]>
Commit | Line | Data |
---|---|---|
b1ab9ed8 A |
1 | /* |
2 | File: MD5.c | |
3 | ||
4 | Written by: Colin Plumb | |
5 | ||
6 | Copyright: Copyright 1998 by Apple Computer, Inc., all rights reserved. | |
7 | ||
8 | Change History (most recent first): | |
9 | ||
10 | <7> 10/06/98 ap Changed to compile with C++. | |
11 | ||
12 | To Do: | |
13 | */ | |
14 | ||
15 | /* Copyright (c) 1998 Apple Computer, Inc. All rights reserved. | |
16 | * | |
17 | * NOTICE: USE OF THE MATERIALS ACCOMPANYING THIS NOTICE IS SUBJECT | |
18 | * TO THE TERMS OF THE SIGNED "FAST ELLIPTIC ENCRYPTION (FEE) REFERENCE | |
19 | * SOURCE CODE EVALUATION AGREEMENT" BETWEEN APPLE COMPUTER, INC. AND THE | |
20 | * ORIGINAL LICENSEE THAT OBTAINED THESE MATERIALS FROM APPLE COMPUTER, | |
21 | * INC. ANY USE OF THESE MATERIALS NOT PERMITTED BY SUCH AGREEMENT WILL | |
22 | * EXPOSE YOU TO LIABILITY. | |
23 | *************************************************************************** | |
24 | * | |
25 | * MD5.c | |
26 | */ | |
27 | ||
28 | /* | |
29 | * This code implements the MD5 message-digest algorithm. | |
30 | * The algorithm is due to Ron Rivest. This code was | |
31 | * written by Colin Plumb in 1993, no copyright is claimed. | |
32 | * This code is in the public domain; do with it what you wish. | |
33 | * | |
34 | * Equivalent code is available from RSA Data Security, Inc. | |
35 | * This code has been tested against that, and is equivalent, | |
36 | * except that you don't need to include two pages of legalese | |
37 | * with every copy. | |
38 | * | |
39 | * To compute the message digest of a chunk of bytes, declare an | |
40 | * MD5Context structure, pass it to MD5Init, call MD5Update as | |
41 | * needed on buffers full of bytes, and then call MD5Final, which | |
42 | * will fill a supplied 16-byte array with the digest. | |
43 | */ | |
44 | ||
45 | /* | |
46 | * Revision History | |
47 | * ---------------- | |
48 | * 06 Feb 1997 Doug Mitchell at Apple | |
49 | * Fixed endian-dependent cast in MD5Final() | |
50 | * Made byteReverse() tolerant of platform-dependent alignment | |
51 | * restrictions | |
52 | */ | |
53 | ||
54 | #include "ckconfig.h" | |
55 | ||
56 | #if CRYPTKIT_MD5_ENABLE && !CRYPTKIT_LIBMD_DIGEST | |
57 | ||
58 | #include "ckMD5.h" | |
59 | #include "platform.h" | |
60 | #include "byteRep.h" | |
61 | #include <stdlib.h> | |
62 | ||
63 | ||
64 | #define MD5_DEBUG 0 | |
65 | ||
66 | #if MD5_DEBUG | |
67 | static inline void dumpCtx(MD5Context *ctx, char *label) | |
68 | { | |
69 | int i; | |
70 | ||
71 | printf("%s\n", label); | |
72 | printf("buf = "); | |
73 | for(i=0; i<4; i++) { | |
74 | printf("%x:", ctx->buf[i]); | |
75 | } | |
76 | printf("\nbits: %d:%d\n", ctx->bits[0], ctx->bits[1]); | |
77 | printf("in[]:\n "); | |
78 | for(i=0; i<64; i++) { | |
79 | printf("%02x:", ctx->in[i]); | |
80 | if((i % 16) == 15) { | |
81 | printf("\n "); | |
82 | } | |
83 | } | |
84 | printf("\n"); | |
85 | } | |
86 | #else // MD5_DEBUG | |
87 | #define dumpCtx(ctx, label) | |
88 | #endif // MD5_DEBUG | |
89 | ||
90 | static void MD5Transform(UINT32 buf[4], UINT32 const in[16]); | |
91 | ||
92 | #if __LITTLE_ENDIAN__ | |
93 | #define byteReverse(buf, len) /* Nothing */ | |
94 | #else | |
95 | static void byteReverse(unsigned char *buf, unsigned longs); | |
96 | ||
97 | #ifndef ASM_MD5 | |
98 | /* | |
99 | * Note: this code is harmless on little-endian machines. | |
100 | */ | |
101 | static void byteReverse(unsigned char *buf, unsigned longs) | |
102 | { | |
103 | #if old_way | |
104 | /* | |
105 | * this code is NOT harmless on big-endian machine which require | |
106 | * natural alignment. | |
107 | */ | |
108 | UINT32 t; | |
109 | do { | |
110 | t = (UINT32) ((unsigned) buf[3] << 8 | buf[2]) << 16 | | |
111 | ((unsigned) buf[1] << 8 | buf[0]); | |
112 | *(UINT32 *) buf = t; | |
113 | buf += 4; | |
114 | } while (--longs); | |
115 | #else // new_way | |
116 | ||
117 | unsigned char t; | |
118 | do { | |
119 | t = buf[0]; | |
120 | buf[0] = buf[3]; | |
121 | buf[3] = t; | |
122 | t = buf[1]; | |
123 | buf[1] = buf[2]; | |
124 | buf[2] = t; | |
125 | buf += 4; | |
126 | } while (--longs); | |
127 | #endif // old_way | |
128 | } | |
129 | #endif // ASM_MD5 | |
130 | #endif // __LITTLE_ENDIAN__ | |
131 | ||
132 | /* | |
133 | * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious | |
134 | * initialization constants. | |
135 | */ | |
136 | void MD5Init(MD5Context *ctx) | |
137 | { | |
138 | ctx->buf[0] = 0x67452301; | |
139 | ctx->buf[1] = 0xefcdab89; | |
140 | ctx->buf[2] = 0x98badcfe; | |
141 | ctx->buf[3] = 0x10325476; | |
142 | ||
143 | ctx->bits[0] = 0; | |
144 | ctx->bits[1] = 0; | |
145 | } | |
146 | ||
