]>
Commit | Line | Data |
---|---|---|
b1ab9ed8 A |
1 | /* |
2 | * Copyright (c) 2000-2001 Apple Computer, Inc. All Rights Reserved. | |
3 | * | |
4 | * The contents of this file constitute Original Code as defined in and are | |
5 | * subject to the Apple Public Source License Version 1.2 (the 'License'). | |
6 | * You may not use this file except in compliance with the License. Please obtain | |
7 | * a copy of the License at http://www.apple.com/publicsource and read it before | |
8 | * using this file. | |
9 | * | |
10 | * This Original Code and all software distributed under the License are | |
11 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS | |
12 | * OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, INCLUDING WITHOUT | |
13 | * LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR | |
14 | * PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. Please see the License for the | |
15 | * specific language governing rights and limitations under the License. | |
16 | */ | |
17 | ||
18 | ||
19 | /* crypto/bn/bn_mul.c */ | |
20 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | |
21 | * All rights reserved. | |
22 | * | |
23 | * This package is an SSL implementation written | |
24 | * by Eric Young (eay@cryptsoft.com). | |
25 | * The implementation was written so as to conform with Netscapes SSL. | |
26 | * | |
27 | * This library is free for commercial and non-commercial use as long as | |
28 | * the following conditions are aheared to. The following conditions | |
29 | * apply to all code found in this distribution, be it the RC4, RSA, | |
30 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | |
31 | * included with this distribution is covered by the same copyright terms | |
32 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | |
33 | * | |
34 | * Copyright remains Eric Young's, and as such any Copyright notices in | |
35 | * the code are not to be removed. | |
36 | * If this package is used in a product, Eric Young should be given attribution | |
37 | * as the author of the parts of the library used. | |
38 | * This can be in the form of a textual message at program startup or | |
39 | * in documentation (online or textual) provided with the package. | |
40 | * | |
41 | * Redistribution and use in source and binary forms, with or without | |
42 | * modification, are permitted provided that the following conditions | |
43 | * are met: | |
44 | * 1. Redistributions of source code must retain the copyright | |
45 | * notice, this list of conditions and the following disclaimer. | |
46 | * 2. Redistributions in binary form must reproduce the above copyright | |
47 | * notice, this list of conditions and the following disclaimer in the | |
48 | * documentation and/or other materials provided with the distribution. | |
49 | * 3. All advertising materials mentioning features or use of this software | |
50 | * must display the following acknowledgement: | |
51 | * "This product includes cryptographic software written by | |
52 | * Eric Young (eay@cryptsoft.com)" | |
53 | * The word 'cryptographic' can be left out if the rouines from the library | |
