]> git.saurik.com Git - apple/xnu.git/blame - osfmk/vm/vm_swapfile_pager.c
xnu-1504.9.17.tar.gz
[apple/xnu.git] / osfmk / vm / vm_swapfile_pager.c
CommitLineData
b0d623f7
A
1/*
2 * Copyright (c) 2008 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29#include <mach/kern_return.h>
30#include <mach/memory_object_control.h>
31#include <mach/upl.h>
32
33#include <kern/ipc_kobject.h>
34#include <kern/kalloc.h>
35#include <kern/queue.h>
36
37#include <vm/vm_kern.h>
38#include <vm/vm_map.h>
39#include <vm/vm_pageout.h>
40#include <vm/vm_protos.h>
41
42
43/*
44 * APPLE SWAPFILE MEMORY PAGER
45 *
46 * This external memory manager (EMM) handles mappings of the swap files.
47 * Swap files are not regular files and are used solely to store contents of
48 * anonymous memory mappings while not resident in memory.
49 * There's no valid reason to map a swap file. This just puts extra burden
50 * on the system, is potentially a security issue and is not reliable since
51 * the contents can change at any time with pageout operations.
52 * Here are some of the issues with mapping a swap file.
53 * * PERFORMANCE:
54 * Each page in the swap file belong to an anonymous memory object. Mapping
55 * the swap file makes those pages also accessible via a vnode memory
56 * object and each page can now be resident twice.
57 * * SECURITY:
58 * Mapping a swap file allows access to other processes' memory. Swap files
59 * are only accessible by the "root" super-user, who can already access any
60 * process's memory, so this is not a real issue but if permissions on the
61 * swap file got changed, it could become one.
62 * Swap files are not "zero-filled" on creation, so until their contents are
63 * overwritten with pageout operations, they still contain whatever was on
64 * the disk blocks they were allocated. The "super-user" could see the
65 * contents of free blocks anyway, so this is not a new security issue but
66 * it may be perceive as one.
67 * * ENCRYPTED SWAP:
68 * When swap is encrypted, one does not expect to find any clear contents
69 * in the swap files. Since unused blocks are not scrubbed, they could still
70 * contain clear contents. If these contents are visible through a mapping
71 * of the swap file, it makes it look like swap is not really encrypted.
72 *
73 * We can't legitimately prevent a user process with appropriate privileges
74 * from mapping a swap file, but we can prevent it from accessing its actual
75 * contents.
76 * This pager mostly handles page-in request (from memory_object_data_request())
77 * for swap file mappings and just returns bogus data.
78 * Pageouts are not handled, so mmap() has to make sure it does not allow
79 * writable (i.e. MAP_SHARED and PROT_WRITE) mappings of swap files.
80 */
81
82/* forward declarations */
83void swapfile_pager_reference(memory_object_t mem_obj);
84void swapfile_pager_deallocate(memory_object_t mem_obj);
85kern_return_t swapfile_pager_init(memory_object_t mem_obj,
86 memory_object_control_t control,
87 memory_object_cluster_size_t pg_size);
88kern_return_t swapfile_pager_terminate(memory_object_t mem_obj);
89kern_return_t swapfile_pager_data_request(memory_object_t mem_obj,
90 memory_object_offset_t offset,
91 memory_object_cluster_size_t length,
92 vm_prot_t protection_required,
93 memory_object_fault_info_t fault_info);
94kern_return_t swapfile_pager_data_return(memory_object_t mem_obj,
95 memory_object_offset_t offset,
96 memory_object_cluster_size_t data_cnt,
97 memory_object_offset_t *resid_offset,
98 int *io_error,
99 boolean_t dirty,
100 boolean_t kernel_copy,
101 int upl_flags);
102kern_return_t swapfile_pager_data_initialize(memory_object_t mem_obj,
103 memory_object_offset_t offset,
104 memory_object_cluster_size_t data_cnt);
105kern_return_t swapfile_pager_data_unlock(memory_object_t mem_obj,
106 memory_object_offset_t offset,
107 memory_object_size_t size,
108 vm_prot_t desired_access);
109kern_return_t swapfile_pager_synchronize(memory_object_t mem_obj,
110 memory_object_offset_t offset,
111 memory_object_size_t length,
112 vm_sync_t sync_flags);
113kern_return_t swapfile_pager_map(memory_object_t mem_obj,
114 vm_prot_t prot);
115kern_return_t swapfile_pager_last_unmap(memory_object_t mem_obj);
116
117/*
118 * Vector of VM operations for this EMM.
