/*
* Copyright (c) 2006-2010 Apple Inc. All Rights Reserved.
- *
+ *
* @APPLE_LICENSE_HEADER_START@
- *
+ *
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this
* file.
- *
+ *
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
- *
+ *
* @APPLE_LICENSE_HEADER_END@
*/
-/*
+/*
* SecRSAKey.c - CoreFoundation based rsa key object
*/
#include <CoreFoundation/CFNumber.h>
#include <Security/SecFramework.h>
#include <Security/SecRandom.h>
-#include <security_utilities/debugging.h>
+#include <utilities/debugging.h>
+#include <utilities/SecCFWrappers.h>
#include "SecItemPriv.h"
#include <Security/SecInternal.h>
cc_size ix;
for (ix = count; ix--;) {
printf("0x%.02x, 0x%.02x, 0x%.02x, 0x%.02x, ",
- (s[ix] >> 24) & 0xFF,
- (s[ix] >> 16) & 0xFF,
- (s[ix] >> 8 ) & 0xFF,
- (s[ix] >> 0 ) & 0xFF);
+ (int) ((s[ix] >> 24) & 0xFF),
+ (int) ((s[ix] >> 16) & 0xFF),
+ (int) ((s[ix] >> 8 ) & 0xFF),
+ (int) ((s[ix] >> 0 ) & 0xFF));
}
printf("};");
}
ccn_cprint(ccrsa_ctx_n(key) + 1, "uint8_t rm[] = ", cczp_recip(ccrsa_ctx_zm(key)));
ccn_cprint(ccrsa_ctx_n(key), "uint8_t e[] = ", ccrsa_ctx_e(key));
ccn_cprint(ccrsa_ctx_n(key), "uint8_t d[] = ", ccrsa_ctx_d(key));
-
+
printf("cc_size np = %lu;\n", cczp_n(ccrsa_ctx_private_zp(ccrsa_ctx_private(key))));
ccn_cprint(cczp_n(ccrsa_ctx_private_zp(ccrsa_ctx_private(key))), "uint8_t p[] = ",
cczp_prime(ccrsa_ctx_private_zp(ccrsa_ctx_private(key))));
ccn_cprint(ccrsa_ctx_n(key), "uint8_t m[] = ", ccrsa_ctx_m(key));
ccn_cprint(ccrsa_ctx_n(key) + 1, "uint8_t rm[] = ", cczp_recip(ccrsa_ctx_zm(key)));
ccn_cprint(ccrsa_ctx_n(key), "uint8_t e[] = ", ccrsa_ctx_e(key));
-
+
printf("--\n");
}
size_t e_size, const uint8_t* e)
{
cc_skip_zeros(m_size, m);
-
+
cc_size nm = ccn_nof_size(m_size);
if (nm > ccrsa_ctx_n(pubkey))
return -1;
-
+
ccrsa_ctx_n(pubkey) = nm;
-
+
ccn_read_uint(nm, ccrsa_ctx_m(pubkey), m_size, m);
cczp_init(ccrsa_ctx_zm(pubkey));
-
+
return ccn_read_uint(nm, ccrsa_ctx_e(pubkey), e_size, e);
}
static OSStatus ccrsa_pub_decode(ccrsa_pub_ctx_t pubkey, size_t pkcs1_size, const uint8_t* pkcs1)
{
OSStatus result = errSecParam;
-
+
DERItem keyItem = {(DERByte *)pkcs1, pkcs1_size};
DERRSAPubKeyPKCS1 decodedKey;
-
+
require_noerr_action(DERParseSequence(&keyItem,
DERNumRSAPubKeyPKCS1ItemSpecs, DERRSAPubKeyPKCS1ItemSpecs,
&decodedKey, sizeof(decodedKey)),
errOut, result = errSecDecode);
-
+
require_noerr(ccrsa_pub_init(pubkey,
decodedKey.modulus.length, decodedKey.modulus.data,
decodedKey.pubExponent.length, decodedKey.pubExponent.data),
errOut);
-
+
result = errSecSuccess;
-
+
errOut:
return result;
}
static OSStatus ccrsa_pub_decode_apple(ccrsa_pub_ctx_t pubkey, size_t pkcs1_size, const uint8_t* pkcs1)
{
OSStatus result = errSecParam;
-
+
DERItem keyItem = {(DERByte *)pkcs1, pkcs1_size};
DERRSAPubKeyApple decodedKey;
-
+
require_noerr_action(DERParseSequence(&keyItem,
DERNumRSAPubKeyAppleItemSpecs, DERRSAPubKeyAppleItemSpecs,
&decodedKey, sizeof(decodedKey)),
errOut, result = errSecDecode);
-
+
// We could honor the recipricol, but we don't think this is used enough to care.
// Don't bother exploding the below function to try to handle this case, it computes.
