]>
Commit | Line | Data |
---|---|---|
916eb79e A |
1 | /* |
2 | * Copyright (c) 2001 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * "Portions Copyright (c) 1999 Apple Computer, Inc. All Rights | |
7 | * Reserved. This file contains Original Code and/or Modifications of | |
8 | * Original Code as defined in and that are subject to the Apple Public | |
9 | * Source License Version 1.0 (the 'License'). You may not use this file | |
10 | * except in compliance with the License. Please obtain a copy of the | |
11 | * License at http://www.apple.com/publicsource and read it before using | |
12 | * this file. | |
13 | * | |
14 | * The Original Code and all software distributed under the License are | |
15 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
16 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
17 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
18 | * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the | |
19 | * License for the specific language governing rights and limitations | |
20 | * under the License." | |
21 | * | |
22 | * @APPLE_LICENSE_HEADER_END@ | |
23 | */ | |
24 | /* | |
25 | * History: | |
26 | * 2001-05-30 gvdl Initial implementation of the vtable patcher. | |
27 | */ | |
28 | // 45678901234567890123456789012345678901234567890123456789012345678901234567890 | |
29 | ||
30 | #include <mach-o/fat.h> | |
31 | #include <mach-o/loader.h> | |
32 | #include <mach-o/nlist.h> | |
33 | #include <mach-o/reloc.h> | |
34 | ||
35 | #if KERNEL | |
36 | ||
37 | #include <stdarg.h> | |
38 | #include <string.h> | |
39 | ||
40 | #include <sys/systm.h> | |
41 | ||
42 | #include <libkern/OSTypes.h> | |
43 | ||
44 | #include <libsa/stdlib.h> | |
45 | #include <libsa/mach/mach.h> | |
46 | ||
47 | #include "mach_loader.h" | |
48 | ||
49 | #include <vm/vm_kern.h> | |
50 | ||
51 | enum { false = 0, true = 1 }; | |
52 | ||
53 | #define vm_page_size page_size | |
54 | ||
55 | extern load_return_t fatfile_getarch( | |
56 | void * vp, // normally a (struct vnode *) | |
57 | vm_offset_t data_ptr, | |
58 | struct fat_arch * archret); | |
59 | ||
60 | __private_extern__ char *strstr(const char *in, const char *str); | |
61 | ||
62 | #else /* !KERNEL */ | |
63 | ||
64 | #include <unistd.h> | |
65 | ||
66 | #include <stdio.h> | |
67 | #include <stdlib.h> | |
68 | #include <string.h> | |
69 | ||
70 | #include <sys/errno.h> | |
71 | #include <sys/fcntl.h> | |
72 | #include <sys/stat.h> | |
73 | #include <sys/mman.h> | |
74 | #include <sys/vm.h> | |
75 | ||
76 | #include <mach/mach.h> | |
77 | #include <mach/mach_error.h> | |
78 | ||
79 | #include <mach-o/arch.h> | |
80 | ||
81 | #include <CoreFoundation/CoreFoundation.h> | |
82 | ||
83 | #define PAGE_SIZE vm_page_size | |
84 | #define PAGE_MASK (PAGE_SIZE - 1) | |
85 | ||
86 | #endif /* KERNEL */ | |
87 | ||
88 | #include "kld_patch.h" | |
89 | #include "c++rem3.h" | |
90 | ||
91 | #if 0 | |
92 | #define DIE() do { for (;;) ; } while(0) | |
93 | ||
94 | #if KERNEL | |
95 | # define LOG_DELAY() /* IODelay(200000) */ | |
96 | # define DEBUG_LOG(x) do { IOLog x; LOG_DELAY(); } while(0) | |
97 | #else | |
98 | # define LOG_DELAY() | |
99 | # define DEBUG_LOG(x) do { printf x; } while(0) | |
100 | #endif | |
101 | ||
102 | #else | |
103 | ||
104 | #define DIE() | |
105 | #define LOG_DELAY() | |
106 | #define DEBUG_LOG(x) | |
107 | ||
108 | #endif | |
109 | ||
110 | // OSObject symbol prefixes and suffixes | |
111 | #define kCPPSymbolPrefix "_Z" | |
112 | #define kVTablePrefix "_" kCPPSymbolPrefix "TV" | |
113 | #define kOSObjPrefix "_" kCPPSymbolPrefix "N" | |
114 | #define kReservedNamePrefix "_RESERVED" | |
115 | #define k29SuperClassSuffix "superClass" | |
116 | #define k31SuperClassSuffix "10superClassE" | |
117 | #define kGMetaSuffix "10gMetaClassE" | |
118 | #define kLinkEditSegName SEG_LINKEDIT | |
119 | ||
120 | // GCC 2.95 drops 2 leading constants in the vtable | |
121 | #define kVTablePreambleLen 2 | |
122 | ||
123 | // Last address that I'm willing to try find vm in | |
124 | #define kTopAddr ((unsigned char *) (1024 * 1024 * 1024)) | |
125 | ||
126 | // Size in bytes that Data Ref object's get increased in size | |
127 | // Must be a power of 2 | |
128 | #define kDataCapacityIncrement 128 | |
129 | ||
130 | // My usual set of helper macros. I personally find these macros | |
131 | // easier to read in the code rather than an explicit error condition | |
132 | // check. If I don't make it easy then I may get lazy ond not check | |
133 | // everything. I'm sorry if you find this code harder to read. | |
134 | ||
135 | // break_if will evaluate the expression and if it is true | |
136 | // then it will print the msg, which is enclosed in parens | |
137 | // and then break. Usually used in loops are do { } while (0) | |
138 | #define break_if(expr, msg) \ | |
139 | if (expr) { \ | |
140 | errprintf msg; \ | |
141 | break; \ | |
142 | } | |
143 | ||
144 | // return_if will evaluate expr and if true it will log the | |
145 | // msg, which is enclosed in parens, and then it will return | |
146 | // with the return code of ret. | |
147 | #define return_if(expr, ret, msg) do { \ | |
148 | if (expr) { \ | |
149 | errprintf msg; \ | |
150 | return ret; \ | |
151 | } \ | |
152 | } while (0) | |
153 | ||
154 | #ifndef MIN | |
155 | #define MIN(a,b) (((a)<(b))?(a):(b)) | |
156 | #endif /* MIN */ | |
157 | #ifndef MAX | |
158 | #define MAX(a,b) (((a)>(b))?(a):(b)) | |
159 | #endif /* MAX */ | |
160 | ||
161 | typedef struct Data { | |
162 | unsigned long fLength, fCapacity; | |
163 | unsigned char *fData; | |
164 | } Data, *DataRef; | |
165 | ||
166 | struct sectionRecord { | |
167 | const struct section *fSection; | |
168 | DataRef fRelocCache; | |
169 | }; | |
170 | ||
171 | enum patchState { | |
172 | kSymbolIdentical, | |
173 | kSymbolLocal, | |
174 | kSymbolPadUpdate, | |
175 | kSymbolSuperUpdate, | |
176 | kSymbolMismatch | |
177 | }; | |
178 | ||
179 | struct patchRecord { | |
180 | struct nlist *fSymbol; | |
181 | enum patchState fType; | |
182 | }; | |
183 | ||
184 | struct relocRecord { | |
185 | void *fValue; | |
186 | const struct nlist *fSymbol; | |
187 | struct relocation_info *fRInfo; | |
188 | void *reserved; | |
189 | }; | |
190 | ||
191 | struct metaClassRecord { | |
192 | char *fSuperName; | |
193 | struct fileRecord *fFile; | |
194 | const struct nlist *fVTableSym; | |
195 | struct patchRecord *fPatchedVTable; | |
196 | char fClassName[1]; | |
197 | }; | |
198 | ||
199 | struct fileRecord { | |
200 | size_t fMapSize, fMachOSize; | |
201 | unsigned char *fMap, *fMachO, *fPadEnd; | |
202 | DataRef fClassList; | |
203 | DataRef fSectData; | |
204 | DataRef fNewSymbols, fNewStringBlocks; | |
205 | DataRef fSym2Strings; | |
206 | struct symtab_command *fSymtab; | |
207 | struct sectionRecord *fSections; | |
208 | struct segment_command *fLinkEditSeg; | |
209 | const char **fSymbToStringTable; | |
210 | char *fStringBase; | |
211 | struct nlist *fSymbolBase; | |
212 | const struct nlist *fLocalSyms; | |
213 | unsigned int fNSects; | |
214 | int fNLocal; | |
215 | Boolean fIsKernel, fNoKernelExecutable, fIsKmem; | |
216 | Boolean fImageDirty, fSymbolsDirty; | |
217 | Boolean fRemangled, fFoundOSObject; | |
218 | const char fPath[1]; | |
219 | }; | |
220 | ||
221 | static DataRef sFilesTable; | |
222 | static struct fileRecord *sKernelFile; | |
223 | ||
224 | static DataRef sMergedFiles; | |
225 | static DataRef sMergeMetaClasses; | |
226 | static Boolean sMergedKernel; | |
227 | ||
228 | static void errprintf(const char *fmt, ...) | |
229 | { | |
230 | extern void kld_error_vprintf(const char *format, va_list ap); | |
231 | ||
232 | va_list ap; | |
233 | ||
234 | va_start(ap, fmt); | |
235 | kld_error_vprintf(fmt, ap); | |
236 | va_end(ap); | |
237 | ||
238 | DIE(); | |
239 | } | |
240 | ||
241 | static __inline__ unsigned long DataGetLength(DataRef data) | |
242 | { | |
243 | return data->fLength; | |
244 | } | |
245 | ||
246 | static __inline__ unsigned char *DataGetPtr(DataRef data) | |
247 | { | |
248 | return data->fData; | |
249 | } | |
250 | ||
251 | static __inline__ unsigned char *DataGetEndPtr(DataRef data) | |
252 | { | |
253 | return data->fData + data->fLength; | |
254 | } | |
255 | ||
256 | static __inline__ unsigned long DataRemaining(DataRef data) | |
257 | { | |
258 | return data->fCapacity - data->fLength; | |
259 | } | |
260 | ||
261 | static __inline__ Boolean DataContainsAddr(DataRef data, void *vAddr) | |
262 | { | |
263 | vm_offset_t offset = (vm_address_t) vAddr; | |
264 | ||
265 | if (!data) | |
266 | return false; | |
267 | ||
268 | offset = (vm_address_t) vAddr - (vm_address_t) data->fData; | |
269 | return (offset < data->fLength); | |
270 | } | |
271 | ||
272 | static Boolean DataEnsureCapacity(DataRef data, unsigned long capacity) | |
273 | { | |
274 | // Don't bother to ever shrink a data object. | |
275 | if (capacity > data->fCapacity) { | |
276 | unsigned char *newData; | |
277 | ||
278 | capacity += kDataCapacityIncrement - 1; | |
279 | capacity &= ~(kDataCapacityIncrement - 1); | |
280 | newData = (unsigned char *) realloc(data->fData, capacity); | |
281 | if (!newData) | |
282 | return false; | |
283 | ||
284 | bzero(newData + data->fCapacity, capacity - data->fCapacity); | |
285 | data->fData = newData; | |
286 | data->fCapacity = capacity; | |
287 | } | |
288 | ||
289 | return true; | |
290 | } | |
291 | ||
292 | static __inline__ Boolean DataSetLength(DataRef data, unsigned long length) | |
293 | { | |
294 | if (DataEnsureCapacity(data, length)) { | |
295 | data->fLength = length; | |
296 | return true; | |
297 | } | |
298 | else | |
299 | return false; | |
300 | } | |
301 | ||
302 | static __inline__ Boolean DataAddLength(DataRef data, unsigned long length) | |
303 | { | |
304 | return DataSetLength(data, data->fLength + length); | |
305 | } | |
306 | ||
307 | static __inline__ Boolean | |
308 | DataAppendBytes(DataRef data, const void *addr, unsigned int len) | |
309 | { | |
310 | unsigned long size = DataGetLength(data); | |
311 | ||
312 | if (!DataAddLength(data, len)) | |
313 | return false; | |
314 | ||
315 | bcopy(addr, DataGetPtr(data) + size, len); | |
316 | return true; | |
317 | } | |
318 | ||
319 | static __inline__ Boolean DataAppendData(DataRef dst, DataRef src) | |
320 | { | |
321 | return DataAppendBytes(dst, DataGetPtr(src), DataGetLength(src)); | |
322 | } | |
323 | ||
324 | static DataRef DataCreate(unsigned long capacity) | |
325 | { | |
326 | DataRef data = (DataRef) malloc(sizeof(Data)); | |
327 | ||
328 | if (data) { | |
329 | if (!capacity) | |
330 | data->fCapacity = kDataCapacityIncrement; | |
331 | else { | |
332 | data->fCapacity = capacity + kDataCapacityIncrement - 1; | |
333 | data->fCapacity &= ~(kDataCapacityIncrement - 1); | |
334 | } | |
335 | ||
336 | data->fData = (unsigned char *) malloc(data->fCapacity); | |
337 | if (!data->fData) { | |
338 | free(data); | |
339 | return NULL; | |
340 | } | |
341 | ||
342 | bzero(data->fData, data->fCapacity); | |
343 | data->fLength = 0; | |
344 | } | |
345 | return data; | |
346 | } | |
347 | ||
348 | static void DataRelease(DataRef data) | |
349 | { | |
350 | if (data) { | |
351 | if (data->fData) | |
352 | free(data->fData); | |
353 | data->fData = 0; | |
354 | free(data); | |
355 | } | |
356 | } | |
357 | ||
358 | static __inline__ const char * | |
359 | symNameByIndex(const struct fileRecord *file, unsigned int symInd) | |
360 | { | |
361 | return file->fSymbToStringTable[symInd]; | |
