]>
Commit | Line | Data |
---|---|---|
0b4e3aa0 | 1 | |
1c79356b A |
2 | /* |
3 | * Copyright (c) 2000 Apple Computer, Inc. All rights reserved. | |
4 | * | |
5 | * @APPLE_LICENSE_HEADER_START@ | |
6 | * | |
7 | * The contents of this file constitute Original Code as defined in and | |
8 | * are subject to the Apple Public Source License Version 1.1 (the | |
9 | * "License"). You may not use this file except in compliance with the | |
10 | * License. Please obtain a copy of the License at | |
11 | * http://www.apple.com/publicsource and read it before using this file. | |
12 | * | |
13 | * This Original Code and all software distributed under the License are | |
14 | * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
15 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
16 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
17 | * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the | |
18 | * License for the specific language governing rights and limitations | |
19 | * under the License. | |
20 | * | |
21 | * @APPLE_LICENSE_HEADER_END@ | |
22 | */ | |
23 | /* | |
24 | * @OSF_COPYRIGHT@ | |
25 | */ | |
26 | /* | |
27 | * Mach Operating System | |
28 | * Copyright (c) 1991,1990,1989 Carnegie Mellon University | |
29 | * All Rights Reserved. | |
30 | * | |
31 | * Permission to use, copy, modify and distribute this software and its | |
32 | * documentation is hereby granted, provided that both the copyright | |
33 | * notice and this permission notice appear in all copies of the | |
34 | * software, derivative works or modified versions, and any portions | |
35 | * thereof, and that both notices appear in supporting documentation. | |
36 | * | |
37 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
38 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
39 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
40 | * | |
41 | * Carnegie Mellon requests users of this software to return to | |
42 | * | |
43 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
44 | * School of Computer Science | |
45 | * Carnegie Mellon University | |
46 | * Pittsburgh PA 15213-3890 | |
47 | * | |
48 | * any improvements or extensions that they make and grant Carnegie Mellon | |
49 | * the rights to redistribute these changes. | |
50 | */ | |
51 | ||
52 | /* | |
53 | * Default Pager. | |
54 | * Paging File Management. | |
55 | */ | |
56 | ||
0b4e3aa0 | 57 | #include <mach/memory_object_control.h> |
1c79356b A |
58 | #include <mach/memory_object_server.h> |
59 | #include "default_pager_internal.h" | |
60 | #include <default_pager/default_pager_alerts.h> | |
61 | #include <ipc/ipc_port.h> | |
62 | #include <ipc/ipc_space.h> | |
63 | #include <kern/queue.h> | |
64 | #include <kern/counters.h> | |
65 | #include <kern/sched_prim.h> | |
66 | #include <vm/vm_kern.h> | |
67 | #include <vm/vm_pageout.h> | |
68 | /* CDY CDY */ | |
69 | #include <vm/vm_map.h> | |
70 | ||
0b4e3aa0 A |
71 | /* |
72 | * ALLOC_STRIDE... the maximum number of bytes allocated from | |
73 | * a swap file before moving on to the next swap file... if | |
74 | * all swap files reside on a single disk, this value should | |
75 | * be very large (this is the default assumption)... if the | |
76 | * swap files are spread across multiple disks, than this value | |
77 | * should be small (128 * 1024)... | |
78 | * | |
79 | * This should be determined dynamically in the future | |
80 | */ | |
1c79356b | 81 | |
0b4e3aa0 | 82 | #define ALLOC_STRIDE (1024 * 1024 * 1024) |
1c79356b A |
83 | int physical_transfer_cluster_count = 0; |
84 | ||
0b4e3aa0 A |
85 | #define VM_SUPER_CLUSTER 0x20000 |
86 | #define VM_SUPER_PAGES 32 | |
1c79356b A |
87 | |
88 | /* | |
89 | * 0 means no shift to pages, so == 1 page/cluster. 1 would mean | |
90 | * 2 pages/cluster, 2 means 4 pages/cluster, and so on. | |
91 | */ | |
92 | #define VSTRUCT_DEF_CLSHIFT 2 | |
93 | int vstruct_def_clshift = VSTRUCT_DEF_CLSHIFT; | |
94 | int default_pager_clsize = 0; | |
95 | ||
96 | /* statistics */ | |
0b4e3aa0 A |
97 | unsigned int clustered_writes[VM_SUPER_PAGES+1]; |
98 | unsigned int clustered_reads[VM_SUPER_PAGES+1]; | |
1c79356b A |
99 | |
100 | /* | |
101 | * Globals used for asynchronous paging operations: | |
102 | * vs_async_list: head of list of to-be-completed I/O ops | |
103 | * async_num_queued: number of pages completed, but not yet | |
104 | * processed by async thread. | |
105 | * async_requests_out: number of pages of requests not completed. | |
106 | */ | |
107 | ||
108 | #if 0 | |
109 | struct vs_async *vs_async_list; | |
110 | int async_num_queued; | |
111 | int async_requests_out; | |
112 | #endif | |
113 | ||
114 | ||
115 | #define VS_ASYNC_REUSE 1 | |
116 | struct vs_async *vs_async_free_list; | |
117 | ||
118 | mutex_t default_pager_async_lock; /* Protects globals above */ | |
119 | ||
120 | ||
121 | int vs_alloc_async_failed = 0; /* statistics */ | |
122 | int vs_alloc_async_count = 0; /* statistics */ | |
123 | struct vs_async *vs_alloc_async(void); /* forward */ | |
124 | void vs_free_async(struct vs_async *vsa); /* forward */ | |
125 | ||
126 | ||
127 | #define VS_ALLOC_ASYNC() vs_alloc_async() | |
128 | #define VS_FREE_ASYNC(vsa) vs_free_async(vsa) | |
129 | ||
130 | #define VS_ASYNC_LOCK() mutex_lock(&default_pager_async_lock) | |
131 | #define VS_ASYNC_UNLOCK() mutex_unlock(&default_pager_async_lock) | |
132 | #define VS_ASYNC_LOCK_INIT() mutex_init(&default_pager_async_lock, \ | |
133 | ETAP_IO_DEV_PAGEH) | |
134 | #define VS_ASYNC_LOCK_ADDR() (&default_pager_async_lock) | |
135 | /* | |
136 | * Paging Space Hysteresis triggers and the target notification port | |
137 | * | |
138 | */ | |
139 | ||
140 | unsigned int minimum_pages_remaining = 0; | |
141 | unsigned int maximum_pages_free = 0; | |
142 | ipc_port_t min_pages_trigger_port = NULL; | |
143 | ipc_port_t max_pages_trigger_port = NULL; | |
144 | ||
145 | boolean_t bs_low = FALSE; | |
0b4e3aa0 | 146 | int backing_store_release_trigger_disable = 0; |
1c79356b A |
147 | |
148 | ||
149 | ||
150 | /* | |
151 | * Object sizes are rounded up to the next power of 2, | |
152 | * unless they are bigger than a given maximum size. | |
153 | */ | |
154 | vm_size_t max_doubled_size = 4 * 1024 * 1024; /* 4 meg */ | |
155 | ||
156 | /* | |
157 | * List of all backing store and segments. | |
158 | */ | |
159 | struct backing_store_list_head backing_store_list; | |
160 | paging_segment_t paging_segments[MAX_NUM_PAGING_SEGMENTS]; | |
161 | mutex_t paging_segments_lock; | |
162 | int paging_segment_max = 0; | |
163 | int paging_segment_count = 0; | |
164 | int ps_select_array[BS_MAXPRI+1] = { -1,-1,-1,-1,-1 }; | |
165 | ||
166 | ||
167 | /* | |
168 | * Total pages free in system | |
169 | * This differs from clusters committed/avail which is a measure of the | |
170 | * over commitment of paging segments to backing store. An idea which is | |
171 | * likely to be deprecated. | |
172 | */ | |
173 | unsigned int dp_pages_free = 0; | |
174 | unsigned int cluster_transfer_minimum = 100; | |
175 | ||
176 | kern_return_t ps_write_file(paging_segment_t, upl_t, vm_offset_t, vm_offset_t, unsigned int, int); /* forward */ | |
0b4e3aa0 A |
177 | kern_return_t ps_read_file (paging_segment_t, upl_t, vm_offset_t, vm_offset_t, unsigned int, unsigned int *, int); /* forward */ |
178 | ||
1c79356b A |
179 | |
180 | default_pager_thread_t * | |
181 | get_read_buffer() | |
182 | { | |
183 | int i; | |
184 | ||
185 | DPT_LOCK(dpt_lock); | |
186 | while(TRUE) { | |
187 | for (i=0; i<default_pager_internal_count; i++) { | |
188 | if(dpt_array[i]->checked_out == FALSE) { | |
189 | dpt_array[i]->checked_out = TRUE; | |
190 | DPT_UNLOCK(dpt_lock); | |
191 | return dpt_array[i]; | |
192 | } | |
193 | } | |
194 | assert_wait(&dpt_array, THREAD_UNINT); | |
195 | DPT_UNLOCK(dpt_lock); | |
196 | thread_block((void(*)(void))0); | |
197 | } | |
198 | } | |
199 | ||
200 | void | |
201 | bs_initialize(void) | |
202 | { | |
203 | int i; | |
204 | ||
205 | /* | |
206 | * List of all backing store. | |
207 | */ | |
208 | BSL_LOCK_INIT(); | |
209 | queue_init(&backing_store_list.bsl_queue); | |
210 | PSL_LOCK_INIT(); | |
211 | ||
212 | VS_ASYNC_LOCK_INIT(); | |
213 | #if VS_ASYNC_REUSE | |
214 | vs_async_free_list = NULL; | |
215 | #endif /* VS_ASYNC_REUSE */ | |
216 | ||
0b4e3aa0 | 217 | for (i = 0; i < VM_SUPER_PAGES + 1; i++) { |
1c79356b A |
218 | clustered_writes[i] = 0; |
219 | clustered_reads[i] = 0; | |
220 | } | |
221 | ||
222 | } | |
223 | ||
224 | /* | |
225 | * When things do not quite workout... | |
226 | */ | |
227 | void bs_no_paging_space(boolean_t); /* forward */ | |
228 | ||
229 | void | |
230 | bs_no_paging_space( | |
231 | boolean_t out_of_memory) | |
232 | { | |
1c79356b A |
233 | |
234 | if (out_of_memory) | |
235 | dprintf(("*** OUT OF MEMORY ***\n")); | |
236 | panic("bs_no_paging_space: NOT ENOUGH PAGING SPACE"); | |
237 | } | |
238 | ||
239 | void bs_more_space(int); /* forward */ | |
240 | void bs_commit(int); /* forward */ | |
241 | ||
242 | boolean_t user_warned = FALSE; | |
243 | unsigned int clusters_committed = 0; | |
244 | unsigned int clusters_available = 0; | |
245 | unsigned int clusters_committed_peak = 0; | |
246 | ||
247 | void | |
248 | bs_more_space( | |
249 | int nclusters) | |
250 | { | |
251 | BSL_LOCK(); | |
252 | /* | |
253 | * Account for new paging space. | |
254 | */ | |
255 | clusters_available += nclusters; | |
256 | ||
257 | if (clusters_available >= clusters_committed) { | |
258 | if (verbose && user_warned) { | |
259 | printf("%s%s - %d excess clusters now.\n", | |
260 | my_name, | |
261 | "paging space is OK now", | |
262 | clusters_available - clusters_committed); | |
263 | user_warned = FALSE; | |
264 | clusters_committed_peak = 0; | |
265 | } | |
266 | } else { | |
267 | if (verbose && user_warned) { | |
268 | printf("%s%s - still short of %d clusters.\n", | |
269 | my_name, | |
270 | "WARNING: paging space over-committed", | |
271 | clusters_committed - clusters_available); | |
272 | clusters_committed_peak -= nclusters; | |
273 | } | |
274 | } | |
275 | BSL_UNLOCK(); | |
276 | ||
277 | return; | |
278 | } | |
279 | ||
280 | void | |
281 | bs_commit( | |
282 | int nclusters) | |
283 | { | |
284 | BSL_LOCK(); | |
285 | clusters_committed += nclusters; | |
286 | if (clusters_committed > clusters_available) { | |
287 | if (verbose && !user_warned) { | |
288 | user_warned = TRUE; | |
289 | printf("%s%s - short of %d clusters.\n", | |
290 | my_name, | |
291 | "WARNING: paging space over-committed", | |
292 | clusters_committed - clusters_available); | |
293 | } | |
294 | if (clusters_committed > clusters_committed_peak) { | |
295 | clusters_committed_peak = clusters_committed; | |
296 | } | |
297 | } else { | |
298 | if (verbose && user_warned) { | |
299 | printf("%s%s - was short of up to %d clusters.\n", | |
300 | my_name, | |
301 | "paging space is OK now", | |
302 | clusters_committed_peak - clusters_available); | |
303 | user_warned = FALSE; | |
304 | clusters_committed_peak = 0; | |
305 | } | |
306 | } | |
307 | BSL_UNLOCK(); | |
308 | ||
309 | return; | |
310 | } | |
311 | ||
312 | int default_pager_info_verbose = 1; | |
313 | ||
314 | void | |
315 | bs_global_info( | |
316 | vm_size_t *totalp, | |
317 | vm_size_t *freep) | |
318 | { | |
319 | vm_size_t pages_total, pages_free; | |
320 | paging_segment_t ps; | |
321 | int i; | |
1c79356b A |
322 | |
323 | PSL_LOCK(); | |
324 | pages_total = pages_free = 0; | |
325 | for (i = 0; i <= paging_segment_max; i++) { | |
326 | ps = paging_segments[i]; | |
327 | if (ps == PAGING_SEGMENT_NULL) | |
328 | continue; | |
329 | ||
330 | /* | |
331 | * no need to lock: by the time this data | |
332 | * gets back to any remote requestor it | |
333 | * will be obsolete anyways | |
334 | */ | |
335 | pages_total += ps->ps_pgnum; | |
336 | pages_free += ps->ps_clcount << ps->ps_clshift; | |
337 | DEBUG(DEBUG_BS_INTERNAL, | |
338 | ("segment #%d: %d total, %d free\n", | |
339 | i, ps->ps_pgnum, ps->ps_clcount << ps->ps_clshift)); | |
340 | } | |
341 | *totalp = pages_total; | |
342 | *freep = pages_free; | |
343 | if (verbose && user_warned && default_pager_info_verbose) { | |
344 | if (clusters_available < clusters_committed) { | |
345 | printf("%s %d clusters committed, %d available.\n", | |
346 | my_name, | |
347 | clusters_committed, | |
348 | clusters_available); | |
349 | } | |
350 | } | |
351 | PSL_UNLOCK(); | |
352 | } | |
353 | ||
354 | backing_store_t backing_store_alloc(void); /* forward */ | |
355 | ||
356 | backing_store_t | |
357 | backing_store_alloc(void) | |
358 | { | |
359 | backing_store_t bs; | |
1c79356b A |
360 | |
361 | bs = (backing_store_t) kalloc(sizeof (struct backing_store)); | |
362 | if (bs == BACKING_STORE_NULL) | |
363 | panic("backing_store_alloc: no memory"); | |
364 | ||
365 | BS_LOCK_INIT(bs); | |
366 | bs->bs_port = MACH_PORT_NULL; | |
367 | bs->bs_priority = 0; | |
368 | bs->bs_clsize = 0; | |
369 | bs->bs_pages_total = 0; | |
370 | bs->bs_pages_in = 0; | |
371 | bs->bs_pages_in_fail = 0; | |
372 | bs->bs_pages_out = 0; | |
373 | bs->bs_pages_out_fail = 0; | |
374 | ||
375 | return bs; | |
376 | } | |
377 | ||
378 | backing_store_t backing_store_lookup(MACH_PORT_FACE); /* forward */ | |
379 | ||
380 | /* Even in both the component space and external versions of this pager, */ | |
381 | /* backing_store_lookup will be called from tasks in the application space */ | |
382 | backing_store_t | |
383 | backing_store_lookup( | |
384 | MACH_PORT_FACE port) | |
385 | { | |
386 | backing_store_t bs; | |
387 | ||
388 | /* | |
389 | port is currently backed with a vs structure in the alias field | |
390 | we could create an ISBS alias and a port_is_bs call but frankly | |
391 | I see no reason for the test, the bs->port == port check below | |
392 | will work properly on junk entries. | |
393 | ||
394 | if ((port == MACH_PORT_NULL) || port_is_vs(port)) | |
395 | */ | |
396 | if ((port == MACH_PORT_NULL)) | |
397 | return BACKING_STORE_NULL; | |
398 | ||
399 | BSL_LOCK(); | |
400 | queue_iterate(&backing_store_list.bsl_queue, bs, backing_store_t, | |
401 | bs_links) { | |
402 | BS_LOCK(bs); | |
403 | if (bs->bs_port == port) { | |
404 | BSL_UNLOCK(); | |
405 | /* Success, return it locked. */ | |
406 | return bs; | |
407 | } | |
408 | BS_UNLOCK(bs); | |
409 | } | |
410 | BSL_UNLOCK(); | |
411 | return BACKING_STORE_NULL; | |
412 | } | |
413 | ||
414 | void backing_store_add(backing_store_t); /* forward */ | |
415 | ||
416 | void | |
417 | backing_store_add( | |
418 | backing_store_t bs) | |
419 | { | |
420 | MACH_PORT_FACE port = bs->bs_port; | |
421 | MACH_PORT_FACE pset = default_pager_default_set; | |
422 | kern_return_t kr = KERN_SUCCESS; | |
1c79356b A |
423 | |
424 | if (kr != KERN_SUCCESS) | |
425 | panic("backing_store_add: add to set"); | |
426 | ||
427 | } | |
428 | ||
429 | /* | |
430 | * Set up default page shift, but only if not already | |
431 | * set and argument is within range. | |
432 | */ | |
433 | boolean_t | |
434 | bs_set_default_clsize(unsigned int npages) | |
435 | { | |
436 | switch(npages){ | |
437 | case 1: | |
438 | case 2: | |
439 | case 4: | |
440 | case 8: | |
441 | if (default_pager_clsize == 0) /* if not yet set */ | |
442 | vstruct_def_clshift = local_log2(npages); | |
443 | return(TRUE); | |
444 | } | |
445 | return(FALSE); | |
446 | } | |
447 | ||
448 | int bs_get_global_clsize(int clsize); /* forward */ | |
449 | ||
450 | int | |
451 | bs_get_global_clsize( | |
452 | int clsize) | |
453 | { | |
454 | int i; | |
0b4e3aa0 | 455 | memory_object_default_t dmm; |
1c79356b | 456 | kern_return_t kr; |
1c79356b A |
457 | |
458 | /* | |
459 | * Only allow setting of cluster size once. If called | |
460 | * with no cluster size (default), we use the compiled-in default | |
461 | * for the duration. The same cluster size is used for all | |
462 | * paging segments. | |
463 | */ | |
464 | if (default_pager_clsize == 0) { | |
1c79356b A |
465 | /* |
466 | * Keep cluster size in bit shift because it's quicker | |
467 | * arithmetic, and easier to keep at a power of 2. | |
468 | */ | |
469 | if (clsize != NO_CLSIZE) { | |
470 | for (i = 0; (1 << i) < clsize; i++); | |
471 | if (i > MAX_CLUSTER_SHIFT) | |
472 | i = MAX_CLUSTER_SHIFT; | |
473 | vstruct_def_clshift = i; | |
474 | } | |
475 | default_pager_clsize = (1 << vstruct_def_clshift); | |
476 | ||
477 | /* | |
478 | * Let the user know the new (and definitive) cluster size. | |
479 | */ | |
480 | if (verbose) | |
