]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
6d2010ae | 2 | * Copyright (c) 2000-2011 Apple Inc. All rights reserved. |
1c79356b | 3 | * |
2d21ac55 | 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
1c79356b | 5 | * |
2d21ac55 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
8f6c56a5 | 14 | * |
2d21ac55 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
8f6c56a5 | 25 | * |
2d21ac55 | 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
1c79356b A |
27 | */ |
28 | /* | |
29 | File: VolumeAllocation.c | |
30 | ||
31 | Contains: Routines for accessing and modifying the volume bitmap. | |
32 | ||
33 | Version: HFS Plus 1.0 | |
34 | ||
6d2010ae | 35 | Copyright: ÔøΩ 1996-2009 by Apple Computer, Inc., all rights reserved. |
0b4e3aa0 | 36 | |
1c79356b A |
37 | */ |
38 | ||
39 | /* | |
40 | Public routines: | |
41 | BlockAllocate | |
42 | Allocate space on a volume. Can allocate space contiguously. | |
43 | If not contiguous, then allocation may be less than what was | |
44 | asked for. Returns the starting block number, and number of | |
45 | blocks. (Will only do a single extent???) | |
46 | BlockDeallocate | |
47 | Deallocate a contiguous run of allocation blocks. | |
6d2010ae A |
48 | |
49 | BlockMarkAllocated | |
50 | Exported wrapper to mark blocks as in-use. This will correctly determine | |
51 | whether or not the red-black tree is enabled and call the appropriate function | |
52 | if applicable. | |
1c79356b | 53 | BlockMarkFree |
6d2010ae A |
54 | Exported wrapper to mark blocks as freed. This will correctly determine whether or |
55 | not the red-black tree is enabled and call the appropriate function if applicable. | |
56 | ||
57 | ||
58 | ResetVCBFreeExtCache | |
59 | Since the red-black tree obviates the need to maintain the free extent cache, we do | |
60 | not update it if the tree is also live. As a result, if we ever need to destroy the trees | |
61 | we should reset the free extent cache so it doesn't confuse us when we need to fall back to the | |
62 | bitmap scanning allocator. | |
63 | We also reset and disable the free extent cache when volume resizing is | |
64 | in flight. | |
65 | ||
66 | UpdateAllocLimit | |
67 | Adjusts the AllocLimit field in the hfs mount point. This is used when we need to prevent | |
68 | allocations from occupying space in the region we are modifying during a filesystem resize. | |
69 | At other times, it should be consistent with the total number of allocation blocks in the | |
70 | filesystem. It is also used to shrink or grow the number of blocks that the red-black tree should | |
71 | know about. If growing, scan the new range of bitmap, and if shrinking, reduce the | |
72 | number of items in the tree that we can allocate from. | |
73 | ||
74 | Internal routines: | |
75 | Note that the RBTree routines are guarded by a cpp check for CONFIG_HFS_ALLOC_RBTREE. This | |
76 | is to cut down on space for functions that could not possibly be used if they are not planning to | |
77 | use the red-black tree code. | |
78 | ||
79 | BlockMarkFreeRBTree | |
80 | Make an internal call to BlockMarkFree and then update | |
81 | and/or create Red-Black Tree allocation tree nodes to correspond | |
82 | to the free space being generated. | |
83 | BlockMarkFreeInternal | |
1c79356b | 84 | Mark a contiguous range of blocks as free. The corresponding |
6d2010ae A |
85 | bits in the volume bitmap will be cleared. This will actually do the work |
86 | of modifying the bitmap for us. | |
87 | ||
88 | BlockMarkAllocatedRBTree | |
89 | Make an internal call to BlockAllocateMarked, which will update the | |
90 | bitmap on-disk when we allocate blocks. If that is successful, then | |
91 | we'll remove the appropriate entries from the red-black tree. | |
92 | BlockMarkAllocatedInternal | |
1c79356b A |
93 | Mark a contiguous range of blocks as allocated. The cor- |
94 | responding bits in the volume bitmap are set. Also tests to see | |
6d2010ae A |
95 | if any of the blocks were previously unallocated. |
96 | BlockFindContiguous | |
1c79356b A |
97 | Find a contiguous range of blocks of a given size. The caller |
98 | specifies where to begin the search (by block number). The | |
6d2010ae A |
99 | block number of the first block in the range is returned. This is only |
100 | called by the bitmap scanning logic as the red-black tree should be able | |
101 | to do this internally by searching its tree. | |
0b4e3aa0 A |
102 | BlockAllocateAny |
103 | Find and allocate a contiguous range of blocks up to a given size. The | |
104 | first range of contiguous free blocks found are allocated, even if there | |
105 | are fewer blocks than requested (and even if a contiguous range of blocks | |
106 | of the given size exists elsewhere). | |
6d2010ae A |
107 | BlockAllocateAnyBitmap |
108 | Finds a range of blocks per the above requirements without using the | |
109 | Allocation RB Tree. This relies on the bitmap-scanning logic in order to find | |
110 | any valid range of free space needed. | |
111 | BlockAllocateAnyRBTree | |
112 | Finds a valid range of blocks per the above requirements by searching | |
113 | the red-black tree. We can just make an internal call to | |
114 | BlockAllocateContigRBTree to find the valid range. | |
1c79356b A |
115 | BlockAllocateContig |
116 | Find and allocate a contiguous range of blocks of a given size. If | |
117 | a contiguous range of free blocks of the given size isn't found, then | |
6d2010ae A |
118 | the allocation fails (i.e. it is "all or nothing"). This routine is |
119 | essentially a wrapper function around its related sub-functions, | |
120 | BlockAllocateContigBitmap and BlockAllocateContigRBTree, which use, | |
121 | respectively, the original HFS+ bitmap scanning logic and the new | |
122 | Red-Black Tree to search and manage free-space decisions. This function | |
123 | contains logic for when to use which of the allocation algorithms, | |
124 | depending on the free space contained in the volume. | |
125 | BlockAllocateContigBitmap | |
126 | Finds and allocates a range of blocks specified by the size parameters | |
127 | using the original HFS+ bitmap scanning logic. The red-black tree | |
128 | will not be updated if this function is used. | |
129 | BlockAllocateContigRBTree | |
130 | Finds and allocates a range of blocks specified by the size parameters | |
131 | using the new red/black tree data structure and search algorithms | |
132 | provided by the tree library. Updates the red/black tree nodes after | |
133 | the on-disk data structure (bitmap) has been updated. | |
0b4e3aa0 A |
134 | BlockAllocateKnown |
135 | Try to allocate space from known free space in the volume's | |
136 | free extent cache. | |
137 | ||
1c79356b A |
138 | ReadBitmapBlock |
139 | Given an allocation block number, read the bitmap block that | |
140 | contains that allocation block into a caller-supplied buffer. | |
0b4e3aa0 A |
141 | |
142 | ReleaseBitmapBlock | |
143 | Release a bitmap block back into the buffer cache. | |
6d2010ae A |
144 | |
145 | ||
146 | Debug/Test Routines | |
147 | hfs_isallocated | |
148 | Test to see if any blocks in a range are allocated. Journal or | |
149 | allocation file lock must be held. | |
150 | ||
151 | hfs_isallocated_scan | |
152 | Test to see if any blocks in a range are allocated. Releases and | |
153 | invalidates the block used when finished. | |
154 | ||
155 | hfs_isrbtree_active | |
156 | Test to see if the allocation red-black tree is live. This function | |
157 | requires either an exclusive or shared lock on the allocation bitmap file | |
158 | in the HFS mount structure, to prevent red-black tree pointers from disappearing. | |
159 | ||
160 | hfs_isrbtree_allocated | |
161 | Test to see if the specified extent is marked as allocated in the red-black tree. | |
162 | Multiplexes between the metadata zone trees and the normal allocation zone trees | |
163 | depending on the offset of the extent specified. | |
164 | ||
165 | check_rbtree_extents | |
166 | Void function that wraps around the above function (hfs_isrbtree_allocated) | |
167 | and checks to see that the return value was appropriate based on the assertion we're | |
168 | trying to validate (whether or not the specified extent should be marked as free | |
169 | or allocated). | |
170 | ||
171 | hfs_validate_rbtree | |
172 | Exhaustive search function that will check every allocation block for its status in the | |
173 | red-black tree and then check the corresponding status in the bitmap file. If the two are out | |
174 | of sync, it will panic. Note that this function is extremely expensive and must NEVER | |
175 | be run outside of debug code. | |
176 | ||
177 | hfs_checktreelinks | |
178 | Checks the embedded linked list structure of the red black tree for integrity. The next pointer | |
179 | should always point to whatever extent_tree_offset_next returns. | |
180 | ||
181 | ||
182 | Red Black Tree Specific Routines | |
183 | GenerateTree | |
184 | Build a red-black tree for the given filesystem's bitmap. | |
185 | ||
186 | DestroyTrees | |
187 | Destroy the tree on the given filesystem | |
188 | ||
189 | ||
190 | hfs_alloc_scan_block | |
191 | Given a starting allocation block number, figures out which physical block contains that | |
192 | allocation block's bit, and scans it from the starting bit until either the ending bit or | |
193 | the end of the block. Free space extents are inserted into the appropriate red-black tree. | |
194 | ||
1c79356b A |
195 | */ |
196 | ||
197 | #include "../../hfs_macos_defs.h" | |
198 | ||
199 | #include <sys/types.h> | |
200 | #include <sys/buf.h> | |
201 | #include <sys/systm.h> | |
060df5ea | 202 | #include <sys/sysctl.h> |
593a1d5f | 203 | #include <sys/disk.h> |
6d2010ae A |
204 | #include <sys/ubc.h> |
205 | #include <sys/uio.h> | |
060df5ea | 206 | #include <kern/kalloc.h> |
1c79356b A |
207 | |
208 | #include "../../hfs.h" | |
209 | #include "../../hfs_dbg.h" | |
210 | #include "../../hfs_format.h" | |
211 | #include "../../hfs_endian.h" | |
6d2010ae | 212 | #include "../../hfs_macos_defs.h" |
1c79356b | 213 | #include "../headers/FileMgrInternal.h" |
6d2010ae A |
214 | #include "../headers/HybridAllocator.h" |
215 | #include "../../hfs_kdebug.h" | |
1c79356b | 216 | |
060df5ea A |
217 | #ifndef CONFIG_HFS_TRIM |
218 | #define CONFIG_HFS_TRIM 0 | |
219 | #endif | |
220 | ||
6d2010ae A |
221 | /* |
222 | * Use sysctl vfs.generic.hfs.kdebug.allocation to control which | |
223 | * KERNEL_DEBUG_CONSTANT events are enabled at runtime. (They're | |
224 | * disabled by default because there can be a lot of these events, | |
225 | * and we don't want to overwhelm the kernel debug buffer. If you | |
226 | * want to watch these events in particular, just set the sysctl.) | |
227 | */ | |
228 | static int hfs_kdebug_allocation = 0; | |
229 | SYSCTL_DECL(_vfs_generic); | |
230 | SYSCTL_NODE(_vfs_generic, OID_AUTO, hfs, CTLFLAG_RW|CTLFLAG_LOCKED, 0, "HFS file system"); | |
231 | SYSCTL_NODE(_vfs_generic_hfs, OID_AUTO, kdebug, CTLFLAG_RW|CTLFLAG_LOCKED, 0, "HFS kdebug"); | |
232 | SYSCTL_INT(_vfs_generic_hfs_kdebug, OID_AUTO, allocation, CTLFLAG_RW|CTLFLAG_LOCKED, &hfs_kdebug_allocation, 0, "Enable kdebug logging for HFS allocations"); | |
233 | enum { | |
234 | /* | |
235 | * HFSDBG_ALLOC_ENABLED: Log calls to BlockAllocate and | |
236 | * BlockDeallocate, including the internal BlockAllocateXxx | |
237 | * routines so we can see how an allocation was satisfied. | |
238 | * | |
239 | * HFSDBG_EXT_CACHE_ENABLED: Log routines that read or write the | |
240 | * free extent cache. | |
241 | * | |
242 | * HFSDBG_UNMAP_ENABLED: Log events involving the trim list. | |
243 | * | |
244 | * HFSDBG_BITMAP_ENABLED: Log accesses to the volume bitmap (setting | |
245 | * or clearing bits, scanning the bitmap). | |
246 | */ | |
247 | HFSDBG_ALLOC_ENABLED = 1, | |
248 | HFSDBG_EXT_CACHE_ENABLED = 2, | |
249 | HFSDBG_UNMAP_ENABLED = 4, | |
250 | HFSDBG_BITMAP_ENABLED = 8 | |
251 | }; | |
1c79356b A |
252 | |
253 | enum { | |
0b4e3aa0 | 254 | kBytesPerWord = 4, |
1c79356b A |
255 | kBitsPerByte = 8, |
256 | kBitsPerWord = 32, | |
0b4e3aa0 A |
257 | |
258 | kBitsWithinWordMask = kBitsPerWord-1 | |
1c79356b A |
259 | }; |
260 | ||
261 | #define kLowBitInWordMask 0x00000001ul | |
262 | #define kHighBitInWordMask 0x80000000ul | |
263 | #define kAllBitsSetInWord 0xFFFFFFFFul | |
264 | ||
265 | ||
6d2010ae A |
266 | #define ALLOC_DEBUG 0 |
267 | ||
1c79356b A |
268 | static OSErr ReadBitmapBlock( |
269 | ExtendedVCB *vcb, | |
2d21ac55 A |
270 | u_int32_t bit, |
271 | u_int32_t **buffer, | |
b0d623f7 | 272 | uintptr_t *blockRef); |
0b4e3aa0 A |
273 | |
274 | static OSErr ReleaseBitmapBlock( | |
275 | ExtendedVCB *vcb, | |
b0d623f7 | 276 | uintptr_t blockRef, |
0b4e3aa0 A |
277 | Boolean dirty); |
278 | ||
279 | static OSErr BlockAllocateAny( | |
280 | ExtendedVCB *vcb, | |
2d21ac55 A |
281 | u_int32_t startingBlock, |
282 | u_int32_t endingBlock, | |
283 | u_int32_t maxBlocks, | |
55e303ae | 284 | Boolean useMetaZone, |
2d21ac55 A |
285 | u_int32_t *actualStartBlock, |
286 | u_int32_t *actualNumBlocks); | |
1c79356b | 287 | |
6d2010ae A |
288 | static OSErr BlockAllocateAnyBitmap( |
289 | ExtendedVCB *vcb, | |
290 | u_int32_t startingBlock, | |
291 | u_int32_t endingBlock, | |
292 | u_int32_t maxBlocks, | |
293 | Boolean useMetaZone, | |
294 | u_int32_t *actualStartBlock, | |
295 | u_int32_t *actualNumBlocks); | |
296 | ||
1c79356b A |
297 | static OSErr BlockAllocateContig( |
298 | ExtendedVCB *vcb, | |
2d21ac55 A |
299 | u_int32_t startingBlock, |
300 | u_int32_t minBlocks, | |
301 | u_int32_t maxBlocks, | |
55e303ae | 302 | Boolean useMetaZone, |
2d21ac55 A |
303 | u_int32_t *actualStartBlock, |
304 | u_int32_t *actualNumBlocks); | |
1c79356b | 305 | |
6d2010ae A |
306 | static OSErr BlockAllocateContigBitmap( |
307 | ExtendedVCB *vcb, | |
308 | u_int32_t startingBlock, | |
309 | u_int32_t minBlocks, | |
310 | u_int32_t maxBlocks, | |
311 | Boolean useMetaZone, | |
312 | u_int32_t *actualStartBlock, | |
313 | u_int32_t *actualNumBlocks); | |
314 | ||
1c79356b A |
315 | static OSErr BlockFindContiguous( |
316 | ExtendedVCB *vcb, | |
2d21ac55 A |
317 | u_int32_t startingBlock, |
318 | u_int32_t endingBlock, | |
319 | u_int32_t minBlocks, | |
320 | u_int32_t maxBlocks, | |
55e303ae | 321 | Boolean useMetaZone, |
2d21ac55 A |
322 | u_int32_t *actualStartBlock, |
323 | u_int32_t *actualNumBlocks); | |
1c79356b | 324 | |
0b4e3aa0 A |
325 | static OSErr BlockAllocateKnown( |
326 | ExtendedVCB *vcb, | |
2d21ac55 A |
327 | u_int32_t maxBlocks, |
328 | u_int32_t *actualStartBlock, | |
329 | u_int32_t *actualNumBlocks); | |
0b4e3aa0 | 330 | |
6d2010ae A |
331 | static OSErr BlockMarkAllocatedInternal ( |
332 | ExtendedVCB *vcb, | |
333 | u_int32_t startingBlock, | |
334 | register u_int32_t numBlocks); | |
335 | ||
336 | static OSErr BlockMarkFreeInternal( | |
337 | ExtendedVCB *vcb, | |
338 | u_int32_t startingBlock, | |
339 | u_int32_t numBlocks, | |
340 | Boolean do_validate); | |
341 | ||
342 | #if CONFIG_HFS_ALLOC_RBTREE | |
343 | ||
344 | static OSErr ReleaseRBScanBitmapBlock( struct buf *bp ); | |
345 | ||
346 | static OSErr BlockAllocateAnyRBTree( | |
347 | ExtendedVCB *vcb, | |
348 | u_int32_t startingBlock, | |
349 | u_int32_t maxBlocks, | |
350 | Boolean useMetaZone, | |
351 | u_int32_t *actualStartBlock, | |
352 | u_int32_t *actualNumBlocks); | |
353 | ||
354 | static OSErr BlockAllocateContigRBTree( | |
355 | ExtendedVCB *vcb, | |
356 | u_int32_t startingBlock, | |
357 | u_int32_t minBlocks, | |
358 | u_int32_t maxBlocks, | |
359 | Boolean useMetaZone, | |
360 | u_int32_t *actualStartBlock, | |
361 | u_int32_t *actualNumBlocks, | |
362 | u_int32_t forceContig); | |
363 | ||
364 | static OSErr BlockMarkAllocatedRBTree( | |
365 | ExtendedVCB *vcb, | |
366 | u_int32_t startingBlock, | |
367 | u_int32_t numBlocks); | |
368 | ||
369 | static OSErr BlockMarkFreeRBTree( | |
370 | ExtendedVCB *vcb, | |
371 | u_int32_t startingBlock, | |
372 | u_int32_t numBlocks); | |
373 | ||
374 | static int | |
375 | hfs_isrbtree_allocated (struct hfsmount * hfsmp, | |
376 | u_int32_t startBlock, | |
377 | u_int32_t numBlocks, | |
378 | extent_node_t** node1); | |
379 | ||
380 | extern void | |
381 | hfs_validate_rbtree (struct hfsmount *hfsmp, | |
382 | u_int32_t start, | |
383 | u_int32_t end); | |
384 | ||
385 | static void hfs_checktreelinks (struct hfsmount *hfsmp); | |
386 | ||
387 | ||
388 | void check_rbtree_extents (struct hfsmount *hfsmp, | |
389 | u_int32_t start, | |
390 | u_int32_t numBlocks, | |
391 | int shouldBeFree); | |
392 | ||
393 | int hfs_isallocated_scan (struct hfsmount *hfsmp, | |
394 | u_int32_t startingBlock, | |
395 | u_int32_t *bp_buf); | |
396 | ||
397 | static int hfs_alloc_scan_block(struct hfsmount *hfsmp, | |
398 | u_int32_t startbit, | |
399 | u_int32_t endBit, | |
400 | u_int32_t *bitToScan); | |
401 | ||
402 | #define ASSERT_FREE 1 | |
403 | #define ASSERT_ALLOC 0 | |
404 | ||
405 | #endif /* CONFIG_HFS_ALLOC_RBTREE */ | |
406 | ||
407 | /* Functions for manipulating free extent cache */ | |
408 | static void remove_free_extent_cache(struct hfsmount *hfsmp, u_int32_t startBlock, u_int32_t blockCount); | |
409 | static Boolean add_free_extent_cache(struct hfsmount *hfsmp, u_int32_t startBlock, u_int32_t blockCount); | |
410 | static void sanity_check_free_ext(struct hfsmount *hfsmp, int check_allocated); | |
411 | ||
412 | #if ALLOC_DEBUG | |
413 | /* | |
414 | * Extra #includes for the debug function below. These are not normally #included because | |
415 | * they would constitute a layering violation | |
416 | */ | |
417 | #include <vfs/vfs_journal.h> | |
418 | #include <sys/disk.h> | |
419 | ||
420 | /* | |
421 | * Validation Routine to verify that the TRIM list maintained by the journal | |
422 | * is in good shape relative to what we think the bitmap should have. We should | |
423 | * never encounter allocated blocks in the TRIM list, so if we ever encounter them, | |
424 | * we panic. | |
425 | */ | |
426 | int trim_validate_bitmap (struct hfsmount *hfsmp) { | |
427 | u_int64_t blockno_offset; | |
428 | u_int64_t numblocks; | |
429 | int i; | |
430 | int count; | |
431 | u_int32_t startblk; | |
432 | u_int32_t blks; | |
433 | int err = 0; | |
434 | uint32_t alloccount = 0; | |
435 | ||
436 | if (hfsmp->jnl) { | |
437 | struct journal *jnl = (struct journal*)hfsmp->jnl; | |
438 | if (jnl->active_tr) { | |
439 | struct jnl_trim_list *trim = &(jnl->active_tr->trim); | |
440 | count = trim->extent_count; | |
441 | for (i = 0; i < count; i++) { | |
442 | blockno_offset = trim->extents[i].offset; | |
443 | blockno_offset = blockno_offset - (uint64_t)hfsmp->hfsPlusIOPosOffset; | |
444 | blockno_offset = blockno_offset / hfsmp->blockSize; | |
445 | numblocks = trim->extents[i].length / hfsmp->blockSize; | |
446 | ||
447 | startblk = (u_int32_t)blockno_offset; | |
448 | blks = (u_int32_t) numblocks; | |
449 | err = hfs_count_allocated (hfsmp, startblk, blks, &alloccount); | |
450 | ||
451 | if (err == 0 && alloccount != 0) { | |
452 | panic ("trim_validate_bitmap: %d blocks @ ABN %d are allocated!", alloccount, startblk); | |
453 | } | |
454 | } | |
455 | } | |
456 | } | |
457 | return 0; | |
458 | } | |
1c79356b | 459 | |
6d2010ae | 460 | #endif |
060df5ea A |
461 | |
462 | /* | |
463 | ;________________________________________________________________________________ | |
464 | ; | |
465 | ; Routine: hfs_unmap_free_extent | |
466 | ; | |
467 | ; Function: Make note of a range of allocation blocks that should be | |
468 | ; unmapped (trimmed). That is, the given range of blocks no | |
469 | ; longer have useful content, and the device can unmap the | |
470 | ; previous contents. For example, a solid state disk may reuse | |
471 | ; the underlying storage for other blocks. | |
472 | ; | |
473 | ; This routine is only supported for journaled volumes. The extent | |
474 | ; being freed is passed to the journal code, and the extent will | |
475 | ; be unmapped after the current transaction is written to disk. | |
476 | ; | |
477 | ; Input Arguments: | |
478 | ; hfsmp - The volume containing the allocation blocks. | |
479 | ; startingBlock - The first allocation block of the extent being freed. | |
480 | ; numBlocks - The number of allocation blocks of the extent being freed. | |
481 | ;________________________________________________________________________________ | |
482 | */ | |
483 | static void hfs_unmap_free_extent(struct hfsmount *hfsmp, u_int32_t startingBlock, u_int32_t numBlocks) | |
484 | { | |
6d2010ae A |
485 | u_int64_t offset; |
486 | u_int64_t length; | |
487 | int err; | |
488 | ||
489 | if (hfs_kdebug_allocation & HFSDBG_UNMAP_ENABLED) | |
490 | KERNEL_DEBUG_CONSTANT(HFSDBG_UNMAP_FREE | DBG_FUNC_START, startingBlock, numBlocks, 0, 0, 0); | |
491 | ||
492 | if (hfsmp->jnl != NULL) { | |
493 | offset = (u_int64_t) startingBlock * hfsmp->blockSize + (u_int64_t) hfsmp->hfsPlusIOPosOffset; | |
494 | length = (u_int64_t) numBlocks * hfsmp->blockSize; | |
495 | ||
496 | err = journal_trim_add_extent(hfsmp->jnl, offset, length); | |
497 | if (err) { | |
498 | printf("hfs_unmap_free_extent: error %d from journal_trim_add_extent", err); | |
060df5ea A |
499 | } |
500 | } | |
6d2010ae A |
501 | |
502 | if (hfs_kdebug_allocation & HFSDBG_UNMAP_ENABLED) | |
503 | KERNEL_DEBUG_CONSTANT(HFSDBG_UNMAP_FREE | DBG_FUNC_END, err, 0, 0, 0, 0); | |
060df5ea A |
504 | } |
505 | ||
506 | ||
507 | /* | |
508 | ;________________________________________________________________________________ | |
509 | ; | |
510 | ; Routine: hfs_unmap_alloc_extent | |
511 | ; | |
512 | ; Function: Make note of a range of allocation blocks, some of | |
513 | ; which may have previously been passed to hfs_unmap_free_extent, | |
514 | ; is now in use on the volume. The given blocks will be removed | |
515 | ; from any pending DKIOCUNMAP. | |
516 | ; | |
517 | ; Input Arguments: | |
518 | ; hfsmp - The volume containing the allocation blocks. | |
519 | ; startingBlock - The first allocation block of the extent being allocated. | |
520 | ; numBlocks - The number of allocation blocks being allocated. | |
521 | ;________________________________________________________________________________ | |
522 | */ | |
523 | static void hfs_unmap_alloc_extent(struct hfsmount *hfsmp, u_int32_t startingBlock, u_int32_t numBlocks) | |
524 | { | |
6d2010ae A |
525 | u_int64_t offset; |
526 | u_int64_t length; | |
527 | int err; | |
528 | ||
529 | if (hfs_kdebug_allocation & HFSDBG_UNMAP_ENABLED) | |
530 | KERNEL_DEBUG_CONSTANT(HFSDBG_UNMAP_ALLOC | DBG_FUNC_START, startingBlock, numBlocks, 0, 0, 0); | |
531 | ||
532 | if (hfsmp->jnl != NULL) { | |
533 | offset = (u_int64_t) startingBlock * hfsmp->blockSize + (u_int64_t) hfsmp->hfsPlusIOPosOffset; | |
534 | length = (u_int64_t) numBlocks * hfsmp->blockSize; | |
060df5ea | 535 | |
6d2010ae A |
536 | err = journal_trim_remove_extent(hfsmp->jnl, offset, length); |
537 | if (err) { | |
