]> git.saurik.com Git - apple/xnu.git/blame - osfmk/kern/sched_multiq.c
xnu-2782.20.48.tar.gz
[apple/xnu.git] / osfmk / kern / sched_multiq.c
CommitLineData
fe8ab488
A
1/*
2 * Copyright (c) 2013 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29#include <mach/mach_types.h>
30#include <mach/machine.h>
31
32#include <machine/machine_routines.h>
33#include <machine/sched_param.h>
34#include <machine/machine_cpu.h>
35
36#include <kern/kern_types.h>
37#include <kern/debug.h>
38#include <kern/mach_param.h>
39#include <kern/machine.h>
40#include <kern/misc_protos.h>
41#include <kern/processor.h>
42#include <kern/queue.h>
43#include <kern/sched.h>
44#include <kern/sched_prim.h>
45#include <kern/task.h>
46#include <kern/thread.h>
47
48#include <sys/kdebug.h>
49
50/*
51 * Theory Statement
52 *
53 * How does the task scheduler work?
54 *
55 * It schedules threads across a few levels.
56 *
57 * RT threads are dealt with above us
58 * Bound threads go into the per-processor runq
59 * Non-bound threads are linked on their task's sched_group's runq
60 * sched_groups' sched_entries are linked on the pset's runq
61 *
62 * TODO: make this explicit - bound threads should have a different enqueue fxn
63 *
64 * When we choose a new thread, we will decide whether to look at the bound runqueue, the global runqueue
65 * or the current group's runqueue, then dequeue the next thread in that runqueue.
66 *
67 * We then manipulate the sched_entries to reflect the invariant that:
68 * Each non-empty priority level in a group's runq is represented by one sched_entry enqueued in the global
69 * runqueue.
70 *
71 * A sched_entry represents a chance at running - for each priority in each task, there is one chance of getting
72 * to run. This reduces the excess contention bonus given to processes which have work spread among many threads
73 * as compared to processes which do the same amount of work under fewer threads.
74 *
75 * NOTE: Currently, the multiq scheduler only supports one pset.
76 *
77 * NOTE ABOUT thread->sched_pri:
78 *
79 * It can change after enqueue - it's changed without pset lock but with thread lock if thread->runq is 0.
80 * Therefore we can only depend on it not changing during the enqueue and remove path, not the dequeue.
81 *
82 * TODO: Future features:
83 *
84 * Decouple the task priority from the sched_entry priority, allowing for:
85 * fast task priority change without having to iterate and re-dispatch all threads in the task.
86 * i.e. task-wide priority, task-wide boosting
87 * fancier group decay features
88 *
89 * Group (or task) decay:
90 * Decay is used for a few different things:
91 * Prioritizing latency-needing threads over throughput-needing threads for time-to-running
92 * Balancing work between threads in a process
93 * Balancing work done at the same priority between different processes
94 * Recovering from priority inversions between two threads in the same process
95 * Recovering from priority inversions between two threads in different processes
96 * Simulating a proportional share scheduler by allowing lower priority threads
97 * to run for a certain percentage of the time
98 *
99 * Task decay lets us separately address the 'same process' and 'different process' needs,
100 * which will allow us to make smarter tradeoffs in different cases.
101 * For example, we could resolve priority inversion in the same process by reordering threads without dropping the
102 * process below low priority threads in other processes.
103 *
104 * One lock to rule them all (or at least all the runqueues) instead of the pset locks
105 *
106 * Shrink sched_entry size to the size of a queue_chain_t by inferring priority, group, and perhaps runq field.
107 * The entries array is 5K currently so it'd be really great to reduce.
108 * One way to get sched_group below 4K without a new runq structure would be to remove the extra queues above realtime.
109 *
110 * When preempting a processor, store a flag saying if the preemption
111 * was from a thread in the same group or different group,
112 * and tell choose_thread about it.
113 *
114 * When choosing a processor, bias towards those running in the same
115 * group as I am running (at the same priority, or within a certain band?).
116 *
117 * Decide if we need to support psets.
118 * Decide how to support psets - do we need duplicate entries for each pset,
119 * or can we get away with putting the entry in either one or the other pset?
120 *
121 * Consider the right way to handle runq count - I don't want to iterate groups.
122 * Perhaps keep a global counter. sched_run_count will not work.
123 * Alternate option - remove it from choose_processor. It doesn't add much value
124 * now that we have global runq.
125 *
126 * Need a better way of finding group to target instead of looking at current_task.
127 * Perhaps choose_thread could pass in the current thread?
128 *
129 * Consider unifying runq copy-pastes.
130 *
131 * Thoughts on having a group central quantum bucket:
132 *
133 * I see two algorithms to decide quanta:
134 * A) Hand off only when switching thread to thread in the same group
135 * B) Allocate and return quanta to the group's pool
136 *
137 * Issues:
138 * If a task blocks completely, should it come back with the leftover quanta
139 * or brand new quanta?
140 *
141 * Should I put a flag saying zero out a quanta you grab when youre dispatched'?
142 *
143 * Resolution:
144 * Handing off quanta between threads will help with jumping around in the current task
145 * but will not help when a thread from a different task is involved.
146 * Need an algorithm that works with round robin-ing between threads in different tasks
147 *
148 * But wait - round robining can only be triggered by quantum expire or blocking.
149 * We need something that works with preemption or yielding - that's the more interesting idea.
150 *
151 * Existing algorithm - preemption doesn't re-set quantum, puts thread on head of runq.
152 * Blocking or quantum expiration does re-set quantum, puts thread on tail of runq.
153 *
154 * New algorithm -
155 * Hand off quanta when hopping between threads with same sched_group
156 * Even if thread was blocked it uses last thread remaining quanta when it starts.
157 *
158 * If we use the only cycle entry at quantum algorithm, then the quantum pool starts getting
159 * interesting.