54 | * being used are not cryptographic related :-). | |
55 | * 4. If you include any Windows specific code (or a derivative thereof) from | |
56 | * the apps directory (application code) you must include an acknowledgement: | |
57 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | |
58 | * | |
59 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | |
60 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
61 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
62 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | |
63 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
64 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
65 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
66 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
67 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
68 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
69 | * SUCH DAMAGE. | |
70 | * | |
71 | * The licence and distribution terms for any publically available version or | |
72 | * derivative of this code cannot be changed. i.e. this code cannot simply be | |
73 | * copied and put under another distribution licence | |
74 | * [including the GNU Public Licence.] | |
75 | */ | |
76 | ||
77 | #include <stdio.h> | |
78 | #include "cryptlib.h" | |
79 | #include "bn_lcl.h" | |
80 | ||
81 | #ifdef BN_RECURSION | |
82 | /* Karatsuba recursive multiplication algorithm | |
83 | * (cf. Knuth, The Art of Computer Programming, Vol. 2) */ | |
84 | ||
85 | /* r is 2*n2 words in size, | |
86 | * a and b are both n2 words in size. | |
87 | * n2 must be a power of 2. | |
88 | * We multiply and return the result. | |
89 | * t must be 2*n2 words in size | |
90 | * We calculate | |
91 | * a[0]*b[0] | |
92 | * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0]) | |
93 | * a[1]*b[1] | |
94 | */ | |
95 | void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, | |
96 | BN_ULONG *t) | |
97 | { | |
98 | int n=n2/2,c1,c2; | |
99 | unsigned int neg,zero; | |
100 | BN_ULONG ln,lo,*p; | |
101 | ||
102 | # ifdef BN_COUNT | |
103 | printf(" bn_mul_recursive %d * %d\n",n2,n2); | |
104 | # endif | |
105 | # ifdef BN_MUL_COMBA | |
106 | # if 0 | |
107 | if (n2 == 4) | |
108 | { | |
109 | bn_mul_comba4(r,a,b); | |
110 | return; | |
111 | } | |
112 | # endif | |
113 | if (n2 == 8) | |
114 | { | |
115 | bn_mul_comba8(r,a,b); | |
116 | return; | |
117 | } | |
118 | # endif /* BN_MUL_COMBA */ | |
119 | if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) | |
120 | { | |
121 | /* This should not happen */ | |
122 | bn_mul_normal(r,a,n2,b,n2); | |
123 | return; | |
124 | } | |
125 | /* r=(a[0]-a[1])*(b[1]-b[0]) */ | |
126 | c1=bn_cmp_words(a,&(a[n]),n); | |
127 | c2=bn_cmp_words(&(b[n]),b,n); | |
128 | zero=neg=0; | |
129 | switch (c1*3+c2) | |
130 | { | |
131 | case -4: | |
132 | bn_sub_words(t, &(a[n]),a, n); /* - */ | |
133 | bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */ | |
134 | break; | |
135 | case -3: | |
136 | zero=1; | |
137 | break; | |
138 | case -2: | |
139 | bn_sub_words(t, &(a[n]),a, n); /* - */ | |