362 | } | |
363 | ||
364 | static __inline__ const char * | |
365 | symbolname(const struct fileRecord *file, const struct nlist *sym) | |
366 | { | |
367 | unsigned int index; | |
368 | ||
369 | index = sym - file->fSymbolBase; | |
370 | if (index < file->fSymtab->nsyms) | |
371 | return symNameByIndex(file, index); | |
372 | ||
373 | if (-1 == sym->n_un.n_strx) | |
374 | return (const char *) sym->n_value; | |
375 | ||
376 | // If the preceding tests fail then we have a getNewSymbol patch and | |
377 | // the file it refers to has already been patched as the n_strx is set | |
378 | // to -1 temporarily while we are still processing a file. | |
379 | // Once we have finished with a file then we repair the 'strx' offset | |
380 | // to be valid for the repaired file's string table. | |
381 | return file->fStringBase + sym->n_un.n_strx; | |
382 | } | |
383 | ||
384 | static struct fileRecord * | |
385 | getFile(const char *path) | |
386 | { | |
387 | if (sFilesTable) { | |
388 | int i, nfiles; | |
389 | struct fileRecord **files; | |
390 | ||
391 | // Check to see if we have already merged this file | |
392 | nfiles = DataGetLength(sFilesTable) / sizeof(struct fileRecord *); | |
393 | files = (struct fileRecord **) DataGetPtr(sFilesTable); | |
394 | for (i = 0; i < nfiles; i++) { | |
395 | if (!strcmp(path, files[i]->fPath)) | |
396 | return files[i]; | |
397 | } | |
398 | } | |
399 | ||
400 | return NULL; | |
401 | } | |
402 | ||
403 | static struct fileRecord * | |
404 | addFile(struct fileRecord *file, const char *path) | |
405 | { | |
406 | struct fileRecord *newFile; | |
407 | ||
408 | if (!sFilesTable) { | |
409 | sFilesTable = DataCreate(0); | |
410 | if (!sFilesTable) | |
411 | return NULL; | |
412 | } | |
413 | ||
414 | newFile = (struct fileRecord *) | |
415 | malloc(sizeof(struct fileRecord) + strlen(path)); | |
416 | if (!newFile) | |
417 | return NULL; | |
418 | ||
419 | if (!DataAppendBytes(sFilesTable, &newFile, sizeof(newFile))) { | |
420 | free(newFile); | |
421 | return NULL; | |
422 | } | |
423 | ||
424 | bcopy(file, newFile, sizeof(struct fileRecord) - 1); | |
425 | strcpy((char *) newFile->fPath, path); | |
426 | ||
427 | return newFile; | |
428 | } | |
429 | ||
430 | // @@@ gvdl: need to clean up the sMergeMetaClasses | |
431 | // @@@ gvdl: I had better fix the object file up again | |
432 | static void unmapFile(struct fileRecord *file) | |
433 | { | |
434 | if (file->fSectData) { | |
435 | struct sectionRecord *section; | |
436 | unsigned int i, nsect; | |
437 | ||
438 | nsect = file->fNSects; | |
439 | section = file->fSections; | |
440 | for (i = 0; i < nsect; i++, section++) { | |
441 | if (section->fRelocCache) { | |
442 | DataRelease(section->fRelocCache); | |
443 | section->fRelocCache = 0; | |
444 | } | |
445 | } | |
446 | ||
447 | DataRelease(file->fSectData); | |
448 | file->fSectData = 0; | |
449 | file->fSections = 0; | |
450 | file->fNSects = 0; | |
451 | } | |
452 | ||
453 | if (file->fSym2Strings) { | |
454 | DataRelease(file->fSym2Strings); | |
455 | file->fSym2Strings = 0; | |
456 | } | |
457 | ||
458 | if (file->fMap) { | |
459 | #if KERNEL | |
460 | if (file->fIsKmem) | |
461 | kmem_free(kernel_map, (vm_address_t) file->fMap, file->fMapSize); | |
462 | #else /* !KERNEL */ | |
463 | if (file->fPadEnd) { | |
464 | vm_address_t padVM; | |
465 | vm_size_t padSize; | |
466 | ||
467 | padVM = round_page((vm_address_t) file->fMap + file->fMapSize); | |
468 | padSize = (vm_size_t) ((vm_address_t) file->fPadEnd - padVM); | |
469 | (void) vm_deallocate(mach_task_self(), padVM, padSize); | |
470 | file->fPadEnd = 0; | |
471 | } | |
472 | ||
473 | (void) munmap((caddr_t) file->fMap, file->fMapSize); | |
474 | #endif /* !KERNEL */ | |
475 | file->fMap = 0; | |
476 | } | |
477 | } | |
478 | ||
479 | static void removeFile(struct fileRecord *file) | |
480 | { | |
481 | if (file->fClassList) { | |
482 | DataRelease(file->fClassList); | |
483 | file->fClassList = 0; | |
484 | } | |
485 | ||
486 | unmapFile(file); | |
487 | ||
488 | free(file); | |
489 | } | |
490 | ||
491 | #if !KERNEL | |
492 | static Boolean | |
493 | mapObjectFile(struct fileRecord *file, const char *pathName) | |
494 | { | |
495 | Boolean result = false; | |
496 | static unsigned char *sFileMapBaseAddr = 0; | |
497 | ||
498 | int fd = 0; | |
499 | ||
500 | if (!sFileMapBaseAddr) { | |
501 | kern_return_t ret; | |
502 | vm_address_t probeAddr; | |
503 | ||
504 | // If we don't already have a base addr find any random chunk | |
505 | // of 32 meg of VM and to use the 16 meg boundrary as a base. | |
506 | ret = vm_allocate(mach_task_self(), &probeAddr, | |
507 | 32 * 1024 * 1024, VM_FLAGS_ANYWHERE); | |
508 | return_if(KERN_SUCCESS != ret, false, | |
509 | ("Unable to allocate base memory %s\n", mach_error_string(ret))); | |
510 | (void) vm_deallocate(mach_task_self(), probeAddr, 32 * 1024 * 1024); | |
511 | ||
512 | // Now round to the next 16 Meg boundrary | |
513 | probeAddr = (probeAddr + (16 * 1024 * 1024 - 1)) | |
514 | & ~(16 * 1024 * 1024 - 1); | |
515 | sFileMapBaseAddr = (unsigned char *) probeAddr; | |
516 | } | |
517 | ||
518 | fd = open(pathName, O_RDONLY, 0); | |
519 | return_if(fd == -1, false, ("Can't open %s for reading - %s\n", | |
520 | pathName, strerror(errno))); | |
521 | ||
522 | do { | |
523 | kern_return_t ret; | |
524 | struct stat sb; | |
525 | int retaddr = -1; | |
526 | ||
527 | break_if(fstat(fd, &sb) == -1, | |
528 | ("Can't stat %s - %s\n", file->fPath, strerror(errno))); | |
529 | ||
530 | file->fMapSize = sb.st_size; | |
531 | file->fMap = sFileMapBaseAddr; | |
532 | ret = KERN_SUCCESS; | |
533 | while (file->fMap < kTopAddr) { | |
534 | vm_address_t padVM; | |
535 | vm_address_t padVMEnd; | |
536 | vm_size_t padSize; | |
537 | ||
538 | padVM = round_page((vm_address_t) file->fMap + file->fMapSize); | |
539 | retaddr = (int) mmap(file->fMap, file->fMapSize, | |
540 | PROT_READ|PROT_WRITE, | |
541 | MAP_FIXED|MAP_FILE|MAP_PRIVATE, | |
542 | fd, 0); | |
543 | if (-1 == retaddr) { | |
544 | break_if(ENOMEM != errno, | |
545 | ("mmap failed %d - %s\n", errno, strerror(errno))); | |
546 | ||
547 | file->fMap = (unsigned char *) padVM; | |
548 | continue; | |
549 | } | |
550 | ||
551 | ||
552 | // Round up padVM to the next page after the file and assign at | |
553 | // least another fMapSize more room rounded up to the next page | |
554 | // boundary. | |
555 | padVMEnd = round_page(padVM + file->fMapSize); | |
556 | padSize = padVMEnd - padVM; | |
557 | ret = vm_allocate( | |
558 | mach_task_self(), &padVM, padSize, VM_FLAGS_FIXED); | |
559 | if (KERN_SUCCESS == ret) { | |
560 | file->fPadEnd = (unsigned char *) padVMEnd; | |
561 | break; | |
562 | } | |
563 | else { | |
564 | munmap(file->fMap, file->fMapSize); | |
565 | break_if(KERN_INVALID_ADDRESS != ret, | |
566 | ("Unable to allocate pad vm for %s - %s\n", | |
567 | pathName, mach_error_string(ret))); | |
568 | ||
569 | file->fMap = (unsigned char *) padVMEnd; | |
570 | continue; // try again wherever the vm system wants | |
571 | } | |
572 | } | |
573 | ||
574 | if (-1 == retaddr || KERN_SUCCESS != ret) | |
575 | break; | |
576 | ||
577 | break_if(file->fMap >= kTopAddr, | |
578 | ("Unable to map memory %s\n", file->fPath)); | |
579 | ||
580 | sFileMapBaseAddr = file->fPadEnd; | |
581 | result = true; | |
582 | } while(0); | |
583 | ||
584 | close(fd); | |
585 | return result; | |
586 | } | |
587 | #endif /* !KERNEL */ | |
588 | ||
589 | static Boolean findBestArch(struct fileRecord *file, const char *pathName) | |
590 | { | |
591 | unsigned long magic; | |
592 | struct fat_header *fat; | |
593 | ||
594 | ||
595 | file->fMachOSize = file->fMapSize; | |
596 | file->fMachO = file->fMap; | |
597 | magic = ((const struct mach_header *) file->fMachO)->magic; | |
598 | fat = (struct fat_header *) file->fMachO; | |
599 | ||
600 | // Try to figure out what type of file this is | |
601 | return_if(file->fMapSize < sizeof(unsigned long), false, | |
602 | ("%s isn't a valid object file - no magic\n", pathName)); | |
603 | ||
604 | #if KERNEL | |
605 | ||
606 | // CIGAM is byte-swapped MAGIC | |
607 | if (magic == FAT_MAGIC || magic == FAT_CIGAM) { | |
608 | ||
609 | load_return_t load_return; | |
610 | struct fat_arch fatinfo; | |
611 | ||
612 | load_return = fatfile_getarch(NULL, (vm_address_t) fat, &fatinfo); | |
613 | return_if(load_return != LOAD_SUCCESS, false, | |
614 | ("Extension \"%s\": has no code for this computer\n", pathName)); | |
615 | ||
616 | file->fMachO = file->fMap + fatinfo.offset; | |
617 | file->fMachOSize = fatinfo.size; | |
618 | magic = ((const struct mach_header *) file->fMachO)->magic; | |
619 | } | |
620 | ||
621 | #else /* !KERNEL */ | |
622 | ||
623 | // Do we need to in-place swap the endianness of the fat header? | |
624 | if (magic == FAT_CIGAM) { | |
625 | unsigned long i; | |
626 | struct fat_arch *arch; | |
627 | ||
628 | fat->nfat_arch = NXSwapBigLongToHost(fat->nfat_arch); | |
629 | return_if(file->fMapSize < sizeof(struct fat_header) | |
630 | + fat->nfat_arch * sizeof(struct fat_arch), | |
631 | false, ("%s is too fat\n", file->fPath)); | |
632 | ||
633 | arch = (struct fat_arch *) &fat[1]; | |
634 | for (i = 0; i < fat->nfat_arch; i++) { | |
635 | arch[i].cputype = NXSwapBigLongToHost(arch[i].cputype); | |
636 | arch[i].cpusubtype = NXSwapBigLongToHost(arch[i].cpusubtype); | |
637 | arch[i].offset = NXSwapBigLongToHost(arch[i].offset); | |
638 | arch[i].size = NXSwapBigLongToHost(arch[i].size); | |
639 | arch[i].align = NXSwapBigLongToHost(arch[i].align); | |
640 | } | |
641 | ||
642 | magic = NXSwapBigLongToHost(fat->magic); | |
643 | } | |
644 | ||
645 | // Now see if we can find any valid architectures | |
646 | if (magic == FAT_MAGIC) { | |
647 | const NXArchInfo *myArch; | |
648 | unsigned long fatsize; | |
649 | struct fat_arch *arch; | |
650 | ||
651 | fatsize = sizeof(struct fat_header) | |
652 | + fat->nfat_arch * sizeof(struct fat_arch); | |
653 | return_if(file->fMapSize < fatsize, | |
654 | false, ("%s isn't a valid fat file\n", pathName)); | |
655 | ||
656 | myArch = NXGetLocalArchInfo(); | |
657 | arch = NXFindBestFatArch(myArch->cputype, myArch->cpusubtype, | |
658 | (struct fat_arch *) &fat[1], fat->nfat_arch); | |
659 | return_if(!arch, | |
660 | false, ("%s hasn't got arch for %s\n", pathName, myArch->name)); | |
661 | return_if(arch->offset + arch->size > file->fMapSize, | |
662 | false, ("%s's %s arch is incomplete\n", pathName, myArch->name)); | |
663 | file->fMachO = file->fMap + arch->offset; | |
664 | file->fMachOSize = arch->size; | |
665 | magic = ((const struct mach_header *) file->fMachO)->magic; | |
666 | } | |
667 | ||
668 | #endif /* KERNEL */ | |
669 | ||
670 | return_if(magic != MH_MAGIC, | |
671 | false, ("%s isn't a valid mach-o\n", pathName)); | |
672 | ||
673 | return true; | |
674 | } | |
675 | ||
676 | static Boolean | |
677 | parseSegments(struct fileRecord *file, struct segment_command *seg) | |
678 | { | |
679 | struct sectionRecord *sections; | |
680 | int i, nsects = seg->nsects; | |
681 | const struct segmentMap { | |
682 | struct segment_command seg; | |
683 | const struct section sect[1]; | |
684 | } *segMap; | |
685 | ||
686 | if (!file->fSectData) { | |
687 | file->fSectData = DataCreate(0); | |
688 | if (!file->fSectData) | |
689 | return false; | |
690 | } | |
691 | ||
692 | // Increase length of section DataRef and cache data pointer | |
693 | if (!DataAddLength(file->fSectData, nsects * sizeof(struct sectionRecord))) | |