481 | printf("%scluster size = %d page%s\n", | |
482 | my_name, default_pager_clsize, | |
483 | (default_pager_clsize == 1) ? "" : "s"); | |
0b4e3aa0 | 484 | |
1c79356b A |
485 | /* |
486 | * Let the kernel know too, in case it hasn't used the | |
487 | * default value provided in main() yet. | |
488 | */ | |
0b4e3aa0 | 489 | dmm = default_pager_object; |
1c79356b A |
490 | clsize = default_pager_clsize * vm_page_size; /* in bytes */ |
491 | kr = host_default_memory_manager(host_priv_self(), | |
0b4e3aa0 | 492 | &dmm, |
1c79356b | 493 | clsize); |
0b4e3aa0 A |
494 | memory_object_default_deallocate(dmm); |
495 | ||
1c79356b A |
496 | if (kr != KERN_SUCCESS) { |
497 | panic("bs_get_global_cl_size:host_default_memory_manager"); | |
498 | } | |
0b4e3aa0 | 499 | if (dmm != default_pager_object) { |
1c79356b A |
500 | panic("bs_get_global_cl_size:there is another default pager"); |
501 | } | |
502 | } | |
503 | ASSERT(default_pager_clsize > 0 && | |
504 | (default_pager_clsize & (default_pager_clsize - 1)) == 0); | |
505 | ||
506 | return default_pager_clsize; | |
507 | } | |
508 | ||
509 | kern_return_t | |
510 | default_pager_backing_store_create( | |
0b4e3aa0 A |
511 | memory_object_default_t pager, |
512 | int priority, | |
513 | int clsize, /* in bytes */ | |
514 | MACH_PORT_FACE *backing_store) | |
1c79356b A |
515 | { |
516 | backing_store_t bs; | |
517 | MACH_PORT_FACE port; | |
518 | kern_return_t kr; | |
519 | struct vstruct_alias *alias_struct; | |
1c79356b | 520 | |
0b4e3aa0 | 521 | if (pager != default_pager_object) |
1c79356b A |
522 | return KERN_INVALID_ARGUMENT; |
523 | ||
524 | bs = backing_store_alloc(); | |
525 | port = ipc_port_alloc_kernel(); | |
526 | ipc_port_make_send(port); | |
527 | assert (port != IP_NULL); | |
528 | ||
529 | DEBUG(DEBUG_BS_EXTERNAL, | |
530 | ("priority=%d clsize=%d bs_port=0x%x\n", | |
531 | priority, clsize, (int) backing_store)); | |
532 | ||
533 | alias_struct = (struct vstruct_alias *) | |
534 | kalloc(sizeof (struct vstruct_alias)); | |
535 | if(alias_struct != NULL) { | |
536 | alias_struct->vs = (struct vstruct *)bs; | |
537 | alias_struct->name = ISVS; | |
538 | port->alias = (int) alias_struct; | |
539 | } | |
540 | else { | |
541 | ipc_port_dealloc_kernel((MACH_PORT_FACE)(port)); | |
542 | kfree((vm_offset_t)bs, sizeof (struct backing_store)); | |
543 | return KERN_RESOURCE_SHORTAGE; | |
544 | } | |
545 | ||
546 | bs->bs_port = port; | |
547 | if (priority == DEFAULT_PAGER_BACKING_STORE_MAXPRI) | |
548 | priority = BS_MAXPRI; | |
549 | else if (priority == BS_NOPRI) | |
550 | priority = BS_MAXPRI; | |
551 | else | |
552 | priority = BS_MINPRI; | |
553 | bs->bs_priority = priority; | |
554 | ||
555 | bs->bs_clsize = bs_get_global_clsize(atop(clsize)); | |
556 | ||
557 | BSL_LOCK(); | |
558 | queue_enter(&backing_store_list.bsl_queue, bs, backing_store_t, | |
559 | bs_links); | |
560 | BSL_UNLOCK(); | |
561 | ||
562 | backing_store_add(bs); | |
563 | ||
564 | *backing_store = port; | |
565 | return KERN_SUCCESS; | |
566 | } | |
567 | ||
568 | kern_return_t | |
569 | default_pager_backing_store_info( | |
570 | MACH_PORT_FACE backing_store, | |
571 | backing_store_flavor_t flavour, | |
572 | backing_store_info_t info, | |
573 | mach_msg_type_number_t *size) | |
574 | { | |
575 | backing_store_t bs; | |
576 | backing_store_basic_info_t basic; | |
577 | int i; | |
578 | paging_segment_t ps; | |
579 | ||
580 | if (flavour != BACKING_STORE_BASIC_INFO || | |
581 | *size < BACKING_STORE_BASIC_INFO_COUNT) | |
582 | return KERN_INVALID_ARGUMENT; | |
583 | ||
584 | basic = (backing_store_basic_info_t)info; | |
585 | *size = BACKING_STORE_BASIC_INFO_COUNT; | |
586 | ||
587 | VSTATS_LOCK(&global_stats.gs_lock); | |
588 | basic->pageout_calls = global_stats.gs_pageout_calls; | |
589 | basic->pagein_calls = global_stats.gs_pagein_calls; | |
590 | basic->pages_in = global_stats.gs_pages_in; | |
591 | basic->pages_out = global_stats.gs_pages_out; | |
592 | basic->pages_unavail = global_stats.gs_pages_unavail; | |
593 | basic->pages_init = global_stats.gs_pages_init; | |
594 | basic->pages_init_writes= global_stats.gs_pages_init_writes; | |
595 | VSTATS_UNLOCK(&global_stats.gs_lock); | |
596 | ||
597 | if ((bs = backing_store_lookup(backing_store)) == BACKING_STORE_NULL) | |
598 | return KERN_INVALID_ARGUMENT; | |
599 | ||
600 | basic->bs_pages_total = bs->bs_pages_total; | |
601 | PSL_LOCK(); | |
602 | bs->bs_pages_free = 0; | |
603 | for (i = 0; i <= paging_segment_max; i++) { | |
604 | ps = paging_segments[i]; | |
605 | if (ps != PAGING_SEGMENT_NULL && ps->ps_bs == bs) { | |
606 | PS_LOCK(ps); | |
607 | bs->bs_pages_free += ps->ps_clcount << ps->ps_clshift; | |
608 | PS_UNLOCK(ps); | |
609 | } | |
610 | } | |
611 | PSL_UNLOCK(); | |
612 | basic->bs_pages_free = bs->bs_pages_free; | |
613 | basic->bs_pages_in = bs->bs_pages_in; | |
614 | basic->bs_pages_in_fail = bs->bs_pages_in_fail; | |
615 | basic->bs_pages_out = bs->bs_pages_out; | |
616 | basic->bs_pages_out_fail= bs->bs_pages_out_fail; | |
617 | ||
618 | basic->bs_priority = bs->bs_priority; | |
619 | basic->bs_clsize = ptoa(bs->bs_clsize); /* in bytes */ | |
620 | ||
621 | BS_UNLOCK(bs); | |
622 | ||
623 | return KERN_SUCCESS; | |
624 | } | |
625 | ||
626 | int ps_delete(paging_segment_t); /* forward */ | |
627 | ||
628 | int | |
629 | ps_delete( | |
630 | paging_segment_t ps) | |
631 | { | |
632 | vstruct_t vs; | |
633 | kern_return_t error = KERN_SUCCESS; | |
634 | int vs_count; | |
635 | ||
636 | VSL_LOCK(); /* get the lock on the list of vs's */ | |
637 | ||
638 | /* The lock relationship and sequence is farily complicated */ | |
639 | /* this code looks at a live list, locking and unlocking the list */ | |
640 | /* as it traverses it. It depends on the locking behavior of */ | |
641 | /* default_pager_no_senders. no_senders always locks the vstruct */ | |
642 | /* targeted for removal before locking the vstruct list. However */ | |
643 | /* it will remove that member of the list without locking its */ | |
644 | /* neighbors. We can be sure when we hold a lock on a vstruct */ | |
645 | /* it cannot be removed from the list but we must hold the list */ | |
646 | /* lock to be sure that its pointers to its neighbors are valid. */ | |
647 | /* Also, we can hold off destruction of a vstruct when the list */ | |
648 | /* lock and the vs locks are not being held by bumping the */ | |
649 | /* vs_async_pending count. */ | |
650 | ||
0b4e3aa0 A |
651 | |
652 | while(backing_store_release_trigger_disable != 0) { | |
653 | assert_wait((event_t) | |
654 | &backing_store_release_trigger_disable, | |
655 | THREAD_UNINT); | |
656 | VSL_UNLOCK(); | |
657 | thread_block((void (*)(void)) 0); | |
658 | VSL_LOCK(); | |
659 | } | |
660 | ||
1c79356b A |
661 | /* we will choose instead to hold a send right */ |
662 | vs_count = vstruct_list.vsl_count; | |
663 | vs = (vstruct_t) queue_first((queue_entry_t)&(vstruct_list.vsl_queue)); | |
664 | if(vs == (vstruct_t)&vstruct_list) { | |
665 | VSL_UNLOCK(); | |
666 | return KERN_SUCCESS; | |
667 | } | |
668 | VS_LOCK(vs); | |
669 | vs_async_wait(vs); /* wait for any pending async writes */ | |
670 | if ((vs_count != 0) && (vs != NULL)) | |
671 | vs->vs_async_pending += 1; /* hold parties calling */ | |
672 | /* vs_async_wait */ | |
673 | VS_UNLOCK(vs); | |
674 | VSL_UNLOCK(); | |
675 | while((vs_count != 0) && (vs != NULL)) { | |
676 | /* We take the count of AMO's before beginning the */ | |
677 | /* transfer of of the target segment. */ | |
678 | /* We are guaranteed that the target segment cannot get */ | |
679 | /* more users. We also know that queue entries are */ | |
680 | /* made at the back of the list. If some of the entries */ | |
681 | /* we would check disappear while we are traversing the */ | |
682 | /* list then we will either check new entries which */ | |
683 | /* do not have any backing store in the target segment */ | |
684 | /* or re-check old entries. This might not be optimal */ | |
685 | /* but it will always be correct. The alternative is to */ | |
686 | /* take a snapshot of the list. */ | |
687 | vstruct_t next_vs; | |
688 | ||
689 | if(dp_pages_free < cluster_transfer_minimum) | |
690 | error = KERN_FAILURE; | |
691 | else { | |
692 | vm_object_t transfer_object; | |
0b4e3aa0 | 693 | int count; |
1c79356b A |
694 | upl_t upl; |
695 | ||
696 | transfer_object = vm_object_allocate(VM_SUPER_CLUSTER); | |
0b4e3aa0 A |
697 | count = 0; |
698 | error = vm_object_upl_request(transfer_object, | |
699 | (vm_object_offset_t)0, VM_SUPER_CLUSTER, | |
700 | &upl, NULL, &count, | |
701 | UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | |
702 | | UPL_SET_INTERNAL); | |
1c79356b A |
703 | if(error == KERN_SUCCESS) { |
704 | #ifndef ubc_sync_working | |
0b4e3aa0 A |
705 | upl_commit(upl, NULL); |
706 | upl_deallocate(upl); | |
1c79356b A |
707 | error = ps_vstruct_transfer_from_segment( |
708 | vs, ps, transfer_object); | |
709 | #else | |
710 | error = ps_vstruct_transfer_from_segment( | |
711 | vs, ps, upl); | |
0b4e3aa0 A |
712 | upl_commit(upl, NULL); |
713 | upl_deallocate(upl); | |
1c79356b A |
714 | #endif |
715 | vm_object_deallocate(transfer_object); | |
716 | } else { | |
717 | vm_object_deallocate(transfer_object); | |
718 | error = KERN_FAILURE; | |
719 | } | |
720 | } | |
721 | if(error) { | |
722 | VS_LOCK(vs); | |
723 | vs->vs_async_pending -= 1; /* release vs_async_wait */ | |
0b4e3aa0 A |
724 | if (vs->vs_async_pending == 0 && vs->vs_waiting_async) { |
725 | vs->vs_waiting_async = FALSE; | |
1c79356b | 726 | VS_UNLOCK(vs); |
0b4e3aa0 | 727 | thread_wakeup(&vs->vs_async_pending); |
1c79356b A |
728 | } else { |
729 | VS_UNLOCK(vs); | |
730 | } | |
731 | return KERN_FAILURE; | |
732 | } | |
733 | ||
734 | VSL_LOCK(); | |
0b4e3aa0 A |
735 | |
736 | while(backing_store_release_trigger_disable != 0) { | |
737 | assert_wait((event_t) | |
738 | &backing_store_release_trigger_disable, | |
739 | THREAD_UNINT); | |
740 | VSL_UNLOCK(); | |
741 | thread_block((void (*)(void)) 0); | |
742 | VSL_LOCK(); | |
743 | } | |
744 | ||
1c79356b A |
745 | next_vs = (vstruct_t) queue_next(&(vs->vs_links)); |
746 | if((next_vs != (vstruct_t)&vstruct_list) && | |
747 | (vs != next_vs) && (vs_count != 1)) { | |
748 | VS_LOCK(next_vs); | |
749 | vs_async_wait(next_vs); /* wait for any */ | |
750 | /* pending async writes */ | |
751 | next_vs->vs_async_pending += 1; /* hold parties */ | |
752 | /* calling vs_async_wait */ | |
753 | VS_UNLOCK(next_vs); | |
754 | } | |
755 | VSL_UNLOCK(); | |
756 | VS_LOCK(vs); | |
757 | vs->vs_async_pending -= 1; | |
0b4e3aa0 A |
758 | if (vs->vs_async_pending == 0 && vs->vs_waiting_async) { |
759 | vs->vs_waiting_async = FALSE; | |
1c79356b | 760 | VS_UNLOCK(vs); |
0b4e3aa0 | 761 | thread_wakeup(&vs->vs_async_pending); |
1c79356b A |
762 | } else { |
763 | VS_UNLOCK(vs); | |
764 | } | |
765 | if((vs == next_vs) || (next_vs == (vstruct_t)&vstruct_list)) | |
766 | vs = NULL; | |
767 | else | |
768 | vs = next_vs; | |
769 | vs_count--; | |
770 | } | |
771 | return KERN_SUCCESS; | |
772 | } | |
773 | ||
774 | ||
775 | kern_return_t | |
776 | default_pager_backing_store_delete( | |
777 | MACH_PORT_FACE backing_store) | |
778 | { | |
779 | backing_store_t bs; | |
780 | int i; | |
781 | paging_segment_t ps; | |
782 | int error; | |
783 | int interim_pages_removed = 0; | |
784 | kern_return_t kr; | |
1c79356b A |
785 | |
786 | if ((bs = backing_store_lookup(backing_store)) == BACKING_STORE_NULL) | |
787 | return KERN_INVALID_ARGUMENT; | |
788 | ||
789 | #if 0 | |
790 | /* not implemented */ | |
791 | BS_UNLOCK(bs); | |
792 | return KERN_FAILURE; | |
793 | #endif | |
794 | ||
795 | restart: | |
796 | PSL_LOCK(); | |
797 | error = KERN_SUCCESS; | |
798 | for (i = 0; i <= paging_segment_max; i++) { | |
799 | ps = paging_segments[i]; | |
800 | if (ps != PAGING_SEGMENT_NULL && | |
801 | ps->ps_bs == bs && | |
802 | ! ps->ps_going_away) { | |
803 | PS_LOCK(ps); | |
804 | /* disable access to this segment */ | |
805 | ps->ps_going_away = TRUE; | |
806 | PS_UNLOCK(ps); | |
807 | /* | |
808 | * The "ps" segment is "off-line" now, | |
809 | * we can try and delete it... | |
810 | */ | |
811 | if(dp_pages_free < (cluster_transfer_minimum | |
812 | + ps->ps_pgcount)) { | |
813 | error = KERN_FAILURE; | |
814 | PSL_UNLOCK(); | |
815 | } | |
816 | else { | |
817 | /* remove all pages associated with the */ | |
818 | /* segment from the list of free pages */ | |
819 | /* when transfer is through, all target */ | |
820 | /* segment pages will appear to be free */ | |
821 | ||
822 | dp_pages_free -= ps->ps_pgcount; | |
823 | interim_pages_removed += ps->ps_pgcount; | |
824 | PSL_UNLOCK(); | |
825 | error = ps_delete(ps); | |
826 | } | |
827 | if (error != KERN_SUCCESS) { | |
828 | /* | |
829 | * We couldn't delete the segment, | |
830 | * probably because there's not enough | |
831 | * virtual memory left. | |
832 | * Re-enable all the segments. | |
833 | */ | |
834 | PSL_LOCK(); | |
835 | break; | |
836 | } | |
837 | goto restart; | |
838 | } | |
839 | } | |
840 | ||
841 | if (error != KERN_SUCCESS) { | |
842 | for (i = 0; i <= paging_segment_max; i++) { | |
843 | ps = paging_segments[i]; | |
844 | if (ps != PAGING_SEGMENT_NULL && | |
845 | ps->ps_bs == bs && | |
846 | ps->ps_going_away) { | |
847 | PS_LOCK(ps); | |
848 | /* re-enable access to this segment */ | |
849 | ps->ps_going_away = FALSE; | |
850 | PS_UNLOCK(ps); | |
851 | } | |
852 | } | |
853 | dp_pages_free += interim_pages_removed; | |
854 | PSL_UNLOCK(); | |
855 | BS_UNLOCK(bs); | |
856 | return error; | |
857 | } | |
858 | ||
859 | for (i = 0; i <= paging_segment_max; i++) { | |
860 | ps = paging_segments[i]; | |
861 | if (ps != PAGING_SEGMENT_NULL && | |
862 | ps->ps_bs == bs) { | |
863 | if(ps->ps_going_away) { | |
864 | paging_segments[i] = PAGING_SEGMENT_NULL; | |
865 | paging_segment_count--; | |
866 | PS_LOCK(ps); | |
867 | kfree((vm_offset_t)ps->ps_bmap, | |
868 | RMAPSIZE(ps->ps_ncls)); | |
869 | kfree((vm_offset_t)ps, sizeof *ps); | |
870 | } | |
871 | } | |
872 | } | |
873 | ||
874 | /* Scan the entire ps array separately to make certain we find the */ | |
875 | /* proper paging_segment_max */ | |
876 | for (i = 0; i < MAX_NUM_PAGING_SEGMENTS; i++) { | |
877 | if(paging_segments[i] != PAGING_SEGMENT_NULL) | |
878 | paging_segment_max = i; | |
879 | } | |
880 | ||
881 | PSL_UNLOCK(); | |
882 | ||
883 | /* | |
884 | * All the segments have been deleted. | |
885 | * We can remove the backing store. | |
886 | */ | |
887 | ||
888 | /* | |
889 | * Disable lookups of this backing store. | |
890 | */ | |
891 | if((void *)bs->bs_port->alias != NULL) | |
892 | kfree((vm_offset_t) bs->bs_port->alias, | |
893 | sizeof (struct vstruct_alias)); | |
1c79356b A |
894 | ipc_port_dealloc_kernel((ipc_port_t) (bs->bs_port)); |
895 | bs->bs_port = MACH_PORT_NULL; | |
896 | BS_UNLOCK(bs); | |
897 | ||
898 | /* | |
899 | * Remove backing store from backing_store list. | |
900 | */ | |
901 | BSL_LOCK(); | |
902 | queue_remove(&backing_store_list.bsl_queue, bs, backing_store_t, | |
903 | bs_links); | |
904 | BSL_UNLOCK(); | |
905 | ||
906 | /* | |
907 | * Free the backing store structure. | |
908 | */ | |
909 | kfree((vm_offset_t)bs, sizeof *bs); | |
910 | ||
911 | return KERN_SUCCESS; | |
912 | } | |
913 | ||
914 | int ps_enter(paging_segment_t); /* forward */ | |
915 | ||
916 | int | |
917 | ps_enter( | |
918 | paging_segment_t ps) | |
919 | { | |
920 | int i; | |
921 | ||
922 | PSL_LOCK(); | |
923 | ||
924 | for (i = 0; i < MAX_NUM_PAGING_SEGMENTS; i++) { | |
925 | if (paging_segments[i] == PAGING_SEGMENT_NULL) | |
926 | break; | |
927 | } | |
928 | ||
929 | if (i < MAX_NUM_PAGING_SEGMENTS) { | |
930 | paging_segments[i] = ps; | |
931 | if (i > paging_segment_max) | |
932 | paging_segment_max = i; | |
933 | paging_segment_count++; | |
934 | if ((ps_select_array[ps->ps_bs->bs_priority] == BS_NOPRI) || | |
935 | (ps_select_array[ps->ps_bs->bs_priority] == BS_FULLPRI)) | |
936 | ps_select_array[ps->ps_bs->bs_priority] = 0; | |
937 | i = 0; | |
938 | } else { | |
939 | PSL_UNLOCK(); | |
940 | return KERN_RESOURCE_SHORTAGE; | |
941 | } | |
942 | ||
943 | PSL_UNLOCK(); | |
944 | return i; | |
945 | } | |
946 | ||
947 | #ifdef DEVICE_PAGING | |
948 | kern_return_t | |
949 | default_pager_add_segment( | |
950 | MACH_PORT_FACE backing_store, | |
951 | MACH_PORT_FACE device, | |
952 | recnum_t offset, | |
953 | recnum_t count, | |
954 | int record_size) | |
955 | { | |