140 | bn_sub_words(&(t[n]),&(b[n]),b, n); /* + */ | |
141 | neg=1; | |
142 | break; | |
143 | case -1: | |
144 | case 0: | |
145 | case 1: | |
146 | zero=1; | |
147 | break; | |
148 | case 2: | |
149 | bn_sub_words(t, a, &(a[n]),n); /* + */ | |
150 | bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */ | |
151 | neg=1; | |
152 | break; | |
153 | case 3: | |
154 | zero=1; | |
155 | break; | |
156 | case 4: | |
157 | bn_sub_words(t, a, &(a[n]),n); | |
158 | bn_sub_words(&(t[n]),&(b[n]),b, n); | |
159 | break; | |
160 | } | |
161 | ||
162 | # ifdef BN_MUL_COMBA | |
163 | if (n == 4) | |
164 | { | |
165 | if (!zero) | |
166 | bn_mul_comba4(&(t[n2]),t,&(t[n])); | |
167 | else | |
168 | memset(&(t[n2]),0,8*sizeof(BN_ULONG)); | |
169 | ||
170 | bn_mul_comba4(r,a,b); | |
171 | bn_mul_comba4(&(r[n2]),&(a[n]),&(b[n])); | |
172 | } | |
173 | else if (n == 8) | |
174 | { | |
175 | if (!zero) | |
176 | bn_mul_comba8(&(t[n2]),t,&(t[n])); | |
177 | else | |
178 | memset(&(t[n2]),0,16*sizeof(BN_ULONG)); | |
179 | ||
180 | bn_mul_comba8(r,a,b); | |
181 | bn_mul_comba8(&(r[n2]),&(a[n]),&(b[n])); | |
182 | } | |
183 | else | |
184 | # endif /* BN_MUL_COMBA */ | |
185 | { | |
186 | p= &(t[n2*2]); | |
187 | if (!zero) | |
188 | bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p); | |
189 | else | |
190 | memset(&(t[n2]),0,n2*sizeof(BN_ULONG)); | |
191 | bn_mul_recursive(r,a,b,n,p); | |
192 | bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),n,p); | |
193 | } | |
194 | ||
195 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign | |
196 | * r[10] holds (a[0]*b[0]) | |
197 | * r[32] holds (b[1]*b[1]) | |
198 | */ | |
199 | ||
200 | c1=(int)(bn_add_words(t,r,&(r[n2]),n2)); | |
201 | ||
202 | if (neg) /* if t[32] is negative */ | |
203 | { | |
204 | c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2)); | |
205 | } | |
206 | else | |
207 | { | |
208 | /* Might have a carry */ | |
209 | c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2)); | |
210 | } | |
211 | ||
212 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) | |
213 | * r[10] holds (a[0]*b[0]) | |
214 | * r[32] holds (b[1]*b[1]) | |
215 | * c1 holds the carry bits | |
216 | */ | |
217 | c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2)); | |
218 | if (c1) | |
219 | { | |
220 | p= &(r[n+n2]); | |
221 | lo= *p; | |
222 | ln=(lo+c1)&BN_MASK2; | |
223 | *p=ln; | |
224 | ||
225 | /* The overflow will stop before we over write | |
226 | * words we should not overwrite */ | |
227 | if (ln < (BN_ULONG)c1) | |
228 | { | |
229 | do { | |
230 | p++; | |
231 | lo= *p; | |
232 | ln=(lo+1)&BN_MASK2; | |
233 | *p=ln; | |
234 | } while (ln == 0); | |
235 | } | |
236 | } | |
237 | } | |
238 | ||
239 | /* n+tn is the word length | |
240 | * t needs to be n*4 is size, as does r */ | |
241 | void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int tn, | |
242 | int n, BN_ULONG *t) | |
243 | { | |
244 | int i,j,n2=n*2; | |
245 | unsigned int c1,c2,neg,zero; | |
246 | BN_ULONG ln,lo,*p; | |
247 | ||
248 | # ifdef BN_COUNT | |
249 | printf(" bn_mul_part_recursive %d * %d\n",tn+n,tn+n); | |
250 | # endif | |