694 | return false; | |
695 | file->fSections = (struct sectionRecord *) DataGetPtr(file->fSectData); | |
696 | ||
697 | // Initialise the new sections | |
698 | sections = &file->fSections[file->fNSects]; | |
699 | file->fNSects += nsects; | |
700 | for (i = 0, segMap = (struct segmentMap *) seg; i < nsects; i++) | |
701 | sections[i].fSection = &segMap->sect[i]; | |
702 | ||
703 | return true; | |
704 | } | |
705 | ||
706 | static Boolean | |
707 | remangleExternSymbols(struct fileRecord *file, const char *pathName) | |
708 | { | |
709 | const struct nlist *sym; | |
710 | int i, nsyms, len; | |
711 | DataRef strings = NULL; | |
712 | ||
713 | DEBUG_LOG(("Remangling %s\n", pathName)); | |
714 | ||
715 | file->fNewStringBlocks = DataCreate(0); | |
716 | return_if(!file->fNewStringBlocks, false, | |
717 | ("Unable to allocate new string table for %s\n", pathName)); | |
718 | ||
719 | nsyms = file->fSymtab->nsyms; | |
720 | for (i = 0, sym = file->fSymbolBase; i < nsyms; i++, sym++) { | |
721 | Rem3Return ret; | |
722 | const char *symname; | |
723 | char *newname; | |
724 | unsigned char n_type = sym->n_type; | |
725 | ||
726 | // Not an external symbol or it is a stab in any case don't bother | |
727 | if ((n_type ^ N_EXT) & (N_STAB | N_EXT)) | |
728 | continue; | |
729 | ||
730 | symname = symNameByIndex(file, i); | |
731 | ||
732 | tryRemangleAgain: | |
733 | if (!strings) { | |
734 | strings = DataCreate(16 * 1024); // Arbitrary block size | |
735 | return_if(!strings, false, | |
736 | ("Unable to allocate new string block for %s\n", pathName)); | |
737 | } | |
738 | ||
739 | len = DataRemaining(strings); | |
740 | newname = DataGetEndPtr(strings); | |
741 | ret = rem3_remangle_name(newname, &len, symname); | |
742 | switch (ret) { | |
743 | case kR3InternalNotRemangled: | |
744 | errprintf("Remangler fails on %s in %s\n", symname, pathName); | |
745 | /* No break */ | |
746 | case kR3NotRemangled: | |
747 | break; | |
748 | ||
749 | case kR3Remangled: | |
750 | file->fSymbToStringTable[i] = newname; | |
751 | file->fRemangled = file->fSymbolsDirty = true; | |
752 | DataAddLength(strings, len + 1); // returns strlen | |
753 | break; | |
754 | ||
755 | case kR3BufferTooSmallRemangled: | |
756 | return_if(!DataAppendBytes | |
757 | (file->fNewStringBlocks, &strings, sizeof(strings)), | |
758 | false, ("Unable to allocate string table for %s\n", pathName)); | |
759 | strings = NULL; | |
760 | goto tryRemangleAgain; | |
761 | ||
762 | case kR3BadArgument: | |
763 | default: | |
764 | return_if(true, false, | |
765 | ("Internal error - remangle of %s\n", pathName)); | |
766 | } | |
767 | } | |
768 | ||
769 | if (strings) { | |
770 | return_if(!DataAppendBytes | |
771 | (file->fNewStringBlocks, &strings, sizeof(strings)), | |
772 | false, ("Unable to allocate string table for %s\n", pathName)); | |
773 | } | |
774 | ||
775 | return true; | |
776 | } | |
777 | ||
778 | static Boolean parseSymtab(struct fileRecord *file, const char *pathName) | |
779 | { | |
780 | const struct nlist *sym; | |
781 | unsigned int i, firstlocal, nsyms; | |
782 | unsigned long strsize; | |
783 | const char *strbase; | |
784 | Boolean foundOSObject, found295CPP; | |
785 | ||
786 | // we found a link edit segment so recompute the bases | |
787 | if (file->fLinkEditSeg) { | |
788 | struct segment_command *link = file->fLinkEditSeg; | |
789 | ||
790 | file->fSymbolBase = (struct nlist *) | |
791 | (link->vmaddr + (file->fSymtab->symoff - link->fileoff)); | |
792 | file->fStringBase = (char *) | |
793 | (link->vmaddr + (file->fSymtab->stroff - link->fileoff)); | |
794 | return_if( ( (caddr_t) file->fStringBase + file->fSymtab->strsize | |
795 | > (caddr_t) link->vmaddr + link->vmsize ), false, | |
796 | ("%s isn't a valid mach-o le, bad symbols\n", pathName)); | |
797 | } | |
798 | else { | |
799 | file->fSymbolBase = (struct nlist *) | |
800 | (file->fMachO + file->fSymtab->symoff); | |
801 | file->fStringBase = (char *) | |
802 | (file->fMachO + file->fSymtab->stroff); | |
803 | return_if( ( file->fSymtab->stroff + file->fSymtab->strsize | |
804 | > file->fMachOSize ), false, | |
805 | ("%s isn't a valid mach-o, bad symbols\n", pathName)); | |
806 | } | |
807 | ||
808 | nsyms = file->fSymtab->nsyms; | |
809 | ||
810 | // If this file the kernel and do we have an executable image | |
811 | file->fNoKernelExecutable = (vm_page_size == file->fSymtab->symoff) | |
812 | && (file->fSections[0].fSection->size == 0); | |
813 | ||
814 | // Generate a table of pointers to strings indexed by the symbol number | |
815 | ||
816 | file->fSym2Strings = DataCreate(nsyms * sizeof(const char *)); | |
817 | DataSetLength(file->fSym2Strings, nsyms * sizeof(const char *)); | |
818 | return_if(!file->fSym2Strings, false, | |
819 | ("Unable to allocate memory - symbol string trans\n", pathName)); | |
820 | file->fSymbToStringTable = (const char **) DataGetPtr(file->fSym2Strings); | |
821 | ||
822 | // Search for the first non-stab symbol in table | |
823 | strsize = file->fSymtab->strsize; | |
824 | strbase = file->fStringBase; | |
825 | firstlocal = 0; | |
826 | found295CPP = foundOSObject = false; | |
827 | for (i = 0, sym = file->fSymbolBase; i < nsyms; i++, sym++) { | |
828 | long strx = sym->n_un.n_strx; | |
829 | const char *symname = strbase + strx; | |
830 | unsigned char n_type; | |
831 | ||
832 | return_if(((unsigned long) strx > strsize), false, | |
833 | ("%s has an illegal string offset in symbol %d\n", pathName, i)); | |
834 | ||
835 | // Load up lookup symbol look table with sym names | |
836 | file->fSymbToStringTable[i] = symname; | |
837 | ||
838 | n_type = sym->n_type & (N_TYPE | N_EXT); | |
839 | ||
840 | // Find the first exported symbol | |
841 | if ( !firstlocal && (n_type & N_EXT) ) { | |
842 | firstlocal = i; | |
843 | file->fLocalSyms = sym; | |
844 | } | |
845 | ||
846 | // Find the a OSObject based subclass by searching for symbols | |
847 | // that have a suffix of '10superClassE' | |
848 | symname++; // Skip leading '_' | |
849 | ||
850 | if (!foundOSObject | |
851 | && (n_type == (N_SECT | N_EXT) || n_type == (N_ABS | N_EXT)) | |
852 | && strx) { | |
853 | const char *suffix, *endSym; | |
854 | ||
855 | endSym = symname + strlen(symname); | |
856 | ||
857 | // Find out if this symbol has the superclass suffix. | |
858 | if (symname[0] == kCPPSymbolPrefix[0] | |
859 | && symname[1] == kCPPSymbolPrefix[1]) { | |
860 | ||
861 | suffix = endSym - sizeof(k31SuperClassSuffix) + 1; | |
862 | ||
863 | // Check for a gcc3 OSObject subclass | |
864 | if (suffix > symname | |
865 | && !strcmp(suffix, k31SuperClassSuffix)) | |
866 | foundOSObject = true; | |
867 | } | |
868 | else { | |
869 | suffix = endSym - sizeof(k29SuperClassSuffix); | |
870 | ||
871 | // Check for a gcc295 OSObject subclass | |
872 | if (suffix > symname | |
873 | && ('.' == *suffix || '$' == *suffix) | |
874 | && !strcmp(suffix+1, k29SuperClassSuffix)) { | |
875 | found295CPP = foundOSObject = true; | |
876 | } | |
877 | else if (!found295CPP) { | |
878 | // Finally just check if we need to remangle | |
879 | symname++; // skip leading '__' | |
880 | while (*symname) { | |
881 | if ('_' == *symname++ && '_' == *symname++) { | |
882 | found295CPP = true; | |
883 | break; | |
884 | } | |
885 | } | |
886 | } | |
887 | } | |
888 | } | |
889 | else if (sym->n_type == (N_EXT | N_UNDF)) { | |
890 | if ( !file->fNLocal) // Find the last local symbol | |
891 | file->fNLocal = i - firstlocal; | |
892 | if (!found295CPP) { | |
893 | symname++; // Skip possible second '_' at start. | |
894 | while (*symname) { | |
895 | if ('_' == *symname++ && '_' == *symname++) { | |
896 | found295CPP = true; | |
897 | break; | |
898 | } | |
899 | } | |
900 | } | |
901 | } | |
902 | // Note symname is trashed at this point | |
903 | } | |
904 | return_if(i < nsyms, false, | |
905 | ("%s isn't a valid mach-o, bad symbol strings\n", pathName)); | |
906 | ||
907 | return_if(!file->fLocalSyms, false, ("%s has no symbols?\n", pathName)); | |
908 | ||
909 | // If we don't have any undefined symbols then all symbols | |
910 | // must be local so just compute it now if necessary. | |
911 | if ( !file->fNLocal ) | |
912 | file->fNLocal = i - firstlocal; | |
913 | ||
914 | file->fFoundOSObject = foundOSObject; | |
915 | ||
916 | if (found295CPP && !remangleExternSymbols(file, pathName)) | |
917 | return false; | |
918 | ||
919 | return true; | |
920 | } | |
921 | ||
922 | // @@@ gvdl: These functions need to be hashed they are | |
923 | // going to be way too slow for production code. | |
924 | static const struct nlist * | |
925 | findSymbolByAddress(const struct fileRecord *file, void *entry) | |
926 | { | |
927 | // not quite so dumb linear search of all symbols | |
928 | const struct nlist *sym; | |
929 | int i, nsyms; | |
930 | ||
931 | // First try to find the symbol in the most likely place which is the | |
932 | // extern symbols | |
933 | sym = file->fLocalSyms; | |
934 | for (i = 0, nsyms = file->fNLocal; i < nsyms; i++, sym++) { | |
935 | if (sym->n_value == (unsigned long) entry && !(sym->n_type & N_STAB) ) | |
936 | return sym; | |
937 | } | |
938 | ||
939 | // Didn't find it in the external symbols so try to local symbols before | |
940 | // giving up. | |
941 | sym = file->fSymbolBase; | |
942 | for (i = 0, nsyms = file->fSymtab->nsyms; i < nsyms; i++, sym++) { | |
943 | if ( (sym->n_type & N_EXT) ) | |
944 | return NULL; | |
945 | if ( sym->n_value == (unsigned long) entry && !(sym->n_type & N_STAB) ) | |
946 | return sym; | |
947 | } | |
948 | ||
949 | return NULL; | |
950 | } | |
951 | ||
952 | struct searchContext { | |
953 | const char *fSymname; | |
954 | const struct fileRecord *fFile; | |
955 | }; | |
956 | ||
957 | static int symbolSearch(const void *vKey, const void *vSym) | |
958 | { | |
959 | const struct searchContext *key = (const struct searchContext *) vKey; | |
960 | const struct nlist *sym = (const struct nlist *) vSym; | |
961 | ||
962 | return strcmp(key->fSymname + 1, symbolname(key->fFile, sym) + 1); | |
963 | } | |
964 | ||
965 | static const struct nlist * | |
966 | findSymbolByName(struct fileRecord *file, const char *symname) | |
967 | { | |
968 | if (file->fRemangled) { | |
969 | // @@@ gvdl: Performance problem | |
970 | // Linear search as we don't sort after remangling | |
971 | const struct nlist *sym; | |
972 | int i = file->fLocalSyms - file->fSymbolBase; | |
973 | int nLocal = file->fNLocal + i; | |
974 | ||
975 | for (sym = file->fLocalSyms; i < nLocal; i++, sym++) | |
976 | if (!strcmp(symNameByIndex(file, i) + 1, symname + 1)) | |
977 | return sym; | |
978 | return NULL; | |
979 | } | |
980 | else { | |
981 | struct searchContext context; | |
982 | ||
983 | context.fSymname = symname; | |
984 | context.fFile = file; | |
985 | return (struct nlist *) | |
986 | bsearch(&context, | |
987 | file->fLocalSyms, file->fNLocal, sizeof(struct nlist), | |
988 | symbolSearch); | |
989 | } | |
990 | } | |
991 | ||
992 | static Boolean | |
993 | relocateSection(const struct fileRecord *file, struct sectionRecord *sectionRec) | |
994 | { | |
995 | const struct nlist *symbol; | |
996 | const struct section *section; | |
997 | struct relocRecord *rec; | |
998 | struct relocation_info *rinfo; | |
999 | unsigned long i; | |
1000 | unsigned long r_address, r_symbolnum, r_length; | |
1001 | enum reloc_type_generic r_type; | |
1002 | UInt8 *sectionBase; | |
1003 | void **entry; | |
1004 | ||
1005 | sectionRec->fRelocCache = DataCreate( | |
