]> git.saurik.com Git - apple/security.git/blame - cdsa/cdsa_utilities/threading.h
Security-163.tar.gz
[apple/security.git] / cdsa / cdsa_utilities / threading.h
CommitLineData
bac41a7b
A
1/*
2 * Copyright (c) 2000-2001 Apple Computer, Inc. All Rights Reserved.
3 *
4 * The contents of this file constitute Original Code as defined in and are
5 * subject to the Apple Public Source License Version 1.2 (the 'License').
6 * You may not use this file except in compliance with the License. Please obtain
7 * a copy of the License at http://www.apple.com/publicsource and read it before
8 * using this file.
9 *
10 * This Original Code and all software distributed under the License are
11 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
12 * OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, INCLUDING WITHOUT
13 * LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
14 * PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. Please see the License for the
15 * specific language governing rights and limitations under the License.
16 */
17
18
19//
20// threading - generic thread support
21//
22#ifndef _H_THREADING
23#define _H_THREADING
24
25#include <Security/utilities.h>
26#include <Security/debugging.h>
27
28#if _USE_THREADS == _USE_PTHREADS
29# include <pthread.h>
30#endif
31
32#include <Security/threading_internal.h>
33
34
35namespace Security {
36
37
38//
39// Potentially, debug-logging all Mutex activity can really ruin your
40// performance day. We take some measures to reduce the impact, but if
41// you really can't stomach any overhead, define THREAD_NDEBUG to turn
42// (only) thread debug-logging off. NDEBUG will turn this on automatically.
43// On the other hand, throwing out all debug code will change the ABI of
44// Mutexi in incompatible ways. Thus, we still generate the debug-style out-of-line
45// code even with THREAD_NDEBUG, so that debug-style code will work with us.
46// If you want to ditch it completely, #define THREAD_CLEAN_NDEBUG.
47//
48#if defined(NDEBUG) || defined(THREAD_CLEAN_NDEBUG)
49# if !defined(THREAD_NDEBUG)
50# define THREAD_NDEBUG
51# endif
52#endif
53
54
55//
56// An abstraction of a per-thread untyped storage slot of pointer size.
57// Do not use this in ordinary code; this is for implementing other primitives only.
58// Use a PerThreadPointer or ThreadNexus.
59//
60#if _USE_THREADS == _USE_PTHREADS
61
62class ThreadStoreSlot {
63public:
64 typedef void Destructor(void *);
65 ThreadStoreSlot(Destructor *destructor = NULL);
66 ~ThreadStoreSlot();
67
68 void *get() const { return pthread_getspecific(mKey); }
69 operator void * () const { return get(); }
70 void operator = (void *value) const
71 {
72 if (int err = pthread_setspecific(mKey, value))
73 UnixError::throwMe(err);
74 }
75
76private:
77 pthread_key_t mKey;
78};
79
80#endif //_USE_PTHREADS
81
82
83//
84// Per-thread pointers are patterned after the pthread TLS (thread local storage)
85// facility.
5a719ac8
A
86// Let's be clear on what gets destroyed when, here. Following the pthread lead,
87// when a thread dies its PerThreadPointer object(s) are properly destroyed.
88// However, if a PerThreadPointer itself is destroyed, NOTHING HAPPENS. Yes, there are
89// reasons for this. This is not (on its face) a bug, so don't yell. But be aware...
bac41a7b
A
90//
91#if _USE_THREADS == _USE_PTHREADS
92
93template <class T>
94class PerThreadPointer : public ThreadStoreSlot {
95public:
96 PerThreadPointer(bool cleanup = true) : ThreadStoreSlot(cleanup ? destructor : NULL) { }
97 operator bool() const { return get() != NULL; }
98 operator T * () const { return reinterpret_cast<T *>(get()); }
99 T *operator -> () const { return static_cast<T *>(*this); }
100 T &operator * () const { return *static_cast<T *>(get()); }
101 void operator = (T *t) { ThreadStoreSlot::operator = (t); }
102
103private:
104 static void destructor(void *element)
105 { delete reinterpret_cast<T *>(element); }
106};
107
108#elif _USE_THREADS == _USE_NO_THREADS
109
110template <class T>
111class PerThreadPointer {
112public:
113 PerThreadPointer(bool cleanup = true) : mCleanup(cleanup) { }
5a719ac8 114 ~PerThreadPointer() { /* no cleanup - see comment above */ }
bac41a7b
A
115 operator bool() const { return mValue != NULL; }
116 operator T * () const { return mValue; }
117 T *operator -> () const { return mValue; }
118 T &operator * () const { assert(mValue); return *mValue; }
119 void operator = (T *t) { mValue = t; }
120
121private:
122 T *mValue;
123 bool mCleanup;
124};
125
126#else
127# error Unsupported threading model
128#endif //_USE_THREADS
129
130
131//
132// Basic Mutex operations.