160 *
161 * A thought - perhaps the handoff approach doesn't work so well in the presence of
162 * non-handoff wakeups i.e. wake other thread then wait then block - doesn't mean that
163 * woken thread will be what I switch to - other processor may have stolen it.
164 * What do we do there?
165 *
166 * Conclusions:
167 * We currently don't know of a scenario where quantum buckets on the task is beneficial.
168 * We will instead handoff quantum between threads in the task, and keep quantum
169 * on the preempted thread if it's preempted by something outside the task.
170 *
171 */
172
173#if DEBUG || DEVELOPMENT
174#define MULTIQ_SANITY_CHECK
175#endif
176
177typedef struct sched_entry {
178 queue_chain_t links;
179 int16_t sched_pri; /* scheduled (current) priority */
180 int16_t runq;
181 int32_t pad;
182} *sched_entry_t;
183
184typedef run_queue_t entry_queue_t; /* A run queue that holds sched_entries instead of threads */
185typedef run_queue_t group_runq_t; /* A run queue that is part of a sched_group */
186
187#define SCHED_ENTRY_NULL ((sched_entry_t) 0)
188#define MULTIQ_ERUNQ (-4) /* Indicates entry is on the main runq */
189
190/* Each level in the run queue corresponds to one entry in the entries array */
191struct sched_group {
192 struct sched_entry entries[NRQS];
193 struct run_queue runq;
194 queue_chain_t sched_groups;
195};
196
197/* TODO: Turn this into an attribute in the sched dispatch struct */
198boolean_t sched_groups_enabled = FALSE;
199
200/*
201 * Keep entry on the head of the runqueue while dequeueing threads.
202 * Only cycle it to the end of the runqueue when a thread in the task
203 * hits its quantum.
204 */
205static boolean_t deep_drain = FALSE;
206
207/*
208 * Don't favor the task when an urgent thread is present.
209 */
210static boolean_t drain_urgent_first = TRUE;
211
212/* Verify the consistency of the runq before touching it */
213static boolean_t multiq_sanity_check = FALSE;
214
215/*
216 * Draining threads from the current task is preferred
217 * when they're less than X steps below the current
218 * global highest priority
219 */
220#define DEFAULT_DRAIN_BAND_LIMIT MAXPRI
221static integer_t drain_band_limit;
222
223/*
224 * Don't go below this priority level if there is something above it in another task
225 */
226#define DEFAULT_DRAIN_DEPTH_LIMIT MAXPRI_THROTTLE
227static integer_t drain_depth_limit;
228
229
230static struct zone *sched_group_zone;
231
232static uint64_t num_sched_groups = 0;
233static queue_head_t sched_groups;
234
235static lck_attr_t sched_groups_lock_attr;
236static lck_grp_t sched_groups_lock_grp;
237static lck_grp_attr_t sched_groups_lock_grp_attr;
238
239static lck_mtx_t sched_groups_lock;
240
241
242static void
243sched_multiq_init(void);
244
245static thread_t
246sched_multiq_steal_thread(processor_set_t pset);
247
248static void
249sched_multiq_thread_update_scan(void);
250
251static boolean_t
252sched_multiq_processor_enqueue(processor_t processor, thread_t thread, integer_t options);
253
254static boolean_t
255sched_multiq_processor_queue_remove(processor_t processor, thread_t thread);
256
257void
258sched_multiq_quantum_expire(thread_t thread);
259
260static ast_t
261sched_multiq_processor_csw_check(processor_t processor);
262
263static boolean_t
264sched_multiq_processor_queue_has_priority(processor_t processor, int priority, boolean_t gte);
265
266static int
267sched_multiq_runq_count(processor_t processor);
268
269static boolean_t
270sched_multiq_processor_queue_empty(processor_t processor);
271
272static uint64_t
273sched_multiq_runq_stats_count_sum(processor_t processor);
274
275static int
276sched_multiq_processor_bound_count(processor_t processor);
277
278static void
279sched_multiq_pset_init(processor_set_t pset);
280
281static void
282sched_multiq_processor_init(processor_t processor);
283
284static thread_t
285sched_multiq_choose_thread(processor_t processor, int priority, ast_t reason);
286
287static void
288sched_multiq_processor_queue_shutdown(processor_t processor);
289
290static sched_mode_t
291sched_multiq_initial_thread_sched_mode(task_t parent_task);
292
293static boolean_t
294sched_multiq_should_current_thread_rechoose_processor(processor_t processor);
295
296const struct sched_dispatch_table sched_multiq_dispatch = {
297 .init = sched_multiq_init,
298 .timebase_init = sched_traditional_timebase_init,
299 .processor_init = sched_multiq_processor_init,
300 .pset_init = sched_multiq_pset_init,
301 .maintenance_continuation = sched_traditional_maintenance_continue,
302 .choose_thread = sched_multiq_choose_thread,
303 .steal_thread = sched_multiq_steal_thread,
304 .compute_priority = compute_priority,
305 .choose_processor = choose_processor,
306 .processor_enqueue = sched_multiq_processor_enqueue,
307 .processor_queue_shutdown = sched_multiq_processor_queue_shutdown,
308 .processor_queue_remove = sched_multiq_processor_queue_remove,
309 .processor_queue_empty = sched_multiq_processor_queue_empty,
310 .priority_is_urgent = priority_is_urgent,
311 .processor_csw_check = sched_multiq_processor_csw_check,