538 | printf("hfs_unmap_alloc_extent: error %d from journal_trim_remove_extent", err); | |
060df5ea A |
539 | } |
540 | } | |
6d2010ae A |
541 | |
542 | if (hfs_kdebug_allocation & HFSDBG_UNMAP_ENABLED) | |
543 | KERNEL_DEBUG_CONSTANT(HFSDBG_UNMAP_ALLOC | DBG_FUNC_END, err, 0, 0, 0, 0); | |
060df5ea A |
544 | } |
545 | ||
546 | ||
1c79356b A |
547 | /* |
548 | ;________________________________________________________________________________ | |
549 | ; | |
6d2010ae | 550 | ; Routine: hfs_trim_callback |
1c79356b | 551 | ; |
6d2010ae A |
552 | ; Function: This function is called when a transaction that freed extents |
553 | ; (via hfs_unmap_free_extent/journal_trim_add_extent) has been | |
554 | ; written to the on-disk journal. This routine will add those | |
555 | ; extents to the free extent cache so that they can be reused. | |
1c79356b | 556 | ; |
6d2010ae A |
557 | ; CAUTION: This routine is called while the journal's trim lock |
558 | ; is held shared, so that no other thread can reuse any portion | |
559 | ; of those extents. We must be very careful about which locks | |
560 | ; we take from within this callback, to avoid deadlock. The | |
561 | ; call to add_free_extent_cache will end up taking the cache's | |
562 | ; lock (just long enough to add these extents to the cache). | |
1c79356b | 563 | ; |
6d2010ae A |
564 | ; CAUTION: If the journal becomes invalid (eg., due to an I/O |
565 | ; error when trying to write to the journal), this callback | |
566 | ; will stop getting called, even if extents got freed before | |
567 | ; the journal became invalid! | |
1c79356b | 568 | ; |
6d2010ae A |
569 | ; Input Arguments: |
570 | ; arg - The hfsmount of the volume containing the extents. | |
571 | ; extent_count - The number of extents freed in the transaction. | |
572 | ; extents - An array of extents (byte ranges) that were freed. | |
1c79356b A |
573 | ;________________________________________________________________________________ |
574 | */ | |
6d2010ae A |
575 | __private_extern__ void |
576 | hfs_trim_callback(void *arg, uint32_t extent_count, const dk_extent_t *extents) | |
b0d623f7 | 577 | { |
6d2010ae A |
578 | uint32_t i; |
579 | uint32_t startBlock, numBlocks; | |
580 | struct hfsmount *hfsmp = arg; | |
581 | ||
582 | if (hfs_kdebug_allocation & HFSDBG_UNMAP_ENABLED) | |
583 | KERNEL_DEBUG_CONSTANT(HFSDBG_UNMAP_CALLBACK | DBG_FUNC_START, 0, extent_count, 0, 0, 0); | |
584 | ||
585 | for (i=0; i<extent_count; ++i) { | |
586 | /* Convert the byte range in *extents back to a range of allocation blocks. */ | |
587 | startBlock = (extents[i].offset - hfsmp->hfsPlusIOPosOffset) / hfsmp->blockSize; | |
588 | numBlocks = extents[i].length / hfsmp->blockSize; | |
589 | (void) add_free_extent_cache(hfsmp, startBlock, numBlocks); | |
b0d623f7 | 590 | } |
6d2010ae A |
591 | |
592 | if (hfs_kdebug_allocation & HFSDBG_UNMAP_ENABLED) | |
593 | KERNEL_DEBUG_CONSTANT(HFSDBG_UNMAP_CALLBACK | DBG_FUNC_END, 0, 0, 0, 0, 0); | |
b0d623f7 A |
594 | } |
595 | ||
1c79356b | 596 | |
6d2010ae A |
597 | /* |
598 | ;________________________________________________________________________________ | |
599 | ; | |
600 | ; Routine: BlockAllocate | |
601 | ; | |
602 | ; Function: Allocate space on a volume. If contiguous allocation is requested, | |
603 | ; at least the requested number of bytes will be allocated or an | |
604 | ; error will be returned. If contiguous allocation is not forced, | |
605 | ; the space will be allocated with the first largest extent available | |
606 | ; at the requested starting allocation block. If there is not enough | |
607 | ; room there, a block allocation of less than the requested size will be | |
608 | ; allocated. | |
609 | ; | |
610 | ; If the requested starting block is 0 (for new file allocations), | |
611 | ; the volume's allocation block pointer will be used as a starting | |
612 | ; point. | |
613 | ; | |
614 | ; Input Arguments: | |
615 | ; vcb - Pointer to ExtendedVCB for the volume to allocate space on | |
616 | ; fcb - Pointer to FCB for the file for which storage is being allocated | |
617 | ; startingBlock - Preferred starting allocation block, 0 = no preference | |
618 | ; minBlocks - Number of blocks requested. If the allocation is non-contiguous, | |
619 | ; less than this may actually be allocated | |
620 | ; maxBlocks - The maximum number of blocks to allocate. If there is additional free | |
621 | ; space after bytesRequested, then up to maxBlocks bytes should really | |
622 | ; be allocated. (Used by ExtendFileC to round up allocations to a multiple | |
623 | ; of the file's clump size.) | |
624 | ; flags - Flags to specify options like contiguous, use metadata zone, | |
625 | ; skip free block check, etc. | |
626 | ; | |
627 | ; Output: | |
628 | ; (result) - Error code, zero for successful allocation | |
629 | ; *startBlock - Actual starting allocation block | |
630 | ; *actualBlocks - Actual number of allocation blocks allocated | |
631 | ; | |
632 | ; Side effects: | |
633 | ; The volume bitmap is read and updated; the volume bitmap cache may be changed. | |
634 | ;________________________________________________________________________________ | |
635 | */ | |
1c79356b A |
636 | OSErr BlockAllocate ( |
637 | ExtendedVCB *vcb, /* which volume to allocate space on */ | |
2d21ac55 A |
638 | u_int32_t startingBlock, /* preferred starting block, or 0 for no preference */ |
639 | u_int32_t minBlocks, /* desired number of blocks to allocate */ | |
640 | u_int32_t maxBlocks, /* maximum number of blocks to allocate */ | |
0b4c1975 | 641 | u_int32_t flags, /* option flags */ |
2d21ac55 A |
642 | u_int32_t *actualStartBlock, /* actual first block of allocation */ |
643 | u_int32_t *actualNumBlocks) /* number of blocks actually allocated; if forceContiguous */ | |
55e303ae | 644 | /* was zero, then this may represent fewer than minBlocks */ |
1c79356b | 645 | { |
2d21ac55 | 646 | u_int32_t freeBlocks; |
1c79356b | 647 | OSErr err; |
1c79356b | 648 | Boolean updateAllocPtr = false; // true if nextAllocation needs to be updated |
6d2010ae | 649 | struct hfsmount *hfsmp; |
0b4c1975 A |
650 | Boolean useMetaZone; |
651 | Boolean forceContiguous; | |
652 | ||
6d2010ae A |
653 | if (hfs_kdebug_allocation & HFSDBG_ALLOC_ENABLED) |
654 | KERNEL_DEBUG_CONSTANT(HFSDBG_BLOCK_ALLOCATE | DBG_FUNC_START, startingBlock, minBlocks, maxBlocks, flags, 0); | |
655 | ||
0b4c1975 A |
656 | if (flags & HFS_ALLOC_FORCECONTIG) { |
657 | forceContiguous = true; | |
658 | } else { | |
659 | forceContiguous = false; | |
660 | } | |
661 | ||
662 | if (flags & HFS_ALLOC_METAZONE) { | |
663 | useMetaZone = true; | |
664 | } else { | |
665 | useMetaZone = false; | |
666 | } | |
1c79356b | 667 | |
6d2010ae A |
668 | //TODO: Figure out when we need to re-enable the RB-Tree. |
669 | ||
670 | ||
671 | //TODO: Make sure we use allocLimit when appropriate. | |
672 | ||
673 | /* | |
674 | * TODO: Update BlockAllocate and its sub-functions to do cooperative allocation and bitmap scanning | |
675 | * in conjunction with the Generate Tree function. If the red-black tree does not currently contain | |
676 | * an allocation block of appropriate size, then start scanning blocks FOR the tree generation function until | |
677 | * we find what we need. We'll update the tree fields when we're done, indicating that we've advanced the | |
678 | * high water mark for the tree. | |
679 | */ | |
680 | ||
1c79356b A |
681 | // |
682 | // Initialize outputs in case we get an error | |
683 | // | |
684 | *actualStartBlock = 0; | |
685 | *actualNumBlocks = 0; | |
6d2010ae A |
686 | hfsmp = VCBTOHFS (vcb); |
687 | freeBlocks = hfs_freeblks(hfsmp, 0); | |
688 | ||
1c79356b | 689 | |
0b4c1975 A |
690 | /* Skip free block check if blocks are being allocated for relocating |
691 | * data during truncating a volume. | |
692 | * | |
693 | * During hfs_truncatefs(), the volume free block count is updated | |
694 | * before relocating data to reflect the total number of free blocks | |
695 | * that will exist on the volume after resize is successful. This | |
696 | * means that we have reserved allocation blocks required for relocating | |
697 | * the data and hence there is no need to check the free blocks. | |
698 | * It will also prevent resize failure when the number of blocks in | |
699 | * an extent being relocated is more than the free blocks that will | |
700 | * exist after the volume is resized. | |
55e303ae | 701 | */ |
0b4c1975 A |
702 | if ((flags & HFS_ALLOC_SKIPFREEBLKS) == 0) { |
703 | // If the disk is already full, don't bother. | |
704 | if (freeBlocks == 0) { | |
705 | err = dskFulErr; | |
706 | goto Exit; | |
707 | } | |
708 | if (forceContiguous && freeBlocks < minBlocks) { | |
709 | err = dskFulErr; | |
710 | goto Exit; | |
711 | } | |
712 | ||
713 | /* | |
714 | * Clip if necessary so we don't over-subscribe the free blocks. | |
715 | */ | |
716 | if (minBlocks > freeBlocks) { | |
717 | minBlocks = freeBlocks; | |
718 | } | |
719 | if (maxBlocks > freeBlocks) { | |
720 | maxBlocks = freeBlocks; | |
721 | } | |
55e303ae A |
722 | } |
723 | ||
1c79356b A |
724 | // |
725 | // If caller didn't specify a starting block number, then use the volume's | |
726 | // next block to allocate from. | |
727 | // | |
728 | if (startingBlock == 0) { | |
91447636 | 729 | HFS_MOUNT_LOCK(vcb, TRUE); |
6d2010ae A |
730 | |
731 | /* Sparse Allocation and nextAllocation are both used even if the R/B Tree is on */ | |
b0d623f7 A |
732 | if (vcb->hfs_flags & HFS_HAS_SPARSE_DEVICE) { |
733 | startingBlock = vcb->sparseAllocation; | |
6d2010ae A |
734 | } |
735 | else { | |
b0d623f7 A |
736 | startingBlock = vcb->nextAllocation; |
737 | } | |
91447636 | 738 | HFS_MOUNT_UNLOCK(vcb, TRUE); |
1c79356b A |
739 | updateAllocPtr = true; |
740 | } | |
6d2010ae A |
741 | |
742 | ||
2d21ac55 | 743 | if (startingBlock >= vcb->allocLimit) { |
55e303ae A |
744 | startingBlock = 0; /* overflow so start at beginning */ |
745 | } | |
0b4e3aa0 | 746 | |
1c79356b A |
747 | // |
748 | // If the request must be contiguous, then find a sequence of free blocks | |
749 | // that is long enough. Otherwise, find the first free block. | |
750 | // | |
751 | if (forceContiguous) { | |
55e303ae A |
752 | err = BlockAllocateContig(vcb, startingBlock, minBlocks, maxBlocks, |
753 | useMetaZone, actualStartBlock, actualNumBlocks); | |
9bccf70c | 754 | /* |
6d2010ae A |
755 | * If we allocated from a new position then also update the roving allocator. |
756 | * This will keep the roving allocation pointer up-to-date even | |
757 | * if we are using the new R/B tree allocator, since | |
758 | * it doesn't matter to us here, how the underlying allocator found | |
759 | * the block to vend out. | |
9bccf70c | 760 | */ |
55e303ae A |
761 | if ((err == noErr) && |
762 | (*actualStartBlock > startingBlock) && | |
763 | ((*actualStartBlock < VCBTOHFS(vcb)->hfs_metazone_start) || | |
764 | (*actualStartBlock > VCBTOHFS(vcb)->hfs_metazone_end))) { | |
b0d623f7 | 765 | updateAllocPtr = true; |
55e303ae | 766 | } |
1c79356b | 767 | } else { |
6d2010ae A |
768 | #if CONFIG_HFS_ALLOC_RBTREE |
769 | /* | |
770 | * If the RB-Tree Allocator is live, just go straight for a | |
771 | * BlockAllocateAny call and return the result. Otherwise, | |
772 | * resort to the bitmap scanner. | |
773 | */ | |
774 | if (hfs_isrbtree_active(VCBTOHFS(vcb))) { | |
775 | /* Start by trying to allocate from the starting block forward */ | |
776 | err = BlockAllocateAny(vcb, startingBlock, vcb->allocLimit, | |
777 | maxBlocks, useMetaZone, actualStartBlock, | |
778 | actualNumBlocks); | |
779 | ||
780 | /* | |
781 | * Because the RB-Tree is live, the previous call to BlockAllocateAny | |
782 | * will use the rbtree variant. As a result, it will automatically search the | |
783 | * metadata zone for a valid extent if needed. If we get a return value of | |
784 | * noErr, we found a valid extent and we can skip to the end. If the error indicates | |
785 | * the disk is full, that's an equally valid return code and we can skip to the end, too. | |
786 | */ | |
787 | if (err == noErr || err == dskFulErr) { | |
788 | goto Exit; | |
789 | } | |
790 | else { | |
791 | //TODO: only tear down tree if the tree is finished building. | |
792 | //Make sure to handle the ENOSPC condition properly. We shouldn't error out in that case. | |
793 | /* Tear down tree if we encounter an error */ | |
794 | if (hfsmp->extent_tree_flags & HFS_ALLOC_RB_ACTIVE) { | |
795 | hfsmp->extent_tree_flags |= HFS_ALLOC_RB_ERRORED; | |
796 | DestroyTrees(hfsmp); | |
797 | ResetVCBFreeExtCache(hfsmp); | |
798 | } | |
799 | else { | |
800 | goto Exit; | |
801 | } | |
802 | // fall through to the normal allocation since the rb-tree allocation failed. | |
803 | } | |
804 | } | |
805 | #endif | |
806 | ||
0b4e3aa0 A |
807 | /* |
808 | * Scan the bitmap once, gather the N largest free extents, then | |
809 | * allocate from these largest extents. Repeat as needed until | |
810 | * we get all the space we needed. We could probably build up | |
811 | * that list when the higher level caller tried (and failed) a | |
812 | * contiguous allocation first. | |
6d2010ae A |
813 | * |
814 | * Note that the free-extent cache will be cease to be updated if | |
815 | * we are using the red-black tree for allocations. If we jettison | |
816 | * the tree, then we will reset the free-extent cache and start over. | |
0b4e3aa0 | 817 | */ |
6d2010ae | 818 | |
0b4e3aa0 | 819 | err = BlockAllocateKnown(vcb, maxBlocks, actualStartBlock, actualNumBlocks); |
6d2010ae A |
820 | /* dskFulErr out of BlockAllocateKnown indicates an empty Free Extent Cache */ |
821 | ||
822 | if (err == dskFulErr) { | |
823 | /* | |
824 | * Now we have to do a bigger scan. Start at startingBlock and go up until the | |
825 | * allocation limit. | |
826 | */ | |
2d21ac55 | 827 | err = BlockAllocateAny(vcb, startingBlock, vcb->allocLimit, |
55e303ae A |
828 | maxBlocks, useMetaZone, actualStartBlock, |
829 | actualNumBlocks); | |
6d2010ae A |
830 | } |
831 | if (err == dskFulErr) { | |
832 | /* | |
833 | * We may be out of space in the normal zone; go up to the starting block from | |
834 | * the start of the volume. | |
835 | */ | |
55e303ae A |
836 | err = BlockAllocateAny(vcb, 1, startingBlock, maxBlocks, |
837 | useMetaZone, actualStartBlock, | |
838 | actualNumBlocks); | |
6d2010ae | 839 | } |
1c79356b A |
840 | } |
841 | ||
91447636 A |
842 | Exit: |
843 | // if we actually allocated something then go update the | |
844 | // various bits of state that we maintain regardless of | |
845 | // whether there was an error (i.e. partial allocations | |
846 | // still need to update things like the free block count). | |
847 | // | |
848 | if (*actualNumBlocks != 0) { | |
1c79356b A |
849 | // |
850 | // If we used the volume's roving allocation pointer, then we need to update it. | |
851 | // Adding in the length of the current allocation might reduce the next allocate | |
852 | // call by avoiding a re-scan of the already allocated space. However, the clump | |
853 | // just allocated can quite conceivably end up being truncated or released when | |
854 | // the file is closed or its EOF changed. Leaving the allocation pointer at the | |
855 | // start of the last allocation will avoid unnecessary fragmentation in this case. | |
856 | // | |
91447636 | 857 | HFS_MOUNT_LOCK(vcb, TRUE); |
1c79356b | 858 | |
6d2010ae | 859 | lck_spin_lock(&hfsmp->vcbFreeExtLock); |
b0d623f7 A |
860 | if (vcb->vcbFreeExtCnt == 0 && vcb->hfs_freed_block_count == 0) { |
861 | vcb->sparseAllocation = *actualStartBlock; | |
862 | } | |
6d2010ae | 863 | lck_spin_unlock(&hfsmp->vcbFreeExtLock); |
b0d623f7 A |
864 | if (*actualNumBlocks < vcb->hfs_freed_block_count) { |
865 | vcb->hfs_freed_block_count -= *actualNumBlocks; | |
866 | } else { | |
867 | vcb->hfs_freed_block_count = 0; | |
868 | } | |
6d2010ae | 869 | |
55e303ae | 870 | if (updateAllocPtr && |
6d2010ae A |
871 | ((*actualStartBlock < VCBTOHFS(vcb)->hfs_metazone_start) || |
872 | (*actualStartBlock > VCBTOHFS(vcb)->hfs_metazone_end))) { | |
2d21ac55 | 873 | HFS_UPDATE_NEXT_ALLOCATION(vcb, *actualStartBlock); |
55e303ae | 874 | } |
b0d623f7 | 875 | |
6d2010ae | 876 | (void) remove_free_extent_cache(hfsmp, *actualStartBlock, *actualNumBlocks); |
0b4c1975 A |
877 | |
878 | /* | |
879 | * Update the number of free blocks on the volume | |
880 | * | |
881 | * Skip updating the free blocks count if the block are | |
882 | * being allocated to relocate data as part of hfs_truncatefs() | |
883 | */ | |
884 | if ((flags & HFS_ALLOC_SKIPFREEBLKS) == 0) { | |
885 | vcb->freeBlocks -= *actualNumBlocks; | |
886 | } | |
1c79356b | 887 | MarkVCBDirty(vcb); |
91447636 A |
888 | HFS_MOUNT_UNLOCK(vcb, TRUE); |
889 | ||
890 | hfs_generate_volume_notifications(VCBTOHFS(vcb)); | |
1c79356b A |
891 | } |
892 | ||
6d2010ae A |
893 | if (ALLOC_DEBUG) { |
894 | if (err == noErr) { | |
895 | if (*actualStartBlock >= hfsmp->totalBlocks) { | |
896 | panic ("BlockAllocate: vending invalid blocks!"); | |
897 | } | |
898 | if (*actualStartBlock >= hfsmp->allocLimit) { | |
899 | panic ("BlockAllocate: vending block past allocLimit!"); | |
900 | } | |
901 | ||
902 | if ((*actualStartBlock + *actualNumBlocks) >= hfsmp->totalBlocks) { | |
903 | panic ("BlockAllocate: vending too many invalid blocks!"); | |
904 | } | |
905 | ||
906 | if ((*actualStartBlock + *actualNumBlocks) >= hfsmp->allocLimit) { | |
907 | panic ("BlockAllocate: vending too many invalid blocks past allocLimit!"); | |
908 | } | |
909 | } | |
910 | } | |
911 | ||
912 | if (hfs_kdebug_allocation & HFSDBG_ALLOC_ENABLED) | |
913 | KERNEL_DEBUG_CONSTANT(HFSDBG_BLOCK_ALLOCATE | DBG_FUNC_END, err, *actualStartBlock, *actualNumBlocks, 0, 0); | |
914 | ||
1c79356b A |
915 | return err; |
916 | } | |
917 | ||
918 | ||
1c79356b A |
919 | /* |
920 | ;________________________________________________________________________________ | |
921 | ; | |
6d2010ae | 922 | ; Routine: BlockDeallocate |
1c79356b A |
923 | ; |
924 | ; Function: Update the bitmap to deallocate a run of disk allocation blocks | |
925 | ; | |
926 | ; Input Arguments: | |
927 | ; vcb - Pointer to ExtendedVCB for the volume to free space on | |
928 | ; firstBlock - First allocation block to be freed | |
929 | ; numBlocks - Number of allocation blocks to free up (must be > 0!) | |
930 | ; | |
931 | ; Output: | |
932 | ; (result) - Result code | |
933 | ; | |
934 | ; Side effects: | |
935 | ; The volume bitmap is read and updated; the volume bitmap cache may be changed. | |
6d2010ae | 936 | ; The Allocator's red-black trees may also be modified as a result. |
1c79356b A |
937 | ;________________________________________________________________________________ |
938 | */ | |
939 | ||
940 | OSErr BlockDeallocate ( | |
941 | ExtendedVCB *vcb, // Which volume to deallocate space on | |
2d21ac55 | 942 | u_int32_t firstBlock, // First block in range to deallocate |
0b4c1975 A |
943 | u_int32_t numBlocks, // Number of contiguous blocks to deallocate |
944 | u_int32_t flags) | |
1c79356b A |
945 | { |
946 | OSErr err; | |
6d2010ae A |
947 | struct hfsmount *hfsmp; |
948 | hfsmp = VCBTOHFS(vcb); | |
1c79356b | 949 | |
6d2010ae A |
950 | if (hfs_kdebug_allocation & HFSDBG_ALLOC_ENABLED) |
951 | KERNEL_DEBUG_CONSTANT(HFSDBG_BLOCK_DEALLOCATE | DBG_FUNC_START, firstBlock, numBlocks, flags, 0, 0); | |
952 | ||
1c79356b A |
953 | // |
954 | // If no blocks to deallocate, then exit early | |
955 | // | |
956 | if (numBlocks == 0) { | |
957 | err = noErr; | |
958 | goto Exit; | |
959 | } | |
6d2010ae A |
960 | |
961 | ||
962 | if (ALLOC_DEBUG) { | |
963 | if (firstBlock >= hfsmp->totalBlocks) { | |
964 | panic ("BlockDeallocate: freeing invalid blocks!"); | |
965 | } | |
966 | ||
967 | if ((firstBlock + numBlocks) >= hfsmp->totalBlocks) { | |
968 | panic ("BlockDeallocate: freeing too many invalid blocks!"); | |
969 | } | |
970 | } | |
971 | ||
972 | ||
973 | ||
974 | ||
975 | /* | |
976 | * If we're using the red-black tree code, then try to free the | |
977 | * blocks by marking them in the red-black tree first. If the tree | |
978 | * is not active for whatever reason (or we're not using the | |
979 | * R/B Tree code at all), then go straight for the BlockMarkFree | |
980 | * function. | |
981 | * | |
982 | * Remember that we can get into this function if the tree isn't finished | |
983 | * building. In that case, check to see if the block we're de-allocating is | |
984 | * past the high watermark | |
985 | */ | |
986 | #if CONFIG_HFS_ALLOC_RBTREE | |
987 | if (hfs_isrbtree_active(VCBTOHFS(vcb))) { | |
988 | /* | |
989 | * BlockMarkFreeRBTree deals with the case where we are resizing the | |
990 | * filesystem (shrinking), and we need to manipulate the bitmap beyond the portion | |
991 | * that is currenly controlled by the r/b tree. | |
992 | */ | |
993 | ||
994 | //TODO: Update multiplexing code for the half-finished case. | |
995 | err = BlockMarkFreeRBTree(vcb, firstBlock, numBlocks); | |
996 | adjustFreeExtCache = 0; | |
997 | } | |
998 | else { | |
999 | err = BlockMarkFreeInternal(vcb, firstBlock, numBlocks, true); | |
1000 | } | |
1c79356b | 1001 | |
6d2010ae A |
1002 | #else |
1003 | err = BlockMarkFreeInternal(vcb, firstBlock, numBlocks, true); | |
1004 | #endif | |
1c79356b A |
1005 | if (err) |
1006 | goto Exit; | |
1007 | ||
1008 | // | |
1009 | // Update the volume's free block count, and mark the VCB as dirty. | |
1010 | // | |
91447636 | 1011 | HFS_MOUNT_LOCK(vcb, TRUE); |
0b4c1975 A |
1012 | |
1013 | /* | |
1014 | * Do not update the free block count. This flags is specified | |
1015 | * when a volume is being truncated. | |
1016 | */ | |
1017 | if ((flags & HFS_ALLOC_SKIPFREEBLKS) == 0) { | |
1018 | vcb->freeBlocks += numBlocks; | |
1019 | } | |
1020 | ||
b0d623f7 | 1021 | vcb->hfs_freed_block_count += numBlocks; |
b0d623f7 A |
1022 | |
1023 | if (vcb->nextAllocation == (firstBlock + numBlocks)) { | |
2d21ac55 | 1024 | HFS_UPDATE_NEXT_ALLOCATION(vcb, (vcb->nextAllocation - numBlocks)); |
b0d623f7 A |
1025 | } |
1026 | ||
6d2010ae A |
1027 | if (hfsmp->jnl == NULL) { |
1028 | /* | |
1029 | * In the journal case, we'll add the free extent once the journal | |
1030 | * calls us back to tell us it wrote the transaction to disk. | |
1031 | */ | |
1032 | (void) add_free_extent_cache(vcb, firstBlock, numBlocks); | |
1033 | ||
1034 | /* | |
1035 | * If the journal case, we'll only update sparseAllocation once the | |
1036 | * free extent cache becomes empty (when we remove the last entry | |
1037 | * from the cache). Skipping it here means we're less likely to | |
1038 | * find a recently freed extent via the bitmap before it gets added | |
1039 | * to the free extent cache. | |
1040 | */ | |
1041 | if (firstBlock < vcb->sparseAllocation) { | |
1042 | vcb->sparseAllocation = firstBlock; | |
b0d623f7 A |
1043 | } |
1044 | } | |
6d2010ae | 1045 | |
1c79356b | 1046 | MarkVCBDirty(vcb); |
91447636 A |
1047 | HFS_MOUNT_UNLOCK(vcb, TRUE); |
1048 | ||
1049 | hfs_generate_volume_notifications(VCBTOHFS(vcb)); | |
1c79356b A |
1050 | Exit: |
