained through the | |
2453 | * port association must wait for this initialization to occur. | |
2454 | * | |
2455 | * In order to allow the memory manager to set attributes before | |
2456 | * requests (notably virtual copy operations, but also data or | |
2457 | * unlock requests) are made, a "ready" attribute is made available. | |
2458 | * Only the memory manager may affect the value of this attribute. | |
2459 | * Its value does not affect critical kernel functions, such as | |
2460 | * internal object initialization or destruction. [Furthermore, | |
2461 | * memory objects created by the kernel are assumed to be ready | |
2462 | * immediately; the default memory manager need not explicitly | |
2463 | * set the "ready" attribute.] | |
2464 | * | |
2465 | * [Both the "initialized" and "ready" attribute wait conditions | |
2466 | * use the "pager" field as the wait event.] | |
2467 | * | |
2468 | * The port associations can be broken down by any of the | |
2469 | * following routines: | |
2470 | * vm_object_terminate: | |
2471 | * No references to the vm_object remain, and | |
2472 | * the object cannot (or will not) be cached. | |
2473 | * This is the normal case, and is done even | |
2474 | * though one of the other cases has already been | |
2475 | * done. | |
2476 | * vm_object_destroy: | |
2477 | * The memory_object port has been destroyed, | |
2478 | * meaning that the kernel cannot flush dirty | |
2479 | * pages or request new data or unlock existing | |
2480 | * data. | |
2481 | * memory_object_destroy: | |
2482 | * The memory manager has requested that the | |
2483 | * kernel relinquish rights to the memory object | |
2484 | * port. [The memory manager may not want to | |
2485 | * destroy the port, but may wish to refuse or | |
2486 | * tear down existing memory mappings.] | |
2487 | * Each routine that breaks an association must break all of | |
2488 | * them at once. At some later time, that routine must clear | |
2489 | * the vm_object port fields and release the port rights. | |
2490 | * [Furthermore, each routine must cope with the simultaneous | |
2491 | * or previous operations of the others.] | |
2492 | * | |
2493 | * In addition to the lock on the object, the vm_object_cache_lock | |
2494 | * governs the port associations. References gained through the | |
2495 | * port association require use of the cache lock. | |
2496 | * | |
2497 | * Because the port fields may be cleared spontaneously, they | |
2498 | * cannot be used to determine whether a memory object has | |
2499 | * ever been associated with a particular vm_object. [This | |
2500 | * knowledge is important to the shadow object mechanism.] | |
2501 | * For this reason, an additional "created" attribute is | |
2502 | * provided. | |
2503 | * | |
2504 | * During various paging operations, the port values found in the | |
2505 | * vm_object must be valid. To prevent these port rights from being | |
2506 | * released, and to prevent the port associations from changing | |
2507 | * (other than being removed, i.e., made null), routines may use | |
2508 | * the vm_object_paging_begin/end routines [actually, macros]. | |
2509 | * The implementation uses the "paging_in_progress" and "wanted" fields. | |
2510 | * [Operations that alter the validity of the port values include the | |
2511 | * termination routines and vm_object_collapse.] | |
2512 | */ | |
2513 | ||
2514 | #define IKOT_PAGER_LOOKUP_TYPE IKOT_PAGING_REQUEST | |
2515 | ||
2516 | vm_object_t | |
2517 | vm_object_lookup( | |
2518 | ipc_port_t port) | |
2519 | { | |
2520 | vm_object_t object; | |
2521 | ||
2522 | start_over: | |
2523 | object = VM_OBJECT_NULL; | |
2524 | ||
2525 | if (IP_VALID(port)) { | |
2526 | vm_object_cache_lock(); | |
2527 | ip_lock(port); | |
2528 | if (ip_active(port) && | |
2529 | (ip_kotype(port) == IKOT_PAGER_LOOKUP_TYPE)) { | |
2530 | object = (vm_object_t) port->ip_kobject; | |
2531 | if (!vm_object_lock_try(object)) { | |
2532 | /* | |
2533 | * failed to acquire object lock. Drop the | |
2534 | * other two locks and wait for it, then go | |
2535 | * back and start over in case the port | |
2536 | * associations changed in the interim. | |
2537 | */ | |
2538 | ip_unlock(port); | |
2539 | vm_object_cache_unlock(); | |
2540 | vm_object_lock(object); | |
2541 | vm_object_unlock(object); | |
2542 | goto start_over; | |
2543 | } | |
2544 | ||
2545 | assert(object->alive); | |
2546 | ||
2547 | if((object->ref_count == 0) && (!object->terminating)){ | |
2548 | queue_remove(&vm_object_cached_list, object, | |
2549 | vm_object_t, cached_list); | |
2550 | vm_object_cached_count--; | |
2551 | XPR(XPR_VM_OBJECT_CACHE, | |
2552 | "vm_object_lookup: removing %X, head (%X, %X)\n", | |
2553 | (integer_t)object, | |
2554 | (integer_t)vm_object_cached_list.next, | |
2555 | (integer_t)vm_object_cached_list.prev, 0,0); | |
2556 | } | |
2557 | ||
2558 | object->ref_count++; | |
2559 | vm_object_res_reference(object); | |
2560 | vm_object_unlock(object); | |
2561 | } | |
2562 | ip_unlock(port); | |
2563 | vm_object_cache_unlock(); | |
2564 | } | |
2565 | ||
2566 | return object; | |
2567 | } | |
2568 | ||
2569 | ||
2570 | ||
2571 | void | |
2572 | vm_object_destroy( | |
2573 | ipc_port_t pager) | |
2574 | { | |
2575 | vm_object_t object; | |
2576 | vm_object_hash_entry_t entry; | |
2577 | pager_request_t old_pager_request; | |
2578 | ||
2579 | /* | |
2580 | * Perform essentially the same operations as in vm_object_lookup, | |
2581 | * except that this time we look up based on the memory_object | |
2582 | * port, not the control port. | |
2583 | */ | |
2584 | vm_object_cache_lock(); | |
2585 | entry = vm_object_hash_lookup(pager, FALSE); | |
2586 | if (entry == VM_OBJECT_HASH_ENTRY_NULL || | |
2587 | entry->object == VM_OBJECT_NULL) { | |
2588 | vm_object_cache_unlock(); | |
2589 | return; | |
2590 | } | |
2591 | ||
2592 | object = entry->object; | |
2593 | entry->object = VM_OBJECT_NULL; | |
2594 | ||
2595 | vm_object_lock(object); | |
2596 | if (object->ref_count == 0) { | |
2597 | XPR(XPR_VM_OBJECT_CACHE, | |
2598 | "vm_object_destroy: removing %x from cache, head (%x, %x)\n", | |
2599 | (integer_t)object, | |
2600 | (integer_t)vm_object_cached_list.next, | |
2601 | (integer_t)vm_object_cached_list.prev, 0,0); | |
2602 | ||
2603 | queue_remove(&vm_object_cached_list, object, | |
2604 | vm_object_t, cached_list); | |
2605 | vm_object_cached_count--; | |
2606 | } | |
2607 | object->ref_count++; | |
2608 | vm_object_res_reference(object); | |
2609 | ||
2610 | object->can_persist = FALSE; | |
2611 | ||
2612 | assert(object->pager == pager); | |
2613 | ||
2614 | /* | |
2615 | * Remove the port associations. | |
2616 | * | |
2617 | * Note that the memory_object itself is dead, so | |
2618 | * we don't bother with it. | |
2619 | */ | |
2620 | ||
2621 | object->pager = IP_NULL; | |
2622 | vm_object_remove(object); | |
2623 | ||
2624 | old_pager_request = object->pager_request; | |
2625 | ||
2626 | object->pager_request = PAGER_REQUEST_NULL; | |
2627 | ||
2628 | vm_object_unlock(object); | |
2629 | vm_object_cache_unlock(); | |
2630 | ||
2631 | vm_object_pager_wakeup(pager); | |
2632 | ||
2633 | /* | |
2634 | * Clean up the port references. Note that there's no | |
2635 | * point in trying the memory_object_terminate call | |
2636 | * because the memory_object itself is dead. | |
2637 | */ | |
2638 | ||
2639 | ipc_port_release_send(pager); | |
2640 | ||
2641 | if ((ipc_port_t)old_pager_request != IP_NULL) | |
2642 | ipc_port_dealloc_kernel((ipc_port_t)old_pager_request); | |
2643 | ||
2644 | /* | |
2645 | * Restart pending page requests | |
2646 | */ | |
2647 | vm_object_lock(object); | |
2648 | ||
2649 | vm_object_abort_activity(object); | |
2650 | ||
2651 | vm_object_unlock(object); | |
2652 | ||
2653 | /* | |
2654 | * Lose the object reference. | |
2655 | */ | |
2656 | ||
2657 | vm_object_deallocate(object); | |
2658 | } | |
2659 | ||
2660 | /* | |
2661 | * Routine: vm_object_enter | |
2662 | * Purpose: | |
2663 | * Find a VM object corresponding to the given | |
2664 | * pager; if no such object exists, create one, | |
2665 | * and initialize the pager. | |
2666 | */ | |
2667 | vm_object_t | |
2668 | vm_object_enter( | |
2669 | ipc_port_t pager, | |
2670 | vm_object_size_t size, | |
2671 | boolean_t internal, | |
2672 | boolean_t init, | |
2673 | boolean_t check_named) | |
2674 | { | |
2675 | register vm_object_t object; | |
2676 | vm_object_t new_object; | |
2677 | boolean_t must_init; | |
2678 | ipc_port_t pager_request; | |
2679 | vm_object_hash_entry_t entry, new_entry; | |
2680 | #ifdef MACH_BSD | |
