]> git.saurik.com Git - apple/security.git/blobdiff - libsecurity_apple_csp/open_ssl/bn/bn_mul.c
Security-57031.1.35.tar.gz
[apple/security.git] / libsecurity_apple_csp / open_ssl / bn / bn_mul.c
diff --git a/libsecurity_apple_csp/open_ssl/bn/bn_mul.c b/libsecurity_apple_csp/open_ssl/bn/bn_mul.c
deleted file mode 100644 (file)
index 20987d9..0000000
+++ /dev/null
@@ -1,812 +0,0 @@
-/*
- * Copyright (c) 2000-2001 Apple Computer, Inc. All Rights Reserved.
- * 
- * The contents of this file constitute Original Code as defined in and are
- * subject to the Apple Public Source License Version 1.2 (the 'License').
- * You may not use this file except in compliance with the License. Please obtain
- * a copy of the License at http://www.apple.com/publicsource and read it before
- * using this file.
- * 
- * This Original Code and all software distributed under the License are
- * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
- * OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, INCLUDING WITHOUT
- * LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
- * PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. Please see the License for the
- * specific language governing rights and limitations under the License.
- */
-
-
-/* crypto/bn/bn_mul.c */
-/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
- * All rights reserved.
- *
- * This package is an SSL implementation written
- * by Eric Young (eay@cryptsoft.com).
- * The implementation was written so as to conform with Netscapes SSL.
- * 
- * This library is free for commercial and non-commercial use as long as
- * the following conditions are aheared to.  The following conditions
- * apply to all code found in this distribution, be it the RC4, RSA,
- * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
- * included with this distribution is covered by the same copyright terms
- * except that the holder is Tim Hudson (tjh@cryptsoft.com).
- * 
- * Copyright remains Eric Young's, and as such any Copyright notices in
- * the code are not to be removed.
- * If this package is used in a product, Eric Young should be given attribution
- * as the author of the parts of the library used.
- * This can be in the form of a textual message at program startup or
- * in documentation (online or textual) provided with the package.
- * 
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the copyright
- *    notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- *    notice, this list of conditions and the following disclaimer in the
- *    documentation and/or other materials provided with the distribution.
- * 3. All advertising materials mentioning features or use of this software
- *    must display the following acknowledgement:
- *    "This product includes cryptographic software written by
- *     Eric Young (eay@cryptsoft.com)"
- *    The word 'cryptographic' can be left out if the rouines from the library
- *    being used are not cryptographic related :-).
- * 4. If you include any Windows specific code (or a derivative thereof) from 
- *    the apps directory (application code) you must include an acknowledgement:
- *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
- * 
- * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- * 
- * The licence and distribution terms for any publically available version or
- * derivative of this code cannot be changed.  i.e. this code cannot simply be
- * copied and put under another distribution licence
- * [including the GNU Public Licence.]
- */
-
-#include <stdio.h>
-#include "cryptlib.h"
-#include "bn_lcl.h"
-
-#ifdef BN_RECURSION
-/* Karatsuba recursive multiplication algorithm
- * (cf. Knuth, The Art of Computer Programming, Vol. 2) */
-
-/* r is 2*n2 words in size,
- * a and b are both n2 words in size.
- * n2 must be a power of 2.
- * We multiply and return the result.