-
+
require_noerr(ccrsa_pub_init(pubkey,
decodedKey.modulus.length, decodedKey.modulus.data,
decodedKey.pubExponent.length, decodedKey.pubExponent.data),
errOut);
-
+
result = errSecSuccess;
-
+
errOut:
return result;
}
{
**buffer = ASN1_INTEGER;
*buffer += 1;
-
+
DERSize itemLength = 4;
DEREncodeLength(s_size, *buffer, &itemLength);
*buffer += itemLength;
-
+
ccn_write_int(n, s, s_size, *buffer);
-
+
*buffer += s_size;
}
static OSStatus SecRSAPublicKeyInit(SecKeyRef key,
- const uint8_t *keyData, CFIndex keyDataLength, SecKeyEncoding encoding) {
-
+ const uint8_t *keyData, CFIndex keyDataLength, SecKeyEncoding encoding) {
+
OSStatus result = errSecParam;
-
+
ccrsa_pub_ctx_t pubkey;
pubkey.pub = key->key;
-
+
// Set maximum size for parsers
ccrsa_ctx_n(pubkey) = ccn_nof(kMaximumRSAKeyBits);
-
+
switch (encoding) {
- case kSecKeyEncodingBytes: // Octets is PKCS1
- case kSecKeyEncodingPkcs1:
- result = ccrsa_pub_decode(pubkey, keyDataLength, keyData);
- break;
- case kSecKeyEncodingApplePkcs1:
- result = ccrsa_pub_decode_apple(pubkey, keyDataLength, keyData);
- break;
- case kSecKeyEncodingRSAPublicParams:
- {
- SecRSAPublicKeyParams *params = (SecRSAPublicKeyParams *)keyData;
-
- require_noerr(ccrsa_pub_init(pubkey,
- params->modulusLength, params->modulus,
- params->exponentLength, params->exponent), errOut);
-
- result = errSecSuccess;
- break;
- }
- case kSecExtractPublicFromPrivate:
- {
- ccrsa_full_ctx_t fullKey;
- fullKey.full = (ccrsa_full_ctx*) keyData;
-
- cc_size fullKeyN = ccrsa_ctx_n(fullKey);
- require(fullKeyN <= ccrsa_ctx_n(pubkey), errOut);
- memcpy(pubkey.pub, ccrsa_ctx_public(fullKey).pub, ccrsa_pub_ctx_size(ccn_sizeof_n(fullKeyN)));
- result = errSecSuccess;
- break;
- }
- default:
- break;
+ case kSecKeyEncodingBytes: // Octets is PKCS1
+ case kSecKeyEncodingPkcs1:
+ result = ccrsa_pub_decode(pubkey, keyDataLength, keyData);
+ break;
+ case kSecKeyEncodingApplePkcs1:
+ result = ccrsa_pub_decode_apple(pubkey, keyDataLength, keyData);
+ break;
+ case kSecKeyEncodingRSAPublicParams:
+ {
+ SecRSAPublicKeyParams *params = (SecRSAPublicKeyParams *)keyData;
+
+ require_noerr(ccrsa_pub_init(pubkey,
+ params->modulusLength, params->modulus,
+ params->exponentLength, params->exponent), errOut);
+
+ result = errSecSuccess;
+ break;
+ }
+ case kSecExtractPublicFromPrivate:
+ {
+ ccrsa_full_ctx_t fullKey;
+ fullKey.full = (ccrsa_full_ctx*) keyData;
+
+ cc_size fullKeyN = ccrsa_ctx_n(fullKey);
+ require(fullKeyN <= ccrsa_ctx_n(pubkey), errOut);
+ memcpy(pubkey.pub, ccrsa_ctx_public(fullKey).pub, ccrsa_pub_ctx_size(ccn_sizeof_n(fullKeyN)));
+ result = errSecSuccess;
+ break;
+ }
+ default:
+ break;
}
-
+
errOut:
return result;
}
static OSStatus SecRSAPublicKeyRawVerify(SecKeyRef key, SecPadding padding,
- const uint8_t *signedData, size_t signedDataLen,
- const uint8_t *sig, size_t sigLen) {
+ const uint8_t *signedData, size_t signedDataLen,
+ const uint8_t *sig, size_t sigLen) {
OSStatus result = errSSLCrypto;
-
+
ccrsa_pub_ctx_t pubkey;
pubkey.pub = key->key;
-
+
cc_unit s[ccrsa_ctx_n(pubkey)];
-
+
ccn_read_uint(ccrsa_ctx_n(pubkey), s, sigLen, sig);
ccrsa_pub_crypt(pubkey, s, s);
ccn_swap(ccrsa_ctx_n(pubkey), s);
-
+
const uint8_t* sBytes = (uint8_t*) s;
const uint8_t* sEnd = (uint8_t*) (s + ccrsa_ctx_n(pubkey));
-
+
switch (padding) {
case kSecPaddingNone:
// Skip leading zeros as long as s is bigger than signedData.
while (((ptrdiff_t)signedDataLen < (sEnd - sBytes)) && (*sBytes == 0))
++sBytes;
break;
-
+
case kSecPaddingPKCS1:
{
// Verify and skip PKCS1 padding:
while (prefix_zeros--)
require_quiet(*sBytes++ == 0x00, errOut);
-
+
require_quiet(*sBytes++ == 0x00, errOut);
require_quiet(*sBytes++ == RSA_PKCS1_PAD_SIGN, errOut);
-
+
while (*sBytes == 0xFF) {
require_quiet(++sBytes < sEnd, errOut);
}
// Required to have at least 8 0xFFs
require_quiet((sBytes - (uint8_t*)s) - 2 >= 8, errOut);
-
+
require_quiet(*sBytes == 0x00, errOut);
require_quiet(++sBytes < sEnd, errOut);
break;
case kSecPaddingOAEP:
result = errSecParam;
goto errOut;
-
+
default:
result = errSecUnimplemented;
goto errOut;
}
-
+
// Compare the rest.