312 .processor_queue_has_priority = sched_multiq_processor_queue_has_priority,
313 .initial_quantum_size = sched_traditional_initial_quantum_size,
314 .initial_thread_sched_mode = sched_multiq_initial_thread_sched_mode,
315 .can_update_priority = can_update_priority,
316 .update_priority = update_priority,
317 .lightweight_update_priority = lightweight_update_priority,
318 .quantum_expire = sched_multiq_quantum_expire,
319 .should_current_thread_rechoose_processor = sched_multiq_should_current_thread_rechoose_processor,
320 .processor_runq_count = sched_multiq_runq_count,
321 .processor_runq_stats_count_sum = sched_multiq_runq_stats_count_sum,
322 .fairshare_init = sched_traditional_fairshare_init,
323 .fairshare_runq_count = sched_traditional_fairshare_runq_count,
324 .fairshare_runq_stats_count_sum = sched_traditional_fairshare_runq_stats_count_sum,
325 .fairshare_enqueue = sched_traditional_fairshare_enqueue,
326 .fairshare_dequeue = sched_traditional_fairshare_dequeue,
327 .fairshare_queue_remove = sched_traditional_fairshare_queue_remove,
328 .processor_bound_count = sched_multiq_processor_bound_count,
329 .thread_update_scan = sched_multiq_thread_update_scan,
330 .direct_dispatch_to_idle_processors = FALSE,
331};
332
333
334static void
335sched_multiq_init(void)
336{
337 sched_groups_enabled = TRUE;
338
339#if defined(MULTIQ_SANITY_CHECK)
340 PE_parse_boot_argn("-multiq-sanity-check", &multiq_sanity_check, sizeof(multiq_sanity_check));
341#endif
342
343 PE_parse_boot_argn("-multiq-deep-drain", &deep_drain, sizeof(deep_drain));
344
345 PE_parse_boot_argn("multiq_drain_urgent_first", &drain_urgent_first, sizeof(drain_urgent_first));
346
347 if (!PE_parse_boot_argn("multiq_drain_depth_limit", &drain_depth_limit, sizeof(drain_depth_limit))) {
348 drain_depth_limit = DEFAULT_DRAIN_DEPTH_LIMIT;
349 }
350
351 if (!PE_parse_boot_argn("multiq_drain_band_limit", &drain_band_limit, sizeof(drain_band_limit))) {
352 drain_band_limit = DEFAULT_DRAIN_BAND_LIMIT;
353 }
354
355 printf("multiq scheduler config: deep-drain %d, urgent first %d, depth limit %d, band limit %d, sanity check %d\n",
356 deep_drain, drain_urgent_first, drain_depth_limit, drain_band_limit, multiq_sanity_check);
357
358 sched_group_zone = zinit(
359 sizeof(struct sched_group),
360 task_max * sizeof(struct sched_group),
361 PAGE_SIZE,
362 "sched groups");
363
364 zone_change(sched_group_zone, Z_NOENCRYPT, TRUE);
365 zone_change(sched_group_zone, Z_NOCALLOUT, TRUE);
366
367 queue_init(&sched_groups);
368
369 lck_grp_attr_setdefault(&sched_groups_lock_grp_attr);
370 lck_grp_init(&sched_groups_lock_grp, "sched_groups", &sched_groups_lock_grp_attr);
371 lck_attr_setdefault(&sched_groups_lock_attr);
372 lck_mtx_init(&sched_groups_lock, &sched_groups_lock_grp, &sched_groups_lock_attr);
373
374 sched_traditional_init();
375}
376
377static void
378sched_multiq_processor_init(processor_t processor)
379{
380 run_queue_init(&processor->runq);
381}
382
383static void
384sched_multiq_pset_init(processor_set_t pset)
385{
386 run_queue_init(&pset->pset_runq);
387}
388
389static sched_mode_t
390sched_multiq_initial_thread_sched_mode(task_t parent_task)
391{
392 if (parent_task == kernel_task)
393 return TH_MODE_FIXED;
394 else
395 return TH_MODE_TIMESHARE;
396}
397
398sched_group_t
399sched_group_create(void)
400{
401 sched_group_t sched_group;
402
403 if (!sched_groups_enabled)
404 return SCHED_GROUP_NULL;
405
406 sched_group = (sched_group_t)zalloc(sched_group_zone);
407
408 bzero(sched_group, sizeof(struct sched_group));
409
410 run_queue_init(&sched_group->runq);
411
412 for (int i = 0; i < NRQS; i++) {
413 sched_group->entries[i].runq = 0;
414 sched_group->entries[i].sched_pri = i;
415 }
416
417 lck_mtx_lock(&sched_groups_lock);
418 queue_enter(&sched_groups, sched_group, sched_group_t, sched_groups);
419 num_sched_groups++;
420 lck_mtx_unlock(&sched_groups_lock);
421
422 return (sched_group);
423}
424
425void
426sched_group_destroy(sched_group_t sched_group)
427{
428 if (!sched_groups_enabled) {
429 assert(sched_group == SCHED_GROUP_NULL);
430 return;
431 }
432
433 assert(sched_group != SCHED_GROUP_NULL);
434 assert(sched_group->runq.count == 0);
435
436 for (int i = 0; i < NRQS; i++) {
437 assert(sched_group->entries[i].runq == 0);
438 assert(sched_group->entries[i].sched_pri == i);
439 }
440
441 lck_mtx_lock(&sched_groups_lock);
442 queue_remove(&sched_groups, sched_group, sched_group_t, sched_groups);
443 num_sched_groups--;
444 lck_mtx_unlock(&sched_groups_lock);
445
446 zfree(sched_group_zone, sched_group);
447}
448
449__attribute__((always_inline))
450static inline entry_queue_t
451multiq_main_entryq(processor_t processor)
452{
453 return (entry_queue_t)&processor->processor_set->pset_runq;
454}
455
456__attribute__((always_inline))
457static inline run_queue_t
458multiq_bound_runq(processor_t processor)
459{
460 return &processor->runq;
461}
462
463__attribute__((always_inline))
464static inline sched_entry_t
465group_entry_for_pri(sched_group_t group, integer_t pri)
466{
467 return &group->entries[pri];
468}
469
470__attribute__((always_inline))
471static inline sched_group_t
