]> git.saurik.com Git - apple/xnu.git/blame - osfmk/x86_64/WKdmCompress_new.s
xnu-2782.20.48.tar.gz
[apple/xnu.git] / osfmk / x86_64 / WKdmCompress_new.s
CommitLineData
39236c6e
A
1/*
2 * Copyright (c) 2000-2013 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29/*
30 This file contains x86_64 hand optimized implementation of WKdm memory page compressor.
31
32 int WKdm_compress (WK_word* src_buf, WK_word* dest_buf, WK_word* scratch, unsigned int bytes_budget);
33
34 input :
35 src_buf : address of input page (length = 1024 words)
36 dest_buf : address of output buffer (may not be 16-byte aligned)
37 scratch : a 16-byte aligned 4k bytes scratch memory provided by the caller,
38 bytes_budget : a given byte target in compression
39
40 output :
41
42 if the input buffer can be compressed within the given byte budget, the dest_buf is written with compressed data and the function returns with number of bytes for the compressed data
43 o.w., the function returns -1 to signal that the input data can not be compressed with the given byte budget.
44 During the scan and tag process, each word that can not be compressed will be written to dest_buf, followed by a 12-bytes header + 256-bytes tag area.
45 When the functions returns -1, dest_buf is filled with all those words that can not be compressed and should be considered undefined.
46 The worst-case scenario is that all words can not be compressed. Hence, the minimum size requirement for dest_buf should be 12+256+4096 = 4364 bytes to prevent from memory fault.
47
48 The 4th argument bytes_budget is the target compress budget in bytes.
49 Should the input page can be compressed within the budget, the compressed data is written to *dest_buf, and the function returns the number of compressed bytes.
50 Otherwise, the function returns -1 (to signal to the caller that the page can not be compressed).
51
52 WKdm Compression algorithm is briefly stated as follows:
53
54 There is a dynamically updated dictionary consisting of 16 words. Each dictionary word is initialized to 1 at the point of entry to the function.
55 For a nonzero input word x, its 8-bits (10-bits scaled up) is used to determine a corresponding word from the dictionary, represented by dict_index (4-bits) and dict_word (32-bits).
56 a. k = (x>>10)&255; // 8-bit hash table index
57 b. dict_index = hashTable[k]; // 4-bit dictionary index, hashTable[] is fixed
58 c. dict_word = dictionary[dict_index]; // 32-bit dictionary word, dictionary[] is dynamically updated
59
60 Each input word x is classified/tagged into 4 classes :
61 0 : x = 0
62 1 : (x>>10) == (dict_word>>10), bits 10:31 of the input word match a dictionary word
63 2 : (x>>10) != (dict_word>>10), the above condition (22 higher bits matched) is not met, meaning a dictionary miss
64 3 : (x == dict_word), the exact input word is in the dictionary
65
66 For each class, different numbers of bits are needed for the decompressor to reproduce the original input word.
67 0 : 2-bits tag (32->2 compression)
68 1 : 2-bits tag + 4-bits dict_index + 10-bits lower bits (32->16 compression)
69 2 : 2-bits tag + 32-bits new word (32->34 expansion)
70 3 : 2-bits tag + 4-bits dict_index (32->6 compression)
71
72 It is obvious now that WKdm compress algorithm works well for pages where there are lots of zero words (32->2) and/or there are freqeunt repeats of some word patterns (32->6).
73
74 the output bit stream (*dest_buf) consists of
75 a. 12 bytes header
76 b. 256 bytes for 1024 packed tags
77 c. (varying number of) words for new words not matched to dictionary word.
78 d. (varying number of) 32-bit words for packed 4-bit dict_indices (for class 1 and 3)
79 e. (varying number of) 32-bit words for packed 10-bit low bits (for class 1)
80
81 the header is actually of 3 words that specify the ending offset (in 32-bit words) from the start of the bit stream of c,d,e, respectively.
82 Note that there might be padding bits in d (if the number of dict_indices does not divide by 8), and there are 2/12/22 padding bits for packing 3/2/1 low 10-bits in a 32-bit word.