require_quiet((sEnd - sBytes) == (ptrdiff_t)signedDataLen, errOut);
require_quiet(memcmp(sBytes, signedData, signedDataLen) == 0, errOut);
-
+
result = errSecSuccess;
-
+
errOut:
cc_zero(ccrsa_ctx_n(pubkey), s);
-
+
return result;
}
static OSStatus SecRSAPublicKeyRawEncrypt(SecKeyRef key, SecPadding padding,
- const uint8_t *plainText, size_t plainTextLen,
- uint8_t *cipherText, size_t *cipherTextLen) {
+ const uint8_t *plainText, size_t plainTextLen,
+ uint8_t *cipherText, size_t *cipherTextLen) {
OSStatus result = errSecParam;
ccrsa_pub_ctx_t pubkey;
pubkey.pub = key->key;
-
+
cc_unit s[ccrsa_ctx_n(pubkey)];
const size_t m_size = ccn_write_uint_size(ccrsa_ctx_n(pubkey), ccrsa_ctx_m(pubkey));
-
+
require(cipherTextLen, errOut);
require(*cipherTextLen >= m_size, errOut);
-
+
uint8_t* sBytes = (uint8_t*) s;
-
+
switch (padding) {
case kSecPaddingNone:
+ // We'll allow modulus size assuming input is smaller than modulus
+ require_quiet(plainTextLen <= m_size, errOut);
require_noerr_quiet(ccn_read_uint(ccrsa_ctx_n(pubkey), s, plainTextLen, plainText), errOut);
require_quiet(ccn_cmp(ccrsa_ctx_n(pubkey), s, ccrsa_ctx_m(pubkey)) < 0, errOut);
break;
-
+
case kSecPaddingPKCS1:
{
// Create PKCS1 padding:
// 0x00, 0x01 (RSA_PKCS1_PAD_ENCRYPT), 0xFF .. 0x00, signedData
//
const int kMinimumPadding = 1 + 1 + 8 + 1;
-
- require_quiet(plainTextLen < m_size - kMinimumPadding, errOut);
-
+
+ require_quiet(plainTextLen <= m_size - kMinimumPadding, errOut);
+
size_t prefix_zeros = ccn_sizeof_n(ccrsa_ctx_n(pubkey)) - m_size;
while (prefix_zeros--)
- *sBytes++ = 0x00;
-
- size_t pad_size = m_size - plainTextLen;
-
+ *sBytes++ = 0x00;
+
+ size_t pad_size = m_size - plainTextLen;
+
*sBytes++ = 0x00;
*sBytes++ = RSA_PKCS1_PAD_ENCRYPT;
-
+
ccrng_generate(ccrng_seckey, pad_size - 3, sBytes);
// Remove zeroes from the random pad
-
+
const uint8_t* sEndOfPad = sBytes + (pad_size - 3);
while (sBytes < sEndOfPad)
{
if (*sBytes == 0x00)
*sBytes = 0xFF; // Michael said 0xFF was good enough.
-
+
++sBytes;
}
-
+
*sBytes++ = 0x00;
-
+
memcpy(sBytes, plainText, plainTextLen);
-
+
ccn_swap(ccrsa_ctx_n(pubkey), s);
break;
}
case kSecPaddingOAEP:
{
const struct ccdigest_info* di = ccsha1_di();
-
+
const size_t encodingOverhead = 2 + 2 * di->output_size;
-
+
require_action(m_size > encodingOverhead, errOut, result = errSecParam);
- require_action_quiet(plainTextLen < m_size - encodingOverhead, errOut, result = errSSLCrypto);
-
+ require_action_quiet(plainTextLen <= m_size - encodingOverhead, errOut, result = errSecParam);
+
require_noerr_action(ccrsa_oaep_encode(di,
ccrng_seckey,
m_size, s,
plainTextLen, plainText), errOut, result = errSecInternal);
- break;
+ break;
}
default:
goto errOut;
}
-
-
+
+
ccrsa_pub_crypt(pubkey, s, s);
-
+
ccn_write_uint_padded(ccrsa_ctx_n(pubkey), s, m_size, cipherText);
*cipherTextLen = m_size;
-
+
result = errSecSuccess;
-
+
errOut:
ccn_zero(ccrsa_ctx_n(pubkey), s);
return result;
}
static OSStatus SecRSAPublicKeyRawDecrypt(SecKeyRef key, SecPadding padding,
- const uint8_t *cipherText, size_t cipherTextLen, uint8_t *plainText, size_t *plainTextLen) {
+ const uint8_t *cipherText, size_t cipherTextLen, uint8_t *plainText, size_t *plainTextLen) {
OSStatus result = errSSLCrypto;
-
+
ccrsa_pub_ctx_t pubkey;
pubkey.pub = key->key;
-
+
cc_unit s[ccrsa_ctx_n(pubkey)];
-
+
require_action_quiet(cipherText != NULL, errOut, result = errSecParam);
require_action_quiet(plainText != NULL, errOut, result = errSecParam);
require_action_quiet(plainTextLen != NULL, errOut, result = errSecParam);
-
+
ccn_read_uint(ccrsa_ctx_n(pubkey), s, cipherTextLen, cipherText);
ccrsa_pub_crypt(pubkey, s, s);
ccn_swap(ccrsa_ctx_n(pubkey), s);
-
+
const uint8_t* sBytes = (uint8_t*) s;
const uint8_t* sEnd = (uint8_t*) (s + ccrsa_ctx_n(pubkey));
-
+
switch (padding) {
case kSecPaddingNone:
// Skip leading zeros
while (sBytes < sEnd && *sBytes == 0x00)
++sBytes;
break;
-
+
case kSecPaddingPKCS1:
{
// Verify and skip PKCS1 padding:
while (prefix_zeros--)
require_quiet(*sBytes++ == 0x00, errOut);
-
+
require_quiet(*sBytes++ == 0x00, errOut);
require_quiet(*sBytes++ == RSA_PKCS1_PAD_ENCRYPT, errOut);
-
+
while (*sBytes != 0x00) {
require_quiet(++sBytes < sEnd, errOut);
}
// Required to have at least 8 0xFFs
require_quiet((sBytes - (uint8_t*)s) - 2 >= 8, errOut);
-
+
require_quiet(*sBytes == 0x00, errOut);
require_quiet(++sBytes < sEnd, errOut);
-
+
break;
}
case kSecPaddingOAEP:
default:
goto errOut;
}
-
+
// Return the rest.