1006 | sectionRec->fSection->nreloc * sizeof(struct relocRecord)); | |
1007 | if (!sectionRec->fRelocCache) | |
1008 | return false; | |
1009 | ||
1010 | section = sectionRec->fSection; | |
1011 | sectionBase = file->fMachO + section->offset; | |
1012 | ||
1013 | rec = (struct relocRecord *) DataGetPtr(sectionRec->fRelocCache); | |
1014 | rinfo = (struct relocation_info *) (file->fMachO + section->reloff); | |
1015 | for (i = 0; i < section->nreloc; i++, rec++, rinfo++) { | |
1016 | ||
1017 | // Totally uninterested in scattered relocation entries | |
1018 | if ( (rinfo->r_address & R_SCATTERED) ) | |
1019 | continue; | |
1020 | ||
1021 | r_address = rinfo->r_address; | |
1022 | entry = (void **) (sectionBase + r_address); | |
1023 | ||
1024 | /* | |
1025 | * The r_address field is really an offset into the contents of the | |
1026 | * section and must reference something inside the section (Note | |
1027 | * that this is not the case for PPC_RELOC_PAIR entries but this | |
1028 | * can't be one with the above checks). | |
1029 | */ | |
1030 | return_if(r_address >= section->size, false, | |
1031 | ("Invalid relocation entry in %s - not in section\n", file->fPath)); | |
1032 | ||
1033 | // If we don't have a VANILLA entry or the Vanilla entry isn't | |
1034 | // a 'long' then ignore the entry and try the next. | |
1035 | r_type = (enum reloc_type_generic) rinfo->r_type; | |
1036 | r_length = rinfo->r_length; | |
1037 | if (r_type != GENERIC_RELOC_VANILLA || r_length != 2) | |
1038 | continue; | |
1039 | ||
1040 | r_symbolnum = rinfo->r_symbolnum; | |
1041 | ||
1042 | /* | |
1043 | * If rinfo->r_extern is set this relocation entry is an external entry | |
1044 | * else it is a local entry. | |
1045 | */ | |
1046 | if (rinfo->r_extern) { | |
1047 | /* | |
1048 | * This is an external relocation entry. | |
1049 | * r_symbolnum is an index into the input file's symbol table | |
1050 | * of the symbol being refered to. The symbol must be | |
1051 | * undefined to be used in an external relocation entry. | |
1052 | */ | |
1053 | return_if(r_symbolnum >= file->fSymtab->nsyms, false, | |
1054 | ("Invalid relocation entry in %s - no symbol\n", file->fPath)); | |
1055 | ||
1056 | /* | |
1057 | * If this is an indirect symbol resolve indirection (all chains | |
1058 | * of indirect symbols have been resolved so that they point at | |
1059 | * a symbol that is not an indirect symbol). | |
1060 | */ | |
1061 | symbol = file->fSymbolBase; | |
1062 | if ((symbol[r_symbolnum].n_type & N_TYPE) == N_INDR) | |
1063 | r_symbolnum = symbol[r_symbolnum].n_value; | |
1064 | symbol = &symbol[r_symbolnum]; | |
1065 | ||
1066 | return_if(symbol->n_type != (N_EXT | N_UNDF), false, | |
1067 | ("Invalid relocation entry in %s - extern\n", file->fPath)); | |
1068 | } | |
1069 | else { | |
1070 | /* | |
1071 | * If the symbol is not in any section then it can't be a | |
1072 | * pointer to a local segment and I don't care about it. | |
1073 | */ | |
1074 | if (r_symbolnum == R_ABS) | |
1075 | continue; | |
1076 | ||
1077 | // Note segment references are offset by 1 from 0. | |
1078 | return_if(r_symbolnum > file->fNSects, false, | |
1079 | ("Invalid relocation entry in %s - local\n", file->fPath)); | |
1080 | ||
1081 | // Find the symbol, if any, that backs this entry | |
1082 | symbol = findSymbolByAddress(file, *entry); | |
1083 | } | |
1084 | ||
1085 | rec->fValue = *entry; // Save the previous value | |
1086 | rec->fRInfo = rinfo; // Save a pointer to the reloc | |
1087 | rec->fSymbol = symbol; // Record the current symbol | |
1088 | ||
1089 | *entry = (void *) rec; // Save pointer to record in object image | |
1090 | } | |
1091 | ||
1092 | DataSetLength(sectionRec->fRelocCache, i * sizeof(struct relocRecord)); | |
1093 | ((struct fileRecord *) file)->fImageDirty = true; | |
1094 | ||
1095 | return true; | |
1096 | } | |
1097 | ||
1098 | static const struct nlist * | |
1099 | findSymbolRefAtLocation(const struct fileRecord *file, | |
1100 | struct sectionRecord *sctn, void **loc) | |
1101 | { | |
1102 | if (file->fIsKernel) { | |
1103 | if (*loc) | |
1104 | return findSymbolByAddress(file, *loc); | |
1105 | } | |
1106 | else if (sctn->fRelocCache || relocateSection(file, sctn)) { | |
1107 | struct relocRecord *reloc = (struct relocRecord *) *loc; | |
1108 | ||
1109 | if (DataContainsAddr(sctn->fRelocCache, reloc)) | |
1110 | return reloc->fSymbol; | |
1111 | } | |
1112 | ||
1113 | return NULL; | |
1114 | } | |
1115 | ||
1116 | static Boolean | |
1117 | addClass(struct fileRecord *file, | |
1118 | struct metaClassRecord *inClass, | |
1119 | const char *cname) | |
1120 | { | |
1121 | Boolean result = false; | |
1122 | struct metaClassRecord *newClass = NULL; | |
1123 | struct metaClassRecord **fileClasses = NULL; | |
1124 | int len; | |
1125 | ||
1126 | if (!file->fClassList) { | |
1127 | file->fClassList = DataCreate(0); | |
1128 | if (!file->fClassList) | |
1129 | return false; | |
1130 | } | |
1131 | ||
1132 | do { | |
1133 | // Attempt to allocate all necessary resource first | |
1134 | len = strlen(cname) + 1 | |
1135 | + (int) (&((struct metaClassRecord *) 0)->fClassName); | |
1136 | newClass = (struct metaClassRecord *) malloc(len); | |
1137 | if (!newClass) | |
1138 | break; | |
1139 | ||
1140 | if (!DataAddLength(file->fClassList, sizeof(struct metaClassRecord *))) | |
1141 | break; | |
1142 | fileClasses = (struct metaClassRecord **) | |
1143 | (DataGetPtr(file->fClassList) + DataGetLength(file->fClassList)); | |
1144 | ||
1145 | // Copy the meta Class structure and string name into newClass and | |
1146 | // insert object at end of the file->fClassList and sMergeMetaClasses | |
1147 | *newClass = *inClass; | |
1148 | strcpy(newClass->fClassName, cname); | |
1149 | fileClasses[-1] = newClass; | |
1150 | ||
1151 | return true; | |
1152 | } while (0); | |
1153 | ||
1154 | if (fileClasses) | |
1155 | DataAddLength(file->fClassList, -sizeof(struct metaClassRecord *)); | |
1156 | ||
1157 | if (newClass) | |
1158 | free(newClass); | |
1159 | ||
1160 | return result; | |
1161 | } | |
1162 | ||
1163 | static struct metaClassRecord *getClass(DataRef classList, const char *cname) | |
1164 | { | |
1165 | if (classList) { | |
1166 | int i, nclass; | |
1167 | struct metaClassRecord **classes, *thisClass; | |
1168 | ||
1169 | nclass = DataGetLength(classList) / sizeof(struct metaClassRecord *); | |
1170 | classes = (struct metaClassRecord **) DataGetPtr(classList); | |
1171 | for (i = 0; i < nclass; i++) { | |
1172 | thisClass = classes[i]; | |
1173 | if (!strcmp(thisClass->fClassName, cname)) | |
1174 | return thisClass; | |
1175 | } | |
1176 | } | |
1177 | ||
1178 | return NULL; | |
1179 | } | |
1180 | ||
1181 | // Add the class 'cname' to the list of known OSObject based classes | |
1182 | // Note 'sym' is the <cname>10superClassE symbol. | |
1183 | static Boolean | |
1184 | recordClass(struct fileRecord *file, const char *cname, const struct nlist *sym) | |
1185 | { | |
1186 | Boolean result = false; | |
1187 | char *supername = NULL; | |
1188 | const char *classname = NULL; | |
1189 | struct metaClassRecord newClass; | |
1190 | char strbuffer[1024]; | |
1191 | ||
1192 | // Only do the work to find the super class if we are | |
1193 | // not currently working on the kernel. The kernel is the end | |
1194 | // of all superclass chains by definition as the kernel must be binary | |
1195 | // compatible with itself. | |
1196 | if (!file->fIsKernel) { | |
1197 | const char *suffix; | |
1198 | const struct nlist *supersym; | |
1199 | const struct section *section; | |
1200 | struct sectionRecord *sectionRec; | |
1201 | unsigned char sectind = sym->n_sect; | |
1202 | const char *superstr; | |
1203 | void **location; | |
1204 | int snamelen; | |
1205 | ||
1206 | // We can't resolve anything that isn't in a real section | |
1207 | // Note that the sectind is starts at one to make room for the | |
1208 | // NO_SECT flag but the fNSects field isn't offset so we have a | |
1209 | // '>' test. Which means this isn't an OSObject based class | |
1210 | if (sectind == NO_SECT || sectind > file->fNSects) { | |
1211 | result = true; | |
1212 | goto finish; | |
1213 | } | |
1214 | sectionRec = file->fSections + sectind - 1; | |
1215 | section = sectionRec->fSection; | |
1216 | location = (void **) ( file->fMachO + section->offset | |
1217 | + sym->n_value - section->addr ); | |
1218 | ||
1219 | supersym = findSymbolRefAtLocation(file, sectionRec, location); | |
1220 | if (!supersym) { | |
1221 | result = true; // No superclass symbol then it isn't an OSObject. | |
1222 | goto finish; | |
1223 | } | |
1224 | ||
1225 | // Find string in file and skip leading '_' and then find the suffix | |
1226 | superstr = symbolname(file, supersym) + 1; | |
1227 | suffix = superstr + strlen(superstr) - sizeof(kGMetaSuffix) + 1; | |
1228 | if (suffix <= superstr || strcmp(suffix, kGMetaSuffix)) { | |
1229 | result = true; // Not an OSObject superclass so ignore it.. | |
1230 | goto finish; | |
1231 | } | |
1232 | ||
1233 | // Got a candidate so hand it over for class processing. | |
1234 | snamelen = suffix - superstr - sizeof(kOSObjPrefix) + 2; | |
1235 | supername = (char *) malloc(snamelen + 1); | |
1236 | bcopy(superstr + sizeof(kOSObjPrefix) - 2, supername, snamelen); | |
1237 | supername[snamelen] = '\0'; | |
1238 | } | |
1239 | ||
1240 | do { | |
1241 | break_if(getClass(file->fClassList, cname), | |
1242 | ("Duplicate class %s in %s\n", cname, file->fPath)); | |
1243 | ||
1244 | snprintf(strbuffer, sizeof(strbuffer), "%s%s", kVTablePrefix, cname); | |
1245 | newClass.fVTableSym = findSymbolByName(file, strbuffer); | |
1246 | break_if(!newClass.fVTableSym, | |
1247 | ("Can't find vtable %s in %s\n", cname, file->fPath)); | |
1248 | ||
1249 | newClass.fFile = file; | |
1250 | newClass.fSuperName = supername; | |
1251 | newClass.fPatchedVTable = NULL; | |
1252 | ||
1253 | // Can't use cname as it may be a stack variable | |
1254 | // However the vtable's string has the class name as a suffix | |
1255 | // so why don't we use that rather than mallocing a string. | |
1256 | classname = symbolname(file, newClass.fVTableSym) | |
1257 | + sizeof(kVTablePrefix) - 1; | |
1258 | break_if(!addClass(file, &newClass, classname), | |
1259 | ("recordClass - no memory?\n")); | |
1260 | ||
1261 | supername = NULL; | |
1262 | result = true; | |
1263 | } while (0); | |
1264 | ||
1265 | finish: | |
1266 | if (supername) | |
1267 | free(supername); | |
1268 | ||
1269 | return result; | |
1270 | } | |
1271 | ||
1272 | ||
1273 | static Boolean getMetaClassGraph(struct fileRecord *file) | |
1274 | { | |
1275 | const struct nlist *sym; | |
1276 | int i, nsyms; | |
1277 | ||
1278 | // Search the symbol table for the local symbols that are generated | |
1279 | // by the metaclass system. There are three metaclass variables | |
1280 | // that are relevant. | |
1281 | // | |
1282 | // <ClassName>.metaClass A pointer to the meta class structure. | |
1283 | // <ClassName>.superClass A pointer to the super class's meta class. | |
1284 | // <ClassName>.gMetaClass The meta class structure itself. | |
1285 | // ___vt<ClassName> The VTable for the class <ClassName>. | |
1286 | // | |
1287 | // In this code I'm going to search for any symbols that | |
1288 | // ends in k31SuperClassSuffix as this indicates this class is a conforming | |
1289 | // OSObject subclass and will need to be patched, and it also | |
1290 | // contains a pointer to the super class's meta class structure. | |
