]> git.saurik.com Git - apple/security.git/blobdiff - OSX/libsecurity_cryptkit/lib/CurveParamDocs/giants.c
Security-57336.1.9.tar.gz
[apple/security.git] / OSX / libsecurity_cryptkit / lib / CurveParamDocs / giants.c
diff --git a/OSX/libsecurity_cryptkit/lib/CurveParamDocs/giants.c b/OSX/libsecurity_cryptkit/lib/CurveParamDocs/giants.c
new file mode 100644 (file)
index 0000000..abf62d2
--- /dev/null
@@ -0,0 +1,3517 @@
+/**************************************************************
+ *
+ *  giants.c
+ *
+ *  Library for large-integer arithmetic.
+ * 
+ *  The large-gcd implementation is due to J. P. Buhler.
+ *  Special mod routines use ideas of R. McIntosh.
+ *  Contributions from G. Woltman, A. Powell acknowledged.
+ *
+ *  Updates:
+ *      18 Jul 99   REC  Added routine fer_mod(), for use when Fermat
+                         giant itself is available.
+ *      17 Jul 99   REC  Fixed sign bug in fermatmod()
+ *      17 Apr 99   REC  Fixed various comment/line wraps
+ *      25 Mar 99   REC  G. Woltman/A. Powell fixes Karat. routines
+ *      05 Mar 99   REC  Moved invaux, binvaux giants to stack
+ *      05 Mar 99   REC  Moved gread/gwrite giants to stack
+ *      05 Mar 99   REC  No static on cur_den, cur_recip (A. Powell)
+ *      28 Feb 99   REC  Error detection added atop newgiant().
+ *      27 Feb 99   REC  Reduced wasted work in addsignal().
+ *      27 Feb 99   REC  Reduced wasted work in FFTmulg().
+ *      19 Feb 99   REC  Generalized iaddg() per R. Mcintosh.
+ *       2 Feb 99   REC  Fixed comments.
+ *       6 Dec 98   REC  Fixed yet another Karatsuba glitch.
+ *       1 Dec 98   REC  Fixed errant case of addg().
+ *      28 Nov 98   REC  Installed A. Powell's (correct) variant of
+                                                Karatsuba multiply.
+ *      15 May 98   REC  Modified gwrite() to handle huge integers.
+ *      13 May 98   REC  Changed to static stack declarations
+ *      11 May 98   REC  Installed Karatsuba multiply, to handle
+ *                       medregion 'twixt grammar- and FFT-multiply.
+ *       1 May 98   JF   gshifts now handle bits < 0 correctly.
+ *      30 Apr 98   JF   68k assembler code removed,
+ *                       stack giant size now invariant and based
+ *                           on first call of newgiant(),
+ *                       stack memory leaks fixed.
+ *      29 Apr 98   JF   function prototyes cleaned up,
+ *                       GCD no longer uses personal stack,
+ *                       optimized shifts for bits%16 == 0.
+ *      27 Apr 98   JF   scratch giants now replaced with stack
+ *      20 Apr 98   JF   grammarsquareg fixed for asize == 0.
+ *                       scratch giants now static.
+ *      29 Jan 98   JF   Corrected out-of-range errors in
+ *                       mersennemod and fermatmod.
+ *      23 Dec 97   REC  Sped up divide routines via split-shift.
+ *      18 Nov 97   JF   Improved mersennemod, fermatmod.
+ *       9 Nov 97   JF   Sped up grammarsquareg.
+ *      20 May 97   RDW  Fixed Win32 compiler warnings.
+ *      18 May 97   REC  Installed new, fast divide.
+ *      17 May 97   REC  Reduced memory for FFT multiply.
+ *      26 Apr 97   REC  Creation.
+ *
+ *  c. 1997,1998 Perfectly Scientific, Inc.
+ *  All Rights Reserved.
+ *
+ **************************************************************/
+
+
+/* Include Files. */
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <math.h>
+#include "giants.h"
+
+
+/* Compiler options. */
+
+#ifdef _WIN32
+#pragma warning( disable : 4127 4706 ) /* disable conditional is constant warning */
+#endif
+
+
+/* Global variables. */
+
+int                            error = 0;
+int                            mulmode = AUTO_MUL;
+int                            cur_prec = 0;
+int                            cur_shift = 0;
+static int             cur_stack_size = 0;
+static int             cur_stack_elem = 0;
+static int             stack_glen = 0;
+static giant   *stack;
+giant                  cur_den = NULL,
+                               cur_recip = NULL;
+int                            current_max_size = 0,
+                               cur_run = 0;
+double *               sinCos=NULL;
+int                            checkFFTerror = 0;
+double                 maxFFTerror;
+static giant   u0=NULL, u1=NULL, v0=NULL, v1=NULL;
+static double  *z = NULL,
+                               *z2 = NULL;
+
+/* stack handling functions. */
+static giant   popg(void);
+static void            pushg(int);
+
+
+/* Private function prototypes. */
+
+int            gerr(void);
+double         gfloor(double);
+int                    radixdiv(int, int, giant);
+void           columnwrite(FILE *, short *, char *, short, int);
+
+void           normal_addg(giant, giant);
+void           normal_subg(giant, giant);
+void           reverse_subg(giant, giant);
+int                    binvaux(giant, giant);
+int            invaux(giant, giant);
+int            allzeros(int, int, giant);
+void           auxmulg(giant a, giant b);
+void           karatmulg(giant a, giant b);
+void           karatsquareg(giant b);
+void           grammarmulg(giant a, giant b);
+void           grammarsquareg(giant b);
+
+int            lpt(int, int *);
+void           addsignal(giant, double *, int);
+void           FFTsquareg(giant x);
+void           FFTmulg(giant y, giant x);
+void           scramble_real();
+void           fft_real_to_hermitian(double *z, int n);
+void           fftinv_hermitian_to_real(double *z, int n);
+void           mul_hermitian(double *a, double *b, int n);
+void           square_hermitian(double *b, int n);
+void           giant_to_double(giant x, int sizex, double *z, int L);
+void           gswap(giant *, giant *);
+void           onestep(giant, giant, gmatrix);
+void           mulvM(gmatrix, giant, giant);
+void           mulmM(gmatrix, gmatrix);
+void           writeM(gmatrix);
+static void    punch(giant, gmatrix);
+static void    dotproduct(giant, giant, giant, giant);
+void           fix(giant *, giant *);
+void           hgcd(int, giant, giant, gmatrix);
+void           shgcd(int, int, gmatrix);
+
+
+
+/**************************************************************
+ *
+ *     Functions
+ *
+ **************************************************************/
+
+
+/**************************************************************
+ *
+ * Initialization and utility functions
+ *
+ **************************************************************/
+
+double
+gfloor(
+       double  f
+)
+{
+       return floor(f);
+}
+
+
+void
+init_sinCos(
+       int             n
+)
+{
+       int             j;
+       double  e = TWOPI/n;
+
+       if (n<=cur_run)
+               return;
+       cur_run = n;
+       if (sinCos)
+               free(sinCos);
+       sinCos = (double *)malloc(sizeof(double)*(1+(n>>2)));
+       for (j=0;j<=(n>>2);j++)
+       {
+               sinCos[j] = sin(e*j);
+       }
+}
+
+
+double
+s_sin(
+       int     n
+)
+{
+       int     seg = n/(cur_run>>2);
+
+       switch (seg)
+       {
+               case 0: return(sinCos[n]);
+               case 1: return(sinCos[(cur_run>>1)-n]);
+               case 2: return(-sinCos[n-(cur_run>>1)]);
+               case 3: return(-sinCos[cur_run-n]);
+       }
+       return 0;
+}
+
+
+double
+s_cos(
+       int     n
+)
+{
+       int     quart = (cur_run>>2);
+
+       if (n < quart)
+               return(s_sin(n+quart));
+       return(-s_sin(n-quart));
+}
+
+
+int
+gerr(void)
+{
+       return(error);
+}
+
+
+giant
+popg (
+       void
+)
+{
+       int i;
+       
+       if (current_max_size <= 0) current_max_size = MAX_SHORTS;
+       
+       if (cur_stack_size == 0) {
+/* Initialize the stack if we're just starting out.