require_action((sEnd - sBytes) <= (ptrdiff_t)*plainTextLen, errOut, result = errSecParam);
-
+
*plainTextLen = sEnd - sBytes;
memcpy(plainText, sBytes, *plainTextLen);
-
+
result = errSecSuccess;
-
+
errOut:
ccn_zero(ccrsa_ctx_n(pubkey), s);
-
+
return result;
}
static size_t SecRSAPublicKeyBlockSize(SecKeyRef key) {
ccrsa_pub_ctx_t pubkey;
pubkey.pub = key->key;
-
+
return ccn_write_uint_size(ccrsa_ctx_n(pubkey), ccrsa_ctx_m(pubkey));
}
{
size_t m_size = ccn_write_int_size(ccrsa_ctx_n(pubkey), ccrsa_ctx_m(pubkey));
size_t e_size = ccn_write_int_size(ccrsa_ctx_n(pubkey), ccrsa_ctx_e(pubkey));
-
+
const size_t seq_size = DERLengthOfItem(ASN1_INTEGER, m_size) +
- DERLengthOfItem(ASN1_INTEGER, e_size);
-
+ DERLengthOfItem(ASN1_INTEGER, e_size);
+
const size_t result_size = DERLengthOfItem(ASN1_SEQUENCE, seq_size);
-
+
CFMutableDataRef pkcs1 = CFDataCreateMutable(allocator, result_size);
-
+
if (pkcs1 == NULL)
return NULL;
-
+
CFDataSetLength(pkcs1, result_size);
-
+
uint8_t *bytes = CFDataGetMutableBytePtr(pkcs1);
-
+
*bytes++ = ASN1_CONSTR_SEQUENCE;
-
+
DERSize itemLength = 4;
DEREncodeLength(seq_size, bytes, &itemLength);
bytes += itemLength;
-
+
ccasn_encode_int(ccrsa_ctx_n(pubkey), ccrsa_ctx_m(pubkey), m_size, &bytes);
ccasn_encode_int(ccrsa_ctx_n(pubkey), ccrsa_ctx_e(pubkey), e_size, &bytes);
-
+
return pkcs1;
}
{
ccrsa_pub_ctx_t pubkey;
pubkey.pub = key->key;
-
+
CFAllocatorRef allocator = CFGetAllocator(key);
*serialized = SecRSAPublicKeyCreatePKCS1(allocator, pubkey);
-
+
if (NULL == *serialized)
return errSecDecode;
else
return SecKeyGeneratePublicAttributeDictionary(key, kSecAttrKeyTypeRSA);
}
+static CFStringRef SecRSAPublicKeyCopyDescription(SecKeyRef key) {
+
+ CFStringRef keyDescription = NULL;
+ CFDataRef modRef = SecKeyCopyModulus(key);
+
+ ccrsa_pub_ctx_t pubkey;
+ pubkey.pub = key->key;
+
+ CFStringRef modulusString = CFDataCopyHexString(modRef);
+ require( modulusString, fail);
+
+ keyDescription = CFStringCreateWithFormat(kCFAllocatorDefault,NULL,CFSTR( "<SecKeyRef algorithm id: %lu, key type: %s, version: %d, block size: %zu bits, exponent: {hex: %llx, decimal: %lld}, modulus: %@, addr: %p>"), SecKeyGetAlgorithmID(key), key->key_class->name, key->key_class->version, (8*SecKeyGetBlockSize(key)), (long long)*ccrsa_ctx_e(pubkey), (long long)*ccrsa_ctx_e(pubkey), modulusString, key);
+
+fail:
+ CFReleaseSafe(modRef);
+ CFReleaseSafe(modulusString);
+ if(!keyDescription)
+ keyDescription = CFStringCreateWithFormat(kCFAllocatorDefault,NULL,CFSTR("<SecKeyRef algorithm id: %lu, key type: %s, version: %d, block size: %zu bits, addr: %p>"), (long)SecKeyGetAlgorithmID(key), key->key_class->name, key->key_class->version, (8*SecKeyGetBlockSize(key)), key);
+
+ return keyDescription;
+}
+
SecKeyDescriptor kSecRSAPublicKeyDescriptor = {
kSecKeyDescriptorVersion,
"RSAPublicKey",
NULL, /* SecKeyComputeMethod */
SecRSAPublicKeyBlockSize,
SecRSAPublicKeyCopyAttributeDictionary,
+ SecRSAPublicKeyCopyDescription,
NULL,
SecRSAPublicKeyCopyPublicSerialization,