472group_for_entry(sched_entry_t entry)
473{
474 sched_group_t group = (sched_group_t)(entry - entry->sched_pri);
475 return group;
476}
477
478/* Peek at the head of the runqueue */
479static sched_entry_t
480entry_queue_first_entry(entry_queue_t rq)
481{
482 assert(rq->count != 0);
483
484 queue_t queue = rq->queues + rq->highq;
485
486 sched_entry_t entry = (sched_entry_t)queue_first(queue);
487
488 assert(entry->sched_pri == rq->highq);
489
490 return entry;
491}
492
493#if defined(MULTIQ_SANITY_CHECK)
494
495__attribute__((always_inline))
496static inline boolean_t
497queue_chain_linked(queue_chain_t* chain)
498{
499 if (chain->next != NULL) {
500 assert(chain->prev != NULL);
501 return TRUE;
502 } else {
503 assert(chain->prev == NULL);
504 return FALSE;
505 }
506}
507
508static thread_t
509group_first_thread(sched_group_t group)
510{
511 group_runq_t rq = &group->runq;
512
513 assert(rq->count != 0);
514
515 queue_t queue = rq->queues + rq->highq;
516
517 thread_t thread = (thread_t)(void*)queue_first(queue);
518
519 assert(thread != THREAD_NULL);
520
521 assert(thread->sched_group == group);
522
523 /* TODO: May not be safe */
524 assert(thread->sched_pri == rq->highq);
525
526 return thread;
527}
528
529/* Asserts if entry is not in entry runq at pri */
530static void
531entry_queue_check_entry(entry_queue_t runq, sched_entry_t entry, int expected_pri)
532{
533 queue_t q;
534 sched_entry_t elem;
535
536 assert(queue_chain_linked(&entry->links));
537 assert(entry->runq == MULTIQ_ERUNQ);
538
539 q = &runq->queues[expected_pri];
540
541 queue_iterate(q, elem, sched_entry_t, links) {
542 if (elem == entry)
543 return;
544 }
545
546 panic("runq %p doesn't contain entry %p at pri %d", runq, entry, expected_pri);
547}
548
549/* Asserts if thread is not in group at its priority */
550static void
551sched_group_check_thread(sched_group_t group, thread_t thread)
552{
553 queue_t q;
554 thread_t elem;
555 int pri = thread->sched_pri;
556
557 assert(thread->runq != PROCESSOR_NULL);
558
559 q = &group->runq.queues[pri];
560
561 queue_iterate(q, elem, thread_t, links) {
562 if (elem == thread)
563 return;
564 }
565
566 panic("group %p doesn't contain thread %p at pri %d", group, thread, pri);
567}
568
569static void
570global_check_entry_queue(entry_queue_t main_entryq)
571{
572 if (main_entryq->count == 0)
573 return;
574
575 sched_entry_t entry = entry_queue_first_entry(main_entryq);
576
577 assert(entry->runq == MULTIQ_ERUNQ);
578
579 sched_group_t group = group_for_entry(entry);
580
581 thread_t thread = group_first_thread(group);
582
583 __assert_only sched_entry_t thread_entry = group_entry_for_pri(thread->sched_group, thread->sched_pri);
584
585 assert(entry->sched_pri == group->runq.highq);
586
587 assert(entry == thread_entry);
588 assert(thread->runq != PROCESSOR_NULL);
589}
590
591static void
592group_check_run_queue(entry_queue_t main_entryq, sched_group_t group)
593{
594 if (group->runq.count == 0)
595 return;
596
597 thread_t thread = group_first_thread(group);
598
599 assert(thread->runq != PROCESSOR_NULL);
600
601 sched_entry_t sched_entry = group_entry_for_pri(thread->sched_group, thread->sched_pri);
602
603 entry_queue_check_entry(main_entryq, sched_entry, thread->sched_pri);
604
605 assert(sched_entry->sched_pri == thread->sched_pri);
606 assert(sched_entry->runq == MULTIQ_ERUNQ);
607}
608
609#endif /* defined(MULTIQ_SANITY_CHECK) */
610
611/*
612 * The run queue must not be empty.
613 */
614static sched_entry_t
615entry_queue_dequeue_entry(entry_queue_t rq)
616{
617 sched_entry_t sched_entry;
618 queue_t queue = rq->queues + rq->highq;
619
620 assert(rq->count > 0);
621 assert(!queue_empty(queue));
622
623 sched_entry = (sched_entry_t)dequeue_head(queue);
624
625 SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count);
626 rq->count--;
627 if (SCHED(priority_is_urgent)(rq->highq)) {
628 rq->urgency--; assert(rq->urgency >= 0);
629 }
630 if (queue_empty(queue)) {
631 if (rq->highq != IDLEPRI)
632 clrbit(MAXPRI - rq->highq, rq->bitmap);
633 rq->highq = MAXPRI - ffsbit(rq->bitmap);
634 }
635
636 sched_entry->runq = 0;
637
638 return (sched_entry);
639}
640
641/*
642 * The run queue must not be empty.
643 */
644static boolean_t
645entry_queue_enqueue_entry(
646 entry_queue_t rq,
647 sched_entry_t entry,
648 integer_t options)
649{
650 int sched_pri = entry->sched_pri;
651 queue_t queue = rq->queues + sched_pri;
652 boolean_t result = FALSE;
653
654 assert(entry->runq == 0);
655
656 if (queue_empty(queue)) {
657 enqueue_tail(queue, (queue_entry_t)entry);
658
659 setbit(MAXPRI - sched_pri, rq->bitmap);
660 if (sched_pri > rq->highq) {
661 rq->highq = sched_pri;
662 result = TRUE;
663 }
664 } else {
665 if (options & SCHED_TAILQ)
666 enqueue_tail(queue, (queue_entry_t)entry);
667 else
668 enqueue_head(queue, (queue_entry_t)entry);
669 }
670 if (SCHED(priority_is_urgent)(sched_pri))
671 rq->urgency++;
672 SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count);
673 rq->count++;
674
675 entry->runq = MULTIQ_ERUNQ;
676
677 return (result);
678}
679
680/*
681 * The entry must be in this runqueue.