+ * Note that all stack giants will be whatever current_max_size is
+ * when newgiant() is first called. */
+               cur_stack_size = STACK_GROW;
+               stack = (giant *) malloc (cur_stack_size * sizeof(giant));
+               for(i = 0; i < STACK_GROW; i++)
+                       stack[i] = NULL;
+               if (stack_glen == 0) stack_glen = current_max_size;
+       } else if (cur_stack_elem >= cur_stack_size) {
+/* Expand the stack if we need to. */
+               i = cur_stack_size;
+               cur_stack_size += STACK_GROW;
+               stack = (giant *) realloc (stack,cur_stack_size * sizeof(giant));
+               for (; i < cur_stack_size; i++)
+                       stack[i] = NULL;
+       } else if (cur_stack_elem < cur_stack_size - 2*STACK_GROW) {
+/* Prune the stack if it's too big. Disabled, so the stack can only expand */
+               /* cur_stack_size -= STACK_GROW;
+               for (i = cur_stack_size - STACK_GROW; i < cur_stack_size; i++)
+                       free(stack[i]);
+               stack = (giant *) realloc (stack,cur_stack_size * sizeof(giant)); */
+       }
+       
+/* Malloc our giant. */
+       if (stack[cur_stack_elem] == NULL)
+               stack[cur_stack_elem] = malloc(stack_glen*sizeof(short)+sizeof(int));
+       stack[cur_stack_elem]->sign = 0;
+       
+       return(stack[cur_stack_elem++]);
+}
+
+
+void
+pushg (
+       int a
+)
+{
+       if (a < 0) return;
+       cur_stack_elem -= a;
+       if (cur_stack_elem < 0) cur_stack_elem = 0;
+}
+
+
+giant
+newgiant(
+       int             numshorts
+)
+{
+       int             size;
+       giant           thegiant;
+
+    if (numshorts > MAX_SHORTS) {
+               fprintf(stderr, "Requested giant too big.\n");
+               fflush(stderr);
+       }
+       if (numshorts<=0)
+               numshorts = MAX_SHORTS;
+       size = numshorts*sizeof(short)+sizeof(int);
+       thegiant = (giant)malloc(size);
+       thegiant->sign = 0;
+       
+       if (newmin(2*numshorts,MAX_SHORTS) > current_max_size)
+               current_max_size = newmin(2*numshorts,MAX_SHORTS);
+
+/* If newgiant() is being called for the first time, set the
+ * size of the stack giants. */
+       if (stack_glen == 0) stack_glen = current_max_size;
+
+       return(thegiant);
+}
+
+
+gmatrix
+newgmatrix(
+       void
+)
+/* Allocates space for a gmatrix struct, but does not
+ * allocate space for the giants. */
+{
+       return((gmatrix) malloc (4*sizeof(giant)));
+}
+
+int
+bitlen(
+       giant           n
+)
+{
+       int             b = 16, c = 1<<15, w;
+
+       if (isZero(n))
+               return(0);
+       w = n->n[abs(n->sign) - 1];
+       while ((w&c) == 0)
+       {
+               b--;
+               c >>= 1;
+       }
+       return (16*(abs(n->sign)-1) + b);
+}
+
+
+int
+bitval(
+       giant   n,
+       int     pos
+)
+{
+       int     i = abs(pos)>>4, c = 1 << (pos&15);
+
+       return ((n->n[i]) & c);
+}
+
+
+int
+isone(
+       giant   g
+)
+{
+       return((g->sign==1)&&(g->n[0]==1));
+}
+
+
+int isZero(
+       giant thegiant
+)
+/* Returns TR if thegiant == 0. */
+{
+       register int                            count;
+       int                                                     length = abs(thegiant->sign);
+       register unsigned short *       numpointer = thegiant->n;
+
+       if (length)
+       {
+               for(count = 0; count<length; ++count,++numpointer)
+               {
+                       if (*numpointer != 0 )
+                               return(FA);
+               }
+       }
+       return(TR);
+}
+
+
+void
+gtog(
+       giant           srcgiant,
+       giant           destgiant
+)
+/* destgiant becomes equal to srcgiant. */
+{
+       int             numbytes = sizeof(int) + abs(srcgiant->sign)*sizeof(short);
+
+       memcpy((char *)destgiant,(char *)srcgiant,numbytes);
+}
+
+
+void
+itog(
+       int                             i,
+       giant                   g
+)
+/* The giant g becomes set to the integer value i. */
+{
+       unsigned int    j = abs(i);
+
+       if (i==0)
+       {
+               g->sign = 0;
+               g->n[0] = 0;
+               return;
+       }
+       g->n[0] = (unsigned short)(j & 0xFFFF);
+       j >>= 16;
+       if (j)
+       {
+               g->n[1] = (unsigned short)j;
+               g->sign = 2;
+       }
+       else
+       {
+               g->sign = 1;
+       }
+       if (i<0)
+               g->sign = -(g->sign);
+}
+
+
+signed int
+gtoi(
+       giant                   x
+)
+/* Calculate the value of an int-sized giant NOT exceeding 31 bits. */
+{
+       register int    size = abs(x->sign);
+       register int    sign = (x->sign < 0) ? -1 : 1;
+
+       switch(size)
+       {
+               case 0:
+                       break;
+               case 1:
+                       return sign * x->n[0];
+               case 2:
+                       return sign * (x->n[0]+((x->n[1])<<16));
+               default:
+                       fprintf(stderr,"Giant too large for gtoi\n");
+                       break;
+       }
+       return 0;
+}
+
+
+int
+gsign(
+       giant   g
+)
+/* Returns the sign of g. */
+{
+       if (isZero(g))
+               return(0);
+       if (g->sign >0)
+               return(1);
+       return(-1);
+}
+
+
+#if 0
+int gcompg(a,b)
+/* Returns -1,0,1 if a<b, a=b, a>b, respectively. */
+       giant a,b;
+{
+       int size = abs(a->sign);
+
+       if(isZero(a)) size = 0;
+       if (size == 0) {
+               if (isZero(b)) return(0); else return(-gsign(b));
+       }
+
+       if (b->sign == 0) return(gsign(a));
+       if (gsign(a)!=gsign(b)) return(gsign(a));
+       if (size>abs(b->sign)) return(gsign(a));
+       if (size<abs(b->sign)) return(-gsign(a));
+
+       do {
+               --size;
+               if (a->n[size] > b->n[size]) return(gsign(a));
+               if (a->n[size] < b->n[size]) return(-gsign(a));
+        } while(size>0);
+        
+       return(0);
+}
+#else
+
+int
+gcompg(
+       giant           a,
+       giant           b
+)
+/* Returns -1,0,1 if a<b, a=b, a>b, respectively. */
+{
+       int             sa = a->sign, j, sb = b->sign, va, vb, sgn;
+
+       if(sa > sb)
+               return(1);
+       if(sa < sb)
+               return(-1);
+       if(sa < 0)
+       {
+               sa = -sa; /* Take absolute value of sa. */
+               sgn = -1;
+       }
+       else
+       {
+               sgn = 1;
+       }
+       for(j = sa-1; j >= 0; j--)
+       {
+               va = a->n[j];
+               vb = b->n[j];
+               if (va > vb)
+                       return(sgn);
+               if (va < vb)
+                       return(-sgn);
+       }
+       return(0);
+}
+#endif
+
+
+void
+setmulmode(
+       int     mode
+)
+{
+       mulmode = mode;
+}
+
+
+/**************************************************************
+ *
+ * Private I/O Functions
+ *
+ **************************************************************/
+
+
+int
+radixdiv(
+       int                             base,
+       int                             divisor,
+       giant                   thegiant
+)
+/* Divides giant of arbitrary base by divisor.
+ * Returns remainder. Used by idivg and gread. */
+{
+       int                             first = TR;
+       int                             finalsize = abs(thegiant->sign);
+       int                             j = finalsize-1;
+       unsigned short  *digitpointer=&thegiant->n[j];
+       unsigned int    num,rem=0;
+
+       if (divisor == 0)
+       {
+               error = DIVIDEBYZERO;
+               exit(error);
+       }
+
+       while (j>=0)
+       {
+               num=rem*base + *digitpointer;
+               *digitpointer = (unsigned short)(num/divisor);
+               if (first)
+               {
+                       if (*digitpointer == 0)
+                               --finalsize;
+                       else
+                               first = FA;
+               }
+               rem = num % divisor;
+               --digitpointer;
+               --j;
+       }
+
+       if ((divisor<0) ^ (thegiant->sign<0))
+               finalsize=-finalsize;
+       thegiant->sign=finalsize;
+       return(rem);
+}
+
+
+void
+columnwrite(
+       FILE    *filepointer,
+       short   *column,
+       char    *format,
+       short   arg,
+       int     newlines
+)
+/* Used by gwriteln. */
+{
+       char    outstring[10];
+       short   i;
+
+       sprintf(outstring,format,arg);
+       for (i=0; outstring[i]!=0; ++i)
+       {
+               if (newlines)
+               {
+                       if (*column >= COLUMNWIDTH)
+                       {
+                               fputs("\\\n",filepointer);
+                               *column = 0;
+                       }
+               }
+               fputc(outstring[i],filepointer);
+               ++*column;
+       }
+}
+
+
+void
+gwrite(
+       giant                   thegiant,
+       FILE                    *filepointer,
+       int                             newlines
+)
+/* Outputs thegiant to filepointer. Output is terminated by a newline. */
+{
+       short                   column;
+       unsigned int    i;
+       unsigned short  *numpointer;
+       giant   garbagegiant, basetengrand;
+
+       basetengrand = popg();
+    garbagegiant = popg();
+
+       if (isZero(thegiant))
+       {
+               fputs("0",filepointer);
+       }
+       else
+       {
+               numpointer = basetengrand->n;
+               gtog(thegiant,garbagegiant);
+
+               basetengrand->sign = 0;
+               do
+               {
+                       *numpointer = (unsigned short)idivg(10000,garbagegiant);
+                       ++numpointer;
+                       if (++basetengrand->sign >= current_max_size)
+                       {
+                               error = OVFLOW;
+                               exit(error);
+                       }
+               }       while (!isZero(garbagegiant));
+
+               if (!error)
+               {
+                       i = basetengrand->sign-1;
+                       column = 0;
+                       if (thegiant->sign<0 && basetengrand->n[i]!=0)
+                               columnwrite(filepointer,&column,"-",0, newlines);
+                       columnwrite(filepointer,&column,"%d",basetengrand->n[i],newlines);
+                       for( ; i>0; )
+                       {
+                               --i;
+                               columnwrite(filepointer,&column,"%04d",basetengrand->n[i],newlines);
+                       }
+               }
+       }
+   pushg(2);
+}
+
+
+void
+gwriteln(
+       giant           theg,
+       FILE            *filepointer
+)
+{
+       gwrite(theg, filepointer, 1);
+       fputc('\n',filepointer);
+}
+
+
+void
+gread(
+       giant                   theg,
+       FILE                    *filepointer
+)
+{
+       char                    currentchar;
+       int                     isneg,size,backslash=FA,numdigits=0;
+       unsigned short  *numpointer;
+       giant           basetenthousand;
+       static char             *inbuf = NULL;
+
+    basetenthousand = popg();
+       if (inbuf == NULL)
+               inbuf = (char*)malloc(MAX_DIGITS);
+
+       currentchar = (char)fgetc(filepointer);
+       if (currentchar=='-')
+       {
+               isneg=TR;
+       }
+       else
+       {
+               isneg=FA;
+               if (currentchar!='+')
+                       ungetc(currentchar,filepointer);
+       }
+
+       do
+       {
+               currentchar = (char)fgetc(filepointer);
+               if ((currentchar>='0') && (currentchar<='9'))
+               {
+                       inbuf[numdigits]=currentchar;
+                       if(++numdigits==MAX_DIGITS)
+                               break;
+                       backslash=FA;
+               }
+               else
+               {
+                       if (currentchar=='\\')
+                               backslash=TR;
+               }
+       } while(((currentchar!=' ') && (currentchar!='\n') &&
+                               (currentchar!='\t')) || (backslash) );
+       if (numdigits)
+       {
+               size = 0;
+               do
+               {
+                       inbuf[numdigits] = 0;
+                       numdigits-=4;
+                       if (numdigits<0)
+                               numdigits=0;
+                       basetenthousand->n[size] = (unsigned short)strtol(&inbuf[numdigits],NULL,10);
+                       ++size;
+               } while (numdigits>0);
+
+               basetenthousand->sign = size;
+               theg->sign = 0;
+               numpointer = theg->n;
+               do
+               {
+                       *numpointer = (unsigned short)
+                       radixdiv(10000,1<<(8*sizeof(short)),basetenthousand);
+                       ++numpointer;
+                       if (++theg->sign >= current_max_size)
+                       {
+                               error = OVFLOW;
+                               exit(error);
+                       }
+               } while (!isZero(basetenthousand));
+
+               if (isneg)
+                       theg->sign = -theg->sign;
+       }
+    pushg(1);
+}
+
+
+
+/**************************************************************
+ *
+ * Private Math Functions
+ *
+ **************************************************************/
+
+
+void
+negg(
+       giant   g
+)
+/* g becomes -g. */
+{
+       g->sign = -g->sign;
+}
+
+
+void
+absg(
+       giant g
+)
+{
+       /* g becomes the absolute value of g. */
+       if (g->sign <0)
+               g->sign=-g->sign;
+}
+
+
+void
+iaddg(
+       int             i,
+       giant   g
+)
+/* Giant g becomes g + (int)i. */
+{
+       int     w,j=0,carry = 0, size = abs(g->sign);
+    giant      tmp;
+
+       if (isZero(g))
+       {
+               itog(i,g);
+       }
+       else if(g->sign < 0) {
+               tmp = popg();
+               itog(i, tmp);
+           addg(tmp, g);
+               pushg(1);
+               return;
+    } 
+       else
+       {
+               w = g->n[0]+i;
+               do
+               {
+                       g->n[j] = (unsigned short) (w & 65535L);
+                       carry = w >> 16;
+                       w = g->n[++j]+carry;
+               } while ((carry!=0) && (j<size));
+       }
+       if (carry)
+       {
+               ++g->sign;
+               g->n[size] = (unsigned short)carry;
+       }
+}
+
+
+/* New subtract routines.
+       The basic subtract "subg()" uses the following logic table:
+
+     a      b          if(b > a)           if(a > b)
+     
+     +      +          b := b - a          b := -(a - b)
+     -      +          b := b + (-a)       N.A.
+     +      -          N.A.                b := -((-b) + a)
+         -      -          b := (-a) - (-b)    b := -((-b) - (-a))
+
+   The basic addition routine "addg()" uses:
+
+         a      b          if(b > -a)          if(-a > b)
+     
+     +      +          b := b + a          N.A. 