};
/* Public Key API functions. */
SecKeyRef SecKeyCreateRSAPublicKey(CFAllocatorRef allocator,
- const uint8_t *keyData, CFIndex keyDataLength,
- SecKeyEncoding encoding) {
+ const uint8_t *keyData, CFIndex keyDataLength,
+ SecKeyEncoding encoding) {
return SecKeyCreate(allocator, &kSecRSAPublicKeyDescriptor, keyData,
- keyDataLength, encoding);
+ keyDataLength, encoding);
}
CFDataRef SecKeyCopyModulus(SecKeyRef key) {
ccrsa_pub_ctx_t pubkey;
pubkey.pub = key->key;
-
+
size_t m_size = ccn_write_uint_size(ccrsa_ctx_n(pubkey), ccrsa_ctx_m(pubkey));
-
+
CFAllocatorRef allocator = CFGetAllocator(key);
CFMutableDataRef modulusData = CFDataCreateMutable(allocator, m_size);
-
+
if (modulusData == NULL)
return NULL;
-
+
CFDataSetLength(modulusData, m_size);
-
+
ccn_write_uint(ccrsa_ctx_n(pubkey), ccrsa_ctx_m(pubkey), m_size, CFDataGetMutableBytePtr(modulusData));
-
+
return modulusData;
}
CFDataRef SecKeyCopyExponent(SecKeyRef key) {
ccrsa_pub_ctx_t pubkey;
pubkey.pub = key->key;
-
+
size_t e_size = ccn_write_uint_size(ccrsa_ctx_n(pubkey), ccrsa_ctx_e(pubkey));
-
+
CFAllocatorRef allocator = CFGetAllocator(key);
CFMutableDataRef exponentData = CFDataCreateMutable(allocator, e_size);
-
+
if (exponentData == NULL)
return NULL;
-
+
CFDataSetLength(exponentData, e_size);
-
+
ccn_write_uint(ccrsa_ctx_n(pubkey), ccrsa_ctx_m(pubkey), e_size, CFDataGetMutableBytePtr(exponentData));
-
+
return exponentData;
}
size_t qinv_size, const uint8_t* qinv)
{
int result = -1;
-
+
const cc_size np = cczp_n(ccrsa_ctx_private_zp(privkey));
cc_size nq = cczp_n(ccrsa_ctx_private_zq(privkey));
-
+
if (ccn_read_uint(np, CCZP_PRIME(ccrsa_ctx_private_zp(privkey)), p_size, p))
goto errOut;
cczp_init(ccrsa_ctx_private_zp(privkey));
goto errOut;
if (ccn_read_uint(np, ccrsa_ctx_private_qinv(privkey), qinv_size, qinv))
goto errOut;
-
+
if (ccn_read_uint(nq, CCZP_PRIME(ccrsa_ctx_private_zq(privkey)), q_size, q))
goto errOut;
-
+
nq = ccn_n(nq, cczp_prime(ccrsa_ctx_private_zq(privkey)));
CCZP_N(ccrsa_ctx_private_zq(privkey)) = nq;
-
+
cczp_init(ccrsa_ctx_private_zq(privkey));
if (ccn_read_uint(nq, ccrsa_ctx_private_dq(privkey), dq_size, dq))
goto errOut;
-
+
result = 0;
-
+
errOut:
return result;
}
static OSStatus ccrsa_full_decode(ccrsa_full_ctx_t fullkey, size_t pkcs1_size, const uint8_t* pkcs1)
{
OSStatus result = errSecParam;
-
+
DERItem keyItem = {(DERByte *)pkcs1, pkcs1_size};
DERRSAKeyPair decodedKey;
-
+
require_noerr_action(DERParseSequence(&keyItem,
DERNumRSAKeyPairItemSpecs, DERRSAKeyPairItemSpecs,
&decodedKey, sizeof(decodedKey)),
errOut, result = errSecDecode);
-
+
require_noerr(ccrsa_pub_init(fullkey,
decodedKey.n.length, decodedKey.n.data,
decodedKey.e.length, decodedKey.e.data),
ccrsa_priv_ctx_t privkey = ccrsa_ctx_private(fullkey);
CCZP_N(ccrsa_ctx_private_zp(privkey)) = ccn_nof((ccn_bitsof_n(ccrsa_ctx_n(fullkey)) / 2) + 1);
CCZP_N(ccrsa_ctx_private_zq(privkey)) = cczp_n(ccrsa_ctx_private_zp(privkey));
-
+
// TODO: Actually remember decodedKey.d.