83
84
85 The WKdm compress algorithm 1st runs a scan and classification pass, tagging and write unpacked data into temporary buffers. It follows by packing those data into the output buffer.
86
87 The temp buffers are
88
89 uint8_t tempTagsArray[1024]; // temporary saving for tags before final packing
90 uint8_t tempQPosArray[1024]; // temporary saving for dict_indices before final packing
91 uint16_t tempLowBitsArray[1024]; // temporary saving for partially matched lower 10 bits before final packing
92
93 Since the new words (that can not matched fully or partially to the dictionary) are stored right after the header and the tags section and need no packing, we directly write them to
94 the destination buffer.
95
96 uint32_t *new_word = dest_buf+3+64; // 3 words for header, 64 words for tags, new words come right after the tags.
97
98 Now since we are given a byte budget for this compressor, we can monitor the byte usage on the fly in the scanning and tagging pass.
99
100 bytes_budget -= 12 + 256; // header and tags (1024 * 2 /8 = 256 bytes)
101
102 whenever an input word is classified as class
103
104 2 : bytes_budget-=4; if (bytes_budget<=0) exit -1;
105
106 when writing the 8 4-bits/3 10-bits, monitor bytes_budget and exit -1 when byte_budget <=0;
107
108 without showing the bit budget management, the pseudo code is given as follows:
109
110 uint8_t *tags=tempTagsArray;
111 uint8_t *dict=tempQPosArray;
112 uint8_t *partial=tempLowBitsArray;
113
114 for (i=0;i<1024;i++) {
115 x = *src_buf++;
116 if (x == 0) { // zero, 2-bits tag
117 *tags++ = 0;
118 } else {
119
120 // find dict_index and dict_word from x
121 k = (x>>10)&255;
122 dict_index = hashTable[k];
123 dict_word = dictionary[dict_index];
124
125 if (dict_word == x) { // exactly match
126 // 2-bits tag + 4-bits table index
127 *tags++ = 3;
128 *dict++ = dict_index;
129 } else if (((x^dict_word)>>10)==0) { // 22 higher bits matched
130 // 2-bits tag + 4-bits table index + 10-bits lower partial
131 *tags++ = 1;
132 *dict++ = dict_index;
133 *partial++ = x &0x3ff;
134 dictionary[dict_index] = x;
135 } else { // not matched
136 // 2-bits tag + 32-bits new word
137 *tags++ = 2;
138 *new_word++ = x;
139 dictionary[dict_index] = x;
140 }
141 }
142 }
143
144 after this classification/tagging pass is completed, the 3 temp buffers are packed into the output *dest_buf:
145
146 1. 1024 tags are packed into 256 bytes right after the 12-bytes header
147 2. dictionary indices (4-bits each) are packed into are right after the new words section
148 3. 3 low 10-bits are packed into a 32-bit word, this is after the dictionary indices section.
