]>
Commit | Line | Data |
---|---|---|
1 | /*- | |
2 | * Copyright (c) 1990, 1993 | |
3 | * The Regents of the University of California. All rights reserved. | |
4 | * | |
5 | * This code is derived from software contributed to Berkeley by | |
6 | * Cimarron D. Taylor of the University of California, Berkeley. | |
7 | * | |
8 | * Redistribution and use in source and binary forms, with or without | |
9 | * modification, are permitted provided that the following conditions | |
10 | * are met: | |
11 | * 1. Redistributions of source code must retain the above copyright | |
12 | * notice, this list of conditions and the following disclaimer. | |
13 | * 2. Redistributions in binary form must reproduce the above copyright | |
14 | * notice, this list of conditions and the following disclaimer in the | |
15 | * documentation and/or other materials provided with the distribution. | |
16 | * 4. Neither the name of the University nor the names of its contributors | |
17 | * may be used to endorse or promote products derived from this software | |
18 | * without specific prior written permission. | |
19 | * | |
20 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | |
21 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
22 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
23 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | |
24 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
25 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
26 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
27 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
28 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
29 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
30 | * SUCH DAMAGE. | |
31 | */ | |
32 | ||
33 | #ifndef lint | |
34 | #if 0 | |
35 | static char sccsid[] = "@(#)operator.c 8.1 (Berkeley) 6/6/93"; | |
36 | #endif | |
37 | #endif /* not lint */ | |
38 | ||
39 | #include <sys/cdefs.h> | |
40 | __FBSDID("$FreeBSD: src/usr.bin/find/operator.c,v 1.17 2010/12/11 08:32:16 joel Exp $"); | |
41 | ||
42 | #include <sys/types.h> | |
43 | ||
44 | #include <err.h> | |
45 | #include <fts.h> | |
46 | #include <stdio.h> | |
47 | ||
48 | #include "find.h" | |
49 | ||
50 | static PLAN *yanknode(PLAN **); | |
51 | static PLAN *yankexpr(PLAN **); | |
52 | ||
53 | /* | |
54 | * yanknode -- | |
55 | * destructively removes the top from the plan | |
56 | */ | |
57 | static PLAN * | |
58 | yanknode(PLAN **planp) | |
59 | { | |
60 | PLAN *node; /* top node removed from the plan */ | |
61 | ||
62 | if ((node = (*planp)) == NULL) | |
63 | return (NULL); | |
64 | (*planp) = (*planp)->next; | |
65 | node->next = NULL; | |
66 | return (node); | |
67 | } | |
68 | ||
69 | /* | |
70 | * yankexpr -- | |
71 | * Removes one expression from the plan. This is used mainly by | |
72 | * paren_squish. In comments below, an expression is either a | |
73 | * simple node or a f_expr node containing a list of simple nodes. | |
74 | */ | |
75 | static PLAN * | |
76 | yankexpr(PLAN **planp) | |
77 | { | |
78 | PLAN *next; /* temp node holding subexpression results */ | |
79 | PLAN *node; /* pointer to returned node or expression */ | |
80 | PLAN *tail; /* pointer to tail of subplan */ | |
81 | PLAN *subplan; /* pointer to head of ( ) expression */ | |
82 | ||
83 | /* first pull the top node from the plan */ | |
84 | if ((node = yanknode(planp)) == NULL) | |
85 | return (NULL); | |
86 | ||
87 | /* | |
88 | * If the node is an '(' then we recursively slurp up expressions | |
89 | * until we find its associated ')'. If it's a closing paren we | |
90 | * just return it and unwind our recursion; all other nodes are | |
91 | * complete expressions, so just return them. | |
92 | */ | |
93 | if (node->execute == f_openparen) | |
94 | for (tail = subplan = NULL;;) { | |
95 | if ((next = yankexpr(planp)) == NULL) | |
96 | errx(1, "(: missing closing ')'"); | |
97 | /* | |
98 | * If we find a closing ')' we store the collected | |
99 | * subplan in our '(' node and convert the node to | |
100 | * a f_expr. The ')' we found is ignored. Otherwise, | |
101 | * we just continue to add whatever we get to our | |
102 | * subplan. | |
103 | */ | |
104 | if (next->execute == f_closeparen) { | |
105 | if (subplan == NULL) | |
106 | errx(1, "(): empty inner expression"); | |
107 | node->p_data[0] = subplan; | |
108 | node->execute = f_expr; | |
109 | break; | |
110 | } else { | |
111 | if (subplan == NULL) | |
112 | tail = subplan = next; | |
113 | else { | |
114 | tail->next = next; | |
115 | tail = next; | |
116 | } | |
117 | tail->next = NULL; | |
118 | } | |
119 | } | |
120 | return (node); | |
121 | } | |
122 | ||
123 | /* | |
124 | * paren_squish -- | |