-
+
require_noerr(ccrsa_priv_init(privkey,
- decodedKey.p.length, decodedKey.p.data,
+ decodedKey.p.length, decodedKey.p.data,
decodedKey.q.length, decodedKey.q.data,
decodedKey.dp.length, decodedKey.dp.data,
decodedKey.dq.length, decodedKey.dq.data,
decodedKey.qInv.length, decodedKey.qInv.data),
errOut);
}
-
+
result = errSecSuccess;
-
+
errOut:
return result;
}
static OSStatus SecRSAPrivateKeyInit(SecKeyRef key,
- const uint8_t *keyData, CFIndex keyDataLength, SecKeyEncoding encoding) {
+ const uint8_t *keyData, CFIndex keyDataLength, SecKeyEncoding encoding) {
OSStatus result = errSecParam;
-
+
ccrsa_full_ctx_t fullkey;
fullkey.full = key->key;
-
+
// Set maximum size for parsers
ccrsa_ctx_n(fullkey) = ccn_nof(kMaximumRSAKeyBits);
-
+
switch (encoding) {
case kSecKeyEncodingBytes: // Octets is PKCS1
case kSecKeyEncodingPkcs1:
case kSecGenerateKey:
{
CFDictionaryRef parameters = (CFDictionaryRef) keyData;
-
+
CFTypeRef ksize = CFDictionaryGetValue(parameters, kSecAttrKeySizeInBits);
CFIndex keyLengthInBits = getIntValue(ksize);
-
+
if (keyLengthInBits < 256 || keyLengthInBits > kMaximumRSAKeyBits) {
secwarning("Invalid or missing key size in: %@", parameters);
return errSecKeySizeNotAllowed;
}
-
+
/* TODO: Add support for kSecPublicExponent parameter. */
static uint8_t e[] = { 0x01, 0x00, 0x01 }; // Default is 65537
if (!ccrsa_generate_key(keyLengthInBits, fullkey.full, sizeof(e), e, ccrng_seckey))
default:
break;
}
-
+
return result;
}
static OSStatus SecRSAPrivateKeyRawSign(SecKeyRef key, SecPadding padding,
- const uint8_t *dataToSign, size_t dataToSignLen,
- uint8_t *sig, size_t *sigLen) {
-
+ const uint8_t *dataToSign, size_t dataToSignLen,
+ uint8_t *sig, size_t *sigLen) {
+
OSStatus result = errSecParam;
-
+
ccrsa_full_ctx_t fullkey;
fullkey.full = key->key;
-
+
size_t m_size = ccn_write_uint_size(ccrsa_ctx_n(fullkey), ccrsa_ctx_m(fullkey));
cc_unit s[ccrsa_ctx_n(fullkey)];
-
+
uint8_t* sBytes = (uint8_t*) s;
-
+
require(sigLen, errOut);
require(*sigLen >= m_size, errOut);
-
+
switch (padding) {
case kSecPaddingNone:
+ // We'll allow modulus size assuming input is smaller than modulus
+ require_quiet(dataToSignLen <= m_size, errOut);
require_noerr_quiet(ccn_read_uint(ccrsa_ctx_n(fullkey), s, dataToSignLen, dataToSign), errOut);
require_quiet(ccn_cmp(ccrsa_ctx_n(fullkey), s, ccrsa_ctx_m(fullkey)) < 0, errOut);
break;
-
+
case kSecPaddingPKCS1:
{
// Create PKCS1 padding:
// 0x00, 0x01 (RSA_PKCS1_PAD_SIGN), 0xFF .. 0x00, signedData
//
const int kMinimumPadding = 1 + 1 + 8 + 1;
-
- require(dataToSignLen < m_size - kMinimumPadding, errOut);
-
+
+ require_quiet(dataToSignLen <= m_size - kMinimumPadding, errOut);
+
size_t prefix_zeros = ccn_sizeof_n(ccrsa_ctx_n(fullkey)) - m_size;
while (prefix_zeros--)
*sBytes++ = 0x00;
size_t pad_size = m_size - dataToSignLen;
-
+
*sBytes++ = 0x00;
*sBytes++ = RSA_PKCS1_PAD_SIGN;
-
+
size_t ff_size;
for(ff_size = pad_size - 3; ff_size > 0; --ff_size)
*sBytes++ = 0xFF;
-
+
*sBytes++ = 0x00;
-
+
// Get the user data into s looking like a ccn.