147 | /* | |
148 | * Update context to reflect the concatenation of another buffer full | |
149 | * of bytes. | |
150 | */ | |
151 | void MD5Update(MD5Context *ctx, unsigned char const *buf, unsigned len) | |
152 | { | |
153 | UINT32 t; | |
154 | ||
155 | dumpCtx(ctx, "MD5.c update top"); | |
156 | /* Update bitcount */ | |
157 | ||
158 | t = ctx->bits[0]; | |
159 | if ((ctx->bits[0] = t + ((UINT32) len << 3)) < t) | |
160 | ctx->bits[1]++; /* Carry from low to high */ | |
161 | ctx->bits[1] += len >> 29; | |
162 | ||
163 | t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */ | |
164 | ||
165 | /* Handle any leading odd-sized chunks */ | |
166 | ||
167 | if (t) { | |
168 | unsigned char *p = (unsigned char *) ctx->in + t; | |
169 | ||
170 | t = 64 - t; | |
171 | if (len < t) { | |
172 | memcpy(p, buf, len); | |
173 | return; | |
174 | } | |
175 | memcpy(p, buf, t); | |
176 | byteReverse(ctx->in, 16); | |
177 | MD5Transform(ctx->buf, (UINT32 *) ctx->in); | |
178 | dumpCtx(ctx, "update - return from transform (1)"); | |
179 | buf += t; | |
180 | len -= t; | |
181 | } | |
182 | /* Process data in 64-byte chunks */ | |
183 | ||
184 | while (len >= 64) { | |
185 | memcpy(ctx->in, buf, 64); | |
186 | byteReverse(ctx->in, 16); | |
187 | MD5Transform(ctx->buf, (UINT32 *) ctx->in); | |
188 | dumpCtx(ctx, "update - return from transform (2)"); | |
189 | buf += 64; | |
190 | len -= 64; | |
191 | } | |
192 | ||
193 | /* Handle any remaining bytes of data. */ | |
194 | ||
195 | memcpy(ctx->in, buf, len); | |
196 | } | |
197 | ||
198 | /* | |
199 | * Final wrapup - pad to 64-byte boundary with the bit pattern | |
200 | * 1 0* (64-bit count of bits processed, MSB-first) | |
201 | */ | |
202 | void MD5Final(MD5Context *ctx, unsigned char *digest) | |
203 | { | |
204 | unsigned count; | |
205 | unsigned char *p; | |
206 | ||
207 | dumpCtx(ctx, "final top"); | |
208 | ||
209 | /* Compute number of bytes mod 64 */ | |
210 | count = (ctx->bits[0] >> 3) & 0x3F; | |
211 | ||
212 | /* Set the first char of padding to 0x80. This is safe since there is | |
213 | always at least one byte free */ | |
214 | p = ctx->in + count; | |
215 | *p++ = 0x80; | |
216 | #if MD5_DEBUG | |
217 | printf("in[%d] = %x\n", count, ctx->in[count]); | |
218 | #endif | |
219 | /* Bytes of padding needed to make 64 bytes */ | |
220 | count = 64 - 1 - count; | |
221 | ||
222 | /* Pad out to 56 mod 64 */ | |
223 | dumpCtx(ctx, "final, before pad"); | |
224 | if (count < 8) { | |
225 | /* Two lots of padding: Pad the first block to 64 bytes */ | |
226 | bzero(p, count); | |
227 | byteReverse(ctx->in, 16); | |
228 | MD5Transform(ctx->buf, (UINT32 *) ctx->in); | |
229 | ||
230 | /* Now fill the next block with 56 bytes */ | |
231 | bzero(ctx->in, 56); | |
232 | } else { | |
233 | /* Pad block to 56 bytes */ | |
234 | bzero(p, count - 8); | |
235 | } | |
236 | byteReverse(ctx->in, 14); | |
237 | ||
238 | /* Append length in bits and transform */ | |
239 | #if old_way | |
240 | /* | |
241 | * On a little endian machine, this writes the l.s. byte of | |
242 | * the bit count to ctx->in[56] and the m.s byte of the bit count to | |
243 | * ctx->in[63]. | |
244 | */ | |
245 | ((UINT32 *) ctx->in)[14] = ctx->bits[0]; | |
246 | ((UINT32 *) ctx->in)[15] = ctx->bits[1]; | |
247 | #else // new_way | |
248 | intToByteRep(ctx->bits[0], &ctx->in[56]); | |
249 | intToByteRep(ctx->bits[1], &ctx->in[60]); | |
250 | #endif // new_way | |
251 | ||
252 | dumpCtx(ctx, "last transform"); | |
253 | MD5Transform(ctx->buf, (UINT32 *) ctx->in); | |
254 | byteReverse((unsigned char *) ctx->buf, 4); | |
255 | memcpy(digest, ctx->buf, MD5_DIGEST_SIZE); | |
256 | dumpCtx(ctx, "final end"); | |
257 | ||
258 | bzero(ctx, sizeof(*ctx)); /* In case it's sensitive */ | |
259 | } | |
260 | ||
261 | #ifndef ASM_MD5 | |
262 | ||
263 | /* The four core functions - F1 is optimized somewhat */ | |
264 | ||
265 | /* #define F1(x, y, z) (x & y | ~x & z) */ | |
266 | #define F1(x, y, z) (z ^ (x & (y ^ z))) | |
267 | #define F2(x, y, z) F1(z, x, y) | |
268 | #define F3(x, y, z) (x ^ y ^ z) | |
269 | #define F4(x, y, z) (y ^ (x | ~z)) | |
270 | ||
271 | /* This is the central step in the MD5 algorithm. */ | |
272 | #define MD5STEP(f, w, x, y, z, data, s) \ | |
273 | ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x ) | |
274 | ||
275 | /* | |
276 | * The core of the MD5 algorithm, this alters an existing MD5 hash to | |
277 | * reflect the addition of 16 longwords of new data. MD5Update blocks | |
278 | * the data and converts bytes into longwords for this routine. | |
279 | */ | |
280 | static void MD5Transform(UINT32 buf[4], UINT32 const in[16]) | |
281 | { | |