119 * These routines are invoked by VM via the memory_object_*() interfaces.
120 */
121const struct memory_object_pager_ops swapfile_pager_ops = {
122 swapfile_pager_reference,
123 swapfile_pager_deallocate,
124 swapfile_pager_init,
125 swapfile_pager_terminate,
126 swapfile_pager_data_request,
127 swapfile_pager_data_return,
128 swapfile_pager_data_initialize,
129 swapfile_pager_data_unlock,
130 swapfile_pager_synchronize,
131 swapfile_pager_map,
132 swapfile_pager_last_unmap,
133 "swapfile pager"
134};
135
136/*
137 * The "swapfile_pager" describes a memory object backed by
138 * the "swapfile" EMM.
139 */
140typedef struct swapfile_pager {
141 struct ipc_object_header pager_header; /* fake ip_kotype() */
142 memory_object_pager_ops_t pager_ops; /* == &swapfile_pager_ops */
143 queue_chain_t pager_queue; /* next & prev pagers */
144 unsigned int ref_count; /* reference count */
145 boolean_t is_ready; /* is this pager ready ? */
146 boolean_t is_mapped; /* is this pager mapped ? */
147 memory_object_control_t pager_control; /* mem object control handle */
148 struct vnode *swapfile_vnode;/* the swapfile's vnode */
149} *swapfile_pager_t;
150#define SWAPFILE_PAGER_NULL ((swapfile_pager_t) NULL)
151#define pager_ikot pager_header.io_bits
152
153/*
154 * List of memory objects managed by this EMM.
155 * The list is protected by the "swapfile_pager_lock" lock.
156 */
157int swapfile_pager_count = 0; /* number of pagers */
158queue_head_t swapfile_pager_queue;
159decl_lck_mtx_data(,swapfile_pager_lock)
160
161/*
162 * Statistics & counters.
163 */
164int swapfile_pager_count_max = 0;
165
166
167lck_grp_t swapfile_pager_lck_grp;
168lck_grp_attr_t swapfile_pager_lck_grp_attr;
169lck_attr_t swapfile_pager_lck_attr;
170
171
172/* internal prototypes */
173swapfile_pager_t swapfile_pager_create(struct vnode *vp);
174swapfile_pager_t swapfile_pager_lookup(memory_object_t mem_obj);
175void swapfile_pager_dequeue(swapfile_pager_t pager);
176void swapfile_pager_deallocate_internal(swapfile_pager_t pager,
177 boolean_t locked);
178void swapfile_pager_terminate_internal(swapfile_pager_t pager);
179
180
181#if DEBUG
182int swapfile_pagerdebug = 0;
183#define PAGER_ALL 0xffffffff
184#define PAGER_INIT 0x00000001
185#define PAGER_PAGEIN 0x00000002
186
187#define PAGER_DEBUG(LEVEL, A) \
188 MACRO_BEGIN \
189 if ((swapfile_pagerdebug & LEVEL)==LEVEL) { \
190 printf A; \
191 } \
192 MACRO_END
193#else
194#define PAGER_DEBUG(LEVEL, A)
195#endif
196
197
198void
199swapfile_pager_bootstrap(void)
200{
201 lck_grp_attr_setdefault(&swapfile_pager_lck_grp_attr);
202 lck_grp_init(&swapfile_pager_lck_grp, "swapfile pager", &swapfile_pager_lck_grp_attr);
203 lck_attr_setdefault(&swapfile_pager_lck_attr);
204 lck_mtx_init(&swapfile_pager_lock, &swapfile_pager_lck_grp, &swapfile_pager_lck_attr);
205 queue_init(&swapfile_pager_queue);
206}
207
208/*
209 * swapfile_pager_init()
210 *
211 * Initialize the memory object and makes it ready to be used and mapped.