2681 | kern_return_t vnode_pager_init( ipc_port_t, ipc_port_t, vm_object_size_t); | |
2682 | #endif | |
2683 | ||
2684 | if (!IP_VALID(pager)) | |
2685 | return(vm_object_allocate(size)); | |
2686 | ||
2687 | new_object = VM_OBJECT_NULL; | |
2688 | new_entry = VM_OBJECT_HASH_ENTRY_NULL; | |
2689 | must_init = init; | |
2690 | ||
2691 | /* | |
2692 | * Look for an object associated with this port. | |
2693 | */ | |
2694 | ||
2695 | restart: | |
2696 | vm_object_cache_lock(); | |
2697 | for (;;) { | |
2698 | entry = vm_object_hash_lookup(pager, FALSE); | |
2699 | ||
2700 | /* | |
2701 | * If a previous object is being terminated, | |
2702 | * we must wait for the termination message | |
2703 | * to be queued. | |
2704 | * | |
2705 | * We set kobject to a non-null value to let the | |
2706 | * terminator know that someone is waiting. | |
2707 | * Among the possibilities is that the port | |
2708 | * could die while we're waiting. Must restart | |
2709 | * instead of continuing the loop. | |
2710 | */ | |
2711 | ||
2712 | if (entry != VM_OBJECT_HASH_ENTRY_NULL) { | |
2713 | if (entry->object != VM_OBJECT_NULL) { | |
2714 | if(check_named) { | |
2715 | if(entry->object->named) { | |
2716 | vm_object_cache_unlock(); | |
2717 | return(entry->object); | |
2718 | } | |
2719 | } | |
2720 | break; | |
2721 | } | |
2722 | ||
2723 | entry->waiting = TRUE; | |
2724 | assert_wait((event_t) pager, THREAD_UNINT); | |
2725 | vm_object_cache_unlock(); | |
2726 | thread_block((void (*)(void))0); | |
2727 | goto restart; | |
2728 | } | |
2729 | ||
2730 | /* | |
2731 | * We must unlock to create a new object; | |
2732 | * if we do so, we must try the lookup again. | |
2733 | */ | |
2734 | ||
2735 | if (new_object == VM_OBJECT_NULL) { | |
2736 | vm_object_cache_unlock(); | |
2737 | assert(new_entry == VM_OBJECT_HASH_ENTRY_NULL); | |
2738 | new_entry = vm_object_hash_entry_alloc(pager); | |
2739 | new_object = vm_object_allocate(size); | |
2740 | vm_object_cache_lock(); | |
2741 | } else { | |
2742 | /* | |
2743 | * Lookup failed twice, and we have something | |
2744 | * to insert; set the object. | |
2745 | */ | |
2746 | ||
2747 | if (entry == VM_OBJECT_HASH_ENTRY_NULL) { | |
2748 | vm_object_hash_insert(new_entry); | |
2749 | entry = new_entry; | |
2750 | new_entry = VM_OBJECT_HASH_ENTRY_NULL; | |
2751 | } | |
2752 | ||
2753 | entry->object = new_object; | |
2754 | new_object = VM_OBJECT_NULL; | |
2755 | must_init = TRUE; | |
2756 | } | |
2757 | } | |
2758 | ||
2759 | object = entry->object; | |
2760 | assert(object != VM_OBJECT_NULL); | |
2761 | ||
2762 | if (!must_init) { | |
2763 | vm_object_lock(object); | |
2764 | assert(object->pager_created); | |
2765 | assert(!internal || object->internal); | |
2766 | if (check_named) | |
2767 | object->named = TRUE; | |
2768 | if (object->ref_count == 0) { | |
2769 | XPR(XPR_VM_OBJECT_CACHE, | |
2770 | "vm_object_enter: removing %x from cache, head (%x, %x)\n", | |
2771 | (integer_t)object, | |
2772 | (integer_t)vm_object_cached_list.next, | |
2773 | (integer_t)vm_object_cached_list.prev, 0,0); | |
2774 | queue_remove(&vm_object_cached_list, object, | |
2775 | vm_object_t, cached_list); | |
2776 | vm_object_cached_count--; | |
2777 | } | |
2778 | object->ref_count++; | |
2779 | vm_object_res_reference(object); | |
2780 | vm_object_unlock(object); | |
2781 | ||
2782 | VM_STAT(hits++); | |
2783 | } | |
2784 | assert(object->ref_count > 0); | |
2785 | ||
2786 | VM_STAT(lookups++); | |
2787 | ||
2788 | vm_object_cache_unlock(); | |
2789 | ||
2790 | XPR(XPR_VM_OBJECT, | |
2791 | "vm_o_enter: pager 0x%x obj 0x%x must_init %d\n", | |
2792 | (integer_t)pager, (integer_t)object, must_init, 0, 0); | |
2793 | ||
2794 | /* | |
2795 | * If we raced to create a vm_object but lost, let's | |
2796 | * throw away ours. | |
2797 | */ | |
2798 | ||
2799 | if (new_object != VM_OBJECT_NULL) | |
2800 | vm_object_deallocate(new_object); | |
2801 | ||
2802 | if (new_entry != VM_OBJECT_HASH_ENTRY_NULL) | |
2803 | vm_object_hash_entry_free(new_entry); | |
2804 | ||
2805 | if (must_init) { | |
2806 | ||
2807 | /* | |
2808 | * Allocate request port. | |
2809 | */ | |
2810 | ||
2811 | pager_request = ipc_port_alloc_kernel(); | |
2812 | assert (pager_request != IP_NULL); | |
2813 | ipc_kobject_set(pager_request, (ipc_kobject_t) object, | |
2814 | IKOT_PAGING_REQUEST); | |
2815 | ||
2816 | vm_object_lock(object); | |
2817 | ||
2818 | /* | |
2819 | * Copy the naked send right we were given. | |
2820 | */ | |
2821 | ||
2822 | pager = ipc_port_copy_send(pager); | |
2823 | if (!IP_VALID(pager)) | |
2824 | panic("vm_object_enter: port died"); /* XXX */ | |
2825 | ||
2826 | object->pager_created = TRUE; | |
2827 | object->pager = pager; | |
2828 | object->internal = internal; | |
2829 | object->pager_trusted = internal; | |
2830 | if (!internal) { | |
2831 | /* copy strategy invalid until set by memory manager */ | |
2832 | object->copy_strategy = MEMORY_OBJECT_COPY_INVALID; | |
2833 | } | |
2834 | object->pager_request = pager_request; | |
2835 | object->pager_ready = FALSE; | |
2836 | ||
2837 | if (check_named) | |
2838 | object->named = TRUE; | |
2839 | vm_object_unlock(object); | |
2840 | ||
2841 | /* | |
2842 | * Let the pager know we're using it. | |
2843 | */ | |
2844 | ||
2845 | #ifdef MACH_BSD | |
2846 | if(((rpc_subsystem_t)pager_mux_hash_lookup(pager)) == | |
2847 | ((rpc_subsystem_t) &vnode_pager_workaround)) { | |
2848 | (void) vnode_pager_init(pager, | |
2849 | object->pager_request, | |
2850 | PAGE_SIZE); | |
2851 | } else { | |
2852 | (void) memory_object_init(pager, | |
2853 | object->pager_request, | |
2854 | PAGE_SIZE); | |
2855 | } | |
2856 | #else | |
2857 | (void) memory_object_init(pager, | |
2858 | object->pager_request, | |
2859 | PAGE_SIZE); | |
2860 | #endif | |
2861 | ||
2862 | vm_object_lock(object); | |
2863 | if (internal) { | |
2864 | object->pager_ready = TRUE; | |
2865 | vm_object_wakeup(object, VM_OBJECT_EVENT_PAGER_READY); | |
2866 | } | |
2867 | ||
2868 | object->pager_initialized = TRUE; | |
2869 | vm_object_wakeup(object, VM_OBJECT_EVENT_INITIALIZED); | |
2870 | } else { | |
2871 | vm_object_lock(object); | |
2872 | } | |
2873 | ||
2874 | /* | |
2875 | * [At this point, the object must be locked] | |
2876 | */ | |
2877 | ||
2878 | /* | |
2879 | * Wait for the work above to be done by the first | |
2880 | * thread to map this object. | |
2881 | */ | |
2882 | ||
2883 | while (!object->pager_initialized) { | |
2884 | vm_object_wait( object, | |
2885 | VM_OBJECT_EVENT_INITIALIZED, | |
2886 | THREAD_UNINT); | |
2887 | vm_object_lock(object); | |
2888 | } | |
2889 | vm_object_unlock(object); | |
2890 | ||
2891 | XPR(XPR_VM_OBJECT, | |
2892 | "vm_object_enter: vm_object %x, memory_object %x, internal %d\n", | |
2893 | (integer_t)object, (integer_t)object->pager, internal, 0,0); | |
2894 | return(object); | |
2895 | } | |
2896 | ||
2897 | /* | |
2898 | * Routine: vm_object_pager_create | |
2899 | * Purpose: | |
2900 | * Create a memory object for an internal object. | |
2901 | * In/out conditions: | |
2902 | * The object is locked on entry and exit; | |
2903 | * it may be unlocked within this call. | |
2904 | * Limitations: | |
2905 | * Only one thread may be performing a | |
2906 | * vm_object_pager_create on an object at | |
2907 | * a time. Presumably, only the pageout | |
2908 | * daemon will be using this routine. | |
2909 | */ | |
2910 | ||
2911 | void | |
2912 | vm_object_pager_create( | |
2913 | register vm_object_t object) | |
2914 | { | |
2915 | ipc_port_t pager; | |
2916 | vm_object_hash_entry_t entry; | |
2917 | #if MACH_PAGEMAP | |
2918 | vm_object_size_t size; | |
2919 | vm_external_map_t map; | |
2920 | #endif /* MACH_PAGEMAP */ | |
2921 | ||
2922 | XPR(XPR_VM_OBJECT, "vm_object_pager_create, object 0x%X\n", | |
2923 | (integer_t)object, 0,0,0,0); | |
2924 | ||
2925 | if (memory_manager_default_check() != KERN_SUCCESS) | |
2926 | return; | |
2927 | ||
2928 | /* | |
2929 | * Prevent collapse or termination by holding a paging reference | |
2930 | */ | |
2931 | ||
2932 | vm_object_paging_begin(object); | |
2933 | if (object->pager_created) { | |
2934 | /* | |
2935 | * Someone else got to it first... | |
2936 | * wait for them to finish initializing the ports | |
2937 | */ | |
2938 | while (!object->pager_initialized) { | |
2939 | vm_object_wait( object, | |
2940 | VM_OBJECT_EVENT_INITIALIZED, | |
2941 | THREAD_UNINT); | |
2942 | vm_object_lock(object); | |
2943 | } | |
2944 | vm_object_paging_end(object); | |
2945 | return; | |
2946 | } | |
2947 | ||
2948 | /* | |
2949 | * Indicate that a memory object has been assigned | |
2950 | * before dropping the lock, to prevent a race. | |