1051 | ||
6d2010ae A |
1052 | if (hfs_kdebug_allocation & HFSDBG_ALLOC_ENABLED) |
1053 | KERNEL_DEBUG_CONSTANT(HFSDBG_BLOCK_DEALLOCATE | DBG_FUNC_END, err, 0, 0, 0, 0); | |
1054 | ||
1c79356b A |
1055 | return err; |
1056 | } | |
1057 | ||
1058 | ||
2d21ac55 | 1059 | u_int8_t freebitcount[16] = { |
55e303ae A |
1060 | 4, 3, 3, 2, 3, 2, 2, 1, /* 0 1 2 3 4 5 6 7 */ |
1061 | 3, 2, 2, 1, 2, 1, 1, 0, /* 8 9 A B C D E F */ | |
1062 | }; | |
1063 | ||
2d21ac55 | 1064 | u_int32_t |
55e303ae | 1065 | MetaZoneFreeBlocks(ExtendedVCB *vcb) |
1c79356b | 1066 | { |
2d21ac55 A |
1067 | u_int32_t freeblocks; |
1068 | u_int32_t *currCache; | |
b0d623f7 | 1069 | uintptr_t blockRef; |
2d21ac55 A |
1070 | u_int32_t bit; |
1071 | u_int32_t lastbit; | |
55e303ae A |
1072 | int bytesleft; |
1073 | int bytesperblock; | |
2d21ac55 A |
1074 | u_int8_t byte; |
1075 | u_int8_t *buffer; | |
91447636 | 1076 | |
55e303ae A |
1077 | blockRef = 0; |
1078 | bytesleft = freeblocks = 0; | |
91447636 | 1079 | buffer = NULL; |
55e303ae A |
1080 | bit = VCBTOHFS(vcb)->hfs_metazone_start; |
1081 | if (bit == 1) | |
1082 | bit = 0; | |
1c79356b | 1083 | |
55e303ae A |
1084 | lastbit = VCBTOHFS(vcb)->hfs_metazone_end; |
1085 | bytesperblock = vcb->vcbVBMIOSize; | |
1086 | ||
1087 | /* | |
1088 | * Count all the bits from bit to lastbit. | |
1089 | */ | |
1090 | while (bit < lastbit) { | |
1091 | /* | |
1092 | * Get next bitmap block. | |
1093 | */ | |
1094 | if (bytesleft == 0) { | |
1095 | if (blockRef) { | |
1096 | (void) ReleaseBitmapBlock(vcb, blockRef, false); | |
1097 | blockRef = 0; | |
1098 | } | |
1099 | if (ReadBitmapBlock(vcb, bit, &currCache, &blockRef) != 0) { | |
1100 | return (0); | |
1101 | } | |
2d21ac55 | 1102 | buffer = (u_int8_t *)currCache; |
55e303ae A |
1103 | bytesleft = bytesperblock; |
1104 | } | |
1105 | byte = *buffer++; | |
1106 | freeblocks += freebitcount[byte & 0x0F]; | |
1107 | freeblocks += freebitcount[(byte >> 4) & 0x0F]; | |
1108 | bit += kBitsPerByte; | |
1109 | --bytesleft; | |
1110 | } | |
1111 | if (blockRef) | |
1112 | (void) ReleaseBitmapBlock(vcb, blockRef, false); | |
1113 | ||
1114 | return (freeblocks); | |
1c79356b A |
1115 | } |
1116 | ||
1117 | ||
55e303ae A |
1118 | /* |
1119 | * Obtain the next allocation block (bit) that's | |
1120 | * outside the metadata allocation zone. | |
1121 | */ | |
2d21ac55 | 1122 | static u_int32_t NextBitmapBlock( |
55e303ae | 1123 | ExtendedVCB *vcb, |
2d21ac55 | 1124 | u_int32_t bit) |
55e303ae A |
1125 | { |
1126 | struct hfsmount *hfsmp = VCBTOHFS(vcb); | |
1127 | ||
1128 | if ((hfsmp->hfs_flags & HFS_METADATA_ZONE) == 0) | |
1129 | return (bit); | |
1130 | /* | |
1131 | * Skip over metadata allocation zone. | |
1132 | */ | |
1133 | if ((bit >= hfsmp->hfs_metazone_start) && | |
1134 | (bit <= hfsmp->hfs_metazone_end)) { | |
1135 | bit = hfsmp->hfs_metazone_end + 1; | |
1136 | } | |
1137 | return (bit); | |
1138 | } | |
1139 | ||
1c79356b A |
1140 | |
1141 | /* | |
1142 | ;_______________________________________________________________________ | |
1143 | ; | |
1144 | ; Routine: ReadBitmapBlock | |
1145 | ; | |
1146 | ; Function: Read in a bitmap block corresponding to a given allocation | |
0b4e3aa0 | 1147 | ; block (bit). Return a pointer to the bitmap block. |
1c79356b A |
1148 | ; |
1149 | ; Inputs: | |
1150 | ; vcb -- Pointer to ExtendedVCB | |
0b4e3aa0 | 1151 | ; bit -- Allocation block whose bitmap block is desired |
1c79356b A |
1152 | ; |
1153 | ; Outputs: | |
1154 | ; buffer -- Pointer to bitmap block corresonding to "block" | |
0b4e3aa0 | 1155 | ; blockRef |
1c79356b A |
1156 | ;_______________________________________________________________________ |
1157 | */ | |
1158 | static OSErr ReadBitmapBlock( | |
1159 | ExtendedVCB *vcb, | |
2d21ac55 A |
1160 | u_int32_t bit, |
1161 | u_int32_t **buffer, | |
b0d623f7 | 1162 | uintptr_t *blockRef) |
1c79356b A |
1163 | { |
1164 | OSErr err; | |
0b4e3aa0 A |
1165 | struct buf *bp = NULL; |
1166 | struct vnode *vp = NULL; | |
91447636 | 1167 | daddr64_t block; |
2d21ac55 | 1168 | u_int32_t blockSize; |
1c79356b | 1169 | |
6d2010ae A |
1170 | if (hfs_kdebug_allocation & HFSDBG_BITMAP_ENABLED) |
1171 | KERNEL_DEBUG_CONSTANT(HFSDBG_READ_BITMAP_BLOCK | DBG_FUNC_START, bit, 0, 0, 0, 0); | |
1172 | ||
0b4e3aa0 | 1173 | /* |
91447636 | 1174 | * volume bitmap blocks are protected by the allocation file lock |
0b4e3aa0 | 1175 | */ |
91447636 | 1176 | REQUIRE_FILE_LOCK(vcb->hfs_allocation_vp, false); |
1c79356b | 1177 | |
2d21ac55 | 1178 | blockSize = (u_int32_t)vcb->vcbVBMIOSize; |
91447636 | 1179 | block = (daddr64_t)(bit / (blockSize * kBitsPerByte)); |
1c79356b | 1180 | |
0b4e3aa0 | 1181 | if (vcb->vcbSigWord == kHFSPlusSigWord) { |
91447636 | 1182 | vp = vcb->hfs_allocation_vp; /* use allocation file vnode */ |
1c79356b | 1183 | |
0b4e3aa0 A |
1184 | } else /* hfs */ { |
1185 | vp = VCBTOHFS(vcb)->hfs_devvp; /* use device I/O vnode */ | |
1186 | block += vcb->vcbVBMSt; /* map to physical block */ | |
1c79356b | 1187 | } |
1c79356b | 1188 | |
91447636 | 1189 | err = (int)buf_meta_bread(vp, block, blockSize, NOCRED, &bp); |
1c79356b | 1190 | |
0b4e3aa0 A |
1191 | if (bp) { |
1192 | if (err) { | |
91447636 | 1193 | buf_brelse(bp); |
2d21ac55 | 1194 | *blockRef = 0; |
0b4e3aa0 A |
1195 | *buffer = NULL; |
1196 | } else { | |
b0d623f7 | 1197 | *blockRef = (uintptr_t)bp; |
2d21ac55 | 1198 | *buffer = (u_int32_t *)buf_dataptr(bp); |
0b4e3aa0 | 1199 | } |
1c79356b A |
1200 | } |
1201 | ||
6d2010ae A |
1202 | if (hfs_kdebug_allocation & HFSDBG_BITMAP_ENABLED) |
1203 | KERNEL_DEBUG_CONSTANT(HFSDBG_READ_BITMAP_BLOCK | DBG_FUNC_END, err, 0, 0, 0, 0); | |
1204 | ||
1c79356b A |
1205 | return err; |
1206 | } | |
1207 | ||
1208 | ||
0b4e3aa0 A |
1209 | /* |
1210 | ;_______________________________________________________________________ | |
1211 | ; | |
1212 | ; Routine: ReleaseBitmapBlock | |
1213 | ; | |
1214 | ; Function: Relase a bitmap block. | |
1215 | ; | |
1216 | ; Inputs: | |
1217 | ; vcb | |
1218 | ; blockRef | |
1219 | ; dirty | |
1220 | ;_______________________________________________________________________ | |
1221 | */ | |
1222 | static OSErr ReleaseBitmapBlock( | |
1223 | ExtendedVCB *vcb, | |
b0d623f7 | 1224 | uintptr_t blockRef, |
0b4e3aa0 A |
1225 | Boolean dirty) |
1226 | { | |
1227 | struct buf *bp = (struct buf *)blockRef; | |
55e303ae | 1228 | |
6d2010ae A |
1229 | if (hfs_kdebug_allocation & HFSDBG_BITMAP_ENABLED) |
1230 | KERNEL_DEBUG_CONSTANT(HFSDBG_RELEASE_BITMAP_BLOCK | DBG_FUNC_START, dirty, 0, 0, 0, 0); | |
1231 | ||
55e303ae A |
1232 | if (blockRef == 0) { |
1233 | if (dirty) | |
b0d623f7 | 1234 | panic("hfs: ReleaseBitmapBlock: missing bp"); |
55e303ae A |
1235 | return (0); |
1236 | } | |
0b4e3aa0 A |
1237 | |
1238 | if (bp) { | |
1239 | if (dirty) { | |
b4c24cb9 A |
1240 | // XXXdbg |
1241 | struct hfsmount *hfsmp = VCBTOHFS(vcb); | |
1242 | ||
1243 | if (hfsmp->jnl) { | |
2d21ac55 | 1244 | journal_modify_block_end(hfsmp->jnl, bp, NULL, NULL); |
b4c24cb9 | 1245 | } else { |
91447636 | 1246 | buf_bdwrite(bp); |
b4c24cb9 | 1247 | } |
0b4e3aa0 | 1248 | } else { |
91447636 | 1249 | buf_brelse(bp); |
0b4e3aa0 A |
1250 | } |
1251 | } | |
1252 | ||
6d2010ae A |
1253 | if (hfs_kdebug_allocation & HFSDBG_BITMAP_ENABLED) |
1254 | KERNEL_DEBUG_CONSTANT(HFSDBG_RELEASE_BITMAP_BLOCK | DBG_FUNC_END, 0, 0, 0, 0, 0); | |
1255 | ||
1256 | return (0); | |
1257 | } | |
1258 | ||
1259 | #if CONFIG_HFS_ALLOC_RBTREE | |
1260 | /* | |
1261 | * ReleaseRBScanBitmapBlock is used to release struct bufs that were | |
1262 | * created for use by the Red-Black tree generation code. We want to force | |
1263 | * them to be purged out of the buffer cache ASAP, so we'll release them differently | |
1264 | * than in the ReleaseBitmapBlock case. Alternately, we know that we're only reading | |
1265 | * the blocks, so we will never dirty them as part of the tree building scan. | |
1266 | */ | |
1267 | ||
1268 | static OSErr ReleaseRBScanBitmapBlock(struct buf *bp ) { | |
1269 | ||
1270 | if (bp == NULL) { | |
1271 | return (0); | |
1272 | } | |
1273 | ||
1274 | if (bp) { | |
1275 | /* Mark the buffer invalid if it isn't locked, then release it */ | |
1276 | if ((buf_flags(bp) & B_LOCKED) == 0) { | |
1277 | buf_markinvalid(bp); | |
1278 | } | |
1279 | buf_brelse(bp); | |
1280 | } | |
1281 | ||
0b4e3aa0 | 1282 | return (0); |
6d2010ae A |
1283 | |
1284 | ||
0b4e3aa0 A |
1285 | } |
1286 | ||
6d2010ae A |
1287 | #endif |
1288 | ||
1c79356b A |
1289 | |
1290 | /* | |
1291 | _______________________________________________________________________ | |
1292 | ||
1293 | Routine: BlockAllocateContig | |
1294 | ||
1295 | Function: Allocate a contiguous group of allocation blocks. The | |
1296 | allocation is all-or-nothing. The caller guarantees that | |
1297 | there are enough free blocks (though they may not be | |
1298 | contiguous, in which case this call will fail). | |
1299 | ||
1300 | Inputs: | |
1301 | vcb Pointer to volume where space is to be allocated | |
1302 | startingBlock Preferred first block for allocation | |
1303 | minBlocks Minimum number of contiguous blocks to allocate | |
1304 | maxBlocks Maximum number of contiguous blocks to allocate | |
55e303ae | 1305 | useMetaZone |
1c79356b A |
1306 | |
1307 | Outputs: | |
1308 | actualStartBlock First block of range allocated, or 0 if error | |
1309 | actualNumBlocks Number of blocks allocated, or 0 if error | |
1310 | _______________________________________________________________________ | |
1311 | */ | |
1312 | static OSErr BlockAllocateContig( | |
1313 | ExtendedVCB *vcb, | |
2d21ac55 A |
1314 | u_int32_t startingBlock, |
1315 | u_int32_t minBlocks, | |
1316 | u_int32_t maxBlocks, | |
55e303ae | 1317 | Boolean useMetaZone, |
2d21ac55 A |
1318 | u_int32_t *actualStartBlock, |
1319 | u_int32_t *actualNumBlocks) | |
1c79356b | 1320 | { |
1c79356b | 1321 | |
6d2010ae A |
1322 | #if CONFIG_HFS_ALLOC_RBTREE |
1323 | if (hfs_isrbtree_active(VCBTOHFS(vcb))) { | |
1324 | return BlockAllocateContigRBTree(vcb, startingBlock, minBlocks, maxBlocks, useMetaZone, | |
1325 | actualStartBlock, actualNumBlocks, 1); | |
1326 | } | |
1327 | #endif | |
1328 | return BlockAllocateContigBitmap(vcb, startingBlock, minBlocks, | |
1329 | maxBlocks, useMetaZone, actualStartBlock, actualNumBlocks); | |
1330 | } | |
0b4e3aa0 | 1331 | |
6d2010ae A |
1332 | /* |
1333 | * Variant of BlockAllocateContig that uses the original bitmap-searching logic | |
1334 | */ | |
1335 | ||
1336 | static OSErr BlockAllocateContigBitmap( | |
1337 | ExtendedVCB *vcb, | |
1338 | u_int32_t startingBlock, | |
1339 | u_int32_t minBlocks, | |
1340 | u_int32_t maxBlocks, | |
1341 | Boolean useMetaZone, | |
1342 | u_int32_t *actualStartBlock, | |
1343 | u_int32_t *actualNumBlocks) | |
1344 | { | |
1345 | OSErr err; | |
1346 | ||
1347 | if (hfs_kdebug_allocation & HFSDBG_ALLOC_ENABLED) | |
1348 | KERNEL_DEBUG_CONSTANT(HFSDBG_ALLOC_CONTIG_BITMAP | DBG_FUNC_START, startingBlock, minBlocks, maxBlocks, useMetaZone, 0); | |
1349 | ||
1350 | // | |
1351 | // Find a contiguous group of blocks at least minBlocks long. | |
1352 | // Determine the number of contiguous blocks available (up | |
1353 | // to maxBlocks). | |
1354 | // | |
1355 | ||
1356 | /* | |
1357 | * NOTE: If the only contiguous free extent of at least minBlocks | |
1358 | * crosses startingBlock (i.e. starts before, ends after), then we | |
1359 | * won't find it. Earlier versions *did* find this case by letting | |
1360 | * the second search look past startingBlock by minBlocks. But | |
1361 | * with the free extent cache, this can lead to duplicate entries | |
1362 | * in the cache, causing the same blocks to be allocated twice. | |
0b4e3aa0 | 1363 | */ |
2d21ac55 | 1364 | err = BlockFindContiguous(vcb, startingBlock, vcb->allocLimit, minBlocks, |
55e303ae | 1365 | maxBlocks, useMetaZone, actualStartBlock, actualNumBlocks); |
0b4e3aa0 A |
1366 | if (err == dskFulErr && startingBlock != 0) { |
1367 | /* | |
1368 | * Constrain the endingBlock so we don't bother looking for ranges | |
1369 | * that would overlap those found in the previous call. | |
1370 | */ | |
55e303ae A |
1371 | err = BlockFindContiguous(vcb, 1, startingBlock, minBlocks, maxBlocks, |
1372 | useMetaZone, actualStartBlock, actualNumBlocks); | |
1c79356b | 1373 | } |
1c79356b A |
1374 | // |
1375 | // Now mark those blocks allocated. | |
1376 | // | |
2d21ac55 | 1377 | if (err == noErr) |
6d2010ae A |
1378 | err = BlockMarkAllocatedInternal(vcb, *actualStartBlock, *actualNumBlocks); |
1379 | ||
1380 | if (hfs_kdebug_allocation & HFSDBG_ALLOC_ENABLED) | |
1381 | KERNEL_DEBUG_CONSTANT(HFSDBG_ALLOC_CONTIG_BITMAP | DBG_FUNC_END, err, *actualStartBlock, *actualNumBlocks, 0, 0); | |
1382 | ||
1383 | return err; | |
1384 | } | |
1385 | ||
1386 | #if CONFIG_HFS_ALLOC_RBTREE | |
1387 | /* | |
1388 | * Variant of BlockAllocateContig that uses the newer red-black tree library | |
1389 | * in order to manage free space extents. This will search the red-black tree | |
1390 | * and return results in the same fashion as BlockAllocateContigBitmap. | |
1391 | * | |
1392 | * Note that this function is invoked from both the red-black tree variant of BlockAllocateany | |
1393 | * as well as BlockAllocateContig. In order to determine when we should vend contiguous chunks over | |
1394 | * locality-based-searches, we use the forceContig argument to determine who called us. | |
1395 | */ | |
1396 | ||
1397 | static OSErr BlockAllocateContigRBTree( | |
1398 | ExtendedVCB *vcb, | |
1399 | u_int32_t startingBlock, | |
1400 | u_int32_t minBlocks, | |
1401 | u_int32_t maxBlocks, | |
1402 | Boolean useMetaZone, | |
1403 | u_int32_t *actualStartBlock, | |
1404 | u_int32_t *actualNumBlocks, | |
1405 | u_int32_t forceContig) | |
1406 | { | |
1407 | OSErr err; | |
1408 | struct hfsmount *hfsmp = VCBTOHFS(vcb); | |
1409 | extent_node_t search_sentinel; | |
1410 | extent_node_t *node = NULL; | |
1411 | extent_node_t tempnode; | |
1412 | ||
1413 | bzero (&tempnode, sizeof(extent_node_t)); | |
1414 | ||
1415 | /* Begin search at the end of the file, via startingBlock */ | |
1416 | memset (&search_sentinel, 0, sizeof(extent_node_t)); | |
1417 | search_sentinel.offset = startingBlock; | |
1418 | ||
1419 | *actualStartBlock = 0; | |
1420 | *actualNumBlocks = 0; | |
1421 | ||
1422 | /* | |
1423 | * Find the first available extent that satifies the allocation by searching | |
1424 | * from the starting point and moving forward | |
1425 | */ | |
1426 | node = extent_tree_off_search_next(&hfsmp->offset_tree, &search_sentinel); | |
1427 | ||
1428 | if (node) { | |
1429 | *actualStartBlock = node->offset; | |
1430 | *actualNumBlocks = node->length; | |
1431 | } | |
1432 | ||
1433 | /* If we managed to grab at least minBlocks of space, then we're done. */ | |
1434 | ||
1435 | if (*actualNumBlocks >= minBlocks) { | |
1436 | if (*actualNumBlocks > maxBlocks) { | |
1437 | *actualNumBlocks = maxBlocks; | |
1438 | } | |
1439 | ||
1440 | ||
1441 | /* Check to see if blocks are already marked as in-use */ | |
1442 | if (ALLOC_DEBUG) { | |
1443 | REQUIRE_FILE_LOCK(vcb->hfs_allocation_vp, false); | |
1444 | if (hfs_isallocated(hfsmp, *actualStartBlock, *actualNumBlocks)) { | |
1445 | printf("bad node: %p, offset %d, length %d\n", node, node->offset,node->length); | |
1446 | panic ("HFS RBTree Allocator: Blocks starting @ %x for %x blocks in use already\n", | |
1447 | *actualStartBlock, *actualNumBlocks); | |
1448 | } | |
1449 | } | |
1450 | ||
1451 | /* | |
1452 | * BlockMarkAllocatedRBTree is responsible for removing the nodes | |
1453 | * from the red-black tree after the bitmap has been updated on-disk. | |
1454 | */ | |
1455 | err = BlockMarkAllocatedRBTree(vcb, *actualStartBlock, *actualNumBlocks); | |
1456 | if (err == noErr) { | |
1457 | ||
1458 | if ( ALLOC_DEBUG ) { | |
1459 | REQUIRE_FILE_LOCK(vcb->hfs_allocation_vp, false); | |
1460 | if (!hfs_isallocated(hfsmp, *actualStartBlock, *actualNumBlocks)) { | |
1461 | panic ("HFS RBTree Allocator: Blocks starting @ %x for %x blocks not in use yet\n", | |
1462 | *actualStartBlock, *actualNumBlocks); | |
1463 | } | |
1464 | check_rbtree_extents (VCBTOHFS(vcb), *actualStartBlock, *actualNumBlocks, ASSERT_ALLOC); | |
1465 | } | |
1466 | ||
1467 | return err; | |
1468 | } | |
1469 | } | |
1470 | ||
1471 | /* | |
1472 | * We may have failed to grow at the end of the file. We'll try to find | |
1473 | * appropriate free extents, searching by size in the normal allocation zone. | |
1474 | * | |
1475 | * However, if we're allocating on behalf of a sparse device that hasn't explicitly | |
1476 | * requested a contiguous chunk, then we try to search by offset, even if it | |
1477 | * means fragmenting the file. We want all available entries starting | |
1478 | * from the front of the disk to avoid creating new bandfiles. As a result, | |
1479 | * we'll start by searching the offset tree rather than the normal length | |
1480 | * tree. Note that this function can be invoked from BlockAllocateAny, in | |
1481 | * which the minimum block size is 1 block, making it easy to succeed. | |
1482 | */ | |
1483 | search_sentinel.offset = hfsmp->hfs_metazone_end; | |
1484 | search_sentinel.length = minBlocks; | |
1485 | ||
1486 | if ((vcb->hfs_flags & HFS_HAS_SPARSE_DEVICE) && (forceContig == 0)) { | |
1487 | /* just start with the first offset node */ | |
1488 | node = extent_tree_off_search_next(&hfsmp->offset_tree, &search_sentinel); | |
1489 | } | |
1490 | else { | |
1491 | /* | |
1492 | * Otherwise, start from the end of the metadata zone or our next allocation pointer, | |
1493 | * and try to find the first chunk of size >= min. | |
1494 | */ | |
1495 | node = extent_tree_off_search_nextWithSize (&hfsmp->offset_tree, &search_sentinel); | |
1496 | ||
1497 | if (node == NULL) { | |
1498 | extent_node_t *metaend_node; | |
1499 | /* | |
1500 | * Maybe there's a free extent coalesced with the space still in the metadata | |
1501 | * zone. If there is, find it and allocate from the middle of it, starting at | |
1502 | * the end of the metadata zone. | |
1503 | * | |
1504 | * If search_prev yields a result that is not offset == metazone_end, then that | |
1505 | * means no node existed at that offset. If the previous node's offset + length crosses | |
1506 | * the metazone boundary, then allocate from there. If it is too small to | |
1507 | * cross the metazone boundary, then it is of no importance and we'd have to | |
1508 | * report ENOSPC. | |
1509 | */ | |
1510 | metaend_node = extent_tree_off_search_prev(&hfsmp->offset_tree, &search_sentinel); | |
1511 | ||
1512 | if ((metaend_node) && (metaend_node->offset < hfsmp->hfs_metazone_end)) { | |
1513 | u_int32_t node_end = metaend_node->offset + metaend_node->length; | |
1514 | if (node_end > hfsmp->hfs_metazone_end) { | |
1515 | u_int32_t modified_length = node_end - hfsmp->hfs_metazone_end; | |
1516 | if (modified_length >= minBlocks) { | |
1517 | /* | |
1518 | * Then we can allocate it. Fill in the contents into tempnode, | |
1519 | * and BlockMarkAllocatedRBTree below will take care of the rest. | |
1520 | */ | |
1521 | tempnode.offset = hfsmp->hfs_metazone_end; | |
1522 | tempnode.length = MIN(minBlocks, node_end - tempnode.offset); | |
1523 | node = &tempnode; | |
1524 | } | |
1525 | } | |
1526 | } | |
1527 | } | |
1528 | } | |
1529 | ||
1530 | /* If we can't find anything useful, search the metadata zone as a last resort. */ | |
1531 | ||
1532 | if ((!node) && useMetaZone) { | |
1533 | search_sentinel.offset = 0; | |
1534 | search_sentinel.length = minBlocks; | |
1535 | node = extent_tree_off_search_nextWithSize (&hfsmp->offset_tree, &search_sentinel); | |
1536 | } | |
1537 | ||
1538 | /* If we found something useful, then go ahead and update the bitmap */ | |
1539 | if ((node) && (node->length >= minBlocks)) { | |
1540 | *actualStartBlock = node->offset; | |
1541 | if (node->length >= maxBlocks) { | |
1542 | *actualNumBlocks = maxBlocks; | |
1543 | } | |
1544 | else { | |
1545 | *actualNumBlocks = node->length; | |
1546 | } | |
1547 | ||
1548 | err = BlockMarkAllocatedRBTree(vcb, *actualStartBlock, *actualNumBlocks); | |
1549 | ||
1550 | if (err == noErr) { | |
1551 | if ( ALLOC_DEBUG ) { | |
1552 | REQUIRE_FILE_LOCK(vcb->hfs_allocation_vp, false); | |
1553 | if (!hfs_isallocated(hfsmp, *actualStartBlock, *actualNumBlocks)) { | |
1554 | panic ("HFS RBTree Allocator: Blocks starting @ %x for %x blocks not in use yet\n", | |
1555 | *actualStartBlock, *actualNumBlocks); | |
1556 | } | |
1557 | check_rbtree_extents (VCBTOHFS(vcb), *actualStartBlock, *actualNumBlocks, ASSERT_ALLOC); | |
1558 | } | |
1559 | } | |
1560 | } | |
1561 | else { | |
1562 | int destroy_trees = 0; | |
1563 | /* | |
1564 | * TODO: Add High-water mark check here. If we couldn't find anything useful, | |
1565 | * when do we tear down the tree? Or should the logic be in BlockAllocateContig?? | |
1566 | */ | |
1567 | if (destroy_trees) { | |
1568 | DestroyTrees(VCBTOHFS(vcb)); | |
1569 | /* Reset the Free Ext Cache since we'll be using it now. */ | |
1570 | ResetVCBFreeExtCache(VCBTOHFS(vcb)); | |
1571 | } | |
1572 | ||
1573 | if (ALLOC_DEBUG) { | |
1574 | printf("HFS allocator: No space on FS (%s). Node %p Start %d Min %d, Max %d, Tree still alive.\n", | |
1575 | hfsmp->vcbVN, node, startingBlock, minBlocks, maxBlocks); | |
1576 | ||
1577 | /* Dump the list ? */ | |
1578 | extent_tree_offset_print(&hfsmp->offset_tree); | |
1579 | ||
1580 | printf("HFS allocator: Done printing list on FS (%s). Min %d, Max %d, Tree still alive.\n", | |
1581 | hfsmp->vcbVN, minBlocks, maxBlocks); | |
1582 | ||
1583 | ||
1584 | ||
1585 | } | |
1586 | err = dskFulErr; | |
1587 | } | |
1588 | ||
1589 | if (err == noErr) { | |
1590 | if (ALLOC_DEBUG) { | |
1591 | if ((*actualStartBlock + *actualNumBlocks) > vcb->allocLimit) | |
1592 | panic("hfs: BlockAllocateAny: allocation overflow on \"%s\"", vcb->vcbVN); | |
1593 | } | |
1594 | } | |
1595 | else { | |
1596 | *actualStartBlock = 0; | |
1597 | *actualNumBlocks = 0; | |
1598 | } | |
1c79356b A |
1599 | |
1600 | return err; | |
6d2010ae | 1601 | |
1c79356b | 1602 | } |
6d2010ae A |
1603 | #endif |
1604 | ||
1605 | ||
1c79356b | 1606 | |
1c79356b A |
1607 | /* |
1608 | _______________________________________________________________________ | |
1609 | ||
1610 | Routine: BlockAllocateAny | |
1611 | ||
1612 | Function: Allocate one or more allocation blocks. If there are fewer | |
1613 | free blocks than requested, all free blocks will be | |
1614 | allocated. The caller guarantees that there is at least | |
1615 | one free block. | |
1616 | ||
1617 | Inputs: | |
1618 | vcb Pointer to volume where space is to be allocated | |
1619 | startingBlock Preferred first block for allocation | |
1620 | endingBlock Last block to check + 1 | |
1621 | maxBlocks Maximum number of contiguous blocks to allocate | |
55e303ae | 1622 | useMetaZone |
1c79356b A |
1623 | |
1624 | Outputs: | |
1625 | actualStartBlock First block of range allocated, or 0 if error | |
1626 | actualNumBlocks Number of blocks allocated, or 0 if error | |