956 | backing_store_t bs; | |
957 | paging_segment_t ps; | |
958 | int i; | |
959 | int error; | |
1c79356b A |
960 | |
961 | if ((bs = backing_store_lookup(backing_store)) | |
962 | == BACKING_STORE_NULL) | |
963 | return KERN_INVALID_ARGUMENT; | |
964 | ||
965 | PSL_LOCK(); | |
966 | for (i = 0; i <= paging_segment_max; i++) { | |
967 | ps = paging_segments[i]; | |
968 | if (ps == PAGING_SEGMENT_NULL) | |
969 | continue; | |
970 | ||
971 | /* | |
972 | * Check for overlap on same device. | |
973 | */ | |
974 | if (!(ps->ps_device != device | |
975 | || offset >= ps->ps_offset + ps->ps_recnum | |
976 | || offset + count <= ps->ps_offset)) { | |
977 | PSL_UNLOCK(); | |
978 | BS_UNLOCK(bs); | |
979 | return KERN_INVALID_ARGUMENT; | |
980 | } | |
981 | } | |
982 | PSL_UNLOCK(); | |
983 | ||
984 | /* | |
985 | * Set up the paging segment | |
986 | */ | |
987 | ps = (paging_segment_t) kalloc(sizeof (struct paging_segment)); | |
988 | if (ps == PAGING_SEGMENT_NULL) { | |
989 | BS_UNLOCK(bs); | |
990 | return KERN_RESOURCE_SHORTAGE; | |
991 | } | |
992 | ||
993 | ps->ps_segtype = PS_PARTITION; | |
994 | ps->ps_device = device; | |
995 | ps->ps_offset = offset; | |
996 | ps->ps_record_shift = local_log2(vm_page_size / record_size); | |
997 | ps->ps_recnum = count; | |
998 | ps->ps_pgnum = count >> ps->ps_record_shift; | |
999 | ||
1000 | ps->ps_pgcount = ps->ps_pgnum; | |
1001 | ps->ps_clshift = local_log2(bs->bs_clsize); | |
1002 | ps->ps_clcount = ps->ps_ncls = ps->ps_pgcount >> ps->ps_clshift; | |
1003 | ps->ps_hint = 0; | |
1004 | ||
1005 | PS_LOCK_INIT(ps); | |
1006 | ps->ps_bmap = (unsigned char *) kalloc(RMAPSIZE(ps->ps_ncls)); | |
1007 | if (!ps->ps_bmap) { | |
1008 | kfree((vm_offset_t)ps, sizeof *ps); | |
1009 | BS_UNLOCK(bs); | |
1010 | return KERN_RESOURCE_SHORTAGE; | |
1011 | } | |
1012 | for (i = 0; i < ps->ps_ncls; i++) { | |
1013 | clrbit(ps->ps_bmap, i); | |
1014 | } | |
1015 | ||
1016 | ps->ps_going_away = FALSE; | |
1017 | ps->ps_bs = bs; | |
1018 | ||
1019 | if ((error = ps_enter(ps)) != 0) { | |
1020 | kfree((vm_offset_t)ps->ps_bmap, RMAPSIZE(ps->ps_ncls)); | |
1021 | kfree((vm_offset_t)ps, sizeof *ps); | |
1022 | BS_UNLOCK(bs); | |
1023 | return KERN_RESOURCE_SHORTAGE; | |
1024 | } | |
1025 | ||
1026 | bs->bs_pages_free += ps->ps_clcount << ps->ps_clshift; | |
1027 | bs->bs_pages_total += ps->ps_clcount << ps->ps_clshift; | |
1028 | BS_UNLOCK(bs); | |
1029 | ||
1030 | PSL_LOCK(); | |
1031 | dp_pages_free += ps->ps_pgcount; | |
1032 | PSL_UNLOCK(); | |
1033 | ||
1034 | bs_more_space(ps->ps_clcount); | |
1035 | ||
1036 | DEBUG(DEBUG_BS_INTERNAL, | |
1037 | ("device=0x%x,offset=0x%x,count=0x%x,record_size=0x%x,shift=%d,total_size=0x%x\n", | |
1038 | device, offset, count, record_size, | |
1039 | ps->ps_record_shift, ps->ps_pgnum)); | |
1040 | ||
1041 | return KERN_SUCCESS; | |
1042 | } | |
1043 | ||
1044 | boolean_t | |
1045 | bs_add_device( | |
1046 | char *dev_name, | |
1047 | MACH_PORT_FACE master) | |
1048 | { | |
1049 | security_token_t null_security_token = { | |
1050 | { 0, 0 } | |
1051 | }; | |
1052 | MACH_PORT_FACE device; | |
1053 | int info[DEV_GET_SIZE_COUNT]; | |
1054 | mach_msg_type_number_t info_count; | |
1055 | MACH_PORT_FACE bs = MACH_PORT_NULL; | |
1056 | unsigned int rec_size; | |
1057 | recnum_t count; | |
1058 | int clsize; | |
1059 | MACH_PORT_FACE reply_port; | |
1060 | ||
1061 | if (ds_device_open_sync(master, MACH_PORT_NULL, D_READ | D_WRITE, | |
1062 | null_security_token, dev_name, &device)) | |
1063 | return FALSE; | |
1064 | ||
1065 | info_count = DEV_GET_SIZE_COUNT; | |
1066 | if (!ds_device_get_status(device, DEV_GET_SIZE, info, &info_count)) { | |
1067 | rec_size = info[DEV_GET_SIZE_RECORD_SIZE]; | |
1068 | count = info[DEV_GET_SIZE_DEVICE_SIZE] / rec_size; | |
1069 | clsize = bs_get_global_clsize(0); | |
1070 | if (!default_pager_backing_store_create( | |
0b4e3aa0 | 1071 | default_pager_object, |
1c79356b A |
1072 | DEFAULT_PAGER_BACKING_STORE_MAXPRI, |
1073 | (clsize * vm_page_size), | |
1074 | &bs)) { | |
1075 | if (!default_pager_add_segment(bs, device, | |
1076 | 0, count, rec_size)) { | |
1077 | return TRUE; | |
1078 | } | |
1079 | ipc_port_release_receive(bs); | |
1080 | } | |
1081 | } | |
1082 | ||
1083 | ipc_port_release_send(device); | |
1084 | return FALSE; | |
1085 | } | |
1086 | #endif /* DEVICE_PAGING */ | |
1087 | ||
1088 | #if VS_ASYNC_REUSE | |
1089 | ||
1090 | struct vs_async * | |
1091 | vs_alloc_async(void) | |
1092 | { | |
1093 | struct vs_async *vsa; | |
1094 | MACH_PORT_FACE reply_port; | |
1095 | kern_return_t kr; | |
1096 | ||
1097 | VS_ASYNC_LOCK(); | |
1098 | if (vs_async_free_list == NULL) { | |
1099 | VS_ASYNC_UNLOCK(); | |
1100 | vsa = (struct vs_async *) kalloc(sizeof (struct vs_async)); | |
1101 | if (vsa != NULL) { | |
1102 | /* | |
1103 | * Try allocating a reply port named after the | |
1104 | * address of the vs_async structure. | |
1105 | */ | |
1106 | struct vstruct_alias *alias_struct; | |
1107 | ||
1108 | reply_port = ipc_port_alloc_kernel(); | |
1109 | alias_struct = (struct vstruct_alias *) | |
1110 | kalloc(sizeof (struct vstruct_alias)); | |
1111 | if(alias_struct != NULL) { | |
1112 | alias_struct->vs = (struct vstruct *)vsa; | |
1113 | alias_struct->name = ISVS; | |
1114 | reply_port->alias = (int) alias_struct; | |
1115 | vsa->reply_port = reply_port; | |
1116 | vs_alloc_async_count++; | |
1117 | } | |
1118 | else { | |
1119 | vs_alloc_async_failed++; | |
1120 | ipc_port_dealloc_kernel((MACH_PORT_FACE) | |
1121 | (reply_port)); | |
1122 | kfree((vm_offset_t)vsa, | |
1123 | sizeof (struct vs_async)); | |
1124 | vsa = NULL; | |
1125 | } | |
1126 | } | |
1127 | } else { | |
1128 | vsa = vs_async_free_list; | |
1129 | vs_async_free_list = vs_async_free_list->vsa_next; | |
1130 | VS_ASYNC_UNLOCK(); | |
1131 | } | |
1132 | ||
1133 | return vsa; | |
1134 | } | |
1135 | ||
1136 | void | |
1137 | vs_free_async( | |
1138 | struct vs_async *vsa) | |
1139 | { | |
1140 | VS_ASYNC_LOCK(); | |
1141 | vsa->vsa_next = vs_async_free_list; | |
1142 | vs_async_free_list = vsa; | |
1143 | VS_ASYNC_UNLOCK(); | |
1144 | } | |
1145 | ||
1146 | #else /* VS_ASYNC_REUSE */ | |
1147 | ||
1148 | struct vs_async * | |
1149 | vs_alloc_async(void) | |
1150 | { | |
1151 | struct vs_async *vsa; | |
1152 | MACH_PORT_FACE reply_port; | |
1153 | kern_return_t kr; | |
1154 | ||
1155 | vsa = (struct vs_async *) kalloc(sizeof (struct vs_async)); | |
1156 | if (vsa != NULL) { | |
1157 | /* | |
1158 | * Try allocating a reply port named after the | |
1159 | * address of the vs_async structure. | |
1160 | */ | |
1161 | reply_port = ipc_port_alloc_kernel(); | |
1162 | alias_struct = (vstruct_alias *) | |
1163 | kalloc(sizeof (struct vstruct_alias)); | |
1164 | if(alias_struct != NULL) { | |
1165 | alias_struct->vs = reply_port; | |
1166 | alias_struct->name = ISVS; | |
1167 | reply_port->alias = (int) vsa; | |
1168 | vsa->reply_port = reply_port; | |
1169 | vs_alloc_async_count++; | |
1170 | } | |
1171 | else { | |
1172 | vs_alloc_async_failed++; | |
1173 | ipc_port_dealloc_kernel((MACH_PORT_FACE) | |
1174 | (reply_port)); | |
1175 | kfree((vm_offset_t) vsa, | |
1176 | sizeof (struct vs_async)); | |
1177 | vsa = NULL; | |
1178 | } | |
1179 | } | |
1180 | ||
1181 | return vsa; | |
1182 | } | |
1183 | ||
1184 | void | |
1185 | vs_free_async( | |
1186 | struct vs_async *vsa) | |
1187 | { | |
1c79356b A |
1188 | MACH_PORT_FACE reply_port; |
1189 | kern_return_t kr; | |
1190 | ||
1191 | reply_port = vsa->reply_port; | |
1192 | kfree((vm_offset_t) reply_port->alias, sizeof (struct vstuct_alias)); | |
1193 | kfree((vm_offset_t) vsa, sizeof (struct vs_async)); | |
1c79356b A |
1194 | ipc_port_dealloc_kernel((MACH_PORT_FACE) (reply_port)); |
1195 | #if 0 | |
1196 | VS_ASYNC_LOCK(); | |
1197 | vs_alloc_async_count--; | |
1198 | VS_ASYNC_UNLOCK(); | |
1199 | #endif | |
1200 | } | |
1201 | ||
1202 | #endif /* VS_ASYNC_REUSE */ | |
1203 | ||
0b4e3aa0 A |
1204 | zone_t vstruct_zone; |
1205 | ||
1c79356b A |
1206 | vstruct_t |
1207 | ps_vstruct_create( | |
1208 | vm_size_t size) | |
1209 | { | |
1210 | vstruct_t vs; | |
1211 | int i; | |
1c79356b | 1212 | |
0b4e3aa0 | 1213 | vs = (vstruct_t) zalloc(vstruct_zone); |
1c79356b A |
1214 | if (vs == VSTRUCT_NULL) { |
1215 | return VSTRUCT_NULL; | |
1216 | } | |
1217 | ||
1218 | VS_LOCK_INIT(vs); | |
1219 | ||
1220 | /* | |
1221 | * The following fields will be provided later. | |
1222 | */ | |
0b4e3aa0 A |
1223 | vs->vs_mem_obj = NULL; |
1224 | vs->vs_control = MEMORY_OBJECT_CONTROL_NULL; | |
1225 | vs->vs_references = 1; | |
1c79356b | 1226 | vs->vs_seqno = 0; |
1c79356b A |
1227 | |
1228 | #ifdef MACH_KERNEL | |
1229 | vs->vs_waiting_seqno = FALSE; | |
1230 | vs->vs_waiting_read = FALSE; | |
1231 | vs->vs_waiting_write = FALSE; | |
1c79356b A |
1232 | vs->vs_waiting_async = FALSE; |
1233 | #else | |
1234 | mutex_init(&vs->vs_waiting_seqno, ETAP_DPAGE_VSSEQNO); | |
1235 | mutex_init(&vs->vs_waiting_read, ETAP_DPAGE_VSREAD); | |
1236 | mutex_init(&vs->vs_waiting_write, ETAP_DPAGE_VSWRITE); | |
1237 | mutex_init(&vs->vs_waiting_refs, ETAP_DPAGE_VSREFS); | |
1238 | mutex_init(&vs->vs_waiting_async, ETAP_DPAGE_VSASYNC); | |
1239 | #endif | |
1240 | ||
1241 | vs->vs_readers = 0; | |
1242 | vs->vs_writers = 0; | |
1243 | ||
1244 | vs->vs_errors = 0; | |
1245 | ||
1246 | vs->vs_clshift = local_log2(bs_get_global_clsize(0)); | |
1247 | vs->vs_size = ((atop(round_page(size)) - 1) >> vs->vs_clshift) + 1; | |
1248 | vs->vs_async_pending = 0; | |
1249 | ||
1250 | /* | |
1251 | * Allocate the pmap, either CLMAP_SIZE or INDIRECT_CLMAP_SIZE | |
1252 | * depending on the size of the memory object. | |
1253 | */ | |
1254 | if (INDIRECT_CLMAP(vs->vs_size)) { | |
1255 | vs->vs_imap = (struct vs_map **) | |
1256 | kalloc(INDIRECT_CLMAP_SIZE(vs->vs_size)); | |
1257 | vs->vs_indirect = TRUE; | |
1258 | } else { | |
1259 | vs->vs_dmap = (struct vs_map *) | |
1260 | kalloc(CLMAP_SIZE(vs->vs_size)); | |
1261 | vs->vs_indirect = FALSE; | |
1262 | } | |
1263 | vs->vs_xfer_pending = FALSE; | |
1264 | DEBUG(DEBUG_VS_INTERNAL, | |
1265 | ("map=0x%x, indirect=%d\n", (int) vs->vs_dmap, vs->vs_indirect)); | |
1266 | ||
1267 | /* | |
1268 | * Check to see that we got the space. | |
1269 | */ | |
1270 | if (!vs->vs_dmap) { | |
1271 | kfree((vm_offset_t)vs, sizeof *vs); | |
1272 | return VSTRUCT_NULL; | |
1273 | } | |
1274 | ||
1275 | /* | |
1276 | * Zero the indirect pointers, or clear the direct pointers. | |
1277 | */ | |
1278 | if (vs->vs_indirect) | |
1279 | memset(vs->vs_imap, 0, | |
1280 | INDIRECT_CLMAP_SIZE(vs->vs_size)); | |
1281 | else | |
1282 | for (i = 0; i < vs->vs_size; i++) | |
1283 | VSM_CLR(vs->vs_dmap[i]); | |
1284 | ||
1285 | VS_MAP_LOCK_INIT(vs); | |
1286 | ||
1287 | bs_commit(vs->vs_size); | |
1288 | ||
1289 | return vs; | |
1290 | } | |
1291 | ||
1292 | paging_segment_t ps_select_segment(int, int *); /* forward */ | |
1293 | ||
1294 | paging_segment_t | |
1295 | ps_select_segment( | |
1296 | int shift, | |
1297 | int *psindex) | |
1298 | { | |
1299 | paging_segment_t ps; | |
1300 | int i; | |
1301 | int j; | |
1c79356b A |
1302 | |
1303 | /* | |
1304 | * Optimize case where there's only one segment. | |
1305 | * paging_segment_max will index the one and only segment. | |
1306 | */ | |
1307 | ||
1308 | PSL_LOCK(); | |
1309 | if (paging_segment_count == 1) { | |
1310 | paging_segment_t lps; /* used to avoid extra PS_UNLOCK */ | |
0b4e3aa0 | 1311 | ipc_port_t trigger = IP_NULL; |
1c79356b A |
1312 | |
1313 | ps = paging_segments[paging_segment_max]; | |
1314 | *psindex = paging_segment_max; | |
1315 | PS_LOCK(ps); | |
1316 | if (ps->ps_going_away) { | |
1317 | /* this segment is being turned off */ | |
1318 | lps = PAGING_SEGMENT_NULL; | |
1319 | } else { | |
1320 | ASSERT(ps->ps_clshift >= shift); | |
1321 | if (ps->ps_clcount) { | |
1322 | ps->ps_clcount--; | |
1323 | dp_pages_free -= 1 << ps->ps_clshift; | |
1324 | if(min_pages_trigger_port && | |
1325 | (dp_pages_free < minimum_pages_remaining)) { | |
0b4e3aa0 | 1326 | trigger = min_pages_trigger_port; |
1c79356b A |
1327 | min_pages_trigger_port = NULL; |
1328 | bs_low = TRUE; | |
1329 | } | |
1330 | lps = ps; | |
1331 | } else | |
1332 | lps = PAGING_SEGMENT_NULL; | |
1333 | } | |
1334 | PS_UNLOCK(ps); | |
1335 | PSL_UNLOCK(); | |
0b4e3aa0 A |
1336 | |
1337 | if (trigger != IP_NULL) { | |
1338 | default_pager_space_alert(trigger, HI_WAT_ALERT); | |
1339 | ipc_port_release_send(trigger); | |
1340 | } | |
1c79356b A |
1341 | return lps; |
1342 | } | |
1343 | ||
1344 | if (paging_segment_count == 0) { | |
1345 | PSL_UNLOCK(); | |
1346 | return PAGING_SEGMENT_NULL; | |
1347 | } | |
1348 | ||
1349 | for (i = BS_MAXPRI; | |
1350 | i >= BS_MINPRI; i--) { | |
1351 | int start_index; | |
1352 | ||
1353 | if ((ps_select_array[i] == BS_NOPRI) || | |
1354 | (ps_select_array[i] == BS_FULLPRI)) | |
1355 | continue; | |
1356 | start_index = ps_select_array[i]; | |
1357 | ||
1358 | if(!(paging_segments[start_index])) { | |
1359 | j = start_index+1; | |
1360 | physical_transfer_cluster_count = 0; | |
1361 | } | |
0b4e3aa0 | 1362 | else if ((physical_transfer_cluster_count+1) == (ALLOC_STRIDE >> |
1c79356b | 1363 | (((paging_segments[start_index])->ps_clshift) |
0b4e3aa0 | 1364 | + vm_page_shift))) { |
1c79356b A |
1365 | physical_transfer_cluster_count = 0; |
1366 | j = start_index + 1; | |
1367 | } else { | |
1368 | physical_transfer_cluster_count+=1; | |
1369 | j = start_index; | |
1370 | if(start_index == 0) | |
1371 | start_index = paging_segment_max; | |
1372 | else | |
1373 | start_index = start_index - 1; | |
1374 | } | |
1375 | ||
1376 | while (1) { | |
1377 | if (j > paging_segment_max) | |
1378 | j = 0; | |
1379 | if ((ps = paging_segments[j]) && | |
1380 | (ps->ps_bs->bs_priority == i)) { | |
1381 | /* | |
1382 | * Force the ps cluster size to be | |
1383 | * >= that of the vstruct. | |
1384 | */ | |
1385 | PS_LOCK(ps); | |
1386 | if (ps->ps_going_away) { | |
1387 | /* this segment is being turned off */ | |
1388 | } else if ((ps->ps_clcount) && | |
1389 | (ps->ps_clshift >= shift)) { | |
0b4e3aa0 A |
1390 | ipc_port_t trigger = IP_NULL; |
1391 | ||
1c79356b A |
1392 | ps->ps_clcount--; |
1393 | dp_pages_free -= 1 << ps->ps_clshift; | |
1394 | if(min_pages_trigger_port && | |
1395 | (dp_pages_free < | |
1396 | minimum_pages_remaining)) { | |
0b4e3aa0 | 1397 | trigger = min_pages_trigger_port; |
1c79356b A |
1398 | min_pages_trigger_port = NULL; |
1399 | } | |
1400 | PS_UNLOCK(ps); | |
1401 | /* | |
1402 | * found one, quit looking. | |
1403 | */ | |
1404 | ps_select_array[i] = j; | |
1405 | PSL_UNLOCK(); | |
0b4e3aa0 A |
1406 | |
1407 | if (trigger != IP_NULL) { | |
1408 | default_pager_space_alert( | |
1409 | trigger, | |
1410 | HI_WAT_ALERT); | |
1411 | ipc_port_release_send(trigger); | |
1412 | } | |
1c79356b A |
1413 | *psindex = j; |
1414 | return ps; | |
1415 | } | |
1416 | PS_UNLOCK(ps); | |
1417 | } | |
1418 | if (j == start_index) { | |
1419 | /* | |
1420 | * none at this priority -- mark it full | |
1421 | */ | |
1422 | ps_select_array[i] = BS_FULLPRI; | |
1423 | break; | |
1424 | } | |
1425 | j++; | |
1426 | } | |
1427 | } | |
1428 | PSL_UNLOCK(); | |
1429 | return PAGING_SEGMENT_NULL; | |
1430 | } | |
1431 | ||
1432 | vm_offset_t ps_allocate_cluster(vstruct_t, int *, paging_segment_t); /*forward*/ | |
1433 | ||
1434 | vm_offset_t | |
1435 | ps_allocate_cluster( | |
1436 | vstruct_t vs, | |
1437 | int *psindex, | |
1438 | paging_segment_t use_ps) | |
1439 | { | |
1440 | int byte_num; | |
1441 | int bit_num = 0; | |
1442 | paging_segment_t ps; | |
1443 | vm_offset_t cluster; | |
0b4e3aa0 | 1444 | ipc_port_t trigger = IP_NULL; |
1c79356b A |
1445 | |
1446 | /* | |
1447 | * Find best paging segment. | |
1448 | * ps_select_segment will decrement cluster count on ps. | |
1449 | * Must pass cluster shift to find the most appropriate segment. | |
1450 | */ | |
1451 | /* NOTE: The addition of paging segment delete capability threatened | |
1452 | * to seriously complicate the treatment of paging segments in this | |
1453 | * module and the ones that call it (notably ps_clmap), because of the | |
1454 | * difficulty in assuring that the paging segment would continue to | |
1455 | * exist between being unlocked and locked. This was | |
1456 | * avoided because all calls to this module are based in either | |
1457 | * dp_memory_object calls which rely on the vs lock, or by | |
1458 | * the transfer function which is part of the segment delete path. | |