+     -      +          b := b - (-a)       b := -((-a) - b)
+     +      -          b := a - (-b)       b := -((-b) - a)
+     -      -          N.A.                b := -((-b) + (-a))
+
+   In this way, internal routines "normal_addg," "normal_subg," 
+       and "reverse_subg;" each of which assumes non-negative
+       operands and a non-negative result, are now used for greater
+       efficiency.
+ */
+
+void
+normal_addg(
+       giant                   a,
+       giant                   b
+)
+/* b := a + b, both a,b assumed non-negative. */
+{
+       int                     carry = 0;
+       int                     asize = a->sign, bsize = b->sign;
+       long                    k;
+       int                             j=0;
+       unsigned short  *aptr = a->n, *bptr = b->n;
+
+       if (asize < bsize)
+       {
+               for (j=0; j<asize; j++)
+               {
+                       k = *aptr++ + *bptr + carry;
+                       carry = 0;
+                       if (k >= 65536L)
+                       {
+                               k -= 65536L;
+                               ++carry;
+                       }
+                       *bptr++ = (unsigned short)k;
+               }
+               for (j=asize; j<bsize; j++)
+               {
+                       k = *bptr + carry;
+                       carry = 0;
+                       if (k >= 65536L)
+                       {
+                               k -= 65536L;
+                               ++carry;
+                       }
+                       *bptr++ = (unsigned short)k;
+               }
+       }
+       else
+       {
+               for (j=0; j<bsize; j++)
+               {
+                       k = *aptr++ + *bptr + carry;
+                       carry = 0;
+                       if (k >= 65536L)
+                       {
+                               k -= 65536L;
+                               ++carry;
+                       }
+                       *bptr++ = (unsigned short)k;
+               }
+               for (j=bsize; j<asize; j++)
+               {
+                       k = *aptr++ + carry;
+                       carry = 0;
+                       if (k >= 65536L)
+                       {
+                               k -= 65536L;
+                               ++carry;
+                       }
+                       *bptr++ = (unsigned short)k;
+               }
+       }
+       if (carry)
+       {
+               *bptr = 1; ++j;
+       }
+       b->sign = j;
+}
+
+
+void
+normal_subg(
+       giant                   a,
+       giant                   b
+)
+/* b := b - a; requires b, a non-negative and b >= a. */
+{
+       int                     j, size = b->sign;
+       unsigned int    k;
+
+       if (a->sign == 0)
+               return;
+
+       k = 0;
+       for (j=0; j<a->sign; ++j)
+       {
+               k += 0xffff - a->n[j] + b->n[j];
+               b->n[j] = (unsigned short)(k & 0xffff);
+               k >>= 16;
+       }
+       for (j=a->sign; j<size; ++j)
+       {
+               k += 0xffff + b->n[j];
+               b->n[j] = (unsigned short)(k & 0xffff);
+               k >>= 16;
+       }
+
+       if (b->n[0] == 0xffff)
+               iaddg(1,b);
+       else
+               ++b->n[0];
+
+       while ((size-- > 0) && (b->n[size]==0));
+
+       b->sign = (b->n[size]==0) ? 0 : size+1;
+}
+
+
+void
+reverse_subg(
+       giant                   a,
+       giant                   b
+)
+/* b := a - b; requires b, a non-negative and a >= b. */
+{
+       int                     j, size = a->sign;
+       unsigned int    k;
+
+       k = 0;
+       for (j=0; j<b->sign; ++j)
+       {
+               k += 0xffff - b->n[j] + a->n[j];
+               b->n[j] = (unsigned short)(k & 0xffff);
+               k >>= 16;
+       }
+       for (j=b->sign; j<size; ++j)
+       {
+               k += 0xffff + a->n[j];
+               b->n[j] = (unsigned short)(k & 0xffff);
+               k >>= 16;
+       }
+
+       b->sign = size; /* REC, 21 Apr 1996. */
+       if (b->n[0] == 0xffff)
+               iaddg(1,b);
+       else
+               ++b->n[0];
+
+       while (!b->n[--size]);
+
+       b->sign = size+1;
+}
+
+void
+addg(
+       giant           a,
+       giant           b
+)
+/* b := b + a, any signs any result. */
+{
+       int             asgn = a->sign, bsgn = b->sign;
+
+       if (asgn == 0)
+               return;
+       if (bsgn == 0)
+       {
+               gtog(a,b);
+               return;
+       }
+       if ((asgn < 0) == (bsgn < 0))
+       {
+               if (bsgn > 0)
+               {
+                       normal_addg(a,b);
+                       return;
+               }
+               absg(b);
+               if(a != b) absg(a);
+               normal_addg(a,b);
+               negg(b);
+               if(a != b) negg(a);
+               return;
+       }
+       if(bsgn > 0)
+       {
+               negg(a);
+               if (gcompg(b,a) >= 0)
+               {
+                       normal_subg(a,b);
+                       negg(a);
+                       return;
+               }
+               reverse_subg(a,b);
+               negg(a);
+               negg(b);
+               return;
+       }
+       negg(b);
+       if(gcompg(b,a) < 0)
+       {
+               reverse_subg(a,b);
+               return;
+       }
+       normal_subg(a,b);
+       negg(b);
+       return;
+}
+
+void
+subg(
+       giant           a,
+       giant           b
+)
+/* b := b - a, any signs, any result. */
+{
+       int             asgn = a->sign, bsgn = b->sign;
+
+       if (asgn == 0)
+               return;
+       if (bsgn == 0)
+       {
+               gtog(a,b);
+               negg(b);
+               return;
+       }
+       if ((asgn < 0) != (bsgn < 0))
+       {
+               if (bsgn > 0)
+               {
+                       negg(a);
+                       normal_addg(a,b);
+                       negg(a);
+                       return;
+               }
+               negg(b);
+               normal_addg(a,b);
+               negg(b);
+               return;
+       }
+       if (bsgn > 0)
+       {
+               if (gcompg(b,a) >= 0)
+               {
+                       normal_subg(a,b);
+                       return;
+               }
+               reverse_subg(a,b);
+               negg(b);
+               return;
+       }
+       negg(a);
+       negg(b);
+       if (gcompg(b,a) >= 0)
+       {
+               normal_subg(a,b);
+               negg(a);
+               negg(b);
+               return;
+       }
+       reverse_subg(a,b);
+       negg(a);
+       return;
+}
+
+
+int
+numtrailzeros(
+       giant                                   g
+)
+/* Returns the number of trailing zero bits in g. */
+{
+       register int                    numshorts = abs(g->sign), j, bcount=0;
+       register unsigned short gshort, c;
+
+       for (j=0;j<numshorts;j++)
+       {
+               gshort = g->n[j];
+               c = 1;
+               for (bcount=0;bcount<16; bcount++)
+               {
+                       if (c & gshort)
+                               break;
+                       c <<= 1;
+               }
+               if (bcount<16)
+                       break;
+       }
+       return(bcount + 16*j);
+}
+
+
+void
+bdivg(
+       giant           v,
+       giant           u
+)
+/* u becomes greatest power of two not exceeding u/v. */
+{
+       int             diff = bitlen(u) - bitlen(v);
+       giant           scratch7;
+
+       if (diff<0)
+       {
+               itog(0,u);
+               return;
+       }
+       scratch7 = popg();
+       gtog(v, scratch7);
+       gshiftleft(diff,scratch7);
+       if (gcompg(u,scratch7) < 0)
+               diff--;
+       if (diff<0)
+       {
+               itog(0,u);
+               pushg(1);
+               return;
+       }
+       itog(1,u);
+       gshiftleft(diff,u);
+
+       pushg(1);
+}
+
+
+int
+binvaux(
+       giant   p,
+       giant   x
+)
+/* Binary inverse method. Returns zero if no inverse exists,
+ * in which case x becomes GCD(x,p). */
+{
+       
+       giant scratch7, u0, u1, v0, v1;
+
+       if (isone(x))
+               return(1);
+       u0 = popg();
+    u1 = popg();
+    v0 = popg();
+    v1 = popg();
+       itog(1, v0);
+       gtog(x, v1);
+       itog(0,x);
+       gtog(p, u1);
+
+       scratch7 = popg();
+       while(!isZero(v1))
+       {
+               gtog(u1, u0);
+               bdivg(v1, u0);
+               gtog(x, scratch7);
+               gtog(v0, x);
+               mulg(u0, v0);
+               subg(v0,scratch7);
+               gtog(scratch7, v0);
+
+               gtog(u1, scratch7);
+               gtog(v1, u1);
+               mulg(u0, v1);
+               subg(v1,scratch7);
+               gtog(scratch7, v1);
+       }
+       
+       pushg(1);
+
+       if (!isone(u1))
+       {
+               gtog(u1,x);
+               if(x->sign<0) addg(p, x);
+               pushg(4);
+           return(0);
+       }
+       if(x->sign<0)
+               addg(p, x);
+    pushg(4);
+       return(1);
+}
+
+
+int
+binvg(
+       giant   p,
+       giant   x
+)
+{
+       modg(p, x);
+       return(binvaux(p,x));
+}
+
+
+int
+invg(
+       giant   p,
+       giant   x
+)
+{
+       modg(p, x);
+       return(invaux(p,x));
+}
+
+int
+invaux(
+       giant   p,
+       giant   x
+)
+/* Returns zero if no inverse exists, in which case x becomes
+ * GCD(x,p). */
+{
+
+       giant scratch7, u0, u1, v0, v1;
+       
+       if ((x->sign==1)&&(x->n[0]==1))
+               return(1);
+       
+    u0 = popg();
+    u1 = popg();
+    v0 = popg();
+    v1 = popg();
+    
+       itog(1,u1);
+       gtog(p, v0);
+       gtog(x, v1);
+       itog(0,x);
+
+       scratch7 = popg();