282 | register UINT32 a, b, c, d; | |
283 | ||
284 | a = buf[0]; | |
285 | b = buf[1]; | |
286 | c = buf[2]; | |
287 | d = buf[3]; | |
288 | ||
289 | MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); | |
290 | MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); | |
291 | MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); | |
292 | MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); | |
293 | MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); | |
294 | MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); | |
295 | MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); | |
296 | MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); | |
297 | MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); | |
298 | MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); | |
299 | MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); | |
300 | MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); | |
301 | MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); | |
302 | MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); | |
303 | MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); | |
304 | MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); | |
305 | ||
306 | MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); | |
307 | MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); | |
308 | MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); | |
309 | MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); | |
310 | MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); | |
311 | MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); | |
312 | MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); | |
313 | MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); | |
314 | MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); | |
315 | MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); | |
316 | MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); | |
317 | MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); | |
318 | MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); | |
319 | MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); | |
320 | MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); | |
321 | MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); | |
322 | ||
323 | MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); | |
324 | MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); | |
325 | MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); | |
326 | MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); | |
327 | MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); | |
328 | MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); | |
329 | MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); | |
330 | MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); | |
331 | MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); | |
332 | MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); | |
333 | MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); | |
334 | MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); | |
335 | MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); | |
336 | MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); | |
337 | MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); | |
338 | MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); | |
339 | ||
340 | MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); | |
341 | MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); | |
342 | MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); | |
343 | MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); | |
344 | MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); | |
345 | MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); | |
346 | MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); | |
347 | MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); | |
348 | MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); | |
349 | MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); | |
350 | MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); | |
351 | MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); | |
352 | MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); | |
353 | MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); | |
354 | MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); | |
355 | MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); | |
356 | ||
357 | buf[0] += a; | |
358 | buf[1] += b; | |
359 | buf[2] += c; | |
360 | buf[3] += d; | |
361 | } | |
362 | ||
363 | #endif /* ASM_MD5 */ | |
364 | ||
365 | #endif /* CRYPTKIT_MD5_ENABLE && CRYPTKIT_LIBMD_DIGEST */ |