1627 | _______________________________________________________________________ | |
1628 | */ | |
6d2010ae A |
1629 | |
1630 | /* | |
1631 | * BlockAllocateAny acts as a multiplexer between BlockAllocateAnyRBTree | |
1632 | * and BlockAllocateAnyBitmap, which uses the bitmap scanning logic. | |
1633 | */ | |
1634 | ||
0b4e3aa0 | 1635 | static OSErr BlockAllocateAny( |
1c79356b | 1636 | ExtendedVCB *vcb, |
2d21ac55 A |
1637 | u_int32_t startingBlock, |
1638 | register u_int32_t endingBlock, | |
1639 | u_int32_t maxBlocks, | |
55e303ae | 1640 | Boolean useMetaZone, |
2d21ac55 A |
1641 | u_int32_t *actualStartBlock, |
1642 | u_int32_t *actualNumBlocks) | |
1c79356b | 1643 | { |
6d2010ae A |
1644 | |
1645 | #if CONFIG_HFS_ALLOC_RBTREE | |
1646 | if (hfs_isrbtree_active(VCBTOHFS(vcb))) { | |
1647 | return BlockAllocateAnyRBTree(vcb, startingBlock, maxBlocks, useMetaZone, actualStartBlock, actualNumBlocks); | |
1648 | } | |
1649 | #endif | |
1650 | return BlockAllocateAnyBitmap(vcb, startingBlock, endingBlock, maxBlocks, useMetaZone, actualStartBlock, actualNumBlocks); | |
1651 | ||
1652 | } | |
1653 | ||
1654 | ||
1655 | #if CONFIG_HFS_ALLOC_RBTREE | |
1656 | /* | |
1657 | * BlockAllocateAnyRBTree finds one or more allocation blocks by using | |
1658 | * the red-black allocation tree to figure out where the free ranges are. | |
1659 | * This function is typically used as a last resort becuase we were unable to | |
1660 | * find the right ranges. Outputs are the same as BlockAllocateAnyBitmap. | |
1661 | */ | |
1662 | static OSErr BlockAllocateAnyRBTree( | |
1663 | ExtendedVCB *vcb, | |
1664 | u_int32_t startingBlock, | |
1665 | u_int32_t maxBlocks, | |
1666 | Boolean useMetaZone, | |
1667 | u_int32_t *actualStartBlock, | |
1668 | u_int32_t *actualNumBlocks) | |
1669 | { | |
1670 | OSErr err; | |
1671 | ||
1672 | /* | |
1673 | * BlockAllocateContig | |
1674 | */ | |
1675 | /* If we're using the red-black tree, try searching at the specified offsets. */ | |
1676 | err = BlockAllocateContigRBTree(vcb, startingBlock, 1, maxBlocks, useMetaZone, | |
1677 | actualStartBlock, actualNumBlocks, 0); | |
1678 | return err; | |
1679 | ||
1680 | } | |
1681 | #endif | |
1682 | ||
1683 | /* | |
1684 | * BlockAllocateAnyBitmap finds free ranges by scanning the bitmap to figure out | |
1685 | * where the free allocation blocks are. Inputs and outputs are the same as for | |
1686 | * BlockAllocateAny and BlockAllocateAnyRBTree | |
1687 | */ | |
1688 | ||
1689 | static OSErr BlockAllocateAnyBitmap( | |
1690 | ExtendedVCB *vcb, | |
1691 | u_int32_t startingBlock, | |
1692 | register u_int32_t endingBlock, | |
1693 | u_int32_t maxBlocks, | |
1694 | Boolean useMetaZone, | |
1695 | u_int32_t *actualStartBlock, | |
1696 | u_int32_t *actualNumBlocks) | |
1697 | { | |
1c79356b | 1698 | OSErr err; |
2d21ac55 A |
1699 | register u_int32_t block; // current block number |
1700 | register u_int32_t currentWord; // Pointer to current word within bitmap block | |
1701 | register u_int32_t bitMask; // Word with given bits already set (ready to OR in) | |
1702 | register u_int32_t wordsLeft; // Number of words left in this bitmap block | |
1703 | u_int32_t *buffer = NULL; | |
1704 | u_int32_t *currCache = NULL; | |
b0d623f7 | 1705 | uintptr_t blockRef; |
2d21ac55 A |
1706 | u_int32_t bitsPerBlock; |
1707 | u_int32_t wordsPerBlock; | |
0b4e3aa0 | 1708 | Boolean dirty = false; |
b4c24cb9 | 1709 | struct hfsmount *hfsmp = VCBTOHFS(vcb); |
1c79356b | 1710 | |
6d2010ae A |
1711 | if (hfs_kdebug_allocation & HFSDBG_ALLOC_ENABLED) |
1712 | KERNEL_DEBUG_CONSTANT(HFSDBG_ALLOC_ANY_BITMAP | DBG_FUNC_START, startingBlock, endingBlock, maxBlocks, useMetaZone, 0); | |
1713 | ||
2d21ac55 A |
1714 | /* |
1715 | * When we're skipping the metadata zone and the start/end | |
1716 | * range overlaps with the metadata zone then adjust the | |
1717 | * start to be outside of the metadata zone. If the range | |
1718 | * is entirely inside the metadata zone then we can deny the | |
1719 | * request (dskFulErr). | |
1720 | */ | |
1721 | if (!useMetaZone && (vcb->hfs_flags & HFS_METADATA_ZONE)) { | |
1722 | if (startingBlock <= vcb->hfs_metazone_end) { | |
1723 | if (endingBlock > (vcb->hfs_metazone_end + 2)) | |
1724 | startingBlock = vcb->hfs_metazone_end + 1; | |
1725 | else { | |
1726 | err = dskFulErr; | |
1727 | goto Exit; | |
1728 | } | |
1729 | } | |
1730 | } | |
1731 | ||
1c79356b A |
1732 | // Since this routine doesn't wrap around |
1733 | if (maxBlocks > (endingBlock - startingBlock)) { | |
1734 | maxBlocks = endingBlock - startingBlock; | |
1735 | } | |
1736 | ||
1c79356b A |
1737 | // |
1738 | // Pre-read the first bitmap block | |
1739 | // | |
55e303ae | 1740 | err = ReadBitmapBlock(vcb, startingBlock, &currCache, &blockRef); |
1c79356b | 1741 | if (err != noErr) goto Exit; |
55e303ae | 1742 | buffer = currCache; |
1c79356b A |
1743 | |
1744 | // | |
1745 | // Set up the current position within the block | |
1746 | // | |
1747 | { | |
2d21ac55 | 1748 | u_int32_t wordIndexInBlock; |
0b4e3aa0 A |
1749 | |
1750 | bitsPerBlock = vcb->vcbVBMIOSize * kBitsPerByte; | |
1751 | wordsPerBlock = vcb->vcbVBMIOSize / kBytesPerWord; | |
1c79356b | 1752 | |
0b4e3aa0 | 1753 | wordIndexInBlock = (startingBlock & (bitsPerBlock-1)) / kBitsPerWord; |
1c79356b | 1754 | buffer += wordIndexInBlock; |
0b4e3aa0 | 1755 | wordsLeft = wordsPerBlock - wordIndexInBlock; |
1c79356b A |
1756 | currentWord = SWAP_BE32 (*buffer); |
1757 | bitMask = kHighBitInWordMask >> (startingBlock & kBitsWithinWordMask); | |
1758 | } | |
1759 | ||
1760 | // | |
1761 | // Find the first unallocated block | |
1762 | // | |
1763 | block=startingBlock; | |
1764 | while (block < endingBlock) { | |
1765 | if ((currentWord & bitMask) == 0) | |
1766 | break; | |
55e303ae | 1767 | |
1c79356b A |
1768 | // Next bit |
1769 | ++block; | |
1770 | bitMask >>= 1; | |
1771 | if (bitMask == 0) { | |
1772 | // Next word | |
1773 | bitMask = kHighBitInWordMask; | |
1774 | ++buffer; | |
55e303ae | 1775 | |
1c79356b A |
1776 | if (--wordsLeft == 0) { |
1777 | // Next block | |
55e303ae | 1778 | buffer = currCache = NULL; |
0b4e3aa0 A |
1779 | err = ReleaseBitmapBlock(vcb, blockRef, false); |
1780 | if (err != noErr) goto Exit; | |
1781 | ||
55e303ae A |
1782 | /* |
1783 | * Skip over metadata blocks. | |
1784 | */ | |
1785 | if (!useMetaZone) { | |
1786 | block = NextBitmapBlock(vcb, block); | |
55e303ae | 1787 | } |
2d21ac55 A |
1788 | if (block >= endingBlock) { |
1789 | err = dskFulErr; | |
1790 | goto Exit; | |
1791 | } | |
1792 | ||
55e303ae | 1793 | err = ReadBitmapBlock(vcb, block, &currCache, &blockRef); |
1c79356b | 1794 | if (err != noErr) goto Exit; |
55e303ae | 1795 | buffer = currCache; |
1c79356b | 1796 | |
0b4e3aa0 | 1797 | wordsLeft = wordsPerBlock; |
1c79356b | 1798 | } |
1c79356b A |
1799 | currentWord = SWAP_BE32 (*buffer); |
1800 | } | |
1801 | } | |
1802 | ||
1803 | // Did we get to the end of the bitmap before finding a free block? | |
1804 | // If so, then couldn't allocate anything. | |
55e303ae | 1805 | if (block >= endingBlock) { |
1c79356b A |
1806 | err = dskFulErr; |
1807 | goto Exit; | |
1808 | } | |
1809 | ||
1810 | // Return the first block in the allocated range | |
1811 | *actualStartBlock = block; | |
0b4e3aa0 | 1812 | dirty = true; |
1c79356b A |
1813 | |
1814 | // If we could get the desired number of blocks before hitting endingBlock, | |
1815 | // then adjust endingBlock so we won't keep looking. Ideally, the comparison | |
1816 | // would be (block + maxBlocks) < endingBlock, but that could overflow. The | |
1817 | // comparison below yields identical results, but without overflow. | |
1818 | if (block < (endingBlock-maxBlocks)) { | |
1819 | endingBlock = block + maxBlocks; // if we get this far, we've found enough | |
1820 | } | |
1821 | ||
b4c24cb9 A |
1822 | // XXXdbg |
1823 | if (hfsmp->jnl) { | |
1824 | journal_modify_block_start(hfsmp->jnl, (struct buf *)blockRef); | |
1825 | } | |
1826 | ||
1c79356b A |
1827 | // |
1828 | // Allocate all of the consecutive blocks | |
1829 | // | |
1830 | while ((currentWord & bitMask) == 0) { | |
1831 | // Allocate this block | |
1832 | currentWord |= bitMask; | |
1833 | ||
1834 | // Move to the next block. If no more, then exit. | |
1835 | ++block; | |
1836 | if (block == endingBlock) | |
1837 | break; | |
1838 | ||
1839 | // Next bit | |
1840 | bitMask >>= 1; | |
1841 | if (bitMask == 0) { | |
1842 | *buffer = SWAP_BE32 (currentWord); // update value in bitmap | |
1843 | ||
1844 | // Next word | |
1845 | bitMask = kHighBitInWordMask; | |
1846 | ++buffer; | |
1847 | ||
1848 | if (--wordsLeft == 0) { | |
1849 | // Next block | |
55e303ae | 1850 | buffer = currCache = NULL; |
0b4e3aa0 A |
1851 | err = ReleaseBitmapBlock(vcb, blockRef, true); |
1852 | if (err != noErr) goto Exit; | |
1853 | ||
55e303ae A |
1854 | /* |
1855 | * Skip over metadata blocks. | |
1856 | */ | |
1857 | if (!useMetaZone) { | |
2d21ac55 | 1858 | u_int32_t nextBlock; |
55e303ae A |
1859 | |
1860 | nextBlock = NextBitmapBlock(vcb, block); | |
1861 | if (nextBlock != block) { | |
1862 | goto Exit; /* allocation gap, so stop */ | |
1863 | } | |
1864 | } | |
1865 | ||
1866 | err = ReadBitmapBlock(vcb, block, &currCache, &blockRef); | |
1c79356b | 1867 | if (err != noErr) goto Exit; |
55e303ae | 1868 | buffer = currCache; |
1c79356b | 1869 | |
b4c24cb9 A |
1870 | // XXXdbg |
1871 | if (hfsmp->jnl) { | |
1872 | journal_modify_block_start(hfsmp->jnl, (struct buf *)blockRef); | |
1873 | } | |
1874 | ||
0b4e3aa0 | 1875 | wordsLeft = wordsPerBlock; |
1c79356b A |
1876 | } |
1877 | ||
1878 | currentWord = SWAP_BE32 (*buffer); | |
1879 | } | |
1880 | } | |
1881 | *buffer = SWAP_BE32 (currentWord); // update the last change | |
1882 | ||
1883 | Exit: | |
1884 | if (err == noErr) { | |
1885 | *actualNumBlocks = block - *actualStartBlock; | |
55e303ae | 1886 | |
060df5ea A |
1887 | // sanity check |
1888 | if ((*actualStartBlock + *actualNumBlocks) > vcb->allocLimit) { | |
1889 | panic("hfs: BlockAllocateAny: allocation overflow on \"%s\"", vcb->vcbVN); | |
1890 | } | |
6d2010ae A |
1891 | |
1892 | /* | |
1893 | * Beware! | |
1894 | * Because this function directly manipulates the bitmap to mark the | |
1895 | * blocks it came across as allocated, we must inform the journal (and | |
1896 | * subsequently, the journal's trim list) that we are allocating these | |
1897 | * blocks, just like in BlockMarkAllocatedInternal. hfs_unmap_alloc_extent | |
1898 | * and the functions it calls will serialize behind the journal trim list lock | |
1899 | * to ensure that either the asynchronous flush/TRIM/UNMAP happens prior to | |
1900 | * us manipulating the trim list, or we get there first and successfully remove | |
1901 | * these bitmap blocks before the TRIM happens. | |
1902 | */ | |
1903 | hfs_unmap_alloc_extent (vcb, *actualStartBlock, *actualNumBlocks); | |
1c79356b A |
1904 | } |
1905 | else { | |
1906 | *actualStartBlock = 0; | |
1907 | *actualNumBlocks = 0; | |
1908 | } | |
1909 | ||
0b4e3aa0 A |
1910 | if (currCache) |
1911 | (void) ReleaseBitmapBlock(vcb, blockRef, dirty); | |
1c79356b | 1912 | |
6d2010ae A |
1913 | if (hfs_kdebug_allocation & HFSDBG_ALLOC_ENABLED) |
1914 | KERNEL_DEBUG_CONSTANT(HFSDBG_ALLOC_ANY_BITMAP | DBG_FUNC_END, err, *actualStartBlock, *actualNumBlocks, 0, 0); | |
1915 | ||
1c79356b A |
1916 | return err; |
1917 | } | |
1918 | ||
1919 | ||
0b4e3aa0 A |
1920 | /* |
1921 | _______________________________________________________________________ | |
1922 | ||
1923 | Routine: BlockAllocateKnown | |
1924 | ||
1925 | Function: Try to allocate space from known free space in the free | |
1926 | extent cache. | |
1927 | ||
1928 | Inputs: | |
1929 | vcb Pointer to volume where space is to be allocated | |
1930 | maxBlocks Maximum number of contiguous blocks to allocate | |
1931 | ||
1932 | Outputs: | |
1933 | actualStartBlock First block of range allocated, or 0 if error | |
1934 | actualNumBlocks Number of blocks allocated, or 0 if error | |
1935 | ||
1936 | Returns: | |
1937 | dskFulErr Free extent cache is empty | |
1938 | _______________________________________________________________________ | |
1939 | */ | |
b0d623f7 | 1940 | |
0b4e3aa0 A |
1941 | static OSErr BlockAllocateKnown( |
1942 | ExtendedVCB *vcb, | |
2d21ac55 A |
1943 | u_int32_t maxBlocks, |
1944 | u_int32_t *actualStartBlock, | |
1945 | u_int32_t *actualNumBlocks) | |
0b4e3aa0 | 1946 | { |
2d21ac55 A |
1947 | OSErr err; |
1948 | u_int32_t i; | |
1949 | u_int32_t foundBlocks; | |
1950 | u_int32_t newStartBlock, newBlockCount; | |
b0d623f7 | 1951 | |
6d2010ae A |
1952 | if (hfs_kdebug_allocation & HFSDBG_ALLOC_ENABLED) |
1953 | KERNEL_DEBUG_CONSTANT(HFSDBG_ALLOC_KNOWN_BITMAP | DBG_FUNC_START, 0, 0, maxBlocks, 0, 0); | |
1954 | ||
d1ecb069 | 1955 | HFS_MOUNT_LOCK(vcb, TRUE); |
6d2010ae A |
1956 | lck_spin_lock(&vcb->vcbFreeExtLock); |
1957 | if ((hfs_isrbtree_active(vcb) == true) || | |
1958 | vcb->vcbFreeExtCnt == 0 || | |
d1ecb069 | 1959 | vcb->vcbFreeExt[0].blockCount == 0) { |
6d2010ae | 1960 | lck_spin_unlock(&vcb->vcbFreeExtLock); |
d1ecb069 | 1961 | HFS_MOUNT_UNLOCK(vcb, TRUE); |
6d2010ae A |
1962 | if (hfs_kdebug_allocation & HFSDBG_ALLOC_ENABLED) |
1963 | KERNEL_DEBUG_CONSTANT(HFSDBG_ALLOC_KNOWN_BITMAP | DBG_FUNC_END, dskFulErr, *actualStartBlock, *actualNumBlocks, 0, 0); | |
0b4e3aa0 | 1964 | return dskFulErr; |
d1ecb069 | 1965 | } |
6d2010ae | 1966 | lck_spin_unlock(&vcb->vcbFreeExtLock); |
d1ecb069 | 1967 | HFS_MOUNT_UNLOCK(vcb, TRUE); |
0b4e3aa0 | 1968 | |
6d2010ae A |
1969 | lck_spin_lock(&vcb->vcbFreeExtLock); |
1970 | ||
0b4e3aa0 A |
1971 | // Just grab up to maxBlocks of the first (largest) free exent. |
1972 | *actualStartBlock = vcb->vcbFreeExt[0].startBlock; | |
1973 | foundBlocks = vcb->vcbFreeExt[0].blockCount; | |
1974 | if (foundBlocks > maxBlocks) | |
1975 | foundBlocks = maxBlocks; | |
1976 | *actualNumBlocks = foundBlocks; | |
1977 | ||
b0d623f7 A |
1978 | if (vcb->hfs_flags & HFS_HAS_SPARSE_DEVICE) { |
1979 | // since sparse volumes keep the free extent list sorted by starting | |
1980 | // block number, the list won't get re-ordered, it may only shrink | |
1981 | // | |
1982 | vcb->vcbFreeExt[0].startBlock += foundBlocks; | |
1983 | vcb->vcbFreeExt[0].blockCount -= foundBlocks; | |
1984 | if (vcb->vcbFreeExt[0].blockCount == 0) { | |
1985 | for(i=1; i < vcb->vcbFreeExtCnt; i++) { | |
1986 | vcb->vcbFreeExt[i-1] = vcb->vcbFreeExt[i]; | |
1987 | } | |
1988 | vcb->vcbFreeExtCnt--; | |
1989 | } | |
1990 | ||
1991 | goto done; | |
1992 | } | |
1993 | ||
0b4e3aa0 A |
1994 | // Adjust the start and length of that extent. |
1995 | newStartBlock = vcb->vcbFreeExt[0].startBlock + foundBlocks; | |
1996 | newBlockCount = vcb->vcbFreeExt[0].blockCount - foundBlocks; | |
b0d623f7 | 1997 | |
0b4e3aa0 A |
1998 | |
1999 | // The first extent might not be the largest anymore. Bubble up any | |
2000 | // (now larger) extents to the top of the list. | |
2001 | for (i=1; i<vcb->vcbFreeExtCnt; ++i) | |
2002 | { | |
2003 | if (vcb->vcbFreeExt[i].blockCount > newBlockCount) | |
2004 | { | |
2005 | vcb->vcbFreeExt[i-1].startBlock = vcb->vcbFreeExt[i].startBlock; | |
2006 | vcb->vcbFreeExt[i-1].blockCount = vcb->vcbFreeExt[i].blockCount; | |
2007 | } | |
2008 | else | |
2009 | { | |
2010 | break; | |
2011 | } | |
2012 | } | |
2013 | ||
2014 | // If this is now the smallest known free extent, then it might be smaller than | |
2015 | // other extents we didn't keep track of. So, just forget about this extent. | |
2016 | // After the previous loop, (i-1) is the index of the extent we just allocated from. | |
b0d623f7 | 2017 | if (newBlockCount == 0) |
0b4e3aa0 | 2018 | { |
b0d623f7 | 2019 | // then just reduce the number of free extents since this guy got deleted |
0b4e3aa0 A |
2020 | --vcb->vcbFreeExtCnt; |
2021 | } | |
2022 | else | |
2023 | { | |
2024 | // It's not the smallest, so store it in its proper place | |
2025 | vcb->vcbFreeExt[i-1].startBlock = newStartBlock; | |
2026 | vcb->vcbFreeExt[i-1].blockCount = newBlockCount; | |
2027 | } | |
b0d623f7 A |
2028 | |
2029 | done: | |
6d2010ae | 2030 | lck_spin_unlock(&vcb->vcbFreeExtLock); |
55e303ae | 2031 | // sanity check |
2d21ac55 | 2032 | if ((*actualStartBlock + *actualNumBlocks) > vcb->allocLimit) |
0c530ab8 | 2033 | { |
2d21ac55 A |
2034 | printf ("hfs: BlockAllocateKnown() found allocation overflow on \"%s\"", vcb->vcbVN); |
2035 | hfs_mark_volume_inconsistent(vcb); | |
6601e61a A |
2036 | *actualStartBlock = 0; |
2037 | *actualNumBlocks = 0; | |
2038 | err = EIO; | |
2d21ac55 A |
2039 | } |
2040 | else | |
6601e61a A |
2041 | { |
2042 | // | |
2043 | // Now mark the found extent in the bitmap | |
2044 | // | |
6d2010ae | 2045 | err = BlockMarkAllocatedInternal(vcb, *actualStartBlock, *actualNumBlocks); |
6601e61a | 2046 | } |
2d21ac55 | 2047 | |
6d2010ae A |
2048 | sanity_check_free_ext(vcb, 0); |
2049 | ||
2050 | if (hfs_kdebug_allocation & HFSDBG_ALLOC_ENABLED) | |
2051 | KERNEL_DEBUG_CONSTANT(HFSDBG_ALLOC_KNOWN_BITMAP | DBG_FUNC_END, err, *actualStartBlock, *actualNumBlocks, 0, 0); | |
b0d623f7 | 2052 | |
2d21ac55 | 2053 | return err; |
0b4e3aa0 A |
2054 | } |
2055 | ||
6d2010ae A |
2056 | /* |
2057 | * BlockMarkAllocated | |
2058 | * | |
2059 | * This is a wrapper function around the internal calls which will actually mark the blocks | |
2060 | * as in-use. It will mark the blocks in the red-black tree if appropriate. We need to do | |
2061 | * this logic here to avoid callers having to deal with whether or not the red-black tree | |
2062 | * is enabled. | |
2063 | */ | |
2064 | ||
2065 | ||
2066 | OSErr BlockMarkAllocated( | |
2067 | ExtendedVCB *vcb, | |
2068 | u_int32_t startingBlock, | |
2069 | register u_int32_t numBlocks) | |
2070 | { | |
2071 | struct hfsmount *hfsmp; | |
2072 | ||
2073 | hfsmp = VCBTOHFS(vcb); | |
2074 | #if CONFIG_HFS_ALLOC_RBTREE | |
2075 | if (hfs_isrbtree_active(hfsmp)) { | |
2076 | int err; | |
2077 | ||
2078 | if ((startingBlock >= hfsmp->offset_block_end) && | |
2079 | (hfsmp->hfs_flags & HFS_RESIZE_IN_PROGRESS)) { | |
2080 | /* | |
2081 | * We're manipulating a portion of the bitmap that is not controlled by the | |
2082 | * red-black tree. Just update the bitmap and don't bother manipulating the tree | |
2083 | */ | |
2084 | goto justbitmap; | |
2085 | } | |
2086 | ||
2087 | err = BlockMarkAllocatedRBTree(vcb, startingBlock, numBlocks); | |
2088 | if (err == noErr) { | |
2089 | if ( ALLOC_DEBUG ) { | |
2090 | REQUIRE_FILE_LOCK(hfsmp->hfs_allocation_vp, false); | |
2091 | if (!hfs_isallocated(hfsmp, startingBlock, numBlocks)) { | |
2092 | panic ("HFS RBTree Allocator: Blocks starting @ %x for %x blocks not in use yet\n", | |
2093 | startingBlock, numBlocks); | |
2094 | } | |
2095 | check_rbtree_extents (hfsmp, startingBlock, numBlocks, ASSERT_ALLOC); | |
2096 | } | |
2097 | } | |
2098 | return err; | |
2099 | ||
2100 | } | |
2101 | justbitmap: | |
2102 | #endif | |
2103 | ||
2104 | return BlockMarkAllocatedInternal(vcb, startingBlock, numBlocks); | |
2105 | ||
2106 | } | |
2107 | ||
0b4e3aa0 | 2108 | |
1c79356b A |
2109 | |
2110 | /* | |
2111 | _______________________________________________________________________ | |
2112 | ||
6d2010ae | 2113 | Routine: BlockMarkAllocatedInternal |
1c79356b A |
2114 | |
2115 | Function: Mark a contiguous group of blocks as allocated (set in the | |
2116 | bitmap). It assumes those bits are currently marked | |
6d2010ae A |
2117 | deallocated (clear in the bitmap). Note that this function |
2118 | must be called regardless of whether or not the bitmap or | |
2119 | tree-based allocator is used, as all allocations must correctly | |
2120 | be marked on-disk. If the tree-based approach is running, then | |
2121 | this will be done before the node is removed from the tree. | |
1c79356b A |
2122 | |
2123 | Inputs: | |
2124 | vcb Pointer to volume where space is to be allocated | |
2125 | startingBlock First block number to mark as allocated | |
2126 | numBlocks Number of blocks to mark as allocated | |
2127 | _______________________________________________________________________ | |
2128 | */ | |
6d2010ae A |
2129 | static |
2130 | OSErr BlockMarkAllocatedInternal ( | |
1c79356b | 2131 | ExtendedVCB *vcb, |
2d21ac55 A |
2132 | u_int32_t startingBlock, |
2133 | register u_int32_t numBlocks) | |
1c79356b A |
2134 | { |
2135 | OSErr err; | |
2d21ac55 A |
2136 | register u_int32_t *currentWord; // Pointer to current word within bitmap block |
2137 | register u_int32_t wordsLeft; // Number of words left in this bitmap block | |
2138 | register u_int32_t bitMask; // Word with given bits already set (ready to OR in) | |
2139 | u_int32_t firstBit; // Bit index within word of first bit to allocate | |
2140 | u_int32_t numBits; // Number of bits in word to allocate | |
2141 | u_int32_t *buffer = NULL; | |
b0d623f7 | 2142 | uintptr_t blockRef; |
2d21ac55 A |
2143 | u_int32_t bitsPerBlock; |
2144 | u_int32_t wordsPerBlock; | |
b4c24cb9 A |
2145 | // XXXdbg |
2146 | struct hfsmount *hfsmp = VCBTOHFS(vcb); | |
1c79356b | 2147 | |
6d2010ae A |
2148 | if (hfs_kdebug_allocation & HFSDBG_BITMAP_ENABLED) |
2149 | KERNEL_DEBUG_CONSTANT(HFSDBG_MARK_ALLOC_BITMAP | DBG_FUNC_START, startingBlock, numBlocks, 0, 0, 0); | |
2150 | ||
2151 | hfs_unmap_alloc_extent(vcb, startingBlock, numBlocks); | |
060df5ea | 2152 | |
1c79356b A |
2153 | // |
2154 | // Pre-read the bitmap block containing the first word of allocation | |
2155 | // | |
2156 | ||
0b4e3aa0 | 2157 | err = ReadBitmapBlock(vcb, startingBlock, &buffer, &blockRef); |
1c79356b | 2158 | if (err != noErr) goto Exit; |
1c79356b A |
2159 | // |
2160 | // Initialize currentWord, and wordsLeft. | |
2161 | // | |
2162 | { | |
2d21ac55 | 2163 | u_int32_t wordIndexInBlock; |
0b4e3aa0 A |
2164 | |
2165 | bitsPerBlock = vcb->vcbVBMIOSize * kBitsPerByte; | |
2166 | wordsPerBlock = vcb->vcbVBMIOSize / kBytesPerWord; | |
1c79356b | 2167 | |
0b4e3aa0 | 2168 | wordIndexInBlock = (startingBlock & (bitsPerBlock-1)) / kBitsPerWord; |
1c79356b | 2169 | currentWord = buffer + wordIndexInBlock; |
0b4e3aa0 | 2170 | wordsLeft = wordsPerBlock - wordIndexInBlock; |
1c79356b A |
2171 | } |
2172 | ||
b4c24cb9 A |
2173 | // XXXdbg |
2174 | if (hfsmp->jnl) { | |
2175 | journal_modify_block_start(hfsmp->jnl, (struct buf *)blockRef); | |
2176 | } | |
2177 | ||
1c79356b A |
2178 | // |
2179 | // If the first block to allocate doesn't start on a word | |
2180 | // boundary in the bitmap, then treat that first word | |
2181 | // specially. | |
2182 | // | |
2183 | ||
2184 | firstBit = startingBlock % kBitsPerWord; | |
2185 | if (firstBit != 0) { | |
2186 | bitMask = kAllBitsSetInWord >> firstBit; // turn off all bits before firstBit | |
2187 | numBits = kBitsPerWord - firstBit; // number of remaining bits in this word | |
2188 | if (numBits > numBlocks) { | |
2189 | numBits = numBlocks; // entire allocation is inside this one word | |
2190 | bitMask &= ~(kAllBitsSetInWord >> (firstBit + numBits)); // turn off bits after last | |
2191 | } | |
2192 | #if DEBUG_BUILD | |