+       while (!isZero(v1))
+       {
+               gtog(v0, u0);
+               divg(v1, u0);
+               gtog(u0, scratch7);
+               mulg(v1, scratch7);
+               subg(v0, scratch7);
+               negg(scratch7);
+               gtog(v1, v0);
+               gtog(scratch7, v1);
+               gtog(u1, scratch7);
+               mulg(u0, scratch7);
+               subg(x, scratch7);
+               negg(scratch7);
+               gtog(u1,x);
+               gtog(scratch7, u1);
+       }
+       pushg(1);
+       
+       if ((v0->sign!=1)||(v0->n[0]!=1))
+       {
+               gtog(v0,x);
+        pushg(4);
+               return(0);
+       }
+       if(x->sign<0)
+               addg(p, x);
+       pushg(4);
+       return(1);
+}
+
+
+int
+mersenneinvg(
+       int             q,
+       giant   x
+)
+{
+       int             k;
+    giant u0, u1, v1;
+
+    u0 = popg();
+    u1 = popg();
+    v1 = popg();
+
+       itog(1, u0);
+       itog(0, u1);
+       itog(1, v1);
+       gshiftleft(q, v1);
+       subg(u0, v1);
+       mersennemod(q, x);
+       while (1)
+       {
+               k = -1;
+               if (isZero(x))
+               {
+                       gtog(v1, x);
+            pushg(3);
+                       return(0);
+               }
+               while (bitval(x, ++k) == 0);
+
+               gshiftright(k, x);
+               if (k)
+               {
+                       gshiftleft(q-k, u0);
+                       mersennemod(q, u0);
+               }
+               if (isone(x))
+                       break;
+               addg(u1, u0);
+               mersennemod(q, u0);
+               negg(u1);
+               addg(u0, u1);
+               mersennemod(q, u1);
+               if (!gcompg(v1,x)) {
+                       pushg(3);
+                       return(0);
+        }
+               addg(v1, x);
+               negg(v1);
+               addg(x, v1);
+               mersennemod(q, v1);
+       }
+       gtog(u0, x);
+       mersennemod(q,x);
+    pushg(3);
+       return(1);
+}
+
+
+void
+cgcdg(
+       giant   a,
+       giant   v
+)
+/* Classical Euclid GCD. v becomes gcd(a, v). */
+{
+       giant   u, r;
+
+       v->sign = abs(v->sign);
+       if (isZero(a))
+               return;
+       
+       u = popg();
+       r = popg();
+       gtog(a, u);
+       u->sign = abs(u->sign);
+       while (!isZero(v))
+       {
+               gtog(u, r);
+               modg(v, r);
+               gtog(v, u);
+               gtog(r, v);
+       }
+       gtog(u,v);
+       pushg(2);
+}
+
+
+void
+gcdg(
+       giant           x,
+       giant           y
+)
+{
+       if (bitlen(y)<= GCDLIMIT)
+               bgcdg(x,y);
+       else
+               ggcd(x,y);
+}
+
+void
+bgcdg(
+       giant   a,
+       giant   b
+)
+/* Binary form of the gcd. b becomes the gcd of a,b. */
+{
+       int             k = isZero(b), m = isZero(a);
+       giant   u, v, t;
+
+       if (k || m)
+       {
+               if (m)
+               {
+                       if (k)
+                               itog(1,b);
+                       return;
+               }
+               if (k)
+               {
+                       if (m)
+                               itog(1,b);
+                       else
+                               gtog(a,b);
+                       return;
+               }
+       }
+
+       u = popg();
+       v = popg();
+       t = popg();
+
+       /* Now neither a nor b is zero. */
+       gtog(a, u);
+       u->sign = abs(a->sign);
+       gtog(b, v);
+       v->sign = abs(b->sign);
+       k = numtrailzeros(u);
+       m = numtrailzeros(v);
+       if (k>m)
+               k = m;
+       gshiftright(k,u);
+       gshiftright(k,v);
+       if (u->n[0] & 1)
+       {
+               gtog(v, t);
+               negg(t);
+       }
+       else
+       {
+               gtog(u,t);
+       }
+
+       while (!isZero(t))
+       {
+               m = numtrailzeros(t);
+               gshiftright(m, t);
+               if (t->sign > 0)
+               {
+                       gtog(t, u);
+                       subg(v,t);
+               }
+               else
+               {
+                       gtog(t, v);
+                       negg(v);
+                       addg(u,t);
+               }
+       }
+       gtog(u,b);
+       gshiftleft(k, b);
+       pushg(3);
+}
+
+
+void
+powerg(
+       int             m,
+       int             n,
+       giant   g
+)
+/* g becomes m^n, NO mod performed. */
+{
+       giant scratch2 = popg();
+       
+       itog(1, g);
+       itog(m, scratch2);
+       while (n)
+       {
+               if (n & 1)
+                       mulg(scratch2, g);
+               n >>= 1;
+               if (n)
+                       squareg(scratch2);
+       }
+       pushg(1);
+}
+
+#if 0
+void
+jtest(
+       giant   n
+)
+{
+       if (n->sign)
+       {
+               if (n->n[n->sign-1] == 0)
+               {
+                       fprintf(stderr,"%d %d tilt",n->sign, (int)(n->n[n->sign-1]));
+                       exit(7);
+               }
+       }
+}
+#endif
+
+
+void
+make_recip(
+       giant   d, 
+       giant   r
+)
+/* r becomes the steady-state reciprocal
+ * 2^(2b)/d, where b = bit-length of d-1. */
+{
+       int             b;
+       giant   tmp, tmp2;
+
+       if (isZero(d) || (d->sign < 0))
+       {
+               exit(SIGN);
+       }
+       tmp = popg();
+       tmp2 = popg();
+       itog(1, r); 
+       subg(r, d); 
+       b = bitlen(d); 
+       addg(r, d);
+       gshiftleft(b, r); 
+       gtog(r, tmp2);
+       while (1) 
+       {
+               gtog(r, tmp);
+               squareg(tmp);
+               gshiftright(b, tmp);
+               mulg(d, tmp);
+               gshiftright(b, tmp);
+               addg(r, r); 
+               subg(tmp, r);
+               if (gcompg(r, tmp2) <= 0) 
+                       break;
+               gtog(r, tmp2);
+       }
+       itog(1, tmp);
+       gshiftleft(2*b, tmp);
+       gtog(r, tmp2); 
+       mulg(d, tmp2);
+       subg(tmp2, tmp);
+       itog(1, tmp2);
+       while (tmp->sign < 0) 
+       {
+               subg(tmp2, r);
+               addg(d, tmp);
+       }
+       pushg(2);
+}
+
+void
+divg_via_recip(
+       giant   d, 
+       giant   r, 
+       giant   n
+)
+/* n := n/d, where r is the precalculated
+ * steady-state reciprocal of d. */
+{
+       int     s = 2*(bitlen(r)-1), sign = gsign(n);
+       giant   tmp, tmp2;
+
+       if (isZero(d) || (d->sign < 0))
+       {
+               exit(SIGN);
+       }
+       
+       tmp = popg();
+       tmp2 = popg();
+       
+       n->sign = abs(n->sign);
+       itog(0, tmp2);
+       while (1) 
+       {
+               gtog(n, tmp);   
+               mulg(r, tmp);
+               gshiftright(s, tmp);
+               addg(tmp, tmp2);
+               mulg(d, tmp);
+               subg(tmp, n);
+               if (gcompg(n,d) >= 0)
+               {
+                       subg(d,n);
+                       iaddg(1, tmp2);
+               }
+               if (gcompg(n,d) < 0) 
+                       break;
+       }
+       gtog(tmp2, n);
+       n->sign *= sign;
+       pushg(2);
+}
+
+#if 1
+void
+modg_via_recip(
+       giant   d, 
+       giant   r,
+       giant   n
+)
+/* This is the fastest mod of the present collection.
+ * n := n % d, where r is the precalculated
+ * steady-state reciprocal of d. */
+
+{
+       int             s = (bitlen(r)-1), sign = n->sign;
+       giant   tmp, tmp2;
+
+       if (isZero(d) || (d->sign < 0))
+       {
+               exit(SIGN);
+       }
+       
+       tmp = popg();
+       tmp2 = popg();
+       
+       n->sign = abs(n->sign);
+       while (1) 
+       {
+               gtog(n, tmp); gshiftright(s-1, tmp);    
+               mulg(r, tmp);
+               gshiftright(s+1, tmp);
+               mulg(d, tmp);
+               subg(tmp, n);
+               if (gcompg(n,d) >= 0) 
+                       subg(d,n);
+               if (gcompg(n,d) < 0) 
+                       break;
+       }
+       if (sign >= 0)
+               goto done;
+       if (isZero(n))
+               goto done; 
+       negg(n);
+       addg(d,n);
+done:
+       pushg(2);
+       return;
+}
+
+#else
+void
+modg_via_recip(
+       giant   d, 
+       giant   r,
+       giant   n
+)
+{
+       int             s = 2*(bitlen(r)-1), sign = n->sign;
+       giant   tmp, tmp2;
+
+       if (isZero(d) || (d->sign < 0))
+       {
+               exit(SIGN);
+       }
+
+       tmp = popg();
+       tmp2 = popg()
+
+       n->sign = abs(n->sign);
+       while (1) 
+       {
+               gtog(n, tmp);   
+               mulg(r, tmp);
+               gshiftright(s, tmp);
+               mulg(d, tmp);
+               subg(tmp, n);
+               if (gcompg(n,d) >= 0) 
+                       subg(d,n);
+               if (gcompg(n,d) < 0) 
+                       break;
+       }
+       if (sign >= 0) 
+               goto done;
+       if (isZero(n)) 
+               goto done;
+       negg(n);
+       addg(d,n);
+done:
+       pushg(2);
+       return;
+}
+#endif
+
+void
+modg(
+       giant   d,
+       giant   n
+)
+/* n becomes n%d. n is arbitrary, but the denominator d must be positive! */
+{
+       if (cur_recip == NULL) {
+               cur_recip = newgiant(current_max_size);
+               cur_den = newgiant(current_max_size);
+               gtog(d, cur_den);
+               make_recip(d, cur_recip);
+       } else if (gcompg(d, cur_den)) {
+               gtog(d, cur_den);
+               make_recip(d, cur_recip);
+       }
+       modg_via_recip(d, cur_recip, n);
+}
+
+
+#if 0
+int
+feemulmod (
+       giant a,
+       giant b,
+       int q,
+       int k
+)
+/* a becomes (a*b) (mod 2^q-k) where q % 16 == 0 and k is "small" (0 < k < 65535).