682 */
683static void
684entry_queue_remove_entry(
685 entry_queue_t rq,
686 sched_entry_t entry)
687{
688 int sched_pri = entry->sched_pri;
689
690#if defined(MULTIQ_SANITY_CHECK)
691 if (multiq_sanity_check) {
692 entry_queue_check_entry(rq, entry, sched_pri);
693 }
694#endif
695
696 remqueue((queue_entry_t)entry);
697
698 SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count);
699 rq->count--;
700 if (SCHED(priority_is_urgent)(sched_pri)) {
701 rq->urgency--; assert(rq->urgency >= 0);
702 }
703
704 if (queue_empty(rq->queues + sched_pri)) {
705 /* update run queue status */
706 if (sched_pri != IDLEPRI)
707 clrbit(MAXPRI - sched_pri, rq->bitmap);
708 rq->highq = MAXPRI - ffsbit(rq->bitmap);
709 }
710
711 entry->runq = 0;
712}
713
714/*
715 * The run queue must not be empty.
716 *
717 * sets queue_empty to TRUE if queue is now empty at thread_pri
718 */
719static thread_t
720group_run_queue_dequeue_thread(
721 group_runq_t rq,
722 integer_t *thread_pri,
723 boolean_t *queue_empty)
724{
725 thread_t thread;
726 queue_t queue = rq->queues + rq->highq;
727
728 assert(rq->count > 0);
729 assert(!queue_empty(queue));
730
731 *thread_pri = rq->highq;
732
733 thread = (thread_t)(void*)dequeue_head(queue);
734
735 SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count);
736 rq->count--;
737 if (SCHED(priority_is_urgent)(rq->highq)) {
738 rq->urgency--; assert(rq->urgency >= 0);
739 }
740 if (queue_empty(queue)) {
741 if (rq->highq != IDLEPRI)
742 clrbit(MAXPRI - rq->highq, rq->bitmap);
743 rq->highq = MAXPRI - ffsbit(rq->bitmap);
744 *queue_empty = TRUE;
745 } else {
746 *queue_empty = FALSE;
747 }
748
749 return (thread);
750}
751
752/*
753 * The run queue must not be empty.
754 * returns TRUE if queue was empty at thread_pri
755 */
756static boolean_t
757group_run_queue_enqueue_thread(
758 group_runq_t rq,
759 thread_t thread,
760 integer_t thread_pri,
761 integer_t options)
762{
763 queue_t queue = rq->queues + thread_pri;
764 boolean_t result = FALSE;
765
766 assert(thread->runq == PROCESSOR_NULL);
767
768 if (queue_empty(queue)) {
769 enqueue_tail(queue, (queue_entry_t)thread);
770
771 setbit(MAXPRI - thread_pri, rq->bitmap);
772 if (thread_pri > rq->highq) {
773 rq->highq = thread_pri;
774 }
775 result = TRUE;
776 } else {
777 if (options & SCHED_TAILQ)
778 enqueue_tail(queue, (queue_entry_t)thread);
779 else
780 enqueue_head(queue, (queue_entry_t)thread);
781 }
782 if (SCHED(priority_is_urgent)(thread_pri))
783 rq->urgency++;
784 SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count);
785 rq->count++;
786
787 return (result);
788}
789
790/*
791 * The thread must be in this runqueue.
792 * returns TRUE if queue is now empty at thread_pri
793 */
794static boolean_t
795group_run_queue_remove_thread(
796 group_runq_t rq,
797 thread_t thread,
798 integer_t thread_pri)
799{
800 boolean_t result = FALSE;
801
802 assert(thread->runq != PROCESSOR_NULL);
803
804 remqueue((queue_entry_t)thread);
805
806 SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count);
807 rq->count--;
808 if (SCHED(priority_is_urgent)(thread_pri)) {
809 rq->urgency--; assert(rq->urgency >= 0);
810 }
811
812 if (queue_empty(rq->queues + thread_pri)) {
813 /* update run queue status */
814 if (thread_pri != IDLEPRI)
815 clrbit(MAXPRI - thread_pri, rq->bitmap);
816 rq->highq = MAXPRI - ffsbit(rq->bitmap);
817 result = TRUE;
818 }
819
820 thread->runq = PROCESSOR_NULL;
821
822 return result;
823}
824
825/*
826 * A thread's sched pri may change out from under us because
827 * we're clearing thread->runq here without the thread locked.
828 * Do not rely on it to be the same as when we enqueued.