133// This will be some as-cheap-as-feasible locking primitive that only
134// controls one bit (locked/unlocked), plus whatever you contractually
135// put under its control.
136//
137#if _USE_THREADS == _USE_PTHREADS
138
139class Mutex {
140 NOCOPY(Mutex)
141
142 void check(int err) { if (err) UnixError::throwMe(err); }
143
144public:
bac41a7b
A
145 Mutex(bool log = true);
146 ~Mutex();
147 void lock();
148 bool tryLock();
149 void unlock();
bac41a7b
A
150
151private:
152 pthread_mutex_t me;
153
bac41a7b
A
154 bool debugLog; // log *this* mutex
155 unsigned long useCount; // number of locks succeeded
156 unsigned long contentionCount; // number of contentions (valid only if debugLog)
157 static bool debugHasInitialized; // global: debug state set up
158 static bool loggingMutexi; // global: we are debug-logging mutexi
bac41a7b
A
159};
160
161#elif _USE_THREADS == _USE_NO_THREADS
162
163class Mutex {
164public:
165 void lock(bool = true) { }
166 void unlock() { }
167 bool tryLock() { return true; }
168};
169
170#else
171# error Unsupported threading model
172#endif //_USE_THREADS
173
174
175//
176// A CountingMutex adds a counter to a Mutex.
177// NOTE: This is not officially a semaphore, even if it happens to be implemented with
178// one on some platforms.
179//
180class CountingMutex : public Mutex {
181 // note that this implementation works for any system implementing Mutex *somehow*
182public:
183 CountingMutex() : mCount(0) { }
184 ~CountingMutex() { assert(mCount == 0); }
185
186 void enter();
187 bool tryEnter();
188 void exit();
189
190 // these methods do not lock - use only while you hold the lock
191 unsigned int count() const { return mCount; }
192 bool isIdle() const { return mCount == 0; }
193
194 // convert Mutex lock to CountingMutex enter/exit. Expert use only
195 void finishEnter();
196 void finishExit();
197
198private:
199 unsigned int mCount;
200};
201
202
203//
204// A guaranteed-unlocker stack-based class.
205// By default, this will use lock/unlock methods, but you can provide your own
206// alternates (to, e.g., use enter/exit, or some more specialized pair of operations).
207//
208// NOTE: StLock itself is not thread-safe. It is intended for use (usually on the stack)
209// by a single thread.
210//
211template <class Lock,
212 void (Lock::*_lock)() = &Lock::lock,
213 void (Lock::*_unlock)() = &Lock::unlock>
214class StLock {
215public:
216 StLock(Lock &lck) : me(lck) { (me.*_lock)(); mActive = true; }
217 StLock(Lock &lck, bool option) : me(lck), mActive(option) { }
218 ~StLock() { if (mActive) (me.*_unlock)(); }
219
220 bool isActive() const { return mActive; }
221 void lock() { if(!mActive) { (me.*_lock)(); mActive = true; }}
222 void unlock() { if(mActive) { (me.*_unlock)(); mActive = false; }}
29654253 223 void release() { assert(mActive); mActive = false; }
bac41a7b
A
224
225 operator const Lock &() const { return me; }
226
227protected:
228 Lock &me;
229 bool mActive;
230};
231
232
233//
234// Atomic increment/decrement operations.
235// The default implementation uses a Mutex. However, many architectures can do
236// much better than that.
237// Be very clear on the nature of AtomicCounter. It implies no memory barriers of
238// any kind. This means that (1) you cannot protect any other memory region with it
239// (use a Mutex for that), and (2) it may not enforce cross-processor ordering, which
240// means that you have no guarantee that you'll see modifications by other processors
241// made earlier (unless another mechanism provides the memory barrier).
242// On the other hand, if your compiler has brains, this is blindingly fast...