+ * Returns 0 if unsuccessful, otherwise 1. */
+{
+       giant                   carry, kk, scratch;
+       int                             i, j;
+       int                     asize = abs(a->sign), bsize = abs(b->sign);
+       unsigned short  *aptr,*bptr,*destptr;
+       unsigned int    words;
+       int                             kpower, curk;
+
+       if ((q % 16) || (k <= 0) || (k >= 65535)) {
+               return (0);
+       }
+       
+       carry = popg();
+       kk = popg();
+       scratch = popg();
+       
+       for (i=0; i<asize+bsize; i++) scratch->n[i]=0;
+
+       words = q >> 4;
+       
+       bptr = b->n;
+       for (i = 0; i < bsize; i++) {
+               mult = *bptr++;
+               if (mult) {
+                       kpower = i/words;
+                       
+                       if (kpower >= 1) itog (kpower,kk);
+                       for (j = 1; j < kpower; k++) smulg(kpower,kk);
+                       
+                       itog(0,carry);
+                       
+                       aptr = a->n;
+                       for (j = 0; j < bsize; b++) {
+                               gtog(kk,scratch);
+                               smulg(*aptr++,scratch);
+                               smulg(mult,scratch);
+                               iaddg(*destptr,scratch);
+                               addg(carry,scratch);
+                               *destptr++ = scratch->n[0];
+                               gshiftright(scratch,16);
+                               gtog(scratch,carry);
+                               if (destptr - scratch->n >= words) {
+                                       smulg(k, carry);
+                                       smulg(k, kk);
+                                       destptr -= words;
+                               }
+                       }
+               }
+       }
+
+       int                     i,j,m;
+       unsigned int    prod,carry=0;
+       int                     asize = abs(a->sign), bsize = abs(b->sign);
+       unsigned short  *aptr,*bptr,*destptr;
+       unsigned short  mult;
+       int                             words, excess;
+       int                             temp;
+       giant                   scratch = popg(), scratch2 = popg(), scratch3 = popg();
+       short                   *carryptr = scratch->n;
+       int                             kpower,kpowerlimit, curk;
+
+       if ((q % 16) || (k <= 0) || (k >= 65535)) {
+               return (0);
+       }
+
+       scratch
+
+       for (i=0; i<asize+bsize; i++) scratch->n[i]=0;
+
+       words = q >> 4;
+       
+       bptr = b->n;
+       for (i=0; i<bsize; ++i)
+       {
+               mult = *bptr++;
+               if (mult)
+               {
+                       kpower = i/words;
+                       aptr = a->n;
+                       destptr = scratch->n + i;
+                       
+                       if (kpower == 0) {
+                               carry = 0;
+                       } else if (kpower <= kpowerlimit) {
+                               carry = 0;
+                               curk = k;
+                               for (j = 1; j < kpower; j++) curk *= k;
+                       } else {
+                               itog (k,scratch);
+                               for (j = 1; j < kpower; j++) smulg(k,scratch);
+                               itog(0,scratch2);
+                       }
+                       
+                       for (j = 0; j < asize; j++) {
+                               if(kpower == 0) {
+                                       prod = *aptr++ * mult + *destptr + carry;
+                                       *destptr++ = (unsigned short)(prod & 0xFFFF);
+                                       carry = prod >> 16;                                     
+                               } else if (kpower < kpowerlimit) {
+                                       prod = kcur * *aptr++;
+                                       temp = prod >> 16;
+                                       prod &= 0xFFFF;
+                                       temp *= mult;
+                                       prod *= mult;
+                                       temp += prod >> 16;
+                                       prod &= 0xFFFF;
+                                       prod += *destptr + carry;
+                                       carry = prod >> 16 + temp;
+                                       *destptr++ = (unsigned short)(prod & 0xFFFF);                   
+                               } else {
+                                       gtog(scratch,scratch3);
+                                       smulg(*aptr++,scratch3);
+                                       smulg(mult,scratch3);
+                                       iaddg(*destptr,scratch3);
+                                       addg(scratch3,scratch2);
+                                       *destptr++ = scratch2->n[0];
+                                       memmove(scratch2->n,scratch2->n+1,2*(scratch2->size-1));
+                                       scratch2->sign--;
+                               }                               
+                               if (destptr - scratch->n > words) {
+                                       if (kpower == 0) {
+                                               curk = k;
+                                               carry *= k;
+                                       } else if (kpower < kpowerlimit) {
+                                               curk *= k;
+                                               carry *= curk;
+                                       } else if (kpower == kpowerlimit) {
+                                               itog (k,scratch);
+                                               for (j = 1; j < kpower; j++) smulg(k,scratch);
+                                               itog(carry,scratch2);
+                                               smulg(k,scratch2);
+                                       } else {
+                                               smulg(k,scratch);
+                                               smulg(k,scratch2);
+                                       }
+                                       kpower++;
+                                       destptr -= words;
+                               }
+                       }
+                       
+                       /* Next, deal with the carry term. Needs to be improved to
+                       handle overflow carry cases. */
+                       if (kpower <= kpowerlimit) {
+                               iaddg(carry,scratch);
+                       } else {
+                               addg(scratch2,scratch);
+                       }
+                       while(scratch->sign > q)
+                               gtog(scratch,scratch2)
+               }
+       }
+       scratch->sign = destptr - scratch->n;
+       if (!carry)
+               --(scratch->sign);
+       scratch->sign *= gsign(a)*gsign(b);
+       gtog(scratch,a);
+       pushg(3);
+       return (1);
+}
+#endif
+
+int
+idivg(
+       int             divisor,
+       giant   theg
+)
+{
+       /* theg becomes theg/divisor. Returns remainder. */
+       int     n;
+       int     base = 1<<(8*sizeof(short));
+
+       n = radixdiv(base,divisor,theg);
+       return(n);
+}
+
+
+void
+divg(
+       giant   d,
+       giant   n
+)
+/* n becomes n/d. n is arbitrary, but the denominator d must be positive! */
+{
+       if (cur_recip == NULL) {
+               cur_recip = newgiant(current_max_size);
+               cur_den = newgiant(current_max_size);
+               gtog(d, cur_den);
+               make_recip(d, cur_recip);
+       } else if (gcompg(d, cur_den)) {
+               gtog(d, cur_den);
+               make_recip(d, cur_recip);
+       }
+       divg_via_recip(d, cur_recip, n);
+}
+
+
+void
+powermod(
+       giant           x,
+       int             n,
+       giant           g
+)
+/* x becomes x^n (mod g). */
+{
+       giant scratch2 = popg();
+       gtog(x, scratch2);
+       itog(1, x);
+       while (n)
+       {
+               if (n & 1)
+               {
+                       mulg(scratch2, x);
+                       modg(g, x);
+               }
+               n >>= 1;
+               if (n)
+               {
+                       squareg(scratch2);
+                       modg(g, scratch2);
+               }
+       }
+       pushg(1);
+}
+
+
+void
+powermodg(
+       giant           x,
+       giant           n,
+       giant           g
+)
+/* x becomes x^n (mod g). */
+{
+       int             len, pos;
+       giant           scratch2 = popg();
+
+       gtog(x, scratch2);
+       itog(1, x);
+       len = bitlen(n);
+       pos = 0;
+       while (1)
+       {
+               if (bitval(n, pos++))
+               {
+                       mulg(scratch2, x);
+                       modg(g, x);
+               }
+               if (pos>=len)
+                       break;
+               squareg(scratch2);
+               modg(g, scratch2);
+       }
+       pushg(1);
+}
+
+
+void
+fermatpowermod(
+       giant   x,
+       int             n,
+       int             q
+)
+/* x becomes x^n (mod 2^q+1). */
+{
+       giant scratch2 = popg();
+       
+       gtog(x, scratch2);
+       itog(1, x);
+       while (n)
+       {
+               if (n & 1)
+               {
+                       mulg(scratch2, x);
+                       fermatmod(q, x);
+               }
+               n >>= 1;
+               if (n)
+               {
+                       squareg(scratch2);
+                       fermatmod(q, scratch2);
+               }
+       }
+       pushg(1);
+}
+
+
+void
+fermatpowermodg(
+       giant   x,
+       giant   n,
+       int             q
+)
+/* x becomes x^n (mod 2^q+1). */
+{
+       int             len, pos;
+       giant   scratch2 = popg();
+
+       gtog(x, scratch2);
+       itog(1, x);
+       len = bitlen(n);
+       pos = 0;
+       while (1)
+       {
+               if (bitval(n, pos++))
+               {
+                       mulg(scratch2, x);
+                       fermatmod(q, x);
+               }
+               if (pos>=len)
+                       break;
+               squareg(scratch2);
+               fermatmod(q, scratch2);
+       }
+       pushg(1);
+}
+
+
+void
+mersennepowermod(
+       giant   x,
+       int             n,
+       int             q
+)
+/* x becomes x^n (mod 2^q-1). */
+{
+       giant scratch2 = popg();
+
+       gtog(x, scratch2);
+       itog(1, x);
+       while (n)
+       {
+               if (n & 1)
+               {
+                       mulg(scratch2, x);
+                       mersennemod(q, x);
+               }
+               n >>= 1;
+               if (n)
+               {
+                       squareg(scratch2);
+                       mersennemod(q, scratch2);
+               }
+       }
+       pushg(1);
+}
+
+
+void
+mersennepowermodg(
+       giant   x,
+       giant   n,
+       int             q
+)
+/* x becomes x^n (mod 2^q-1). */
+{
+       int             len, pos;
+       giant   scratch2 = popg();
+
+       gtog(x, scratch2);
+       itog(1, x);
+       len = bitlen(n);
+       pos = 0;
+       while (1)
+       {
+               if (bitval(n, pos++))
+               {
+                       mulg(scratch2, x);
+                       mersennemod(q, x);
+               }
+               if (pos>=len)
+                       break;
+               squareg(scratch2);
+               mersennemod(q, scratch2);
+       }
+       pushg(1);
+}
+
+
+void
+gshiftleft(
+       int                             bits,
+       giant                   g
+)
+/* shift g left bits bits. Equivalent to g = g*2^bits. */
+{
+       int                     rem = bits&15, crem = 16-rem, words = bits>>4;
+       int                     size = abs(g->sign), j, k, sign = gsign(g);
+       unsigned short  carry, dat;
+
+       if (!bits)
+               return;
+       if (!size)
+               return;
+       if (bits < 0) {
+               gshiftright(-bits,g);
+               return;
+       }
+       if (size+words+1 > current_max_size) {
+               error = OVFLOW;
+               exit(error);
+       }
+       if (rem == 0) {
+               memmove(g->n + words, g->n, size * sizeof(short));
+               for (j = 0; j < words; j++) g->n[j] = 0;
+               g->sign += (g->sign < 0)?(-words):(words);
+       } else {
+               k = size+words;
+               carry = 0;
+               for (j=size-1; j>=0; j--) {