149
150 cclee, 11/30/12
151*/
152
153 .text
154 .align 4,0x90
155
156.globl _WKdm_compress_new
157_WKdm_compress_new:
158 pushq %rbp
159 movq %rsp, %rbp
160 pushq %r15
161 pushq %r14
162 pushq %r13
163 pushq %r12
164 pushq %rbx
165 subq $(24+64), %rsp
166
167
168 #define tempTagsArray 64(%rsp)
169 #define tempLowBitsArray 72(%rsp)
170 #define next_tag %r8
171 #define next_input_word %rdi
172 #define end_of_input %r13
173 #define next_full_patt %rbx
174 #define dict_location %rcx
175 #define next_qp %r10
176 #define dictionary %rsp
177 #define scratch %r11
178 #define dest_buf %r12
179 #define hashTable %r14
180 #define tempQPosArray %r15
181 #define next_low_bits %rsi
182 #define byte_count %r9d
183
184 movq %rsi, %r12 // dest_buf
185 movq %rdx, scratch // scratch = dictionary
186
187 movq %rdx, tempTagsArray // &tempTagsArray[0]
188 movq %rdx, next_tag // next_tag always points to the one following the current tag
189
190 leaq 1024(%rdx), tempQPosArray // &tempQPosArray[0]
191 movq tempQPosArray, next_qp // next_qp
192
193 leaq 4096(%rdi), end_of_input // end_of_input = src_buf + num_input_words
194 leaq 268(%rsi), %rbx // dest_buf + [TAGS_AREA_OFFSET + (num_input_words / 16)]*4
195
196 movl %ecx, byte_count
197 subl $(12+256), byte_count // header + tags
198 jle L_budgetExhausted
199
200 // PRELOAD_DICTIONARY;
201 movl $1, 0(dictionary)
202 movl $1, 4(dictionary)
203 movl $1, 8(dictionary)
204 movl $1, 12(dictionary)
205 movl $1, 16(dictionary)
206 movl $1, 20(dictionary)
207 movl $1, 24(dictionary)
208 movl $1, 28(dictionary)
209 movl $1, 32(dictionary)
210 movl $1, 36(dictionary)
211 movl $1, 40(dictionary)
212 movl $1, 44(dictionary)
213 movl $1, 48(dictionary)
214 movl $1, 52(dictionary)
215 movl $1, 56(dictionary)
216 movl $1, 60(dictionary)
217
218 leaq 2048(%rdx), %rax // &tempLowBitsArray[0]
219 movq %rax, tempLowBitsArray // save for later reference
220 movq %rax, next_low_bits // next_low_bits
221
222 leaq _hashLookupTable_new(%rip), hashTable // hash look up table
223 jmp L_scan_loop
224
225 .align 4,0x90
226L_RECORD_ZERO:
227 movb $0, -1(next_tag) // *next_tag = ZERO;
228 addq $4, next_input_word // next_input_word++;
229 cmpq next_input_word, end_of_input // end_of_input vs next_input_word
230 jbe L_done_search
231L_scan_loop:
232 movl (next_input_word), %edx
233 incq next_tag // next_tag++
234 testl %edx, %edx
235 je L_RECORD_ZERO // if (input_word==0) RECORD_ZERO
236 movl %edx, %eax // a copy of input_word
237 shrl $10, %eax // input_high_bits = HIGH_BITS(input_word);
238 movzbl %al, %eax // 8-bit index to the Hash Table
239 movsbq (hashTable,%rax),%rax // HASH_TO_DICT_BYTE_OFFSET(input_word)
240 leaq (dictionary, %rax), dict_location // ((char*) dictionary) + HASH_TO_DICT_BYTE_OFFSET(input_word));
241 movl (dict_location), %eax // dict_word = *dict_location;
242 addq $4, next_input_word // next_input_word++
243 cmpl %eax, %edx // dict_word vs input_word
244 je L_RECORD_EXACT // if identical, RECORD_EXACT
245 xorl %edx, %eax
246 shrl $10, %eax // HIGH_BITS(dict_word)
247 je L_RECORD_PARTIAL // if identical, RECORD_PARTIAL
248
249L_RECORD_MISS:
250 movl %edx, (next_full_patt) // *next_full_patt = input_word;
251 addq $4, next_full_patt // next_full_patt++