2951 | */ | |
2952 | ||
2953 | object->pager_created = TRUE; | |
2954 | object->paging_offset = 0; | |
2955 | ||
2956 | #if MACH_PAGEMAP | |
2957 | size = object->size; | |
2958 | #endif /* MACH_PAGEMAP */ | |
2959 | vm_object_unlock(object); | |
2960 | ||
2961 | #if MACH_PAGEMAP | |
2962 | map = vm_external_create(size); | |
2963 | vm_object_lock(object); | |
2964 | assert(object->size == size); | |
2965 | object->existence_map = map; | |
2966 | vm_object_unlock(object); | |
2967 | #endif /* MACH_PAGEMAP */ | |
2968 | ||
2969 | /* | |
2970 | * Create the pager ports, and associate them with this object. | |
2971 | * | |
2972 | * We make the port association here so that vm_object_enter() | |
2973 | * can look up the object to complete initializing it. No | |
2974 | * user will ever map this object. | |
2975 | */ | |
2976 | { | |
2977 | ipc_port_t DMM; | |
2978 | vm_size_t cluster_size; | |
2979 | ||
2980 | /* acquire a naked send right for the DMM */ | |
2981 | DMM = memory_manager_default_reference(&cluster_size); | |
2982 | assert(cluster_size >= PAGE_SIZE); | |
2983 | ||
2984 | object->cluster_size = cluster_size; /* XXX ??? */ | |
2985 | assert(object->temporary); | |
2986 | ||
2987 | /* consumes the naked send right for DMM */ | |
2988 | (void) memory_object_create(DMM, &pager, object->size); | |
2989 | assert(IP_VALID(pager)); | |
2990 | } | |
2991 | ||
2992 | entry = vm_object_hash_entry_alloc(pager); | |
2993 | ||
2994 | vm_object_cache_lock(); | |
2995 | vm_object_hash_insert(entry); | |
2996 | ||
2997 | entry->object = object; | |
2998 | vm_object_cache_unlock(); | |
2999 | ||
3000 | /* | |
3001 | * A naked send right was returned by | |
3002 | * memory_object_create(), and it is | |
3003 | * copied by vm_object_enter(). | |
3004 | */ | |
3005 | ||
3006 | if (vm_object_enter(pager, object->size, TRUE, TRUE, FALSE) != object) | |
3007 | panic("vm_object_pager_create: mismatch"); | |
3008 | ||
3009 | /* | |
3010 | * Drop the naked send right. | |
3011 | */ | |
3012 | ipc_port_release_send(pager); | |
3013 | ||
3014 | vm_object_lock(object); | |
3015 | ||
3016 | /* | |
3017 | * Release the paging reference | |
3018 | */ | |
3019 | vm_object_paging_end(object); | |
3020 | } | |
3021 | ||
3022 | /* | |
3023 | * Routine: vm_object_remove | |
3024 | * Purpose: | |
3025 | * Eliminate the pager/object association | |
3026 | * for this pager. | |
3027 | * Conditions: | |
3028 | * The object cache must be locked. | |
3029 | */ | |
3030 | void | |
3031 | vm_object_remove( | |
3032 | vm_object_t object) | |
3033 | { | |
3034 | ipc_port_t port; | |
3035 | ||
3036 | if ((port = object->pager) != IP_NULL) { | |
3037 | vm_object_hash_entry_t entry; | |
3038 | ||
3039 | entry = vm_object_hash_lookup(port, FALSE); | |
3040 | if (entry != VM_OBJECT_HASH_ENTRY_NULL) | |
3041 | entry->object = VM_OBJECT_NULL; | |
3042 | } | |
3043 | ||
3044 | if ((port = object->pager_request) != IP_NULL) { | |
3045 | if (ip_kotype(port) == IKOT_PAGING_REQUEST) | |
3046 | ipc_kobject_set(port, IKO_NULL, IKOT_NONE); | |
3047 | else if (ip_kotype(port) != IKOT_NONE) | |
3048 | panic("vm_object_remove: bad request port"); | |
3049 | } | |
3050 | } | |
3051 | ||
3052 | /* | |
3053 | * Global variables for vm_object_collapse(): | |
3054 | * | |
3055 | * Counts for normal collapses and bypasses. | |
3056 | * Debugging variables, to watch or disable collapse. | |
3057 | */ | |
3058 | long object_collapses = 0; | |
3059 | long object_bypasses = 0; | |
3060 | ||
3061 | boolean_t vm_object_collapse_allowed = TRUE; | |
3062 | boolean_t vm_object_bypass_allowed = TRUE; | |
3063 | ||
3064 | int vm_external_discarded; | |
3065 | int vm_external_collapsed; | |
3066 | /* | |
3067 | * vm_object_do_collapse: | |
3068 | * | |
3069 | * Collapse an object with the object backing it. | |
3070 | * Pages in the backing object are moved into the | |
3071 | * parent, and the backing object is deallocated. | |
3072 | * | |
3073 | * Both objects and the cache are locked; the page | |
3074 | * queues are unlocked. | |
3075 | * | |
3076 | */ | |
3077 | void | |
3078 | vm_object_do_collapse( | |
3079 | vm_object_t object, | |
3080 | vm_object_t backing_object) | |
3081 | { | |
3082 | vm_page_t p, pp; | |
3083 | vm_object_offset_t new_offset, backing_offset; | |
3084 | vm_object_size_t size; | |
3085 | ||
3086 | backing_offset = object->shadow_offset; | |
3087 | size = object->size; | |
3088 | ||
3089 | ||
3090 | /* | |
3091 | * Move all in-memory pages from backing_object | |
3092 | * to the parent. Pages that have been paged out | |
3093 | * will be overwritten by any of the parent's | |
3094 | * pages that shadow them. | |
3095 | */ | |
3096 | ||
3097 | while (!queue_empty(&backing_object->memq)) { | |
3098 | ||
3099 | p = (vm_page_t) queue_first(&backing_object->memq); | |
3100 | ||
3101 | new_offset = (p->offset - backing_offset); | |
3102 | ||
3103 | assert(!p->busy || p->absent); | |
3104 | ||
3105 | /* | |
3106 | * If the parent has a page here, or if | |
3107 | * this page falls outside the parent, | |
3108 | * dispose of it. | |
3109 | * | |
3110 | * Otherwise, move it as planned. | |
3111 | */ | |
3112 | ||
3113 | if (p->offset < backing_offset || new_offset >= size) { | |
3114 | VM_PAGE_FREE(p); | |
3115 | } else { | |
3116 | pp = vm_page_lookup(object, new_offset); | |
3117 | if (pp == VM_PAGE_NULL) { | |
3118 | ||
3119 | /* | |
3120 | * Parent now has no page. | |
3121 | * Move the backing object's page up. | |
3122 | */ | |
3123 | ||
3124 | vm_page_rename(p, object, new_offset); | |
3125 | #if MACH_PAGEMAP | |
3126 | } else if (pp->absent) { | |
3127 | ||
3128 | /* | |
3129 | * Parent has an absent page... | |
3130 | * it's not being paged in, so | |
3131 | * it must really be missing from | |
3132 | * the parent. | |
3133 | * | |
3134 | * Throw out the absent page... | |
3135 | * any faults looking for that | |
3136 | * page will restart with the new | |
3137 | * one. | |
3138 | */ | |
3139 | ||
3140 | VM_PAGE_FREE(pp); | |
3141 | vm_page_rename(p, object, new_offset); | |
3142 | #endif /* MACH_PAGEMAP */ | |
3143 | } else { | |
3144 | assert(! pp->absent); | |
3145 | ||
3146 | /* | |
3147 | * Parent object has a real page. | |
3148 | * Throw away the backing object's | |
3149 | * page. | |
3150 | */ | |
3151 | VM_PAGE_FREE(p); | |
3152 | } | |
3153 | } | |
3154 | } | |
3155 | ||
3156 | assert(object->pager == IP_NULL || backing_object->pager == IP_NULL); | |
3157 | ||
3158 | if (backing_object->pager != IP_NULL) { | |
3159 | vm_object_hash_entry_t entry; | |
3160 | ||
3161 | /* | |
3162 | * Move the pager from backing_object to object. | |
3163 | * | |
3164 | * XXX We're only using part of the paging space | |
3165 | * for keeps now... we ought to discard the | |
3166 | * unused portion. | |
3167 | */ | |
3168 | ||
3169 | object->pager = backing_object->pager; | |
3170 | entry = vm_object_hash_lookup(object->pager, FALSE); | |
3171 | assert(entry != VM_OBJECT_HASH_ENTRY_NULL); | |
3172 | entry->object = object; | |
3173 | object->pager_created = backing_object->pager_created; | |
3174 | object->pager_request = backing_object->pager_request; | |
3175 | object->pager_ready = backing_object->pager_ready; | |
3176 | object->pager_initialized = backing_object->pager_initialized; | |
3177 | object->cluster_size = backing_object->cluster_size; | |
3178 | object->paging_offset = | |
3179 | backing_object->paging_offset + backing_offset; | |
3180 | if (object->pager_request != IP_NULL) { | |
3181 | ipc_kobject_set(object->pager_request, | |
3182 | (ipc_kobject_t) object, | |
3183 | IKOT_PAGING_REQUEST); | |
3184 | } | |
3185 | } | |
3186 | ||
3187 | vm_object_cache_unlock(); | |
3188 | ||
3189 | object->paging_offset = backing_object->paging_offset + backing_offset; | |
3190 | ||
3191 | #if MACH_PAGEMAP | |
3192 | /* | |
3193 | * If the shadow offset is 0, the use the existence map from | |
3194 | * the backing object if there is one. If the shadow offset is | |
3195 | * not zero, toss it. | |
3196 | * | |
3197 | * XXX - If the shadow offset is not 0 then a bit copy is needed | |
3198 | * if the map is to be salvaged. For now, we just just toss the | |
3199 | * old map, giving the collapsed object no map. This means that | |
3200 | * the pager is invoked for zero fill pages. If analysis shows | |
3201 | * that this happens frequently and is a performance hit, then | |
3202 | * this code should be fixed to salvage the map. | |
3203 | */ | |
3204 | assert(object->existence_map == VM_EXTERNAL_NULL); | |
3205 | if (backing_offset || (size != backing_object->size)) { | |
3206 | vm_external_discarded++; | |