2193 | if ((*currentWord & SWAP_BE32 (bitMask)) != 0) { | |
6d2010ae | 2194 | panic("hfs: BlockMarkAllocatedInternal: blocks already allocated!"); |
1c79356b A |
2195 | } |
2196 | #endif | |
2197 | *currentWord |= SWAP_BE32 (bitMask); // set the bits in the bitmap | |
2198 | numBlocks -= numBits; // adjust number of blocks left to allocate | |
2199 | ||
2200 | ++currentWord; // move to next word | |
2201 | --wordsLeft; // one less word left in this block | |
2202 | } | |
2203 | ||
2204 | // | |
2205 | // Allocate whole words (32 blocks) at a time. | |
2206 | // | |
2207 | ||
2208 | bitMask = kAllBitsSetInWord; // put this in a register for 68K | |
2209 | while (numBlocks >= kBitsPerWord) { | |
2210 | if (wordsLeft == 0) { | |
2211 | // Read in the next bitmap block | |
0b4e3aa0 | 2212 | startingBlock += bitsPerBlock; // generate a block number in the next bitmap block |
1c79356b | 2213 | |
1c79356b | 2214 | buffer = NULL; |
0b4e3aa0 | 2215 | err = ReleaseBitmapBlock(vcb, blockRef, true); |
1c79356b | 2216 | if (err != noErr) goto Exit; |
0b4e3aa0 A |
2217 | |
2218 | err = ReadBitmapBlock(vcb, startingBlock, &buffer, &blockRef); | |
2219 | if (err != noErr) goto Exit; | |
2220 | ||
b4c24cb9 A |
2221 | // XXXdbg |
2222 | if (hfsmp->jnl) { | |
2223 | journal_modify_block_start(hfsmp->jnl, (struct buf *)blockRef); | |
2224 | } | |
2225 | ||
1c79356b A |
2226 | // Readjust currentWord and wordsLeft |
2227 | currentWord = buffer; | |
0b4e3aa0 | 2228 | wordsLeft = wordsPerBlock; |
1c79356b A |
2229 | } |
2230 | #if DEBUG_BUILD | |
2231 | if (*currentWord != 0) { | |
6d2010ae | 2232 | panic("hfs: BlockMarkAllocatedInternal: blocks already allocated!"); |
1c79356b A |
2233 | } |
2234 | #endif | |
2235 | *currentWord = SWAP_BE32 (bitMask); | |
2236 | numBlocks -= kBitsPerWord; | |
2237 | ||
2238 | ++currentWord; // move to next word | |
2239 | --wordsLeft; // one less word left in this block | |
2240 | } | |
2241 | ||
2242 | // | |
2243 | // Allocate any remaining blocks. | |
2244 | // | |
2245 | ||
2246 | if (numBlocks != 0) { | |
2247 | bitMask = ~(kAllBitsSetInWord >> numBlocks); // set first numBlocks bits | |
2248 | if (wordsLeft == 0) { | |
2249 | // Read in the next bitmap block | |
0b4e3aa0 | 2250 | startingBlock += bitsPerBlock; // generate a block number in the next bitmap block |
1c79356b | 2251 | |
1c79356b | 2252 | buffer = NULL; |
0b4e3aa0 | 2253 | err = ReleaseBitmapBlock(vcb, blockRef, true); |
1c79356b | 2254 | if (err != noErr) goto Exit; |
0b4e3aa0 A |
2255 | |
2256 | err = ReadBitmapBlock(vcb, startingBlock, &buffer, &blockRef); | |
2257 | if (err != noErr) goto Exit; | |
2258 | ||
b4c24cb9 A |
2259 | // XXXdbg |
2260 | if (hfsmp->jnl) { | |
2261 | journal_modify_block_start(hfsmp->jnl, (struct buf *)blockRef); | |
2262 | } | |
2263 | ||
1c79356b A |
2264 | // Readjust currentWord and wordsLeft |
2265 | currentWord = buffer; | |
0b4e3aa0 | 2266 | wordsLeft = wordsPerBlock; |
1c79356b A |
2267 | } |
2268 | #if DEBUG_BUILD | |
2269 | if ((*currentWord & SWAP_BE32 (bitMask)) != 0) { | |
6d2010ae | 2270 | panic("hfs: BlockMarkAllocatedInternal: blocks already allocated!"); |
1c79356b A |
2271 | } |
2272 | #endif | |
2273 | *currentWord |= SWAP_BE32 (bitMask); // set the bits in the bitmap | |
2274 | ||
2275 | // No need to update currentWord or wordsLeft | |
2276 | } | |
2277 | ||
2278 | Exit: | |
2279 | ||
0b4e3aa0 A |
2280 | if (buffer) |
2281 | (void)ReleaseBitmapBlock(vcb, blockRef, true); | |
1c79356b | 2282 | |
6d2010ae A |
2283 | if (hfs_kdebug_allocation & HFSDBG_BITMAP_ENABLED) |
2284 | KERNEL_DEBUG_CONSTANT(HFSDBG_MARK_ALLOC_BITMAP | DBG_FUNC_END, err, 0, 0, 0, 0); | |
2285 | ||
1c79356b A |
2286 | return err; |
2287 | } | |
2288 | ||
6d2010ae | 2289 | #if CONFIG_HFS_ALLOC_RBTREE |
1c79356b | 2290 | /* |
6d2010ae A |
2291 | * This is a wrapper function around BlockMarkAllocated. This function is |
2292 | * called when the RB Tree-based allocator needs to mark a block as in-use. | |
2293 | * This function should take the locks that would not normally be | |
2294 | * necessary for the normal bitmap allocator, and then call the function. Once | |
2295 | * the on-disk data structures are updated properly, then this will remove the | |
2296 | * appropriate node from the tree. | |
2297 | */ | |
1c79356b | 2298 | |
6d2010ae | 2299 | static OSErr BlockMarkAllocatedRBTree( |
1c79356b | 2300 | ExtendedVCB *vcb, |
6d2010ae A |
2301 | u_int32_t startingBlock, |
2302 | u_int32_t numBlocks) | |
1c79356b | 2303 | { |
6d2010ae A |
2304 | OSErr err; |
2305 | struct hfsmount *hfsmp = VCBTOHFS(vcb); | |
2306 | int rb_err = 0; | |
1c79356b | 2307 | |
6d2010ae A |
2308 | |
2309 | if (ALLOC_DEBUG) { | |
2310 | REQUIRE_FILE_LOCK(vcb->hfs_allocation_vp, false); | |
2311 | if (hfs_isallocated(hfsmp, startingBlock, numBlocks)) { | |
2312 | panic ("HFS RBTree Allocator: Blocks starting @ %x for %x blocks in use already\n", | |
2313 | startingBlock, numBlocks); | |
2314 | } | |
2315 | check_rbtree_extents (VCBTOHFS(vcb), startingBlock, numBlocks, ASSERT_FREE); | |
b4c24cb9 | 2316 | } |
6d2010ae A |
2317 | |
2318 | err = BlockMarkAllocatedInternal (vcb, startingBlock, numBlocks); | |
2319 | ||
2320 | if (err == noErr) { | |
b4c24cb9 | 2321 | |
6d2010ae A |
2322 | if (ALLOC_DEBUG) { |
2323 | if (!hfs_isallocated(hfsmp, startingBlock, numBlocks)) { | |
2324 | panic ("HFS RBTree Allocator: Blocks starting @ %x for %x blocks not in use yet!\n", | |
2325 | startingBlock, numBlocks); | |
2326 | } | |
2327 | } | |
2328 | ||
2329 | /* | |
2330 | * Mark the blocks in the offset tree. | |
2331 | */ | |
2332 | rb_err = extent_tree_offset_alloc_space(&hfsmp->offset_tree, numBlocks, startingBlock); | |
2333 | if (rb_err) { | |
2334 | if (ALLOC_DEBUG) { | |
2335 | printf("HFS RBTree Allocator: Could not mark blocks as in-use! %d \n", rb_err); | |
2336 | } | |
2337 | ||
2338 | /* | |
2339 | * We may be called from the BlockMarkAllocated interface, in which case, they would | |
2340 | * not be picking extents from their start. Do a check here, find if the specified | |
2341 | * extent is free, and if it is, then find the containing node. | |
2342 | */ | |
2343 | extent_node_t *node = NULL; | |
2344 | extent_node_t search_sentinel; | |
2345 | search_sentinel.offset = startingBlock; | |
2346 | ||
2347 | node = extent_tree_off_search_prev(&hfsmp->offset_tree, &search_sentinel); | |
2348 | ||
2349 | if (node) { | |
2350 | rb_err = extent_tree_offset_alloc_unaligned (&hfsmp->offset_tree, numBlocks, startingBlock); | |
2351 | } | |
2352 | ||
2353 | if (ALLOC_DEBUG) { | |
2354 | if (rb_err) { | |
2355 | printf ("HFS RBTree Allocator: Still Couldn't mark blocks as in-use! %d\n", rb_err); | |
2356 | } | |
2357 | } | |
2358 | } | |
2359 | if (ALLOC_DEBUG) { | |
2360 | check_rbtree_extents (VCBTOHFS(vcb), startingBlock, numBlocks, ASSERT_ALLOC); | |
2361 | } | |
2362 | } | |
2363 | ||
2364 | /* | |
2365 | * If we encountered a red-black tree error, for now, we immediately back off and force | |
2366 | * destruction of rb-tree. Set the persistent error-detected bit in the mount point. | |
2367 | * That will ensure that even if we reach a low-water-mark in the future we will still | |
2368 | * not allow the rb-tree to be used. On next mount, we will force a re-construction from | |
2369 | * on-disk state. As a fallback, we will now resort to the bitmap-scanning behavior. | |
2370 | */ | |
2371 | if (rb_err) { | |
2372 | /* Mark RB-Trees with error */ | |
2373 | hfsmp->extent_tree_flags |= HFS_ALLOC_RB_ERRORED; | |
2374 | DestroyTrees(hfsmp); | |
2375 | /* Reset the Free Ext Cache since we'll be using it now. */ | |
2376 | ResetVCBFreeExtCache(hfsmp); | |
2377 | printf("HFS: Red-Black Allocator Tree BlockMarkAllocated error\n"); | |
2378 | } | |
2379 | ||
2380 | return err; | |
2381 | } | |
2382 | #endif | |
2383 | ||
2384 | ||
2385 | ||
2386 | /* | |
2387 | * BlockMarkFree | |
2388 | * | |
2389 | * This is a wrapper function around the internal calls which will actually mark the blocks | |
2390 | * as freed. It will mark the blocks in the red-black tree if appropriate. We need to do | |
2391 | * this logic here to avoid callers having to deal with whether or not the red-black tree | |
2392 | * is enabled. | |
2393 | * | |
2394 | */ | |
2395 | OSErr BlockMarkFree( | |
2396 | ExtendedVCB *vcb, | |
2397 | u_int32_t startingBlock, | |
2398 | register u_int32_t numBlocks) | |
2399 | { | |
2400 | struct hfsmount *hfsmp; | |
2401 | hfsmp = VCBTOHFS(vcb); | |
2402 | #if CONFIG_HFS_ALLOC_RBTREE | |
2403 | if (hfs_isrbtree_active(hfsmp)) { | |
2404 | int err; | |
2405 | ||
2406 | if ((startingBlock >= hfsmp->offset_block_end) && | |
2407 | (hfsmp->hfs_flags & HFS_RESIZE_IN_PROGRESS)) { | |
2408 | /* | |
2409 | * We're manipulating a portion of the bitmap that is not controlled by the | |
2410 | * red-black tree. Just update the bitmap and don't bother manipulating the tree | |
2411 | */ | |
2412 | goto justbitmap; | |
2413 | } | |
2414 | ||
2415 | err = BlockMarkFreeRBTree(vcb, startingBlock, numBlocks); | |
2416 | if (err == noErr) { | |
2417 | if ( ALLOC_DEBUG ) { | |
2418 | REQUIRE_FILE_LOCK(hfsmp->hfs_allocation_vp, false); | |
2419 | if (hfs_isallocated(hfsmp, startingBlock, numBlocks)) { | |
2420 | panic ("HFS RBTree Allocator: Blocks starting @ %x for %x blocks in use!\n", | |
2421 | startingBlock, numBlocks); | |
2422 | } | |
2423 | check_rbtree_extents (hfsmp, startingBlock, numBlocks, ASSERT_FREE); | |
2424 | } | |
2425 | } | |
2426 | return err; | |
2427 | } | |
2428 | justbitmap: | |
2429 | #endif | |
2430 | return BlockMarkFreeInternal(vcb, startingBlock, numBlocks, true); | |
2431 | ||
2432 | } | |
2433 | ||
2434 | ||
2435 | /* | |
2436 | * BlockMarkFreeUnused | |
2437 | * | |
2438 | * Scan the bitmap block beyond end of current file system for bits | |
2439 | * that are marked as used. If any of the bits are marked as used, | |
2440 | * this function marks them free. | |
2441 | * | |
2442 | * Note: This was specifically written to mark all bits beyond | |
2443 | * end of current file system during hfs_extendfs(), which makes | |
2444 | * sure that all the new blocks added to the file system are | |
2445 | * marked as free. We expect that all the blocks beyond end of | |
2446 | * current file system are always marked as free, but there might | |
2447 | * be cases where are marked as used. This function assumes that | |
2448 | * the number of blocks marked as used incorrectly are relatively | |
2449 | * small, otherwise this can overflow journal transaction size | |
2450 | * on certain file system configurations (example, large unused | |
2451 | * bitmap with relatively small journal). | |
2452 | * | |
2453 | * Input: | |
2454 | * startingBlock: First block of the range to mark unused | |
2455 | * numBlocks: Number of blocks in the range to mark unused | |
2456 | * | |
2457 | * Returns: zero on success, non-zero on error. | |
2458 | */ | |
2459 | OSErr BlockMarkFreeUnused(ExtendedVCB *vcb, u_int32_t startingBlock, register u_int32_t numBlocks) | |
2460 | { | |
2461 | int error = 0; | |
2462 | struct hfsmount *hfsmp = VCBTOHFS(vcb); | |
2463 | u_int32_t curNumBlocks; | |
2464 | u_int32_t bitsPerBlock; | |
2465 | u_int32_t lastBit; | |
2466 | ||
2467 | /* Use the optimal bitmap I/O size instead of bitmap block size */ | |
2468 | bitsPerBlock = hfsmp->vcbVBMIOSize * kBitsPerByte; | |
2469 | ||
2470 | /* | |
2471 | * First clear any non bitmap allocation block aligned bits | |
2472 | * | |
2473 | * Calculate the first bit in the bitmap block next to | |
2474 | * the bitmap block containing the bit for startingBlock. | |
2475 | * Using this value, we calculate the total number of | |
2476 | * bits to be marked unused from startingBlock to the | |
2477 | * end of bitmap block containing startingBlock. | |
2478 | */ | |
2479 | lastBit = ((startingBlock + (bitsPerBlock - 1))/bitsPerBlock) * bitsPerBlock; | |
2480 | curNumBlocks = lastBit - startingBlock; | |
2481 | if (curNumBlocks > numBlocks) { | |
2482 | curNumBlocks = numBlocks; | |
2483 | } | |
2484 | error = BlockMarkFreeInternal(vcb, startingBlock, curNumBlocks, false); | |
2485 | if (error) { | |
2486 | return error; | |
2487 | } | |
2488 | startingBlock += curNumBlocks; | |
2489 | numBlocks -= curNumBlocks; | |
2490 | ||
2491 | /* | |
2492 | * Check a full bitmap block for any 'used' bit. If any bit is used, | |
2493 | * mark all the bits only in that bitmap block as free. This ensures | |
2494 | * that we do not write unmodified bitmap blocks and do not | |
2495 | * overwhelm the journal. | |
2496 | * | |
2497 | * The code starts by checking full bitmap block at a time, and | |
2498 | * marks entire bitmap block as free only if any bit in that bitmap | |
2499 | * block is marked as used. In the end, it handles the last bitmap | |
2500 | * block which might be partially full by only checking till the | |
2501 | * caller-specified last bit and if any bit is set, only mark that | |
2502 | * range as free. | |
2503 | */ | |
2504 | while (numBlocks) { | |
2505 | if (numBlocks >= bitsPerBlock) { | |
2506 | curNumBlocks = bitsPerBlock; | |
2507 | } else { | |
2508 | curNumBlocks = numBlocks; | |
2509 | } | |
2510 | if (hfs_isallocated(hfsmp, startingBlock, curNumBlocks) == true) { | |
2511 | error = BlockMarkFreeInternal(vcb, startingBlock, curNumBlocks, false); | |
2512 | if (error) { | |
2513 | return error; | |
2514 | } | |
2515 | } | |
2516 | startingBlock += curNumBlocks; | |
2517 | numBlocks -= curNumBlocks; | |
2518 | } | |
2519 | ||
2520 | return error; | |
2521 | } | |
2522 | ||
2523 | /* | |
2524 | _______________________________________________________________________ | |
2525 | ||
2526 | Routine: BlockMarkFreeInternal | |
2527 | ||
2528 | Function: Mark a contiguous group of blocks as free (clear in the | |
2529 | bitmap). It assumes those bits are currently marked | |
2530 | allocated (set in the bitmap). | |
2531 | ||
2532 | Inputs: | |
2533 | vcb Pointer to volume where space is to be freed | |
2534 | startingBlock First block number to mark as freed | |
2535 | numBlocks Number of blocks to mark as freed | |
2536 | do_validate If true, validate that the blocks being | |
2537 | deallocated to check if they are within totalBlocks | |
2538 | for current volume and whether they were allocated | |
2539 | before they are marked free. | |
2540 | _______________________________________________________________________ | |
2541 | */ | |
2542 | static | |
2543 | OSErr BlockMarkFreeInternal( | |
2544 | ExtendedVCB *vcb, | |
2545 | u_int32_t startingBlock_in, | |
2546 | register u_int32_t numBlocks_in, | |
2547 | Boolean do_validate) | |
2548 | { | |
2549 | OSErr err; | |
2550 | u_int32_t startingBlock = startingBlock_in; | |
2551 | u_int32_t numBlocks = numBlocks_in; | |
2552 | register u_int32_t *currentWord; // Pointer to current word within bitmap block | |
2553 | register u_int32_t wordsLeft; // Number of words left in this bitmap block | |
2554 | register u_int32_t bitMask; // Word with given bits already set (ready to OR in) | |
2555 | u_int32_t firstBit; // Bit index within word of first bit to allocate | |
2556 | u_int32_t numBits; // Number of bits in word to allocate | |
2557 | u_int32_t *buffer = NULL; | |
2558 | uintptr_t blockRef; | |
2559 | u_int32_t bitsPerBlock; | |
2560 | u_int32_t wordsPerBlock; | |
2561 | // XXXdbg | |
2562 | struct hfsmount *hfsmp = VCBTOHFS(vcb); | |
2563 | ||
2564 | if (hfs_kdebug_allocation & HFSDBG_BITMAP_ENABLED) | |
2565 | KERNEL_DEBUG_CONSTANT(HFSDBG_MARK_FREE_BITMAP | DBG_FUNC_START, startingBlock_in, numBlocks_in, do_validate, 0, 0); | |
2566 | ||
2567 | /* | |
2568 | * NOTE: We use vcb->totalBlocks instead of vcb->allocLimit because we | |
2569 | * need to be able to free blocks being relocated during hfs_truncatefs. | |
2570 | */ | |
2571 | if ((do_validate == true) && | |
2572 | (startingBlock + numBlocks > vcb->totalBlocks)) { | |
2573 | if (ALLOC_DEBUG) { | |
2574 | panic ("BlockMarkFreeInternal() free non-existent blocks at %u (numBlock=%u) on vol %s\n", startingBlock, numBlocks, vcb->vcbVN); | |
2575 | } | |
2576 | ||
2577 | printf ("hfs: BlockMarkFreeInternal() trying to free non-existent blocks starting at %u (numBlock=%u) on volume %s\n", startingBlock, numBlocks, vcb->vcbVN); | |
2578 | hfs_mark_volume_inconsistent(vcb); | |
2579 | err = EIO; | |
2580 | goto Exit; | |
2581 | } | |
2582 | ||
2583 | // | |
2584 | // Pre-read the bitmap block containing the first word of allocation | |
2585 | // | |
2586 | ||
2587 | err = ReadBitmapBlock(vcb, startingBlock, &buffer, &blockRef); | |
2588 | if (err != noErr) goto Exit; | |
2589 | // XXXdbg | |
2590 | if (hfsmp->jnl) { | |
2591 | journal_modify_block_start(hfsmp->jnl, (struct buf *)blockRef); | |
2592 | } | |
2593 | ||
2594 | // | |
2595 | // Initialize currentWord, and wordsLeft. | |
2596 | // | |
2597 | { | |
2598 | u_int32_t wordIndexInBlock; | |
0b4e3aa0 A |
2599 | |
2600 | bitsPerBlock = vcb->vcbVBMIOSize * kBitsPerByte; | |
2601 | wordsPerBlock = vcb->vcbVBMIOSize / kBytesPerWord; | |
1c79356b | 2602 | |
0b4e3aa0 | 2603 | wordIndexInBlock = (startingBlock & (bitsPerBlock-1)) / kBitsPerWord; |
1c79356b | 2604 | currentWord = buffer + wordIndexInBlock; |
0b4e3aa0 | 2605 | wordsLeft = wordsPerBlock - wordIndexInBlock; |
1c79356b A |
2606 | } |
2607 | ||
2608 | // | |
2609 | // If the first block to free doesn't start on a word | |
2610 | // boundary in the bitmap, then treat that first word | |
2611 | // specially. | |
2612 | // | |
2613 | ||
2614 | firstBit = startingBlock % kBitsPerWord; | |
2615 | if (firstBit != 0) { | |
2616 | bitMask = kAllBitsSetInWord >> firstBit; // turn off all bits before firstBit | |
2617 | numBits = kBitsPerWord - firstBit; // number of remaining bits in this word | |
2618 | if (numBits > numBlocks) { | |
2619 | numBits = numBlocks; // entire allocation is inside this one word | |
2620 | bitMask &= ~(kAllBitsSetInWord >> (firstBit + numBits)); // turn off bits after last | |
2621 | } | |
6d2010ae A |
2622 | if ((do_validate == true) && |
2623 | (*currentWord & SWAP_BE32 (bitMask)) != SWAP_BE32 (bitMask)) { | |
55e303ae | 2624 | goto Corruption; |
1c79356b | 2625 | } |
1c79356b A |
2626 | *currentWord &= SWAP_BE32 (~bitMask); // clear the bits in the bitmap |
2627 | numBlocks -= numBits; // adjust number of blocks left to free | |
2628 | ||
2629 | ++currentWord; // move to next word | |
2630 | --wordsLeft; // one less word left in this block | |
2631 | } | |
2632 | ||
2633 | // | |
0b4e3aa0 | 2634 | // Free whole words (32 blocks) at a time. |
1c79356b A |
2635 | // |
2636 | ||
2637 | while (numBlocks >= kBitsPerWord) { | |
2638 | if (wordsLeft == 0) { | |
2639 | // Read in the next bitmap block | |
0b4e3aa0 | 2640 | startingBlock += bitsPerBlock; // generate a block number in the next bitmap block |
1c79356b | 2641 | |
1c79356b | 2642 | buffer = NULL; |
0b4e3aa0 | 2643 | err = ReleaseBitmapBlock(vcb, blockRef, true); |
1c79356b | 2644 | if (err != noErr) goto Exit; |
0b4e3aa0 A |
2645 | |
2646 | err = ReadBitmapBlock(vcb, startingBlock, &buffer, &blockRef); | |
2647 | if (err != noErr) goto Exit; | |
2648 | ||
b4c24cb9 A |
2649 | // XXXdbg |
2650 | if (hfsmp->jnl) { | |
2651 | journal_modify_block_start(hfsmp->jnl, (struct buf *)blockRef); | |
2652 | } | |
2653 | ||
1c79356b A |
2654 | // Readjust currentWord and wordsLeft |
2655 | currentWord = buffer; | |
0b4e3aa0 | 2656 | wordsLeft = wordsPerBlock; |
1c79356b | 2657 | } |
6d2010ae A |
2658 | if ((do_validate == true) && |
2659 | (*currentWord != SWAP_BE32 (kAllBitsSetInWord))) { | |
55e303ae | 2660 | goto Corruption; |
1c79356b | 2661 | } |
1c79356b A |
2662 | *currentWord = 0; // clear the entire word |
2663 | numBlocks -= kBitsPerWord; | |
2664 | ||
2665 | ++currentWord; // move to next word | |
2666 | --wordsLeft; // one less word left in this block | |
2667 | } | |
2668 | ||
2669 | // | |
0b4e3aa0 | 2670 | // Free any remaining blocks. |
1c79356b A |
2671 | // |
2672 | ||
2673 | if (numBlocks != 0) { | |
2674 | bitMask = ~(kAllBitsSetInWord >> numBlocks); // set first numBlocks bits | |
2675 | if (wordsLeft == 0) { | |
2676 | // Read in the next bitmap block | |
0b4e3aa0 | 2677 | startingBlock += bitsPerBlock; // generate a block number in the next bitmap block |
1c79356b | 2678 | |
1c79356b | 2679 | buffer = NULL; |
0b4e3aa0 | 2680 | err = ReleaseBitmapBlock(vcb, blockRef, true); |
1c79356b | 2681 | if (err != noErr) goto Exit; |
0b4e3aa0 A |
2682 | |
2683 | err = ReadBitmapBlock(vcb, startingBlock, &buffer, &blockRef); | |
2684 | if (err != noErr) goto Exit; | |
2685 | ||
b4c24cb9 A |
2686 | // XXXdbg |
2687 | if (hfsmp->jnl) { | |
2688 | journal_modify_block_start(hfsmp->jnl, (struct buf *)blockRef); | |
2689 | } | |
2690 | ||
1c79356b A |
2691 | // Readjust currentWord and wordsLeft |
2692 | currentWord = buffer; | |
0b4e3aa0 | 2693 | wordsLeft = wordsPerBlock; |
1c79356b | 2694 | } |
6d2010ae A |
2695 | if ((do_validate == true) && |
2696 | (*currentWord & SWAP_BE32 (bitMask)) != SWAP_BE32 (bitMask)) { | |
55e303ae | 2697 | goto Corruption; |
1c79356b | 2698 | } |
1c79356b A |
2699 | *currentWord &= SWAP_BE32 (~bitMask); // clear the bits in the bitmap |
2700 | ||
2701 | // No need to update currentWord or wordsLeft | |
2702 | } | |
2703 | ||
2704 | Exit: | |
2705 | ||
0b4e3aa0 A |
2706 | if (buffer) |
2707 | (void)ReleaseBitmapBlock(vcb, blockRef, true); | |
1c79356b | 2708 | |
6d2010ae | 2709 | if (err == noErr) { |
060df5ea | 2710 | hfs_unmap_free_extent(vcb, startingBlock_in, numBlocks_in); |
593a1d5f A |
2711 | } |
2712 | ||
6d2010ae A |
2713 | if (hfs_kdebug_allocation & HFSDBG_BITMAP_ENABLED) |
2714 | KERNEL_DEBUG_CONSTANT(HFSDBG_MARK_FREE_BITMAP | DBG_FUNC_END, err, 0, 0, 0, 0); | |
593a1d5f | 2715 | |
1c79356b | 2716 | return err; |
55e303ae A |
2717 | |
2718 | Corruption: | |
2719 | #if DEBUG_BUILD | |
6d2010ae | 2720 | panic("hfs: BlockMarkFreeInternal: blocks not allocated!"); |
55e303ae | 2721 | #else |
6d2010ae | 2722 | printf ("hfs: BlockMarkFreeInternal() trying to free unallocated blocks (%u,%u) on volume %s\n", startingBlock, numBlocks, vcb->vcbVN); |
2d21ac55 | 2723 | hfs_mark_volume_inconsistent(vcb); |
55e303ae A |
2724 | err = EIO; |
2725 | goto Exit; | |
2726 | #endif | |
1c79356b A |
2727 | } |
2728 | ||
6d2010ae A |
2729 | #if CONFIG_HFS_ALLOC_RBTREE |
2730 | /* | |
2731 | * This is a wrapper function around BlockMarkFree. This function is | |
2732 | * called when the RB Tree-based allocator needs to mark a block as no longer | |
2733 | * in use. This function should take the locks that would not normally be | |
2734 | * necessary for the normal bitmap deallocator, and then call the function. Once | |
2735 | * the on-disk data structures are updated properly, then this will update an | |
2736 | * existing rb-tree node if possible, or else create a new one. | |
2737 | */ | |
2738 | ||
2739 | OSErr BlockMarkFreeRBTree( | |
2740 | ExtendedVCB *vcb, | |
2741 | u_int32_t startingBlock, | |
2742 | register u_int32_t numBlocks) | |
2743 | { | |
2744 | OSErr err; | |
2745 | struct hfsmount *hfsmp = VCBTOHFS(vcb); | |