252 movl %edx, (dict_location) // *dict_location = input_word
253 movb $2, -1(next_tag) // *next_tag = 2 for miss
254 subl $4, byte_count // fill in a new 4-bytes word
255 jle L_budgetExhausted
256 cmpq next_input_word, end_of_input // end_of_input vs next_input_word
257 ja L_scan_loop
258
259L_done_search:
260
261 // SET_QPOS_AREA_START(dest_buf,next_full_patt);
262 movq next_full_patt, %rax // next_full_patt
263 subq dest_buf, %rax // next_full_patt - dest_buf
264 sarq $2, %rax // offset in 4-bytes
265 movl %eax, %r13d // r13d = (next_full_patt - dest_buf)
266 movl %eax, 0(dest_buf) // dest_buf[0] = next_full_patt - dest_buf
267 decq next_tag
268 cmpq next_tag, tempTagsArray // &tempTagsArray[0] vs next_tag
269 jae L13 // if (&tempTagsArray[0] >= next_tag), skip the following
270
271 // boundary_tmp = WK_pack_2bits(tempTagsArray, (WK_word *) next_tag, dest_buf + HEADER_SIZE_IN_WORDS);
272
273 movq dest_buf, %rdi // dest_buf
274 movq tempTagsArray, %rcx // &tempTagsArray[0]
275
276 .align 4,0x90
277L_pack_2bits:
278 movq 8(%rcx), %rax // w3
279 addq $16, %rcx // tempTagsArray += 16;
280 shlq $4, %rax
281 addq $4, %rdi // dest_buf += 4;
282 orq -16(%rcx), %rax // w3
283 movq %rax, %rdx
284 shrq $30, %rax
285 orl %edx, %eax
286 cmpq %rcx, next_tag // cmp next_tag vs dest_buf
287 movl %eax, 8(%rdi) // save at *(dest_buf + HEADER_SIZE_IN_WORDS)
288 ja L_pack_2bits // if (next_tag > dest_buf) repeat L_pack_2bits
289
290 /* Pack the queue positions into the area just after the full words. */
291
292L13:
293 mov next_qp, %rax // next_qp
294 sub tempQPosArray, %rax // num_bytes_to_pack = next_qp - (char *) tempQPosArray;
295 addl $7, %eax // num_bytes_to_pack+7
296 shrl $3, %eax // num_packed_words = (num_bytes_to_pack + 7) >> 3
297
298 shll $2, %eax // turn into bytes
299 subl %eax, byte_count //
300 jl L_budgetExhausted
301 shrl $1, %eax // num_source_words = num_packed_words * 2;
302
303 leaq (tempQPosArray,%rax,4), %rcx // endQPosArray = tempQPosArray + num_source_words
304 cmpq %rcx, next_qp // next_qp vs endQPosArray
305 jae L16 // if (next_qp >= endQPosArray) skip the following zero paddings
306 movq %rcx, %rax
307 subq next_qp, %rax
308 subl $4, %eax
309 jl 1f
310 .align 4,0x90
3110: movl $0, (next_qp)
312 addq $4, next_qp
313 subl $4, %eax
314 jge 0b
3151: testl $2, %eax
316 je 1f
317 movw $0, (next_qp)
318 addq $2, next_qp
3191: testl $1, %eax
320 je 1f
321 movb $0, (next_qp)
322 addq $1, next_qp
3231:
324L16:
325 movq next_full_patt, %rdi // next_full_patt
326 cmpq tempQPosArray, %rcx // endQPosArray vs tempQPosArray
327 jbe L20 // if (endQPosArray <= tempQPosArray) skip the following
328 movq tempQPosArray, %rdx // tempQPosArray
329
330 /* byte_count -= (rcx - tempQPosArray)/2 */
331
332 .align 4,0x90
333L_pack_4bits:
334 movl 4(%rdx), %eax // src_next[1]
335 addq $8, %rdx // src_next += 2;
336 sall $4, %eax // (src_next[1] << 4)
337 addq $4, %rdi // dest_next++;
338 orl -8(%rdx), %eax // temp = src_next[0] | (src_next[1] << 4)
339 cmpq %rdx, %rcx // source_end vs src_next
340 movl %eax, -4(%rdi) // dest_next[0] = temp;
341 ja L_pack_4bits // while (src_next < source_end) repeat the loop
342
343 // SET_LOW_BITS_AREA_START(dest_buf,boundary_tmp);