251 | if (n < 8) | |
252 | { | |
253 | i=tn+n; | |
254 | bn_mul_normal(r,a,i,b,i); | |
255 | return; | |
256 | } | |
257 | ||
258 | /* r=(a[0]-a[1])*(b[1]-b[0]) */ | |
259 | c1=bn_cmp_words(a,&(a[n]),n); | |
260 | c2=bn_cmp_words(&(b[n]),b,n); | |
261 | zero=neg=0; | |
262 | switch (c1*3+c2) | |
263 | { | |
264 | case -4: | |
265 | bn_sub_words(t, &(a[n]),a, n); /* - */ | |
266 | bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */ | |
267 | break; | |
268 | case -3: | |
269 | zero=1; | |
270 | /* break; */ | |
271 | case -2: | |
272 | bn_sub_words(t, &(a[n]),a, n); /* - */ | |
273 | bn_sub_words(&(t[n]),&(b[n]),b, n); /* + */ | |
274 | neg=1; | |
275 | break; | |
276 | case -1: | |
277 | case 0: | |
278 | case 1: | |
279 | zero=1; | |
280 | /* break; */ | |
281 | case 2: | |
282 | bn_sub_words(t, a, &(a[n]),n); /* + */ | |
283 | bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */ | |
284 | neg=1; | |
285 | break; | |
286 | case 3: | |
287 | zero=1; | |
288 | /* break; */ | |
289 | case 4: | |
290 | bn_sub_words(t, a, &(a[n]),n); | |
291 | bn_sub_words(&(t[n]),&(b[n]),b, n); | |
292 | break; | |
293 | } | |
294 | /* The zero case isn't yet implemented here. The speedup | |
295 | would probably be negligible. */ | |
296 | # if 0 | |
297 | if (n == 4) | |
298 | { | |
299 | bn_mul_comba4(&(t[n2]),t,&(t[n])); | |
300 | bn_mul_comba4(r,a,b); | |
301 | bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn); | |
302 | memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2)); | |
303 | } | |
304 | else | |
305 | # endif | |
306 | if (n == 8) | |
307 | { | |
308 | bn_mul_comba8(&(t[n2]),t,&(t[n])); | |
309 | bn_mul_comba8(r,a,b); | |
310 | bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn); | |
311 | memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2)); | |
312 | } | |
313 | else | |
314 | { | |
315 | p= &(t[n2*2]); | |
316 | bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p); | |
317 | bn_mul_recursive(r,a,b,n,p); | |
318 | i=n/2; | |
319 | /* If there is only a bottom half to the number, | |
320 | * just do it */ | |
321 | j=tn-i; | |
322 | if (j == 0) | |
323 | { | |
324 | bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),i,p); | |
325 | memset(&(r[n2+i*2]),0,sizeof(BN_ULONG)*(n2-i*2)); | |
326 | } | |
327 | else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */ | |
328 | { | |
329 | bn_mul_part_recursive(&(r[n2]),&(a[n]),&(b[n]), | |
330 | j,i,p); | |
331 | memset(&(r[n2+tn*2]),0, | |
332 | sizeof(BN_ULONG)*(n2-tn*2)); | |
333 | } | |
334 | else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */ | |
335 | { | |
336 | memset(&(r[n2]),0,sizeof(BN_ULONG)*n2); | |
337 | if (tn < BN_MUL_RECURSIVE_SIZE_NORMAL) | |
338 | { | |
339 | bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn); | |
340 | } | |
341 | else | |
342 | { | |
343 | for (;;) | |
344 | { | |
345 | i/=2; | |
346 | if (i < tn) | |
347 | { | |
348 | bn_mul_part_recursive(&(r[n2]), | |
349 | &(a[n]),&(b[n]), | |
350 | tn-i,i,p); | |
351 | break; | |
352 | } | |
353 | else if (i == tn) | |
354 | { | |
355 | bn_mul_recursive(&(r[n2]), | |