3207 | vm_external_destroy(backing_object->existence_map, | |
3208 | backing_object->size); | |
3209 | } | |
3210 | else { | |
3211 | vm_external_collapsed++; | |
3212 | object->existence_map = backing_object->existence_map; | |
3213 | } | |
3214 | backing_object->existence_map = VM_EXTERNAL_NULL; | |
3215 | #endif /* MACH_PAGEMAP */ | |
3216 | ||
3217 | /* | |
3218 | * Object now shadows whatever backing_object did. | |
3219 | * Note that the reference to backing_object->shadow | |
3220 | * moves from within backing_object to within object. | |
3221 | */ | |
3222 | ||
3223 | object->shadow = backing_object->shadow; | |
3224 | object->shadow_offset += backing_object->shadow_offset; | |
3225 | assert((object->shadow == VM_OBJECT_NULL) || | |
3226 | (object->shadow->copy == VM_OBJECT_NULL)); | |
3227 | ||
3228 | /* | |
3229 | * Discard backing_object. | |
3230 | * | |
3231 | * Since the backing object has no pages, no | |
3232 | * pager left, and no object references within it, | |
3233 | * all that is necessary is to dispose of it. | |
3234 | */ | |
3235 | ||
3236 | assert((backing_object->ref_count == 1) && | |
3237 | (backing_object->resident_page_count == 0) && | |
3238 | (backing_object->paging_in_progress == 0)); | |
3239 | ||
3240 | assert(backing_object->alive); | |
3241 | backing_object->alive = FALSE; | |
3242 | vm_object_unlock(backing_object); | |
3243 | ||
3244 | XPR(XPR_VM_OBJECT, "vm_object_collapse, collapsed 0x%X\n", | |
3245 | (integer_t)backing_object, 0,0,0,0); | |
3246 | ||
3247 | zfree(vm_object_zone, (vm_offset_t) backing_object); | |
3248 | ||
3249 | object_collapses++; | |
3250 | } | |
3251 | ||
3252 | void | |
3253 | vm_object_do_bypass( | |
3254 | vm_object_t object, | |
3255 | vm_object_t backing_object) | |
3256 | { | |
3257 | /* | |
3258 | * Make the parent shadow the next object | |
3259 | * in the chain. | |
3260 | */ | |
3261 | ||
3262 | #if TASK_SWAPPER | |
3263 | /* | |
3264 | * Do object reference in-line to | |
3265 | * conditionally increment shadow's | |
3266 | * residence count. If object is not | |
3267 | * resident, leave residence count | |
3268 | * on shadow alone. | |
3269 | */ | |
3270 | if (backing_object->shadow != VM_OBJECT_NULL) { | |
3271 | vm_object_lock(backing_object->shadow); | |
3272 | backing_object->shadow->ref_count++; | |
3273 | if (object->res_count != 0) | |
3274 | vm_object_res_reference(backing_object->shadow); | |
3275 | vm_object_unlock(backing_object->shadow); | |
3276 | } | |
3277 | #else /* TASK_SWAPPER */ | |
3278 | vm_object_reference(backing_object->shadow); | |
3279 | #endif /* TASK_SWAPPER */ | |
3280 | ||
3281 | object->shadow = backing_object->shadow; | |
3282 | object->shadow_offset += backing_object->shadow_offset; | |
3283 | ||
3284 | /* | |
3285 | * Backing object might have had a copy pointer | |
3286 | * to us. If it did, clear it. | |
3287 | */ | |
3288 | if (backing_object->copy == object) { | |
3289 | backing_object->copy = VM_OBJECT_NULL; | |
3290 | } | |
3291 | ||
3292 | /* | |
3293 | * Drop the reference count on backing_object. | |
3294 | #if TASK_SWAPPER | |
3295 | * Since its ref_count was at least 2, it | |
3296 | * will not vanish; so we don't need to call | |
3297 | * vm_object_deallocate. | |
3298 | * [FBDP: that doesn't seem to be true any more] | |
3299 | * | |
3300 | * The res_count on the backing object is | |
3301 | * conditionally decremented. It's possible | |
3302 | * (via vm_pageout_scan) to get here with | |
3303 | * a "swapped" object, which has a 0 res_count, | |
3304 | * in which case, the backing object res_count | |
3305 | * is already down by one. | |
3306 | #else | |
3307 | * Don't call vm_object_deallocate unless | |
3308 | * ref_count drops to zero. | |
3309 | * | |
3310 | * The ref_count can drop to zero here if the | |
3311 | * backing object could be bypassed but not | |
3312 | * collapsed, such as when the backing object | |
3313 | * is temporary and cachable. | |
3314 | #endif | |
3315 | */ | |
3316 | if (backing_object->ref_count > 1) { | |
3317 | backing_object->ref_count--; | |
3318 | #if TASK_SWAPPER | |
3319 | if (object->res_count != 0) | |
3320 | vm_object_res_deallocate(backing_object); | |
3321 | assert(backing_object->ref_count > 0); | |
3322 | #endif /* TASK_SWAPPER */ | |
3323 | vm_object_unlock(backing_object); | |
3324 | } else { | |
3325 | ||
3326 | /* | |
3327 | * Drop locks so that we can deallocate | |
3328 | * the backing object. | |
3329 | */ | |
3330 | ||
3331 | #if TASK_SWAPPER | |
3332 | if (object->res_count == 0) { | |
3333 | /* XXX get a reference for the deallocate below */ | |
3334 | vm_object_res_reference(backing_object); | |
3335 | } | |
3336 | #endif /* TASK_SWAPPER */ | |
3337 | vm_object_unlock(object); | |
3338 | vm_object_unlock(backing_object); | |
3339 | vm_object_deallocate(backing_object); | |
3340 | ||
3341 | /* | |
3342 | * Relock object. We don't have to reverify | |
3343 | * its state since vm_object_collapse will | |
3344 | * do that for us as it starts at the | |
3345 | * top of its loop. | |
3346 | */ | |
3347 | ||
3348 | vm_object_lock(object); | |
3349 | } | |
3350 | ||
3351 | object_bypasses++; | |
3352 | } | |
3353 | ||
3354 | /* | |
3355 | * vm_object_collapse: | |
3356 | * | |
3357 | * Perform an object collapse or an object bypass if appropriate. | |
3358 | * The real work of collapsing and bypassing is performed in | |
3359 | * the routines vm_object_do_collapse and vm_object_do_bypass. | |
3360 | * | |
3361 | * Requires that the object be locked and the page queues be unlocked. | |
3362 | * | |
3363 | */ | |
3364 | void | |
3365 | vm_object_collapse( | |
3366 | register vm_object_t object) | |
3367 | { | |
3368 | register vm_object_t backing_object; | |
3369 | register vm_object_offset_t backing_offset; | |
3370 | register vm_object_size_t size; | |
3371 | register vm_object_offset_t new_offset; | |
3372 | register vm_page_t p; | |
3373 | ||
3374 | if (! vm_object_collapse_allowed && ! vm_object_bypass_allowed) { | |
3375 | return; | |
3376 | } | |
3377 | ||
3378 | XPR(XPR_VM_OBJECT, "vm_object_collapse, obj 0x%X\n", | |
3379 | (integer_t)object, 0,0,0,0); | |
3380 | ||
3381 | while (TRUE) { | |
3382 | /* | |
3383 | * Verify that the conditions are right for either | |
3384 | * collapse or bypass: | |
3385 | * | |
3386 | * The object exists and no pages in it are currently | |
3387 | * being paged out, and | |
3388 | */ | |
3389 | if (object == VM_OBJECT_NULL || | |
3390 | object->paging_in_progress != 0 || | |
3391 | object->absent_count != 0) | |
3392 | return; | |
3393 | ||
3394 | /* | |
3395 | * There is a backing object, and | |
3396 | */ | |
3397 | ||
3398 | if ((backing_object = object->shadow) == VM_OBJECT_NULL) | |
3399 | return; | |
3400 | ||
3401 | vm_object_lock(backing_object); | |
3402 | ||
3403 | /* | |
3404 | * ... | |
3405 | * The backing object is not read_only, | |
3406 | * and no pages in the backing object are | |
3407 | * currently being paged out. | |
3408 | * The backing object is internal. | |
3409 | * | |
3410 | */ | |
3411 | ||
3412 | if (!backing_object->internal || | |
3413 | backing_object->paging_in_progress != 0) { | |
3414 | vm_object_unlock(backing_object); | |
3415 | return; | |
3416 | } | |
3417 | ||
3418 | /* | |
3419 | * The backing object can't be a copy-object: | |
3420 | * the shadow_offset for the copy-object must stay | |
3421 | * as 0. Furthermore (for the 'we have all the | |
3422 | * pages' case), if we bypass backing_object and | |
3423 | * just shadow the next object in the chain, old | |
3424 | * pages from that object would then have to be copied | |
3425 | * BOTH into the (former) backing_object and into the | |
3426 | * parent object. | |
3427 | */ | |
3428 | if (backing_object->shadow != VM_OBJECT_NULL && | |
3429 | backing_object->shadow->copy != VM_OBJECT_NULL) { | |
3430 | vm_object_unlock(backing_object); | |
3431 | return; | |
3432 | } | |
3433 | ||
3434 | /* | |
3435 | * We can now try to either collapse the backing | |
3436 | * object (if the parent is the only reference to | |
3437 | * it) or (perhaps) remove the parent's reference | |
3438 | * to it. | |
3439 | */ | |
3440 | ||
3441 | /* | |
3442 | * If there is exactly one reference to the backing | |
3443 | * object, we may be able to collapse it into the parent. | |
3444 | * | |
3445 | * XXXO (norma vm): | |
3446 | * | |
3447 | * The backing object must not have a pager | |
3448 | * created for it, since collapsing an object | |
3449 | * into a backing_object dumps new pages into | |
3450 | * the backing_object that its pager doesn't | |
3451 | * know about, and we've already declared pages. | |