212 */
213kern_return_t
214swapfile_pager_init(
215 memory_object_t mem_obj,
216 memory_object_control_t control,
217#if !DEBUG
218 __unused
219#endif
220 memory_object_cluster_size_t pg_size)
221{
222 swapfile_pager_t pager;
223 kern_return_t kr;
224 memory_object_attr_info_data_t attributes;
225
226 PAGER_DEBUG(PAGER_ALL,
227 ("swapfile_pager_init: %p, %p, %x\n",
228 mem_obj, control, pg_size));
229
230 if (control == MEMORY_OBJECT_CONTROL_NULL)
231 return KERN_INVALID_ARGUMENT;
232
233 pager = swapfile_pager_lookup(mem_obj);
234
235 memory_object_control_reference(control);
236
237 pager->pager_control = control;
238
239 attributes.copy_strategy = MEMORY_OBJECT_COPY_DELAY;
240 attributes.cluster_size = (1 << (PAGE_SHIFT));
241 attributes.may_cache_object = FALSE;
242 attributes.temporary = TRUE;
243
244 kr = memory_object_change_attributes(
245 control,
246 MEMORY_OBJECT_ATTRIBUTE_INFO,
247 (memory_object_info_t) &attributes,
248 MEMORY_OBJECT_ATTR_INFO_COUNT);
249 if (kr != KERN_SUCCESS)
250 panic("swapfile_pager_init: "
251 "memory_object_change_attributes() failed");
252
253 return KERN_SUCCESS;
254}
255
256/*
257 * swapfile_data_return()
258 *
259 * Handles page-out requests from VM. This should never happen since
260 * the pages provided by this EMM are not supposed to be dirty or dirtied
261 * and VM should simply discard the contents and reclaim the pages if it
262 * needs to.
263 */
264kern_return_t
265swapfile_pager_data_return(
266 __unused memory_object_t mem_obj,
267 __unused memory_object_offset_t offset,
268 __unused memory_object_cluster_size_t data_cnt,
269 __unused memory_object_offset_t *resid_offset,
270 __unused int *io_error,
271 __unused boolean_t dirty,
272 __unused boolean_t kernel_copy,
273 __unused int upl_flags)
274{
275 panic("swapfile_pager_data_return: should never get called");
276 return KERN_FAILURE;
277}
278
279kern_return_t
280swapfile_pager_data_initialize(
281 __unused memory_object_t mem_obj,
282 __unused memory_object_offset_t offset,
283 __unused memory_object_cluster_size_t data_cnt)
284{
285 panic("swapfile_pager_data_initialize: should never get called");
286 return KERN_FAILURE;
287}
288
289kern_return_t
290swapfile_pager_data_unlock(
291 __unused memory_object_t mem_obj,
292 __unused memory_object_offset_t offset,
293 __unused memory_object_size_t size,
294 __unused vm_prot_t desired_access)
295{
296 return KERN_FAILURE;
297}
298
299/*
300 * swapfile_pager_data_request()
301 *
302 * Handles page-in requests from VM.
303 */
304kern_return_t
305swapfile_pager_data_request(
306 memory_object_t mem_obj,
307 memory_object_offset_t offset,
308 memory_object_cluster_size_t length,
309#if !DEBUG
310 __unused
311#endif
312 vm_prot_t protection_required,
313 __unused memory_object_fault_info_t mo_fault_info)
314{
315 swapfile_pager_t pager;
316 memory_object_control_t mo_control;
317 upl_t upl;
318 int upl_flags;
319 upl_size_t upl_size;
320 upl_page_info_t *upl_pl = NULL;
321 unsigned int pl_count;
322 vm_object_t dst_object;
323 kern_return_t kr, retval;
324 vm_map_offset_t kernel_mapping;
325 vm_offset_t dst_vaddr;
326 char *dst_ptr;
327 vm_offset_t cur_offset;
328 vm_map_entry_t map_entry;
329
330 PAGER_DEBUG(PAGER_ALL, ("swapfile_pager_data_request: %p, %llx, %x, %x\n", mem_obj, offset, length, protection_required));
331
332 kernel_mapping = 0;
333 upl = NULL;
334 upl_pl = NULL;
335
336 pager = swapfile_pager_lookup(mem_obj);
337 assert(pager->is_ready);
338 assert(pager->ref_count > 1); /* pager is alive and mapped */
339
340 PAGER_DEBUG(PAGER_PAGEIN, ("swapfile_pager_data_request: %p, %llx, %x, %x, pager %p\n", mem_obj, offset, length, protection_required, pager));
341
342 /*
343 * Gather in a UPL all the VM pages requested by VM.