356 | &(a[n]),&(b[n]), | |
357 | i,p); | |
358 | break; | |
359 | } | |
360 | } | |
361 | } | |
362 | } | |
363 | } | |
364 | ||
365 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign | |
366 | * r[10] holds (a[0]*b[0]) | |
367 | * r[32] holds (b[1]*b[1]) | |
368 | */ | |
369 | ||
370 | c1=(int)(bn_add_words(t,r,&(r[n2]),n2)); | |
371 | ||
372 | if (neg) /* if t[32] is negative */ | |
373 | { | |
374 | c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2)); | |
375 | } | |
376 | else | |
377 | { | |
378 | /* Might have a carry */ | |
379 | c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2)); | |
380 | } | |
381 | ||
382 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) | |
383 | * r[10] holds (a[0]*b[0]) | |
384 | * r[32] holds (b[1]*b[1]) | |
385 | * c1 holds the carry bits | |
386 | */ | |
387 | c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2)); | |
388 | if (c1) | |
389 | { | |
390 | p= &(r[n+n2]); | |
391 | lo= *p; | |
392 | ln=(lo+c1)&BN_MASK2; | |
393 | *p=ln; | |
394 | ||
395 | /* The overflow will stop before we over write | |
396 | * words we should not overwrite */ | |
397 | if (ln < c1) | |
398 | { | |
399 | do { | |
400 | p++; | |
401 | lo= *p; | |
402 | ln=(lo+1)&BN_MASK2; | |
403 | *p=ln; | |
404 | } while (ln == 0); | |
405 | } | |
406 | } | |
407 | } | |
408 | ||
409 | /* a and b must be the same size, which is n2. | |
410 | * r needs to be n2 words and t needs to be n2*2 | |
411 | */ | |
412 | void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, | |
413 | BN_ULONG *t) | |
414 | { | |
415 | int n=n2/2; | |
416 | ||
417 | # ifdef BN_COUNT | |
418 | printf(" bn_mul_low_recursive %d * %d\n",n2,n2); | |
419 | # endif | |
420 | ||
421 | bn_mul_recursive(r,a,b,n,&(t[0])); | |
422 | if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL) | |
423 | { | |
424 | bn_mul_low_recursive(&(t[0]),&(a[0]),&(b[n]),n,&(t[n2])); | |
425 | bn_add_words(&(r[n]),&(r[n]),&(t[0]),n); | |
426 | bn_mul_low_recursive(&(t[0]),&(a[n]),&(b[0]),n,&(t[n2])); | |
427 | bn_add_words(&(r[n]),&(r[n]),&(t[0]),n); | |
428 | } | |
429 | else | |
430 | { | |
431 | bn_mul_low_normal(&(t[0]),&(a[0]),&(b[n]),n); | |
432 | bn_mul_low_normal(&(t[n]),&(a[n]),&(b[0]),n); | |
433 | bn_add_words(&(r[n]),&(r[n]),&(t[0]),n); | |
434 | bn_add_words(&(r[n]),&(r[n]),&(t[n]),n); | |
435 | } | |
436 | } | |
437 | ||
438 | /* a and b must be the same size, which is n2. | |
439 | * r needs to be n2 words and t needs to be n2*2 | |
440 | * l is the low words of the output. | |
441 | * t needs to be n2*3 | |
442 | */ | |
443 | void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2, | |
444 | BN_ULONG *t) | |
445 | { | |
446 | int i,n; | |
447 | int c1,c2; | |
448 | int neg,oneg,zero; | |
449 | BN_ULONG ll,lc,*lp,*mp; | |
450 | ||
451 | # ifdef BN_COUNT | |
452 | printf(" bn_mul_high %d * %d\n",n2,n2); | |
453 | # endif | |
454 | n=n2/2; | |
455 | ||
456 | /* Calculate (al-ah)*(bh-bl) */ | |
457 | neg=zero=0; | |
458 | c1=bn_cmp_words(&(a[0]),&(a[n]),n); | |
459 | c2=bn_cmp_words(&(b[n]),&(b[0]),n); | |
460 | switch (c1*3+c2) | |
461 | { | |