243//
244template <class Integer = int>
245class StaticAtomicCounter {
246protected:
247
248#if defined(_HAVE_ATOMIC_OPERATIONS)
249 AtomicWord mValue;
250public:
251 operator Integer() const { return mValue; }
252
253 // infix versions (primary)
254 Integer operator ++ () { return atomicIncrement(mValue); }
255 Integer operator -- () { return atomicDecrement(mValue); }
256
257 // postfix versions
258 Integer operator ++ (int) { return atomicIncrement(mValue) - 1; }
259 Integer operator -- (int) { return atomicDecrement(mValue) + 1; }
260
261 // generic offset
262 Integer operator += (int delta) { return atomicOffset(mValue, delta); }
263
264#else // no atomic integers, use locks
265
266 Integer mValue;
267 mutable Mutex mLock;
268public:
269 StaticAtomicCounter(Integer init = 0) : mValue(init), mLock(false) { }
270 operator Integer() const { StLock<Mutex> _(mLock); return mValue; }
271 Integer operator ++ () { StLock<Mutex> _(mLock); return ++mValue; }
272 Integer operator -- () { StLock<Mutex> _(mLock); return --mValue; }
273 Integer operator ++ (int) { StLock<Mutex> _(mLock); return mValue++; }
274 Integer operator -- (int) { StLock<Mutex> _(mLock); return mValue--; }
275 Integer operator += (int delta) { StLock<Mutex> _(mLock); return mValue += delta; }
276#endif
277};
278
279
280template <class Integer = int>
281class AtomicCounter : public StaticAtomicCounter<Integer> {
282public:
283 AtomicCounter(Integer init = 0) { mValue = 0; }
284};
285
286
287//
288// A class implementing a separate thread of execution.
289// Do not expect many high-level semantics to be portable. If you can,
290// restrict yourself to expect parallel execution and little else.
291//
292#if _USE_THREADS == _USE_PTHREADS
293
294class Thread {
295 NOCOPY(Thread)
bac41a7b
A
296public:
297 class Identity {
298 friend class Thread;
29654253
A
299
300 Identity(pthread_t id) : mIdent(id) { }
bac41a7b
A
301 public:
302 Identity() { }
303
304 static Identity current() { return pthread_self(); }
305
306 bool operator == (const Identity &other) const
307 { return pthread_equal(mIdent, other.mIdent); }
308
309 bool operator != (const Identity &other) const
310 { return !(*this == other); }
311
df0e469f
A
312 // visible thread identifiers are FOR DEBUGGING ONLY
313 // if you use this for production code, your code will rot after shipment :-)
bac41a7b
A
314 static const int idLength = 10;
315 static void getIdString(char id[idLength]);
bac41a7b
A
316
317 private:
318 pthread_t mIdent;
bac41a7b
A
319 };
320
29654253
A
321public:
322 Thread() { } // constructor
323 virtual ~Thread(); // virtual destructor
324 void run(); // begin running the thread
325
326public:
327 static void yield(); // unstructured short-term processor yield
328
bac41a7b
A
329protected:
330 virtual void action() = 0; // the action to be performed
331
332private:
333 Identity self; // my own identity (instance constant)
334
335 static void *runner(void *); // argument to pthread_create
336};
337
338#elif _USE_THREADS == _USE_NO_THREADS
339
340class Thread {
341 NOCOPY(Thread)
342public:
343 Thread() { } // constructor
344 virtual ~Thread() { } // virtual destructor
345 void run() { action(); } // just synchronously run the action
346
347public:
348 class Identity {
349 public:
350 static Identity current() { return Identity(); }
351
352 bool operator == (const Identity &) const { return true; } // all the same
353 bool operator != (const Identity &) const { return false; }
354
355#if !defined(NDEBUG)
356 static const idLength = 9;
357 static void getIdString(char id[idLength]) { memcpy(id, "nothread", idLength); }
358#endif
359
360 private:
361 Identity() { }
362 };
29654253
A
363
364public:
365 void yield() { assert(false); }
bac41a7b
A
366
367protected:
368 virtual void action() = 0; // implement action of thread
369};
370
371#else
372# error Unsupported threading model
373#endif
374
375
376//
377// A "just run this function in a thread" variant of Thread
378//
379class ThreadRunner : public Thread {
380 typedef void Action();
381public:
382 ThreadRunner(Action *todo);
383
384private:
385 void action();
386 Action *mAction;
387};
388
389
390//
391// A NestingMutex allows recursive re-entry by the same thread.
392// Some pthread implementations support this through a mutex attribute.
393// OSX's doesn't, naturally. This implementation works on all pthread platforms.
394//
395class NestingMutex {
396public:
397 NestingMutex();
398
399 void lock();
400 bool tryLock();
401 void unlock();
402
403private:
404 Mutex mLock;
405 Mutex mWait;
406 Thread::Identity mIdent;
407 uint32 mCount;
408};
409
410} // end namespace Security
411
412#endif //_H_THREADING