344 */
345 mo_control = pager->pager_control;
346
347 upl_size = length;
348 upl_flags =
349 UPL_RET_ONLY_ABSENT |
350 UPL_SET_LITE |
351 UPL_NO_SYNC |
352 UPL_CLEAN_IN_PLACE | /* triggers UPL_CLEAR_DIRTY */
353 UPL_SET_INTERNAL;
354 pl_count = 0;
355 kr = memory_object_upl_request(mo_control,
356 offset, upl_size,
357 &upl, NULL, NULL, upl_flags);
358 if (kr != KERN_SUCCESS) {
359 retval = kr;
360 goto done;
361 }
362 dst_object = mo_control->moc_object;
363 assert(dst_object != VM_OBJECT_NULL);
364
365
366 /*
367 * Reserve a virtual page in the kernel address space to map each
368 * destination physical page when it's its turn to be processed.
369 */
370 vm_object_reference(kernel_object); /* ref. for mapping */
371 kr = vm_map_find_space(kernel_map,
372 &kernel_mapping,
373 PAGE_SIZE_64,
374 0,
375 0,
376 &map_entry);
377 if (kr != KERN_SUCCESS) {
378 vm_object_deallocate(kernel_object);
379 retval = kr;
380 goto done;
381 }
382 map_entry->object.vm_object = kernel_object;
383 map_entry->offset = kernel_mapping - VM_MIN_KERNEL_ADDRESS;
384 vm_map_unlock(kernel_map);
385 dst_vaddr = CAST_DOWN(vm_offset_t, kernel_mapping);
386 dst_ptr = (char *) dst_vaddr;
387
388 /*
389 * Fill in the contents of the pages requested by VM.
390 */
391 upl_pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
392 pl_count = length / PAGE_SIZE;
393 for (cur_offset = 0; cur_offset < length; cur_offset += PAGE_SIZE) {
394 ppnum_t dst_pnum;
395
396 if (!upl_page_present(upl_pl, (int)(cur_offset / PAGE_SIZE))) {
397 /* this page is not in the UPL: skip it */
398 continue;
399 }
400
401 /*
402 * Establish an explicit pmap mapping of the destination
403 * physical page.
404 * We can't do a regular VM mapping because the VM page
405 * is "busy".
406 */
407 dst_pnum = (ppnum_t)
408 upl_phys_page(upl_pl, (int)(cur_offset / PAGE_SIZE));
409 assert(dst_pnum != 0);
410 pmap_enter(kernel_pmap,
411 kernel_mapping,
412 dst_pnum,
413 VM_PROT_READ | VM_PROT_WRITE,
414 dst_object->wimg_bits & VM_WIMG_MASK,
415 TRUE);
416
417 memset(dst_ptr, '\0', PAGE_SIZE);
418 /* add an end-of-line to keep line counters happy */
419 dst_ptr[PAGE_SIZE-1] = '\n';
420
421 /*
422 * Remove the pmap mapping of the destination page
423 * in the kernel.
424 */
425 pmap_remove(kernel_pmap,
426 (addr64_t) kernel_mapping,
427 (addr64_t) (kernel_mapping + PAGE_SIZE_64));
428
429 }
430
431 retval = KERN_SUCCESS;
432done:
433 if (upl != NULL) {
434 /* clean up the UPL */
435
436 /*
437 * The pages are currently dirty because we've just been
438 * writing on them, but as far as we're concerned, they're
439 * clean since they contain their "original" contents as
440 * provided by us, the pager.
441 * Tell the UPL to mark them "clean".
442 */
443 upl_clear_dirty(upl, TRUE);
444
445 /* abort or commit the UPL */
446 if (retval != KERN_SUCCESS) {
447 upl_abort(upl, 0);
448 } else {
449 boolean_t empty;
450 upl_commit_range(upl, 0, upl->size,
451 UPL_COMMIT_CS_VALIDATED,
452 upl_pl, pl_count, &empty);
453 }
454
455 /* and deallocate the UPL */
456 upl_deallocate(upl);
457 upl = NULL;
458 }
459 if (kernel_mapping != 0) {
460 /* clean up the mapping of the source and destination pages */
461 kr = vm_map_remove(kernel_map,
462 kernel_mapping,
463 kernel_mapping + PAGE_SIZE_64,
464 VM_MAP_NO_FLAGS);
465 assert(kr == KERN_SUCCESS);
466 kernel_mapping = 0;
467 dst_vaddr = 0;
468 }
469
470 return retval;
471}
472
473/*
474 * swapfile_pager_reference()
475 *
476 * Get a reference on this memory object.