1291 | sym = file->fLocalSyms; | |
1292 | for (i = 0, nsyms = file->fNLocal; i < nsyms; i++, sym++) { | |
1293 | const char *symname; | |
1294 | const char *suffix; | |
1295 | char classname[1024]; | |
1296 | unsigned char n_type = sym->n_type & (N_TYPE | N_EXT); | |
1297 | int cnamelen; | |
1298 | ||
1299 | // Check that the symbols is a global and that it has a name. | |
1300 | if (((N_SECT | N_EXT) != n_type && (N_ABS | N_EXT) != n_type) | |
1301 | || !sym->n_un.n_strx) | |
1302 | continue; | |
1303 | ||
1304 | // Only search from the last *sep* in the symbol. | |
1305 | // but skip the leading '_' in all symbols first. | |
1306 | symname = symbolname(file, sym) + 1; | |
1307 | if (symname[0] != kCPPSymbolPrefix[0] | |
1308 | || symname[1] != kCPPSymbolPrefix[1]) | |
1309 | continue; | |
1310 | ||
1311 | suffix = symname + strlen(symname) - sizeof(k31SuperClassSuffix) + 1; | |
1312 | if (suffix <= symname || strcmp(suffix, k31SuperClassSuffix)) | |
1313 | continue; | |
1314 | ||
1315 | // Got a candidate so hand it over for class processing. | |
1316 | cnamelen = suffix - symname - sizeof(kOSObjPrefix) + 2; | |
1317 | return_if(cnamelen + 1 >= (int) sizeof(classname), | |
1318 | false, ("Symbol %s is too long", symname)); | |
1319 | ||
1320 | bcopy(symname + sizeof(kOSObjPrefix) - 2, classname, cnamelen); | |
1321 | classname[cnamelen] = '\0'; | |
1322 | if (!recordClass(file, classname, sym)) | |
1323 | return false; | |
1324 | } | |
1325 | ||
1326 | return_if(!file->fClassList, false, ("Internal error, " | |
1327 | "getMetaClassGraph(%s) found no classes", file->fPath)); | |
1328 | ||
1329 | DEBUG_LOG(("Found %ld classes in %p for %s\n", | |
1330 | DataGetLength(file->fClassList)/sizeof(void*), | |
1331 | file->fClassList, file->fPath)); | |
1332 | ||
1333 | return true; | |
1334 | } | |
1335 | ||
1336 | static Boolean mergeOSObjectsForFile(const struct fileRecord *file) | |
1337 | { | |
1338 | int i, nmerged; | |
1339 | Boolean foundDuplicates = false; | |
1340 | ||
1341 | DEBUG_LOG(("Merging file %s\n", file->fPath)); // @@@ gvdl: | |
1342 | ||
1343 | if (!file->fClassList) | |
1344 | return true; | |
1345 | ||
1346 | if (!sMergedFiles) { | |
1347 | sMergedFiles = DataCreate(0); | |
1348 | return_if(!sMergedFiles, false, | |
1349 | ("Unable to allocate memory metaclass list\n", file->fPath)); | |
1350 | } | |
1351 | ||
1352 | // Check to see if we have already merged this file | |
1353 | nmerged = DataGetLength(sMergedFiles) / sizeof(struct fileRecord *); | |
1354 | for (i = 0; i < nmerged; i++) { | |
1355 | if (file == ((void **) DataGetPtr(sMergedFiles))[i]) | |
1356 | return true; | |
1357 | } | |
1358 | ||
1359 | if (!sMergeMetaClasses) { | |
1360 | sMergeMetaClasses = DataCreate(0); | |
1361 | return_if(!sMergeMetaClasses, false, | |
1362 | ("Unable to allocate memory metaclass list\n", file->fPath)); | |
1363 | } | |
1364 | else { /* perform a duplicate check */ | |
1365 | int i, j, cnt1, cnt2; | |
1366 | struct metaClassRecord **list1, **list2; | |
1367 | ||
1368 | list1 = (struct metaClassRecord **) DataGetPtr(file->fClassList); | |
1369 | cnt1 = DataGetLength(file->fClassList) / sizeof(*list1); | |
1370 | list2 = (struct metaClassRecord **) DataGetPtr(sMergeMetaClasses); | |
1371 | cnt2 = DataGetLength(sMergeMetaClasses) / sizeof(*list2); | |
1372 | ||
1373 | for (i = 0; i < cnt1; i++) { | |
1374 | for (j = 0; j < cnt2; j++) { | |
1375 | if (!strcmp(list1[i]->fClassName, list2[j]->fClassName)) { | |
1376 | errprintf("duplicate class %s in %s & %s\n", | |
1377 | list1[i]->fClassName, | |
1378 | file->fPath, list2[j]->fFile->fPath); | |
1379 | } | |
1380 | } | |
1381 | } | |
1382 | } | |
1383 | if (foundDuplicates) | |
1384 | return false; | |
1385 | ||
1386 | return_if(!DataAppendBytes(sMergedFiles, &file, sizeof(file)), false, | |
1387 | ("Unable to allocate memory to merge %s\n", file->fPath)); | |
1388 | ||
1389 | return_if(!DataAppendData(sMergeMetaClasses, file->fClassList), false, | |
1390 | ("Unable to allocate memory to merge %s\n", file->fPath)); | |
1391 | ||
1392 | if (file == sKernelFile) | |
1393 | sMergedKernel = true; | |
1394 | ||
1395 | return true; | |
1396 | } | |
1397 | ||
1398 | // Returns a pointer to the base of the section offset by the sections | |
1399 | // base address. The offset is so that we can add nlist::n_values directly | |
1400 | // to this address and get a valid pointer in our memory. | |
1401 | static unsigned char * | |
1402 | getSectionForSymbol(const struct fileRecord *file, const struct nlist *symb, | |
1403 | void ***endP) | |
1404 | { | |
1405 | const struct section *section; | |
1406 | unsigned char sectind; | |
1407 | unsigned char *base; | |
1408 | ||
1409 | sectind = symb->n_sect; // Default to symbols section | |
1410 | if ((symb->n_type & N_TYPE) == N_ABS && file->fIsKernel) { | |
1411 | // Absolute symbol so we have to iterate over our sections | |
1412 | for (sectind = 1; sectind <= file->fNSects; sectind++) { | |
1413 | unsigned long start, end; | |
1414 | ||
1415 | section = file->fSections[sectind - 1].fSection; | |
1416 | start = section->addr; | |
1417 | end = start + section->size; | |
1418 | if (start <= symb->n_value && symb->n_value < end) { | |
1419 | // Found the relevant section | |
1420 | break; | |
1421 | } | |
1422 | } | |
1423 | } | |
1424 | ||
1425 | // Is the vtable in a valid section? | |
1426 | return_if(sectind == NO_SECT || sectind > file->fNSects, | |
1427 | (unsigned char *) -1, | |
1428 | ("%s isn't a valid kext, bad section reference\n", file->fPath)); | |
1429 | ||
1430 | section = file->fSections[sectind - 1].fSection; | |
1431 | ||
1432 | // for when we start walking the vtable so compute offset's now. | |
1433 | base = file->fMachO + section->offset; | |
1434 | *endP = (void **) (base + section->size); | |
1435 | ||
1436 | return base - section->addr; // return with addr offset | |
1437 | } | |
1438 | ||
1439 | static Boolean resolveKernelVTable(struct metaClassRecord *metaClass) | |
1440 | { | |
1441 | const struct fileRecord *file; | |
1442 | struct patchRecord *patchedVTable; | |
1443 | void **curEntry, **vtableEntries, **endSection; | |
1444 | unsigned char *sectionBase; | |
1445 | struct patchRecord *curPatch; | |
1446 | int classSize; | |
1447 | ||
1448 | // Should never occur but it doesn't cost us anything to check. | |
1449 | if (metaClass->fPatchedVTable) | |
1450 | return true; | |
1451 | ||
1452 | DEBUG_LOG(("Kernel vtable %s\n", metaClass->fClassName)); // @@@ gvdl: | |
1453 | ||
1454 | // Do we have a valid vtable to patch? | |
1455 | return_if(!metaClass->fVTableSym, | |
1456 | false, ("Internal error - no class vtable symbol?\n")); | |
1457 | ||
1458 | file = metaClass->fFile; | |
1459 | ||
1460 | // If the metaClass we are being to ask is in the kernel then we | |
1461 | // need to do a quick scan to grab the fPatchList in a reliable format | |
1462 | // however we don't need to check the superclass in the kernel | |
1463 | // as the kernel vtables are always correct wrt themselves. | |
1464 | // Note this ends the superclass chain recursion. | |
1465 | return_if(!file->fIsKernel, | |
1466 | false, ("Internal error - resolveKernelVTable not kernel\n")); | |
1467 | ||
1468 | if (file->fNoKernelExecutable) { | |
1469 | // Oh dear attempt to map the kernel's VM into my memory space | |
1470 | return_if(file->fNoKernelExecutable, false, | |
1471 | ("Internal error - fNoKernelExecutable not implemented yet\n")); | |
1472 | } | |
1473 | ||
1474 | // We are going to need the base and the end | |
1475 | sectionBase = getSectionForSymbol(file, metaClass->fVTableSym, &endSection); | |
1476 | if (-1 == (long) sectionBase) | |
1477 | return false; | |
1478 | ||
1479 | vtableEntries = (void **) (sectionBase + metaClass->fVTableSym->n_value); | |
1480 | curEntry = vtableEntries + kVTablePreambleLen; | |
1481 | for (classSize = 0; curEntry < endSection && *curEntry; classSize++) | |
1482 | curEntry++; | |
1483 | ||
1484 | return_if(*curEntry, false, ("Bad kernel image, short section\n")); | |
1485 | ||
1486 | patchedVTable = (struct patchRecord *) | |
1487 | malloc((classSize + 1) * sizeof(struct patchRecord)); | |
1488 | return_if(!patchedVTable, false, ("resolveKernelVTable - no memory\n")); | |
1489 | ||
1490 | // Copy the vtable of this class into the patch table | |
1491 | curPatch = patchedVTable; | |
1492 | curEntry = vtableEntries + kVTablePreambleLen; | |
1493 | for (; *curEntry; curEntry++, curPatch++) { | |
1494 | curPatch->fSymbol = (struct nlist *) | |
1495 | findSymbolByAddress(file, *curEntry); | |
1496 | curPatch->fType = kSymbolLocal; | |
1497 | } | |
1498 | ||
1499 | // Tag the end of the patch vtable | |
1500 | curPatch->fSymbol = NULL; | |
1501 | metaClass->fPatchedVTable = patchedVTable; | |
1502 | ||
1503 | return true; | |
1504 | } | |
1505 | ||
1506 | static const char *addNewString(struct fileRecord *file, | |
1507 | const char *strname, int namelen) | |
1508 | { | |
1509 | DataRef strings = 0; | |
1510 | const char *newStr; | |
1511 | ||
1512 | namelen++; // Include terminating '\0'; | |
1513 | ||
1514 | // Make sure we have a string table as well for this symbol | |
1515 | if (file->fNewStringBlocks) { | |
1516 | DataRef *blockTable = (DataRef *) DataGetPtr(file->fNewStringBlocks); | |
1517 | int index = DataGetLength(file->fNewStringBlocks) / sizeof(DataRef*); | |
1518 | strings = blockTable[index - 1]; | |
1519 | if (DataRemaining(strings) < namelen) | |
1520 | strings = 0; | |
1521 | } | |
1522 | else | |
1523 | { | |
1524 | file->fNewStringBlocks = DataCreate(0); | |
1525 | return_if(!file->fNewStringBlocks, NULL, | |
1526 | ("Unable to allocate new string table %s\n", file->fPath)); | |
1527 | } | |
1528 | ||
1529 | if (!strings) { | |
1530 | int size = (namelen + 1023) & ~1023; | |
1531 | if (size < 16 * 1024) | |
1532 | size = 16 * 1024; | |
1533 | strings = DataCreate(size); | |
1534 | return_if(!strings, NULL, | |
1535 | ("Unable to allocate new string block %s\n", file->fPath)); | |
1536 | return_if( | |
1537 | !DataAppendBytes(file->fNewStringBlocks, &strings, sizeof(strings)), | |
1538 | false, ("Unable to allocate string table for %s\n", file->fPath)); | |
1539 | } | |
1540 | ||
1541 | newStr = DataGetEndPtr(strings); | |
1542 | DataAppendBytes(strings, strname, namelen); | |
1543 | return newStr; | |
1544 | } | |
1545 | ||
1546 | // reloc->fPatch must contain a valid pointer | |
1547 | static struct nlist * | |
1548 | getNewSymbol(struct fileRecord *file, | |
1549 | const struct relocRecord *reloc, const char *supername) | |
1550 | { | |
1551 | unsigned int size, i; | |
1552 | struct nlist **sym; | |
1553 | struct nlist *msym; | |
1554 | struct relocation_info *rinfo; | |
1555 | const char *newStr; | |
1556 | ||
1557 | if (!file->fNewSymbols) { | |
1558 | file->fNewSymbols = DataCreate(0); | |
1559 | return_if(!file->fNewSymbols, NULL, | |
1560 | ("Unable to allocate new symbol table for %s\n", file->fPath)); | |
1561 | } | |
1562 | ||
1563 | rinfo = (struct relocation_info *) reloc->fRInfo; | |
1564 | size = DataGetLength(file->fNewSymbols) / sizeof(struct nlist *); | |
1565 | sym = (struct nlist **) DataGetPtr(file->fNewSymbols); | |
1566 | for (i = 0; i < size; i++, sym++) { | |
1567 | int symnum = i + file->fSymtab->nsyms; | |
1568 | newStr = symNameByIndex(file, symnum); | |
1569 | if (!strcmp(newStr, supername)) { | |
1570 | rinfo->r_symbolnum = symnum; | |
1571 | file->fSymbolsDirty = true; | |