memcpy(sBytes, dataToSign, dataToSignLen);
ccn_swap(ccrsa_ctx_n(fullkey), s);
-
+
break;
}
case kSecPaddingOAEP:
default:
goto errOut;
}
-
+
ccrsa_priv_crypt(ccrsa_ctx_private(fullkey), s, s);
-
+
// Pad with leading zeros to fit in modulus size
ccn_write_uint_padded(ccrsa_ctx_n(fullkey), s, m_size, sig);
*sigLen = m_size;
-
+
result = errSecSuccess;
-
+
errOut:
ccn_zero(ccrsa_ctx_n(fullkey), s);
return result;
}
static OSStatus SecRSAPrivateKeyRawDecrypt(SecKeyRef key, SecPadding padding,
- const uint8_t *cipherText, size_t cipherTextLen,
- uint8_t *plainText, size_t *plainTextLen) {
+ const uint8_t *cipherText, size_t cipherTextLen,
+ uint8_t *plainText, size_t *plainTextLen) {
OSStatus result = errSSLCrypto;
-
+
ccrsa_full_ctx_t fullkey;
fullkey.full = key->key;
-
+
size_t m_size = ccn_write_uint_size(ccrsa_ctx_n(fullkey), ccrsa_ctx_m(fullkey));
-
+
cc_unit s[ccrsa_ctx_n(fullkey)];
uint8_t recoveredData[ccn_sizeof_n(ccrsa_ctx_n(fullkey))];
-
+
ccn_read_uint(ccrsa_ctx_n(fullkey), s, cipherTextLen, cipherText);
ccrsa_priv_crypt(ccrsa_ctx_private(fullkey), s, s);
-
+
const uint8_t* sBytes = (uint8_t*) s;
const uint8_t* sEnd = (uint8_t*) (s + ccrsa_ctx_n(fullkey));
-
+
require(plainTextLen, errOut);
-
+
switch (padding) {
case kSecPaddingNone:
ccn_swap(ccrsa_ctx_n(fullkey), s);
while (sBytes < sEnd && *sBytes == 0x00)
++sBytes;
break;
-
+
case kSecPaddingPKCS1:
{
ccn_swap(ccrsa_ctx_n(fullkey), s);
require_quiet(*sBytes++ == 0x00, errOut);
require_quiet(*sBytes++ == RSA_PKCS1_PAD_ENCRYPT, errOut);
-
+
while (*sBytes != 0x00) {
require_quiet(++sBytes < sEnd, errOut);
}
// Required to have at least 8 non-zeros
require_quiet((sBytes - (uint8_t*)s) - 2 >= 8, errOut);
-
+
require_quiet(*sBytes == 0x00, errOut);
require_quiet(++sBytes < sEnd, errOut);
break;
case kSecPaddingOAEP:
{
size_t length = sizeof(recoveredData);
-
+
require_noerr_quiet(ccrsa_oaep_decode(ccsha1_di(),
- ccn_write_uint_size(ccrsa_ctx_n(fullkey),ccrsa_ctx_m(fullkey)), s,
- &length, recoveredData), errOut);
-
+ &length, recoveredData,
+ ccn_write_uint_size(ccrsa_ctx_n(fullkey),ccrsa_ctx_m(fullkey)), s
+ ), errOut);
+
sBytes = recoveredData;
sEnd = recoveredData + length;
break;
default:
goto errOut;
}
-
+
require((sEnd - sBytes) <= (ptrdiff_t)*plainTextLen, errOut);
*plainTextLen = sEnd - sBytes;
memcpy(plainText, sBytes, *plainTextLen);
-
+
result = errSecSuccess;
-
+
errOut:
bzero(recoveredData, sizeof(recoveredData));
ccn_zero(ccrsa_ctx_n(fullkey), s);
-
+
return result;
}
static size_t SecRSAPrivateKeyBlockSize(SecKeyRef key) {
ccrsa_full_ctx_t fullkey;
fullkey.full = key->key;
-
+
return ccn_write_uint_size(ccrsa_ctx_n(fullkey), ccrsa_ctx_m(fullkey));
}
static CFDataRef SecRSAPrivateKeyCreatePKCS1(CFAllocatorRef allocator, ccrsa_full_ctx_t fullkey)
{
ccrsa_priv_ctx_t privkey = ccrsa_ctx_private(fullkey);
-
+
const cc_size np = cczp_n(ccrsa_ctx_private_zp(privkey));
const cc_size nq = cczp_n(ccrsa_ctx_private_zq(privkey));
-
+
size_t m_size = ccn_write_int_size(ccrsa_ctx_n(fullkey), ccrsa_ctx_m(fullkey));
size_t e_size = ccn_write_int_size(ccrsa_ctx_n(fullkey), ccrsa_ctx_e(fullkey));
size_t d_size = ccn_write_int_size(ccrsa_ctx_n(fullkey), ccrsa_ctx_d(fullkey));
-
+
size_t p_size = ccn_write_int_size(np, cczp_prime(ccrsa_ctx_private_zp(privkey)));
size_t q_size = ccn_write_int_size(nq, cczp_prime(ccrsa_ctx_private_zq(privkey)));
-
+
size_t dp_size = ccn_write_int_size(np, ccrsa_ctx_private_dp(privkey));
size_t dq_size = ccn_write_int_size(nq, ccrsa_ctx_private_dq(privkey));
-
+
size_t qinv_size = ccn_write_int_size(np, ccrsa_ctx_private_qinv(privkey));
-
+
const size_t seq_size = 3 +
- DERLengthOfItem(ASN1_INTEGER, m_size) +
- DERLengthOfItem(ASN1_INTEGER, e_size) +
- DERLengthOfItem(ASN1_INTEGER, d_size) +
- DERLengthOfItem(ASN1_INTEGER, p_size) +
- DERLengthOfItem(ASN1_INTEGER, q_size) +
- DERLengthOfItem(ASN1_INTEGER, dp_size) +
- DERLengthOfItem(ASN1_INTEGER, dq_size) +
- DERLengthOfItem(ASN1_INTEGER, qinv_size);
-
+ DERLengthOfItem(ASN1_INTEGER, m_size) +
+ DERLengthOfItem(ASN1_INTEGER, e_size) +