477 * For external usage only. Assumes that the initial reference count is not 0,
478 * i.e one should not "revive" a dead pager this way.
479 */
480void
481swapfile_pager_reference(
482 memory_object_t mem_obj)
483{
484 swapfile_pager_t pager;
485
486 pager = swapfile_pager_lookup(mem_obj);
487
488 lck_mtx_lock(&swapfile_pager_lock);
489 assert(pager->ref_count > 0);
490 pager->ref_count++;
491 lck_mtx_unlock(&swapfile_pager_lock);
492}
493
494
495/*
496 * swapfile_pager_dequeue:
497 *
498 * Removes a pager from the list of pagers.
499 *
500 * The caller must hold "swapfile_pager_lock".
501 */
502void
503swapfile_pager_dequeue(
504 swapfile_pager_t pager)
505{
506 assert(!pager->is_mapped);
507
508 queue_remove(&swapfile_pager_queue,
509 pager,
510 swapfile_pager_t,
511 pager_queue);
512 pager->pager_queue.next = NULL;
513 pager->pager_queue.prev = NULL;
514
515 swapfile_pager_count--;
516}
517
518/*
519 * swapfile_pager_terminate_internal:
520 *
521 * Trigger the asynchronous termination of the memory object associated
522 * with this pager.
523 * When the memory object is terminated, there will be one more call
524 * to memory_object_deallocate() (i.e. swapfile_pager_deallocate())
525 * to finish the clean up.
526 *
527 * "swapfile_pager_lock" should not be held by the caller.
528 * We don't need the lock because the pager has already been removed from
529 * the pagers' list and is now ours exclusively.
530 */
531void
532swapfile_pager_terminate_internal(
533 swapfile_pager_t pager)
534{
535 assert(pager->is_ready);
536 assert(!pager->is_mapped);
537
538 if (pager->swapfile_vnode != NULL) {
539 pager->swapfile_vnode = NULL;
540 }
541
542 /* trigger the destruction of the memory object */
543 memory_object_destroy(pager->pager_control, 0);
544}
545
546/*
547 * swapfile_pager_deallocate_internal()
548 *
549 * Release a reference on this pager and free it when the last
550 * reference goes away.
551 * Can be called with swapfile_pager_lock held or not but always returns
552 * with it unlocked.
553 */
554void
555swapfile_pager_deallocate_internal(
556 swapfile_pager_t pager,
557 boolean_t locked)
558{
559 if (! locked) {
560 lck_mtx_lock(&swapfile_pager_lock);
561 }
562
563 /* drop a reference on this pager */
564 pager->ref_count--;
565
566 if (pager->ref_count == 1) {
567 /*
568 * Only the "named" reference is left, which means that
569 * no one is really holding on to this pager anymore.
570 * Terminate it.
571 */
572 swapfile_pager_dequeue(pager);
573 /* the pager is all ours: no need for the lock now */
574 lck_mtx_unlock(&swapfile_pager_lock);
575 swapfile_pager_terminate_internal(pager);
576 } else if (pager->ref_count == 0) {
577 /*
578 * Dropped the existence reference; the memory object has
579 * been terminated. Do some final cleanup and release the
580 * pager structure.
581 */
582 lck_mtx_unlock(&swapfile_pager_lock);
583 if (pager->pager_control != MEMORY_OBJECT_CONTROL_NULL) {
584 memory_object_control_deallocate(pager->pager_control);
585 pager->pager_control = MEMORY_OBJECT_CONTROL_NULL;
586 }
587 kfree(pager, sizeof (*pager));
588 pager = SWAPFILE_PAGER_NULL;
589 } else {
590 /* there are still plenty of references: keep going... */
591 lck_mtx_unlock(&swapfile_pager_lock);
592 }
593
594 /* caution: lock is not held on return... */
595}
596
597/*
598 * swapfile_pager_deallocate()
599 *
600 * Release a reference on this pager and free it when the last
601 * reference goes away.