344 movq %rdi, %rax // boundary_tmp
345 subq dest_buf, %rax // boundary_tmp - dest_buf
346 movq %rax, %r13 // boundary_tmp - dest_buf
347 shrq $2, %r13 // boundary_tmp - dest_buf in words
348L20:
349 movl %r13d, 4(dest_buf) // dest_buf[1] = boundary_tmp - dest_buf
350
351 movq tempLowBitsArray, %rcx // tempLowBitsArray
352 movq next_low_bits, %rbx // next_low_bits
353 subq %rcx, %rbx // next_low_bits - tempLowBitsArray (in bytes)
354 sarq $1, %rbx // num_tenbits_to_pack (in half-words)
355
356 #define size %ebx
357
358 subl $3, size // pre-decrement num_tenbits_to_pack by 3
359 jl 1f // if num_tenbits_to_pack < 3, skip the following loop
360
361 .align 4,0x90
3620:
363 movzwl 4(%rcx), %eax // w2
364 addq $6, %rcx // next w0/w1/w2 triplet
365 sall $10, %eax // w1 << 10
366 or -4(%rcx), %ax // w1
367 addq $4, %rdi // dest_buf++
368 sall $10, %eax // w1 << 10
369 or -6(%rcx), %ax // (w0) | (w1<<10) | (w2<<20)
370 subl $4, byte_count // fill in a new 4-bytes word
371 jle L_budgetExhausted
372 subl $3, size // num_tenbits_to_pack-=3
373 movl %eax, -4(%rdi) // pack w0,w1,w2 into 1 dest_buf word
374 jge 0b // if no less than 3 elements, back to loop head
375
3761: addl $3, size // post-increment num_tenbits_to_pack by 3
377 je 3f // if num_tenbits_to_pack is a multiple of 3, skip the following
378 movzwl (%rcx), %eax // w0
379 subl $1, size // num_tenbits_to_pack--
380 je 2f //
381 movzwl 2(%rcx), %edx // w1
382 sall $10, %edx // w1 << 10
383 orl %edx, %eax // w0 | (w1<<10)
3842:
385 subl $4, byte_count // fill in a new 4-bytes word
386 jle L_budgetExhausted
387 movl %eax, (%rdi) // write the final dest_buf word
388 addq $4, %rdi // dest_buf++
389
3903: movq %rdi, %rax // boundary_tmp
391 subq dest_buf, %rax // boundary_tmp - dest_buf
392 shrq $2, %rax // boundary_tmp - dest_buf in terms of words
393 movl %eax, 8(dest_buf) // SET_LOW_BITS_AREA_END(dest_buf,boundary_tmp)
394 shlq $2, %rax // boundary_tmp - dest_buf in terms of bytes
395
396L_done:
397 // restore registers and return
398 addq $(24+64), %rsp
399 popq %rbx
400 popq %r12
401 popq %r13
402 popq %r14
403 popq %r15
404 leave
405 ret
406
407 .align 4
408L_budgetExhausted:
409 mov $-1, %rax
410 jmp L_done
411
412
413 .align 4,0x90
414L_RECORD_EXACT:
415 subq dictionary, %rcx // dict_location - dictionary
416 sarq $2, %rcx // divide by 4 for word offset
417 movb $3, -1(next_tag) // *next_tag = 3 for exact
418 movb %cl, (next_qp) // *next_qp = word offset (4-bit)
419 incq next_qp // next_qp++
420 cmpq next_input_word, end_of_input // end_of_input vs next_input_word
421 ja L_scan_loop
422 jmp L_done_search
423
424 .align 4,0x90
425L_RECORD_PARTIAL:
426 movq %rcx, %rax // dict_location
427 movb $1, -1(next_tag) // *next_tag = 1 for partial matched
428 subq dictionary, %rax // dict_location - dictionary
429 movl %edx, (%rcx) // *dict_location = input_word;
430 sarq $2, %rax // offset in 32-bit word
431 movb %al, (next_qp) // update *next_qp
432 andl $1023, %edx // lower 10 bits
433 incq next_qp // next_qp++
434 mov %dx, (next_low_bits) // save next_low_bits
435 addq $2, next_low_bits // next_low_bits++
436 cmpq next_input_word, end_of_input // end_of_input vs next_input_word
437 ja L_scan_loop
438 jmp L_done_search
439