2746 | int rb_err = 0; | |
2747 | ||
2748 | if (ALLOC_DEBUG) { | |
2749 | REQUIRE_FILE_LOCK(vcb->hfs_allocation_vp, false); | |
2750 | if (!hfs_isallocated(hfsmp, startingBlock, numBlocks)) { | |
2751 | panic ("HFS RBTree Allocator: Trying to free blocks starting @ %x for %x but blocks not in use! \n", | |
2752 | startingBlock, numBlocks); | |
2753 | } | |
2754 | check_rbtree_extents (VCBTOHFS(vcb), startingBlock, numBlocks, ASSERT_ALLOC); | |
2755 | } | |
2756 | ||
2757 | err = BlockMarkFreeInternal(vcb, startingBlock, numBlocks, true); | |
2758 | ||
2759 | if (err == noErr) { | |
2760 | ||
2761 | /* | |
2762 | * During a filesystem truncation, we may need to relocate files out of the | |
2763 | * portion of the bitmap that is no longer controlled by the r/b tree. | |
2764 | * In this case, just update the bitmap and do not attempt to manipulate the tree. | |
2765 | */ | |
2766 | if ((startingBlock >= hfsmp->offset_block_end) && | |
2767 | (hfsmp->hfs_flags & HFS_RESIZE_IN_PROGRESS)) { | |
2768 | goto free_error; | |
2769 | } | |
2770 | ||
2771 | extent_node_t *newnode; | |
2772 | ||
2773 | if (ALLOC_DEBUG) { | |
2774 | /* | |
2775 | * Validate that the blocks in question are not allocated in the bitmap, and that they're | |
2776 | * not in the offset tree, since it should be tracking free extents, rather than allocated | |
2777 | * extents | |
2778 | */ | |
2779 | if (hfs_isallocated(hfsmp, startingBlock, numBlocks)) { | |
2780 | panic ("HFS RBTree Allocator: Blocks starting @ %x for %x blocks still marked in-use!\n", | |
2781 | startingBlock, numBlocks); | |
2782 | } | |
2783 | } | |
2784 | ||
2785 | if ((hfsmp->extent_tree_flags & HFS_ALLOC_RB_ACTIVE) == 0) { | |
2786 | if (startingBlock >= hfsmp->offset_block_end) { | |
2787 | /* | |
2788 | * If the tree generation code has not yet finished scanning the | |
2789 | * bitmap region containing this extent, do nothing. If the start | |
2790 | * of the range to be deallocated is greater than the current high | |
2791 | * watermark on the offset tree, just bail out and let the scanner catch up with us. | |
2792 | */ | |
2793 | rb_err = 0; | |
2794 | goto free_error; | |
2795 | } | |
2796 | } | |
2797 | ||
2798 | newnode = extent_tree_free_space(&hfsmp->offset_tree, numBlocks, startingBlock); | |
2799 | if (newnode == NULL) { | |
2800 | rb_err = 1; | |
2801 | goto free_error; | |
2802 | } | |
2803 | ||
2804 | if (ALLOC_DEBUG) { | |
2805 | check_rbtree_extents (VCBTOHFS(vcb), startingBlock, numBlocks, ASSERT_FREE); | |
2806 | } | |
2807 | ||
2808 | } | |
2809 | ||
2810 | free_error: | |
2811 | /* | |
2812 | * We follow the same principle as in BlockMarkAllocatedRB. | |
2813 | * If we encounter an error in adding the extents to the rb-tree, then immediately | |
2814 | * back off, destroy the trees, and persistently set a bit in the runtime hfsmp flags | |
2815 | * to indicate we should not use the rb-tree until next mount, when we can force a rebuild. | |
2816 | */ | |
2817 | if (rb_err) { | |
2818 | /* Mark RB-Trees with error */ | |
2819 | hfsmp->extent_tree_flags |= HFS_ALLOC_RB_ERRORED; | |
2820 | DestroyTrees(hfsmp); | |
2821 | /* Reset the Free Ext Cache since we'll be using it now. */ | |
2822 | ResetVCBFreeExtCache(hfsmp); | |
2823 | printf("HFS: Red-Black Allocator Tree BlockMarkFree error\n"); | |
2824 | } | |
2825 | ||
2826 | ||
2827 | return err; | |
2828 | ||
2829 | } | |
2830 | #endif | |
1c79356b A |
2831 | |
2832 | /* | |
2833 | _______________________________________________________________________ | |
2834 | ||
2835 | Routine: BlockFindContiguous | |
2836 | ||
2837 | Function: Find a contiguous range of blocks that are free (bits | |
2838 | clear in the bitmap). If a contiguous range of the | |
2839 | minimum size can't be found, an error will be returned. | |
6d2010ae A |
2840 | This is only needed to support the bitmap-scanning logic, |
2841 | as the red-black tree should be able to do this by internally | |
2842 | searching its tree. | |
1c79356b A |
2843 | |
2844 | Inputs: | |
2845 | vcb Pointer to volume where space is to be allocated | |
2846 | startingBlock Preferred first block of range | |
2847 | endingBlock Last possible block in range + 1 | |
2848 | minBlocks Minimum number of blocks needed. Must be > 0. | |
2849 | maxBlocks Maximum (ideal) number of blocks desired | |
55e303ae | 2850 | useMetaZone OK to dip into metadata allocation zone |
1c79356b A |
2851 | |
2852 | Outputs: | |
2853 | actualStartBlock First block of range found, or 0 if error | |
2854 | actualNumBlocks Number of blocks found, or 0 if error | |
1c79356b | 2855 | |
0b4e3aa0 A |
2856 | Returns: |
2857 | noErr Found at least minBlocks contiguous | |
2858 | dskFulErr No contiguous space found, or all less than minBlocks | |
2859 | _______________________________________________________________________ | |
1c79356b A |
2860 | */ |
2861 | ||
2862 | static OSErr BlockFindContiguous( | |
2863 | ExtendedVCB *vcb, | |
2d21ac55 A |
2864 | u_int32_t startingBlock, |
2865 | u_int32_t endingBlock, | |
2866 | u_int32_t minBlocks, | |
2867 | u_int32_t maxBlocks, | |
55e303ae | 2868 | Boolean useMetaZone, |
2d21ac55 A |
2869 | u_int32_t *actualStartBlock, |
2870 | u_int32_t *actualNumBlocks) | |
1c79356b A |
2871 | { |
2872 | OSErr err; | |
2d21ac55 A |
2873 | register u_int32_t currentBlock; // Block we're currently looking at. |
2874 | u_int32_t firstBlock; // First free block in current extent. | |
2875 | u_int32_t stopBlock; // If we get to this block, stop searching for first free block. | |
2876 | u_int32_t foundBlocks; // Number of contiguous free blocks in current extent. | |
2877 | u_int32_t *buffer = NULL; | |
2878 | register u_int32_t *currentWord; | |
2879 | register u_int32_t bitMask; | |
2880 | register u_int32_t wordsLeft; | |
2881 | register u_int32_t tempWord; | |
b0d623f7 | 2882 | uintptr_t blockRef; |
2d21ac55 | 2883 | u_int32_t wordsPerBlock; |
6d2010ae A |
2884 | u_int32_t updated_free_extent = 0; |
2885 | ||
2886 | if (hfs_kdebug_allocation & HFSDBG_ALLOC_ENABLED) | |
2887 | KERNEL_DEBUG_CONSTANT(HFSDBG_BLOCK_FIND_CONTIG | DBG_FUNC_START, startingBlock, endingBlock, minBlocks, maxBlocks, 0); | |
1c79356b | 2888 | |
743b1565 A |
2889 | /* |
2890 | * When we're skipping the metadata zone and the start/end | |
2891 | * range overlaps with the metadata zone then adjust the | |
2892 | * start to be outside of the metadata zone. If the range | |
2893 | * is entirely inside the metadata zone then we can deny the | |
2894 | * request (dskFulErr). | |
2895 | */ | |
2896 | if (!useMetaZone && (vcb->hfs_flags & HFS_METADATA_ZONE)) { | |
2897 | if (startingBlock <= vcb->hfs_metazone_end) { | |
2898 | if (endingBlock > (vcb->hfs_metazone_end + 2)) | |
2899 | startingBlock = vcb->hfs_metazone_end + 1; | |
2900 | else | |
2901 | goto DiskFull; | |
2902 | } | |
4a249263 A |
2903 | } |
2904 | ||
0b4e3aa0 A |
2905 | if ((endingBlock - startingBlock) < minBlocks) |
2906 | { | |
1c79356b A |
2907 | // The set of blocks we're checking is smaller than the minimum number |
2908 | // of blocks, so we couldn't possibly find a good range. | |
0b4e3aa0 | 2909 | goto DiskFull; |
1c79356b | 2910 | } |
0b4e3aa0 A |
2911 | |
2912 | stopBlock = endingBlock - minBlocks + 1; | |
2913 | currentBlock = startingBlock; | |
9bccf70c | 2914 | firstBlock = 0; |
55e303ae A |
2915 | |
2916 | /* | |
2917 | * Skip over metadata blocks. | |
2918 | */ | |
2919 | if (!useMetaZone) | |
2920 | currentBlock = NextBitmapBlock(vcb, currentBlock); | |
2921 | ||
1c79356b | 2922 | // |
0b4e3aa0 | 2923 | // Pre-read the first bitmap block. |
1c79356b | 2924 | // |
0b4e3aa0 A |
2925 | err = ReadBitmapBlock(vcb, currentBlock, &buffer, &blockRef); |
2926 | if ( err != noErr ) goto ErrorExit; | |
1c79356b | 2927 | |
1c79356b | 2928 | // |
0b4e3aa0 | 2929 | // Figure out where currentBlock is within the buffer. |
1c79356b | 2930 | // |
0b4e3aa0 | 2931 | wordsPerBlock = vcb->vcbVBMIOSize / kBytesPerWord; |
1c79356b | 2932 | |
55e303ae | 2933 | wordsLeft = (currentBlock / kBitsPerWord) & (wordsPerBlock-1); // Current index into buffer |
0b4e3aa0 A |
2934 | currentWord = buffer + wordsLeft; |
2935 | wordsLeft = wordsPerBlock - wordsLeft; | |
2936 | ||
2937 | do | |
1c79356b | 2938 | { |
0b4e3aa0 A |
2939 | foundBlocks = 0; |
2940 | ||
2941 | //============================================================ | |
2942 | // Look for a free block, skipping over allocated blocks. | |
2943 | //============================================================ | |
2944 | ||
2945 | // | |
2946 | // Check an initial partial word (if any) | |
2947 | // | |
2948 | bitMask = currentBlock & kBitsWithinWordMask; | |
2949 | if (bitMask) | |
2950 | { | |
9bccf70c | 2951 | tempWord = SWAP_BE32(*currentWord); // Fetch the current word only once |
0b4e3aa0 A |
2952 | bitMask = kHighBitInWordMask >> bitMask; |
2953 | while (tempWord & bitMask) | |
1c79356b | 2954 | { |
0b4e3aa0 A |
2955 | bitMask >>= 1; |
2956 | ++currentBlock; | |
1c79356b | 2957 | } |
1c79356b | 2958 | |
0b4e3aa0 A |
2959 | // Did we find an unused bit (bitMask != 0), or run out of bits (bitMask == 0)? |
2960 | if (bitMask) | |
2961 | goto FoundUnused; | |
1c79356b | 2962 | |
0b4e3aa0 A |
2963 | // Didn't find any unused bits, so we're done with this word. |
2964 | ++currentWord; | |
2965 | --wordsLeft; | |
1c79356b | 2966 | } |
1c79356b | 2967 | |
0b4e3aa0 A |
2968 | // |
2969 | // Check whole words | |
2970 | // | |
2971 | while (currentBlock < stopBlock) | |
2972 | { | |
2973 | // See if it's time to read another block. | |
2974 | if (wordsLeft == 0) | |
1c79356b | 2975 | { |
1c79356b | 2976 | buffer = NULL; |
0b4e3aa0 A |
2977 | err = ReleaseBitmapBlock(vcb, blockRef, false); |
2978 | if (err != noErr) goto ErrorExit; | |
2979 | ||
55e303ae A |
2980 | /* |
2981 | * Skip over metadata blocks. | |
2982 | */ | |
2983 | if (!useMetaZone) { | |
2984 | currentBlock = NextBitmapBlock(vcb, currentBlock); | |
4a249263 A |
2985 | if (currentBlock >= stopBlock) { |
2986 | goto LoopExit; | |
2987 | } | |
55e303ae A |
2988 | } |
2989 | ||
0b4e3aa0 A |
2990 | err = ReadBitmapBlock(vcb, currentBlock, &buffer, &blockRef); |
2991 | if ( err != noErr ) goto ErrorExit; | |
1c79356b | 2992 | |
0b4e3aa0 A |
2993 | currentWord = buffer; |
2994 | wordsLeft = wordsPerBlock; | |
1c79356b A |
2995 | } |
2996 | ||
0b4e3aa0 | 2997 | // See if any of the bits are clear |
9bccf70c | 2998 | if ((tempWord = SWAP_BE32(*currentWord)) + 1) // non-zero if any bits were clear |
1c79356b | 2999 | { |
0b4e3aa0 A |
3000 | // Figure out which bit is clear |
3001 | bitMask = kHighBitInWordMask; | |
3002 | while (tempWord & bitMask) | |
3003 | { | |
3004 | bitMask >>= 1; | |
3005 | ++currentBlock; | |
3006 | } | |
3007 | ||
3008 | break; // Found the free bit; break out to FoundUnused. | |
1c79356b | 3009 | } |
1c79356b | 3010 | |
0b4e3aa0 A |
3011 | // Keep looking at the next word |
3012 | currentBlock += kBitsPerWord; | |
3013 | ++currentWord; | |
3014 | --wordsLeft; | |
3015 | } | |
1c79356b | 3016 | |
0b4e3aa0 A |
3017 | FoundUnused: |
3018 | // Make sure the unused bit is early enough to use | |
3019 | if (currentBlock >= stopBlock) | |
1c79356b | 3020 | { |
0b4e3aa0 | 3021 | break; |
1c79356b | 3022 | } |
1c79356b | 3023 | |
0b4e3aa0 A |
3024 | // Remember the start of the extent |
3025 | firstBlock = currentBlock; | |
1c79356b | 3026 | |
0b4e3aa0 A |
3027 | //============================================================ |
3028 | // Count the number of contiguous free blocks. | |
3029 | //============================================================ | |
1c79356b | 3030 | |
0b4e3aa0 A |
3031 | // |
3032 | // Check an initial partial word (if any) | |
3033 | // | |
3034 | bitMask = currentBlock & kBitsWithinWordMask; | |
3035 | if (bitMask) | |
1c79356b | 3036 | { |
9bccf70c | 3037 | tempWord = SWAP_BE32(*currentWord); // Fetch the current word only once |
0b4e3aa0 A |
3038 | bitMask = kHighBitInWordMask >> bitMask; |
3039 | while (bitMask && !(tempWord & bitMask)) | |
1c79356b | 3040 | { |
0b4e3aa0 A |
3041 | bitMask >>= 1; |
3042 | ++currentBlock; | |
1c79356b | 3043 | } |
0b4e3aa0 A |
3044 | |
3045 | // Did we find a used bit (bitMask != 0), or run out of bits (bitMask == 0)? | |
3046 | if (bitMask) | |
3047 | goto FoundUsed; | |
3048 | ||
3049 | // Didn't find any used bits, so we're done with this word. | |
3050 | ++currentWord; | |
3051 | --wordsLeft; | |
3052 | } | |
3053 | ||
3054 | // | |
3055 | // Check whole words | |
3056 | // | |
3057 | while (currentBlock < endingBlock) | |
3058 | { | |
3059 | // See if it's time to read another block. | |
3060 | if (wordsLeft == 0) | |
1c79356b | 3061 | { |
0b4e3aa0 A |
3062 | buffer = NULL; |
3063 | err = ReleaseBitmapBlock(vcb, blockRef, false); | |
3064 | if (err != noErr) goto ErrorExit; | |
3065 | ||
55e303ae A |
3066 | /* |
3067 | * Skip over metadata blocks. | |
3068 | */ | |
3069 | if (!useMetaZone) { | |
2d21ac55 | 3070 | u_int32_t nextBlock; |
55e303ae A |
3071 | |
3072 | nextBlock = NextBitmapBlock(vcb, currentBlock); | |
3073 | if (nextBlock != currentBlock) { | |
4a249263 | 3074 | goto LoopExit; /* allocation gap, so stop */ |
55e303ae A |
3075 | } |
3076 | } | |
3077 | ||
0b4e3aa0 A |
3078 | err = ReadBitmapBlock(vcb, currentBlock, &buffer, &blockRef); |
3079 | if ( err != noErr ) goto ErrorExit; | |
3080 | ||
3081 | currentWord = buffer; | |
3082 | wordsLeft = wordsPerBlock; | |
1c79356b | 3083 | } |
0b4e3aa0 A |
3084 | |
3085 | // See if any of the bits are set | |
9bccf70c | 3086 | if ((tempWord = SWAP_BE32(*currentWord)) != 0) |
1c79356b | 3087 | { |
0b4e3aa0 | 3088 | // Figure out which bit is set |
1c79356b | 3089 | bitMask = kHighBitInWordMask; |
0b4e3aa0 | 3090 | while (!(tempWord & bitMask)) |
1c79356b | 3091 | { |
0b4e3aa0 A |
3092 | bitMask >>= 1; |
3093 | ++currentBlock; | |
1c79356b | 3094 | } |
0b4e3aa0 A |
3095 | |
3096 | break; // Found the used bit; break out to FoundUsed. | |
1c79356b | 3097 | } |
0b4e3aa0 A |
3098 | |
3099 | // Keep looking at the next word | |
3100 | currentBlock += kBitsPerWord; | |
3101 | ++currentWord; | |
3102 | --wordsLeft; | |
3103 | ||
3104 | // If we found at least maxBlocks, we can quit early. | |
3105 | if ((currentBlock - firstBlock) >= maxBlocks) | |
3106 | break; | |
1c79356b | 3107 | } |
1c79356b | 3108 | |
0b4e3aa0 A |
3109 | FoundUsed: |
3110 | // Make sure we didn't run out of bitmap looking for a used block. | |
3111 | // If so, pin to the end of the bitmap. | |
3112 | if (currentBlock > endingBlock) | |
3113 | currentBlock = endingBlock; | |
3114 | ||
3115 | // Figure out how many contiguous free blocks there were. | |
3116 | // Pin the answer to maxBlocks. | |
3117 | foundBlocks = currentBlock - firstBlock; | |
3118 | if (foundBlocks > maxBlocks) | |
3119 | foundBlocks = maxBlocks; | |
3120 | if (foundBlocks >= minBlocks) | |
3121 | break; // Found what we needed! | |
3122 | ||
6d2010ae A |
3123 | /* We did not find the total blocks were were looking for, but |
3124 | * lets add this free block run to our free extent cache list | |
3125 | */ | |
3126 | updated_free_extent = add_free_extent_cache(vcb, firstBlock, foundBlocks); | |
b0d623f7 | 3127 | |
0b4e3aa0 | 3128 | } while (currentBlock < stopBlock); |
4a249263 | 3129 | LoopExit: |
0b4e3aa0 A |
3130 | |
3131 | // Return the outputs. | |
3132 | if (foundBlocks < minBlocks) | |
3133 | { | |
3134 | DiskFull: | |
3135 | err = dskFulErr; | |
3136 | ErrorExit: | |
3137 | *actualStartBlock = 0; | |
3138 | *actualNumBlocks = 0; | |
3139 | } | |
3140 | else | |
3141 | { | |
3142 | err = noErr; | |
3143 | *actualStartBlock = firstBlock; | |
3144 | *actualNumBlocks = foundBlocks; | |
2d21ac55 A |
3145 | /* |
3146 | * Sanity check for overflow | |
3147 | */ | |
3148 | if ((firstBlock + foundBlocks) > vcb->allocLimit) { | |
b0d623f7 | 3149 | panic("hfs: blk allocation overflow on \"%s\" sb:0x%08x eb:0x%08x cb:0x%08x fb:0x%08x stop:0x%08x min:0x%08x found:0x%08x", |
2d21ac55 A |
3150 | vcb->vcbVN, startingBlock, endingBlock, currentBlock, |
3151 | firstBlock, stopBlock, minBlocks, foundBlocks); | |
3152 | } | |
0b4e3aa0 A |
3153 | } |
3154 | ||
6d2010ae | 3155 | if (updated_free_extent && (vcb->hfs_flags & HFS_HAS_SPARSE_DEVICE)) { |
b0d623f7 A |
3156 | int i; |
3157 | u_int32_t min_start = vcb->totalBlocks; | |
3158 | ||
3159 | // set the nextAllocation pointer to the smallest free block number | |
3160 | // we've seen so on the next mount we won't rescan unnecessarily | |
6d2010ae | 3161 | lck_spin_lock(&vcb->vcbFreeExtLock); |
b0d623f7 A |
3162 | for(i=0; i < (int)vcb->vcbFreeExtCnt; i++) { |
3163 | if (vcb->vcbFreeExt[i].startBlock < min_start) { | |
3164 | min_start = vcb->vcbFreeExt[i].startBlock; | |
3165 | } | |
3166 | } | |
6d2010ae | 3167 | lck_spin_unlock(&vcb->vcbFreeExtLock); |
b0d623f7 A |
3168 | if (min_start != vcb->totalBlocks) { |
3169 | if (min_start < vcb->nextAllocation) { | |
3170 | vcb->nextAllocation = min_start; | |
3171 | } | |
3172 | if (min_start < vcb->sparseAllocation) { | |
3173 | vcb->sparseAllocation = min_start; | |
3174 | } | |
3175 | } | |
3176 | } | |
3177 | ||
0b4e3aa0 A |
3178 | if (buffer) |
3179 | (void) ReleaseBitmapBlock(vcb, blockRef, false); | |
1c79356b | 3180 | |
6d2010ae A |
3181 | if (hfs_kdebug_allocation & HFSDBG_ALLOC_ENABLED) |
3182 | KERNEL_DEBUG_CONSTANT(HFSDBG_BLOCK_FIND_CONTIG | DBG_FUNC_END, err, *actualStartBlock, *actualNumBlocks, 0, 0); | |
b0d623f7 | 3183 | |
1c79356b A |
3184 | return err; |
3185 | } | |
3186 | ||
6d2010ae A |
3187 | |
3188 | #if CONFIG_HFS_ALLOC_RBTREE | |
91447636 | 3189 | /* |
6d2010ae A |
3190 | * Wrapper function around hfs_isrbtree_allocated. This just takes the start offset, |
3191 | * and the number of blocks, and whether or not we should check if the blocks are | |
3192 | * free or not. This function is designed to be used primarily with the debug #ifdef | |
3193 | * enabled, so it results in a panic if anything unexpected occurs. | |
91447636 | 3194 | * |
6d2010ae | 3195 | * shouldBeFree will be nonzero if the caller expects the zone to be free. |
91447636 | 3196 | */ |
91447636 | 3197 | |
6d2010ae A |
3198 | void check_rbtree_extents (struct hfsmount *hfsmp, u_int32_t startBlocks, |
3199 | u_int32_t numBlocks, int shouldBeFree) { | |
3200 | int alloc; | |
3201 | extent_node_t *node1 = NULL; | |
3202 | u_int32_t off1 = 0; | |
3203 | u_int32_t len1 = 0; | |
3204 | alloc = hfs_isrbtree_allocated (hfsmp, startBlocks, numBlocks, &node1); | |
3205 | ||
3206 | if (node1) { | |
3207 | off1 = node1->offset; | |
3208 | len1 = node1->length; | |
91447636 A |
3209 | } |
3210 | ||
6d2010ae A |
3211 | if (shouldBeFree) { |
3212 | /* | |
3213 | * If the region should be free, then we expect to see extents in the tree | |
3214 | * matching this start and length. Alloc != 0 means some portion of the extent | |
3215 | * specified was allocated. | |
3216 | */ | |
3217 | if (alloc != 0){ | |
3218 | panic ("HFS check_rbtree_extents: Node (%p) do not exist! " | |
3219 | "node1 off (%d),len(%d),, start(%d) end(%d)\n", | |
3220 | node1, off1, len1, startBlocks, numBlocks); | |
91447636 | 3221 | } |
6d2010ae A |
3222 | } |
3223 | else { | |
3224 | /* | |
3225 | * Otherwise, this means that the region should be allocated, and if we find | |
3226 | * an extent matching it, that's bad. | |
3227 | */ | |
3228 | if (alloc == 0){ | |
3229 | panic ("HFS check_rbtree_extents: Node (%p) exists! " | |
3230 | "node1 off (%d),len(%d), start(%d) end(%d)\n", | |
3231 | node1, off1, len1, startBlocks, numBlocks); | |
3232 | } | |
3233 | } | |
3234 | } | |
3235 | #endif | |
3236 | ||
3237 | #if CONFIG_HFS_ALLOC_RBTREE | |
3238 | /* | |
3239 | * Exhaustive validation search. This function iterates over all allocation blocks and | |
3240 | * compares their status in the red-black tree vs. the allocation bitmap. If the two are out of sync | |
3241 | * then it will panic. Bitmap lock must be held while this function is run. | |
3242 | * | |
3243 | * Because this function requires a red-black tree search to validate every allocation block, it is | |
3244 | * very expensive and should ONLY be run in debug mode, and even then, infrequently. | |
3245 | * | |
3246 | * 'end' is non-inclusive, so it should represent the total number of blocks in the volume. | |
3247 | * | |
3248 | */ | |
3249 | void | |
3250 | hfs_validate_rbtree (struct hfsmount *hfsmp, u_int32_t start, u_int32_t end){ | |
3251 | ||
3252 | u_int32_t current; | |
3253 | extent_node_t* node1; | |
3254 | ||
3255 | hfs_checktreelinks (hfsmp); | |
3256 | ||
3257 | for (current = start; current < end; current++) { | |
3258 | node1 = NULL; | |
3259 | int rbtree = hfs_isrbtree_allocated(hfsmp, current, 1, &node1); | |
3260 | int bitmap = hfs_isallocated(hfsmp, current, 1); | |
3261 | ||
3262 | if (bitmap != rbtree){ | |
3263 | panic("HFS: Allocator mismatch @ block %d -- bitmap %d : rbtree %d\n", | |
3264 | current, bitmap, rbtree); | |
3265 | } | |
3266 | } | |
3267 | } | |
3268 | ||
3269 | /* | |
3270 | * Exhaustive Red-Black Tree Linked List verification routine. | |
3271 | * | |
3272 | * This function iterates through the red-black tree's nodes, and then verifies that the linked list | |
3273 | * embedded within each of the nodes accurately points to the correct node as its "next" pointer. | |
3274 | * The bitmap lock must be held while this function is run. | |
3275 | */ | |
3276 | ||
3277 | void | |
3278 | hfs_checktreelinks (struct hfsmount *hfsmp) { | |
3279 | extent_tree_offset_t *tree = &hfsmp->offset_tree; | |
3280 | ||
3281 | extent_node_t *current = NULL; | |
3282 | extent_node_t *next = NULL; | |
3283 | extent_node_t *treenext; | |
3284 | ||
3285 | current = extent_tree_off_first (tree); | |
3286 | ||
3287 | while (current) { | |
3288 | next = current->offset_next; | |
3289 | treenext = extent_tree_off_next (tree, current); | |
3290 | if (next != treenext) { | |
3291 | panic("hfs_checktreelinks: mismatch for node (%p), next: %p , treenext %p !\n", current, next, treenext); | |
3292 | } | |
3293 | current = treenext; | |
3294 | } | |
3295 | } | |
3296 | ||
3297 | #endif | |
3298 | ||
3299 | ||
3300 | #if CONFIG_HFS_ALLOC_RBTREE | |
3301 | /* | |
3302 | * Test to see if any free blocks exist at a given offset. | |
3303 | * If there exists a node at the specified offset, it will return the appropriate | |
3304 | * node. | |
3305 | * | |
3306 | * NULL indicates allocated blocks exist at that offset. | |
3307 | * | |
3308 | * Allocation file lock must be held. | |
3309 | * | |
3310 | * Returns: | |
3311 | * 1 if blocks in the range are allocated. | |
3312 | * 0 if all blocks in the range are free. | |
3313 | */ | |
3314 | ||
3315 | static int | |
3316 | hfs_isrbtree_allocated (struct hfsmount *hfsmp, u_int32_t startBlock, | |
3317 | u_int32_t numBlocks, extent_node_t **ret_node) { | |
3318 | ||
3319 | extent_node_t search_sentinel; | |
3320 | extent_node_t *node = NULL; | |
3321 | extent_node_t *nextnode = NULL; | |
3322 | ||
3323 | /* | |
3324 | * With only one tree, then we just have to validate that there are entries | |