1459 | * The transfer function which is part of paging segment delete is | |
1460 | * protected from multiple callers by the backing store lock. | |
1461 | * The paging segment delete function treats mappings to a paging | |
1462 | * segment on a vstruct by vstruct basis, locking the vstruct targeted | |
1463 | * while data is transferred to the remaining segments. This is in | |
1464 | * line with the view that incomplete or in-transition mappings between | |
1465 | * data, a vstruct, and backing store are protected by the vs lock. | |
1466 | * This and the ordering of the paging segment "going_away" bit setting | |
1467 | * protects us. | |
1468 | */ | |
1469 | if (use_ps != PAGING_SEGMENT_NULL) { | |
1470 | ps = use_ps; | |
1471 | PSL_LOCK(); | |
1472 | PS_LOCK(ps); | |
1473 | ps->ps_clcount--; | |
1474 | dp_pages_free -= 1 << ps->ps_clshift; | |
1c79356b A |
1475 | if(min_pages_trigger_port && |
1476 | (dp_pages_free < minimum_pages_remaining)) { | |
0b4e3aa0 | 1477 | trigger = min_pages_trigger_port; |
1c79356b A |
1478 | min_pages_trigger_port = NULL; |
1479 | } | |
0b4e3aa0 | 1480 | PSL_UNLOCK(); |
1c79356b | 1481 | PS_UNLOCK(ps); |
0b4e3aa0 A |
1482 | if (trigger != IP_NULL) { |
1483 | default_pager_space_alert(trigger, HI_WAT_ALERT); | |
1484 | ipc_port_release_send(trigger); | |
1485 | } | |
1486 | ||
1c79356b A |
1487 | } else if ((ps = ps_select_segment(vs->vs_clshift, psindex)) == |
1488 | PAGING_SEGMENT_NULL) { | |
1489 | #if 0 | |
1490 | bs_no_paging_space(TRUE); | |
1491 | #endif | |
1492 | #if 0 | |
1493 | if (verbose) | |
1494 | #endif | |
1495 | dprintf(("no space in available paging segments; " | |
1496 | "swapon suggested\n")); | |
1497 | /* the count got off maybe, reset to zero */ | |
0b4e3aa0 | 1498 | PSL_LOCK(); |
1c79356b A |
1499 | dp_pages_free = 0; |
1500 | if(min_pages_trigger_port) { | |
0b4e3aa0 | 1501 | trigger = min_pages_trigger_port; |
1c79356b A |
1502 | min_pages_trigger_port = NULL; |
1503 | bs_low = TRUE; | |
1504 | } | |
0b4e3aa0 A |
1505 | PSL_UNLOCK(); |
1506 | if (trigger != IP_NULL) { | |
1507 | default_pager_space_alert(trigger, HI_WAT_ALERT); | |
1508 | ipc_port_release_send(trigger); | |
1509 | } | |
1c79356b A |
1510 | return (vm_offset_t) -1; |
1511 | } | |
1512 | ASSERT(ps->ps_clcount != 0); | |
1513 | ||
1514 | /* | |
1515 | * Look for an available cluster. At the end of the loop, | |
1516 | * byte_num is the byte offset and bit_num is the bit offset of the | |
1517 | * first zero bit in the paging segment bitmap. | |
1518 | */ | |
1519 | PS_LOCK(ps); | |
1520 | byte_num = ps->ps_hint; | |
1521 | for (; byte_num < howmany(ps->ps_ncls, NBBY); byte_num++) { | |
1522 | if (*(ps->ps_bmap + byte_num) != BYTEMASK) { | |
1523 | for (bit_num = 0; bit_num < NBBY; bit_num++) { | |
1524 | if (isclr((ps->ps_bmap + byte_num), bit_num)) | |
1525 | break; | |
1526 | } | |
1527 | ASSERT(bit_num != NBBY); | |
1528 | break; | |
1529 | } | |
1530 | } | |
1531 | ps->ps_hint = byte_num; | |
1532 | cluster = (byte_num*NBBY) + bit_num; | |
1533 | ||
1534 | /* Space was reserved, so this must be true */ | |
1535 | ASSERT(cluster < ps->ps_ncls); | |
1536 | ||
1537 | setbit(ps->ps_bmap, cluster); | |
1538 | PS_UNLOCK(ps); | |
1539 | ||
1540 | return cluster; | |
1541 | } | |
1542 | ||
1543 | void ps_deallocate_cluster(paging_segment_t, vm_offset_t); /* forward */ | |
1544 | ||
1545 | void | |
1546 | ps_deallocate_cluster( | |
1547 | paging_segment_t ps, | |
1548 | vm_offset_t cluster) | |
1549 | { | |
0b4e3aa0 | 1550 | ipc_port_t trigger = IP_NULL; |
1c79356b A |
1551 | |
1552 | if (cluster >= (vm_offset_t) ps->ps_ncls) | |
1553 | panic("ps_deallocate_cluster: Invalid cluster number"); | |
1554 | ||
1555 | /* | |
1556 | * Lock the paging segment, clear the cluster's bitmap and increment the | |
1557 | * number of free cluster. | |
1558 | */ | |
1559 | PSL_LOCK(); | |
1560 | PS_LOCK(ps); | |
1561 | clrbit(ps->ps_bmap, cluster); | |
1562 | ++ps->ps_clcount; | |
1563 | dp_pages_free += 1 << ps->ps_clshift; | |
0b4e3aa0 A |
1564 | if(max_pages_trigger_port |
1565 | && (backing_store_release_trigger_disable == 0) | |
1566 | && (dp_pages_free > maximum_pages_free)) { | |
1567 | trigger = max_pages_trigger_port; | |
1c79356b A |
1568 | max_pages_trigger_port = NULL; |
1569 | } | |
0b4e3aa0 | 1570 | PSL_UNLOCK(); |
1c79356b A |
1571 | |
1572 | /* | |
1573 | * Move the hint down to the freed cluster if it is | |
1574 | * less than the current hint. | |
1575 | */ | |
1576 | if ((cluster/NBBY) < ps->ps_hint) { | |
1577 | ps->ps_hint = (cluster/NBBY); | |
1578 | } | |
1579 | ||
1580 | PS_UNLOCK(ps); | |
1581 | ||
1582 | /* | |
1583 | * If we're freeing space on a full priority, reset the array. | |
1584 | */ | |
1585 | PSL_LOCK(); | |
1586 | if (ps_select_array[ps->ps_bs->bs_priority] == BS_FULLPRI) | |
1587 | ps_select_array[ps->ps_bs->bs_priority] = 0; | |
1588 | PSL_UNLOCK(); | |
1589 | ||
0b4e3aa0 A |
1590 | if (trigger != IP_NULL) { |
1591 | VSL_LOCK(); | |
1592 | if(backing_store_release_trigger_disable != 0) { | |
1593 | assert_wait((event_t) | |
1594 | &backing_store_release_trigger_disable, | |
1595 | THREAD_UNINT); | |
1596 | VSL_UNLOCK(); | |
1597 | thread_block((void (*)(void)) 0); | |
1598 | } else { | |
1599 | VSL_UNLOCK(); | |
1600 | } | |
1601 | default_pager_space_alert(trigger, LO_WAT_ALERT); | |
1602 | ipc_port_release_send(trigger); | |
1603 | } | |
1604 | ||
1c79356b A |
1605 | return; |
1606 | } | |
1607 | ||
1608 | void ps_dealloc_vsmap(struct vs_map *, vm_size_t); /* forward */ | |
1609 | ||
1610 | void | |
1611 | ps_dealloc_vsmap( | |
1612 | struct vs_map *vsmap, | |
1613 | vm_size_t size) | |
1614 | { | |
1615 | int i; | |
1616 | for (i = 0; i < size; i++) | |
1617 | if (!VSM_ISCLR(vsmap[i]) && !VSM_ISERR(vsmap[i])) | |
1618 | ps_deallocate_cluster(VSM_PS(vsmap[i]), | |
1619 | VSM_CLOFF(vsmap[i])); | |
1620 | } | |
1621 | ||
1622 | void | |
1623 | ps_vstruct_dealloc( | |
1624 | vstruct_t vs) | |
1625 | { | |
1626 | int i; | |
1627 | spl_t s; | |
1c79356b A |
1628 | |
1629 | VS_MAP_LOCK(vs); | |
1630 | ||
1631 | /* | |
1632 | * If this is an indirect structure, then we walk through the valid | |
1633 | * (non-zero) indirect pointers and deallocate the clusters | |
1634 | * associated with each used map entry (via ps_dealloc_vsmap). | |
1635 | * When all of the clusters in an indirect block have been | |
1636 | * freed, we deallocate the block. When all of the indirect | |
1637 | * blocks have been deallocated we deallocate the memory | |
1638 | * holding the indirect pointers. | |
1639 | */ | |
1640 | if (vs->vs_indirect) { | |
1641 | for (i = 0; i < INDIRECT_CLMAP_ENTRIES(vs->vs_size); i++) { | |
1642 | if (vs->vs_imap[i] != NULL) { | |
1643 | ps_dealloc_vsmap(vs->vs_imap[i], CLMAP_ENTRIES); | |
1644 | kfree((vm_offset_t)vs->vs_imap[i], | |
1645 | CLMAP_THRESHOLD); | |
1646 | } | |
1647 | } | |
1648 | kfree((vm_offset_t)vs->vs_imap, | |
1649 | INDIRECT_CLMAP_SIZE(vs->vs_size)); | |
1650 | } else { | |
1651 | /* | |
1652 | * Direct map. Free used clusters, then memory. | |
1653 | */ | |
1654 | ps_dealloc_vsmap(vs->vs_dmap, vs->vs_size); | |
1655 | kfree((vm_offset_t)vs->vs_dmap, CLMAP_SIZE(vs->vs_size)); | |
1656 | } | |
1657 | VS_MAP_UNLOCK(vs); | |
1658 | ||
1659 | bs_commit(- vs->vs_size); | |
1660 | ||
0b4e3aa0 | 1661 | zfree(vstruct_zone, (vm_offset_t)vs); |
1c79356b A |
1662 | } |
1663 | ||
1664 | int ps_map_extend(vstruct_t, int); /* forward */ | |
1665 | ||
1666 | int ps_map_extend( | |
1667 | vstruct_t vs, | |
1668 | int new_size) | |
1669 | { | |
1670 | struct vs_map **new_imap; | |
1671 | struct vs_map *new_dmap = NULL; | |
1672 | int newdsize; | |
1673 | int i; | |
1674 | void *old_map = NULL; | |
1675 | int old_map_size = 0; | |
1676 | ||
1677 | if (vs->vs_size >= new_size) { | |
1678 | /* | |
1679 | * Someone has already done the work. | |
1680 | */ | |
1681 | return 0; | |
1682 | } | |
1683 | ||
1684 | /* | |
1685 | * If the new size extends into the indirect range, then we have one | |
1686 | * of two cases: we are going from indirect to indirect, or we are | |
1687 | * going from direct to indirect. If we are going from indirect to | |
1688 | * indirect, then it is possible that the new size will fit in the old | |
1689 | * indirect map. If this is the case, then just reset the size of the | |
1690 | * vstruct map and we are done. If the new size will not | |
1691 | * fit into the old indirect map, then we have to allocate a new | |
1692 | * indirect map and copy the old map pointers into this new map. | |
1693 | * | |
1694 | * If we are going from direct to indirect, then we have to allocate a | |
1695 | * new indirect map and copy the old direct pages into the first | |
1696 | * indirect page of the new map. | |
1697 | * NOTE: allocating memory here is dangerous, as we're in the | |
1698 | * pageout path. | |
1699 | */ | |
1700 | if (INDIRECT_CLMAP(new_size)) { | |
1701 | int new_map_size = INDIRECT_CLMAP_SIZE(new_size); | |
1702 | ||
1703 | /* | |
1704 | * Get a new indirect map and zero it. | |
1705 | */ | |
1706 | old_map_size = INDIRECT_CLMAP_SIZE(vs->vs_size); | |
1707 | if (vs->vs_indirect && | |
1708 | (new_map_size == old_map_size)) { | |
1709 | bs_commit(new_size - vs->vs_size); | |
1710 | vs->vs_size = new_size; | |
1711 | return 0; | |
1712 | } | |
1713 | ||
1714 | new_imap = (struct vs_map **)kalloc(new_map_size); | |
1715 | if (new_imap == NULL) { | |
1716 | return -1; | |
1717 | } | |
1718 | memset(new_imap, 0, new_map_size); | |
1719 | ||
1720 | if (vs->vs_indirect) { | |
1721 | /* Copy old entries into new map */ | |
1722 | memcpy(new_imap, vs->vs_imap, old_map_size); | |
1723 | /* Arrange to free the old map */ | |
1724 | old_map = (void *) vs->vs_imap; | |
1725 | newdsize = 0; | |
1726 | } else { /* Old map was a direct map */ | |
1727 | /* Allocate an indirect page */ | |
1728 | if ((new_imap[0] = (struct vs_map *) | |
1729 | kalloc(CLMAP_THRESHOLD)) == NULL) { | |
1730 | kfree((vm_offset_t)new_imap, new_map_size); | |
1731 | return -1; | |
1732 | } | |
1733 | new_dmap = new_imap[0]; | |
1734 | newdsize = CLMAP_ENTRIES; | |
1735 | } | |
1736 | } else { | |
1737 | new_imap = NULL; | |
1738 | newdsize = new_size; | |
1739 | /* | |
1740 | * If the new map is a direct map, then the old map must | |
1741 | * also have been a direct map. All we have to do is | |
1742 | * to allocate a new direct map, copy the old entries | |
1743 | * into it and free the old map. | |
1744 | */ | |
1745 | if ((new_dmap = (struct vs_map *) | |
1746 | kalloc(CLMAP_SIZE(new_size))) == NULL) { | |
1747 | return -1; | |
1748 | } | |
1749 | } | |
1750 | if (newdsize) { | |
1751 | ||
1752 | /* Free the old map */ | |
1753 | old_map = (void *) vs->vs_dmap; | |
1754 | old_map_size = CLMAP_SIZE(vs->vs_size); | |
1755 | ||
1756 | /* Copy info from the old map into the new map */ | |
1757 | memcpy(new_dmap, vs->vs_dmap, old_map_size); | |
1758 | ||
1759 | /* Initialize the rest of the new map */ | |
1760 | for (i = vs->vs_size; i < newdsize; i++) | |
1761 | VSM_CLR(new_dmap[i]); | |
1762 | } | |
1763 | if (new_imap) { | |
1764 | vs->vs_imap = new_imap; | |
1765 | vs->vs_indirect = TRUE; | |
1766 | } else | |
1767 | vs->vs_dmap = new_dmap; | |
1768 | bs_commit(new_size - vs->vs_size); | |
1769 | vs->vs_size = new_size; | |
1770 | if (old_map) | |
1771 | kfree((vm_offset_t)old_map, old_map_size); | |
1772 | return 0; | |
1773 | } | |
1774 | ||
1775 | vm_offset_t | |
1776 | ps_clmap( | |
1777 | vstruct_t vs, | |
1778 | vm_offset_t offset, | |
1779 | struct clmap *clmap, | |
1780 | int flag, | |
1781 | vm_size_t size, | |
1782 | int error) | |
1783 | { | |
1784 | vm_offset_t cluster; /* The cluster of offset. */ | |
1785 | vm_offset_t newcl; /* The new cluster allocated. */ | |
1786 | vm_offset_t newoff; | |
1787 | int i; | |
1788 | struct vs_map *vsmap; | |
1c79356b A |
1789 | |
1790 | VS_MAP_LOCK(vs); | |
1791 | ||
1792 | ASSERT(vs->vs_dmap); | |
1793 | cluster = atop(offset) >> vs->vs_clshift; | |
1794 | ||
1795 | /* | |
1796 | * Initialize cluster error value | |
1797 | */ | |
1798 | clmap->cl_error = 0; | |
1799 | ||
1800 | /* | |
1801 | * If the object has grown, extend the page map. | |
1802 | */ | |
1803 | if (cluster >= vs->vs_size) { | |
1804 | if (flag == CL_FIND) { | |
1805 | /* Do not allocate if just doing a lookup */ | |
1806 | VS_MAP_UNLOCK(vs); | |
1807 | return (vm_offset_t) -1; | |
1808 | } | |
1809 | if (ps_map_extend(vs, cluster + 1)) { | |
1810 | VS_MAP_UNLOCK(vs); | |
1811 | return (vm_offset_t) -1; | |
1812 | } | |
1813 | } | |
1814 | ||
1815 | /* | |
1816 | * Look for the desired cluster. If the map is indirect, then we | |
1817 | * have a two level lookup. First find the indirect block, then | |
1818 | * find the actual cluster. If the indirect block has not yet | |
1819 | * been allocated, then do so. If the cluster has not yet been | |
1820 | * allocated, then do so. | |
1821 | * | |
1822 | * If any of the allocations fail, then return an error. | |
1823 | * Don't allocate if just doing a lookup. | |
1824 | */ | |
1825 | if (vs->vs_indirect) { | |
1826 | long ind_block = cluster/CLMAP_ENTRIES; | |
1827 | ||
1828 | /* Is the indirect block allocated? */ | |
1829 | vsmap = vs->vs_imap[ind_block]; | |
1830 | if (vsmap == NULL) { | |
1831 | if (flag == CL_FIND) { | |
1832 | VS_MAP_UNLOCK(vs); | |
1833 | return (vm_offset_t) -1; | |
1834 | } | |
1835 | ||
1836 | /* Allocate the indirect block */ | |
1837 | vsmap = (struct vs_map *) kalloc(CLMAP_THRESHOLD); | |
1838 | if (vsmap == NULL) { | |
1839 | VS_MAP_UNLOCK(vs); | |
1840 | return (vm_offset_t) -1; | |
1841 | } | |
1842 | /* Initialize the cluster offsets */ | |
1843 | for (i = 0; i < CLMAP_ENTRIES; i++) | |
1844 | VSM_CLR(vsmap[i]); | |
1845 | vs->vs_imap[ind_block] = vsmap; | |
1846 | } | |
1847 | } else | |
1848 | vsmap = vs->vs_dmap; | |
1849 | ||
1850 | ASSERT(vsmap); | |
1851 | vsmap += cluster%CLMAP_ENTRIES; | |
1852 | ||
1853 | /* | |
1854 | * At this point, vsmap points to the struct vs_map desired. | |
1855 | * | |
1856 | * Look in the map for the cluster, if there was an error on a | |
1857 | * previous write, flag it and return. If it is not yet | |
1858 | * allocated, then allocate it, if we're writing; if we're | |
1859 | * doing a lookup and the cluster's not allocated, return error. | |
1860 | */ | |
1861 | if (VSM_ISERR(*vsmap)) { | |
1862 | clmap->cl_error = VSM_GETERR(*vsmap); | |
1863 | VS_MAP_UNLOCK(vs); | |
1864 | return (vm_offset_t) -1; | |
1865 | } else if (VSM_ISCLR(*vsmap)) { | |
1866 | int psindex; | |
1867 | ||
1868 | if (flag == CL_FIND) { | |
1869 | /* | |
1870 | * If there's an error and the entry is clear, then | |
1871 | * we've run out of swap space. Record the error | |
1872 | * here and return. | |
1873 | */ | |
1874 | if (error) { | |
1875 | VSM_SETERR(*vsmap, error); | |
1876 | } | |
1877 | VS_MAP_UNLOCK(vs); | |
1878 | return (vm_offset_t) -1; | |
1879 | } else { | |
1880 | /* | |
1881 | * Attempt to allocate a cluster from the paging segment | |
1882 | */ | |
1883 | newcl = ps_allocate_cluster(vs, &psindex, | |
1884 | PAGING_SEGMENT_NULL); | |
1885 | if (newcl == -1) { | |
1886 | VS_MAP_UNLOCK(vs); | |
1887 | return (vm_offset_t) -1; | |
1888 | } | |
1889 | VSM_CLR(*vsmap); | |
1890 | VSM_SETCLOFF(*vsmap, newcl); | |
1891 | VSM_SETPS(*vsmap, psindex); | |
1892 | } | |
1893 | } else | |
1894 | newcl = VSM_CLOFF(*vsmap); | |
1895 | ||
1896 | /* | |
1897 | * Fill in pertinent fields of the clmap | |
1898 | */ | |
1899 | clmap->cl_ps = VSM_PS(*vsmap); | |
1900 | clmap->cl_numpages = VSCLSIZE(vs); | |
1901 | clmap->cl_bmap.clb_map = (unsigned int) VSM_BMAP(*vsmap); | |
1902 | ||
1903 | /* | |
1904 | * Byte offset in paging segment is byte offset to cluster plus | |
1905 | * byte offset within cluster. It looks ugly, but should be | |
1906 | * relatively quick. | |
1907 | */ | |
1908 | ASSERT(trunc_page(offset) == offset); | |
1909 | newcl = ptoa(newcl) << vs->vs_clshift; | |
1910 | newoff = offset & ((1<<(vm_page_shift + vs->vs_clshift)) - 1); | |
1911 | if (flag == CL_ALLOC) { | |
1912 | /* | |
1913 | * set bits in the allocation bitmap according to which | |
1914 | * pages were requested. size is in bytes. | |
1915 | */ | |
1916 | i = atop(newoff); | |
1917 | while ((size > 0) && (i < VSCLSIZE(vs))) { | |
1918 | VSM_SETALLOC(*vsmap, i); | |
1919 | i++; | |
1920 | size -= vm_page_size; | |
1921 | } | |
1922 | } | |
1923 | clmap->cl_alloc.clb_map = (unsigned int) VSM_ALLOC(*vsmap); | |