3452 | * This page dumping is deadly if other kernels | |
3453 | * are shadowing this object; this is the | |
3454 | * distributed equivalent of the ref_count == 1 | |
3455 | * condition. | |
3456 | * | |
3457 | * With some work, we could downgrade this | |
3458 | * restriction to the backing object must not | |
3459 | * be cachable, since when a temporary object | |
3460 | * is uncachable we are allowed to do anything | |
3461 | * to it. We would have to do something like | |
3462 | * call declare_pages again, and we would have | |
3463 | * to be prepared for the memory manager | |
3464 | * disabling temporary termination, which right | |
3465 | * now is a difficult race to deal with, since | |
3466 | * the memory manager currently assumes that | |
3467 | * termination is the only possible failure | |
3468 | * for disabling temporary termination. | |
3469 | */ | |
3470 | ||
3471 | if (backing_object->ref_count == 1 && | |
3472 | ! object->pager_created && | |
3473 | vm_object_collapse_allowed) { | |
3474 | ||
3475 | XPR(XPR_VM_OBJECT, | |
3476 | "vm_object_collapse: %x to %x, pager %x, pager_request %x\n", | |
3477 | (integer_t)backing_object, (integer_t)object, | |
3478 | (integer_t)backing_object->pager, | |
3479 | (integer_t)backing_object->pager_request, 0); | |
3480 | ||
3481 | /* | |
3482 | * We need the cache lock for collapsing, | |
3483 | * but we must not deadlock. | |
3484 | */ | |
3485 | ||
3486 | if (! vm_object_cache_lock_try()) { | |
3487 | vm_object_unlock(backing_object); | |
3488 | return; | |
3489 | } | |
3490 | ||
3491 | /* | |
3492 | * Collapse the object with its backing | |
3493 | * object, and try again with the object's | |
3494 | * new backing object. | |
3495 | */ | |
3496 | ||
3497 | vm_object_do_collapse(object, backing_object); | |
3498 | continue; | |
3499 | } | |
3500 | ||
3501 | ||
3502 | /* | |
3503 | * Collapsing the backing object was not possible | |
3504 | * or permitted, so let's try bypassing it. | |
3505 | */ | |
3506 | ||
3507 | if (! vm_object_bypass_allowed) { | |
3508 | vm_object_unlock(backing_object); | |
3509 | return; | |
3510 | } | |
3511 | ||
3512 | /* | |
3513 | * If the backing object has a pager but no pagemap, | |
3514 | * then we cannot bypass it, because we don't know | |
3515 | * what pages it has. | |
3516 | */ | |
3517 | if (backing_object->pager_created | |
3518 | #if MACH_PAGEMAP | |
3519 | && (backing_object->existence_map == VM_EXTERNAL_NULL) | |
3520 | #endif /* MACH_PAGEMAP */ | |
3521 | ) { | |
3522 | vm_object_unlock(backing_object); | |
3523 | return; | |
3524 | } | |
3525 | ||
3526 | backing_offset = object->shadow_offset; | |
3527 | size = object->size; | |
3528 | ||
3529 | /* | |
3530 | * If all of the pages in the backing object are | |
3531 | * shadowed by the parent object, the parent | |
3532 | * object no longer has to shadow the backing | |
3533 | * object; it can shadow the next one in the | |
3534 | * chain. | |
3535 | * | |
3536 | * If the backing object has existence info, | |
3537 | * we must check examine its existence info | |
3538 | * as well. | |
3539 | * | |
3540 | * XXX | |
3541 | * Should have a check for a 'small' number | |
3542 | * of pages here. | |
3543 | */ | |
3544 | ||
3545 | /* | |
3546 | * First, check pages resident in the backing object. | |
3547 | */ | |
3548 | ||
3549 | queue_iterate(&backing_object->memq, p, vm_page_t, listq) { | |
3550 | ||
3551 | /* | |
3552 | * If the parent has a page here, or if | |
3553 | * this page falls outside the parent, | |
3554 | * keep going. | |
3555 | * | |
3556 | * Otherwise, the backing_object must be | |
3557 | * left in the chain. | |
3558 | */ | |
3559 | ||
3560 | new_offset = (p->offset - backing_offset); | |
3561 | if (p->offset < backing_offset || new_offset >= size) { | |
3562 | ||
3563 | /* | |
3564 | * Page falls outside of parent. | |
3565 | * Keep going. | |
3566 | */ | |
3567 | ||
3568 | continue; | |
3569 | } | |
3570 | ||
3571 | if ((vm_page_lookup(object, new_offset) == VM_PAGE_NULL) | |
3572 | #if MACH_PAGEMAP | |
3573 | && | |
3574 | (vm_external_state_get(object->existence_map, | |
3575 | new_offset) | |
3576 | != VM_EXTERNAL_STATE_EXISTS) | |
3577 | #endif /* MACH_PAGEMAP */ | |
3578 | ) { | |
3579 | ||
3580 | /* | |
3581 | * Page still needed. | |
3582 | * Can't go any further. | |
3583 | */ | |
3584 | ||
3585 | vm_object_unlock(backing_object); | |
3586 | return; | |
3587 | } | |
3588 | } | |
3589 | ||
3590 | #if MACH_PAGEMAP | |
3591 | /* | |
3592 | * Next, if backing object has been paged out, | |
3593 | * we must check its existence info for pages | |
3594 | * that the parent doesn't have. | |
3595 | */ | |
3596 | ||
3597 | if (backing_object->pager_created) { | |
3598 | assert(backing_object->existence_map | |
3599 | != VM_EXTERNAL_NULL); | |
3600 | for (new_offset = 0; new_offset < object->size; | |
3601 | new_offset += PAGE_SIZE_64) { | |
3602 | vm_object_offset_t | |
3603 | offset = new_offset + backing_offset; | |
3604 | ||
3605 | /* | |
3606 | * If this page doesn't exist in | |
3607 | * the backing object's existence | |
3608 | * info, then continue. | |
3609 | */ | |
3610 | ||
3611 | if (vm_external_state_get( | |
3612 | backing_object->existence_map, | |
3613 | offset) == VM_EXTERNAL_STATE_ABSENT) { | |
3614 | continue; | |
3615 | } | |
3616 | ||
3617 | /* | |
3618 | * If this page is neither resident | |
3619 | * in the parent nor paged out to | |
3620 | * the parent's pager, then we cannot | |
3621 | * bypass the backing object. | |
3622 | */ | |
3623 | ||
3624 | if ((vm_page_lookup(object, new_offset) == | |
3625 | VM_PAGE_NULL) && | |
3626 | ((object->existence_map == VM_EXTERNAL_NULL) | |
3627 | || (vm_external_state_get( | |
3628 | object->existence_map, new_offset) | |
3629 | == VM_EXTERNAL_STATE_ABSENT))) { | |
3630 | vm_object_unlock(backing_object); | |
3631 | return; | |
3632 | } | |
3633 | } | |
3634 | } | |
3635 | #else /* MACH_PAGEMAP */ | |
3636 | assert(! backing_object->pager_created); | |
3637 | #endif /* MACH_PAGEMAP */ | |
3638 | ||
3639 | /* | |
3640 | * All interesting pages in the backing object | |
3641 | * already live in the parent or its pager. | |
3642 | * Thus we can bypass the backing object. | |
3643 | */ | |
3644 | ||
3645 | vm_object_do_bypass(object, backing_object); | |
3646 | ||
3647 | /* | |
3648 | * Try again with this object's new backing object. | |
3649 | */ | |
3650 | ||
3651 | continue; | |
3652 | } | |
3653 | } | |
3654 | ||
3655 | /* | |
3656 | * Routine: vm_object_page_remove: [internal] | |
3657 | * Purpose: | |
3658 | * Removes all physical pages in the specified | |
3659 | * object range from the object's list of pages. | |
3660 | * | |
3661 | * In/out conditions: | |
3662 | * The object must be locked. | |
3663 | * The object must not have paging_in_progress, usually | |
3664 | * guaranteed by not having a pager. | |
3665 | */ | |
3666 | unsigned int vm_object_page_remove_lookup = 0; | |
3667 | unsigned int vm_object_page_remove_iterate = 0; | |
3668 | ||
3669 | void | |
3670 | vm_object_page_remove( | |
3671 | register vm_object_t object, | |
3672 | register vm_object_offset_t start, | |
3673 | register vm_object_offset_t end) | |
3674 | { | |
3675 | register vm_page_t p, next; | |
3676 | ||
3677 | /* | |
3678 | * One and two page removals are most popular. | |
3679 | * The factor of 16 here is somewhat arbitrary. | |
3680 | * It balances vm_object_lookup vs iteration. | |
3681 | */ | |
3682 | ||
3683 | if (atop(end - start) < (unsigned)object->resident_page_count/16) { | |
3684 | vm_object_page_remove_lookup++; | |
3685 | ||
3686 | for (; start < end; start += PAGE_SIZE_64) { | |
3687 | p = vm_page_lookup(object, start); | |
3688 | if (p != VM_PAGE_NULL) { | |
3689 | assert(!p->cleaning && !p->pageout); | |
3690 | if (!p->fictitious) | |
3691 | pmap_page_protect(p->phys_addr, | |
3692 | VM_PROT_NONE); | |
3693 | VM_PAGE_FREE(p); | |
3694 | } | |
3695 | } | |
3696 | } else { | |
3697 | vm_object_page_remove_iterate++; | |
3698 | ||
3699 | p = (vm_page_t) queue_first(&object->memq); | |
3700 | while (!queue_end(&object->memq, (queue_entry_t) p)) { | |
3701 | next = (vm_page_t) queue_next(&p->listq); | |
3702 | if ((start <= p->offset) && (p->offset < end)) { | |
3703 | assert(!p->cleaning && !p->pageout); | |
3704 | if (!p->fictitious) | |
3705 | pmap_page_protect(p->phys_addr, | |
3706 | VM_PROT_NONE); | |
3707 | VM_PAGE_FREE(p); | |
3708 | } | |
3709 | p = next; | |
3710 | } | |
3711 | } | |
3712 | } | |
3713 | ||
3714 | /* | |
3715 | * Routine: vm_object_coalesce | |
3716 | * Function: Coalesces two objects backing up adjoining | |
3717 | * regions of memory into a single object. | |