3325 | * in the R/B tree at the specified offset if it really is free. | |
3326 | */ | |
3327 | search_sentinel.offset = startBlock; | |
3328 | search_sentinel.length = numBlocks; | |
3329 | ||
3330 | node = extent_tree_off_search_prev(&hfsmp->offset_tree, &search_sentinel); | |
3331 | if (node) { | |
3332 | ||
3333 | *ret_node = node; | |
3334 | nextnode = extent_tree_off_next (&hfsmp->offset_tree, node); | |
3335 | if (nextnode != node->offset_next) { | |
3336 | panic ("hfs_rbtree_isallocated: Next pointers out of sync!\n"); | |
3337 | } | |
3338 | ||
3339 | /* | |
3340 | * Check to see if it is a superset of our target range. Because we started | |
3341 | * with the offset or some offset prior to it, then we know the node's offset is | |
3342 | * at least <= startBlock. So, if the end of the node is greater than the end of | |
3343 | * our target range, then the whole range is free. | |
3344 | */ | |
3345 | ||
3346 | if ((node->offset + node->length) >= (startBlock + numBlocks)) { | |
3347 | if (node->offset > startBlock) { | |
3348 | panic ("hfs_rbtree_isallocated: bad node ordering!"); | |
3349 | } | |
3350 | return 0; | |
3351 | } | |
3352 | } | |
3353 | /* | |
3354 | * We got here if either our node search resulted in a node whose extent | |
3355 | * was strictly before our target offset, or we couldnt' find a previous node | |
3356 | * at all (the beginning of the volume). If the former, then we can infer that | |
3357 | * at least one block in the target range is allocated since the next node's offset | |
3358 | * must be greater than startBlock. | |
3359 | * | |
3360 | * Either way, this means that the target node is unavailable to allocate, so | |
3361 | * just return 1; | |
3362 | */ | |
3363 | return 1; | |
3364 | } | |
3365 | ||
3366 | ||
3367 | #endif | |
3368 | ||
3369 | /* | |
3370 | * Count number of bits set in the given 32-bit unsigned number | |
3371 | * | |
3372 | * Returns: | |
3373 | * Number of bits set | |
3374 | */ | |
3375 | static int num_bits_set(u_int32_t num) | |
3376 | { | |
3377 | int count; | |
3378 | ||
3379 | for (count = 0; num; count++) { | |
3380 | num &= num - 1; | |
3381 | } | |
3382 | ||
3383 | return count; | |
3384 | } | |
3385 | ||
3386 | /* | |
3387 | * For a given range of blocks, find the total number of blocks | |
3388 | * allocated. If 'stop_on_first' is true, it stops as soon as it | |
3389 | * encounters the first allocated block. This option is useful | |
3390 | * to determine if any block is allocated or not. | |
3391 | * | |
3392 | * Inputs: | |
3393 | * startingBlock First allocation block number of the range to be scanned. | |
3394 | * numBlocks Total number of blocks that need to be scanned. | |
3395 | * stop_on_first Stop the search after the first allocated block is found. | |
3396 | * | |
3397 | * Output: | |
3398 | * allocCount Total number of allocation blocks allocated in the given range. | |
3399 | * | |
3400 | * On error, it is the number of allocated blocks found | |
3401 | * before the function got an error. | |
3402 | * | |
3403 | * If 'stop_on_first' is set, | |
3404 | * allocCount = 1 if any allocated block was found. | |
3405 | * allocCount = 0 if no allocated block was found. | |
3406 | * | |
3407 | * Returns: | |
3408 | * 0 on success, non-zero on failure. | |
3409 | */ | |
3410 | static int | |
3411 | hfs_isallocated_internal(struct hfsmount *hfsmp, u_int32_t startingBlock, | |
3412 | u_int32_t numBlocks, Boolean stop_on_first, u_int32_t *allocCount) | |
3413 | { | |
3414 | u_int32_t *currentWord; // Pointer to current word within bitmap block | |
3415 | u_int32_t wordsLeft; // Number of words left in this bitmap block | |
3416 | u_int32_t bitMask; // Word with given bits already set (ready to test) | |
3417 | u_int32_t firstBit; // Bit index within word of first bit to allocate | |
3418 | u_int32_t numBits; // Number of bits in word to allocate | |
3419 | u_int32_t *buffer = NULL; | |
3420 | uintptr_t blockRef; | |
3421 | u_int32_t bitsPerBlock; | |
3422 | u_int32_t wordsPerBlock; | |
3423 | u_int32_t blockCount = 0; | |
3424 | int error; | |
3425 | ||
3426 | if (hfs_kdebug_allocation & HFSDBG_BITMAP_ENABLED) | |
3427 | KERNEL_DEBUG_CONSTANT(HFSDBG_IS_ALLOCATED | DBG_FUNC_START, startingBlock, numBlocks, stop_on_first, 0, 0); | |
3428 | ||
3429 | /* | |
3430 | * Pre-read the bitmap block containing the first word of allocation | |
3431 | */ | |
3432 | error = ReadBitmapBlock(hfsmp, startingBlock, &buffer, &blockRef); | |
3433 | if (error) | |
3434 | goto JustReturn; | |
3435 | ||
3436 | /* | |
3437 | * Initialize currentWord, and wordsLeft. | |
3438 | */ | |
3439 | { | |
3440 | u_int32_t wordIndexInBlock; | |
3441 | ||
3442 | bitsPerBlock = hfsmp->vcbVBMIOSize * kBitsPerByte; | |
3443 | wordsPerBlock = hfsmp->vcbVBMIOSize / kBytesPerWord; | |
3444 | ||
3445 | wordIndexInBlock = (startingBlock & (bitsPerBlock-1)) / kBitsPerWord; | |
3446 | currentWord = buffer + wordIndexInBlock; | |
3447 | wordsLeft = wordsPerBlock - wordIndexInBlock; | |
3448 | } | |
3449 | ||
3450 | /* | |
3451 | * First test any non word aligned bits. | |
3452 | */ | |
3453 | firstBit = startingBlock % kBitsPerWord; | |
3454 | if (firstBit != 0) { | |
3455 | bitMask = kAllBitsSetInWord >> firstBit; | |
3456 | numBits = kBitsPerWord - firstBit; | |
3457 | if (numBits > numBlocks) { | |
3458 | numBits = numBlocks; | |
3459 | bitMask &= ~(kAllBitsSetInWord >> (firstBit + numBits)); | |
3460 | } | |
3461 | if ((*currentWord & SWAP_BE32 (bitMask)) != 0) { | |
3462 | if (stop_on_first) { | |
3463 | blockCount = 1; | |
3464 | goto Exit; | |
3465 | } | |
3466 | blockCount += num_bits_set(*currentWord & SWAP_BE32 (bitMask)); | |
3467 | } | |
3468 | numBlocks -= numBits; | |
3469 | ++currentWord; | |
3470 | --wordsLeft; | |
91447636 A |
3471 | } |
3472 | ||
3473 | /* | |
3474 | * Test whole words (32 blocks) at a time. | |
3475 | */ | |
3476 | while (numBlocks >= kBitsPerWord) { | |
3477 | if (wordsLeft == 0) { | |
3478 | /* Read in the next bitmap block. */ | |
3479 | startingBlock += bitsPerBlock; | |
3480 | ||
3481 | buffer = NULL; | |
3482 | error = ReleaseBitmapBlock(hfsmp, blockRef, false); | |
3483 | if (error) goto Exit; | |
3484 | ||
3485 | error = ReadBitmapBlock(hfsmp, startingBlock, &buffer, &blockRef); | |
3486 | if (error) goto Exit; | |
3487 | ||
3488 | /* Readjust currentWord and wordsLeft. */ | |
3489 | currentWord = buffer; | |
3490 | wordsLeft = wordsPerBlock; | |
3491 | } | |
3492 | if (*currentWord != 0) { | |
6d2010ae A |
3493 | if (stop_on_first) { |
3494 | blockCount = 1; | |
3495 | goto Exit; | |
3496 | } | |
3497 | blockCount += num_bits_set(*currentWord); | |
91447636 A |
3498 | } |
3499 | numBlocks -= kBitsPerWord; | |
3500 | ++currentWord; | |
3501 | --wordsLeft; | |
3502 | } | |
3503 | ||
3504 | /* | |
3505 | * Test any remaining blocks. | |
3506 | */ | |
3507 | if (numBlocks != 0) { | |
3508 | bitMask = ~(kAllBitsSetInWord >> numBlocks); | |
3509 | if (wordsLeft == 0) { | |
3510 | /* Read in the next bitmap block */ | |
3511 | startingBlock += bitsPerBlock; | |
3512 | ||
3513 | buffer = NULL; | |
3514 | error = ReleaseBitmapBlock(hfsmp, blockRef, false); | |
3515 | if (error) goto Exit; | |
3516 | ||
3517 | error = ReadBitmapBlock(hfsmp, startingBlock, &buffer, &blockRef); | |
3518 | if (error) goto Exit; | |
3519 | ||
3520 | currentWord = buffer; | |
3521 | wordsLeft = wordsPerBlock; | |
3522 | } | |
3523 | if ((*currentWord & SWAP_BE32 (bitMask)) != 0) { | |
6d2010ae A |
3524 | if (stop_on_first) { |
3525 | blockCount = 1; | |
3526 | goto Exit; | |
3527 | } | |
3528 | blockCount += num_bits_set(*currentWord & SWAP_BE32 (bitMask)); | |
91447636 A |
3529 | } |
3530 | } | |
3531 | Exit: | |
3532 | if (buffer) { | |
3533 | (void)ReleaseBitmapBlock(hfsmp, blockRef, false); | |
3534 | } | |
6d2010ae A |
3535 | if (allocCount) { |
3536 | *allocCount = blockCount; | |
3537 | } | |
3538 | ||
3539 | JustReturn: | |
3540 | if (hfs_kdebug_allocation & HFSDBG_BITMAP_ENABLED) | |
3541 | KERNEL_DEBUG_CONSTANT(HFSDBG_IS_ALLOCATED | DBG_FUNC_END, error, 0, blockCount, 0, 0); | |
3542 | ||
3543 | return (error); | |
3544 | } | |
3545 | ||
3546 | /* | |
3547 | * Count total number of blocks that are allocated in the given | |
3548 | * range from the bitmap. This is used to preflight total blocks | |
3549 | * that need to be relocated during volume resize. | |
3550 | * | |
3551 | * The journal or allocation file lock must be held. | |
3552 | * | |
3553 | * Returns: | |
3554 | * 0 on success, non-zero on failure. | |
3555 | * On failure, allocCount is zero. | |
3556 | */ | |
3557 | int | |
3558 | hfs_count_allocated(struct hfsmount *hfsmp, u_int32_t startBlock, | |
3559 | u_int32_t numBlocks, u_int32_t *allocCount) | |
3560 | { | |
3561 | return hfs_isallocated_internal(hfsmp, startBlock, numBlocks, false, allocCount); | |
3562 | } | |
3563 | ||
3564 | /* | |
3565 | * Test to see if any blocks in a range are allocated. | |
3566 | * | |
3567 | * Note: On error, this function returns 1, which means that | |
3568 | * one or more blocks in the range are allocated. This function | |
3569 | * is primarily used for volume resize and we do not want | |
3570 | * to report to the caller that the blocks are free when we | |
3571 | * were not able to deterministically find it out. So on error, | |
3572 | * we always report that the blocks are allocated. | |
3573 | * | |
3574 | * The journal or allocation file lock must be held. | |
3575 | * | |
3576 | * Returns | |
3577 | * 0 if all blocks in the range are free. | |
3578 | * 1 if blocks in the range are allocated, or there was an error. | |
3579 | */ | |
3580 | int | |
3581 | hfs_isallocated(struct hfsmount *hfsmp, u_int32_t startingBlock, u_int32_t numBlocks) | |
3582 | { | |
3583 | int error; | |
3584 | u_int32_t allocCount; | |
3585 | ||
3586 | error = hfs_isallocated_internal(hfsmp, startingBlock, numBlocks, true, &allocCount); | |
3587 | if (error) { | |
3588 | /* On error, we always say that the blocks are allocated | |
3589 | * so that volume resize does not return false success. | |
3590 | */ | |
3591 | return 1; | |
3592 | } else { | |
3593 | /* The function was deterministically able to find out | |
3594 | * if there was any block allocated or not. In that case, | |
3595 | * the value in allocCount is good enough to be returned | |
3596 | * back to the caller. | |
3597 | */ | |
3598 | return allocCount; | |
3599 | } | |
3600 | } | |
3601 | ||
3602 | /* | |
3603 | * Check to see if the red-black tree is live. Allocation file lock must be held | |
3604 | * shared or exclusive to call this function. Note that we may call this even if | |
3605 | * HFS is built without activating the red-black tree code. | |
3606 | */ | |
3607 | __private_extern__ | |
3608 | int | |
3609 | hfs_isrbtree_active(struct hfsmount *hfsmp){ | |
3610 | ||
3611 | //TODO: Update this function to deal with a truncate/resize coming in when the tree | |
3612 | //isn't fully finished. maybe we need to check the flags for something other than ENABLED? | |
3613 | ||
3614 | #if CONFIG_HFS_ALLOC_RBTREE | |
3615 | if (ALLOC_DEBUG) { | |
3616 | REQUIRE_FILE_LOCK(hfsmp->hfs_allocation_vp, false); | |
3617 | } | |
3618 | if (hfsmp){ | |
3619 | ||
3620 | if (hfsmp->extent_tree_flags & HFS_ALLOC_RB_ENABLED) { | |
3621 | return 1; | |
3622 | } | |
3623 | } | |
3624 | #else | |
3625 | #pragma unused (hfsmp) | |
3626 | #endif | |
3627 | /* If the RB Tree code is not enabled, then just always return 0 */ | |
3628 | return 0; | |
3629 | } | |
3630 | ||
3631 | #if CONFIG_HFS_ALLOC_RBTREE | |
3632 | /* | |
3633 | * This function is basically the same as hfs_isallocated, except it's designed for | |
3634 | * use with the red-black tree validation code. It assumes we're only checking whether | |
3635 | * one bit is active, and that we're going to pass in the buf to use, since GenerateTree | |
3636 | * calls ReadBitmapBlock and will have that buf locked down for the duration of its operation. | |
3637 | * | |
3638 | * This should not be called in general purpose scanning code. | |
3639 | */ | |
3640 | int hfs_isallocated_scan(struct hfsmount *hfsmp, u_int32_t startingBlock, u_int32_t *bp_buf) { | |
3641 | ||
3642 | u_int32_t *currentWord; // Pointer to current word within bitmap block | |
3643 | u_int32_t bitMask; // Word with given bits already set (ready to test) | |
3644 | u_int32_t firstBit; // Bit index within word of first bit to allocate | |
3645 | u_int32_t numBits; // Number of bits in word to allocate | |
3646 | u_int32_t bitsPerBlock; | |
3647 | uintptr_t blockRef; | |
3648 | u_int32_t wordsPerBlock; | |
3649 | u_int32_t numBlocks = 1; | |
3650 | u_int32_t *buffer = NULL; | |
3651 | ||
3652 | int inuse = 0; | |
3653 | int error; | |
3654 | ||
3655 | ||
3656 | if (bp_buf) { | |
3657 | /* just use passed-in buffer if avail. */ | |
3658 | buffer = bp_buf; | |
3659 | } | |
3660 | else { | |
3661 | /* | |
3662 | * Pre-read the bitmap block containing the first word of allocation | |
3663 | */ | |
3664 | error = ReadBitmapBlock(hfsmp, startingBlock, &buffer, &blockRef); | |
3665 | if (error) | |
3666 | return (error); | |
3667 | } | |
3668 | ||
3669 | /* | |
3670 | * Initialize currentWord, and wordsLeft. | |
3671 | */ | |
3672 | u_int32_t wordIndexInBlock; | |
3673 | ||
3674 | bitsPerBlock = hfsmp->vcbVBMIOSize * kBitsPerByte; | |
3675 | wordsPerBlock = hfsmp->vcbVBMIOSize / kBytesPerWord; | |
3676 | ||
3677 | wordIndexInBlock = (startingBlock & (bitsPerBlock-1)) / kBitsPerWord; | |
3678 | currentWord = buffer + wordIndexInBlock; | |
3679 | ||
3680 | /* | |
3681 | * First test any non word aligned bits. | |
3682 | */ | |
3683 | firstBit = startingBlock % kBitsPerWord; | |
3684 | bitMask = kAllBitsSetInWord >> firstBit; | |
3685 | numBits = kBitsPerWord - firstBit; | |
3686 | if (numBits > numBlocks) { | |
3687 | numBits = numBlocks; | |
3688 | bitMask &= ~(kAllBitsSetInWord >> (firstBit + numBits)); | |
3689 | } | |
3690 | if ((*currentWord & SWAP_BE32 (bitMask)) != 0) { | |
3691 | inuse = 1; | |
3692 | goto Exit; | |
3693 | } | |
3694 | numBlocks -= numBits; | |
3695 | ++currentWord; | |
3696 | ||
3697 | Exit: | |
3698 | if(bp_buf == NULL) { | |
3699 | if (buffer) { | |
3700 | (void)ReleaseBitmapBlock(hfsmp, blockRef, false); | |
3701 | } | |
3702 | } | |
91447636 | 3703 | return (inuse); |
6d2010ae A |
3704 | |
3705 | ||
3706 | ||
3707 | } | |
3708 | ||
3709 | /* | |
3710 | * This function scans the specified block and adds it to the pair of trees specified | |
3711 | * in its arguments. We break this behavior out of GenerateTree so that an allocating | |
3712 | * thread can invoke this if the tree does not have enough extents to satisfy | |
3713 | * an allocation request. | |
3714 | * | |
3715 | * startbit - the allocation block represented by a bit in 'allocblock' where we need to | |
3716 | * start our scan. For instance, we may need to start the normal allocation scan | |
3717 | * in the middle of an existing allocation block. | |
3718 | * endBit - the allocation block where we should end this search (inclusive). | |
3719 | * bitToScan - output argument for this function to specify the next bit to scan. | |
3720 | * | |
3721 | * Returns: | |
3722 | * 0 on success | |
3723 | * nonzero on failure. | |
3724 | */ | |
3725 | ||
3726 | static int hfs_alloc_scan_block(struct hfsmount *hfsmp, u_int32_t startbit, | |
3727 | u_int32_t endBit, u_int32_t *bitToScan) { | |
3728 | ||
3729 | int error; | |
3730 | u_int32_t curAllocBlock; | |
3731 | struct buf *blockRef = NULL; | |
3732 | u_int32_t *buffer = NULL; | |
3733 | u_int32_t wordIndexInBlock; | |
3734 | u_int32_t blockSize = (u_int32_t)hfsmp->vcbVBMIOSize; | |
3735 | u_int32_t wordsPerBlock = blockSize / kBytesPerWord; | |
3736 | u_int32_t offset = 0; | |
3737 | u_int32_t size = 0; | |
3738 | ||
3739 | /* | |
3740 | * Read the appropriate block from the bitmap file. ReadBitmapBlock | |
3741 | * figures out which actual on-disk block corresponds to the bit we're | |
3742 | * looking at. | |
3743 | */ | |
3744 | error = ReadBitmapBlock(hfsmp, startbit, &buffer, (uintptr_t*)&blockRef); | |
3745 | if (error) { | |
3746 | return error; | |
3747 | } | |
3748 | ||
3749 | /* curAllocBlock represents the logical block we're analyzing. */ | |
3750 | curAllocBlock = startbit; | |
3751 | ||
3752 | /* Figure out which word curAllocBlock corresponds to in the block we read */ | |
3753 | wordIndexInBlock = (curAllocBlock / kBitsPerWord) % wordsPerBlock; | |
3754 | ||
3755 | /* Scan a word at a time */ | |
3756 | while (wordIndexInBlock < wordsPerBlock) { | |
3757 | u_int32_t currentWord = SWAP_BE32(buffer[wordIndexInBlock]); | |
3758 | u_int32_t curBit; | |
3759 | ||
3760 | /* modulate curBit because it may start in the middle of a word */ | |
3761 | for (curBit = curAllocBlock % kBitsPerWord; curBit < kBitsPerWord; curBit++) { | |
3762 | ||
3763 | u_int32_t is_allocated = currentWord & (1 << (kBitsWithinWordMask - curBit)); | |
3764 | if (ALLOC_DEBUG) { | |
3765 | u_int32_t res = hfs_isallocated_scan (hfsmp, curAllocBlock, buffer); | |
3766 | if ( ((res) && (!is_allocated)) || ((!res) && (is_allocated))) { | |
3767 | panic("hfs_alloc_scan: curAllocBit %u, curBit (%d), word (0x%x), is_allocated (0x%x) res(0x%x) \n", | |
3768 | curAllocBlock, curBit, currentWord, is_allocated, res); | |
3769 | } | |
3770 | } | |
3771 | /* | |
3772 | * If curBit is not allocated, keep track of the start of the free range. | |
3773 | * Increment a running tally on how many free blocks in a row we've seen. | |
3774 | */ | |
3775 | if (!is_allocated) { | |
3776 | size++; | |
3777 | if (offset == 0) { | |
3778 | offset = curAllocBlock; | |
3779 | } | |
3780 | } | |
3781 | else { | |
3782 | /* | |
3783 | * If we hit an allocated block, insert the extent that tracked the range | |
3784 | * we saw, and reset our tally counter. | |
3785 | */ | |
3786 | if (size != 0) { | |
3787 | extent_tree_free_space(&hfsmp->offset_tree, size, offset); | |
3788 | size = 0; | |
3789 | offset = 0; | |
3790 | } | |
3791 | } | |
3792 | curAllocBlock++; | |
3793 | /* | |
3794 | * Exit early if the next bit we'd analyze would take us beyond the end of the | |
3795 | * range that we're supposed to scan. | |
3796 | */ | |
3797 | if (curAllocBlock >= endBit) { | |
3798 | goto DoneScanning; | |
3799 | } | |
3800 | } | |
3801 | wordIndexInBlock++; | |
3802 | } | |
3803 | DoneScanning: | |
3804 | ||
3805 | /* We may have been tracking a range of free blocks that hasn't been inserted yet. */ | |
3806 | if (size != 0) { | |
3807 | extent_tree_free_space(&hfsmp->offset_tree, size, offset); | |
3808 | } | |
3809 | /* | |
3810 | * curAllocBlock represents the next block we need to scan while we're in this | |
3811 | * function. | |
3812 | */ | |
3813 | *bitToScan = curAllocBlock; | |
3814 | ||
3815 | ReleaseRBScanBitmapBlock(blockRef); | |
3816 | ||
3817 | return 0; | |
3818 | } | |
3819 | ||
3820 | /* | |
3821 | * Extern function that is called from mount and upgrade mount routines | |
3822 | * that enable us to initialize the tree. | |
3823 | */ | |
3824 | ||
3825 | __private_extern__ | |
3826 | u_int32_t InitTree(struct hfsmount *hfsmp) { | |
3827 | extent_tree_init (&(hfsmp->offset_tree)); | |
3828 | return 0; | |
3829 | } | |
3830 | ||
3831 | ||
3832 | /* | |
3833 | * This function builds the trees specified in its arguments. It uses | |
3834 | * buf_meta_breads to scan through the bitmap and re-build the tree state. | |
3835 | * It is very important to use buf_meta_bread because we need to ensure that we | |
3836 | * read the most current version of the blocks that we're scanning. If we used | |
3837 | * cluster_io, then journaled transactions could still be sitting in RAM since they are | |
3838 | * written to disk in the proper location asynchronously. | |
3839 | * | |
3840 | * Because this could be still running when mount has finished, we need to check | |
3841 | * after every allocation block that we're working on if an unmount or some other | |
3842 | * operation that would cause us to teardown has come in. (think downgrade mount). | |
3843 | * If an unmount has come in, then abort whatever we're doing and return -1 | |
3844 | * to indicate we hit an error. If we don't do this, we'd hold up unmount for | |
3845 | * a very long time. | |
3846 | * | |
3847 | * This function assumes that the bitmap lock is acquired exclusively before being | |
3848 | * called. It will drop the lock and then re-acquire it during operation, but | |
3849 | * will always return with the lock held. | |
3850 | */ | |
3851 | __private_extern__ | |
3852 | u_int32_t GenerateTree(struct hfsmount *hfsmp, u_int32_t endBlock, int *flags, int initialscan) { | |
3853 | ||
3854 | REQUIRE_FILE_LOCK(hfsmp->hfs_allocation_vp, false); | |
3855 | ||
3856 | u_int32_t *cur_block_eof; | |
3857 | int error = 0; | |
3858 | ||
3859 | int USE_FINE_GRAINED_LOCKING = 0; | |
3860 | ||
3861 | /* Initialize the block counter while we hold the bitmap lock */ | |
3862 | cur_block_eof = &hfsmp->offset_block_end; | |
3863 | ||
3864 | /* | |
3865 | * This loop advances over all allocation bitmap blocks of the current region | |
3866 | * to scan them and add the results into the red-black tree. We use the mount point | |
3867 | * variable offset_block_end as our loop counter. This gives us flexibility | |
3868 | * because we can release the allocation bitmap lock and allow a thread that wants | |
3869 | * to make an allocation to grab the lock and do some scanning on our behalf while we're | |
3870 | * waiting to re-acquire the lock. Then, the allocating thread will only do as much bitmap | |
3871 | * scanning as needed to fulfill its allocation. | |
3872 | * | |
3873 | * If the other thread does IO for us, then it will update the offset_block_end | |
3874 | * variable as well, since it will use the same hfs_alloc_scan_block function to do its bit | |
3875 | * scanning. So when we re-grab the lock, our current EOF/loop will immediately skip us to the next | |
3876 | * block that needs scanning. | |
3877 | */ | |
3878 | ||
3879 | while (*cur_block_eof < endBlock) { | |
3880 | ||
3881 | /* | |
3882 | * If the filesystem is being resized before the bitmap has been fully scanned, we'll | |
3883 | * update our endBlock to match the current allocation limit in the hfsmp struct. | |
3884 | * The allocLimit field would only be be updated while holding the bitmap lock, so we won't | |
3885 | * be executing this code at the same time that the resize is going on. | |
3886 | */ | |
3887 | if ((initialscan) && (endBlock != hfsmp->allocLimit)) { | |
3888 | ||
3889 | /* If we're past the new/modified allocLimit, then just stop immediately.*/ | |
3890 | if (*cur_block_eof >= hfsmp->allocLimit ) { | |
3891 | break; | |
3892 | } | |
3893 | endBlock = hfsmp->allocLimit; | |
3894 | } | |
3895 | ||
3896 | /* | |
3897 | * TODO: fix unmount stuff! | |
3898 | * See rdar://7391404 | |
3899 | * | |
3900 | * Once the RB allocator is checked in, we'll want to augment it to not hold the | |
3901 | * allocation bitmap lock for the entire duration of the tree scan. For a first check-in | |