602 */
603void
604swapfile_pager_deallocate(
605 memory_object_t mem_obj)
606{
607 swapfile_pager_t pager;
608
609 PAGER_DEBUG(PAGER_ALL, ("swapfile_pager_deallocate: %p\n", mem_obj));
610 pager = swapfile_pager_lookup(mem_obj);
611 swapfile_pager_deallocate_internal(pager, FALSE);
612}
613
614/*
615 *
616 */
617kern_return_t
618swapfile_pager_terminate(
619#if !DEBUG
620 __unused
621#endif
622 memory_object_t mem_obj)
623{
624 PAGER_DEBUG(PAGER_ALL, ("swapfile_pager_terminate: %p\n", mem_obj));
625
626 return KERN_SUCCESS;
627}
628
629/*
630 *
631 */
632kern_return_t
633swapfile_pager_synchronize(
634 memory_object_t mem_obj,
635 memory_object_offset_t offset,
636 memory_object_size_t length,
637 __unused vm_sync_t sync_flags)
638{
639 swapfile_pager_t pager;
640
641 PAGER_DEBUG(PAGER_ALL, ("swapfile_pager_synchronize: %p\n", mem_obj));
642
643 pager = swapfile_pager_lookup(mem_obj);
644
645 memory_object_synchronize_completed(pager->pager_control,
646 offset, length);
647
648 return KERN_SUCCESS;
649}
650
651/*
652 * swapfile_pager_map()
653 *
654 * This allows VM to let us, the EMM, know that this memory object
655 * is currently mapped one or more times. This is called by VM each time
656 * the memory object gets mapped and we take one extra reference on the
657 * memory object to account for all its mappings.
658 */
659kern_return_t
660swapfile_pager_map(
661 memory_object_t mem_obj,
662 __unused vm_prot_t prot)
663{
664 swapfile_pager_t pager;
665
666 PAGER_DEBUG(PAGER_ALL, ("swapfile_pager_map: %p\n", mem_obj));
667
668 pager = swapfile_pager_lookup(mem_obj);
669
670 lck_mtx_lock(&swapfile_pager_lock);
671 assert(pager->is_ready);
672 assert(pager->ref_count > 0); /* pager is alive */
673 if (pager->is_mapped == FALSE) {
674 /*
675 * First mapping of this pager: take an extra reference
676 * that will remain until all the mappings of this pager
677 * are removed.
678 */
679 pager->is_mapped = TRUE;
680 pager->ref_count++;
681 }
682 lck_mtx_unlock(&swapfile_pager_lock);
683
684 return KERN_SUCCESS;
685}
686
687/*
688 * swapfile_pager_last_unmap()
689 *
690 * This is called by VM when this memory object is no longer mapped anywhere.
691 */
692kern_return_t
693swapfile_pager_last_unmap(
694 memory_object_t mem_obj)
695{
696 swapfile_pager_t pager;
697
698 PAGER_DEBUG(PAGER_ALL,
699 ("swapfile_pager_last_unmap: %p\n", mem_obj));
700
701 pager = swapfile_pager_lookup(mem_obj);
702
703 lck_mtx_lock(&swapfile_pager_lock);
704 if (pager->is_mapped) {
705 /*
706 * All the mappings are gone, so let go of the one extra
707 * reference that represents all the mappings of this pager.
708 */
709 pager->is_mapped = FALSE;
710 swapfile_pager_deallocate_internal(pager, TRUE);
711 /* caution: deallocate_internal() released the lock ! */
712 } else {
713 lck_mtx_unlock(&swapfile_pager_lock);
714 }
715
716 return KERN_SUCCESS;
717}
718
719
720/*
721 *
722 */
723swapfile_pager_t
724swapfile_pager_lookup(
725 memory_object_t mem_obj)
726{
727 swapfile_pager_t pager;
728
729 pager = (swapfile_pager_t) mem_obj;
730 assert(pager->pager_ops == &swapfile_pager_ops);
731 assert(pager->ref_count > 0);
732 return pager;
733}
734
735swapfile_pager_t
736swapfile_pager_create(
737 struct vnode *vp)
738{
739 swapfile_pager_t pager, pager2;
740 memory_object_control_t control;
741 kern_return_t kr;
742
743 pager = (swapfile_pager_t) kalloc(sizeof (*pager));
744 if (pager == SWAPFILE_PAGER_NULL) {
745 return SWAPFILE_PAGER_NULL;
746 }
747
748 /*
749 * The vm_map call takes both named entry ports and raw memory
750 * objects in the same parameter. We need to make sure that
751 * vm_map does not see this object as a named entry port. So,
752 * we reserve the second word in the object for a fake ip_kotype
753 * setting - that will tell vm_map to use it as a memory object.