+                       dat = g->n[j];
+                       g->n[k--] = (unsigned short)((dat >> crem) | carry);
+                       carry = (unsigned short)(dat << rem);
+               }
+               do {
+                       g->n[k--] = carry;
+                       carry = 0;
+               } while(k>=0);
+       
+               k = size+words;
+               if (g->n[k] == 0)
+                       --k;
+               g->sign = sign*(k+1);
+       }
+}
+
+
+void
+gshiftright(
+       int                                             bits,
+       giant                                   g
+)
+/* shift g right bits bits. Equivalent to g = g/2^bits. */
+{
+       register int                    j,size=abs(g->sign);
+       register unsigned int   carry;
+       int                                     words = bits >> 4;
+       int                                     remain = bits & 15, cremain = (16-remain);
+
+       if (bits==0)
+               return;
+       if (isZero(g))
+               return;
+       if (bits < 0) {
+               gshiftleft(-bits,g);
+               return;
+       }
+       if (words >= size) {
+               g->sign = 0;
+               return;
+       }
+       if (remain == 0) {
+               memmove(g->n,g->n + words,(size - words) * sizeof(short));
+               g->sign += (g->sign < 0)?(words):(-words);
+       } else {
+               size -= words;
+       
+               if (size)
+               {
+                       for(j=0;j<size-1;++j)
+                       {
+                               carry = g->n[j+words+1] << cremain;
+                               g->n[j] = (unsigned short)((g->n[j+words] >> remain ) | carry);
+                       }
+                       g->n[size-1] = (unsigned short)(g->n[size-1+words] >> remain);
+               }
+       
+               if (g->n[size-1] == 0)
+                       --size;
+       
+               if (g->sign > 0)
+                       g->sign = size;
+               else
+                       g->sign = -size;
+       }
+}
+
+
+void
+extractbits(
+       int                             n,
+       giant                   src,
+       giant                   dest
+)
+/* dest becomes lowermost n bits of src. Equivalent to dest = src % 2^n. */
+{
+       register int    words = n >> 4, numbytes = words*sizeof(short);
+       register int    bits = n & 15;
+
+       if (n<=0)
+               return;
+       if (words >= abs(src->sign))
+               gtog(src,dest);
+       else
+       {
+               memcpy((char *)(dest->n), (char *)(src->n), numbytes);
+               if (bits)
+               {
+                       dest->n[words] = (unsigned short)(src->n[words] & ((1<<bits)-1));
+                       ++words;
+               }
+               while ((dest->n[words-1] == 0) && (words > 0))
+               {
+                       --words;
+               }
+               if (src->sign<0)
+                       dest->sign = -words;
+               else
+                       dest->sign = words;
+       }
+}
+
+
+int
+allzeros(
+       int             shorts,
+       int             bits,
+       giant   g
+)
+{
+       int             i=shorts;
+
+       while (i>0)
+       {
+               if (g->n[--i])
+                       return(0);
+       }
+       return((int)(!(g->n[shorts] & ((1<<bits)-1))));
+}
+
+
+void
+fermatnegate(
+       int                                     n,
+       giant                           g
+)
+/* negate g. g is mod 2^n+1. */
+{
+       register int            shorts = n>>4,
+                                               bits = n & 15,
+                                               i = shorts,
+                                               mask = 1<<bits;
+       register unsigned       carry,temp;
+
+       for (temp=(unsigned)shorts; (int)temp>g->sign-1; --temp)
+       {
+               g->n[temp] = 0;
+       }
+       if (g->n[shorts] & mask)
+       {                 /* if high bit is set, -g = 1. */
+               g->sign = 1;
+               g->n[0] = 1;
+               return;
+       }
+       if (allzeros(shorts,bits,g))
+               return;       /* if g=0, -g = 0. */
+
+       while (i>0)
+       {   --i;
+               g->n[i] = (unsigned short)(~(g->n[i+1]));
+       }
+       g->n[shorts] ^= mask-1;
+
+       carry = 2;
+       i = 0;
+       while (carry)
+       {
+               temp = g->n[i]+carry;
+               g->n[i++] = (unsigned short)(temp & 0xffff);
+               carry = temp>>16;
+       }
+       while(!g->n[shorts])
+       {
+               --shorts;
+       }
+       g->sign = shorts+1;
+}
+
+
+void
+mersennemod (
+       int n,
+       giant g
+)
+/* g := g (mod 2^n - 1) */
+{
+       int the_sign, s;
+       giant scratch3 = popg(), scratch4 = popg();
+       
+       if ((the_sign = gsign(g)) < 0) absg(g);
+       while (bitlen(g) > n) {
+               gtog(g,scratch3);
+               gshiftright(n,scratch3);
+               addg(scratch3,g);
+               gshiftleft(n,scratch3);
+               subg(scratch3,g);
+       }
+       if(!isZero(g)) {
+               if ((s = gsign(g)) < 0) absg(g);
+               itog(1,scratch3);
+               gshiftleft(n,scratch3);
+               itog(1,scratch4);
+               subg(scratch4,scratch3);
+               if(gcompg(g,scratch3) >= 0) subg(scratch3,g);
+               if (s < 0) {
+                       g->sign = -g->sign;
+                       addg(scratch3,g);
+               }
+               if (the_sign < 0) {
+                       g->sign = -g->sign;
+                       addg(scratch3,g);
+               }
+       }
+       pushg(2);
+}
+
+void
+fermatmod (
+       int                     n,
+       giant                   g
+)
+/* g := g (mod 2^n + 1), */
+{
+       int the_sign, s;
+       giant scratch3 = popg();
+       
+       if ((the_sign = gsign(g)) < 0) absg(g);
+       while (bitlen(g) > n) {
+               gtog(g,scratch3);
+               gshiftright(n,scratch3);
+               subg(scratch3,g);
+               gshiftleft(n,scratch3);
+               subg(scratch3,g);
+       }
+        if((bitlen(g) < n) && (the_sign * (g->sign) >= 0)) goto leave;
+       if(!isZero(g)) {
+               if ((s = gsign(g)) < 0) absg(g);
+               itog(1,scratch3);
+               gshiftleft(n,scratch3);
+               iaddg(1,scratch3);
+               if(gcompg(g,scratch3) >= 0) subg(scratch3,g);
+               if (s * the_sign < 0) { 
+                       g->sign = -g->sign;
+                       addg(scratch3,g);
+               }
+       }
+leave:
+       pushg(1);
+
+}
+
+void
+fer_mod (
+       int                     n,
+       giant                   g,
+       giant modulus
+)
+/* Same as fermatmod(), except modulus = 2^n should be passed
+if available (i.e. if already allocated and set). */
+{
+       int the_sign, s;
+       giant scratch3 = popg();
+       
+       if ((the_sign = gsign(g)) < 0) absg(g);
+       while (bitlen(g) > n) {
+               gtog(g,scratch3);
+               gshiftright(n,scratch3);
+               subg(scratch3,g);
+               gshiftleft(n,scratch3);
+               subg(scratch3,g);
+       }
+        if((bitlen(g) < n) && (the_sign * (g->sign) >= 0)) goto leave;
+       if(!isZero(g)) {
+               if ((s = gsign(g)) < 0) absg(g);
+               if(gcompg(g,modulus) >= 0) subg(modulus,g);
+               if (s * the_sign < 0) { 
+                       g->sign = -g->sign;
+                       addg(modulus,g);
+               }
+       }
+leave:
+       pushg(1);
+}
+
+
+void
+smulg(
+       unsigned short  i,
+       giant                   g
+)
+/* g becomes g * i. */
+{
+       unsigned short  carry = 0;
+       int                             size = abs(g->sign);
+       register int    j,k,mul = abs(i);
+       unsigned short  *digit = g->n;
+
+       for (j=0; j<size; ++j)
+       {
+               k = *digit * mul + carry;
+               carry = (unsigned short)(k>>16);
+               *digit = (unsigned short)(k & 0xffff);
+               ++digit;
+       }
+       if (carry)
+       {
+               if (++j >= current_max_size)
+               {
+                       error = OVFLOW;
+                       exit(error);
+               }
+               *digit = carry;
+       }
+
+       if ((g->sign>0) ^ (i>0))
+               g->sign = -j;
+       else
+               g->sign = j;
+}
+
+
+void
+squareg(
+       giant   b
+)
+/* b becomes b^2. */
+{
+       auxmulg(b,b);
+}
+
+
+void
+mulg(
+       giant   a,
+       giant   b
+)
+/* b becomes a*b. */
+{
+       auxmulg(a,b);
+}
+
+
+void
+auxmulg(
+       giant           a,
+       giant           b
+)
+/* Optimized general multiply, b becomes a*b. Modes are:
+ * AUTO_MUL: switch according to empirical speed criteria.
+ * GRAMMAR_MUL: force grammar-school algorithm.
+ * KARAT_MUL: force Karatsuba divide-conquer method.
+ * FFT_MUL: force floating point FFT method. */
+{
+       float           grammartime;
+       int             square = (a==b);
+       int             sizea, sizeb;
+
+       switch (mulmode)
+       {
+               case GRAMMAR_MUL:
+                       if (square) grammarsquareg(b);
+                       else grammarmulg(a,b);
+                       break;
+               case FFT_MUL:
+                       if (square)
+                               FFTsquareg(b);
+                       else
+                               FFTmulg(a,b);
+                       break;
+               case KARAT_MUL:
+                       if (square) karatsquareg(b);
+                               else karatmulg(a,b);
+                       break;
+               case AUTO_MUL:
+                       sizea = abs(a->sign);
+                       sizeb = abs(b->sign);
+                   if((sizea > KARAT_BREAK) && (sizea <= FFT_BREAK) &&
+                          (sizeb > KARAT_BREAK) && (sizeb <= FFT_BREAK)){
+                               if(square) karatsquareg(b);
+                                       else karatmulg(a,b);
+
+                       } else {
+                               grammartime  = (float)sizea; 
+                               grammartime *= (float)sizeb;
+                           if (grammartime < FFT_BREAK * FFT_BREAK)
+                           {
+                                  if (square) grammarsquareg(b);
+                                               else grammarmulg(a,b);
+                               }
+                               else
+                               {
+                               if (square) FFTsquareg(b);
+                                       else FFTmulg(a,b);
+                               }
+                       }
+                       break;
+       }
+}
+
+void
+justg(giant x) {
+       int s = x->sign, sg = 1;
+       
+       if(s<0) {
+               sg = -1;
+               s = -s;
+       }
+       --s;
+       while(x->n[s] == 0) {
+                       --s;
+                       if(s < 0) break;
+       }
+       x->sign = sg*(s+1);
+}
+
+/* Next, improved Karatsuba routines from A. Powell,
+   improvements by G. Woltman. */
+
+void
+karatmulg(giant x, giant y)
+/* y becomes x*y. */
+{
+       int s = abs(x->sign), t = abs(y->sign), w, bits,
+               sg = gsign(x)*gsign(y);
+       giant a, b, c, d, e, f;
+
+       if((s <= KARAT_BREAK) || (t <= KARAT_BREAK)) {
+               grammarmulg(x,y);
+               return;
+       }
+       w = (s + t + 2)/4; bits = 16*w;
+       a = popg(); b = popg(); c = popg(); 
+    d = popg(); e = popg(); f = popg();
+       gtog(x,a); absg(a); if (w <= s) {a->sign = w; justg(a);}
+       gtog(x,b); absg(b);
+       gshiftright(bits, b);
+       gtog(y,c); absg(c); if (w <= t) {c->sign = w; justg(c);}
+       gtog(y,d); absg(d);
+       gshiftright(bits,d);
+       gtog(a,e); normal_addg(b,e);    /* e := (a + b) */
+       gtog(c,f); normal_addg(d,f);    /* f := (c + d) */
+       karatmulg(e,f);                 /* f := (a + b)(c + d) */
+       karatmulg(c,a);                 /* a := a c */
+       karatmulg(d,b);                 /* b := b d */
+       normal_subg(a,f);                       
+         /* f := (a + b)(c + d) - a c */
+       normal_subg(b,f);                       
+         /* f := (a + b)(c + d) - a c - b d */
+       gshiftleft(bits, b);
+       normal_addg(f, b);
+       gshiftleft(bits, b);
+       normal_addg(a, b);
+       gtog(b, y); y->sign *= sg;
+       pushg(6);
+       
+       return;
+}
+
+void
+karatsquareg(giant x)
+/* x becomes x^2. */