125 | * replaces "parenthesized" plans in our search plan with "expr" nodes. | |
126 | */ | |
127 | PLAN * | |
128 | paren_squish(PLAN *plan) | |
129 | { | |
130 | PLAN *expr; /* pointer to next expression */ | |
131 | PLAN *tail; /* pointer to tail of result plan */ | |
132 | PLAN *result; /* pointer to head of result plan */ | |
133 | ||
134 | result = tail = NULL; | |
135 | ||
136 | /* | |
137 | * the basic idea is to have yankexpr do all our work and just | |
138 | * collect its results together. | |
139 | */ | |
140 | while ((expr = yankexpr(&plan)) != NULL) { | |
141 | /* | |
142 | * if we find an unclaimed ')' it means there is a missing | |
143 | * '(' someplace. | |
144 | */ | |
145 | if (expr->execute == f_closeparen) | |
146 | errx(1, "): no beginning '('"); | |
147 | ||
148 | /* add the expression to our result plan */ | |
149 | if (result == NULL) | |
150 | tail = result = expr; | |
151 | else { | |
152 | tail->next = expr; | |
153 | tail = expr; | |
154 | } | |
155 | tail->next = NULL; | |
156 | } | |
157 | return (result); | |
158 | } | |
159 | ||
160 | /* | |
161 | * not_squish -- | |
162 | * compresses "!" expressions in our search plan. | |
163 | */ | |
164 | PLAN * | |
165 | not_squish(PLAN *plan) | |
166 | { | |
167 | PLAN *next; /* next node being processed */ | |
168 | PLAN *node; /* temporary node used in f_not processing */ | |
169 | PLAN *tail; /* pointer to tail of result plan */ | |
170 | PLAN *result; /* pointer to head of result plan */ | |
171 | ||
172 | tail = result = NULL; | |
173 | ||
174 | while ((next = yanknode(&plan))) { | |
175 | /* | |
176 | * if we encounter a ( expression ) then look for nots in | |
177 | * the expr subplan. | |
178 | */ | |
179 | if (next->execute == f_expr) | |
180 | next->p_data[0] = not_squish(next->p_data[0]); | |
181 | ||
182 | /* | |
183 | * if we encounter a not, then snag the next node and place | |
184 | * it in the not's subplan. As an optimization we compress | |
185 | * several not's to zero or one not. | |
186 | */ | |
187 | if (next->execute == f_not) { | |
188 | int notlevel = 1; | |
189 | ||
190 | node = yanknode(&plan); | |
191 | while (node != NULL && node->execute == f_not) { | |
192 | ++notlevel; | |
193 | node = yanknode(&plan); | |
194 | } | |
195 | if (node == NULL) | |
196 | errx(1, "!: no following expression"); | |
197 | if (node->execute == f_or) | |
198 | errx(1, "!: nothing between ! and -o"); | |
199 | /* | |
200 | * If we encounter ! ( expr ) then look for nots in | |
201 | * the expr subplan. | |
202 | */ | |
203 | if (node->execute == f_expr) | |
204 | node->p_data[0] = not_squish(node->p_data[0]); | |
205 | if (notlevel % 2 != 1) | |
206 | next = node; | |
207 | else | |
208 | next->p_data[0] = node; | |
209 | } | |
210 | ||
211 | /* add the node to our result plan */ | |
212 | if (result == NULL) | |
213 | tail = result = next; | |
214 | else { | |
215 | tail->next = next; | |
216 | tail = next; | |
217 | } | |
218 | tail->next = NULL; | |
219 | } | |
220 | return (result); | |
221 | } | |
222 | ||
223 | /* | |
224 | * or_squish -- | |
225 | * compresses -o expressions in our search plan. | |
226 | */ | |
227 | PLAN * | |
228 | or_squish(PLAN *plan) | |
229 | { | |
230 | PLAN *next; /* next node being processed */ | |
231 | PLAN *tail; /* pointer to tail of result plan */ | |
232 | PLAN *result; /* pointer to head of result plan */ | |
233 | ||
234 | tail = result = next = NULL; | |
235 | ||
236 | while ((next = yanknode(&plan)) != NULL) { | |
237 | /* | |
238 | * if we encounter a ( expression ) then look for or's in | |
239 | * the expr subplan. | |
240 | */ | |
241 | if (next->execute == f_expr) | |
242 | next->p_data[0] = or_squish(next->p_data[0]); | |
243 | ||
244 | /* if we encounter a not then look for or's in the subplan */ | |
245 | if (next->execute == f_not) | |
246 | next->p_data[0] = or_squish(next->p_data[0]); | |
247 | ||
248 | /* | |
249 | * if we encounter an or, then place our collected plan in the | |
250 | * or's first subplan and then recursively collect the | |
251 | * remaining stuff into the second subplan and return the or. | |
252 | */ | |
253 | if (next->execute == f_or) { | |
254 | if (result == NULL) | |
255 | errx(1, "-o: no expression before -o"); | |
256 | next->p_data[0] = result; | |
257 | next->p_data[1] = or_squish(plan); | |
258 | if (next->p_data[1] == NULL) | |
259 | errx(1, "-o: no expression after -o"); | |
260 | return (next); | |
261 | } | |
262 | ||
263 | /* add the node to our result plan */ | |
264 | if (result == NULL) | |
265 | tail = result = next; | |
266 | else { | |
267 | tail->next = next; | |
268 | tail = next; | |
269 | } | |
270 | tail->next = NULL; | |
271 | } | |
272 | return (result); | |
273 | } |