829 */
830static thread_t
831sched_global_dequeue_thread(entry_queue_t main_entryq)
832{
833 boolean_t pri_level_empty = FALSE;
834 sched_entry_t entry;
835 group_runq_t group_runq;
836 thread_t thread;
837 integer_t thread_pri;
838 sched_group_t group;
839
840 assert(main_entryq->count > 0);
841
842 entry = entry_queue_dequeue_entry(main_entryq);
843
844 group = group_for_entry(entry);
845 group_runq = &group->runq;
846
847 thread = group_run_queue_dequeue_thread(group_runq, &thread_pri, &pri_level_empty);
848
849 thread->runq = PROCESSOR_NULL;
850
851 if (!pri_level_empty) {
852 entry_queue_enqueue_entry(main_entryq, entry, SCHED_TAILQ);
853 }
854
855 return thread;
856}
857
858/* Dequeue a thread from the global runq without moving the entry */
859static thread_t
860sched_global_deep_drain_dequeue_thread(entry_queue_t main_entryq)
861{
862 boolean_t pri_level_empty = FALSE;
863 sched_entry_t entry;
864 group_runq_t group_runq;
865 thread_t thread;
866 integer_t thread_pri;
867 sched_group_t group;
868
869 assert(main_entryq->count > 0);
870
871 entry = entry_queue_first_entry(main_entryq);
872
873 group = group_for_entry(entry);
874 group_runq = &group->runq;
875
876 thread = group_run_queue_dequeue_thread(group_runq, &thread_pri, &pri_level_empty);
877
878 thread->runq = PROCESSOR_NULL;
879
880 if (pri_level_empty) {
881 entry_queue_remove_entry(main_entryq, entry);
882 }
883
884 return thread;
885}
886
887
888static thread_t
889sched_group_dequeue_thread(
890 entry_queue_t main_entryq,
891 sched_group_t group)
892{
893 group_runq_t group_runq = &group->runq;
894 boolean_t pri_level_empty = FALSE;
895 thread_t thread;
896 integer_t thread_pri;
897
898 thread = group_run_queue_dequeue_thread(group_runq, &thread_pri, &pri_level_empty);
899
900 thread->runq = PROCESSOR_NULL;
901
902 if (pri_level_empty) {
903 entry_queue_remove_entry(main_entryq, group_entry_for_pri(group, thread_pri));
904 }
905
906 return thread;
907}
908
909static void
910sched_group_remove_thread(
911 entry_queue_t main_entryq,
912 sched_group_t group,
913 thread_t thread)
914{
915 integer_t thread_pri = thread->sched_pri;
916 sched_entry_t sched_entry = group_entry_for_pri(group, thread_pri);
917
918#if defined(MULTIQ_SANITY_CHECK)
919 if (multiq_sanity_check) {
920 global_check_entry_queue(main_entryq);
921 group_check_run_queue(main_entryq, group);
922
923 sched_group_check_thread(group, thread);
924 entry_queue_check_entry(main_entryq, sched_entry, thread_pri);
925 }
926#endif
927
928 boolean_t pri_level_empty = group_run_queue_remove_thread(&group->runq, thread, thread_pri);
929
930 if (pri_level_empty) {
931 entry_queue_remove_entry(main_entryq, sched_entry);
932 }
933
934#if defined(MULTIQ_SANITY_CHECK)
935 if (multiq_sanity_check) {
936 global_check_entry_queue(main_entryq);
937 group_check_run_queue(main_entryq, group);
938 }
939#endif
940}
941
942static void
943sched_group_enqueue_thread(
944 entry_queue_t main_entryq,
945 sched_group_t group,
946 thread_t thread,
947 integer_t options)
948{
949#if defined(MULTIQ_SANITY_CHECK)
950 if (multiq_sanity_check) {
951 global_check_entry_queue(main_entryq);
952 group_check_run_queue(main_entryq, group);
953 }
954#endif
955
956 int sched_pri = thread->sched_pri;
957
958 boolean_t pri_level_was_empty = group_run_queue_enqueue_thread(&group->runq, thread, sched_pri, options);
959
960 if (pri_level_was_empty) {
961 /*
962 * TODO: Need to figure out if passing options here is a good idea or not
963 * What effects would it have?
964 */
965 entry_queue_enqueue_entry(main_entryq, &group->entries[sched_pri], options);
966 }
967}
968
969/*
970 * Locate a thread to execute from the run queue and return it.
971 * Only choose a thread with greater or equal priority.
972 *
973 * pset is locked, thread is not locked.
974 *
975 * Returns THREAD_NULL if it cannot find a valid thread.
976 *
977 * Note: we cannot rely on the value of thread->sched_pri in this path because
978 * we don't have the thread locked.
979 *
980 * TODO: Remove tracepoints
981 */
982static thread_t
983sched_multiq_choose_thread(
984 processor_t processor,
985 int priority,
986 ast_t reason)
987{
988 entry_queue_t main_entryq = multiq_main_entryq(processor);
989 run_queue_t bound_runq = multiq_bound_runq(processor);
990
991 boolean_t choose_bound_runq = FALSE;
992
993 if (bound_runq->highq < priority &&
994 main_entryq->highq < priority)
995 return THREAD_NULL;
996
997 if (bound_runq->count && main_entryq->count) {
998 if (bound_runq->highq >= main_entryq->highq) {
999 choose_bound_runq = TRUE;
1000 } else {
1001 /* Use main runq */
1002 }
1003 } else if (bound_runq->count) {
1004 choose_bound_runq = TRUE;
1005 } else if (main_entryq->count) {
1006 /* Use main runq */
1007 } else {
1008 return (THREAD_NULL);
1009 }
1010
1011 if (choose_bound_runq) {
1012 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
1013 MACHDBG_CODE(DBG_MACH_SCHED, MACH_MULTIQ_DEQUEUE) | DBG_FUNC_NONE,
1014 MACH_MULTIQ_BOUND, main_entryq->highq, bound_runq->highq, 0, 0);
1015
1016 return run_queue_dequeue(bound_runq, SCHED_HEADQ);
1017 }
1018
1019 sched_group_t group = current_thread()->sched_group;
1020
1021#if defined(MULTIQ_SANITY_CHECK)
1022 if (multiq_sanity_check) {
1023 global_check_entry_queue(main_entryq);
1024 group_check_run_queue(main_entryq, group);
1025 }
1026#endif
1027
1028 /*
1029 * Determine if we should look at the group or the global queue
1030 *
1031 * TODO:
1032 * Perhaps pass reason as a 'should look inside' argument to choose_thread
1033 * Should YIELD AST override drain limit?
1034 */
1035 if (group->runq.count != 0 && (reason & AST_PREEMPTION) == 0) {
1036 boolean_t drain_limit_hit = FALSE;
1037
1038 if (main_entryq->highq > group->runq.highq) {
1039 /*
1040 * If there's something elsewhere above the depth limit,
1041 * don't pick a thread below the limit.