3718 | * | |
3719 | * returns TRUE if objects were combined. | |
3720 | * | |
3721 | * NOTE: Only works at the moment if the second object is NULL - | |
3722 | * if it's not, which object do we lock first? | |
3723 | * | |
3724 | * Parameters: | |
3725 | * prev_object First object to coalesce | |
3726 | * prev_offset Offset into prev_object | |
3727 | * next_object Second object into coalesce | |
3728 | * next_offset Offset into next_object | |
3729 | * | |
3730 | * prev_size Size of reference to prev_object | |
3731 | * next_size Size of reference to next_object | |
3732 | * | |
3733 | * Conditions: | |
3734 | * The object(s) must *not* be locked. The map must be locked | |
3735 | * to preserve the reference to the object(s). | |
3736 | */ | |
3737 | int vm_object_coalesce_count = 0; | |
3738 | ||
3739 | boolean_t | |
3740 | vm_object_coalesce( | |
3741 | register vm_object_t prev_object, | |
3742 | vm_object_t next_object, | |
3743 | vm_object_offset_t prev_offset, | |
3744 | vm_object_offset_t next_offset, | |
3745 | vm_object_size_t prev_size, | |
3746 | vm_object_size_t next_size) | |
3747 | { | |
3748 | vm_object_size_t newsize; | |
3749 | ||
3750 | #ifdef lint | |
3751 | next_offset++; | |
3752 | #endif /* lint */ | |
3753 | ||
3754 | if (next_object != VM_OBJECT_NULL) { | |
3755 | return(FALSE); | |
3756 | } | |
3757 | ||
3758 | if (prev_object == VM_OBJECT_NULL) { | |
3759 | return(TRUE); | |
3760 | } | |
3761 | ||
3762 | XPR(XPR_VM_OBJECT, | |
3763 | "vm_object_coalesce: 0x%X prev_off 0x%X prev_size 0x%X next_size 0x%X\n", | |
3764 | (integer_t)prev_object, prev_offset, prev_size, next_size, 0); | |
3765 | ||
3766 | vm_object_lock(prev_object); | |
3767 | ||
3768 | /* | |
3769 | * Try to collapse the object first | |
3770 | */ | |
3771 | vm_object_collapse(prev_object); | |
3772 | ||
3773 | /* | |
3774 | * Can't coalesce if pages not mapped to | |
3775 | * prev_entry may be in use any way: | |
3776 | * . more than one reference | |
3777 | * . paged out | |
3778 | * . shadows another object | |
3779 | * . has a copy elsewhere | |
3780 | * . paging references (pages might be in page-list) | |
3781 | */ | |
3782 | ||
3783 | if ((prev_object->ref_count > 1) || | |
3784 | prev_object->pager_created || | |
3785 | (prev_object->shadow != VM_OBJECT_NULL) || | |
3786 | (prev_object->copy != VM_OBJECT_NULL) || | |
3787 | (prev_object->true_share != FALSE) || | |
3788 | (prev_object->paging_in_progress != 0)) { | |
3789 | vm_object_unlock(prev_object); | |
3790 | return(FALSE); | |
3791 | } | |
3792 | ||
3793 | vm_object_coalesce_count++; | |
3794 | ||
3795 | /* | |
3796 | * Remove any pages that may still be in the object from | |
3797 | * a previous deallocation. | |
3798 | */ | |
3799 | vm_object_page_remove(prev_object, | |
3800 | prev_offset + prev_size, | |
3801 | prev_offset + prev_size + next_size); | |
3802 | ||
3803 | /* | |
3804 | * Extend the object if necessary. | |
3805 | */ | |
3806 | newsize = prev_offset + prev_size + next_size; | |
3807 | if (newsize > prev_object->size) { | |
3808 | #if MACH_PAGEMAP | |
3809 | /* | |
3810 | * We cannot extend an object that has existence info, | |
3811 | * since the existence info might then fail to cover | |
3812 | * the entire object. | |
3813 | * | |
3814 | * This assertion must be true because the object | |
3815 | * has no pager, and we only create existence info | |
3816 | * for objects with pagers. | |
3817 | */ | |
3818 | assert(prev_object->existence_map == VM_EXTERNAL_NULL); | |
3819 | #endif /* MACH_PAGEMAP */ | |
3820 | prev_object->size = newsize; | |
3821 | } | |
3822 | ||
3823 | vm_object_unlock(prev_object); | |
3824 | return(TRUE); | |
3825 | } | |
3826 | ||
3827 | /* | |
3828 | * Attach a set of physical pages to an object, so that they can | |
3829 | * be mapped by mapping the object. Typically used to map IO memory. | |
3830 | * | |
3831 | * The mapping function and its private data are used to obtain the | |
3832 | * physical addresses for each page to be mapped. | |
3833 | */ | |
3834 | void | |
3835 | vm_object_page_map( | |
3836 | vm_object_t object, | |
3837 | vm_object_offset_t offset, | |
3838 | vm_object_size_t size, | |
3839 | vm_object_offset_t (*map_fn)(void *map_fn_data, | |
3840 | vm_object_offset_t offset), | |
3841 | void *map_fn_data) /* private to map_fn */ | |
3842 | { | |
3843 | int num_pages; | |
3844 | int i; | |
3845 | vm_page_t m; | |
3846 | vm_page_t old_page; | |
3847 | vm_object_offset_t addr; | |
3848 | ||
3849 | num_pages = atop(size); | |
3850 | ||
3851 | for (i = 0; i < num_pages; i++, offset += PAGE_SIZE_64) { | |
3852 | ||
3853 | addr = (*map_fn)(map_fn_data, offset); | |
3854 | ||
3855 | while ((m = vm_page_grab_fictitious()) == VM_PAGE_NULL) | |
3856 | vm_page_more_fictitious(); | |
3857 | ||
3858 | vm_object_lock(object); | |
3859 | if ((old_page = vm_page_lookup(object, offset)) | |
3860 | != VM_PAGE_NULL) | |
3861 | { | |
3862 | vm_page_lock_queues(); | |
3863 | vm_page_free(old_page); | |
3864 | vm_page_unlock_queues(); | |
3865 | } | |
3866 | ||
3867 | vm_page_init(m, addr); | |
3868 | m->private = TRUE; /* don`t free page */ | |
3869 | m->wire_count = 1; | |
3870 | vm_page_insert(m, object, offset); | |
3871 | ||
3872 | PAGE_WAKEUP_DONE(m); | |
3873 | vm_object_unlock(object); | |
3874 | } | |
3875 | } | |
3876 | ||
3877 | #include <mach_kdb.h> | |
3878 | ||
3879 | #if MACH_KDB | |
3880 | #include <ddb/db_output.h> | |
3881 | #include <vm/vm_print.h> | |
3882 | ||
3883 | #define printf kdbprintf | |
3884 | ||
3885 | extern boolean_t vm_object_cached( | |
3886 | vm_object_t object); | |
3887 | ||
3888 | extern void print_bitstring( | |
3889 | char byte); | |
3890 | ||
3891 | boolean_t vm_object_print_pages = FALSE; | |
3892 | ||
3893 | void | |
3894 | print_bitstring( | |
3895 | char byte) | |
3896 | { | |
3897 | printf("%c%c%c%c%c%c%c%c", | |
3898 | ((byte & (1 << 0)) ? '1' : '0'), | |
3899 | ((byte & (1 << 1)) ? '1' : '0'), | |
3900 | ((byte & (1 << 2)) ? '1' : '0'), | |
3901 | ((byte & (1 << 3)) ? '1' : '0'), | |
3902 | ((byte & (1 << 4)) ? '1' : '0'), | |
3903 | ((byte & (1 << 5)) ? '1' : '0'), | |
3904 | ((byte & (1 << 6)) ? '1' : '0'), | |
3905 | ((byte & (1 << 7)) ? '1' : '0')); | |
3906 | } | |
3907 | ||
3908 | boolean_t | |
3909 | vm_object_cached( | |
3910 | register vm_object_t object) | |
3911 | { | |
3912 | register vm_object_t o; | |
3913 | ||
3914 | queue_iterate(&vm_object_cached_list, o, vm_object_t, cached_list) { | |
3915 | if (object == o) { | |
3916 | return TRUE; | |
3917 | } | |
3918 | } | |
3919 | return FALSE; | |
3920 | } | |
3921 | ||
3922 | #if MACH_PAGEMAP | |
3923 | /* | |
3924 | * vm_external_print: [ debug ] | |
3925 | */ | |
3926 | void | |
3927 | vm_external_print( | |
3928 | vm_external_map_t map, | |
3929 | vm_size_t size) | |
3930 | { | |
3931 | if (map == VM_EXTERNAL_NULL) { | |
3932 | printf("0 "); | |
3933 | } else { | |
3934 | vm_size_t existence_size = stob(size); | |
3935 | printf("{ size=%d, map=[", existence_size); | |
3936 | if (existence_size > 0) { | |
3937 | print_bitstring(map[0]); | |
3938 | } | |
3939 | if (existence_size > 1) { | |
3940 | print_bitstring(map[1]); | |
3941 | } | |
3942 | if (existence_size > 2) { | |
3943 | printf("..."); | |
3944 | print_bitstring(map[existence_size-1]); | |
3945 | } | |
3946 | printf("] }\n"); | |
3947 | } | |
3948 | return; | |
3949 | } | |
3950 | #endif /* MACH_PAGEMAP */ | |
3951 | ||
3952 | int | |
3953 | vm_follow_object( | |
3954 | vm_object_t object) | |
3955 | { | |
3956 | extern db_indent; | |
3957 | ||
3958 | int count = 1; | |
3959 | ||
3960 | if (object == VM_OBJECT_NULL) | |
3961 | return 0; | |
3962 | ||
3963 | iprintf("object 0x%x", object); | |
3964 | printf(", shadow=0x%x", object->shadow); | |
3965 | printf(", copy=0x%x", object->copy); | |
3966 | printf(", pager=0x%x", object->pager); | |
3967 | printf(", ref=%d\n", object->ref_count); | |
3968 | ||
3969 | db_indent += 2; | |
3970 | if (object->shadow) | |
3971 | count += vm_follow_object(object->shadow); | |
3972 | ||
3973 | db_indent -= 2; | |
3974 | return count; | |
3975 | } | |
3976 | ||
3977 | /* | |
3978 | * vm_object_print: [ debug ] | |
3979 | */ | |
3980 | void | |
3981 | vm_object_print( | |
3982 | vm_object_t object, | |
3983 | boolean_t have_addr, | |
3984 | int arg_count, | |
3985 | char *modif) | |
3986 | { | |
3987 | register vm_page_t p; | |
3988 | extern db_indent; | |
3989 | char *s; | |
3990 | ||
3991 | register int count; | |
3992 | ||
3993 | if (object == VM_OBJECT_NULL) | |
3994 | return; | |
3995 | ||
3996 | iprintf("object 0x%x\n", object); | |
3997 | ||