- * t must be 2*n2 words in size
- * We calculate
- * a[0]*b[0]
- * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
- * a[1]*b[1]
- */
-void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
-            BN_ULONG *t)
-       {
-       int n=n2/2,c1,c2;
-       unsigned int neg,zero;
-       BN_ULONG ln,lo,*p;
-
-# ifdef BN_COUNT
-       printf(" bn_mul_recursive %d * %d\n",n2,n2);
-# endif
-# ifdef BN_MUL_COMBA
-#  if 0
-       if (n2 == 4)
-               {
-               bn_mul_comba4(r,a,b);
-               return;
-               }
-#  endif
-       if (n2 == 8)
-               {
-               bn_mul_comba8(r,a,b);
-               return; 
-               }
-# endif /* BN_MUL_COMBA */
-       if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL)
-               {
-               /* This should not happen */
-               bn_mul_normal(r,a,n2,b,n2);
-               return;
-               }
-       /* r=(a[0]-a[1])*(b[1]-b[0]) */
-       c1=bn_cmp_words(a,&(a[n]),n);
-       c2=bn_cmp_words(&(b[n]),b,n);
-       zero=neg=0;
-       switch (c1*3+c2)
-               {
-       case -4:
-               bn_sub_words(t,      &(a[n]),a,      n); /* - */
-               bn_sub_words(&(t[n]),b,      &(b[n]),n); /* - */
-               break;
-       case -3:
-               zero=1;
-               break;
-       case -2:
-               bn_sub_words(t,      &(a[n]),a,      n); /* - */
-               bn_sub_words(&(t[n]),&(b[n]),b,      n); /* + */
-               neg=1;
-               break;
-       case -1:
-       case 0:
-       case 1:
-               zero=1;
-               break;
-       case 2:
-               bn_sub_words(t,      a,      &(a[n]),n); /* + */
-               bn_sub_words(&(t[n]),b,      &(b[n]),n); /* - */
-               neg=1;
-               break;
-       case 3:
-               zero=1;
-               break;
-       case 4:
-               bn_sub_words(t,      a,      &(a[n]),n);
-               bn_sub_words(&(t[n]),&(b[n]),b,      n);
-               break;
-               }
-
-# ifdef BN_MUL_COMBA
-       if (n == 4)
-               {
-               if (!zero)
-                       bn_mul_comba4(&(t[n2]),t,&(t[n]));
-               else
-                       memset(&(t[n2]),0,8*sizeof(BN_ULONG));
-               
-               bn_mul_comba4(r,a,b);
-               bn_mul_comba4(&(r[n2]),&(a[n]),&(b[n]));
-               }
-       else if (n == 8)
-               {
-               if (!zero)
-                       bn_mul_comba8(&(t[n2]),t,&(t[n]));
-               else
-                       memset(&(t[n2]),0,16*sizeof(BN_ULONG));
-               
-               bn_mul_comba8(r,a,b);
-               bn_mul_comba8(&(r[n2]),&(a[n]),&(b[n]));
-               }
-       else
-# endif /* BN_MUL_COMBA */
-               {
-               p= &(t[n2*2]);
-               if (!zero)
-                       bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p);
-               else
-                       memset(&(t[n2]),0,n2*sizeof(BN_ULONG));
-               bn_mul_recursive(r,a,b,n,p);
-               bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),n,p);
-               }
-
-       /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
-        * r[10] holds (a[0]*b[0])
-        * r[32] holds (b[1]*b[1])
-        */
-
-       c1=(int)(bn_add_words(t,r,&(r[n2]),n2));
-
-       if (neg) /* if t[32] is negative */
-               {
-               c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2));
-               }
-       else
-               {
-               /* Might have a carry */
-               c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2));
-               }
-
-       /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
-        * r[10] holds (a[0]*b[0])
-        * r[32] holds (b[1]*b[1])
-        * c1 holds the carry bits
-        */
-       c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2));
-       if (c1)
-               {
-               p= &(r[n+n2]);
-               lo= *p;
-               ln=(lo+c1)&BN_MASK2;
-               *p=ln;
-
-               /* The overflow will stop before we over write
-                * words we should not overwrite */
-               if (ln < (BN_ULONG)c1)
-                       {
-                       do      {
-                               p++;
-                               lo= *p;
-                               ln=(lo+1)&BN_MASK2;
-                               *p=ln;
-                               } while (ln == 0);
-                       }
-               }
-       }
-
-/* n+tn is the word length
- * t needs to be n*4 is size, as does r */
-void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int tn,
-            int n, BN_ULONG *t)
-       {
-       int i,j,n2=n*2;
-       unsigned int c1,c2,neg,zero;
-       BN_ULONG ln,lo,*p;
-
-# ifdef BN_COUNT
-       printf(" bn_mul_part_recursive %d * %d\n",tn+n,tn+n);
-# endif
-       if (n < 8)
-               {
-               i=tn+n;
-               bn_mul_normal(r,a,i,b,i);
-               return;
-               }
-
-       /* r=(a[0]-a[1])*(b[1]-b[0]) */
-       c1=bn_cmp_words(a,&(a[n]),n);
-       c2=bn_cmp_words(&(b[n]),b,n);
-       zero=neg=0;
-       switch (c1*3+c2)
-               {
-       case -4:
-               bn_sub_words(t,      &(a[n]),a,      n); /* - */
-               bn_sub_words(&(t[n]),b,      &(b[n]),n); /* - */
-               break;
-       case -3:
