]> git.saurik.com Git - apple/security.git/blobdiff - Security/libsecurity_cryptkit/lib/CurveParamDocs/curvegen.c
Security-57336.1.9.tar.gz
[apple/security.git] / Security / libsecurity_cryptkit / lib / CurveParamDocs / curvegen.c
diff --git a/Security/libsecurity_cryptkit/lib/CurveParamDocs/curvegen.c b/Security/libsecurity_cryptkit/lib/CurveParamDocs/curvegen.c
deleted file mode 100644 (file)
index fe3b8aa..0000000
+++ /dev/null
@@ -1,105 +0,0 @@
-/**************************************************************
- *
- *     curvegen.c
- *
- *     CM curve generator.
- *
- *  Compile with:
- *
- *  % cc -O curvegen.c tools.c giants.c ellproj.c -lm -o curvegen
- *
- *     Updates:
- *             27 Sep 98    REC - Creation
- *
- *
- *     c. 1998 Perfectly Scientific, Inc.
- *     All Rights Reserved.
- *
- *
- *************************************************************/
-
-/* include files */
-
-#include <stdio.h>
-#include <math.h>
-#include <stdlib.h>
-#include <time.h>
-#ifdef _WIN32 
-
-#include <process.h>
-
-#endif
-
-#include <string.h>
-#include "giants.h"
-#include "tools.h"
-
-#define DCOUNT 27
-
-int disc12[DCOUNT] =  {-3, -4, -7, -8, -11, -19, -43, -67, -163, -15, -20, -24, -35, -40, -51, -52, -88, -91, -115, -123, -148, -187, -232, -235, -267, -403, -427}; /* All discriminants of class number 1,2. */
-
-/**************************************************************
- *
- *     Main Function
- *
- **************************************************************/
-
-#define CM_SHORTS 4096
-
-main(int argc, char **argv) {
-    giant p = newgiant(CM_SHORTS);
-       giant u = newgiant(CM_SHORTS);
-       giant v = newgiant(CM_SHORTS);
-       giant g[6];
-    giant plus_order = newgiant(CM_SHORTS);
-    giant minus_order = newgiant(CM_SHORTS);
-       giant a = newgiant(CM_SHORTS);
-    giant b = newgiant(CM_SHORTS);
-    int d, dc, olen, k;
-
-    init_tools(CM_SHORTS);    /* Basic algorithms. */
-    printf("Give base prime p:\n"); fflush(stdout);
-    gin(p);
-    for(dc=0; dc < 6; dc++) g[dc] = newgiant(CM_SHORTS);
-    for(dc = 0; dc < DCOUNT; dc++) {
-                       d = disc12[dc];
-                       /* Next, seek representation 4N = u^2 + |d| v^2. */
-                       if(cornacchia4(p, d, u, v) == 0) continue;
-/* Here, (u,v) give the quadratic representation of 4p. */
-                       printf("D: %d\n", d); fflush(stdout);
-                       gtog(u, g[0]);
-                       switch(d) {
-                               case -3: olen = 3;  /* Six orders: p + 1 +- g[0,1,2]. */
-                                               gtog(u, g[1]); gtog(v, g[2]);
-                                               addg(g[2], g[2]); addg(v, g[2]); /* g[2] := 3v. */
-                                               addg(g[2], g[1]); gshiftright(1, g[1]);  /* g[1] = (u + 3v)/2. */
-                                               subg(u, g[2]); gshiftright(1, g[2]); absg(g[2]); /* g[2] = |u-3v|/2. */
-                                               break;
-                               case -4: olen = 2;  /* Four orders: p + 1 +- g[0,1]. */
-                                               gtog(v, g[1]); addg(g[1], g[1]); /* g[1] = 2v. */
-                                               break;
-                               default: olen = 1;  /* Two orders: p + 1 +- g[0]. */
-                       }
-                       for(k=0; k < olen; k++) {
-                                gtog(p, plus_order); iaddg(1, plus_order);
-                                gtog(p, minus_order); iaddg(1, minus_order);
-                                addg(g[k], plus_order);
-                                subg(g[k], minus_order);
-                                printf("curve orders: \n");
-                                printf("(%d) ", prime_probable(plus_order));
-                 gout(plus_order);
-                                printf("(%d) ", prime_probable(minus_order));
-                                gout(minus_order);
-                       }
-   }
-}
-
-
-
-
-
-
-
-
-
-