1924 | if (newoff) { | |
1925 | /* | |
1926 | * Offset is not cluster aligned, so number of pages | |
1927 | * and bitmaps must be adjusted | |
1928 | */ | |
1929 | clmap->cl_numpages -= atop(newoff); | |
1930 | CLMAP_SHIFT(clmap, vs); | |
1931 | CLMAP_SHIFTALLOC(clmap, vs); | |
1932 | } | |
1933 | ||
1934 | /* | |
1935 | * | |
1936 | * The setting of valid bits and handling of write errors | |
1937 | * must be done here, while we hold the lock on the map. | |
1938 | * It logically should be done in ps_vs_write_complete(). | |
1939 | * The size and error information has been passed from | |
1940 | * ps_vs_write_complete(). If the size parameter is non-zero, | |
1941 | * then there is work to be done. If error is also non-zero, | |
1942 | * then the error number is recorded in the cluster and the | |
1943 | * entire cluster is in error. | |
1944 | */ | |
1945 | if (size && flag == CL_FIND) { | |
1946 | vm_offset_t off = (vm_offset_t) 0; | |
1947 | ||
1948 | if (!error) { | |
1949 | for (i = VSCLSIZE(vs) - clmap->cl_numpages; size > 0; | |
1950 | i++) { | |
1951 | VSM_SETPG(*vsmap, i); | |
1952 | size -= vm_page_size; | |
1953 | } | |
1954 | ASSERT(i <= VSCLSIZE(vs)); | |
1955 | } else { | |
1956 | BS_STAT(clmap->cl_ps->ps_bs, | |
1957 | clmap->cl_ps->ps_bs->bs_pages_out_fail += | |
1958 | atop(size)); | |
1959 | off = VSM_CLOFF(*vsmap); | |
1960 | VSM_SETERR(*vsmap, error); | |
1961 | } | |
1962 | /* | |
1963 | * Deallocate cluster if error, and no valid pages | |
1964 | * already present. | |
1965 | */ | |
1966 | if (off != (vm_offset_t) 0) | |
1967 | ps_deallocate_cluster(clmap->cl_ps, off); | |
1968 | VS_MAP_UNLOCK(vs); | |
1969 | return (vm_offset_t) 0; | |
1970 | } else | |
1971 | VS_MAP_UNLOCK(vs); | |
1972 | ||
1973 | DEBUG(DEBUG_VS_INTERNAL, | |
1974 | ("returning 0x%X,vs=0x%X,vsmap=0x%X,flag=%d\n", | |
1975 | newcl+newoff, (int) vs, (int) vsmap, flag)); | |
1976 | DEBUG(DEBUG_VS_INTERNAL, | |
1977 | (" clmap->cl_ps=0x%X,cl_numpages=%d,clbmap=0x%x,cl_alloc=%x\n", | |
1978 | (int) clmap->cl_ps, clmap->cl_numpages, | |
1979 | (int) clmap->cl_bmap.clb_map, (int) clmap->cl_alloc.clb_map)); | |
1980 | ||
1981 | return (newcl + newoff); | |
1982 | } | |
1983 | ||
1984 | void ps_clunmap(vstruct_t, vm_offset_t, vm_size_t); /* forward */ | |
1985 | ||
1986 | void | |
1987 | ps_clunmap( | |
1988 | vstruct_t vs, | |
1989 | vm_offset_t offset, | |
1990 | vm_size_t length) | |
1991 | { | |
1992 | vm_offset_t cluster; /* The cluster number of offset */ | |
1993 | struct vs_map *vsmap; | |
1c79356b A |
1994 | |
1995 | VS_MAP_LOCK(vs); | |
1996 | ||
1997 | /* | |
1998 | * Loop through all clusters in this range, freeing paging segment | |
1999 | * clusters and map entries as encountered. | |
2000 | */ | |
2001 | while (length > 0) { | |
2002 | vm_offset_t newoff; | |
2003 | int i; | |
2004 | ||
2005 | cluster = atop(offset) >> vs->vs_clshift; | |
2006 | if (vs->vs_indirect) /* indirect map */ | |
2007 | vsmap = vs->vs_imap[cluster/CLMAP_ENTRIES]; | |
2008 | else | |
2009 | vsmap = vs->vs_dmap; | |
2010 | if (vsmap == NULL) { | |
2011 | VS_MAP_UNLOCK(vs); | |
2012 | return; | |
2013 | } | |
2014 | vsmap += cluster%CLMAP_ENTRIES; | |
2015 | if (VSM_ISCLR(*vsmap)) { | |
2016 | length -= vm_page_size; | |
2017 | offset += vm_page_size; | |
2018 | continue; | |
2019 | } | |
2020 | /* | |
2021 | * We've got a valid mapping. Clear it and deallocate | |
2022 | * paging segment cluster pages. | |
2023 | * Optimize for entire cluster cleraing. | |
2024 | */ | |
2025 | if (newoff = (offset&((1<<(vm_page_shift+vs->vs_clshift))-1))) { | |
2026 | /* | |
2027 | * Not cluster aligned. | |
2028 | */ | |
2029 | ASSERT(trunc_page(newoff) == newoff); | |
2030 | i = atop(newoff); | |
2031 | } else | |
2032 | i = 0; | |
2033 | while ((i < VSCLSIZE(vs)) && (length > 0)) { | |
2034 | VSM_CLRPG(*vsmap, i); | |
2035 | VSM_CLRALLOC(*vsmap, i); | |
2036 | length -= vm_page_size; | |
2037 | offset += vm_page_size; | |
2038 | i++; | |
2039 | } | |
2040 | ||
2041 | /* | |
2042 | * If map entry is empty, clear and deallocate cluster. | |
2043 | */ | |
2044 | if (!VSM_ALLOC(*vsmap)) { | |
2045 | ps_deallocate_cluster(VSM_PS(*vsmap), | |
2046 | VSM_CLOFF(*vsmap)); | |
2047 | VSM_CLR(*vsmap); | |
2048 | } | |
2049 | } | |
2050 | ||
2051 | VS_MAP_UNLOCK(vs); | |
2052 | } | |
2053 | ||
2054 | void ps_vs_write_complete(vstruct_t, vm_offset_t, vm_size_t, int); /* forward */ | |
2055 | ||
2056 | void | |
2057 | ps_vs_write_complete( | |
2058 | vstruct_t vs, | |
2059 | vm_offset_t offset, | |
2060 | vm_size_t size, | |
2061 | int error) | |
2062 | { | |
2063 | struct clmap clmap; | |
2064 | ||
2065 | /* | |
2066 | * Get the struct vsmap for this cluster. | |
2067 | * Use READ, even though it was written, because the | |
2068 | * cluster MUST be present, unless there was an error | |
2069 | * in the original ps_clmap (e.g. no space), in which | |
2070 | * case, nothing happens. | |
2071 | * | |
2072 | * Must pass enough information to ps_clmap to allow it | |
2073 | * to set the vs_map structure bitmap under lock. | |
2074 | */ | |
2075 | (void) ps_clmap(vs, offset, &clmap, CL_FIND, size, error); | |
2076 | } | |
2077 | ||
2078 | void vs_cl_write_complete(vstruct_t, paging_segment_t, vm_offset_t, vm_offset_t, vm_size_t, boolean_t, int); /* forward */ | |
2079 | ||
2080 | void | |
2081 | vs_cl_write_complete( | |
2082 | vstruct_t vs, | |
2083 | paging_segment_t ps, | |
2084 | vm_offset_t offset, | |
2085 | vm_offset_t addr, | |
2086 | vm_size_t size, | |
2087 | boolean_t async, | |
2088 | int error) | |
2089 | { | |
1c79356b A |
2090 | kern_return_t kr; |
2091 | ||
2092 | if (error) { | |
2093 | /* | |
2094 | * For internal objects, the error is recorded on a | |
2095 | * per-cluster basis by ps_clmap() which is called | |
2096 | * by ps_vs_write_complete() below. | |
2097 | */ | |
2098 | dprintf(("write failed error = 0x%x\n", error)); | |
2099 | /* add upl_abort code here */ | |
2100 | } else | |
2101 | GSTAT(global_stats.gs_pages_out += atop(size)); | |
2102 | /* | |
2103 | * Notify the vstruct mapping code, so it can do its accounting. | |
2104 | */ | |
2105 | ps_vs_write_complete(vs, offset, size, error); | |
2106 | ||
2107 | if (async) { | |
2108 | VS_LOCK(vs); | |
2109 | ASSERT(vs->vs_async_pending > 0); | |
2110 | vs->vs_async_pending -= size; | |
0b4e3aa0 A |
2111 | if (vs->vs_async_pending == 0 && vs->vs_waiting_async) { |
2112 | vs->vs_waiting_async = FALSE; | |
1c79356b A |
2113 | VS_UNLOCK(vs); |
2114 | /* mutex_unlock(&vs->vs_waiting_async); */ | |
0b4e3aa0 | 2115 | thread_wakeup(&vs->vs_async_pending); |
1c79356b A |
2116 | } else { |
2117 | VS_UNLOCK(vs); | |
2118 | } | |
2119 | } | |
2120 | } | |
2121 | ||
2122 | #ifdef DEVICE_PAGING | |
2123 | kern_return_t device_write_reply(MACH_PORT_FACE, kern_return_t, io_buf_len_t); | |
2124 | ||
2125 | kern_return_t | |
2126 | device_write_reply( | |
2127 | MACH_PORT_FACE reply_port, | |
2128 | kern_return_t device_code, | |
2129 | io_buf_len_t bytes_written) | |
2130 | { | |
2131 | struct vs_async *vsa; | |
1c79356b A |
2132 | |
2133 | vsa = (struct vs_async *) | |
2134 | ((struct vstruct_alias *)(reply_port->alias))->vs; | |
2135 | ||
2136 | if (device_code == KERN_SUCCESS && bytes_written != vsa->vsa_size) { | |
2137 | device_code = KERN_FAILURE; | |
2138 | } | |
2139 | ||
2140 | vsa->vsa_error = device_code; | |
2141 | ||
2142 | ||
2143 | ASSERT(vsa->vsa_vs != VSTRUCT_NULL); | |
2144 | if(vsa->vsa_flags & VSA_TRANSFER) { | |
2145 | /* revisit when async disk segments redone */ | |
2146 | if(vsa->vsa_error) { | |
2147 | /* need to consider error condition. re-write data or */ | |
2148 | /* throw it away here. */ | |
2149 | vm_offset_t ioaddr; | |
2150 | if(vm_map_copyout(kernel_map, &ioaddr, | |
2151 | (vm_map_copy_t)vsa->vsa_addr) != KERN_SUCCESS) | |
2152 | panic("vs_cluster_write: unable to copy source list\n"); | |
2153 | vm_deallocate(kernel_map, ioaddr, vsa->vsa_size); | |
2154 | } | |
2155 | ps_vs_write_complete(vsa->vsa_vs, vsa->vsa_offset, | |
2156 | vsa->vsa_size, vsa->vsa_error); | |
2157 | } else { | |
2158 | vs_cl_write_complete(vsa->vsa_vs, vsa->vsa_ps, vsa->vsa_offset, | |
2159 | vsa->vsa_addr, vsa->vsa_size, TRUE, | |
2160 | vsa->vsa_error); | |
2161 | } | |
2162 | VS_FREE_ASYNC(vsa); | |
2163 | ||
2164 | return KERN_SUCCESS; | |
2165 | } | |
2166 | ||
2167 | kern_return_t device_write_reply_inband(MACH_PORT_FACE, kern_return_t, io_buf_len_t); | |
2168 | kern_return_t | |
2169 | device_write_reply_inband( | |
2170 | MACH_PORT_FACE reply_port, | |
2171 | kern_return_t return_code, | |
2172 | io_buf_len_t bytes_written) | |
2173 | { | |
2174 | panic("device_write_reply_inband: illegal"); | |
2175 | return KERN_SUCCESS; | |
2176 | } | |
2177 | ||
2178 | kern_return_t device_read_reply(MACH_PORT_FACE, kern_return_t, io_buf_ptr_t, mach_msg_type_number_t); | |
2179 | kern_return_t | |
2180 | device_read_reply( | |
2181 | MACH_PORT_FACE reply_port, | |
2182 | kern_return_t return_code, | |
2183 | io_buf_ptr_t data, | |
2184 | mach_msg_type_number_t dataCnt) | |
2185 | { | |
2186 | struct vs_async *vsa; | |
2187 | vsa = (struct vs_async *) | |
2188 | ((struct vstruct_alias *)(reply_port->alias))->vs; | |
2189 | vsa->vsa_addr = (vm_offset_t)data; | |
2190 | vsa->vsa_size = (vm_size_t)dataCnt; | |
2191 | vsa->vsa_error = return_code; | |
2192 | thread_wakeup(&vsa->vsa_lock); | |
2193 | return KERN_SUCCESS; | |
2194 | } | |
2195 | ||
2196 | kern_return_t device_read_reply_inband(MACH_PORT_FACE, kern_return_t, io_buf_ptr_inband_t, mach_msg_type_number_t); | |
2197 | kern_return_t | |
2198 | device_read_reply_inband( | |
2199 | MACH_PORT_FACE reply_port, | |
2200 | kern_return_t return_code, | |
2201 | io_buf_ptr_inband_t data, | |
2202 | mach_msg_type_number_t dataCnt) | |
2203 | { | |
2204 | panic("device_read_reply_inband: illegal"); | |
2205 | return KERN_SUCCESS; | |
2206 | } | |
2207 | ||
2208 | kern_return_t device_read_reply_overwrite(MACH_PORT_FACE, kern_return_t, io_buf_len_t); | |
2209 | kern_return_t | |
2210 | device_read_reply_overwrite( | |
2211 | MACH_PORT_FACE reply_port, | |
2212 | kern_return_t return_code, | |
2213 | io_buf_len_t bytes_read) | |
2214 | { | |
2215 | panic("device_read_reply_overwrite: illegal\n"); | |
2216 | return KERN_SUCCESS; | |
2217 | } | |
2218 | ||
2219 | kern_return_t device_open_reply(MACH_PORT_FACE, kern_return_t, MACH_PORT_FACE); | |
2220 | kern_return_t | |
2221 | device_open_reply( | |
2222 | MACH_PORT_FACE reply_port, | |
2223 | kern_return_t return_code, | |
2224 | MACH_PORT_FACE device_port) | |
2225 | { | |
2226 | panic("device_open_reply: illegal\n"); | |
2227 | return KERN_SUCCESS; | |
2228 | } | |
2229 | ||
2230 | kern_return_t ps_read_device(paging_segment_t, vm_offset_t, vm_offset_t *, unsigned int, unsigned int *, int); /* forward */ | |
2231 | ||
2232 | kern_return_t | |
2233 | ps_read_device( | |
2234 | paging_segment_t ps, | |
2235 | vm_offset_t offset, | |
2236 | vm_offset_t *bufferp, | |
2237 | unsigned int size, | |
2238 | unsigned int *residualp, | |
2239 | int flags) | |
2240 | { | |
2241 | kern_return_t kr; | |
2242 | recnum_t dev_offset; | |
2243 | unsigned int bytes_wanted; | |
2244 | unsigned int bytes_read; | |
2245 | unsigned int total_read; | |
2246 | vm_offset_t dev_buffer; | |
2247 | vm_offset_t buf_ptr; | |
2248 | unsigned int records_read; | |
1c79356b A |
2249 | struct vs_async *vsa; |
2250 | mutex_t vs_waiting_read_reply; | |
2251 | ||
2252 | device_t device; | |
2253 | vm_map_copy_t device_data = NULL; | |
2254 | default_pager_thread_t *dpt = NULL; | |
2255 | ||
2256 | device = dev_port_lookup(ps->ps_device); | |
2257 | clustered_reads[atop(size)]++; | |
2258 | ||
2259 | dev_offset = (ps->ps_offset + | |
2260 | (offset >> (vm_page_shift - ps->ps_record_shift))); | |
2261 | bytes_wanted = size; | |
2262 | total_read = 0; | |
2263 | *bufferp = (vm_offset_t)NULL; | |
2264 | ||
2265 | do { | |
2266 | vsa = VS_ALLOC_ASYNC(); | |
2267 | if (vsa) { | |
2268 | vsa->vsa_vs = NULL; | |
2269 | vsa->vsa_addr = 0; | |
2270 | vsa->vsa_offset = 0; | |
2271 | vsa->vsa_size = 0; | |
2272 | vsa->vsa_ps = NULL; | |
2273 | } | |
2274 | mutex_init(&vsa->vsa_lock, ETAP_DPAGE_VSSEQNO); | |
2275 | ip_lock(vsa->reply_port); | |
2276 | vsa->reply_port->ip_sorights++; | |
2277 | ip_reference(vsa->reply_port); | |
2278 | ip_unlock(vsa->reply_port); | |
2279 | kr = ds_device_read_common(device, | |
2280 | vsa->reply_port, | |
2281 | (mach_msg_type_name_t) | |
2282 | MACH_MSG_TYPE_MOVE_SEND_ONCE, | |
2283 | (dev_mode_t) 0, | |
2284 | dev_offset, | |
2285 | bytes_wanted, | |
2286 | (IO_READ | IO_CALL), | |
2287 | (io_buf_ptr_t *) &dev_buffer, | |
2288 | (mach_msg_type_number_t *) &bytes_read); | |
2289 | if(kr == MIG_NO_REPLY) { | |
2290 | assert_wait(&vsa->vsa_lock, THREAD_UNINT); | |
2291 | thread_block((void(*)(void))0); | |
2292 | ||
2293 | dev_buffer = vsa->vsa_addr; | |
2294 | bytes_read = (unsigned int)vsa->vsa_size; | |
2295 | kr = vsa->vsa_error; | |
2296 | } | |
2297 | VS_FREE_ASYNC(vsa); | |
2298 | if (kr != KERN_SUCCESS || bytes_read == 0) { | |
2299 | break; | |
2300 | } | |
2301 | total_read += bytes_read; | |
2302 | ||
2303 | /* | |
2304 | * If we got the entire range, use the returned dev_buffer. | |
2305 | */ | |
2306 | if (bytes_read == size) { | |
2307 | *bufferp = (vm_offset_t)dev_buffer; | |
2308 | break; | |
2309 | } | |
2310 | ||
2311 | #if 1 | |
2312 | dprintf(("read only %d bytes out of %d\n", | |
2313 | bytes_read, bytes_wanted)); | |
2314 | #endif | |
2315 | if(dpt == NULL) { | |
2316 | dpt = get_read_buffer(); | |
2317 | buf_ptr = dpt->dpt_buffer; | |
2318 | *bufferp = (vm_offset_t)buf_ptr; | |
2319 | } | |
2320 | /* | |
2321 | * Otherwise, copy the data into the provided buffer (*bufferp) | |
2322 | * and append the rest of the range as it comes in. | |
2323 | */ | |
2324 | memcpy((void *) buf_ptr, (void *) dev_buffer, bytes_read); | |
2325 | buf_ptr += bytes_read; | |
2326 | bytes_wanted -= bytes_read; | |
2327 | records_read = (bytes_read >> | |
2328 | (vm_page_shift - ps->ps_record_shift)); | |
2329 | dev_offset += records_read; | |
2330 | DEBUG(DEBUG_VS_INTERNAL, | |
2331 | ("calling vm_deallocate(addr=0x%X,size=0x%X)\n", | |
2332 | dev_buffer, bytes_read)); | |
2333 | if (vm_deallocate(kernel_map, dev_buffer, bytes_read) | |
2334 | != KERN_SUCCESS) | |
2335 | Panic("dealloc buf"); | |
2336 | } while (bytes_wanted); | |
2337 | ||
2338 | *residualp = size - total_read; | |
2339 | if((dev_buffer != *bufferp) && (total_read != 0)) { | |
2340 | vm_offset_t temp_buffer; | |
2341 | vm_allocate(kernel_map, &temp_buffer, total_read, TRUE); | |
2342 | memcpy((void *) temp_buffer, (void *) *bufferp, total_read); | |
2343 | if(vm_map_copyin_page_list(kernel_map, temp_buffer, total_read, | |
2344 | VM_MAP_COPYIN_OPT_SRC_DESTROY | | |
2345 | VM_MAP_COPYIN_OPT_STEAL_PAGES | | |
2346 | VM_MAP_COPYIN_OPT_PMAP_ENTER, | |
2347 | (vm_map_copy_t *)&device_data, FALSE)) | |
2348 | panic("ps_read_device: cannot copyin locally provided buffer\n"); | |
2349 | } | |
2350 | else if((kr == KERN_SUCCESS) && (total_read != 0) && (dev_buffer != 0)){ | |
2351 | if(vm_map_copyin_page_list(kernel_map, dev_buffer, bytes_read, | |
2352 | VM_MAP_COPYIN_OPT_SRC_DESTROY | | |
2353 | VM_MAP_COPYIN_OPT_STEAL_PAGES | | |
2354 | VM_MAP_COPYIN_OPT_PMAP_ENTER, | |
2355 | (vm_map_copy_t *)&device_data, FALSE)) | |
2356 | panic("ps_read_device: cannot copyin backing store provided buffer\n"); | |
2357 | } | |
2358 | else { | |
2359 | device_data = NULL; | |
2360 | } | |
2361 | *bufferp = (vm_offset_t)device_data; | |
2362 | ||
2363 | if(dpt != NULL) { | |
2364 | /* Free the receive buffer */ | |
2365 | dpt->checked_out = 0; | |
2366 | thread_wakeup(&dpt_array); | |
2367 | } | |
2368 | return KERN_SUCCESS; | |
2369 | } | |
2370 | ||
2371 | kern_return_t ps_write_device(paging_segment_t, vm_offset_t, vm_offset_t, unsigned int, struct vs_async *); /* forward */ | |
2372 | ||
2373 | kern_return_t | |
2374 | ps_write_device( | |
2375 | paging_segment_t ps, | |
2376 | vm_offset_t offset, | |
2377 | vm_offset_t addr, | |
2378 | unsigned int size, | |
2379 | struct vs_async *vsa) | |
2380 | { | |
2381 | recnum_t dev_offset; | |
2382 | io_buf_len_t bytes_to_write, bytes_written; | |
2383 | recnum_t records_written; | |
2384 | kern_return_t kr; | |
2385 | MACH_PORT_FACE reply_port; | |
1c79356b A |
2386 | |
2387 | ||
2388 | ||
2389 | clustered_writes[atop(size)]++; | |
2390 | ||
2391 | dev_offset = (ps->ps_offset + | |