-               zero=1;
-               /* break; */
-       case -2:
-               bn_sub_words(t,      &(a[n]),a,      n); /* - */
-               bn_sub_words(&(t[n]),&(b[n]),b,      n); /* + */
-               neg=1;
-               break;
-       case -1:
-       case 0:
-       case 1:
-               zero=1;
-               /* break; */
-       case 2:
-               bn_sub_words(t,      a,      &(a[n]),n); /* + */
-               bn_sub_words(&(t[n]),b,      &(b[n]),n); /* - */
-               neg=1;
-               break;
-       case 3:
-               zero=1;
-               /* break; */
-       case 4:
-               bn_sub_words(t,      a,      &(a[n]),n);
-               bn_sub_words(&(t[n]),&(b[n]),b,      n);
-               break;
-               }
-               /* The zero case isn't yet implemented here. The speedup
-                  would probably be negligible. */
-# if 0
-       if (n == 4)
-               {
-               bn_mul_comba4(&(t[n2]),t,&(t[n]));
-               bn_mul_comba4(r,a,b);
-               bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn);
-               memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2));
-               }
-       else
-# endif
-       if (n == 8)
-               {
-               bn_mul_comba8(&(t[n2]),t,&(t[n]));
-               bn_mul_comba8(r,a,b);
-               bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn);
-               memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2));
-               }
-       else
-               {
-               p= &(t[n2*2]);
-               bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p);
-               bn_mul_recursive(r,a,b,n,p);
-               i=n/2;
-               /* If there is only a bottom half to the number,
-                * just do it */
-               j=tn-i;
-               if (j == 0)
-                       {
-                       bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),i,p);
-                       memset(&(r[n2+i*2]),0,sizeof(BN_ULONG)*(n2-i*2));
-                       }
-               else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */
-                               {
-                               bn_mul_part_recursive(&(r[n2]),&(a[n]),&(b[n]),
-                                       j,i,p);
-                               memset(&(r[n2+tn*2]),0,
-                                       sizeof(BN_ULONG)*(n2-tn*2));
-                               }
-               else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */
-                       {
-                       memset(&(r[n2]),0,sizeof(BN_ULONG)*n2);
-                       if (tn < BN_MUL_RECURSIVE_SIZE_NORMAL)
-                               {
-                               bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn);
-                               }
-                       else
-                               {
-                               for (;;)
-                                       {
-                                       i/=2;
-                                       if (i < tn)
-                                               {
-                                               bn_mul_part_recursive(&(r[n2]),
-                                                       &(a[n]),&(b[n]),
-                                                       tn-i,i,p);
-                                               break;
-                                               }
-                                       else if (i == tn)
-                                               {
-                                               bn_mul_recursive(&(r[n2]),
-                                                       &(a[n]),&(b[n]),
-                                                       i,p);
-                                               break;
-                                               }
-                                       }
-                               }
-                       }
-               }
-
-       /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
-        * r[10] holds (a[0]*b[0])
-        * r[32] holds (b[1]*b[1])
-        */
-
-       c1=(int)(bn_add_words(t,r,&(r[n2]),n2));
-
-       if (neg) /* if t[32] is negative */
-               {
-               c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2));
-               }
-       else
-               {
-               /* Might have a carry */
-               c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2));
-               }
-
-       /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
-        * r[10] holds (a[0]*b[0])
-        * r[32] holds (b[1]*b[1])
-        * c1 holds the carry bits
-        */
-       c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2));
-       if (c1)
-               {
-               p= &(r[n+n2]);
-               lo= *p;
-               ln=(lo+c1)&BN_MASK2;
-               *p=ln;
-
-               /* The overflow will stop before we over write
-                * words we should not overwrite */
-               if (ln < c1)
-                       {
-                       do      {
-                               p++;
-                               lo= *p;
-                               ln=(lo+1)&BN_MASK2;
-                               *p=ln;
-                               } while (ln == 0);
-                       }
-               }
-       }
-
-/* a and b must be the same size, which is n2.