3902 | * it's ok to do that but we can't leave it like that forever. | |
3903 | * | |
3904 | * The gist of the new algorithm will work as follows: | |
3905 | * if an unmount is in flight and has been detected: | |
3906 | * abort tree-build. | |
3907 | * unset tree-in-progress bit. | |
3908 | * wakeup unmount thread | |
3909 | * unlock allocation bitmap lock, fail out. | |
3910 | * | |
3911 | * The corresponding code in the unmount side should already be in place. | |
3912 | */ | |
3913 | ||
3914 | error = hfs_alloc_scan_block (hfsmp, *cur_block_eof, endBlock, cur_block_eof); | |
3915 | ||
3916 | //TODO: Fix this below! | |
3917 | if (USE_FINE_GRAINED_LOCKING){ | |
3918 | hfs_systemfile_unlock(hfsmp, *flags); | |
3919 | *flags = hfs_systemfile_lock(hfsmp, SFL_BITMAP, HFS_EXCLUSIVE_LOCK); | |
3920 | } | |
3921 | //TODO: Infer that if *flags == 0, we don't actually need to lock/unlock. | |
3922 | } | |
3923 | ||
3924 | return error; | |
91447636 A |
3925 | } |
3926 | ||
6d2010ae A |
3927 | /* |
3928 | * This function destroys the specified rb-trees associated with the mount point. | |
3929 | */ | |
3930 | __private_extern__ | |
3931 | void DestroyTrees(struct hfsmount *hfsmp) { | |
3932 | ||
3933 | if (ALLOC_DEBUG) { | |
3934 | REQUIRE_FILE_LOCK(hfsmp->hfs_allocation_vp, false); | |
3935 | printf("DestroyTrees: Validating red/black tree for vol %s\n", (char*) hfsmp->vcbVN); | |
3936 | hfs_validate_rbtree (hfsmp, 0, hfsmp->offset_block_end ); | |
3937 | } | |
3938 | ||
3939 | /* | |
3940 | * extent_tree_destroy will start with the first entry in the tree (by offset), then | |
3941 | * iterate through the tree quickly using its embedded linked list. This results in tree | |
3942 | * destruction in O(n) time. | |
3943 | */ | |
3944 | ||
3945 | if (hfsmp->extent_tree_flags & HFS_ALLOC_RB_ENABLED) { | |
3946 | extent_tree_destroy(&hfsmp->offset_tree); | |
3947 | ||
3948 | /* Mark Trees as disabled */ | |
3949 | hfsmp->extent_tree_flags &= ~HFS_ALLOC_RB_ENABLED; | |
3950 | } | |
3951 | ||
3952 | return; | |
3953 | } | |
3954 | ||
3955 | #endif | |
3956 | ||
3957 | /* | |
3958 | * This function resets all of the data structures relevant to the | |
3959 | * free extent cache stored in the hfsmount struct. | |
3960 | * | |
3961 | * If we are using the red-black tree code then we need to account for the fact that | |
3962 | * we may encounter situations where we need to jettison the tree. If that is the | |
3963 | * case, then we fail-over to the bitmap scanning logic, but we need to ensure that | |
3964 | * the free ext cache is zeroed before we start using it. | |
d1ecb069 | 3965 | * |
6d2010ae A |
3966 | * We also reset and disable the cache when allocLimit is updated... which |
3967 | * is when a volume is being resized (via hfs_truncatefs() or hfs_extendfs()). | |
3968 | * It is independent of the type of allocator being used currently. | |
d1ecb069 | 3969 | */ |
6d2010ae | 3970 | void ResetVCBFreeExtCache(struct hfsmount *hfsmp) |
d1ecb069 | 3971 | { |
6d2010ae A |
3972 | int bytes; |
3973 | void *freeExt; | |
1c79356b | 3974 | |
6d2010ae A |
3975 | if (hfs_kdebug_allocation & HFSDBG_EXT_CACHE_ENABLED) |
3976 | KERNEL_DEBUG_CONSTANT(HFSDBG_RESET_EXTENT_CACHE | DBG_FUNC_START, 0, 0, 0, 0, 0); | |
3977 | ||
3978 | lck_spin_lock(&hfsmp->vcbFreeExtLock); | |
3979 | ||
3980 | /* reset Free Extent Count */ | |
3981 | hfsmp->vcbFreeExtCnt = 0; | |
3982 | ||
3983 | /* reset the actual array */ | |
3984 | bytes = kMaxFreeExtents * sizeof(HFSPlusExtentDescriptor); | |
3985 | freeExt = (void*)(hfsmp->vcbFreeExt); | |
3986 | ||
3987 | bzero (freeExt, bytes); | |
3988 | ||
3989 | lck_spin_unlock(&hfsmp->vcbFreeExtLock); | |
3990 | ||
3991 | if (hfs_kdebug_allocation & HFSDBG_EXT_CACHE_ENABLED) | |
3992 | KERNEL_DEBUG_CONSTANT(HFSDBG_RESET_EXTENT_CACHE | DBG_FUNC_END, 0, 0, 0, 0, 0); | |
3993 | ||
3994 | return; | |
3995 | } | |
3996 | ||
3997 | /* | |
3998 | * This function is used to inform the allocator if we have to effectively shrink | |
3999 | * or grow the total number of allocation blocks via hfs_truncatefs or hfs_extendfs. | |
4000 | * | |
4001 | * The bitmap lock must be held when calling this function. This function also modifies the | |
4002 | * allocLimit field in the hfs mount point structure in the general case. | |
4003 | * | |
4004 | * In the shrinking case, we'll have to remove all free extents from the red-black | |
4005 | * tree past the specified offset new_end_block. In the growth case, we'll have to force | |
4006 | * a re-scan of the new allocation blocks from our current allocLimit to the new end block. | |
4007 | * | |
4008 | * new_end_block represents the total number of blocks available for allocation in the resized | |
4009 | * filesystem. Block #new_end_block should not be allocatable in the resized filesystem since it | |
4010 | * will be out of the (0, n-1) range that are indexable in the bitmap. | |
4011 | * | |
4012 | * Returns 0 on success | |
4013 | * errno on failure | |
4014 | */ | |
4015 | __private_extern__ | |
4016 | u_int32_t UpdateAllocLimit (struct hfsmount *hfsmp, u_int32_t new_end_block) { | |
4017 | ||
4018 | /* | |
4019 | * Update allocLimit to the argument specified, but don't do anything else | |
4020 | * if the red/black tree is not enabled. | |
4021 | */ | |
4022 | hfsmp->allocLimit = new_end_block; | |
4023 | ||
4024 | /* Invalidate the free extent cache completely so that | |
4025 | * it does not have any extents beyond end of current | |
4026 | * volume. | |
4027 | */ | |
4028 | ResetVCBFreeExtCache(hfsmp); | |
4029 | ||
4030 | #if CONFIG_HFS_ALLOC_RBTREE | |
4031 | /* Shrinking the existing filesystem */ | |
4032 | if ((new_end_block < hfsmp->offset_block_end) && | |
4033 | (hfsmp->extent_tree_flags & HFS_ALLOC_RB_ACTIVE)) { | |
4034 | extent_node_t search_sentinel; | |
4035 | extent_node_t *node = NULL; | |
4036 | /* Remover points to the current item to free/remove from the tree */ | |
4037 | extent_node_t *remover = NULL; | |
4038 | ||
4039 | /* Begin search at the specified offset */ | |
4040 | memset (&search_sentinel, 0, sizeof(extent_node_t)); | |
4041 | search_sentinel.offset = new_end_block; | |
4042 | ||
4043 | /* | |
4044 | * Find the first available extent that satifies the allocation by searching | |
4045 | * from the starting point or 1 earlier. We may need to split apart an existing node | |
4046 | * if it straddles the new alloc limit. | |
4047 | */ | |
4048 | node = extent_tree_off_search_prev(&hfsmp->offset_tree, &search_sentinel); | |
4049 | if (node) { | |
4050 | /* If it's an exact match, then just remove them all from this point forward */ | |
4051 | if (node->offset == new_end_block) { | |
4052 | /* | |
4053 | * Find the previous entry and update its next pointer to NULL | |
4054 | * since this entry is biting the dust. Update remover to node. | |
4055 | */ | |
4056 | extent_node_t *prev = NULL; | |
4057 | prev = extent_tree_off_prev (&hfsmp->offset_tree, node); | |
4058 | if (prev) { | |
4059 | prev->offset_next = NULL; | |
4060 | } | |
4061 | remover = node; | |
4062 | } | |
4063 | else { | |
4064 | /* See if we need to split this node */ | |
4065 | if ((node->offset + node->length) > new_end_block) { | |
4066 | /* | |
4067 | * Update node to reflect its new size up until new_end_block. | |
4068 | */ | |
4069 | remover = node->offset_next; | |
4070 | node->length = new_end_block - node->offset; | |
4071 | /* node is becoming the last free extent in the volume. */ | |
4072 | node->offset_next = NULL; | |
4073 | } | |
4074 | else { | |
4075 | if (node->offset_next == NULL) { | |
4076 | /* | |
4077 | * 'node' points to the last free extent in the volume. | |
4078 | * Coincidentally, it is also before the new cut-off point at which | |
4079 | * we will stop representing bitmap values in the tree. Just bail out now. | |
4080 | */ | |
4081 | return 0; | |
4082 | } | |
4083 | /* | |
4084 | * Otherwise, point our temp variable 'remover' to the node where | |
4085 | * we'll need to start yanking things out of the tree, and make 'node' | |
4086 | * the last element in the tree in the linked list. | |
4087 | */ | |
4088 | remover = node->offset_next; | |
4089 | if (remover->offset <= new_end_block) { | |
4090 | panic ("UpdateAllocLimit: Invalid RBTree node next ptr!"); | |
4091 | } | |
4092 | node->offset_next = NULL; | |
4093 | } | |
4094 | } | |
4095 | ||
4096 | /* | |
4097 | * Remover is our "temp" pointer that points to the current node to remove from | |
4098 | * the offset tree. We'll simply iterate through the tree linked list, removing the current | |
4099 | * element from the tree, freeing them as we come across them. | |
4100 | */ | |
4101 | while (remover) { | |
4102 | extent_node_t *next = remover->offset_next; | |
4103 | extent_tree_remove_node (&hfsmp->offset_tree, remover); | |
4104 | free_node (remover); | |
4105 | remover = next; | |
4106 | } | |
4107 | ||
4108 | if (ALLOC_DEBUG) { | |
4109 | printf ("UpdateAllocLimit: Validating rbtree after truncation\n"); | |
4110 | hfs_validate_rbtree (hfsmp, 0, new_end_block-1); | |
4111 | } | |
4112 | ||
4113 | /* | |
4114 | * Don't forget to shrink offset_block_end after a successful truncation | |
4115 | * new_end_block should represent the number of blocks available on the | |
4116 | * truncated volume. | |
4117 | */ | |
4118 | ||
4119 | hfsmp->offset_block_end = new_end_block; | |
4120 | ||
4121 | return 0; | |
4122 | } | |
4123 | else { | |
4124 | if (ALLOC_DEBUG) { | |
4125 | panic ("UpdateAllocLimit: no prev!"); | |
4126 | } | |
4127 | return ENOSPC; | |
4128 | } | |
d1ecb069 | 4129 | } |
6d2010ae A |
4130 | /* Growing the existing filesystem */ |
4131 | else if ((new_end_block > hfsmp->offset_block_end) && | |
4132 | (hfsmp->extent_tree_flags & HFS_ALLOC_RB_ACTIVE)) { | |
4133 | int flags = 0; | |
4134 | int retval = 0; | |
4135 | ||
4136 | if (ALLOC_DEBUG) { | |
4137 | printf ("UpdateAllocLimit: Validating rbtree prior to growth\n"); | |
4138 | hfs_validate_rbtree (hfsmp, 0, hfsmp->offset_block_end); | |
4139 | } | |
4140 | ||
4141 | ||
4142 | retval = GenerateTree (hfsmp, new_end_block, &flags, 0); | |
4143 | ||
4144 | /* | |
4145 | * Don't forget to update offset_block_end after a successful tree extension. | |
4146 | */ | |
4147 | if (retval == 0) { | |
4148 | ||
4149 | if (ALLOC_DEBUG) { | |
4150 | printf ("UpdateAllocLimit: Validating rbtree after growth\n"); | |
4151 | hfs_validate_rbtree (hfsmp, 0, new_end_block); | |
4152 | } | |
4153 | ||
4154 | hfsmp->offset_block_end = new_end_block; | |
4155 | } | |
4156 | ||
4157 | return retval; | |
4158 | } | |
4159 | /* Otherwise, do nothing. fall through to the code below. */ | |
4160 | printf ("error : off_block_end: %d, alloclimit: %d, new_end_block: %d\n", | |
4161 | hfsmp->offset_block_end,hfsmp->allocLimit, new_end_block); | |
4162 | #endif | |
4163 | ||
4164 | return 0; | |
4165 | ||
4166 | } | |
4167 | ||
4168 | ||
4169 | /* | |
4170 | * Remove an entry from free extent cache after it has been allocated. | |
4171 | * | |
4172 | * This function does not split extents to remove them from the allocated list. | |
4173 | * | |
4174 | * Inputs: | |
4175 | * hfsmp - mount point structure | |
4176 | * startBlock - starting block of the extent to be removed. | |
4177 | * blockCount - number of blocks of the extent to be removed. | |
4178 | */ | |
4179 | static void remove_free_extent_cache(struct hfsmount *hfsmp, u_int32_t startBlock, u_int32_t blockCount) | |
4180 | { | |
4181 | int i, j; | |
4182 | int extentsRemoved = 0; | |
4183 | u_int32_t start, end; | |
4184 | ||
4185 | #if CONFIG_HFS_ALLOC_RBTREE | |
4186 | /* If red-black tree is enabled, no free extent cache is necessary */ | |
4187 | if (hfs_isrbtree_active(hfsmp) == true) { | |
4188 | return; | |
4189 | } | |
4190 | #endif | |
4191 | ||
4192 | if (hfs_kdebug_allocation & HFSDBG_EXT_CACHE_ENABLED) | |
4193 | KERNEL_DEBUG_CONSTANT(HFSDBG_REMOVE_EXTENT_CACHE | DBG_FUNC_START, startBlock, blockCount, 0, 0, 0); | |
4194 | ||
4195 | lck_spin_lock(&hfsmp->vcbFreeExtLock); | |
4196 | ||
4197 | for (i = 0; i < (int)hfsmp->vcbFreeExtCnt; i++) { | |
4198 | start = hfsmp->vcbFreeExt[i].startBlock; | |
4199 | end = start + hfsmp->vcbFreeExt[i].blockCount; | |
4200 | ||
4201 | /* If the extent to remove from free extent list starts within | |
4202 | * this free extent, or, if it starts before this free extent | |
4203 | * but ends in this free extent, remove it by shifting all other | |
4204 | * extents. | |
4205 | */ | |
4206 | if (((startBlock >= start) && (startBlock < end)) || | |
4207 | ((startBlock < start) && (startBlock + blockCount) > start)) { | |
4208 | for (j = i; j < (int)hfsmp->vcbFreeExtCnt - 1; j++) { | |
4209 | hfsmp->vcbFreeExt[j] = hfsmp->vcbFreeExt[j+1]; | |
4210 | } | |
4211 | hfsmp->vcbFreeExtCnt--; | |
4212 | /* Decrement the index so that we check the extent | |
4213 | * that just got shifted to the current index. | |
4214 | */ | |
4215 | i--; | |
4216 | extentsRemoved++; | |
4217 | } | |
4218 | /* Continue looping as we might have to invalidate multiple extents, | |
4219 | * probably not possible in normal case, but does not hurt. | |
4220 | */ | |
4221 | } | |
4222 | ||
4223 | lck_spin_unlock(&hfsmp->vcbFreeExtLock); | |
4224 | ||
4225 | sanity_check_free_ext(hfsmp, 0); | |
4226 | ||
4227 | if (hfs_kdebug_allocation & HFSDBG_EXT_CACHE_ENABLED) | |
4228 | KERNEL_DEBUG_CONSTANT(HFSDBG_REMOVE_EXTENT_CACHE | DBG_FUNC_END, 0, 0, 0, extentsRemoved, 0); | |
d1ecb069 A |
4229 | |
4230 | return; | |
4231 | } | |
4232 | ||
6d2010ae A |
4233 | /* |
4234 | * Add an entry to free extent cache after it has been deallocated. | |
d1ecb069 | 4235 | * |
6d2010ae A |
4236 | * If the extent provided has blocks beyond current allocLimit, it |
4237 | * is clipped to allocLimit. This function does not merge contiguous | |
4238 | * extents, if they already exist in the list. | |
d1ecb069 | 4239 | * |
6d2010ae A |
4240 | * Inputs: |
4241 | * hfsmp - mount point structure | |
4242 | * startBlock - starting block of the extent to be removed. | |
4243 | * blockCount - number of blocks of the extent to be removed. | |
4244 | * | |
4245 | * Returns: | |
4246 | * true - if the extent was added successfully to the list | |
4247 | * false - if the extent was no added to the list, maybe because | |
4248 | * the extent was beyond allocLimit, or is not best | |
4249 | * candidate to be put in the cache. | |
d1ecb069 | 4250 | */ |
6d2010ae | 4251 | static Boolean add_free_extent_cache(struct hfsmount *hfsmp, u_int32_t startBlock, u_int32_t blockCount) |
d1ecb069 | 4252 | { |
6d2010ae A |
4253 | Boolean retval = false; |
4254 | u_int32_t start, end; | |
4255 | int i; | |
4256 | ||
4257 | if (hfs_kdebug_allocation & HFSDBG_EXT_CACHE_ENABLED) | |
4258 | KERNEL_DEBUG_CONSTANT(HFSDBG_ADD_EXTENT_CACHE | DBG_FUNC_START, startBlock, blockCount, 0, 0, 0); | |
4259 | ||
4260 | /* | |
4261 | * If using the red-black tree allocator, then there's no need to special case | |
4262 | * for the sparse device case. We'll simply add the region we've recently freed | |
4263 | * to the red-black tree, where it will get sorted by offset and length. The only special | |
4264 | * casing will need to be done on the allocation side, where we may favor free extents | |
4265 | * based on offset even if it will cause fragmentation. This may be true, for example, if | |
4266 | * we are trying to reduce the number of bandfiles created in a sparse bundle disk image. | |
4267 | */ | |
4268 | #if CONFIG_HFS_ALLOC_RBTREE | |
4269 | if (hfs_isrbtree_active(hfsmp) == true) { | |
4270 | goto out_not_locked; | |
4271 | } | |
4272 | #endif | |
4273 | ||
4274 | /* No need to add extent that is beyond current allocLimit */ | |
4275 | if (startBlock >= hfsmp->allocLimit) { | |
4276 | goto out_not_locked; | |
4277 | } | |
4278 | ||
4279 | /* If end of the free extent is beyond current allocLimit, clip the extent */ | |
4280 | if ((startBlock + blockCount) > hfsmp->allocLimit) { | |
4281 | blockCount = hfsmp->allocLimit - startBlock; | |
4282 | } | |
4283 | ||
4284 | lck_spin_lock(&hfsmp->vcbFreeExtLock); | |
d1ecb069 | 4285 | |
6d2010ae A |
4286 | /* If the free extent cache is full and the new extent fails to |
4287 | * compare with the last extent, skip adding it to the list. | |
4288 | */ | |
4289 | if (hfsmp->vcbFreeExtCnt == kMaxFreeExtents) { | |
4290 | if (hfsmp->hfs_flags & HFS_HAS_SPARSE_DEVICE) { | |
4291 | /* For sparse disks, free extent cache list is sorted by start block, lowest first */ | |
4292 | if (startBlock > hfsmp->vcbFreeExt[kMaxFreeExtents-1].startBlock) { | |
4293 | goto out; | |
4294 | } | |
4295 | } else { | |
4296 | /* For normal mounts, free extent cache list is sorted by total blocks, highest first */ | |
4297 | if (blockCount <= hfsmp->vcbFreeExt[kMaxFreeExtents-1].blockCount) { | |
4298 | goto out; | |
4299 | } | |
4300 | } | |
d1ecb069 | 4301 | } |
6d2010ae A |
4302 | |
4303 | /* Check if the current extent overlaps with any of the existing | |
4304 | * extents. If yes, just skip adding it to the list. We have | |
4305 | * to do this check before shifting the extent records. | |
4306 | */ | |
4307 | for (i = 0; i < (int)hfsmp->vcbFreeExtCnt; i++) { | |
4308 | ||
4309 | start = hfsmp->vcbFreeExt[i].startBlock; | |
4310 | end = start + hfsmp->vcbFreeExt[i].blockCount; | |
4311 | ||
4312 | if (((startBlock >= start) && (startBlock < end)) || | |
4313 | ((startBlock < start) && (startBlock + blockCount) > start)) { | |
4314 | goto out; | |
4315 | } | |
4316 | } | |
4317 | ||
4318 | /* Scan the free extent cache array from tail to head till | |
4319 | * we find the entry after which our new entry should be | |
4320 | * inserted. After we break out of this loop, the new entry | |
4321 | * will be inserted at 'i+1'. | |
4322 | */ | |
4323 | for (i = (int)hfsmp->vcbFreeExtCnt-1; i >= 0; i--) { | |
4324 | if (hfsmp->hfs_flags & HFS_HAS_SPARSE_DEVICE) { | |
4325 | /* For sparse devices, find entry with smaller start block than ours */ | |
4326 | if (hfsmp->vcbFreeExt[i].startBlock < startBlock) { | |
4327 | break; | |
4328 | } | |
4329 | } else { | |
4330 | /* For normal devices, find entry with greater block count than ours */ | |
4331 | if (hfsmp->vcbFreeExt[i].blockCount >= blockCount) { | |
4332 | break; | |
4333 | } | |
4334 | } | |
4335 | ||
4336 | /* If this is not the right spot to insert, and this is | |
4337 | * not the last entry in the array, just shift it and | |
4338 | * continue check another one. | |
4339 | */ | |
4340 | if ((i+1) < kMaxFreeExtents) { | |
4341 | hfsmp->vcbFreeExt[i+1] = hfsmp->vcbFreeExt[i]; | |
4342 | } | |
4343 | } | |
4344 | /* 'i' points to one index offset before which the new extent should be inserted */ | |
4345 | hfsmp->vcbFreeExt[i+1].startBlock = startBlock; | |
4346 | hfsmp->vcbFreeExt[i+1].blockCount = blockCount; | |
4347 | if (hfsmp->vcbFreeExtCnt < kMaxFreeExtents) { | |
4348 | hfsmp->vcbFreeExtCnt++; | |
4349 | } | |
4350 | retval = true; | |
4351 | ||
4352 | out: | |
4353 | lck_spin_unlock(&hfsmp->vcbFreeExtLock); | |
4354 | out_not_locked: | |
4355 | sanity_check_free_ext(hfsmp, 0); | |
4356 | ||
4357 | if (hfs_kdebug_allocation & HFSDBG_EXT_CACHE_ENABLED) | |
4358 | KERNEL_DEBUG_CONSTANT(HFSDBG_ADD_EXTENT_CACHE | DBG_FUNC_END, 0, 0, 0, retval, 0); | |
4359 | ||
d1ecb069 A |
4360 | return retval; |
4361 | } | |
6d2010ae A |
4362 | |
4363 | /* Debug function to check if the free extent cache is good or not */ | |
4364 | static void sanity_check_free_ext(struct hfsmount *hfsmp, int check_allocated) | |
4365 | { | |
4366 | u_int32_t i, j; | |
4367 | ||
4368 | /* Do not do anything if debug is not on, or if we're using the red-black tree */ | |
4369 | if ((ALLOC_DEBUG == 0) || (hfs_isrbtree_active(hfsmp) == true)) { | |
4370 | return; | |
4371 | } | |
4372 | ||
4373 | lck_spin_lock(&hfsmp->vcbFreeExtLock); | |
4374 | ||
4375 | /* | |
4376 | * Iterate the Free extent cache and ensure no entries are bogus or refer to | |
4377 | * allocated blocks. | |
4378 | */ | |
4379 | for(i=0; i < hfsmp->vcbFreeExtCnt; i++) { | |
4380 | u_int32_t start, nblocks; | |
4381 | ||
4382 | start = hfsmp->vcbFreeExt[i].startBlock; | |
4383 | nblocks = hfsmp->vcbFreeExt[i].blockCount; | |
4384 | ||
4385 | //printf ("hfs: %p: slot:%d (%u,%u)\n", hfsmp, i, start, nblocks); | |
4386 | ||
4387 | /* Check if any of the blocks in free extent cache are allocated. | |
4388 | * This should not be enabled always because it might take | |
4389 | * very long for large extents that get added to the list. | |
4390 | * | |
4391 | * We have to drop vcbFreeExtLock while we call hfs_isallocated | |
4392 | * because it is going to do I/O. Note that the free extent | |
4393 | * cache could change. That's a risk we take when using this | |
4394 | * debugging code. (Another alternative would be to try to | |
4395 | * detect when the free extent cache changed, and perhaps | |
4396 | * restart if the list changed while we dropped the lock.) | |
4397 | */ | |
4398 | if (check_allocated) { | |
4399 | lck_spin_unlock(&hfsmp->vcbFreeExtLock); | |
4400 | if (hfs_isallocated(hfsmp, start, nblocks)) { | |
4401 | panic("hfs: %p: slot %d:(%u,%u) in the free extent array is allocated\n", | |
4402 | hfsmp, i, start, nblocks); | |
4403 | } | |
4404 | lck_spin_lock(&hfsmp->vcbFreeExtLock); | |
4405 | } | |
4406 | ||
4407 | /* Check if any part of the extent is beyond allocLimit */ | |
4408 | if ((start > hfsmp->allocLimit) || ((start + nblocks) > hfsmp->allocLimit)) { | |
4409 | panic ("hfs: %p: slot %d:(%u,%u) in the free extent array is beyond allocLimit=%u\n", | |
4410 | hfsmp, i, start, nblocks, hfsmp->allocLimit); | |
4411 | } | |
4412 | ||
4413 | /* Check if there are any duplicate start blocks */ | |
4414 | for(j=i+1; j < hfsmp->vcbFreeExtCnt; j++) { | |
4415 | if (start == hfsmp->vcbFreeExt[j].startBlock) { | |
4416 | panic("hfs: %p: slot %d:(%u,%u) and %d:(%u,%u) are duplicate\n", | |
4417 | hfsmp, i, start, nblocks, j, hfsmp->vcbFreeExt[j].startBlock, | |
4418 | hfsmp->vcbFreeExt[j].blockCount); | |
4419 | } | |
4420 | } | |
4421 | ||
4422 | /* Check if the entries are out of order */ | |
4423 | if ((i+1) != hfsmp->vcbFreeExtCnt) { | |
4424 | if (hfsmp->hfs_flags & HFS_HAS_SPARSE_DEVICE) { | |
4425 | /* sparse devices are sorted by starting block number (ascending) */ | |
4426 | if (hfsmp->vcbFreeExt[i].startBlock > hfsmp->vcbFreeExt[i+1].startBlock) { | |
4427 | panic ("hfs: %p: SPARSE %d:(%u,%u) and %d:(%u,%u) are out of order\n", | |
4428 | hfsmp, i, start, nblocks, i+1, hfsmp->vcbFreeExt[i+1].startBlock, | |
4429 | hfsmp->vcbFreeExt[i+1].blockCount); | |
4430 | } | |
4431 | } else { | |
4432 | /* normally sorted by block count (descending) */ | |
4433 | if (hfsmp->vcbFreeExt[i].blockCount < hfsmp->vcbFreeExt[i+1].blockCount) { | |
4434 | panic ("hfs: %p: %d:(%u,%u) and %d:(%u,%u) are out of order\n", | |
4435 | hfsmp, i, start, nblocks, i+1, hfsmp->vcbFreeExt[i+1].startBlock, | |
4436 | hfsmp->vcbFreeExt[i+1].blockCount); | |
4437 | } | |
4438 | } | |
4439 | } | |
4440 | } | |
4441 | lck_spin_unlock(&hfsmp->vcbFreeExtLock); | |
4442 | } |