2392 | (offset >> (vm_page_shift - ps->ps_record_shift))); | |
2393 | bytes_to_write = size; | |
2394 | ||
2395 | if (vsa) { | |
2396 | /* | |
2397 | * Asynchronous write. | |
2398 | */ | |
2399 | reply_port = vsa->reply_port; | |
2400 | ip_lock(reply_port); | |
2401 | reply_port->ip_sorights++; | |
2402 | ip_reference(reply_port); | |
2403 | ip_unlock(reply_port); | |
2404 | { | |
2405 | device_t device; | |
2406 | device = dev_port_lookup(ps->ps_device); | |
2407 | ||
2408 | vsa->vsa_addr = addr; | |
2409 | kr=ds_device_write_common(device, | |
2410 | reply_port, | |
2411 | (mach_msg_type_name_t) MACH_MSG_TYPE_MOVE_SEND_ONCE, | |
2412 | (dev_mode_t) 0, | |
2413 | dev_offset, | |
2414 | (io_buf_ptr_t) addr, | |
2415 | size, | |
2416 | (IO_WRITE | IO_CALL), | |
2417 | &bytes_written); | |
2418 | } | |
2419 | if ((kr != KERN_SUCCESS) && (kr != MIG_NO_REPLY)) { | |
2420 | if (verbose) | |
2421 | dprintf(("%s0x%x, addr=0x%x," | |
2422 | "size=0x%x,offset=0x%x\n", | |
2423 | "device_write_request returned ", | |
2424 | kr, addr, size, offset)); | |
2425 | BS_STAT(ps->ps_bs, | |
2426 | ps->ps_bs->bs_pages_out_fail += atop(size)); | |
2427 | /* do the completion notification to free resources */ | |
2428 | device_write_reply(reply_port, kr, 0); | |
2429 | return PAGER_ERROR; | |
2430 | } | |
2431 | } else do { | |
2432 | /* | |
2433 | * Synchronous write. | |
2434 | */ | |
2435 | { | |
2436 | device_t device; | |
2437 | device = dev_port_lookup(ps->ps_device); | |
2438 | kr=ds_device_write_common(device, | |
2439 | IP_NULL, 0, | |
2440 | (dev_mode_t) 0, | |
2441 | dev_offset, | |
2442 | (io_buf_ptr_t) addr, | |
2443 | size, | |
2444 | (IO_WRITE | IO_SYNC | IO_KERNEL_BUF), | |
2445 | &bytes_written); | |
2446 | } | |
2447 | if (kr != KERN_SUCCESS) { | |
2448 | dprintf(("%s0x%x, addr=0x%x,size=0x%x,offset=0x%x\n", | |
2449 | "device_write returned ", | |
2450 | kr, addr, size, offset)); | |
2451 | BS_STAT(ps->ps_bs, | |
2452 | ps->ps_bs->bs_pages_out_fail += atop(size)); | |
2453 | return PAGER_ERROR; | |
2454 | } | |
2455 | if (bytes_written & ((vm_page_size >> ps->ps_record_shift) - 1)) | |
2456 | Panic("fragmented write"); | |
2457 | records_written = (bytes_written >> | |
2458 | (vm_page_shift - ps->ps_record_shift)); | |
2459 | dev_offset += records_written; | |
2460 | #if 1 | |
2461 | if (bytes_written != bytes_to_write) { | |
2462 | dprintf(("wrote only %d bytes out of %d\n", | |
2463 | bytes_written, bytes_to_write)); | |
2464 | } | |
2465 | #endif | |
2466 | bytes_to_write -= bytes_written; | |
2467 | addr += bytes_written; | |
2468 | } while (bytes_to_write > 0); | |
2469 | ||
2470 | return PAGER_SUCCESS; | |
2471 | } | |
2472 | ||
2473 | ||
2474 | #else /* !DEVICE_PAGING */ | |
2475 | ||
2476 | kern_return_t | |
2477 | ps_read_device( | |
2478 | paging_segment_t ps, | |
2479 | vm_offset_t offset, | |
2480 | vm_offset_t *bufferp, | |
2481 | unsigned int size, | |
2482 | unsigned int *residualp, | |
2483 | int flags) | |
2484 | { | |
2485 | panic("ps_read_device not supported"); | |
2486 | } | |
2487 | ||
2488 | ps_write_device( | |
2489 | paging_segment_t ps, | |
2490 | vm_offset_t offset, | |
2491 | vm_offset_t addr, | |
2492 | unsigned int size, | |
2493 | struct vs_async *vsa) | |
2494 | { | |
2495 | panic("ps_write_device not supported"); | |
2496 | } | |
2497 | ||
2498 | #endif /* DEVICE_PAGING */ | |
2499 | void pvs_object_data_provided(vstruct_t, upl_t, vm_offset_t, vm_size_t); /* forward */ | |
2500 | ||
2501 | void | |
2502 | pvs_object_data_provided( | |
2503 | vstruct_t vs, | |
2504 | upl_t upl, | |
2505 | vm_offset_t offset, | |
2506 | vm_size_t size) | |
2507 | { | |
1c79356b A |
2508 | |
2509 | DEBUG(DEBUG_VS_INTERNAL, | |
2510 | ("buffer=0x%x,offset=0x%x,size=0x%x\n", | |
2511 | upl, offset, size)); | |
2512 | ||
2513 | ASSERT(size > 0); | |
2514 | GSTAT(global_stats.gs_pages_in += atop(size)); | |
2515 | ||
2516 | ||
2517 | #if USE_PRECIOUS | |
2518 | ps_clunmap(vs, offset, size); | |
2519 | #endif /* USE_PRECIOUS */ | |
2520 | ||
2521 | } | |
2522 | ||
2523 | kern_return_t | |
2524 | pvs_cluster_read( | |
2525 | vstruct_t vs, | |
0b4e3aa0 | 2526 | vm_offset_t vs_offset, |
1c79356b A |
2527 | vm_size_t cnt) |
2528 | { | |
1c79356b A |
2529 | upl_t upl; |
2530 | kern_return_t error = KERN_SUCCESS; | |
0b4e3aa0 | 2531 | int size; |
1c79356b A |
2532 | unsigned int residual; |
2533 | unsigned int request_flags; | |
0b4e3aa0 A |
2534 | int seg_index; |
2535 | int pages_in_cl; | |
2536 | int cl_size; | |
2537 | int cl_mask; | |
2538 | int cl_index; | |
2539 | int xfer_size; | |
2540 | vm_offset_t ps_offset[(VM_SUPER_CLUSTER / PAGE_SIZE) >> VSTRUCT_DEF_CLSHIFT]; | |
2541 | paging_segment_t psp[(VM_SUPER_CLUSTER / PAGE_SIZE) >> VSTRUCT_DEF_CLSHIFT]; | |
2542 | struct clmap clmap; | |
2543 | ||
2544 | pages_in_cl = 1 << vs->vs_clshift; | |
2545 | cl_size = pages_in_cl * vm_page_size; | |
2546 | cl_mask = cl_size - 1; | |
1c79356b A |
2547 | |
2548 | /* | |
0b4e3aa0 A |
2549 | * This loop will be executed multiple times until the entire |
2550 | * request has been satisfied... if the request spans cluster | |
2551 | * boundaries, the clusters will be checked for logical continunity, | |
2552 | * if contiguous the I/O request will span multiple clusters, otherwise | |
2553 | * it will be broken up into the minimal set of I/O's | |
1c79356b | 2554 | * |
0b4e3aa0 A |
2555 | * If there are holes in a request (either unallocated pages in a paging |
2556 | * segment or an unallocated paging segment), we stop | |
1c79356b A |
2557 | * reading at the hole, inform the VM of any data read, inform |
2558 | * the VM of an unavailable range, then loop again, hoping to | |
0b4e3aa0 | 2559 | * find valid pages later in the requested range. This continues until |
1c79356b A |
2560 | * the entire range has been examined, and read, if present. |
2561 | */ | |
2562 | ||
2563 | #if USE_PRECIOUS | |
2564 | request_flags = UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_PRECIOUS; | |
2565 | #else | |
2566 | request_flags = UPL_NO_SYNC | UPL_CLEAN_IN_PLACE ; | |
2567 | #endif | |
2568 | while (cnt && (error == KERN_SUCCESS)) { | |
0b4e3aa0 A |
2569 | int ps_info_valid; |
2570 | int page_list_count; | |
1c79356b | 2571 | |
0b4e3aa0 A |
2572 | if (cnt > VM_SUPER_CLUSTER) |
2573 | size = VM_SUPER_CLUSTER; | |
2574 | else | |
2575 | size = cnt; | |
2576 | cnt -= size; | |
1c79356b | 2577 | |
0b4e3aa0 A |
2578 | ps_info_valid = 0; |
2579 | seg_index = 0; | |
1c79356b | 2580 | |
0b4e3aa0 A |
2581 | while (size > 0 && error == KERN_SUCCESS) { |
2582 | int abort_size; | |
2583 | int failed_size; | |
2584 | int beg_pseg; | |
2585 | int beg_indx; | |
2586 | vm_offset_t cur_offset; | |
1c79356b | 2587 | |
0b4e3aa0 A |
2588 | |
2589 | if ( !ps_info_valid) { | |
2590 | ps_offset[seg_index] = ps_clmap(vs, vs_offset & ~cl_mask, &clmap, CL_FIND, 0, 0); | |
2591 | psp[seg_index] = CLMAP_PS(clmap); | |
2592 | ps_info_valid = 1; | |
1c79356b | 2593 | } |
0b4e3aa0 A |
2594 | /* |
2595 | * skip over unallocated physical segments | |
2596 | */ | |
2597 | if (ps_offset[seg_index] == (vm_offset_t) -1) { | |
2598 | abort_size = cl_size - (vs_offset & cl_mask); | |
2599 | abort_size = MIN(abort_size, size); | |
2600 | ||
2601 | page_list_count = 0; | |
2602 | memory_object_super_upl_request( | |
2603 | vs->vs_control, | |
2604 | (memory_object_offset_t)vs_offset, | |
2605 | abort_size, abort_size, | |
2606 | &upl, NULL, &page_list_count, | |
2607 | request_flags); | |
1c79356b | 2608 | |
0b4e3aa0 A |
2609 | if (clmap.cl_error) { |
2610 | upl_abort(upl, UPL_ABORT_ERROR); | |
2611 | } else { | |
2612 | upl_abort(upl, UPL_ABORT_UNAVAILABLE); | |
2613 | } | |
2614 | upl_deallocate(upl); | |
1c79356b | 2615 | |
0b4e3aa0 A |
2616 | size -= abort_size; |
2617 | vs_offset += abort_size; | |
1c79356b | 2618 | |
0b4e3aa0 A |
2619 | seg_index++; |
2620 | ps_info_valid = 0; | |
2621 | continue; | |
1c79356b | 2622 | } |
0b4e3aa0 A |
2623 | cl_index = (vs_offset & cl_mask) / vm_page_size; |
2624 | ||
2625 | for (abort_size = 0; cl_index < pages_in_cl && abort_size < size; cl_index++) { | |
2626 | /* | |
2627 | * skip over unallocated pages | |
2628 | */ | |
2629 | if (CLMAP_ISSET(clmap, cl_index)) | |
2630 | break; | |
2631 | abort_size += vm_page_size; | |
2632 | } | |
2633 | if (abort_size) { | |
2634 | /* | |
2635 | * Let VM system know about holes in clusters. | |
2636 | */ | |
2637 | GSTAT(global_stats.gs_pages_unavail += atop(abort_size)); | |
2638 | ||
2639 | page_list_count = 0; | |
2640 | memory_object_super_upl_request( | |
2641 | vs->vs_control, | |
2642 | (memory_object_offset_t)vs_offset, | |
2643 | abort_size, abort_size, | |
2644 | &upl, NULL, &page_list_count, | |
1c79356b | 2645 | request_flags); |
1c79356b | 2646 | |
0b4e3aa0 A |
2647 | upl_abort(upl, UPL_ABORT_UNAVAILABLE); |
2648 | upl_deallocate(upl); | |
1c79356b | 2649 | |
0b4e3aa0 A |
2650 | size -= abort_size; |
2651 | vs_offset += abort_size; | |
2652 | ||
2653 | if (cl_index == pages_in_cl) { | |
2654 | /* | |
2655 | * if we're at the end of this physical cluster | |
2656 | * then bump to the next one and continue looking | |
2657 | */ | |
2658 | seg_index++; | |
2659 | ps_info_valid = 0; | |
2660 | continue; | |
2661 | } | |
2662 | if (size == 0) | |
2663 | break; | |
2664 | } | |
1c79356b | 2665 | /* |
0b4e3aa0 A |
2666 | * remember the starting point of the first allocated page |
2667 | * for the I/O we're about to issue | |
1c79356b | 2668 | */ |
0b4e3aa0 A |
2669 | beg_pseg = seg_index; |
2670 | beg_indx = cl_index; | |
2671 | cur_offset = vs_offset; | |
2672 | ||
2673 | /* | |
2674 | * calculate the size of the I/O that we can do... | |
2675 | * this may span multiple physical segments if | |
2676 | * they are contiguous | |
2677 | */ | |
2678 | for (xfer_size = 0; xfer_size < size; ) { | |
2679 | ||
2680 | while (cl_index < pages_in_cl && xfer_size < size) { | |
2681 | /* | |
2682 | * accumulate allocated pages within a physical segment | |
1c79356b | 2683 | */ |
0b4e3aa0 A |
2684 | if (CLMAP_ISSET(clmap, cl_index)) { |
2685 | xfer_size += vm_page_size; | |
2686 | cur_offset += vm_page_size; | |
2687 | cl_index++; | |
2688 | ||
2689 | BS_STAT(psp[seg_index]->ps_bs, | |
2690 | psp[seg_index]->ps_bs->bs_pages_in++); | |
2691 | } else | |
2692 | break; | |
2693 | } | |
2694 | if (cl_index < pages_in_cl || xfer_size >= size) { | |
2695 | /* | |
2696 | * we've hit an unallocated page or the | |
2697 | * end of this request... go fire the I/O | |
1c79356b | 2698 | */ |
0b4e3aa0 A |
2699 | break; |
2700 | } | |
2701 | /* | |
2702 | * we've hit the end of the current physical segment | |
2703 | * and there's more to do, so try moving to the next one | |
2704 | */ | |
2705 | seg_index++; | |
2706 | ||
2707 | ps_offset[seg_index] = ps_clmap(vs, cur_offset & ~cl_mask, &clmap, CL_FIND, 0, 0); | |
2708 | psp[seg_index] = CLMAP_PS(clmap); | |
2709 | ps_info_valid = 1; | |
2710 | ||
2711 | if ((ps_offset[seg_index - 1] != (ps_offset[seg_index] - cl_size)) || (psp[seg_index - 1] != psp[seg_index])) { | |
2712 | /* | |
2713 | * if the physical segment we're about to step into | |
2714 | * is not contiguous to the one we're currently | |
2715 | * in, or it's in a different paging file, or | |
2716 | * it hasn't been allocated.... | |
2717 | * we stop here and generate the I/O | |
2718 | */ | |
2719 | break; | |
1c79356b | 2720 | } |
0b4e3aa0 A |
2721 | /* |
2722 | * start with first page of the next physical segment | |
2723 | */ | |
2724 | cl_index = 0; | |
1c79356b | 2725 | } |
0b4e3aa0 A |
2726 | if (xfer_size) { |
2727 | /* | |
2728 | * we have a contiguous range of allocated pages | |
2729 | * to read from | |
2730 | */ | |
2731 | page_list_count = 0; | |
2732 | memory_object_super_upl_request(vs->vs_control, | |
2733 | (memory_object_offset_t)vs_offset, | |
2734 | xfer_size, xfer_size, | |
2735 | &upl, NULL, &page_list_count, | |
2736 | request_flags | UPL_SET_INTERNAL); | |
2737 | ||
2738 | error = ps_read_file(psp[beg_pseg], upl, (vm_offset_t) 0, | |
2739 | ps_offset[beg_pseg] + (beg_indx * vm_page_size), xfer_size, &residual, 0); | |
2740 | } else | |
2741 | continue; | |
1c79356b | 2742 | |
0b4e3aa0 A |
2743 | failed_size = 0; |
2744 | ||
2745 | /* | |
2746 | * Adjust counts and send response to VM. Optimize for the | |
2747 | * common case, i.e. no error and/or partial data. | |
2748 | * If there was an error, then we need to error the entire | |
2749 | * range, even if some data was successfully read. | |
2750 | * If there was a partial read we may supply some | |
2751 | * data and may error some as well. In all cases the | |
2752 | * VM must receive some notification for every page in the | |
2753 | * range. | |
2754 | */ | |
2755 | if ((error == KERN_SUCCESS) && (residual == 0)) { | |
2756 | /* | |
2757 | * Got everything we asked for, supply the data to | |
2758 | * the VM. Note that as a side effect of supplying | |
2759 | * the data, the buffer holding the supplied data is | |
2760 | * deallocated from the pager's address space. | |
2761 | */ | |
2762 | pvs_object_data_provided(vs, upl, vs_offset, xfer_size); | |
2763 | } else { | |
2764 | failed_size = xfer_size; | |
2765 | ||
2766 | if (error == KERN_SUCCESS) { | |
2767 | if (residual == xfer_size) { | |
2768 | /* | |
2769 | * If a read operation returns no error | |
2770 | * and no data moved, we turn it into | |
2771 | * an error, assuming we're reading at | |
2772 | * or beyong EOF. | |
2773 | * Fall through and error the entire | |
2774 | * range. | |
2775 | */ | |
2776 | error = KERN_FAILURE; | |
2777 | } else { | |
2778 | /* | |
2779 | * Otherwise, we have partial read. If | |
2780 | * the part read is a integral number | |
2781 | * of pages supply it. Otherwise round | |
2782 | * it up to a page boundary, zero fill | |
2783 | * the unread part, and supply it. | |
2784 | * Fall through and error the remainder | |
2785 | * of the range, if any. | |
2786 | */ | |
2787 | int fill, lsize; | |
2788 | ||
2789 | fill = residual & ~vm_page_size; | |
2790 | lsize = (xfer_size - residual) + fill; | |
2791 | pvs_object_data_provided(vs, upl, vs_offset, lsize); | |
2792 | ||
2793 | if (lsize < xfer_size) { | |
2794 | failed_size = xfer_size - lsize; | |
2795 | error = KERN_FAILURE; | |
2796 | } | |
2797 | } | |
2798 | } | |
2799 | } | |
1c79356b A |
2800 | /* |
2801 | * If there was an error in any part of the range, tell | |
0b4e3aa0 | 2802 | * the VM. Note that error is explicitly checked again since |
1c79356b A |
2803 | * it can be modified above. |
2804 | */ | |
2805 | if (error != KERN_SUCCESS) { | |
0b4e3aa0 A |
2806 | BS_STAT(psp[beg_pseg]->ps_bs, |
2807 | psp[beg_pseg]->ps_bs->bs_pages_in_fail += atop(failed_size)); | |
1c79356b | 2808 | } |
0b4e3aa0 A |
2809 | size -= xfer_size; |
2810 | vs_offset += xfer_size; | |
1c79356b | 2811 | } |
1c79356b A |
2812 | |
2813 | } /* END while (cnt && (error == 0)) */ | |
2814 | return error; | |
2815 | } | |
2816 | ||
2817 | int vs_do_async_write = 1; | |
2818 | ||
2819 | kern_return_t | |
2820 | vs_cluster_write( | |
2821 | vstruct_t vs, | |
2822 | upl_t internal_upl, | |
2823 | vm_offset_t offset, | |
2824 | vm_size_t cnt, | |
2825 | boolean_t dp_internal, | |
2826 | int flags) | |
2827 | { | |
1c79356b A |
2828 | vm_offset_t size; |
2829 | vm_offset_t transfer_size; | |
1c79356b A |
2830 | int error = 0; |
2831 | struct clmap clmap; | |
0b4e3aa0 A |
2832 | |
2833 | vm_offset_t actual_offset; /* Offset within paging segment */ | |
1c79356b | 2834 | paging_segment_t ps; |
0b4e3aa0 A |
2835 | vm_offset_t subx_size; |
2836 | vm_offset_t mobj_base_addr; | |
2837 | vm_offset_t mobj_target_addr; | |
2838 | int mobj_size; | |
2839 | ||
1c79356b A |
2840 | struct vs_async *vsa; |
2841 | vm_map_copy_t copy; | |
1c79356b A |
2842 | |
2843 | upl_t upl; | |
0b4e3aa0 | 2844 | upl_page_info_t *pl; |
1c79356b A |
2845 | int page_index; |
2846 | int list_size; | |
2847 | int cl_size; | |
1c79356b | 2848 | |
1c79356b | 2849 | if (!dp_internal) { |
0b4e3aa0 | 2850 | int page_list_count; |
1c79356b A |
2851 | int request_flags; |
2852 | int super_size; | |
0b4e3aa0 A |
2853 | int first_dirty; |
2854 | int num_dirty; | |
2855 | int num_of_pages; | |
2856 | int seg_index; | |
2857 | int pages_in_cl; | |
2858 | int must_abort; | |
1c79356b | 2859 | vm_offset_t upl_offset; |
0b4e3aa0 A |
2860 | vm_offset_t seg_offset; |
2861 | vm_offset_t ps_offset[(VM_SUPER_CLUSTER / PAGE_SIZE) >> VSTRUCT_DEF_CLSHIFT]; | |