1042 */
1043 if (main_entryq->highq > drain_depth_limit &&
1044 group->runq.highq <= drain_depth_limit)
1045 drain_limit_hit = TRUE;
1046
1047 /*
1048 * Don't go more than X steps below the global highest
1049 */
1050 if ((main_entryq->highq - group->runq.highq) >= drain_band_limit)
1051 drain_limit_hit = TRUE;
1052
1053 /* Don't favor the task when an urgent thread is present. */
1054 if (drain_urgent_first && main_entryq->urgency > 0)
1055 drain_limit_hit = TRUE;
1056 }
1057
1058 if (!drain_limit_hit) {
1059 /* Pull from local runq */
1060 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
1061 MACHDBG_CODE(DBG_MACH_SCHED, MACH_MULTIQ_DEQUEUE) | DBG_FUNC_NONE,
1062 MACH_MULTIQ_GROUP, main_entryq->highq, group->runq.highq, 0, 0);
1063
1064 return sched_group_dequeue_thread(main_entryq, group);
1065 }
1066 }
1067
1068 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
1069 MACHDBG_CODE(DBG_MACH_SCHED, MACH_MULTIQ_DEQUEUE) | DBG_FUNC_NONE,
1070 MACH_MULTIQ_GLOBAL, main_entryq->highq, group->runq.highq, 0, 0);
1071
1072 /* Couldn't pull from local runq, pull from global runq instead */
1073 if (deep_drain) {
1074 return sched_global_deep_drain_dequeue_thread(main_entryq);
1075 } else {
1076 return sched_global_dequeue_thread(main_entryq);
1077 }
1078}
1079
1080
1081/*
1082 * Thread must be locked, and not already be on a run queue.
1083 * pset is locked.
1084 */
1085static boolean_t
1086sched_multiq_processor_enqueue(
1087 processor_t processor,
1088 thread_t thread,
1089 integer_t options)
1090{
1091 boolean_t result;
1092
1093 assert(processor == thread->chosen_processor);
1094
1095 if (thread->bound_processor != PROCESSOR_NULL) {
1096 assert(thread->bound_processor == processor);
1097
1098 result = run_queue_enqueue(multiq_bound_runq(processor), thread, options);
1099 thread->runq = processor;
1100
1101 return result;
1102 }
1103
1104 sched_group_enqueue_thread(multiq_main_entryq(processor),
1105 thread->sched_group,
1106 thread, options);
1107
1108 thread->runq = processor;
1109
1110 return (FALSE);
1111}
1112
1113/*
1114 * Called in the context of thread with thread and pset unlocked,
1115 * after updating thread priority but before propagating that priority
1116 * to the processor
1117 */
1118void
1119sched_multiq_quantum_expire(thread_t thread)
1120{
1121 if (deep_drain) {
1122 /*
1123 * Move the entry at this priority to the end of the queue,
1124 * to allow the next task a shot at running.
1125 */
1126
1127 processor_t processor = thread->last_processor;
1128 processor_set_t pset = processor->processor_set;
1129 entry_queue_t entryq = multiq_main_entryq(processor);
1130
1131 pset_lock(pset);
1132
1133 sched_entry_t entry = group_entry_for_pri(thread->sched_group, processor->current_pri);
1134
1135 if (entry->runq == MULTIQ_ERUNQ) {
1136 entry_queue_remove_entry(entryq, entry);
1137 entry_queue_enqueue_entry(entryq, entry, SCHED_TAILQ);
1138 }
1139
1140 pset_unlock(pset);
1141 }
1142}
1143
1144static boolean_t
1145sched_multiq_processor_queue_empty(processor_t processor)
1146{
1147 return multiq_main_entryq(processor)->count == 0 &&
1148 multiq_bound_runq(processor)->count == 0;
1149}
1150
1151static ast_t
1152sched_multiq_processor_csw_check(processor_t processor)
1153{
1154 boolean_t has_higher;
1155 int pri;
1156
1157 entry_queue_t main_entryq = multiq_main_entryq(processor);
1158 run_queue_t bound_runq = multiq_bound_runq(processor);
1159
1160 assert(processor->active_thread != NULL);
1161
1162 pri = MAX(main_entryq->highq, bound_runq->highq);
1163
1164 if (first_timeslice(processor)) {
1165 has_higher = (pri > processor->current_pri);
1166 } else {
1167 has_higher = (pri >= processor->current_pri);
1168 }
1169
1170 if (has_higher) {
1171 if (main_entryq->urgency > 0)
1172 return (AST_PREEMPT | AST_URGENT);
1173
1174 if (bound_runq->urgency > 0)
1175 return (AST_PREEMPT | AST_URGENT);
1176
1177 if (processor->active_thread && thread_eager_preemption(processor->active_thread))
1178 return (AST_PREEMPT | AST_URGENT);
1179
1180 return AST_PREEMPT;
1181 }
1182
1183 return AST_NONE;
1184}
1185
1186static boolean_t
1187sched_multiq_processor_queue_has_priority(
1188 processor_t processor,
1189 int priority,
1190 boolean_t gte)
1191{
1192 int qpri = MAX(multiq_main_entryq(processor)->highq, multiq_bound_runq(processor)->highq);
1193
1194 if (gte)
1195 return qpri >= priority;
1196 else
1197 return qpri > priority;
1198}
1199
1200static boolean_t
1201sched_multiq_should_current_thread_rechoose_processor(processor_t processor)
1202{
1203 return (processor->current_pri < BASEPRI_RTQUEUES && processor->processor_primary != processor);
1204}
1205
1206static int
1207sched_multiq_runq_count(processor_t processor)
1208{
1209 /*
1210 * TODO: Decide whether to keep a count of runnable threads in the pset
1211 * or just return something less than the true count.
1212 *
1213 * This needs to be fast, so no iterating the whole runq.
1214 *
1215 * Another possible decision is to remove this - with global runq
1216 * it doesn't make much sense.