1572 | return *sym; | |
1573 | } | |
1574 | } | |
1575 | ||
1576 | // Assert that this is a vaild symbol. I need this condition to be true | |
1577 | // for the later code to make non-zero. So the first time through I'd | |
1578 | // better make sure that it is 0. | |
1579 | return_if(reloc->fSymbol->n_sect, NULL, | |
1580 | ("Undefined symbol entry with non-zero section %s:%s\n", | |
1581 | file->fPath, symbolname(file, reloc->fSymbol))); | |
1582 | ||
1583 | // If we are here we didn't find the symbol so create a new one now | |
1584 | msym = (struct nlist *) malloc(sizeof(struct nlist)); | |
1585 | return_if(!msym, | |
1586 | NULL, ("Unable to create symbol table entry for %s", file->fPath)); | |
1587 | return_if(!DataAppendBytes(file->fNewSymbols, &msym, sizeof(msym)), | |
1588 | NULL, ("Unable to grow symbol table for %s\n", file->fPath)); | |
1589 | ||
1590 | newStr = addNewString(file, supername, strlen(supername)); | |
1591 | if (!newStr) | |
1592 | return NULL; | |
1593 | // If we are here we didn't find the symbol so create a new one now | |
1594 | return_if(!DataAppendBytes(file->fSym2Strings, &newStr, sizeof(newStr)), | |
1595 | NULL, ("Unable to grow symbol table for %s\n", file->fPath)); | |
1596 | file->fSymbToStringTable = (const char **) DataGetPtr(file->fSym2Strings); | |
1597 | ||
1598 | // Offset the string index by the original string table size | |
1599 | // and negate the address to indicate that this is a 'new' symbol | |
1600 | msym->n_un.n_strx = -1; | |
1601 | msym->n_type = (N_EXT | N_UNDF); | |
1602 | msym->n_sect = NO_SECT; | |
1603 | msym->n_desc = 0; | |
1604 | msym->n_value = (unsigned long) newStr; | |
1605 | ||
1606 | // Mark the old symbol as being potentially deletable I can use the | |
1607 | // n_sect field as the input symbol must be of type N_UNDF which means | |
1608 | // that the n_sect field must be set to NO_SECT otherwise it is an | |
1609 | // in valid input file. | |
1610 | ((struct nlist *) reloc->fSymbol)->n_un.n_strx | |
1611 | = -reloc->fSymbol->n_un.n_strx; | |
1612 | ((struct nlist *) reloc->fSymbol)->n_sect = (unsigned char) -1; | |
1613 | ||
1614 | rinfo->r_symbolnum = i + file->fSymtab->nsyms; | |
1615 | file->fSymbolsDirty = true; | |
1616 | return msym; | |
1617 | } | |
1618 | ||
1619 | static struct nlist * | |
1620 | fixOldSymbol(struct fileRecord *file, | |
1621 | const struct relocRecord *reloc, const char *supername) | |
1622 | { | |
1623 | unsigned int namelen; | |
1624 | struct nlist *sym = (struct nlist *) reloc->fSymbol; | |
1625 | const char *oldname = symbolname(file, sym); | |
1626 | ||
1627 | // assert(sym->n_un.n_strx >= 0); | |
1628 | ||
1629 | namelen = strlen(supername); | |
1630 | ||
1631 | sym->n_un.n_strx = -sym->n_un.n_strx; | |
1632 | if (oldname && namelen < strlen(oldname)) | |
1633 | { | |
1634 | // Overwrite old string in string table | |
1635 | strcpy((char *) oldname, supername); | |
1636 | file->fSymbolsDirty = true; | |
1637 | return sym; | |
1638 | } | |
1639 | ||
1640 | oldname = addNewString(file, supername, namelen); | |
1641 | if (!oldname) | |
1642 | return NULL; | |
1643 | ||
1644 | file->fSymbToStringTable[sym - file->fSymbolBase] = oldname; | |
1645 | file->fSymbolsDirty = true; | |
1646 | return sym; | |
1647 | } | |
1648 | ||
1649 | static enum patchState | |
1650 | symbolCompare(const struct fileRecord *file, | |
1651 | const struct nlist *classsym, | |
1652 | const char *supername) | |
1653 | { | |
1654 | const char *classname; | |
1655 | ||
1656 | ||
1657 | // Check to see if the target function is locally defined | |
1658 | // if it is then we can assume this is a local vtable override | |
1659 | if ((classsym->n_type & N_TYPE) != N_UNDF) | |
1660 | return kSymbolLocal; | |
1661 | ||
1662 | // Check to see if both symbols point to the same symbol name | |
1663 | // if so then we are still identical. | |
1664 | classname = symbolname(file, classsym); | |
1665 | if (!strcmp(classname, supername)) | |
1666 | return kSymbolIdentical; | |
1667 | ||
1668 | // We know that the target's vtable entry is different from the | |
1669 | // superclass' vtable entry. This means that we will have to apply a | |
1670 | // patch to the current entry, however before returning lets check to | |
1671 | // see if we have a _RESERVEDnnn field 'cause we can use this as a | |
1672 | // registration point that must align between vtables. | |
1673 | if (strstr(supername, kReservedNamePrefix)) | |
1674 | return kSymbolMismatch; | |
1675 | ||
1676 | // OK, we have a superclass difference where the superclass doesn't | |
1677 | // reference a pad function so assume that the superclass is correct. | |
1678 | if (strstr(classname, kReservedNamePrefix)) | |
1679 | return kSymbolPadUpdate; | |
1680 | else | |
1681 | return kSymbolSuperUpdate; | |
1682 | } | |
1683 | ||
1684 | static Boolean patchVTable(struct metaClassRecord *metaClass) | |
1685 | { | |
1686 | struct metaClassRecord *super = NULL; | |
1687 | struct fileRecord *file; | |
1688 | struct patchRecord *patchedVTable; | |
1689 | struct relocRecord **curReloc, **vtableRelocs, **endSection; | |
1690 | unsigned char *sectionBase; | |
1691 | int classSize; | |
1692 | ||
1693 | // Should never occur but it doesn't cost us anything to check. | |
1694 | if (metaClass->fPatchedVTable) | |
1695 | return true; | |
1696 | ||
1697 | // Do we have a valid vtable to patch? | |
1698 | return_if(!metaClass->fVTableSym, | |
1699 | false, ("Internal error - no class vtable symbol?\n")); | |
1700 | ||
1701 | file = metaClass->fFile; | |
1702 | ||
1703 | // If the metaClass we are being to ask is in the kernel then we | |
1704 | // need to do a quick scan to grab the fPatchList in a reliable format | |
1705 | // however we don't need to check the superclass in the kernel | |
1706 | // as the kernel vtables are always correct wrt themselves. | |
1707 | // Note this ends the superclass chain recursion. | |
1708 | return_if(file->fIsKernel, | |
1709 | false, ("Internal error - patchVTable shouldn't used for kernel\n")); | |
1710 | ||
1711 | if (!metaClass->fSuperName) | |
1712 | return false; | |
1713 | ||
1714 | // The class isn't in the kernel so make sure that the super class | |
1715 | // is patched before patching ouselves. | |
1716 | super = getClass(sMergeMetaClasses, metaClass->fSuperName); | |
1717 | return_if(!super, false, ("Can't find superclass for %s : %s\n", | |
1718 | metaClass->fClassName, metaClass->fSuperName)); | |
1719 | ||
1720 | // Superclass recursion if necessary | |
1721 | if (!super->fPatchedVTable) { | |
1722 | Boolean res; | |
1723 | ||
1724 | if (super->fFile->fIsKernel) | |
1725 | res = resolveKernelVTable(super); | |
1726 | else | |
1727 | res = patchVTable(super); | |
1728 | if (!res) | |
1729 | return false; | |
1730 | } | |
1731 | ||
1732 | DEBUG_LOG(("Patching %s\n", metaClass->fClassName)); // @@@ gvdl: | |
1733 | ||
1734 | // We are going to need the base and the end | |
1735 | ||
1736 | sectionBase = getSectionForSymbol(file, | |
1737 | metaClass->fVTableSym, (void ***) &endSection); | |
1738 | if (-1 == (long) sectionBase) | |
1739 | return false; | |
1740 | ||
1741 | vtableRelocs = (struct relocRecord **) | |
1742 | (sectionBase + metaClass->fVTableSym->n_value); | |
1743 | curReloc = vtableRelocs + kVTablePreambleLen; | |
1744 | for (classSize = 0; curReloc < endSection && *curReloc; classSize++) | |
1745 | curReloc++; | |
1746 | ||
1747 | return_if(*curReloc, false, | |
1748 | ("%s isn't a valid kext, short section\n", file->fPath)); | |
1749 | ||
1750 | patchedVTable = (struct patchRecord *) | |
1751 | malloc((classSize + 1) * sizeof(struct patchRecord)); | |
1752 | return_if(!patchedVTable, false, ("patchedVTable - no memory\n")); | |
1753 | ||
1754 | do { | |
1755 | struct patchRecord *curPatch; | |
1756 | struct nlist *symbol; | |
1757 | ||
1758 | curPatch = patchedVTable; | |
1759 | curReloc = vtableRelocs + kVTablePreambleLen; | |
1760 | ||
1761 | // Grab the super table patches if necessary | |
1762 | // Can't be patching a kernel table as we don't walk super | |
1763 | // class chains in the kernel symbol space. | |
1764 | if (super && super->fPatchedVTable) { | |
1765 | const struct patchRecord *spp; | |
1766 | ||
1767 | spp = super->fPatchedVTable; | |
1768 | ||
1769 | for ( ; spp->fSymbol; curReloc++, spp++, curPatch++) { | |
1770 | const char *supername = | |
1771 | symbolname(super->fFile, spp->fSymbol); | |
1772 | ||
1773 | symbol = (struct nlist *) (*curReloc)->fSymbol; | |
1774 | ||
1775 | curPatch->fType = symbolCompare(file, symbol, supername); | |
1776 | switch (curPatch->fType) { | |
1777 | case kSymbolIdentical: | |
1778 | case kSymbolLocal: | |
1779 | break; | |
1780 | ||
1781 | case kSymbolSuperUpdate: | |
1782 | symbol = getNewSymbol(file, (*curReloc), supername); | |
1783 | break; | |
1784 | ||
1785 | case kSymbolPadUpdate: | |
1786 | symbol = fixOldSymbol(file, (*curReloc), supername); | |
1787 | break; | |
1788 | ||
1789 | case kSymbolMismatch: | |
1790 | errprintf("%s is not compatible with its superclass, " | |
1791 | "%s superclass changed?\n", | |
1792 | metaClass->fClassName, super->fClassName); | |
1793 | goto abortPatch; | |
1794 | ||
1795 | default: | |
1796 | errprintf("Internal error - unknown patch type\n"); | |
1797 | goto abortPatch; | |
1798 | } | |
1799 | if (symbol) { | |
1800 | curPatch->fSymbol = symbol; | |
1801 | (*curReloc)->fSymbol = symbol; | |
1802 | } | |
1803 | else | |
1804 | goto abortPatch; | |
1805 | } | |
1806 | } | |
1807 | ||
1808 | // Copy the remainder of this class' vtable into the patch table | |
1809 | for (; *curReloc; curReloc++, curPatch++) { | |
1810 | // Local reloc symbols | |
1811 | curPatch->fType = kSymbolLocal; | |
1812 | curPatch->fSymbol = (struct nlist *) (*curReloc)->fSymbol; | |
1813 | } | |
1814 | ||
1815 | // Tag the end of the patch vtable | |
1816 | curPatch->fSymbol = NULL; | |
1817 | ||
1818 | metaClass->fPatchedVTable = patchedVTable; | |
1819 | return true; | |
1820 | } while(0); | |
1821 | ||
1822 | abortPatch: | |
1823 | if (patchedVTable) | |
1824 | free(patchedVTable); | |
1825 | ||
1826 | return false; | |
1827 | } | |
1828 | ||
1829 | static Boolean growImage(struct fileRecord *file, vm_size_t delta) | |
1830 | { | |
1831 | #if !KERNEL | |
1832 | file->fMachOSize += delta; | |
1833 | return (file->fMachO + file->fMachOSize <= file->fPadEnd); | |
1834 | #else /* KERNEL */ | |
1835 | vm_address_t startMachO, endMachO, endMap; | |
1836 | vm_offset_t newMachO; | |
1837 | vm_size_t newsize; | |
1838 | unsigned long i, last = 0; | |
1839 | struct metaClassRecord **classes = NULL; | |
1840 | struct sectionRecord *section; | |
1841 | kern_return_t ret; | |
1842 | ||
1843 | startMachO = (vm_address_t) file->fMachO; | |
1844 | endMachO = startMachO + file->fMachOSize + delta; | |
1845 | endMap = (vm_address_t) file->fMap + file->fMapSize; | |
1846 | ||
1847 | // Do we have room in the current mapped image | |
1848 | if (endMachO < round_page(endMap)) { | |
1849 | file->fMachOSize += delta; | |
1850 | return true; | |
1851 | } | |
1852 | ||
1853 | newsize = endMachO - startMachO; | |
1854 | if (newsize < round_page(file->fMapSize)) { | |
1855 | DEBUG_LOG(("Growing image %s by moving\n", file->fPath)); | |
1856 | ||
1857 | // We have room in the map if we shift the macho image within the | |
1858 | // current map. We will have to patch up pointers into the object. | |
1859 | newMachO = (vm_offset_t) file->fMap; | |