- * r needs to be n2 words and t needs to be n2*2
- */
-void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
-            BN_ULONG *t)
-       {
-       int n=n2/2;
-
-# ifdef BN_COUNT
-       printf(" bn_mul_low_recursive %d * %d\n",n2,n2);
-# endif
-
-       bn_mul_recursive(r,a,b,n,&(t[0]));
-       if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL)
-               {
-               bn_mul_low_recursive(&(t[0]),&(a[0]),&(b[n]),n,&(t[n2]));
-               bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
-               bn_mul_low_recursive(&(t[0]),&(a[n]),&(b[0]),n,&(t[n2]));
-               bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
-               }
-       else
-               {
-               bn_mul_low_normal(&(t[0]),&(a[0]),&(b[n]),n);
-               bn_mul_low_normal(&(t[n]),&(a[n]),&(b[0]),n);
-               bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
-               bn_add_words(&(r[n]),&(r[n]),&(t[n]),n);
-               }
-       }
-
-/* a and b must be the same size, which is n2.
- * r needs to be n2 words and t needs to be n2*2
- * l is the low words of the output.
- * t needs to be n2*3
- */
-void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2,
-            BN_ULONG *t)
-       {
-       int i,n;
-       int c1,c2;
-       int neg,oneg,zero;
-       BN_ULONG ll,lc,*lp,*mp;
-
-# ifdef BN_COUNT
-       printf(" bn_mul_high %d * %d\n",n2,n2);
-# endif
-       n=n2/2;
-
-       /* Calculate (al-ah)*(bh-bl) */
-       neg=zero=0;
-       c1=bn_cmp_words(&(a[0]),&(a[n]),n);
-       c2=bn_cmp_words(&(b[n]),&(b[0]),n);
-       switch (c1*3+c2)
-               {
-       case -4:
-               bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n);
-               bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n);
-               break;
-       case -3:
-               zero=1;
-               break;
-       case -2:
-               bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n);
-               bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n);
-               neg=1;
-               break;
-       case -1:
-       case 0:
-       case 1:
-               zero=1;
-               break;
-       case 2:
-               bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n);
-               bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n);
-               neg=1;
-               break;
-       case 3:
-               zero=1;
-               break;
-       case 4:
-               bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n);
-               bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n);
-               break;
-               }
-               
-       oneg=neg;
-       /* t[10] = (a[0]-a[1])*(b[1]-b[0]) */
-       /* r[10] = (a[1]*b[1]) */
-# ifdef BN_MUL_COMBA
-       if (n == 8)
-               {
-               bn_mul_comba8(&(t[0]),&(r[0]),&(r[n]));
-               bn_mul_comba8(r,&(a[n]),&(b[n]));
-               }
-       else
-# endif
-               {
-               bn_mul_recursive(&(t[0]),&(r[0]),&(r[n]),n,&(t[n2]));
-               bn_mul_recursive(r,&(a[n]),&(b[n]),n,&(t[n2]));
-               }
-
-       /* s0 == low(al*bl)
-        * s1 == low(ah*bh)+low((al-ah)*(bh-bl))+low(al*bl)+high(al*bl)
-        * We know s0 and s1 so the only unknown is high(al*bl)
-        * high(al*bl) == s1 - low(ah*bh+s0+(al-ah)*(bh-bl))
-        * high(al*bl) == s1 - (r[0]+l[0]+t[0])
-        */
-       if (l != NULL)
-               {
-               lp= &(t[n2+n]);
-               c1=(int)(bn_add_words(lp,&(r[0]),&(l[0]),n));
-               }
-       else
-               {
-               c1=0;
-               lp= &(r[0]);
-               }
-
-       if (neg)
-               neg=(int)(bn_sub_words(&(t[n2]),lp,&(t[0]),n));
-       else
-               {
-               bn_add_words(&(t[n2]),lp,&(t[0]),n);
-               neg=0;
-               }
-
-       if (l != NULL)
-               {
-               bn_sub_words(&(t[n2+n]),&(l[n]),&(t[n2]),n);
-               }
-       else
-               {
-               lp= &(t[n2+n]);
-               mp= &(t[n2]);
-               for (i=0; i<n; i++)
-                       lp[i]=((~mp[i])+1)&BN_MASK2;