462 | case -4: | |
463 | bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n); | |
464 | bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n); | |
465 | break; | |
466 | case -3: | |
467 | zero=1; | |
468 | break; | |
469 | case -2: | |
470 | bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n); | |
471 | bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n); | |
472 | neg=1; | |
473 | break; | |
474 | case -1: | |
475 | case 0: | |
476 | case 1: | |
477 | zero=1; | |
478 | break; | |
479 | case 2: | |
480 | bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n); | |
481 | bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n); | |
482 | neg=1; | |
483 | break; | |
484 | case 3: | |
485 | zero=1; | |
486 | break; | |
487 | case 4: | |
488 | bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n); | |
489 | bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n); | |
490 | break; | |
491 | } | |
492 | ||
493 | oneg=neg; | |
494 | /* t[10] = (a[0]-a[1])*(b[1]-b[0]) */ | |
495 | /* r[10] = (a[1]*b[1]) */ | |
496 | # ifdef BN_MUL_COMBA | |
497 | if (n == 8) | |
498 | { | |
499 | bn_mul_comba8(&(t[0]),&(r[0]),&(r[n])); | |
500 | bn_mul_comba8(r,&(a[n]),&(b[n])); | |
501 | } | |
502 | else | |
503 | # endif | |
504 | { | |
505 | bn_mul_recursive(&(t[0]),&(r[0]),&(r[n]),n,&(t[n2])); | |
506 | bn_mul_recursive(r,&(a[n]),&(b[n]),n,&(t[n2])); | |
507 | } | |
508 | ||
509 | /* s0 == low(al*bl) | |
510 | * s1 == low(ah*bh)+low((al-ah)*(bh-bl))+low(al*bl)+high(al*bl) | |
511 | * We know s0 and s1 so the only unknown is high(al*bl) | |
512 | * high(al*bl) == s1 - low(ah*bh+s0+(al-ah)*(bh-bl)) | |
513 | * high(al*bl) == s1 - (r[0]+l[0]+t[0]) | |
514 | */ | |
515 | if (l != NULL) | |
516 | { | |
517 | lp= &(t[n2+n]); | |
518 | c1=(int)(bn_add_words(lp,&(r[0]),&(l[0]),n)); | |
519 | } | |
520 | else | |
521 | { | |
522 | c1=0; | |
523 | lp= &(r[0]); | |
524 | } | |
525 | ||
526 | if (neg) | |
527 | neg=(int)(bn_sub_words(&(t[n2]),lp,&(t[0]),n)); | |
528 | else | |
529 | { | |
530 | bn_add_words(&(t[n2]),lp,&(t[0]),n); | |
531 | neg=0; | |
532 | } | |
533 | ||
534 | if (l != NULL) | |
535 | { | |
536 | bn_sub_words(&(t[n2+n]),&(l[n]),&(t[n2]),n); | |
537 | } | |
538 | else | |
539 | { | |
540 | lp= &(t[n2+n]); | |
541 | mp= &(t[n2]); | |
542 | for (i=0; i<n; i++) | |
543 | lp[i]=((~mp[i])+1)&BN_MASK2; | |
544 | } | |
545 | ||
546 | /* s[0] = low(al*bl) | |
547 | * t[3] = high(al*bl) | |
548 | * t[10] = (a[0]-a[1])*(b[1]-b[0]) neg is the sign | |
549 | * r[10] = (a[1]*b[1]) | |
550 | */ | |
551 | /* R[10] = al*bl | |
552 | * R[21] = al*bl + ah*bh + (a[0]-a[1])*(b[1]-b[0]) | |
553 | * R[32] = ah*bh | |
554 | */ | |
555 | /* R[1]=t[3]+l[0]+r[0](+-)t[0] (have carry/borrow) | |
556 | * R[2]=r[0]+t[3]+r[1](+-)t[1] (have carry/borrow) | |
557 | * R[3]=r[1]+(carry/borrow) | |
558 | */ | |
559 | if (l != NULL) | |
560 | { | |
561 | lp= &(t[n2]); | |
562 | c1= (int)(bn_add_words(lp,&(t[n2+n]),&(l[0]),n)); | |
563 | } | |
564 | else | |
565 | { | |
566 | lp= &(t[n2+n]); | |
567 | c1=0; | |
568 | } | |
569 | c1+=(int)(bn_add_words(&(t[n2]),lp, &(r[0]),n)); | |