1860 | bcopy((char *) startMachO, (char *) newMachO, file->fMachOSize); | |
1861 | } | |
1862 | else if (file->fIsKmem) { | |
1863 | // kmem_alloced mapping so we can try a kmem_realloc | |
1864 | ret = kmem_realloc(kernel_map, | |
1865 | (vm_address_t) file->fMap, | |
1866 | (vm_size_t) file->fMapSize, | |
1867 | &newMachO, | |
1868 | newsize); | |
1869 | if (KERN_SUCCESS != ret) | |
1870 | return false; | |
1871 | ||
1872 | // If the mapping didn't move then just return | |
1873 | if ((vm_address_t) file->fMap == newMachO) { | |
1874 | file->fMachOSize = file->fMapSize = newsize; | |
1875 | return true; | |
1876 | } | |
1877 | ||
1878 | DEBUG_LOG(("Growing image %s by reallocing\n", file->fPath)); | |
1879 | // We have relocated the kmem image so we are going to have to | |
1880 | // move all of the pointers into the image around. | |
1881 | } | |
1882 | else { | |
1883 | DEBUG_LOG(("Growing image %s by allocating\n", file->fPath)); | |
1884 | // The image doesn't have room for us and I can't kmem_realloc | |
1885 | // then I just have to bite the bullet and copy the object code | |
1886 | // into a bigger memory segment | |
1887 | ret = kmem_alloc(kernel_map, &newMachO, newsize); | |
1888 | ||
1889 | if (KERN_SUCCESS != ret) | |
1890 | return false; | |
1891 | bcopy((char *) startMachO, (void *) newMachO, file->fMachOSize); | |
1892 | file->fIsKmem = true; | |
1893 | } | |
1894 | ||
1895 | ||
1896 | file->fMap = file->fMachO = (unsigned char *) newMachO; | |
1897 | file->fMapSize = newsize; | |
1898 | file->fMachOSize += delta; // Increment the image size | |
1899 | ||
1900 | // If we are here then we have shifted the object image in memory | |
1901 | // I really should change all of my pointers into the image to machO offsets | |
1902 | // but I have run out of time. So I'm going to very quickly go over the | |
1903 | // cached data structures and add adjustments to the addresses that are | |
1904 | // affected. I wonder how long it will take me to get them all. | |
1905 | // | |
1906 | // For every pointer into the MachO I need to add an adjustment satisfying | |
1907 | // the following simultanous equations | |
1908 | // addr_old = macho_old + fixed_offset | |
1909 | // addr_new = macho_new + fixed_offset therefore: | |
1910 | // addr_new = addr_old + (macho_new - macho_old) | |
1911 | #define REBASE(addr, delta) ( ((vm_address_t) (addr)) += (delta) ) | |
1912 | delta = newMachO - startMachO; | |
1913 | ||
1914 | // Rebase the cached-in object 'struct symtab_command' pointer | |
1915 | REBASE(file->fSymtab, delta); | |
1916 | ||
1917 | // Rebase the cached-in object 'struct nlist' pointer for all symbols | |
1918 | REBASE(file->fSymbolBase, delta); | |
1919 | ||
1920 | // Rebase the cached-in object 'struct nlist' pointer for local symbols | |
1921 | REBASE(file->fLocalSyms, delta); | |
1922 | ||
1923 | // Rebase the cached-in object 'char' pointer for the string table | |
1924 | REBASE(file->fStringBase, delta); | |
1925 | ||
1926 | // Ok now we have to go over all of the relocs one last time | |
1927 | // to clean up the pad updates which had their string index negated | |
1928 | // to indicate that we have finished with them. | |
1929 | section = file->fSections; | |
1930 | for (i = 0, last = file->fNSects; i < last; i++, section++) | |
1931 | REBASE(section->fSection, delta); | |
1932 | ||
1933 | // We only ever grow images that contain class lists so dont bother | |
1934 | // the check if file->fClassList is non-zero 'cause it can't be | |
1935 | // assert(file->fClassList); | |
1936 | last = DataGetLength(file->fClassList) | |
1937 | / sizeof(struct metaClassRecord *); | |
1938 | classes = (struct metaClassRecord **) DataGetPtr(file->fClassList); | |
1939 | for (i = 0; i < last; i++) { | |
1940 | struct patchRecord *patch; | |
1941 | ||
1942 | for (patch = classes[i]->fPatchedVTable; patch->fSymbol; patch++) { | |
1943 | vm_address_t symAddr = (vm_address_t) patch->fSymbol; | |
1944 | ||
1945 | // Only need to rebase if the symbol is part of the image | |
1946 | // If this is a new symbol then it was independantly allocated | |
1947 | if (symAddr >= startMachO && symAddr < endMachO) | |
1948 | REBASE(patch->fSymbol, delta); | |
1949 | } | |
1950 | } | |
1951 | ||
1952 | // Finally rebase all of the string table pointers | |
1953 | last = file->fSymtab->nsyms; | |
1954 | for (i = 0; i < last; i++) | |
1955 | REBASE(file->fSymbToStringTable[i], delta); | |
1956 | ||
1957 | #undef REBASE | |
1958 | ||
1959 | return true; | |
1960 | ||
1961 | #endif /* KERNEL */ | |
1962 | } | |
1963 | ||
1964 | static Boolean | |
1965 | prepareFileForLink(struct fileRecord *file) | |
1966 | { | |
1967 | unsigned long i, last, numnewsyms, newsymsize, newstrsize; | |
1968 | struct sectionRecord *section; | |
1969 | struct nlist **symp, *sym; | |
1970 | DataRef newStrings, *stringBlocks; | |
1971 | ||
1972 | // If we didn't even do a pseudo 'relocate' and dirty the image | |
1973 | // then we can just return now. | |
1974 | if (!file->fImageDirty) | |
1975 | return true; | |
1976 | ||
1977 | DEBUG_LOG(("Linking 2 %s\n", file->fPath)); // @@@ gvdl: | |
1978 | ||
1979 | // We have to go over all of the relocs to repair the damage | |
1980 | // that we have done to the image when we did our 'relocation' | |
1981 | section = file->fSections; | |
1982 | for (i = 0, last = file->fNSects; i < last; i++, section++) { | |
1983 | unsigned char *sectionBase; | |
1984 | struct relocRecord *rec; | |
1985 | unsigned long j, nreloc; | |
1986 | ||
1987 | if (section->fRelocCache) { | |
1988 | sectionBase = file->fMachO + section->fSection->offset; | |
1989 | nreloc = section->fSection->nreloc; | |
1990 | rec = (struct relocRecord *) DataGetPtr(section->fRelocCache); | |
1991 | ||
1992 | // We will need to repair the reloc list | |
1993 | for (j = 0; j < nreloc; j++, rec++) { | |
1994 | void **entry; | |
1995 | struct nlist *sym; | |
1996 | ||
1997 | // Repair Damage to object image | |
1998 | entry = (void **) (sectionBase + rec->fRInfo->r_address); | |
1999 | *entry = rec->fValue; | |
2000 | ||
2001 | // Check if the symbol that this relocation entry points | |
2002 | // to is marked as erasable | |
2003 | sym = (struct nlist *) rec->fSymbol; | |
2004 | if (sym && sym->n_type == (N_EXT | N_UNDF) | |
2005 | && sym->n_sect == (unsigned char) -1) { | |
2006 | // It is in use so we better clear the mark | |
2007 | sym->n_un.n_strx = -sym->n_un.n_strx; | |
2008 | sym->n_sect = NO_SECT; | |
2009 | } | |
2010 | } | |
2011 | ||
2012 | // Clean up the fRelocCache we don't need it any more. | |
2013 | DataRelease(section->fRelocCache); | |
2014 | section->fRelocCache = 0; | |
2015 | } | |
2016 | } | |
2017 | file->fImageDirty = false; // Image is clean | |
2018 | ||
2019 | // If we didn't dirty the symbol table then just return | |
2020 | if (!file->fSymbolsDirty) | |
2021 | return true; | |
2022 | ||
2023 | // calculate total file size increase and check against padding | |
2024 | if (file->fNewSymbols) { | |
2025 | numnewsyms = DataGetLength(file->fNewSymbols); | |
2026 | symp = (struct nlist **) DataGetPtr(file->fNewSymbols); | |
2027 | } | |
2028 | else { | |
2029 | numnewsyms = 0; | |
2030 | symp = 0; | |
2031 | } | |
2032 | numnewsyms /= sizeof(struct nlist *); | |
2033 | file->fSymtab->nsyms += numnewsyms; | |
2034 | ||
2035 | // old sting size + 30% rounded up to nearest page | |
2036 | newstrsize = file->fSymtab->strsize * 21 / 16; | |
2037 | newstrsize = (newstrsize + PAGE_MASK) & ~PAGE_MASK; | |
2038 | newStrings = DataCreate(newstrsize); | |
2039 | return_if(!newStrings, false, | |
2040 | ("Unable to allocate a copy aside buffer, no memory\n")); | |
2041 | ||
2042 | newsymsize = numnewsyms * sizeof(struct nlist); | |
2043 | file->fStringBase += newsymsize; | |
2044 | file->fSymtab->stroff += newsymsize; | |
2045 | ||
2046 | last = file->fSymtab->nsyms - numnewsyms; | |
2047 | newstrsize = 0; | |
2048 | DataAppendBytes(newStrings, &newstrsize, 4); // Leading nuls | |
2049 | sym = file->fSymbolBase; | |
2050 | ||
2051 | // Pre-compute an already offset new symbol pointer. The offset is the | |
2052 | // orignal symbol table. | |
2053 | symp -= last; | |
2054 | for (i = 0; i < file->fSymtab->nsyms; i++, sym++) { | |
2055 | const char *str = symNameByIndex(file, i); | |
2056 | int len = strlen(str) + 1; | |
2057 | unsigned int strx; | |
2058 | ||
2059 | // Rebase sym in the new symbol region | |
2060 | if (i >= last) | |
2061 | sym = symp[i]; | |
2062 | ||
2063 | if (sym->n_un.n_strx < 0 && sym->n_type == (N_EXT | N_UNDF) | |
2064 | && (unsigned char) -1 == sym->n_sect) { | |
2065 | // after patching we find that this symbol is no longer in | |
2066 | // use. So invalidate it by converting it into an N_ABS | |
2067 | // symbol, remove the external bit and null out the name. | |
2068 | bzero(sym, sizeof(*sym)); | |
2069 | sym->n_type = N_ABS; | |
2070 | } | |
2071 | else { | |
2072 | // Repair the symbol for the getNewSymbol case. | |
2073 | if (-1 == sym->n_un.n_strx) | |
2074 | sym->n_value = 0; | |
2075 | ||
2076 | // Record the offset of the string in the new table | |
2077 | strx = DataGetLength(newStrings); | |
2078 | return_if(!DataAppendBytes(newStrings, str, len), false, | |
2079 | ("Unable to append string, no memory\n")); | |
2080 | ||
2081 | sym->n_un.n_strx = strx; | |
2082 | file->fSymbToStringTable[i] = file->fStringBase + strx; | |
2083 | } | |
2084 | } | |
2085 | ||
2086 | // Don't need the new strings any more | |
2087 | last = DataGetLength(file->fNewStringBlocks) / sizeof(DataRef); | |
2088 | stringBlocks = (DataRef *) DataGetPtr(file->fNewStringBlocks); | |
2089 | for (i = 0; i < last; i++) | |
2090 | DataRelease(stringBlocks[i]); | |
2091 | ||
2092 | DataRelease(file->fNewStringBlocks); | |
2093 | file->fNewStringBlocks = 0; | |
2094 | ||
2095 | newstrsize = DataGetLength(newStrings); | |
2096 | newstrsize = (newstrsize + 3) & ~3; // Round to nearest word | |
2097 | return_if( | |
2098 | !growImage(file, newsymsize + newstrsize - file->fSymtab->strsize), | |
2099 | false, ("Unable to patch the extension, no memory\n", file->fPath)); | |
2100 | ||
2101 | // Push out the new symbol table if necessary | |
2102 | if (numnewsyms) { | |
2103 | caddr_t base; | |
2104 | ||
2105 | // Append the new symbols to the original symbol table. | |
2106 | base = (caddr_t) file->fSymbolBase | |
2107 | + (file->fSymtab->nsyms - numnewsyms) * sizeof(struct nlist); | |
2108 | symp = (struct nlist **) DataGetPtr(file->fNewSymbols); | |
2109 | for (i = 0; i < numnewsyms; i++, base += sizeof(struct nlist), symp++) | |
2110 | bcopy(*symp, base, sizeof(struct nlist)); | |
2111 | ||
2112 | DataRelease(file->fNewSymbols); | |
2113 | file->fNewSymbols = 0; | |
2114 | } | |
2115 | ||
2116 | // Push out the new string table if necessary | |
2117 | if (newStrings) { | |
2118 | unsigned long *base = (unsigned long *) file->fStringBase; | |
2119 | unsigned long actuallen = DataGetLength(newStrings); | |
2120 | ||
2121 | // Set the last word in string table to zero before copying data | |
2122 | base[(newstrsize / sizeof(unsigned long)) - 1] = 0; | |
2123 | ||
2124 | // Now copy the new strings back to the end of the file | |
2125 | bcopy((caddr_t) DataGetPtr(newStrings), file->fStringBase, actuallen); | |
2126 | ||
2127 | file->fSymtab->strsize = newstrsize; | |
2128 | ||
2129 | DataRelease(newStrings); | |
2130 | } | |
2131 | ||
2132 | file->fSymbolsDirty = false; | |
2133 | ||
2134 | return true; | |
2135 | } | |
2136 | ||
2137 | Boolean | |