-               }
-
-       /* s[0] = low(al*bl)
-        * t[3] = high(al*bl)
-        * t[10] = (a[0]-a[1])*(b[1]-b[0]) neg is the sign
-        * r[10] = (a[1]*b[1])
-        */
-       /* R[10] = al*bl
-        * R[21] = al*bl + ah*bh + (a[0]-a[1])*(b[1]-b[0])
-        * R[32] = ah*bh
-        */
-       /* R[1]=t[3]+l[0]+r[0](+-)t[0] (have carry/borrow)
-        * R[2]=r[0]+t[3]+r[1](+-)t[1] (have carry/borrow)
-        * R[3]=r[1]+(carry/borrow)
-        */
-       if (l != NULL)
-               {
-               lp= &(t[n2]);
-               c1= (int)(bn_add_words(lp,&(t[n2+n]),&(l[0]),n));
-               }
-       else
-               {
-               lp= &(t[n2+n]);
-               c1=0;
-               }
-       c1+=(int)(bn_add_words(&(t[n2]),lp,  &(r[0]),n));
-       if (oneg)
-               c1-=(int)(bn_sub_words(&(t[n2]),&(t[n2]),&(t[0]),n));
-       else
-               c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),&(t[0]),n));
-
-       c2 =(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n2+n]),n));
-       c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(r[n]),n));
-       if (oneg)
-               c2-=(int)(bn_sub_words(&(r[0]),&(r[0]),&(t[n]),n));
-       else
-               c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n]),n));
-       
-       if (c1 != 0) /* Add starting at r[0], could be +ve or -ve */
-               {
-               i=0;
-               if (c1 > 0)
-                       {
-                       lc=c1;
-                       do      {
-                               ll=(r[i]+lc)&BN_MASK2;
-                               r[i++]=ll;
-                               lc=(lc > ll);
-                               } while (lc);
-                       }
-               else
-                       {
-                       lc= -c1;
-                       do      {
-                               ll=r[i];
-                               r[i++]=(ll-lc)&BN_MASK2;
-                               lc=(lc > ll);
-                               } while (lc);
-                       }
-               }
-       if (c2 != 0) /* Add starting at r[1] */
-               {
-               i=n;
-               if (c2 > 0)
-                       {
-                       lc=c2;
-                       do      {
-                               ll=(r[i]+lc)&BN_MASK2;
-                               r[i++]=ll;
-                               lc=(lc > ll);
-                               } while (lc);
-                       }
-               else
-                       {
-                       lc= -c2;
-                       do      {
-                               ll=r[i];
-                               r[i++]=(ll-lc)&BN_MASK2;
-                               lc=(lc > ll);
-                               } while (lc);
-                       }
-               }
-       }
-#endif /* BN_RECURSION */
-
-int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx)
-       {
-       int top,al,bl;
-       BIGNUM *rr;
-       int ret = 0;
-#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
-       int i;
-#endif
-#ifdef BN_RECURSION
-       BIGNUM *t;
-       int j,k;
-#endif
-
-#ifdef BN_COUNT
-       printf("BN_mul %d * %d\n",a->top,b->top);
-#endif
-
-       bn_check_top(a);
-       bn_check_top(b);
-       bn_check_top(r);
-
-       al=a->top;
-       bl=b->top;
-       r->neg=a->neg^b->neg;
-
-       if ((al == 0) || (bl == 0))
-               {
-               BN_zero(r);
-               return(1);
-               }
-       top=al+bl;
-
-       BN_CTX_start(ctx);
-       if ((r == a) || (r == b))
-               {
-               if ((rr = BN_CTX_get(ctx)) == NULL) goto err;
-               }
-       else
-               rr = r;
-
-#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
-       i = al-bl;
-#endif
-#ifdef BN_MUL_COMBA
-       if (i == 0)
-               {
-# if 0
-               if (al == 4)
-                       {
-                       if (bn_wexpand(rr,8) == NULL) goto err;
-                       rr->top=8;
-                       bn_mul_comba4(rr->d,a->d,b->d);
-                       goto end;
-                       }
-# endif
-               if (al == 8)