1217 */
1218 return multiq_main_entryq(processor)->count + multiq_bound_runq(processor)->count;
1219}
1220
1221static uint64_t
1222sched_multiq_runq_stats_count_sum(processor_t processor)
1223{
1224 /*
1225 * TODO: This one does need to go through all the runqueues, but it's only needed for
1226 * the sched stats tool
1227 */
1228
1229 uint64_t bound_sum = multiq_bound_runq(processor)->runq_stats.count_sum;
1230
1231 if (processor->cpu_id == processor->processor_set->cpu_set_low)
1232 return bound_sum + multiq_main_entryq(processor)->runq_stats.count_sum;
1233 else
1234 return bound_sum;
1235}
1236
1237static int
1238sched_multiq_processor_bound_count(processor_t processor)
1239{
1240 return multiq_bound_runq(processor)->count;
1241}
1242
1243static void
1244sched_multiq_processor_queue_shutdown(processor_t processor)
1245{
1246 processor_set_t pset = processor->processor_set;
1247 entry_queue_t main_entryq = multiq_main_entryq(processor);
1248 thread_t thread;
1249 queue_head_t tqueue;
1250
1251 /* We only need to migrate threads if this is the last active processor in the pset */
1252 if (pset->online_processor_count > 0) {
1253 pset_unlock(pset);
1254 return;
1255 }
1256
1257 queue_init(&tqueue);
1258
1259 /* Note that we do not remove bound threads from the queues here */
1260
1261 while (main_entryq->count > 0) {
1262 thread = sched_global_dequeue_thread(main_entryq);
1263 enqueue_tail(&tqueue, (queue_entry_t)thread);
1264 }
1265
1266 pset_unlock(pset);
1267
1268 while ((thread = (thread_t)(void*)dequeue_head(&tqueue)) != THREAD_NULL) {
1269 thread_lock(thread);
1270
1271 thread_setrun(thread, SCHED_TAILQ);
1272
1273 thread_unlock(thread);
1274 }
1275}
1276
1277/*
1278 * Thread is locked
1279 *
1280 * This is why we can never read sched_pri unless we have the thread locked.
1281 * Which we do in the enqueue and remove cases, but not the dequeue case.
1282 */
1283static boolean_t
1284sched_multiq_processor_queue_remove(
1285 processor_t processor,
1286 thread_t thread)
1287{
1288 boolean_t removed = FALSE;
1289
1290 processor_set_t pset = processor->processor_set;
1291
1292 pset_lock(pset);
1293
1294 if (thread->runq != PROCESSOR_NULL) {
1295 /*
1296 * Thread is on a run queue and we have a lock on
1297 * that run queue.
1298 */
1299
1300 assert(thread->runq == processor);
1301
1302 if (thread->bound_processor != PROCESSOR_NULL) {
1303 assert(processor == thread->bound_processor);
1304 run_queue_remove(multiq_bound_runq(processor), thread);
1305 thread->runq = PROCESSOR_NULL;
1306 } else {
1307 sched_group_remove_thread(multiq_main_entryq(processor),
1308 thread->sched_group,
1309 thread);
1310 }
1311
1312 removed = TRUE;
1313 }
1314
1315 pset_unlock(pset);
1316
1317 return removed;
1318}
1319
1320/* pset is locked, returned unlocked */
1321static thread_t
1322sched_multiq_steal_thread(processor_set_t pset)
1323{
1324 pset_unlock(pset);
1325 return (THREAD_NULL);
1326}
1327
1328/*
1329 * Scan the global queue for candidate groups, and scan those groups for
1330 * candidate threads.
1331 *
1332 * Returns TRUE if retry is needed.
1333 */
1334static boolean_t
1335group_scan(entry_queue_t runq) {
1336 int count;
1337 queue_t q;
1338 sched_group_t group;
1339 sched_entry_t entry;
1340
1341 if ((count = runq->count) > 0) {
1342 q = runq->queues + runq->highq;
1343 while (count > 0) {
1344 queue_iterate(q, entry, sched_entry_t, links) {
1345 group = group_for_entry(entry);
1346 if (group->runq.count > 0) {
1347 if (runq_scan(&group->runq))
1348 return (TRUE);
1349 }
1350 count--;
1351 }
1352 q--;
1353 }
1354 }
1355
1356 return (FALSE);
1357}
1358
1359static void
1360sched_multiq_thread_update_scan(void)
1361{
1362 boolean_t restart_needed = FALSE;
1363 processor_t processor = processor_list;
1364 processor_set_t pset;
1365 thread_t thread;
1366 spl_t s;
1367
1368 /*
1369 * We update the threads associated with each processor (bound and idle threads)
1370 * and then update the threads in each pset runqueue.
1371 */
1372
1373 do {
1374 do {
1375 pset = processor->processor_set;
1376
1377 s = splsched();
1378 pset_lock(pset);
1379
1380 restart_needed = runq_scan(multiq_bound_runq(processor));
1381
1382 pset_unlock(pset);
1383 splx(s);
1384
1385 if (restart_needed)
1386 break;
1387
1388 thread = processor->idle_thread;
1389 if (thread != THREAD_NULL && thread->sched_stamp != sched_tick) {
1390 if (thread_update_add_thread(thread) == FALSE) {
1391 restart_needed = TRUE;
1392 break;
1393 }
1394 }
1395 } while ((processor = processor->processor_list) != NULL);
1396
1397 /* Ok, we now have a collection of candidates -- fix them. */
1398 thread_update_process_threads();
1399
1400 } while (restart_needed);
1401
1402 pset = &pset0;
1403
1404 do {
1405 do {
1406 s = splsched();
1407 pset_lock(pset);
1408
1409 restart_needed = group_scan(&pset->pset_runq);
1410
1411 pset_unlock(pset);
1412 splx(s);
1413
1414 if (restart_needed)
1415 break;
1416 } while ((pset = pset->pset_list) != NULL);
1417
1418 /* Ok, we now have a collection of candidates -- fix them. */
1419 thread_update_process_threads();
1420
1421 } while (restart_needed);
1422}
1423
1424