2862 | paging_segment_t psp[(VM_SUPER_CLUSTER / PAGE_SIZE) >> VSTRUCT_DEF_CLSHIFT]; | |
2863 | ||
1c79356b | 2864 | |
0b4e3aa0 A |
2865 | pages_in_cl = 1 << vs->vs_clshift; |
2866 | cl_size = pages_in_cl * vm_page_size; | |
1c79356b A |
2867 | |
2868 | if (bs_low) { | |
2869 | super_size = cl_size; | |
0b4e3aa0 | 2870 | |
1c79356b A |
2871 | request_flags = UPL_NOBLOCK | |
2872 | UPL_RET_ONLY_DIRTY | UPL_COPYOUT_FROM | | |
2873 | UPL_NO_SYNC | UPL_SET_INTERNAL; | |
2874 | } else { | |
2875 | super_size = VM_SUPER_CLUSTER; | |
0b4e3aa0 | 2876 | |
1c79356b A |
2877 | request_flags = UPL_NOBLOCK | UPL_CLEAN_IN_PLACE | |
2878 | UPL_RET_ONLY_DIRTY | UPL_COPYOUT_FROM | | |
2879 | UPL_NO_SYNC | UPL_SET_INTERNAL; | |
2880 | } | |
2881 | ||
0b4e3aa0 A |
2882 | page_list_count = 0; |
2883 | memory_object_super_upl_request(vs->vs_control, | |
2884 | (memory_object_offset_t)offset, | |
2885 | cnt, super_size, | |
2886 | &upl, NULL, &page_list_count, | |
2887 | request_flags | UPL_PAGEOUT); | |
1c79356b | 2888 | |
0b4e3aa0 | 2889 | pl = UPL_GET_INTERNAL_PAGE_LIST(upl); |
1c79356b | 2890 | |
0b4e3aa0 | 2891 | for (seg_index = 0, transfer_size = upl->size; transfer_size > 0; ) { |
1c79356b | 2892 | |
0b4e3aa0 A |
2893 | ps_offset[seg_index] = ps_clmap(vs, upl->offset + (seg_index * cl_size), |
2894 | &clmap, CL_ALLOC, | |
2895 | transfer_size < cl_size ? | |
2896 | transfer_size : cl_size, 0); | |
1c79356b | 2897 | |
0b4e3aa0 A |
2898 | if (ps_offset[seg_index] == (vm_offset_t) -1) { |
2899 | upl_abort(upl, 0); | |
2900 | upl_deallocate(upl); | |
2901 | ||
2902 | return KERN_FAILURE; | |
1c79356b | 2903 | |
0b4e3aa0 A |
2904 | } |
2905 | psp[seg_index] = CLMAP_PS(clmap); | |
1c79356b | 2906 | |
0b4e3aa0 A |
2907 | if (transfer_size > cl_size) { |
2908 | transfer_size -= cl_size; | |
2909 | seg_index++; | |
2910 | } else | |
2911 | transfer_size = 0; | |
2912 | } | |
2913 | for (page_index = 0, num_of_pages = upl->size / vm_page_size; page_index < num_of_pages; ) { | |
2914 | /* | |
2915 | * skip over non-dirty pages | |
2916 | */ | |
2917 | for ( ; page_index < num_of_pages; page_index++) { | |
2918 | if (UPL_DIRTY_PAGE(pl, page_index) || UPL_PRECIOUS_PAGE(pl, page_index)) | |
2919 | /* | |
2920 | * this is a page we need to write | |
2921 | * go see if we can buddy it up with others | |
2922 | * that are contiguous to it | |
2923 | */ | |
2924 | break; | |
2925 | /* | |
2926 | * if the page is not-dirty, but present we need to commit it... | |
2927 | * this is an unusual case since we only asked for dirty pages | |
2928 | */ | |
2929 | if (UPL_PAGE_PRESENT(pl, page_index)) { | |
2930 | boolean_t empty = FALSE; | |
2931 | upl_commit_range(upl, | |
2932 | page_index * vm_page_size, | |
2933 | vm_page_size, | |
2934 | UPL_COMMIT_NOTIFY_EMPTY, | |
2935 | pl, | |
2936 | MAX_UPL_TRANSFER, | |
2937 | &empty); | |
2938 | if (empty) | |
2939 | upl_deallocate(upl); | |
1c79356b | 2940 | } |
1c79356b | 2941 | } |
0b4e3aa0 A |
2942 | if (page_index == num_of_pages) |
2943 | /* | |
2944 | * no more pages to look at, we're out of here | |
2945 | */ | |
2946 | break; | |
1c79356b | 2947 | |
0b4e3aa0 A |
2948 | /* |
2949 | * gather up contiguous dirty pages... we have at least 1 | |
2950 | * otherwise we would have bailed above | |
2951 | * make sure that each physical segment that we step | |
2952 | * into is contiguous to the one we're currently in | |
2953 | * if it's not, we have to stop and write what we have | |
2954 | */ | |
2955 | for (first_dirty = page_index; page_index < num_of_pages; ) { | |
2956 | if ( !UPL_DIRTY_PAGE(pl, page_index) && !UPL_PRECIOUS_PAGE(pl, page_index)) | |
2957 | break; | |
2958 | page_index++; | |
2959 | /* | |
2960 | * if we just looked at the last page in the UPL | |
2961 | * we don't need to check for physical segment | |
2962 | * continuity | |
2963 | */ | |
2964 | if (page_index < num_of_pages) { | |
2965 | int cur_seg; | |
2966 | int nxt_seg; | |
2967 | ||
2968 | cur_seg = (page_index - 1) / pages_in_cl; | |
2969 | nxt_seg = page_index / pages_in_cl; | |
2970 | ||
2971 | if (cur_seg != nxt_seg) { | |
2972 | if ((ps_offset[cur_seg] != (ps_offset[nxt_seg] - cl_size)) || (psp[cur_seg] != psp[nxt_seg])) | |
2973 | /* | |
2974 | * if the segment we're about to step into | |
2975 | * is not contiguous to the one we're currently | |
2976 | * in, or it's in a different paging file.... | |
2977 | * we stop here and generate the I/O | |
2978 | */ | |
2979 | break; | |
1c79356b | 2980 | } |
1c79356b | 2981 | } |
0b4e3aa0 A |
2982 | } |
2983 | num_dirty = page_index - first_dirty; | |
2984 | must_abort = 1; | |
1c79356b | 2985 | |
0b4e3aa0 A |
2986 | if (num_dirty) { |
2987 | upl_offset = first_dirty * vm_page_size; | |
2988 | seg_index = first_dirty / pages_in_cl; | |
2989 | seg_offset = upl_offset - (seg_index * cl_size); | |
2990 | transfer_size = num_dirty * vm_page_size; | |
2991 | ||
2992 | error = ps_write_file(psp[seg_index], upl, upl_offset, | |
2993 | ps_offset[seg_index] + seg_offset, transfer_size, flags); | |
2994 | ||
2995 | if (error == 0) { | |
2996 | while (transfer_size) { | |
2997 | int seg_size; | |
1c79356b | 2998 | |
0b4e3aa0 A |
2999 | if ((seg_size = cl_size - (upl_offset % cl_size)) > transfer_size) |
3000 | seg_size = transfer_size; | |
3001 | ||
3002 | ps_vs_write_complete(vs, upl->offset + upl_offset, seg_size, error); | |
3003 | ||
3004 | transfer_size -= seg_size; | |
3005 | upl_offset += seg_size; | |
3006 | } | |
3007 | must_abort = 0; | |
3008 | } | |
3009 | } | |
3010 | if (must_abort) { | |
3011 | boolean_t empty = FALSE; | |
3012 | upl_abort_range(upl, | |
3013 | first_dirty * vm_page_size, | |
3014 | num_dirty * vm_page_size, | |
3015 | UPL_ABORT_NOTIFY_EMPTY, | |
3016 | &empty); | |
3017 | if (empty) | |
3018 | upl_deallocate(upl); | |
1c79356b | 3019 | } |
1c79356b | 3020 | } |
0b4e3aa0 | 3021 | |
1c79356b A |
3022 | } else { |
3023 | assert(cnt <= (vm_page_size << vs->vs_clshift)); | |
3024 | list_size = cnt; | |
3025 | ||
3026 | page_index = 0; | |
3027 | /* The caller provides a mapped_data which is derived */ | |
3028 | /* from a temporary object. The targeted pages are */ | |
3029 | /* guaranteed to be set at offset 0 in the mapped_data */ | |
3030 | /* The actual offset however must still be derived */ | |
3031 | /* from the offset in the vs in question */ | |
3032 | mobj_base_addr = offset; | |
3033 | mobj_target_addr = mobj_base_addr; | |
3034 | ||
3035 | for (transfer_size = list_size; transfer_size != 0;) { | |
3036 | actual_offset = ps_clmap(vs, mobj_target_addr, | |
3037 | &clmap, CL_ALLOC, | |
3038 | transfer_size < cl_size ? | |
3039 | transfer_size : cl_size, 0); | |
3040 | if(actual_offset == (vm_offset_t) -1) { | |
3041 | error = 1; | |
3042 | break; | |
3043 | } | |
3044 | cnt = MIN(transfer_size, | |
3045 | CLMAP_NPGS(clmap) * vm_page_size); | |
3046 | ps = CLMAP_PS(clmap); | |
3047 | /* Assume that the caller has given us contiguous */ | |
3048 | /* pages */ | |
3049 | if(cnt) { | |
3050 | error = ps_write_file(ps, internal_upl, | |
3051 | 0, actual_offset, | |
3052 | cnt, flags); | |
3053 | if (error) | |
3054 | break; | |
3055 | ps_vs_write_complete(vs, mobj_target_addr, | |
3056 | cnt, error); | |
3057 | } | |
3058 | if (error) | |
3059 | break; | |
3060 | actual_offset += cnt; | |
3061 | mobj_target_addr += cnt; | |
3062 | transfer_size -= cnt; | |
3063 | cnt = 0; | |
3064 | ||
3065 | if (error) | |
3066 | break; | |
3067 | } | |
3068 | } | |
3069 | if(error) | |
3070 | return KERN_FAILURE; | |
3071 | else | |
3072 | return KERN_SUCCESS; | |
3073 | } | |
3074 | ||
3075 | vm_size_t | |
3076 | ps_vstruct_allocated_size( | |
3077 | vstruct_t vs) | |
3078 | { | |
3079 | int num_pages; | |
3080 | struct vs_map *vsmap; | |
3081 | int i, j, k; | |
3082 | ||
3083 | num_pages = 0; | |
3084 | if (vs->vs_indirect) { | |
3085 | /* loop on indirect maps */ | |
3086 | for (i = 0; i < INDIRECT_CLMAP_ENTRIES(vs->vs_size); i++) { | |
3087 | vsmap = vs->vs_imap[i]; | |
3088 | if (vsmap == NULL) | |
3089 | continue; | |
3090 | /* loop on clusters in this indirect map */ | |
3091 | for (j = 0; j < CLMAP_ENTRIES; j++) { | |
3092 | if (VSM_ISCLR(vsmap[j]) || | |
3093 | VSM_ISERR(vsmap[j])) | |
3094 | continue; | |
3095 | /* loop on pages in this cluster */ | |
3096 | for (k = 0; k < VSCLSIZE(vs); k++) { | |
3097 | if ((VSM_BMAP(vsmap[j])) & (1 << k)) | |
3098 | num_pages++; | |
3099 | } | |
3100 | } | |
3101 | } | |
3102 | } else { | |
3103 | vsmap = vs->vs_dmap; | |
3104 | if (vsmap == NULL) | |
3105 | return 0; | |
3106 | /* loop on clusters in the direct map */ | |
3107 | for (j = 0; j < CLMAP_ENTRIES; j++) { | |
3108 | if (VSM_ISCLR(vsmap[j]) || | |
3109 | VSM_ISERR(vsmap[j])) | |
3110 | continue; | |
3111 | /* loop on pages in this cluster */ | |
3112 | for (k = 0; k < VSCLSIZE(vs); k++) { | |
3113 | if ((VSM_BMAP(vsmap[j])) & (1 << k)) | |
3114 | num_pages++; | |
3115 | } | |
3116 | } | |
3117 | } | |
3118 | ||
3119 | return ptoa(num_pages); | |
3120 | } | |
3121 | ||
3122 | size_t | |
3123 | ps_vstruct_allocated_pages( | |
3124 | vstruct_t vs, | |
3125 | default_pager_page_t *pages, | |
3126 | size_t pages_size) | |
3127 | { | |
3128 | int num_pages; | |
3129 | struct vs_map *vsmap; | |
3130 | vm_offset_t offset; | |
3131 | int i, j, k; | |
3132 | ||
3133 | num_pages = 0; | |
3134 | offset = 0; | |
3135 | if (vs->vs_indirect) { | |
3136 | /* loop on indirect maps */ | |
3137 | for (i = 0; i < INDIRECT_CLMAP_ENTRIES(vs->vs_size); i++) { | |
3138 | vsmap = vs->vs_imap[i]; | |
3139 | if (vsmap == NULL) { | |
3140 | offset += (vm_page_size * CLMAP_ENTRIES * | |
3141 | VSCLSIZE(vs)); | |
3142 | continue; | |
3143 | } | |
3144 | /* loop on clusters in this indirect map */ | |
3145 | for (j = 0; j < CLMAP_ENTRIES; j++) { | |
3146 | if (VSM_ISCLR(vsmap[j]) || | |
3147 | VSM_ISERR(vsmap[j])) { | |
3148 | offset += vm_page_size * VSCLSIZE(vs); | |
3149 | continue; | |
3150 | } | |
3151 | /* loop on pages in this cluster */ | |
3152 | for (k = 0; k < VSCLSIZE(vs); k++) { | |
3153 | if ((VSM_BMAP(vsmap[j])) & (1 << k)) { | |
3154 | num_pages++; | |
3155 | if (num_pages < pages_size) | |
3156 | pages++->dpp_offset = | |
3157 | offset; | |
3158 | } | |
3159 | offset += vm_page_size; | |
3160 | } | |
3161 | } | |
3162 | } | |
3163 | } else { | |
3164 | vsmap = vs->vs_dmap; | |
3165 | if (vsmap == NULL) | |
3166 | return 0; | |
3167 | /* loop on clusters in the direct map */ | |
3168 | for (j = 0; j < CLMAP_ENTRIES; j++) { | |
3169 | if (VSM_ISCLR(vsmap[j]) || | |
3170 | VSM_ISERR(vsmap[j])) { | |
3171 | offset += vm_page_size * VSCLSIZE(vs); | |
3172 | continue; | |
3173 | } | |
3174 | /* loop on pages in this cluster */ | |
3175 | for (k = 0; k < VSCLSIZE(vs); k++) { | |
3176 | if ((VSM_BMAP(vsmap[j])) & (1 << k)) { | |
3177 | num_pages++; | |
3178 | if (num_pages < pages_size) | |
3179 | pages++->dpp_offset = offset; | |
3180 | } | |
3181 | offset += vm_page_size; | |
3182 | } | |
3183 | } | |
3184 | } | |
3185 | ||
3186 | return num_pages; | |
3187 | } | |
3188 | ||
3189 | ||
3190 | kern_return_t | |
3191 | ps_vstruct_transfer_from_segment( | |
3192 | vstruct_t vs, | |
3193 | paging_segment_t segment, | |
3194 | #ifndef ubc_sync_working | |
3195 | vm_object_t transfer_object) | |
3196 | #else | |
3197 | upl_t upl) | |
3198 | #endif | |
3199 | { | |
3200 | struct vs_map *vsmap; | |
3201 | struct vs_map old_vsmap; | |
3202 | struct vs_map new_vsmap; | |
3203 | int i, j, k; | |
3204 | ||
3205 | VS_LOCK(vs); /* block all work on this vstruct */ | |
3206 | /* can't allow the normal multiple write */ | |
3207 | /* semantic because writes may conflict */ | |
3208 | vs->vs_xfer_pending = TRUE; | |
3209 | vs_wait_for_sync_writers(vs); | |
3210 | vs_start_write(vs); | |
3211 | vs_wait_for_readers(vs); | |
3212 | /* we will unlock the vs to allow other writes while transferring */ | |
3213 | /* and will be guaranteed of the persistance of the vs struct */ | |
3214 | /* because the caller of ps_vstruct_transfer_from_segment bumped */ | |
3215 | /* vs_async_pending */ | |
3216 | /* OK we now have guaranteed no other parties are accessing this */ | |
3217 | /* vs. Now that we are also supporting simple lock versions of */ | |
3218 | /* vs_lock we cannot hold onto VS_LOCK as we may block below. */ | |
3219 | /* our purpose in holding it before was the multiple write case */ | |
3220 | /* we now use the boolean xfer_pending to do that. We can use */ | |
3221 | /* a boolean instead of a count because we have guaranteed single */ | |
3222 | /* file access to this code in its caller */ | |
3223 | VS_UNLOCK(vs); | |
3224 | vs_changed: | |
3225 | if (vs->vs_indirect) { | |
3226 | int vsmap_size; | |
3227 | int clmap_off; | |
3228 | /* loop on indirect maps */ | |
3229 | for (i = 0; i < INDIRECT_CLMAP_ENTRIES(vs->vs_size); i++) { | |
3230 | vsmap = vs->vs_imap[i]; | |
3231 | if (vsmap == NULL) | |
3232 | continue; | |
3233 | /* loop on clusters in this indirect map */ | |
3234 | clmap_off = (vm_page_size * CLMAP_ENTRIES * | |
3235 | VSCLSIZE(vs) * i); | |
3236 | if(i+1 == INDIRECT_CLMAP_ENTRIES(vs->vs_size)) | |
3237 | vsmap_size = vs->vs_size - (CLMAP_ENTRIES * i); | |
3238 | else | |
3239 | vsmap_size = CLMAP_ENTRIES; | |
3240 | for (j = 0; j < vsmap_size; j++) { | |
3241 | if (VSM_ISCLR(vsmap[j]) || | |
3242 | VSM_ISERR(vsmap[j]) || | |
3243 | (VSM_PS(vsmap[j]) != segment)) | |
3244 | continue; | |
3245 | if(vs_cluster_transfer(vs, | |
3246 | (vm_page_size * (j << vs->vs_clshift)) | |
3247 | + clmap_off, | |
3248 | vm_page_size << vs->vs_clshift, | |
3249 | #ifndef ubc_sync_working | |
3250 | transfer_object) | |
3251 | #else | |
3252 | upl) | |
3253 | #endif | |
3254 | != KERN_SUCCESS) { | |
3255 | VS_LOCK(vs); | |
3256 | vs->vs_xfer_pending = FALSE; | |
3257 | VS_UNLOCK(vs); | |
3258 | vs_finish_write(vs); | |
3259 | return KERN_FAILURE; | |
3260 | } | |
3261 | /* allow other readers/writers during transfer*/ | |
3262 | VS_LOCK(vs); | |
3263 | vs->vs_xfer_pending = FALSE; | |
3264 | VS_UNLOCK(vs); | |
3265 | vs_finish_write(vs); | |
3266 | VS_LOCK(vs); | |
3267 | vs->vs_xfer_pending = TRUE; | |
1c79356b A |
3268 | vs_wait_for_sync_writers(vs); |
3269 | vs_start_write(vs); | |
3270 | vs_wait_for_readers(vs); | |
0b4e3aa0 | 3271 | VS_UNLOCK(vs); |
1c79356b A |
3272 | if (!(vs->vs_indirect)) { |
3273 | goto vs_changed; | |
3274 | } | |
3275 | } | |
3276 | } | |
3277 | } else { | |
3278 | vsmap = vs->vs_dmap; | |
3279 | if (vsmap == NULL) { | |
3280 | VS_LOCK(vs); | |
3281 | vs->vs_xfer_pending = FALSE; | |
3282 | VS_UNLOCK(vs); | |
3283 | vs_finish_write(vs); | |
3284 | return KERN_SUCCESS; | |
3285 | } | |
3286 | /* loop on clusters in the direct map */ | |
3287 | for (j = 0; j < vs->vs_size; j++) { | |
3288 | if (VSM_ISCLR(vsmap[j]) || | |
3289 | VSM_ISERR(vsmap[j]) || | |
3290 | (VSM_PS(vsmap[j]) != segment)) | |
3291 | continue; | |
3292 | if(vs_cluster_transfer(vs, | |
3293 | vm_page_size * (j << vs->vs_clshift), | |
3294 | vm_page_size << vs->vs_clshift, | |
3295 | #ifndef ubc_sync_working | |
3296 | transfer_object) != KERN_SUCCESS) { | |
3297 | #else | |
3298 | upl) != KERN_SUCCESS) { | |
3299 | #endif | |
3300 | VS_LOCK(vs); | |
3301 | vs->vs_xfer_pending = FALSE; | |
3302 | VS_UNLOCK(vs); | |
3303 | vs_finish_write(vs); | |
3304 | return KERN_FAILURE; | |
3305 | } | |
3306 | /* allow other readers/writers during transfer*/ | |
3307 | VS_LOCK(vs); | |
3308 | vs->vs_xfer_pending = FALSE; | |
3309 | VS_UNLOCK(vs); | |
3310 | vs_finish_write(vs); | |
3311 | VS_LOCK(vs); | |
3312 | vs->vs_xfer_pending = TRUE; | |
3313 | VS_UNLOCK(vs); | |
3314 | vs_wait_for_sync_writers(vs); | |
3315 | vs_start_write(vs); | |
3316 | vs_wait_for_readers(vs); | |
3317 | if (vs->vs_indirect) { | |
3318 | goto vs_changed; | |
3319 | } | |
3320 | } | |
3321 | } | |
3322 | ||
3323 | VS_LOCK(vs); | |
3324 | vs->vs_xfer_pending = FALSE; | |
3325 | VS_UNLOCK(vs); | |
3326 | vs_finish_write(vs); | |
3327 | return KERN_SUCCESS; | |
3328 | } | |
3329 | ||
3330 | ||
3331 | ||
3332 | vs_map_t | |
3333 | vs_get_map_entry( | |
3334 | vstruct_t vs, | |
3335 | vm_offset_t offset) | |
3336 | { | |
3337 | struct vs_map *vsmap; | |
3338 | vm_offset_t cluster; | |
3339 | ||
3340 | cluster = atop(offset) >> vs->vs_clshift; | |
3341 | if (vs->vs_indirect) { | |
3342 | long ind_block = cluster/CLMAP_ENTRIES; | |
3343 | ||
3344 | /* Is the indirect block allocated? */ | |
3345 | vsmap = vs->vs_imap[ind_block]; | |
3346 | if(vsmap == (vs_map_t) NULL) | |
3347 | return vsmap; | |