570 | if (oneg) | |
571 | c1-=(int)(bn_sub_words(&(t[n2]),&(t[n2]),&(t[0]),n)); | |
572 | else | |
573 | c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),&(t[0]),n)); | |
574 | ||
575 | c2 =(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n2+n]),n)); | |
576 | c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(r[n]),n)); | |
577 | if (oneg) | |
578 | c2-=(int)(bn_sub_words(&(r[0]),&(r[0]),&(t[n]),n)); | |
579 | else | |
580 | c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n]),n)); | |
581 | ||
582 | if (c1 != 0) /* Add starting at r[0], could be +ve or -ve */ | |
583 | { | |
584 | i=0; | |
585 | if (c1 > 0) | |
586 | { | |
587 | lc=c1; | |
588 | do { | |
589 | ll=(r[i]+lc)&BN_MASK2; | |
590 | r[i++]=ll; | |
591 | lc=(lc > ll); | |
592 | } while (lc); | |
593 | } | |
594 | else | |
595 | { | |
596 | lc= -c1; | |
597 | do { | |
598 | ll=r[i]; | |
599 | r[i++]=(ll-lc)&BN_MASK2; | |
600 | lc=(lc > ll); | |
601 | } while (lc); | |
602 | } | |
603 | } | |
604 | if (c2 != 0) /* Add starting at r[1] */ | |
605 | { | |
606 | i=n; | |
607 | if (c2 > 0) | |
608 | { | |
609 | lc=c2; | |
610 | do { | |
611 | ll=(r[i]+lc)&BN_MASK2; | |
612 | r[i++]=ll; | |
613 | lc=(lc > ll); | |
614 | } while (lc); | |
615 | } | |
616 | else | |
617 | { | |
618 | lc= -c2; | |
619 | do { | |
620 | ll=r[i]; | |
621 | r[i++]=(ll-lc)&BN_MASK2; | |
622 | lc=(lc > ll); | |
623 | } while (lc); | |
624 | } | |
625 | } | |
626 | } | |
627 | #endif /* BN_RECURSION */ | |
628 | ||
629 | int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx) | |
630 | { | |
631 | int top,al,bl; | |
632 | BIGNUM *rr; | |
633 | int ret = 0; | |
634 | #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) | |
635 | int i; | |
636 | #endif | |
637 | #ifdef BN_RECURSION | |
638 | BIGNUM *t; | |
639 | int j,k; | |
640 | #endif | |
641 | ||
642 | #ifdef BN_COUNT | |
643 | printf("BN_mul %d * %d\n",a->top,b->top); | |
644 | #endif | |
645 | ||
646 | bn_check_top(a); | |
647 | bn_check_top(b); | |
648 | bn_check_top(r); | |
649 | ||
650 | al=a->top; | |
651 | bl=b->top; | |
652 | r->neg=a->neg^b->neg; | |
653 | ||
654 | if ((al == 0) || (bl == 0)) | |
655 | { | |
656 | BN_zero(r); | |
657 | return(1); | |
658 | } | |
659 | top=al+bl; | |
660 | ||
661 | BN_CTX_start(ctx); | |
662 | if ((r == a) || (r == b)) | |
663 | { | |
664 | if ((rr = BN_CTX_get(ctx)) == NULL) goto err; | |
665 | } | |
666 | else | |
667 | rr = r; | |
668 | ||
669 | #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) | |
670 | i = al-bl; | |
671 | #endif | |
672 | #ifdef BN_MUL_COMBA | |
673 | if (i == 0) | |
674 | { | |
675 | # if 0 | |
676 | if (al == 4) | |
677 | { | |
678 | if (bn_wexpand(rr,8) == NULL) goto err; | |
679 | rr->top=8; | |
680 | bn_mul_comba4(rr->d,a->d,b->d); | |
681 | goto end; | |
682 | } | |
683 | # endif | |
684 | if (al == 8) | |
685 | { | |
686 | if (bn_wexpand(rr,16) == NULL) goto err; | |
687 | rr->top=16; | |
688 | bn_mul_comba8(rr->d,a->d,b->d); | |
689 | goto end; | |
690 | } | |
691 | } | |
692 | #endif /* BN_MUL_COMBA */ | |
693 | #ifdef BN_RECURSION | |