3998 | db_indent += 2; | |
3999 | ||
4000 | iprintf("size=0x%x", object->size); | |
4001 | printf(", cluster=0x%x", object->cluster_size); | |
4002 | printf(", frozen=0x%x", object->frozen_size); | |
4003 | printf(", ref_count=%d\n", object->ref_count); | |
4004 | iprintf(""); | |
4005 | #if TASK_SWAPPER | |
4006 | printf("res_count=%d, ", object->res_count); | |
4007 | #endif /* TASK_SWAPPER */ | |
4008 | printf("resident_page_count=%d\n", object->resident_page_count); | |
4009 | ||
4010 | iprintf("shadow=0x%x", object->shadow); | |
4011 | if (object->shadow) { | |
4012 | register int i = 0; | |
4013 | vm_object_t shadow = object; | |
4014 | while(shadow = shadow->shadow) | |
4015 | i++; | |
4016 | printf(" (depth %d)", i); | |
4017 | } | |
4018 | printf(", copy=0x%x", object->copy); | |
4019 | printf(", shadow_offset=0x%x", object->shadow_offset); | |
4020 | printf(", last_alloc=0x%x\n", object->last_alloc); | |
4021 | ||
4022 | iprintf("pager=0x%x", object->pager); | |
4023 | printf(", paging_offset=0x%x", object->paging_offset); | |
4024 | printf(", pager_request=0x%x\n", object->pager_request); | |
4025 | ||
4026 | iprintf("copy_strategy=%d[", object->copy_strategy); | |
4027 | switch (object->copy_strategy) { | |
4028 | case MEMORY_OBJECT_COPY_NONE: | |
4029 | printf("copy_none"); | |
4030 | break; | |
4031 | ||
4032 | case MEMORY_OBJECT_COPY_CALL: | |
4033 | printf("copy_call"); | |
4034 | break; | |
4035 | ||
4036 | case MEMORY_OBJECT_COPY_DELAY: | |
4037 | printf("copy_delay"); | |
4038 | break; | |
4039 | ||
4040 | case MEMORY_OBJECT_COPY_SYMMETRIC: | |
4041 | printf("copy_symmetric"); | |
4042 | break; | |
4043 | ||
4044 | case MEMORY_OBJECT_COPY_INVALID: | |
4045 | printf("copy_invalid"); | |
4046 | break; | |
4047 | ||
4048 | default: | |
4049 | printf("?"); | |
4050 | } | |
4051 | printf("]"); | |
4052 | printf(", absent_count=%d\n", object->absent_count); | |
4053 | ||
4054 | iprintf("all_wanted=0x%x<", object->all_wanted); | |
4055 | s = ""; | |
4056 | if (vm_object_wanted(object, VM_OBJECT_EVENT_INITIALIZED)) { | |
4057 | printf("%sinit", s); | |
4058 | s = ","; | |
4059 | } | |
4060 | if (vm_object_wanted(object, VM_OBJECT_EVENT_PAGER_READY)) { | |
4061 | printf("%sready", s); | |
4062 | s = ","; | |
4063 | } | |
4064 | if (vm_object_wanted(object, VM_OBJECT_EVENT_PAGING_IN_PROGRESS)) { | |
4065 | printf("%spaging", s); | |
4066 | s = ","; | |
4067 | } | |
4068 | if (vm_object_wanted(object, VM_OBJECT_EVENT_ABSENT_COUNT)) { | |
4069 | printf("%sabsent", s); | |
4070 | s = ","; | |
4071 | } | |
4072 | if (vm_object_wanted(object, VM_OBJECT_EVENT_LOCK_IN_PROGRESS)) { | |
4073 | printf("%slock", s); | |
4074 | s = ","; | |
4075 | } | |
4076 | if (vm_object_wanted(object, VM_OBJECT_EVENT_UNCACHING)) { | |
4077 | printf("%suncaching", s); | |
4078 | s = ","; | |
4079 | } | |
4080 | if (vm_object_wanted(object, VM_OBJECT_EVENT_COPY_CALL)) { | |
4081 | printf("%scopy_call", s); | |
4082 | s = ","; | |
4083 | } | |
4084 | if (vm_object_wanted(object, VM_OBJECT_EVENT_CACHING)) { | |
4085 | printf("%scaching", s); | |
4086 | s = ","; | |
4087 | } | |
4088 | printf(">"); | |
4089 | printf(", paging_in_progress=%d\n", object->paging_in_progress); | |
4090 | ||
4091 | iprintf("%screated, %sinit, %sready, %spersist, %strusted, %spageout, %s, %s\n", | |
4092 | (object->pager_created ? "" : "!"), | |
4093 | (object->pager_initialized ? "" : "!"), | |
4094 | (object->pager_ready ? "" : "!"), | |
4095 | (object->can_persist ? "" : "!"), | |
4096 | (object->pager_trusted ? "" : "!"), | |
4097 | (object->pageout ? "" : "!"), | |
4098 | (object->internal ? "internal" : "external"), | |
4099 | (object->temporary ? "temporary" : "permanent")); | |
4100 | iprintf("%salive, %slock_in_progress, %slock_restart, %sshadowed, %scached, %sprivate\n", | |
4101 | (object->alive ? "" : "!"), | |
4102 | (object->lock_in_progress ? "" : "!"), | |
4103 | (object->lock_restart ? "" : "!"), | |
4104 | (object->shadowed ? "" : "!"), | |
4105 | (vm_object_cached(object) ? "" : "!"), | |
4106 | (object->private ? "" : "!")); | |
4107 | iprintf("%sadvisory_pageout, %ssilent_overwrite\n", | |
4108 | (object->advisory_pageout ? "" : "!"), | |
4109 | (object->silent_overwrite ? "" : "!")); | |
4110 | ||
4111 | #if MACH_PAGEMAP | |
4112 | iprintf("existence_map="); | |
4113 | vm_external_print(object->existence_map, object->size); | |
4114 | #endif /* MACH_PAGEMAP */ | |
4115 | #if MACH_ASSERT | |
4116 | iprintf("paging_object=0x%x\n", object->paging_object); | |
4117 | #endif /* MACH_ASSERT */ | |
4118 | ||
4119 | if (vm_object_print_pages) { | |
4120 | count = 0; | |
4121 | p = (vm_page_t) queue_first(&object->memq); | |
4122 | while (!queue_end(&object->memq, (queue_entry_t) p)) { | |
4123 | if (count == 0) { | |
4124 | iprintf("memory:="); | |
4125 | } else if (count == 2) { | |
4126 | printf("\n"); | |
4127 | iprintf(" ..."); | |
4128 | count = 0; | |
4129 | } else { | |
4130 | printf(","); | |
4131 | } | |
4132 | count++; | |
4133 | ||
4134 | printf("(off=0x%X,page=0x%X)", p->offset, (integer_t) p); | |
4135 | p = (vm_page_t) queue_next(&p->listq); | |
4136 | } | |
4137 | if (count != 0) { | |
4138 | printf("\n"); | |
4139 | } | |
4140 | } | |
4141 | db_indent -= 2; | |
4142 | } | |
4143 | ||
4144 | ||
4145 | /* | |
4146 | * vm_object_find [ debug ] | |
4147 | * | |
4148 | * Find all tasks which reference the given vm_object. | |
4149 | */ | |
4150 | ||
4151 | boolean_t vm_object_find(vm_object_t object); | |
4152 | boolean_t vm_object_print_verbose = FALSE; | |
4153 | ||
4154 | boolean_t | |
4155 | vm_object_find( | |
4156 | vm_object_t object) | |
4157 | { | |
4158 | task_t task; | |
4159 | vm_map_t map; | |
4160 | vm_map_entry_t entry; | |
4161 | processor_set_t pset = &default_pset; | |
4162 | boolean_t found = FALSE; | |
4163 | ||
4164 | queue_iterate(&pset->tasks, task, task_t, pset_tasks) { | |
4165 | map = task->map; | |
4166 | for (entry = vm_map_first_entry(map); | |
4167 | entry && entry != vm_map_to_entry(map); | |
4168 | entry = entry->vme_next) { | |
4169 | ||
4170 | vm_object_t obj; | |
4171 | ||
4172 | /* | |
4173 | * For the time being skip submaps, | |
4174 | * only the kernel can have submaps, | |
4175 | * and unless we are interested in | |
4176 | * kernel objects, we can simply skip | |
4177 | * submaps. See sb/dejan/nmk18b7/src/mach_kernel/vm | |
4178 | * for a full solution. | |
4179 | */ | |
4180 | if (entry->is_sub_map) | |
4181 | continue; | |
4182 | if (entry) | |
4183 | obj = entry->object.vm_object; | |
4184 | else | |
4185 | continue; | |
4186 | ||
4187 | while (obj != VM_OBJECT_NULL) { | |
4188 | if (obj == object) { | |
4189 | if (!found) { | |
4190 | printf("TASK\t\tMAP\t\tENTRY\n"); | |
4191 | found = TRUE; | |
4192 | } | |
4193 | printf("0x%x\t0x%x\t0x%x\n", | |
4194 | task, map, entry); | |
4195 | } | |
4196 | obj = obj->shadow; | |
4197 | } | |
4198 | } | |
4199 | } | |
4200 | ||
4201 | return(found); | |
4202 | } | |
4203 | ||
4204 | #endif /* MACH_KDB */ | |
4205 | ||
4206 | /* | |
4207 | * memory_object_free_from_cache: | |
4208 | * | |
4209 | * Walk the vm_object cache list, removing and freeing vm_objects | |
4210 | * which are backed by the pager identified by the caller, (pager_id). | |
4211 | * Remove up to "count" objects, if there are that may available | |
4212 | * in the cache. | |
4213 | * Walk the list at most once, return the number of vm_objects | |
4214 | * actually freed. | |
4215 | * | |
4216 | */ | |
4217 | ||
4218 | kern_return_t | |
4219 | memory_object_free_from_cache( | |
4220 | host_t host, | |
4221 | int pager_id, | |
4222 | int *count) | |
4223 | { | |
4224 | ||
4225 | int object_released = 0; | |
4226 | int i; | |
4227 | ||
4228 | register vm_object_t object = VM_OBJECT_NULL; | |
4229 | vm_object_t shadow; | |
4230 | ||
4231 | /* | |
4232 | if(host == HOST_NULL) | |
4233 | return(KERN_INVALID_ARGUMENT); | |
4234 | */ | |
4235 | ||
4236 | try_again: | |
4237 | vm_object_cache_lock(); | |
4238 | ||
4239 | queue_iterate(&vm_object_cached_list, object, | |
4240 | vm_object_t, cached_list) { | |
4241 | if (pager_id == (int) pager_mux_hash_lookup( | |
4242 | (ipc_port_t)object->pager)) { | |
4243 | vm_object_lock(object); | |
4244 | queue_remove(&vm_object_cached_list, object, | |
4245 | vm_object_t, cached_list); | |
4246 | vm_object_cached_count--; | |
4247 | ||
4248 | /* | |
4249 | * Since this object is in the cache, we know | |
4250 | * that it is initialized and has no references. | |
4251 | * Take a reference to avoid recursive | |
4252 | * deallocations. | |
4253 | */ | |
4254 | ||
4255 | assert(object->pager_initialized); | |