+{
+       int s = abs(x->sign), w, bits;
+       giant a, b, c;
+
+       if(s <= KARAT_BREAK) {
+               grammarsquareg(x);
+               return;
+       }
+       w = (s+1)/2; bits = 16*w;
+       a = popg(); b = popg(); c = popg();
+       gtog(x, a); a->sign = w; justg(a);
+       gtog(x, b); absg(b);
+       gshiftright(bits, b);
+       gtog(a,c); normal_addg(b,c);
+       karatsquareg(c);
+       karatsquareg(a);
+       karatsquareg(b);
+       normal_subg(b, c);
+       normal_subg(a, c);
+       gshiftleft(bits, b);
+       normal_addg(c,b);
+       gshiftleft(bits, b);
+       normal_addg(a, b);
+       gtog(b, x);
+       pushg(3);
+
+       return;
+}
+
+void
+grammarmulg(
+       giant                   a,
+       giant                   b
+)
+/* b becomes a*b. */
+{
+       int                     i,j;
+       unsigned int    prod,carry=0;
+       int                     asize = abs(a->sign), bsize = abs(b->sign);
+       unsigned short  *aptr,*bptr,*destptr;
+       unsigned short  mult;
+       giant scratch = popg();
+
+       for (i=0; i<asize+bsize; ++i)
+       {
+               scratch->n[i]=0;
+       }
+
+       bptr = &(b->n[0]);
+       for (i=0; i<bsize; ++i)
+       {
+               mult = *(bptr++);
+               if (mult)
+               {
+                       carry = 0;
+                       aptr = &(a->n[0]);
+                       destptr = &(scratch->n[i]);
+                       for (j=0; j<asize; ++j)
+                       {
+                               prod = *(aptr++) * mult + *destptr + carry;
+                               *(destptr++) = (unsigned short)(prod & 0xffff);
+                               carry = prod >> 16;
+                       }
+                       *destptr = (unsigned short)carry;
+               }
+       }
+       bsize+=asize;
+       if (!carry)
+               --bsize;
+       scratch->sign = gsign(a)*gsign(b)*bsize;
+       gtog(scratch,b);
+       pushg(1);
+}
+
+
+void
+grammarsquareg (
+       giant a
+)
+/* a := a^2. */
+{
+       unsigned int    cur_term;
+       unsigned int    prod, carry=0, temp;
+       int     asize = abs(a->sign), max = asize * 2 - 1;
+       unsigned short  *ptr = a->n, *ptr1, *ptr2;
+       giant scratch;
+       
+       if(asize == 0) {
+               itog(0,a);
+               return;
+       }
+
+       scratch = popg();
+
+       asize--;
+       
+       temp = *ptr;
+       temp *= temp;
+       scratch->n[0] = temp;
+       carry = temp >> 16;
+       
+       for (cur_term = 1; cur_term < max; cur_term++) {
+               ptr1 = ptr2 = ptr;
+               if (cur_term <= asize) {
+                       ptr2 += cur_term;
+               } else {
+                       ptr1 += cur_term - asize;
+                       ptr2 += asize;
+               }
+               prod = carry & 0xFFFF;
+               carry >>= 16;
+               while(ptr1 < ptr2) {
+                               temp = *ptr1++ * *ptr2--;
+                               prod += (temp << 1) & 0xFFFF;
+                               carry += (temp >> 15);
+               }
+               if (ptr1 == ptr2) {
+                               temp = *ptr1;
+                               temp *= temp;
+                               prod += temp & 0xFFFF;
+                               carry += (temp >> 16);
+               }
+               carry += prod >> 16;
+               scratch->n[cur_term] = (unsigned short) (prod);
+       }
+       if (carry) {
+               scratch->n[cur_term] = carry;
+               scratch->sign = cur_term+1;
+       } else scratch->sign = cur_term;
+       
+       gtog(scratch,a);
+       pushg(1);
+}
+
+
+/**************************************************************
+ *
+ * FFT multiply Functions
+ *
+ **************************************************************/
+
+int            initL = 0;
+
+int
+lpt(
+       int                             n,
+       int                             *lambda
+)
+/* Returns least power of two greater than n. */
+{
+       register int    i = 1;
+
+       *lambda = 0;
+       while (i<n)
+       {
+               i<<=1;
+               ++(*lambda);
+       }
+       return(i);
+}
+
+
+void
+addsignal(
+       giant                           x,
+       double                          *z,
+       int                             n
+)
+{
+       register int            j, k, m, car, last;
+       register double         f, g,err;
+
+       maxFFTerror = 0;
+    last = 0;
+       for (j=0;j<n;j++)
+       {
+               f = gfloor(z[j]+0.5);
+        if(f != 0.0) last = j;
+               if (checkFFTerror)
+               {
+                       err = fabs(f - z[j]);
+                       if (err > maxFFTerror)
+                               maxFFTerror = err;
+               }
+               z[j] =0;
+               k = 0;
+               do
+               {
+                       g = gfloor(f*TWOM16);
+                       z[j+k] += f-g*TWO16;
+                       ++k;
+                       f=g;
+               } while(f != 0.0);
+       }
+       car = 0;
+       for(j=0;j < last + 1;j++)
+       {
+               m = (int)(z[j]+car);
+               x->n[j] = (unsigned short)(m & 0xffff);
+               car = (m>>16);
+       }
+       if (car)
+               x->n[j] = (unsigned short)car;
+       else
+               --j;
+
+       while(!(x->n[j])) --j;
+
+       x->sign = j+1;
+}
+
+
+void
+FFTsquareg(
+       giant                   x
+)
+{
+       int                     j,size = abs(x->sign);
+       register int    L;
+
+       if (size<4)
+       {
+               grammarmulg(x,x);
+               return;
+       }
+       L = lpt(size+size, &j);
+       if(!z) z = (double *)malloc(MAX_SHORTS * sizeof(double));
+       giant_to_double(x, size, z, L);
+       fft_real_to_hermitian(z, L);
+       square_hermitian(z, L);
+       fftinv_hermitian_to_real(z, L);
+       addsignal(x,z,L);
+       x->sign = abs(x->sign);
+}
+
+
+void
+FFTmulg(
+       giant                   y,
+       giant                   x
+)
+{
+       /* x becomes y*x. */
+       int                     lambda, sizex = abs(x->sign), sizey = abs(y->sign);
+       int                     finalsign = gsign(x)*gsign(y);
+       register int    L;
+
+       if ((sizex<=4)||(sizey<=4))
+       {
+               grammarmulg(y,x);
+               return;
+       }
+       L = lpt(sizex+sizey, &lambda);
+       if(!z) z = (double *)malloc(MAX_SHORTS * sizeof(double));
+       if(!z2) z2 = (double *)malloc(MAX_SHORTS * sizeof(double));
+
+       giant_to_double(x, sizex, z, L);
+       giant_to_double(y, sizey, z2, L);
+       fft_real_to_hermitian(z, L);
+       fft_real_to_hermitian(z2, L);
+       mul_hermitian(z2, z, L);
+       fftinv_hermitian_to_real(z, L);
+       addsignal(x,z,L);
+       x->sign = finalsign*abs(x->sign);
+}
+
+
+void
+scramble_real(
+       double                  *x,
+       int                     n
+)
+{
+       register int    i,j,k;
+       register double tmp;
+
+       for (i=0,j=0;i<n-1;i++)
+       {
+               if (i<j)
+               {
+                       tmp = x[j];
+                       x[j]=x[i];
+                       x[i]=tmp;
+               }
+               k = n/2;
+               while (k<=j)
+               {
+                       j -= k;
+                       k>>=1;
+               }
+               j += k;
+       }
+}
+
+
+void
+fft_real_to_hermitian(
+       double                  *z,
+       int                     n
+)
+/* Output is {Re(z^[0]),...,Re(z^[n/2),Im(z^[n/2-1]),...,Im(z^[1]).
+ *     This is a decimation-in-time, split-radix algorithm.
+ */
+{
+       register double cc1, ss1, cc3, ss3;
+       register int    is, id, i0, i1, i2, i3, i4, i5, i6, i7, i8,
+                                       a, a3, b, b3, nminus = n-1, dil, expand;
+       register double *x, e;
+       int                     nn = n>>1;
+       double                  t1, t2, t3, t4, t5, t6;
+       register int    n2, n4, n8, i, j;
+
+       init_sinCos(n);
+       expand = cur_run/n;
+       scramble_real(z, n);
+       x = z-1; /* FORTRAN compatibility. */
+       is = 1;
+       id = 4;
+       do
+       {
+               for (i0=is;i0<=n;i0+=id)
+               {
+                       i1 = i0+1;
+                       e = x[i0];
+                       x[i0] = e + x[i1];
+                       x[i1] = e - x[i1];
+               }
+               is = (id<<1)-1;
+               id <<= 2;
+       } while(is<n);
+
+       n2 = 2;
+       while(nn>>=1)
+       {
+               n2 <<= 1;
+               n4 = n2>>2;
+               n8 = n2>>3;
+               is = 0;
+               id = n2<<1;
+               do
+               {
+                       for (i=is;i<n;i+=id)
+                       {
+                               i1 = i+1;
+                               i2 = i1 + n4;
+                               i3 = i2 + n4;
+                               i4 = i3 + n4;
+                               t1 = x[i4]+x[i3];
+                               x[i4] -= x[i3];
+                               x[i3] = x[i1] - t1;
+                               x[i1] += t1;
+                               if (n4==1)
+                                       continue;
+                               i1 += n8;
+                               i2 += n8;
+                               i3 += n8;
+                               i4 += n8;
+                               t1 = (x[i3]+x[i4])*SQRTHALF;
+                               t2 = (x[i3]-x[i4])*SQRTHALF;
+                               x[i4] = x[i2] - t1;
+                               x[i3] = -x[i2] - t1;
+                               x[i2] = x[i1] - t2;
+                               x[i1] += t2;
+                       }
+                       is = (id<<1) - n2;
+                       id <<= 2;
+               } while(is<n);
+               dil = n/n2;
+               a = dil;
+               for (j=2;j<=n8;j++)
+               {
+                       a3 = (a+(a<<1))&nminus;
+                       b = a*expand;
+                       b3 = a3*expand;
+                       cc1 = s_cos(b);
+                       ss1 = s_sin(b);
+                       cc3 = s_cos(b3);
+                       ss3 = s_sin(b3);
+                       a = (a+dil)&nminus;
+                       is = 0;
+                       id = n2<<1;
+                       do
+                       {
+                               for(i=is;i<n;i+=id)
+                               {
+                                       i1 = i+j;
+                                       i2 = i1 + n4;
+                                       i3 = i2 + n4;
+                                       i4 = i3 + n4;
+                                       i5 = i + n4 - j + 2;
+                                       i6 = i5 + n4;
+                                       i7 = i6 + n4;
+                                       i8 = i7 + n4;
+                                       t1 = x[i3]*cc1 + x[i7]*ss1;
+                                       t2 = x[i7]*cc1 - x[i3]*ss1;
+                                       t3 = x[i4]*cc3 + x[i8]*ss3;
+                                       t4 = x[i8]*cc3 - x[i4]*ss3;
+                                       t5 = t1 + t3;
+                                       t6 = t2 + t4;
+                                       t3 = t1 - t3;
+                                       t4 = t2 - t4;
+                                       t2 = x[i6] + t6;
+                                       x[i3] = t6 - x[i6];
+                                       x[i8] = t2;
+                                       t2 = x[i2] - t3;
+                                       x[i7] = -x[i2] - t3;
+                                       x[i4] = t2;
+                                       t1 = x[i1] + t5;
+                                       x[i6] = x[i1] - t5;
+                                       x[i1] = t1;
+                                       t1 = x[i5] + t4;
+                                       x[i5] -= t4;
+                                       x[i2] = t1;
+                               }
+                               is = (id<<1) - n2;
+                               id <<= 2;
+                       } while(is<n);
+               }
+       }
+}
+
+
+void
+fftinv_hermitian_to_real(
+       double                          *z,
+       int                             n
+)
+/* Input is {Re(z^[0]),...,Re(z^[n/2),Im(z^[n/2-1]),...,Im(z^[1]).
+ * This is a decimation-in-frequency, split-radix algorithm.