+ DERLengthOfItem(ASN1_INTEGER, d_size) +
+ DERLengthOfItem(ASN1_INTEGER, p_size) +
+ DERLengthOfItem(ASN1_INTEGER, q_size) +
+ DERLengthOfItem(ASN1_INTEGER, dp_size) +
+ DERLengthOfItem(ASN1_INTEGER, dq_size) +
+ DERLengthOfItem(ASN1_INTEGER, qinv_size);
+
const size_t result_size = DERLengthOfItem(ASN1_SEQUENCE, seq_size);
-
+
CFMutableDataRef pkcs1 = CFDataCreateMutable(allocator, result_size);
-
+
if (pkcs1 == NULL)
return NULL;
-
+
CFDataSetLength(pkcs1, result_size);
-
+
uint8_t *bytes = CFDataGetMutableBytePtr(pkcs1);
-
+
*bytes++ = ASN1_CONSTR_SEQUENCE;
-
+
DERSize itemLength = 4;
DEREncodeLength(seq_size, bytes, &itemLength);
bytes += itemLength;
-
+
*bytes++ = ASN1_INTEGER;
*bytes++ = 0x01;
*bytes++ = 0x00;
-
+
ccasn_encode_int(ccrsa_ctx_n(fullkey), ccrsa_ctx_m(fullkey), m_size, &bytes);
ccasn_encode_int(ccrsa_ctx_n(fullkey), ccrsa_ctx_e(fullkey), e_size, &bytes);
ccasn_encode_int(ccrsa_ctx_n(fullkey), ccrsa_ctx_d(fullkey), d_size, &bytes);
-
+
ccasn_encode_int(np, cczp_prime(ccrsa_ctx_private_zp(privkey)), p_size, &bytes);
ccasn_encode_int(nq, cczp_prime(ccrsa_ctx_private_zq(privkey)), q_size, &bytes);
ccasn_encode_int(np, ccrsa_ctx_private_dp(privkey), dp_size, &bytes);
ccasn_encode_int(nq, ccrsa_ctx_private_dq(privkey), dq_size, &bytes);
ccasn_encode_int(np, ccrsa_ctx_private_qinv(privkey), qinv_size, &bytes);
-
+
return pkcs1;
}
{
ccrsa_full_ctx_t fullkey;
fullkey.full = key->key;
-
+
CFAllocatorRef allocator = CFGetAllocator(key);
return SecRSAPrivateKeyCreatePKCS1(allocator, fullkey);
}
{
ccrsa_full_ctx_t fullkey;
fullkey.full = key->key;
-
+
CFAllocatorRef allocator = CFGetAllocator(key);
*serialized = SecRSAPublicKeyCreatePKCS1(allocator, fullkey);
-
+
if (NULL == *serialized)
return errSecDecode;
else
static CFDictionaryRef SecRSAPrivateKeyCopyAttributeDictionary(SecKeyRef key) {
CFDictionaryRef dict = NULL;
CFDataRef fullKeyBlob = NULL;
-
+
/* PKCS1 encode the key pair. */
fullKeyBlob = SecRSAPrivateKeyCopyPKCS1(key);
require(fullKeyBlob, errOut);
-
+
dict = SecKeyGeneratePrivateAttributeDictionary(key, kSecAttrKeyTypeRSA, fullKeyBlob);
-
+
errOut:
CFReleaseSafe(fullKeyBlob);
-
+
return dict;
}
+static CFStringRef SecRSAPrivateKeyCopyDescription(SecKeyRef key){
+
+ return CFStringCreateWithFormat(kCFAllocatorDefault,NULL,CFSTR( "<SecKeyRef algorithm id: %lu, key type: %s, version: %d, block size: %zu bits, addr: %p>"), SecKeyGetAlgorithmID(key), key->key_class->name, key->key_class->version, (8*SecKeyGetBlockSize(key)), key);
+
+}
SecKeyDescriptor kSecRSAPrivateKeyDescriptor = {
kSecKeyDescriptorVersion,
"RSAPrivateKey",
NULL, /* SecKeyComputeMethod */
SecRSAPrivateKeyBlockSize,
SecRSAPrivateKeyCopyAttributeDictionary,
+ SecRSAPrivateKeyCopyDescription,
NULL,
SecRSAPrivateKeyCopyPublicSerialization,
};
/* Private Key API functions. */
SecKeyRef SecKeyCreateRSAPrivateKey(CFAllocatorRef allocator,
- const uint8_t *keyData, CFIndex keyDataLength,
- SecKeyEncoding encoding) {
+ const uint8_t *keyData, CFIndex keyDataLength,
+ SecKeyEncoding encoding) {
return SecKeyCreate(allocator, &kSecRSAPrivateKeyDescriptor, keyData,
- keyDataLength, encoding);
+ keyDataLength, encoding);
}
OSStatus SecRSAKeyGeneratePair(CFDictionaryRef parameters,
- SecKeyRef *rsaPublicKey, SecKeyRef *rsaPrivateKey) {
+ SecKeyRef *rsaPublicKey, SecKeyRef *rsaPrivateKey) {
OSStatus status = errSecParam;
-
+
CFAllocatorRef allocator = NULL; /* @@@ get from parameters. */
-
+
SecKeyRef pubKey = NULL;
SecKeyRef privKey = SecKeyCreate(allocator, &kSecRSAPrivateKeyDescriptor,
(const void*) parameters, 0, kSecGenerateKey);
-
+
require(privKey, errOut);
-
+
/* Create SecKeyRef's from the pkcs1 encoded keys. */
pubKey = SecKeyCreate(allocator, &kSecRSAPublicKeyDescriptor,
privKey->key, 0, kSecExtractPublicFromPrivate);
-
+
require(pubKey, errOut);
-
+
if (rsaPublicKey) {
*rsaPublicKey = pubKey;
pubKey = NULL;
*rsaPrivateKey = privKey;
privKey = NULL;
}
-
+
status = errSecSuccess;
-
+
errOut:
CFReleaseSafe(pubKey);
CFReleaseSafe(privKey);
-
+
return status;
}