2138 | #if KERNEL | |
2139 | kld_file_map(const char *pathName, | |
2140 | unsigned char *map, | |
2141 | size_t mapSize, | |
2142 | Boolean isKmem) | |
2143 | #else | |
2144 | kld_file_map(const char *pathName) | |
2145 | #endif /* KERNEL */ | |
2146 | { | |
2147 | struct fileRecord file, *fp = 0; | |
2148 | ||
2149 | // Already done no need to repeat | |
2150 | fp = getFile(pathName); | |
2151 | if (fp) | |
2152 | return true; | |
2153 | ||
2154 | bzero(&file, sizeof(file)); | |
2155 | ||
2156 | #if KERNEL | |
2157 | file.fMap = map; | |
2158 | file.fMapSize = mapSize; | |
2159 | file.fIsKmem = isKmem; | |
2160 | #else | |
2161 | if (!mapObjectFile(&file, pathName)) | |
2162 | return false; | |
2163 | #endif /* KERNEL */ | |
2164 | ||
2165 | do { | |
2166 | const struct machOMapping { | |
2167 | struct mach_header h; | |
2168 | struct load_command c[1]; | |
2169 | } *machO; | |
2170 | const struct load_command *cmd; | |
2171 | int i; | |
2172 | ||
2173 | if (!findBestArch(&file, pathName)) | |
2174 | break; | |
2175 | ||
2176 | machO = (const struct machOMapping *) file.fMachO; | |
2177 | if (file.fMachOSize < machO->h.sizeofcmds) | |
2178 | break; | |
2179 | ||
2180 | file.fIsKernel = (MH_EXECUTE == machO->h.filetype); | |
2181 | ||
2182 | // If the file type is MH_EXECUTE then this must be a kernel | |
2183 | // as all Kernel extensions must be of type MH_OBJECT | |
2184 | for (i = 0, cmd = &machO->c[0]; i < machO->h.ncmds; i++) { | |
2185 | if (cmd->cmd == LC_SYMTAB) | |
2186 | file.fSymtab = (struct symtab_command *) cmd; | |
2187 | else if (cmd->cmd == LC_SEGMENT) { | |
2188 | struct segment_command *seg = (struct segment_command *) cmd; | |
2189 | int nsects = seg->nsects; | |
2190 | ||
2191 | if (nsects) | |
2192 | return_if(!parseSegments(&file, seg), | |
2193 | false, ("%s isn't a valid mach-o, bad segment", | |
2194 | pathName)); | |
2195 | else if (file.fIsKernel) { | |
2196 | #if KERNEL | |
2197 | // We don't need to look for the LinkEdit segment unless | |
2198 | // we are running in the kernel environment. | |
2199 | if (!strcmp(kLinkEditSegName, seg->segname)) | |
2200 | file.fLinkEditSeg = seg; | |
2201 | #endif | |
2202 | } | |
2203 | } | |
2204 | ||
2205 | cmd = (struct load_command *) ((UInt8 *) cmd + cmd->cmdsize); | |
2206 | } | |
2207 | break_if(!file.fSymtab, | |
2208 | ("%s isn't a valid mach-o, no symbols\n", pathName)); | |
2209 | ||
2210 | if (!parseSymtab(&file, pathName)) | |
2211 | break; | |
2212 | ||
2213 | fp = addFile(&file, pathName); | |
2214 | if (!fp) | |
2215 | break; | |
2216 | ||
2217 | if (file.fFoundOSObject && !getMetaClassGraph(fp)) | |
2218 | break; | |
2219 | ||
2220 | if (file.fIsKernel) | |
2221 | sKernelFile = fp; | |
2222 | ||
2223 | #if KERNEL | |
2224 | // Automatically load the kernel's link edit segment if we are | |
2225 | // attempting to load a driver. | |
2226 | if (!sKernelFile) { | |
2227 | extern struct mach_header _mh_execute_header; | |
2228 | extern struct segment_command *getsegbyname(char *seg_name); | |
2229 | ||
2230 | struct segment_command *sg; | |
2231 | size_t kernelSize; | |
2232 | Boolean ret; | |
2233 | ||
2234 | sg = (struct segment_command *) getsegbyname(kLinkEditSegName); | |
2235 | break_if(!sg, ("Can't find kernel link edit segment\n")); | |
2236 | ||
2237 | kernelSize = sg->vmaddr + sg->vmsize - (size_t) &_mh_execute_header; | |
2238 | ret = kld_file_map(kld_basefile_name, | |
2239 | (unsigned char *) &_mh_execute_header, kernelSize, | |
2240 | /* isKmem */ false); | |
2241 | break_if(!ret, ("kld can't map kernel file")); | |
2242 | } | |
2243 | #endif /* KERNEL */ | |
2244 | ||
2245 | return true; | |
2246 | } while(0); | |
2247 | ||
2248 | // Failure path, then clean up | |
2249 | if (fp) | |
2250 | // @@@ gvdl: for the time being leak the file ref in the file table | |
2251 | removeFile(fp); | |
2252 | else | |
2253 | unmapFile(&file); | |
2254 | ||
2255 | return false; | |
2256 | } | |
2257 | ||
2258 | void *kld_file_getaddr(const char *pathName, long *size) | |
2259 | { | |
2260 | struct fileRecord *file = getFile(pathName); | |
2261 | ||
2262 | if (!file) | |
2263 | return 0; | |
2264 | ||
2265 | if (size) | |
2266 | *size = file->fMachOSize; | |
2267 | ||
2268 | return file->fMachO; | |
2269 | } | |
2270 | ||
2271 | void *kld_file_lookupsymbol(const char *pathName, const char *symname) | |
2272 | { | |
2273 | struct fileRecord *file = getFile(pathName); | |
2274 | const struct nlist *sym; | |
2275 | const struct section *section; | |
2276 | unsigned char *sectionBase; | |
2277 | unsigned char sectind; | |
2278 | ||
2279 | return_if(!file, | |
2280 | NULL, ("Unknown file %s\n", pathName)); | |
2281 | ||
2282 | sym = findSymbolByName(file, symname); | |
2283 | ||
2284 | // May be a non-extern symbol so look for it there | |
2285 | if (!sym) { | |
2286 | unsigned int i, nsyms; | |
2287 | ||
2288 | sym = file->fSymbolBase; | |
2289 | for (i = 0, nsyms = file->fSymtab->nsyms; i < nsyms; i++, sym++) { | |
2290 | if ( (sym->n_type & N_EXT) ) { | |
2291 | sym = 0; | |
2292 | break; // Terminate search when we hit an extern | |
2293 | } | |
2294 | if ( (sym->n_type & N_STAB) ) | |
2295 | continue; | |
2296 | if ( !strcmp(symname, symNameByIndex(file, i)) ) | |
2297 | break; | |
2298 | } | |
2299 | } | |
2300 | ||
2301 | return_if(!sym, | |
2302 | NULL, ("Unknown symbol %s in %s\n", symname, pathName)); | |
2303 | ||
2304 | // Is the vtable in a valid section? | |
2305 | sectind = sym->n_sect; | |
2306 | return_if(sectind == NO_SECT || sectind > file->fNSects, NULL, | |
2307 | ("Malformed object file, invalid section reference for %s in %s\n", | |
2308 | symname, pathName)); | |
2309 | ||
2310 | section = file->fSections[sectind - 1].fSection; | |
2311 | sectionBase = file->fMachO + section->offset - section->addr; | |
2312 | ||
2313 | return (void *) (sectionBase + sym->n_value); | |
2314 | } | |
2315 | ||
2316 | Boolean kld_file_merge_OSObjects(const char *pathName) | |
2317 | { | |
2318 | struct fileRecord *file = getFile(pathName); | |
2319 | ||
2320 | return_if(!file, | |
2321 | false, ("Internal error - unable to find file %s\n", pathName)); | |
2322 | ||
2323 | return mergeOSObjectsForFile(file); | |
2324 | } | |
2325 | ||
2326 | Boolean kld_file_patch_OSObjects(const char *pathName) | |
2327 | { | |
2328 | struct fileRecord *file = getFile(pathName); | |
2329 | struct metaClassRecord **classes; | |
2330 | unsigned long i, last; | |
2331 | ||
2332 | return_if(!file, | |
2333 | false, ("Internal error - unable to find file %s\n", pathName)); | |
2334 | ||
2335 | DEBUG_LOG(("Patch file %s\n", pathName)); // @@@ gvdl: | |
2336 | ||
2337 | // If we don't have any classes we can return now. | |
2338 | if (!file->fClassList) | |
2339 | return true; | |
2340 | ||
2341 | // If we haven't alread merged the kernel then do it now | |
2342 | if (!sMergedKernel && sKernelFile) | |
2343 | mergeOSObjectsForFile(sKernelFile); | |
2344 | return_if(!sMergedKernel, false, ("Internal error no kernel?\n")); | |
2345 | ||
2346 | if (!mergeOSObjectsForFile(file)) | |
2347 | return false; | |
2348 | ||
2349 | // Patch all of the classes in this executable | |
2350 | last = DataGetLength(file->fClassList) / sizeof(void *); | |
2351 | classes = (struct metaClassRecord **) DataGetPtr(file->fClassList); | |
2352 | for (i = 0; i < last; i++) { | |
2353 | if (!patchVTable(classes[i])) | |
2354 | return false; | |
2355 | } | |
2356 | ||
2357 | return true; | |
2358 | } | |
2359 | ||
2360 | Boolean kld_file_prepare_for_link() | |
2361 | { | |
2362 | if (sMergedFiles) { | |
2363 | unsigned long i, nmerged = 0; | |
2364 | struct fileRecord **files; | |
2365 | ||
2366 | // Check to see if we have already merged this file | |
2367 | nmerged = DataGetLength(sMergedFiles) / sizeof(struct fileRecord *); | |
2368 | files = (struct fileRecord **) DataGetPtr(sMergedFiles); | |
2369 | for (i = 0; i < nmerged; i++) { | |
2370 | if (!prepareFileForLink(files[i])) | |
2371 | return false; | |
2372 | } | |
2373 | } | |
2374 | ||
2375 | // Clear down the meta class table and merged file lists | |
2376 | DataRelease(sMergeMetaClasses); | |
2377 | DataRelease(sMergedFiles); | |
2378 | sMergedFiles = sMergeMetaClasses = NULL; | |
2379 | sMergedKernel = false; | |
2380 | ||
2381 | return true; | |
2382 | } | |
2383 | ||
2384 | void kld_file_cleanup_all_resources() | |
2385 | { | |
2386 | unsigned long i, nfiles; | |
2387 | ||
2388 | #if KERNEL // @@@ gvdl: | |
2389 | // Debugger("kld_file_cleanup_all_resources"); | |
2390 | #endif | |
2391 | ||
2392 | if (!sFilesTable || !(nfiles = DataGetLength(sFilesTable))) | |
2393 | return; // Nothing to do just return now | |
2394 | ||
2395 | nfiles /= sizeof(struct fileRecord *); | |
2396 | for (i = 0; i < nfiles; i++) | |
2397 | removeFile(((void **) DataGetPtr(sFilesTable))[i]); | |
2398 | ||
2399 | DataRelease(sFilesTable); | |
2400 | sFilesTable = NULL; | |
2401 | ||
2402 | // Don't really have to clean up anything more as the whole | |
2403 | // malloc engine is going to be released and I couldn't be bothered. | |
2404 | } | |
2405 | ||
2406 | ||
2407 | #if !KERNEL | |
2408 | #if 0 | |
2409 | static const struct fileRecord *sortFile; | |
2410 | static int symCompare(const void *vSym1, const void *vSym2) | |
2411 | { | |
2412 | const struct nlist *sym1 = vSym1; | |
2413 | const struct nlist *sym2 = vSym2; | |
2414 | ||
2415 | { | |
2416 | unsigned int ind1, ind2; | |
2417 | ||
2418 | ind1 = sym1->n_type & N_TYPE; | |
2419 | ind2 = sym2->n_type & N_TYPE; | |
2420 | if (ind1 != ind2) { | |
2421 | // if sym1 is undefined then sym1 must come later than sym2 | |
2422 | if (ind1 == N_UNDF) | |
2423 | return 1; | |
2424 | // if sym2 is undefined then sym1 must come earlier than sym2 | |
2425 | if (ind2 == N_UNDF) | |
2426 | return -1; | |
2427 | /* drop out if neither are undefined */ | |
2428 | } | |
2429 | } | |
2430 | ||
2431 | { | |
2432 | const struct fileRecord *file = sortFile; | |
2433 | const char *name1, *name2; | |
2434 | ||
2435 | name1 = file->fStringBase + sym1->n_un.n_strx; | |
2436 | name2 = file->fStringBase + sym2->n_un.n_strx; | |
2437 | return strcmp(name1, name2); | |
2438 | } | |
2439 | } | |
2440 | #endif /* 0 */ | |
2441 | ||
2442 | Boolean kld_file_debug_dump(const char *pathName, const char *outName) | |
2443 | { | |
2444 | const struct fileRecord *file = getFile(pathName); | |
2445 | int fd; | |
2446 | Boolean ret = false; | |
2447 | ||
2448 | return_if(!file, false, ("Unknown file %s for dumping\n", pathName)); | |
2449 | ||
2450 | fd = open(outName, O_WRONLY|O_CREAT|O_TRUNC, 0666); | |
2451 | return_if(-1 == fd, false, ("Can't create output file %s - %s(%d)\n", | |
2452 | outName, strerror(errno), errno)); | |
2453 | ||
2454 | do { | |
2455 | #if 0 | |
2456 | // Sorting doesn't work until I fix the relocs too? | |
2457 | ||
2458 | // sort the symbol table appropriately | |
2459 | unsigned int nsyms = file->fSymtab->nsyms | |
2460 | - (file->fLocalSyms - file->fSymbolBase); | |
2461 | sortFile = file; | |
2462 | heapsort((void *) file->fLocalSyms, nsyms, sizeof(struct nlist), | |
2463 | symCompare); | |
2464 | #endif | |
2465 | ||
2466 | break_if(-1 == write(fd, file->fMachO, file->fMachOSize), | |
2467 | ("Can't dump output file %s - %s(%d)\n", | |
2468 | outName, strerror(errno), errno)); | |
2469 | ret = true; | |
2470 | } while(0); | |
2471 | ||
2472 | close(fd); | |
2473 | ||
2474 | return ret; | |
2475 | } | |
2476 | ||
2477 | #endif /* !KERNEL */ | |
2478 |