4256 | assert(object->ref_count == 0); | |
4257 | object->ref_count++; | |
4258 | ||
4259 | /* | |
4260 | * Terminate the object. | |
4261 | * If the object had a shadow, we let | |
4262 | * vm_object_deallocate deallocate it. | |
4263 | * "pageout" objects have a shadow, but | |
4264 | * maintain a "paging reference" rather | |
4265 | * than a normal reference. | |
4266 | * (We are careful here to limit recursion.) | |
4267 | */ | |
4268 | shadow = object->pageout?VM_OBJECT_NULL:object->shadow; | |
4269 | if ((vm_object_terminate(object) == KERN_SUCCESS) | |
4270 | && (shadow != VM_OBJECT_NULL)) { | |
4271 | vm_object_deallocate(shadow); | |
4272 | } | |
4273 | ||
4274 | if(object_released++ == *count) | |
4275 | return KERN_SUCCESS; | |
4276 | goto try_again; | |
4277 | } | |
4278 | } | |
4279 | vm_object_cache_unlock(); | |
4280 | *count = object_released; | |
4281 | return KERN_SUCCESS; | |
4282 | } | |
4283 | ||
4284 | /* | |
4285 | * memory_object_remove_cached_object: | |
4286 | * | |
4287 | * Check for the existance of a memory object represented by the | |
4288 | * supplied port. If one exists and it is not in use, remove the | |
4289 | * memory object from the vm_object cache. | |
4290 | * If the memory object is in use, turn off the the "can_persist" | |
4291 | * property so that it will not go in the cache when the last user | |
4292 | * gives it up. | |
4293 | * | |
4294 | */ | |
4295 | ||
4296 | kern_return_t | |
4297 | memory_object_remove_cached_object( | |
4298 | ipc_port_t port) | |
4299 | { | |
4300 | vm_object_t object; | |
4301 | vm_object_t shadow; | |
4302 | ||
4303 | repeat_lock_acquire: | |
4304 | object = VM_OBJECT_NULL; | |
4305 | ||
4306 | if (IP_VALID(port)) { | |
4307 | vm_object_cache_lock(); | |
4308 | ip_lock(port); | |
4309 | if (ip_active(port) && | |
4310 | (ip_kotype(port) == IKOT_PAGER_LOOKUP_TYPE)) { | |
4311 | object = (vm_object_t) port->ip_kobject; | |
4312 | if (!vm_object_lock_try(object)) { | |
4313 | /* | |
4314 | * failed to acquire object lock. Drop the | |
4315 | * other two locks and wait for it, then go | |
4316 | * back and start over in case the port | |
4317 | * associations changed in the interim. | |
4318 | */ | |
4319 | ip_unlock(port); | |
4320 | vm_object_cache_unlock(); | |
4321 | vm_object_lock(object); | |
4322 | vm_object_unlock(object); | |
4323 | goto repeat_lock_acquire; | |
4324 | } | |
4325 | ||
4326 | if(object->terminating) { | |
4327 | ip_unlock(port); | |
4328 | vm_object_unlock(object); | |
4329 | vm_object_cache_unlock(); | |
4330 | return KERN_RIGHT_EXISTS; | |
4331 | } | |
4332 | ||
4333 | assert(object->alive); | |
4334 | ip_unlock(port); | |
4335 | ||
4336 | if (object->ref_count == 0) { | |
4337 | queue_remove(&vm_object_cached_list, object, | |
4338 | vm_object_t, cached_list); | |
4339 | vm_object_cached_count--; | |
4340 | object->ref_count++; | |
4341 | /* | |
4342 | * Terminate the object. | |
4343 | * If the object had a shadow, we let | |
4344 | * vm_object_deallocate deallocate it. | |
4345 | * "pageout" objects have a shadow, but | |
4346 | * maintain a "paging reference" rather | |
4347 | * than a normal reference. | |
4348 | * (We are careful here to limit | |
4349 | * recursion.) | |
4350 | */ | |
4351 | shadow = object->pageout? | |
4352 | VM_OBJECT_NULL:object->shadow; | |
4353 | /* will do the vm_object_cache_unlock */ | |
4354 | if((vm_object_terminate(object) | |
4355 | == KERN_SUCCESS) | |
4356 | && (shadow != VM_OBJECT_NULL)) { | |
4357 | /* will lock and unlock cache_lock */ | |
4358 | vm_object_deallocate(shadow); | |
4359 | } | |
4360 | } | |
4361 | else { | |
4362 | /* | |
4363 | * We cannot free object but we can | |
4364 | * make sure it doesn't go into the | |
4365 | * cache when it is no longer in | |
4366 | * use. | |
4367 | */ | |
4368 | object->can_persist = FALSE; | |
4369 | ||
4370 | vm_object_unlock(object); | |
4371 | vm_object_cache_unlock(); | |
4372 | return KERN_RIGHT_EXISTS; | |
4373 | } | |
4374 | ||
4375 | ||
4376 | } | |
4377 | else { | |
4378 | ip_unlock(port); | |
4379 | vm_object_cache_unlock(); | |
4380 | } | |
4381 | } else { | |
4382 | return KERN_INVALID_ARGUMENT; | |
4383 | } | |
4384 | ||
4385 | ||
4386 | return KERN_SUCCESS; | |
4387 | } | |
4388 | ||
4389 | kern_return_t | |
4390 | memory_object_create_named( | |
4391 | ipc_port_t port, | |
4392 | vm_object_size_t size, | |
4393 | vm_object_t *object_ptr) | |
4394 | { | |
4395 | vm_object_t object; | |
4396 | vm_object_hash_entry_t entry; | |
4397 | ||
4398 | *object_ptr = (vm_object_t)NULL; | |
4399 | if (IP_VALID(port)) { | |
4400 | ||
4401 | vm_object_cache_lock(); | |
4402 | entry = vm_object_hash_lookup(port, FALSE); | |
4403 | if ((entry != VM_OBJECT_HASH_ENTRY_NULL) && | |
4404 | (entry->object != VM_OBJECT_NULL)) { | |
4405 | if (entry->object->named == TRUE) | |
4406 | panic("memory_object_create_named: caller already holds the right"); | |
4407 | } | |
4408 | ||
4409 | vm_object_cache_unlock(); | |
4410 | if ((object = vm_object_enter(port, size, FALSE, FALSE, TRUE)) | |
4411 | == VM_OBJECT_NULL) | |
4412 | return(KERN_INVALID_OBJECT); | |
4413 | ||
4414 | /* wait for object (if any) to be ready */ | |
4415 | if (object != VM_OBJECT_NULL) { | |
4416 | vm_object_lock(object); | |
4417 | object->named = TRUE; | |
4418 | while (!object->pager_ready) { | |
4419 | vm_object_wait(object, | |
4420 | VM_OBJECT_EVENT_PAGER_READY, | |
4421 | FALSE); | |
4422 | vm_object_lock(object); | |
4423 | } | |
4424 | vm_object_unlock(object); | |
4425 | } | |
4426 | *object_ptr = object; | |
4427 | return (KERN_SUCCESS); | |
4428 | } else { | |
4429 | return (KERN_INVALID_ARGUMENT); | |
4430 | } | |
4431 | } | |
4432 | ||
4433 | kern_return_t | |
4434 | memory_object_recover_named( | |
4435 | ipc_port_t pager, | |
4436 | boolean_t wait_on_terminating, | |
4437 | vm_object_t *object_ptr) | |
4438 | { | |
4439 | vm_object_t object; | |
4440 | vm_object_hash_entry_t entry; | |
4441 | ||
4442 | *object_ptr = (vm_object_t)NULL; | |
4443 | lookup_entry: | |
4444 | if (IP_VALID(pager)) { | |
4445 | ||
4446 | vm_object_cache_lock(); | |
4447 | entry = vm_object_hash_lookup(pager, FALSE); | |
4448 | if ((entry != VM_OBJECT_HASH_ENTRY_NULL) && | |
4449 | (entry->object != VM_OBJECT_NULL)) { | |
4450 | if (entry->object->named == TRUE) | |
4451 | panic("memory_object_recover_named: caller already holds the right"); | |
4452 | object = entry->object; | |
4453 | vm_object_lock(object); | |
4454 | vm_object_cache_unlock(); | |
4455 | if (object->terminating && wait_on_terminating) { | |
4456 | vm_object_wait(object, | |
4457 | VM_OBJECT_EVENT_PAGING_IN_PROGRESS, | |
4458 | THREAD_UNINT); | |
4459 | vm_object_unlock(object); | |
4460 | goto lookup_entry; | |
4461 | } | |
4462 | } else { | |
4463 | vm_object_cache_unlock(); | |
4464 | return KERN_FAILURE; | |
4465 | } | |
4466 | ||
4467 | if((object->ref_count == 0) && (!object->terminating)){ | |
4468 | queue_remove(&vm_object_cached_list, object, | |
4469 | vm_object_t, cached_list); | |
4470 | vm_object_cached_count--; | |
4471 | XPR(XPR_VM_OBJECT_CACHE, | |
4472 | "memory_object_recover_named: removing %X, head (%X, %X)\n", | |
4473 | (integer_t)object, | |
4474 | (integer_t)vm_object_cached_list.next, | |
4475 | (integer_t)vm_object_cached_list.prev, 0,0); | |
4476 | } | |
4477 | ||
4478 | object->named = TRUE; | |
4479 | object->ref_count++; | |
4480 | vm_object_res_reference(object); | |
4481 | while (!object->pager_ready) { | |
4482 | vm_object_wait(object, | |
4483 | VM_OBJECT_EVENT_PAGER_READY, | |
4484 | FALSE); | |
4485 | vm_object_lock(object); | |
4486 | } | |
4487 | vm_object_unlock(object); | |
4488 | *object_ptr = object; | |
4489 | return (KERN_SUCCESS); | |
4490 | } else { | |
4491 | return (KERN_INVALID_ARGUMENT); | |
4492 | } | |
4493 | } | |
4494 | #ifdef MACH_BSD | |
4495 | /* | |
4496 | * Scale the vm_object_cache | |
4497 | * This is required to make sure that the vm_object_cache is big | |
4498 | * enough to effectively cache the mapped file. | |
4499 | * This is really important with UBC as all the regular file vnodes | |
4500 | * have memory object associated with them. Havving this cache too | |
4501 | * small results in rapid reclaim of vnodes and hurts performance a LOT! | |
4502 | * | |
4503 | * This is also needed as number of vnodes can be dynamically scaled. | |
4504 | */ | |
4505 | kern_return_t | |
4506 | adjust_vm_object_cache(vm_size_t oval, vm_size_t nval) | |
4507 | { | |
4508 | vm_object_cached_max = nval; | |
4509 | vm_object_cache_trim(FALSE); | |
4510 | return (KERN_SUCCESS); | |
4511 | } | |
4512 | #endif /* MACH_BSD */ | |
4513 |