754 */
755 pager->pager_ops = &swapfile_pager_ops;
756 pager->pager_ikot = IKOT_MEMORY_OBJECT;
757 pager->is_ready = FALSE;/* not ready until it has a "name" */
758 pager->ref_count = 1; /* setup reference */
759 pager->is_mapped = FALSE;
760 pager->pager_control = MEMORY_OBJECT_CONTROL_NULL;
761 pager->swapfile_vnode = vp;
762
763 lck_mtx_lock(&swapfile_pager_lock);
764 /* see if anyone raced us to create a pager for the same object */
765 queue_iterate(&swapfile_pager_queue,
766 pager2,
767 swapfile_pager_t,
768 pager_queue) {
769 if (pager2->swapfile_vnode == vp) {
770 break;
771 }
772 }
773 if (! queue_end(&swapfile_pager_queue,
774 (queue_entry_t) pager2)) {
775 /* while we hold the lock, transfer our setup ref to winner */
776 pager2->ref_count++;
777 /* we lost the race, down with the loser... */
778 lck_mtx_unlock(&swapfile_pager_lock);
779 pager->swapfile_vnode = NULL;
780 kfree(pager, sizeof (*pager));
781 /* ... and go with the winner */
782 pager = pager2;
783 /* let the winner make sure the pager gets ready */
784 return pager;
785 }
786
787 /* enter new pager at the head of our list of pagers */
788 queue_enter_first(&swapfile_pager_queue,
789 pager,
790 swapfile_pager_t,
791 pager_queue);
792 swapfile_pager_count++;
793 if (swapfile_pager_count > swapfile_pager_count_max) {
794 swapfile_pager_count_max = swapfile_pager_count;
795 }
796 lck_mtx_unlock(&swapfile_pager_lock);
797
798 kr = memory_object_create_named((memory_object_t) pager,
799 0,
800 &control);
801 assert(kr == KERN_SUCCESS);
802
803 lck_mtx_lock(&swapfile_pager_lock);
804 /* the new pager is now ready to be used */
805 pager->is_ready = TRUE;
806 lck_mtx_unlock(&swapfile_pager_lock);
807
808 /* wakeup anyone waiting for this pager to be ready */
809 thread_wakeup(&pager->is_ready);
810
811 return pager;
812}
813
814/*
815 * swapfile_pager_setup()
816 *
817 * Provide the caller with a memory object backed by the provided
818 * "backing_object" VM object. If such a memory object already exists,
819 * re-use it, otherwise create a new memory object.
820 */
821memory_object_t
822swapfile_pager_setup(
823 struct vnode *vp)
824{
825 swapfile_pager_t pager;
826
827 lck_mtx_lock(&swapfile_pager_lock);
828
829 queue_iterate(&swapfile_pager_queue,
830 pager,
831 swapfile_pager_t,
832 pager_queue) {
833 if (pager->swapfile_vnode == vp) {
834 break;
835 }
836 }
837 if (queue_end(&swapfile_pager_queue,
838 (queue_entry_t) pager)) {
839 /* no existing pager for this backing object */
840 pager = SWAPFILE_PAGER_NULL;
841 } else {
842 /* make sure pager doesn't disappear */
843 pager->ref_count++;
844 }
845
846 lck_mtx_unlock(&swapfile_pager_lock);
847
848 if (pager == SWAPFILE_PAGER_NULL) {
849 pager = swapfile_pager_create(vp);
850 if (pager == SWAPFILE_PAGER_NULL) {
851 return MEMORY_OBJECT_NULL;
852 }
853 }
854
855 lck_mtx_lock(&swapfile_pager_lock);
856 while (!pager->is_ready) {
857 lck_mtx_sleep(&swapfile_pager_lock,
858 LCK_SLEEP_DEFAULT,
859 &pager->is_ready,
860 THREAD_UNINT);
861 }
862 lck_mtx_unlock(&swapfile_pager_lock);
863
864 return (memory_object_t) pager;
865}
866
867memory_object_control_t
868swapfile_pager_control(
869 memory_object_t mem_obj)
870{
871 swapfile_pager_t pager;
872
873 pager = swapfile_pager_lookup(mem_obj);
874
875 return pager->pager_control;
876}