3348 | } else | |
3349 | vsmap = vs->vs_dmap; | |
3350 | vsmap += cluster%CLMAP_ENTRIES; | |
3351 | return vsmap; | |
3352 | } | |
3353 | ||
3354 | kern_return_t | |
3355 | vs_cluster_transfer( | |
3356 | vstruct_t vs, | |
3357 | vm_offset_t offset, | |
3358 | vm_size_t cnt, | |
3359 | #ifndef ubc_sync_working | |
3360 | vm_object_t transfer_object) | |
3361 | #else | |
3362 | upl_t upl) | |
3363 | #endif | |
3364 | { | |
3365 | vm_offset_t actual_offset; | |
3366 | paging_segment_t ps; | |
3367 | struct clmap clmap; | |
3368 | kern_return_t error = KERN_SUCCESS; | |
3369 | int size, size_wanted, i; | |
3370 | unsigned int residual; | |
3371 | int unavail_size; | |
3372 | default_pager_thread_t *dpt; | |
3373 | boolean_t dealloc; | |
3374 | struct vs_map *vsmap_ptr; | |
3375 | struct vs_map read_vsmap; | |
3376 | struct vs_map original_read_vsmap; | |
3377 | struct vs_map write_vsmap; | |
3378 | upl_t sync_upl; | |
3379 | #ifndef ubc_sync_working | |
3380 | upl_t upl; | |
3381 | #endif | |
3382 | ||
3383 | vm_offset_t ioaddr; | |
3384 | ||
1c79356b A |
3385 | /* vs_cluster_transfer reads in the pages of a cluster and |
3386 | * then writes these pages back to new backing store. The | |
3387 | * segment the pages are being read from is assumed to have | |
3388 | * been taken off-line and is no longer considered for new | |
3389 | * space requests. | |
3390 | */ | |
3391 | ||
3392 | /* | |
3393 | * This loop will be executed once per cluster referenced. | |
3394 | * Typically this means once, since it's unlikely that the | |
3395 | * VM system will ask for anything spanning cluster boundaries. | |
3396 | * | |
3397 | * If there are holes in a cluster (in a paging segment), we stop | |
3398 | * reading at the hole, then loop again, hoping to | |
3399 | * find valid pages later in the cluster. This continues until | |
3400 | * the entire range has been examined, and read, if present. The | |
3401 | * pages are written as they are read. If a failure occurs after | |
3402 | * some pages are written the unmap call at the bottom of the loop | |
3403 | * recovers the backing store and the old backing store remains | |
3404 | * in effect. | |
3405 | */ | |
3406 | ||
1c79356b A |
3407 | VSM_CLR(write_vsmap); |
3408 | VSM_CLR(original_read_vsmap); | |
3409 | /* grab the actual object's pages to sync with I/O */ | |
3410 | while (cnt && (error == KERN_SUCCESS)) { | |
3411 | vsmap_ptr = vs_get_map_entry(vs, offset); | |
3412 | actual_offset = ps_clmap(vs, offset, &clmap, CL_FIND, 0, 0); | |
3413 | ||
3414 | if (actual_offset == (vm_offset_t) -1) { | |
3415 | ||
3416 | /* | |
3417 | * Nothing left to write in this cluster at least | |
3418 | * set write cluster information for any previous | |
3419 | * write, clear for next cluster, if there is one | |
3420 | */ | |
3421 | unsigned int local_size, clmask, clsize; | |
3422 | ||
3423 | clsize = vm_page_size << vs->vs_clshift; | |
3424 | clmask = clsize - 1; | |
3425 | local_size = clsize - (offset & clmask); | |
3426 | ASSERT(local_size); | |
3427 | local_size = MIN(local_size, cnt); | |
3428 | ||
3429 | /* This cluster has no data in it beyond what may */ | |
3430 | /* have been found on a previous iteration through */ | |
3431 | /* the loop "write_vsmap" */ | |
3432 | *vsmap_ptr = write_vsmap; | |
3433 | VSM_CLR(write_vsmap); | |
3434 | VSM_CLR(original_read_vsmap); | |
3435 | ||
3436 | cnt -= local_size; | |
3437 | offset += local_size; | |
3438 | continue; | |
3439 | } | |
3440 | ||
3441 | /* | |
3442 | * Count up contiguous available or unavailable | |
3443 | * pages. | |
3444 | */ | |
3445 | ps = CLMAP_PS(clmap); | |
3446 | ASSERT(ps); | |
3447 | size = 0; | |
3448 | unavail_size = 0; | |
3449 | for (i = 0; | |
3450 | (size < cnt) && (unavail_size < cnt) && | |
3451 | (i < CLMAP_NPGS(clmap)); i++) { | |
3452 | if (CLMAP_ISSET(clmap, i)) { | |
3453 | if (unavail_size != 0) | |
3454 | break; | |
3455 | size += vm_page_size; | |
3456 | BS_STAT(ps->ps_bs, | |
3457 | ps->ps_bs->bs_pages_in++); | |
3458 | } else { | |
3459 | if (size != 0) | |
3460 | break; | |
3461 | unavail_size += vm_page_size; | |
3462 | } | |
3463 | } | |
3464 | ||
3465 | if (size == 0) { | |
3466 | ASSERT(unavail_size); | |
3467 | cnt -= unavail_size; | |
3468 | offset += unavail_size; | |
3469 | if((offset & ((vm_page_size << vs->vs_clshift) - 1)) | |
3470 | == 0) { | |
3471 | /* There is no more to transfer in this | |
3472 | cluster | |
3473 | */ | |
3474 | *vsmap_ptr = write_vsmap; | |
3475 | VSM_CLR(write_vsmap); | |
3476 | VSM_CLR(original_read_vsmap); | |
3477 | } | |
3478 | continue; | |
3479 | } | |
3480 | ||
3481 | if(VSM_ISCLR(original_read_vsmap)) | |
3482 | original_read_vsmap = *vsmap_ptr; | |
3483 | ||
3484 | if(ps->ps_segtype == PS_PARTITION) { | |
3485 | /* | |
3486 | NEED TO BE WITH SYNC & NO COMMIT | |
3487 | error = ps_read_device(ps, actual_offset, &buffer, | |
3488 | size, &residual, flags); | |
3489 | */ | |
3490 | } else { | |
3491 | #ifndef ubc_sync_working | |
0b4e3aa0 A |
3492 | int page_list_count = 0; |
3493 | ||
3494 | error = vm_object_upl_request(transfer_object, | |
1c79356b | 3495 | (vm_object_offset_t) (actual_offset & ((vm_page_size << vs->vs_clshift) - 1)), |
0b4e3aa0 A |
3496 | size, &upl, NULL, &page_list_count, |
3497 | UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | |
3498 | | UPL_SET_INTERNAL); | |
1c79356b | 3499 | if (error == KERN_SUCCESS) { |
0b4e3aa0 | 3500 | error = ps_read_file(ps, upl, (vm_offset_t) 0, actual_offset, |
1c79356b A |
3501 | size, &residual, 0); |
3502 | if(error) | |
0b4e3aa0 A |
3503 | upl_commit(upl, NULL); |
3504 | upl_deallocate(upl); | |
1c79356b A |
3505 | } |
3506 | ||
3507 | #else | |
3508 | /* NEED TO BE WITH SYNC & NO COMMIT & NO RDAHEAD*/ | |
0b4e3aa0 | 3509 | error = ps_read_file(ps, upl, (vm_offset_t) 0, actual_offset, |
1c79356b A |
3510 | size, &residual, |
3511 | (UPL_IOSYNC | UPL_NOCOMMIT | UPL_NORDAHEAD)); | |
3512 | #endif | |
3513 | } | |
3514 | ||
3515 | read_vsmap = *vsmap_ptr; | |
3516 | ||
3517 | ||
3518 | /* | |
3519 | * Adjust counts and put data in new BS. Optimize for the | |
3520 | * common case, i.e. no error and/or partial data. | |
3521 | * If there was an error, then we need to error the entire | |
3522 | * range, even if some data was successfully read. | |
3523 | * | |
3524 | */ | |
3525 | if ((error == KERN_SUCCESS) && (residual == 0)) { | |
0b4e3aa0 A |
3526 | int page_list_count = 0; |
3527 | ||
1c79356b A |
3528 | /* |
3529 | * Got everything we asked for, supply the data to | |
3530 | * the new BS. Note that as a side effect of supplying | |
3531 | * the data, the buffer holding the supplied data is | |
3532 | * deallocated from the pager's address space unless | |
3533 | * the write is unsuccessful. | |
3534 | */ | |
3535 | ||
3536 | /* note buffer will be cleaned up in all cases by */ | |
3537 | /* internal_cluster_write or if an error on write */ | |
3538 | /* the vm_map_copy_page_discard call */ | |
3539 | *vsmap_ptr = write_vsmap; | |
3540 | ||
3541 | #ifndef ubc_sync_working | |
0b4e3aa0 A |
3542 | error = vm_object_upl_request(transfer_object, |
3543 | (vm_object_offset_t) | |
3544 | (actual_offset & ((vm_page_size << vs->vs_clshift) - 1)), | |
3545 | size, &upl, NULL, &page_list_count, | |
3546 | UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL); | |
1c79356b A |
3547 | if(vs_cluster_write(vs, upl, offset, |
3548 | size, TRUE, 0) != KERN_SUCCESS) { | |
0b4e3aa0 A |
3549 | upl_commit(upl, NULL); |
3550 | upl_deallocate(upl); | |
1c79356b A |
3551 | #else |
3552 | if(vs_cluster_write(vs, upl, offset, | |
3553 | size, TRUE, UPL_IOSYNC | UPL_NOCOMMIT ) != KERN_SUCCESS) { | |
3554 | #endif | |
3555 | error = KERN_FAILURE; | |
3556 | if(!(VSM_ISCLR(*vsmap_ptr))) { | |
3557 | /* unmap the new backing store object */ | |
3558 | ps_clunmap(vs, offset, size); | |
3559 | } | |
3560 | /* original vsmap */ | |
3561 | *vsmap_ptr = original_read_vsmap; | |
3562 | VSM_CLR(write_vsmap); | |
3563 | } else { | |
3564 | if((offset + size) & | |
3565 | ((vm_page_size << vs->vs_clshift) | |
3566 | - 1)) { | |
3567 | /* There is more to transfer in this | |
3568 | cluster | |
3569 | */ | |
3570 | write_vsmap = *vsmap_ptr; | |
3571 | *vsmap_ptr = read_vsmap; | |
3572 | } else { | |
3573 | /* discard the old backing object */ | |
3574 | write_vsmap = *vsmap_ptr; | |
3575 | *vsmap_ptr = read_vsmap; | |
3576 | ps_clunmap(vs, offset, size); | |
3577 | *vsmap_ptr = write_vsmap; | |
3578 | VSM_CLR(write_vsmap); | |
3579 | VSM_CLR(original_read_vsmap); | |
3580 | } | |
3581 | } | |
3582 | } else { | |
3583 | size_wanted = size; | |
3584 | if (error == KERN_SUCCESS) { | |
3585 | if (residual == size) { | |
3586 | /* | |
3587 | * If a read operation returns no error | |
3588 | * and no data moved, we turn it into | |
3589 | * an error, assuming we're reading at | |
3590 | * or beyond EOF. | |
3591 | * Fall through and error the entire | |
3592 | * range. | |
3593 | */ | |
3594 | error = KERN_FAILURE; | |
3595 | *vsmap_ptr = write_vsmap; | |
3596 | if(!(VSM_ISCLR(*vsmap_ptr))) { | |
3597 | /* unmap the new backing store object */ | |
3598 | ps_clunmap(vs, offset, size); | |
3599 | } | |
3600 | *vsmap_ptr = original_read_vsmap; | |
3601 | VSM_CLR(write_vsmap); | |
3602 | continue; | |
3603 | } else { | |
3604 | /* | |
3605 | * Otherwise, we have partial read. | |
3606 | * This is also considered an error | |
3607 | * for the purposes of cluster transfer | |
3608 | */ | |
3609 | error = KERN_FAILURE; | |
3610 | *vsmap_ptr = write_vsmap; | |
3611 | if(!(VSM_ISCLR(*vsmap_ptr))) { | |
3612 | /* unmap the new backing store object */ | |
3613 | ps_clunmap(vs, offset, size); | |
3614 | } | |
3615 | *vsmap_ptr = original_read_vsmap; | |
3616 | VSM_CLR(write_vsmap); | |
3617 | continue; | |
3618 | } | |
3619 | } | |
3620 | ||
3621 | } | |
3622 | cnt -= size; | |
3623 | offset += size; | |
3624 | ||
3625 | } /* END while (cnt && (error == 0)) */ | |
3626 | if(!VSM_ISCLR(write_vsmap)) | |
3627 | *vsmap_ptr = write_vsmap; | |
3628 | ||
1c79356b A |
3629 | return error; |
3630 | } | |
3631 | ||
3632 | kern_return_t | |
3633 | default_pager_add_file(MACH_PORT_FACE backing_store, | |
3634 | int *vp, | |
3635 | int record_size, | |
3636 | long size) | |
3637 | { | |
3638 | backing_store_t bs; | |
3639 | paging_segment_t ps; | |
3640 | int i; | |
3641 | int error; | |
1c79356b A |
3642 | |
3643 | if ((bs = backing_store_lookup(backing_store)) | |
3644 | == BACKING_STORE_NULL) | |
3645 | return KERN_INVALID_ARGUMENT; | |
3646 | ||
3647 | PSL_LOCK(); | |
3648 | for (i = 0; i <= paging_segment_max; i++) { | |
3649 | ps = paging_segments[i]; | |
3650 | if (ps == PAGING_SEGMENT_NULL) | |
3651 | continue; | |
3652 | if (ps->ps_segtype != PS_FILE) | |
3653 | continue; | |
3654 | ||
3655 | /* | |
3656 | * Check for overlap on same device. | |
3657 | */ | |
3658 | if (ps->ps_vnode == (struct vnode *)vp) { | |
3659 | PSL_UNLOCK(); | |
3660 | BS_UNLOCK(bs); | |
3661 | return KERN_INVALID_ARGUMENT; | |
3662 | } | |
3663 | } | |
3664 | PSL_UNLOCK(); | |
3665 | ||
3666 | /* | |
3667 | * Set up the paging segment | |
3668 | */ | |
3669 | ps = (paging_segment_t) kalloc(sizeof (struct paging_segment)); | |
3670 | if (ps == PAGING_SEGMENT_NULL) { | |
3671 | BS_UNLOCK(bs); | |
3672 | return KERN_RESOURCE_SHORTAGE; | |
3673 | } | |
3674 | ||
3675 | ps->ps_segtype = PS_FILE; | |
3676 | ps->ps_vnode = (struct vnode *)vp; | |
3677 | ps->ps_offset = 0; | |
3678 | ps->ps_record_shift = local_log2(vm_page_size / record_size); | |
3679 | ps->ps_recnum = size; | |
3680 | ps->ps_pgnum = size >> ps->ps_record_shift; | |
3681 | ||
3682 | ps->ps_pgcount = ps->ps_pgnum; | |
3683 | ps->ps_clshift = local_log2(bs->bs_clsize); | |
3684 | ps->ps_clcount = ps->ps_ncls = ps->ps_pgcount >> ps->ps_clshift; | |
3685 | ps->ps_hint = 0; | |
3686 | ||
3687 | PS_LOCK_INIT(ps); | |
3688 | ps->ps_bmap = (unsigned char *) kalloc(RMAPSIZE(ps->ps_ncls)); | |
3689 | if (!ps->ps_bmap) { | |
3690 | kfree((vm_offset_t)ps, sizeof *ps); | |
3691 | BS_UNLOCK(bs); | |
3692 | return KERN_RESOURCE_SHORTAGE; | |
3693 | } | |
3694 | for (i = 0; i < ps->ps_ncls; i++) { | |
3695 | clrbit(ps->ps_bmap, i); | |
3696 | } | |
3697 | ||
3698 | ps->ps_going_away = FALSE; | |
3699 | ps->ps_bs = bs; | |
3700 | ||
3701 | if ((error = ps_enter(ps)) != 0) { | |
3702 | kfree((vm_offset_t)ps->ps_bmap, RMAPSIZE(ps->ps_ncls)); | |
3703 | kfree((vm_offset_t)ps, sizeof *ps); | |
3704 | BS_UNLOCK(bs); | |
3705 | return KERN_RESOURCE_SHORTAGE; | |
3706 | } | |
3707 | ||
3708 | bs->bs_pages_free += ps->ps_clcount << ps->ps_clshift; | |
3709 | bs->bs_pages_total += ps->ps_clcount << ps->ps_clshift; | |
3710 | PSL_LOCK(); | |
3711 | dp_pages_free += ps->ps_pgcount; | |
3712 | PSL_UNLOCK(); | |
3713 | ||
3714 | BS_UNLOCK(bs); | |
3715 | ||
3716 | bs_more_space(ps->ps_clcount); | |
3717 | ||
3718 | DEBUG(DEBUG_BS_INTERNAL, | |
3719 | ("device=0x%x,offset=0x%x,count=0x%x,record_size=0x%x,shift=%d,total_size=0x%x\n", | |
3720 | device, offset, size, record_size, | |
3721 | ps->ps_record_shift, ps->ps_pgnum)); | |
3722 | ||
3723 | return KERN_SUCCESS; | |
3724 | } | |
3725 | ||
3726 | ||
3727 | ||
1c79356b A |
3728 | kern_return_t |
3729 | ps_read_file( | |
3730 | paging_segment_t ps, | |
3731 | upl_t upl, | |
0b4e3aa0 | 3732 | vm_offset_t upl_offset, |
1c79356b A |
3733 | vm_offset_t offset, |
3734 | unsigned int size, | |
3735 | unsigned int *residualp, | |
3736 | int flags) | |
3737 | { | |
3738 | vm_object_offset_t f_offset; | |
3739 | int error = 0; | |
3740 | int result; | |
1c79356b A |
3741 | |
3742 | ||
3743 | clustered_reads[atop(size)]++; | |
3744 | ||
3745 | f_offset = (vm_object_offset_t)(ps->ps_offset + offset); | |
3746 | ||
3747 | /* for transfer case we need to pass uploffset and flags */ | |
3748 | error = vnode_pagein(ps->ps_vnode, | |
0b4e3aa0 | 3749 | upl, upl_offset, f_offset, (vm_size_t)size, flags | UPL_NORDAHEAD, NULL); |
1c79356b A |
3750 | |
3751 | /* The vnode_pagein semantic is somewhat at odds with the existing */ | |
3752 | /* device_read semantic. Partial reads are not experienced at this */ | |
3753 | /* level. It is up to the bit map code and cluster read code to */ | |
3754 | /* check that requested data locations are actually backed, and the */ | |
3755 | /* pagein code to either read all of the requested data or return an */ | |
3756 | /* error. */ | |
3757 | ||
3758 | if (error) | |
3759 | result = KERN_FAILURE; | |
3760 | else { | |
3761 | *residualp = 0; | |
3762 | result = KERN_SUCCESS; | |
3763 | } | |
3764 | return result; | |
1c79356b A |
3765 | } |
3766 | ||
3767 | kern_return_t | |
3768 | ps_write_file( | |
3769 | paging_segment_t ps, | |
3770 | upl_t upl, | |
3771 | vm_offset_t upl_offset, | |
3772 | vm_offset_t offset, | |
3773 | unsigned int size, | |
3774 | int flags) | |
3775 | { | |
3776 | vm_object_offset_t f_offset; | |
3777 | kern_return_t result; | |
1c79356b A |
3778 | |
3779 | int error = 0; | |
3780 | ||
3781 | clustered_writes[atop(size)]++; | |
3782 | f_offset = (vm_object_offset_t)(ps->ps_offset + offset); | |
3783 | ||
3784 | if (vnode_pageout(ps->ps_vnode, | |
3785 | upl, upl_offset, f_offset, (vm_size_t)size, flags, NULL)) | |
3786 | result = KERN_FAILURE; | |
3787 | else | |
3788 | result = KERN_SUCCESS; | |
3789 | ||
3790 | return result; | |
3791 | } | |
3792 | ||
3793 | kern_return_t | |
3794 | default_pager_triggers(MACH_PORT_FACE default_pager, | |
3795 | int hi_wat, | |
3796 | int lo_wat, | |
3797 | int flags, | |
3798 | MACH_PORT_FACE trigger_port) | |
3799 | { | |
0b4e3aa0 A |
3800 | MACH_PORT_FACE release; |
3801 | kern_return_t kr; | |
1c79356b | 3802 | |
0b4e3aa0 A |
3803 | PSL_LOCK(); |
3804 | if (flags == HI_WAT_ALERT) { | |
3805 | release = min_pages_trigger_port; | |
1c79356b A |
3806 | min_pages_trigger_port = trigger_port; |
3807 | minimum_pages_remaining = hi_wat/vm_page_size; | |
3808 | bs_low = FALSE; | |
0b4e3aa0 A |
3809 | kr = KERN_SUCCESS; |
3810 | } else if (flags == LO_WAT_ALERT) { | |
3811 | release = max_pages_trigger_port; | |
1c79356b A |
3812 | max_pages_trigger_port = trigger_port; |
3813 | maximum_pages_free = lo_wat/vm_page_size; | |
0b4e3aa0 A |
3814 | kr = KERN_SUCCESS; |
3815 | } else { | |
3816 | release = trigger_port; | |
3817 | kr = KERN_INVALID_ARGUMENT; | |
1c79356b | 3818 | } |
0b4e3aa0 A |
3819 | PSL_UNLOCK(); |
3820 | ||
3821 | if (IP_VALID(release)) | |
3822 | ipc_port_release_send(release); | |
3823 | ||
3824 | return kr; | |
1c79356b | 3825 | } |