+ */
+{
+       register double         cc1, ss1, cc3, ss3;
+       register int            is, id, i0, i1, i2, i3, i4, i5, i6, i7, i8,
+                                               a, a3, b, b3, nminus = n-1, dil, expand;
+       register double         *x, e;
+       int                             nn = n>>1;
+       double                          t1, t2, t3, t4, t5;
+       int                             n2, n4, n8, i, j;
+
+       init_sinCos(n);
+       expand = cur_run/n;
+       x = z-1;
+       n2 = n<<1;
+       while(nn >>= 1)
+       {
+               is = 0;
+               id = n2;
+               n2 >>= 1;
+               n4 = n2>>2;
+               n8 = n4>>1;
+               do
+               {
+                       for(i=is;i<n;i+=id)
+                       {
+                               i1 = i+1;
+                               i2 = i1 + n4;
+                               i3 = i2 + n4;
+                               i4 = i3 + n4;
+                               t1 = x[i1] - x[i3];
+                               x[i1] += x[i3];
+                               x[i2] += x[i2];
+                               x[i3] = t1 - 2.0*x[i4];
+                               x[i4] = t1 + 2.0*x[i4];
+                               if (n4==1)
+                                       continue;
+                               i1 += n8;
+                               i2 += n8;
+                               i3 += n8;
+                               i4 += n8;
+                               t1 = (x[i2]-x[i1])*SQRTHALF;
+                               t2 = (x[i4]+x[i3])*SQRTHALF;
+                               x[i1] += x[i2];
+                               x[i2] = x[i4]-x[i3];
+                               x[i3] = -2.0*(t2+t1);
+                               x[i4] = 2.0*(t1-t2);
+                       }
+                       is = (id<<1) - n2;
+                       id <<= 2;
+               } while (is<n-1);
+               dil = n/n2;
+               a = dil;
+               for (j=2;j<=n8;j++)
+               {
+                       a3 = (a+(a<<1))&nminus;
+                       b = a*expand;
+                       b3 = a3*expand;
+                       cc1 = s_cos(b);
+                       ss1 = s_sin(b);
+                       cc3 = s_cos(b3);
+                       ss3 = s_sin(b3);
+                       a = (a+dil)&nminus;
+                       is = 0;
+                       id = n2<<1;
+                       do
+                       {
+                               for(i=is;i<n;i+=id)
+                               {
+                                       i1 = i+j;
+                                       i2 = i1+n4;
+                                       i3 = i2+n4;
+                                       i4 = i3+n4;
+                                       i5 = i+n4-j+2;
+                                       i6 = i5+n4;
+                                       i7 = i6+n4;
+                                       i8 = i7+n4;
+                                       t1 = x[i1] - x[i6];
+                                       x[i1] += x[i6];
+                                       t2 = x[i5] - x[i2];
+                                       x[i5] += x[i2];
+                                       t3 = x[i8] + x[i3];
+                                       x[i6] = x[i8] - x[i3];
+                                       t4 = x[i4] + x[i7];
+                                       x[i2] = x[i4] - x[i7];
+                                       t5 = t1 - t4;
+                                       t1 += t4;
+                                       t4 = t2 - t3;
+                                       t2 += t3;
+                                       x[i3] = t5*cc1 + t4*ss1;
+                                       x[i7] = -t4*cc1 + t5*ss1;
+                                       x[i4] = t1*cc3 - t2*ss3;
+                                       x[i8] = t2*cc3 + t1*ss3;
+                               }
+                               is = (id<<1) - n2;
+                               id <<= 2;
+                       } while(is<n-1);
+               }
+       }
+       is = 1;
+       id = 4;
+       do
+       {
+               for (i0=is;i0<=n;i0+=id)
+               {
+                       i1 = i0+1;
+                       e = x[i0];
+                       x[i0] = e + x[i1];
+                       x[i1] = e - x[i1];
+               }
+               is = (id<<1) - 1;
+               id <<= 2;
+       } while(is<n);
+       scramble_real(z, n);
+       e = 1/(double)n;
+       for (i=0;i<n;i++)
+       {
+               z[i] *= e;
+       }
+}
+
+
+void
+mul_hermitian(
+       double                          *a,
+       double                          *b,
+       int                             n
+)
+{
+       register int            k, half = n>>1;
+       register double         aa, bb, am, bm;
+
+       b[0] *= a[0];
+       b[half] *= a[half];
+       for (k=1;k<half;k++)
+       {
+               aa = a[k];
+               bb = b[k];
+               am = a[n-k];
+               bm = b[n-k];
+               b[k] = aa*bb - am*bm;
+               b[n-k] = aa*bm + am*bb;
+       }
+}
+
+
+void
+square_hermitian(
+       double                          *b,
+       int                             n
+)
+{
+       register int            k, half = n>>1;
+       register double         c, d;
+
+       b[0] *= b[0];
+       b[half] *= b[half];
+       for (k=1;k<half;k++)
+       {
+               c = b[k];
+               d = b[n-k];
+               b[n-k] = 2.0*c*d;
+               b[k] = (c+d)*(c-d);
+       }
+}
+
+
+void
+giant_to_double
+(
+       giant                   x,
+       int                     sizex,
+       double                  *z,
+       int                     L
+)
+{
+       register int    j;
+
+       for (j=sizex;j<L;j++)
+       {
+               z[j]=0.0;
+       }
+       for (j=0;j<sizex;j++)
+       {
+                z[j] = x->n[j];
+       }
+}
+
+
+void
+gswap(
+       giant   *p,
+       giant   *q
+)
+{
+       giant   t;
+
+       t = *p;
+       *p = *q;
+       *q = t;
+}
+
+
+void
+onestep(
+       giant           x,
+       giant           y,
+       gmatrix         A
+)
+/* Do one step of the euclidean algorithm and modify
+ * the matrix A accordingly. */
+{
+       giant s4 = popg();
+
+       gtog(x,s4);
+       gtog(y,x);
+       gtog(s4,y);
+       divg(x,s4);
+       punch(s4,A);
+       mulg(x,s4);
+       subg(s4,y);
+       
+       pushg(1);
+}
+
+
+void
+mulvM(
+       gmatrix         A,
+       giant           x,
+       giant           y
+)
+/* Multiply vector by Matrix; changes x,y. */
+{
+       giant s0 = popg(), s1 = popg();
+       
+       gtog(A->ur,s0);
+       gtog( A->lr,s1);
+       dotproduct(x,y,A->ul,s0);
+       dotproduct(x,y,A->ll,s1);
+       gtog(s0,x);
+       gtog(s1,y);
+       
+       pushg(2);
+}
+
+
+void
+mulmM(
+       gmatrix         A,
+       gmatrix         B
+)
+/* Multiply matrix by Matrix; changes second matrix. */
+{
+       giant s0 = popg();
+       giant s1 = popg();
+       giant s2 = popg();
+       giant s3 = popg();
+       
+       gtog(B->ul,s0);
+       gtog(B->ur,s1);
+       gtog(B->ll,s2);
+       gtog(B->lr,s3);
+       dotproduct(A->ur,A->ul,B->ll,s0);
+       dotproduct(A->ur,A->ul,B->lr,s1);
+       dotproduct(A->ll,A->lr,B->ul,s2);
+       dotproduct(A->ll,A->lr,B->ur,s3);
+       gtog(s0,B->ul);
+       gtog(s1,B->ur);
+       gtog(s2,B->ll);
+       gtog(s3,B->lr);
+       
+       pushg(4);
+}
+
+
+void
+writeM(
+       gmatrix         A
+)
+{
+       printf("    ul:");
+       gout(A->ul);
+       printf("    ur:");
+       gout(A->ur);
+       printf("    ll:");
+       gout(A->ll);
+       printf("    lr:");
+       gout(A->lr);
+}
+
+
+void
+punch(
+       giant           q,
+       gmatrix         A
+)
+/* Multiply the matrix A on the left by [0,1,1,-q]. */
+{
+       giant s0 = popg();
+       
+       gtog(A->ll,s0);
+       mulg(q,A->ll);
+       gswap(&A->ul,&A->ll);
+       subg(A->ul,A->ll);
+       gtog(s0,A->ul);
+       gtog(A->lr,s0);
+       mulg(q,A->lr);
+       gswap(&A->ur,&A->lr);
+       subg(A->ur,A->lr);
+       gtog(s0,A->ur);
+
+       pushg(1);
+}
+
+
+static void
+dotproduct(
+       giant   a,
+       giant   b,
+       giant   c,
+       giant   d
+)
+/* Replace last argument with the dot product of two 2-vectors. */
+{
+       giant s4 = popg();
+
+       gtog(c,s4);
+       mulg(a, s4);
+       mulg(b,d);
+       addg(s4,d);
+       
+       pushg(1);
+}
+
+
+void
+ggcd(
+       giant   xx,
+       giant   yy
+)
+/* A giant gcd.  Modifies its arguments. */
+{
+       giant   x = popg(), y = popg();
+       gmatrix         A = newgmatrix();
+
+       gtog(xx,x); gtog(yy,y);
+       for(;;)
+       {
+               fix(&x,&y);
+               if (bitlen(y) <= GCDLIMIT )
+                       break;
+               A->ul = popg();
+               A->ur = popg();
+               A->ll = popg();
+               A->lr = popg();
+               itog(1,A->ul);
+               itog(0,A->ur);
+               itog(0,A->ll);
+               itog(1,A->lr);
+               hgcd(0,x,y,A);
+               mulvM(A,x,y);
+               pushg(4);
+               fix(&x,&y);
+               if (bitlen(y) <= GCDLIMIT )
+                       break;
+               modg(y,x);
+               gswap(&x,&y);
+       }
+       bgcdg(x,y);
+       gtog(y,yy);
+       pushg(2);
+       free(A);
+}
+
+
+void
+fix(
+       giant   *p,
+       giant   *q
+)
+/* Insure that x > y >= 0. */
+{
+       if( gsign(*p) < 0 )
+               negg(*p);
+       if( gsign(*q) < 0 )
+               negg(*q);
+       if( gcompg(*p,*q) < 0 )
+               gswap(p,q);
+}
+
+
+void
+hgcd(
+       int             n,
+       giant           xx,
+       giant           yy,
+       gmatrix         A
+)
+/* hgcd(n,x,y,A) chops n bits off x and y and computes th
+ * 2 by 2 matrix A such that A[x y] is the pair of terms
+ * in the remainder sequence starting with x,y that is
+ * half the size of x. Note that the argument A is modified
+ * but that the arguments xx and yy are left unchanged.
+ */
+{
+       giant           x, y;
+
+       if (isZero(yy))
+               return;
+       
+       x = popg();
+       y = popg();
+       gtog(xx,x);
+       gtog(yy,y);
+       gshiftright(n,x);
+       gshiftright(n,y);
+       if (bitlen(x) <= INTLIMIT )
+       {
+               shgcd(gtoi(x),gtoi(y),A);
+       }
+       else
+       {
+               gmatrix         B = newgmatrix();
+               int             m = bitlen(x)/2;
+
+               hgcd(m,x,y,A);
+               mulvM(A,x,y);
+               if (gsign(x) < 0)
+               {
+                       negg(x); negg(A->ul); negg(A->ur);
+               }
+               if (gsign(y) < 0)
+               {
+                       negg(y); negg(A->ll); negg(A->lr);
+               }
+               if (gcompg(x,y) < 0)
+               {
+                       gswap(&x,&y);
+                       gswap(&A->ul,&A->ll);
+                       gswap(&A->ur,&A->lr);
+               }
+               if (!isZero(y))
+               {
+                       onestep(x,y,A);
+                       m /= 2;
+                       B->ul = popg();
+                       B->ur = popg();
+                       B->ll = popg();
+                       B->lr = popg();
+                       itog(1,B->ul);
+                       itog(0,B->ur);
+                       itog(0,B->ll);
+                       itog(1,B->lr);
+                       hgcd(m,x,y,B);
+                       mulmM(B,A);
+                       pushg(4);
+               }
+               free(B);
+       }
+       pushg(2);
+}
+
+
+void
+shgcd(
+       register int    x,
+       register int    y,
+       gmatrix                 A
+)
+/*
+ * Do a half gcd on the integers a and b, putting the result in A
+ * It is fairly easy to use the 2 by 2 matrix description of the
+ * extended Euclidean algorithm to prove that the quantity q*t
+ * never overflows.
+ */
+{
+       register int    q, t, start = x;
+       int                     Aul = 1, Aur = 0, All = 0, Alr = 1;
+
+       while   (y != 0 && y > start/y)
+       {
+               q = x/y;
+               t = y;
+               y = x%y;
+               x = t;
+               t = All;
+               All = Aul-q*t;
+               Aul = t;
+               t = Alr;
+               Alr = Aur-q*t;
+               Aur = t;
+       }
+       itog(Aul,A->ul);
+       itog(Aur,A->ur);
+       itog(All,A->ll);
+       itog(Alr,A->lr);
+}