-                       {
-                       if (bn_wexpand(rr,16) == NULL) goto err;
-                       rr->top=16;
-                       bn_mul_comba8(rr->d,a->d,b->d);
-                       goto end;
-                       }
-               }
-#endif /* BN_MUL_COMBA */
-#ifdef BN_RECURSION
-       if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL))
-               {
-               if (i == 1 && !BN_get_flags(b,BN_FLG_STATIC_DATA))
-                       {
-                       bn_wexpand(b,al);
-                       b->d[bl]=0;
-                       bl++;
-                       i--;
-                       }
-               else if (i == -1 && !BN_get_flags(a,BN_FLG_STATIC_DATA))
-                       {
-                       bn_wexpand(a,bl);
-                       a->d[al]=0;
-                       al++;
-                       i++;
-                       }
-               if (i == 0)
-                       {
-                       /* symmetric and > 4 */
-                       /* 16 or larger */
-                       j=BN_num_bits_word((BN_ULONG)al);
-                       j=1<<(j-1);
-                       k=j+j;
-                       t = BN_CTX_get(ctx);
-                       if (al == j) /* exact multiple */
-                               {
-                               bn_wexpand(t,k*2);
-                               bn_wexpand(rr,k*2);
-                               bn_mul_recursive(rr->d,a->d,b->d,al,t->d);
-                               }
-                       else
-                               {
-                               bn_wexpand(a,k);
-                               bn_wexpand(b,k);
-                               bn_wexpand(t,k*4);
-                               bn_wexpand(rr,k*4);
-                               for (i=a->top; i<k; i++)
-                                       a->d[i]=0;
-                               for (i=b->top; i<k; i++)
-                                       b->d[i]=0;
-                               bn_mul_part_recursive(rr->d,a->d,b->d,al-j,j,t->d);
-                               }
-                       rr->top=top;
-                       goto end;
-                       }
-               }
-#endif /* BN_RECURSION */
-       if (bn_wexpand(rr,top) == NULL) goto err;
-       rr->top=top;
-       bn_mul_normal(rr->d,a->d,al,b->d,bl);
-
-#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
-end:
-#endif
-       bn_fix_top(rr);
-       if (r != rr) BN_copy(r,rr);
-       ret=1;
-err:
-       BN_CTX_end(ctx);
-       return(ret);
-       }
-
-void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb)
-       {
-       BN_ULONG *rr;
-
-#ifdef BN_COUNT
-       printf(" bn_mul_normal %d * %d\n",na,nb);
-#endif
-
-       if (na < nb)
-               {
-               int itmp;
-               BN_ULONG *ltmp;
-
-               itmp=na; na=nb; nb=itmp;
-               ltmp=a;   a=b;   b=ltmp;
-
-               }
-       rr= &(r[na]);
-       rr[0]=bn_mul_words(r,a,na,b[0]);
-
-       for (;;)
-               {
-               if (--nb <= 0) return;
-               rr[1]=bn_mul_add_words(&(r[1]),a,na,b[1]);
-               if (--nb <= 0) return;
-               rr[2]=bn_mul_add_words(&(r[2]),a,na,b[2]);
-               if (--nb <= 0) return;
-               rr[3]=bn_mul_add_words(&(r[3]),a,na,b[3]);
-               if (--nb <= 0) return;
-               rr[4]=bn_mul_add_words(&(r[4]),a,na,b[4]);
-               rr+=4;
-               r+=4;
-               b+=4;
-               }
-       }
-
-void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n)
-       {
-#ifdef BN_COUNT
-       printf(" bn_mul_low_normal %d * %d\n",n,n);
-#endif
-       bn_mul_words(r,a,n,b[0]);
-
-       for (;;)
-               {
-               if (--n <= 0) return;
-               bn_mul_add_words(&(r[1]),a,n,b[1]);
-               if (--n <= 0) return;
-               bn_mul_add_words(&(r[2]),a,n,b[2]);
-               if (--n <= 0) return;
-               bn_mul_add_words(&(r[3]),a,n,b[3]);
-               if (--n <= 0) return;
-               bn_mul_add_words(&(r[4]),a,n,b[4]);
-               r+=4;
-               b+=4;
-               }
-       }