694 | if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL)) | |
695 | { | |
696 | if (i == 1 && !BN_get_flags(b,BN_FLG_STATIC_DATA)) | |
697 | { | |
698 | bn_wexpand(b,al); | |
699 | b->d[bl]=0; | |
700 | bl++; | |
701 | i--; | |
702 | } | |
703 | else if (i == -1 && !BN_get_flags(a,BN_FLG_STATIC_DATA)) | |
704 | { | |
705 | bn_wexpand(a,bl); | |
706 | a->d[al]=0; | |
707 | al++; | |
708 | i++; | |
709 | } | |
710 | if (i == 0) | |
711 | { | |
712 | /* symmetric and > 4 */ | |
713 | /* 16 or larger */ | |
714 | j=BN_num_bits_word((BN_ULONG)al); | |
715 | j=1<<(j-1); | |
716 | k=j+j; | |
717 | t = BN_CTX_get(ctx); | |
718 | if (al == j) /* exact multiple */ | |
719 | { | |
720 | bn_wexpand(t,k*2); | |
721 | bn_wexpand(rr,k*2); | |
722 | bn_mul_recursive(rr->d,a->d,b->d,al,t->d); | |
723 | } | |
724 | else | |
725 | { | |
726 | bn_wexpand(a,k); | |
727 | bn_wexpand(b,k); | |
728 | bn_wexpand(t,k*4); | |
729 | bn_wexpand(rr,k*4); | |
730 | for (i=a->top; i<k; i++) | |
731 | a->d[i]=0; | |
732 | for (i=b->top; i<k; i++) | |
733 | b->d[i]=0; | |
734 | bn_mul_part_recursive(rr->d,a->d,b->d,al-j,j,t->d); | |
735 | } | |
736 | rr->top=top; | |
737 | goto end; | |
738 | } | |
739 | } | |
740 | #endif /* BN_RECURSION */ | |
741 | if (bn_wexpand(rr,top) == NULL) goto err; | |
742 | rr->top=top; | |
743 | bn_mul_normal(rr->d,a->d,al,b->d,bl); | |
744 | ||
745 | #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) | |
746 | end: | |
747 | #endif | |
748 | bn_fix_top(rr); | |
749 | if (r != rr) BN_copy(r,rr); | |
750 | ret=1; | |
751 | err: | |
752 | BN_CTX_end(ctx); | |
753 | return(ret); | |
754 | } | |
755 | ||
756 | void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb) | |
757 | { | |
758 | BN_ULONG *rr; | |
759 | ||
760 | #ifdef BN_COUNT | |
761 | printf(" bn_mul_normal %d * %d\n",na,nb); | |
762 | #endif | |
763 | ||
764 | if (na < nb) | |
765 | { | |
766 | int itmp; | |
767 | BN_ULONG *ltmp; | |
768 | ||
769 | itmp=na; na=nb; nb=itmp; | |
770 | ltmp=a; a=b; b=ltmp; | |
771 | ||
772 | } | |
773 | rr= &(r[na]); | |
774 | rr[0]=bn_mul_words(r,a,na,b[0]); | |
775 | ||
776 | for (;;) | |
777 | { | |
778 | if (--nb <= 0) return; | |
779 | rr[1]=bn_mul_add_words(&(r[1]),a,na,b[1]); | |
780 | if (--nb <= 0) return; | |
781 | rr[2]=bn_mul_add_words(&(r[2]),a,na,b[2]); | |
782 | if (--nb <= 0) return; | |
783 | rr[3]=bn_mul_add_words(&(r[3]),a,na,b[3]); | |
784 | if (--nb <= 0) return; | |
785 | rr[4]=bn_mul_add_words(&(r[4]),a,na,b[4]); | |
786 | rr+=4; | |
787 | r+=4; | |
788 | b+=4; | |
789 | } | |
790 | } | |
791 | ||
792 | void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) | |
793 | { | |
794 | #ifdef BN_COUNT | |
795 | printf(" bn_mul_low_normal %d * %d\n",n,n); | |
796 | #endif | |
797 | bn_mul_words(r,a,n,b[0]); | |
798 | ||
799 | for (;;) | |
800 | { | |
801 | if (--n <= 0) return; | |
802 | bn_mul_add_words(&(r[1]),a,n,b[1]); | |
803 | if (--n <= 0) return; | |
804 | bn_mul_add_words(&(r[2]),a,n,b[2]); | |
805 | if (--n <= 0) return; | |
806 | bn_mul_add_words(&(r[3]),a,n,b[3]); | |
807 | if (--n <= 0) return; | |
808 | bn_mul_add_words(&(r[4]),a,n,b[4]); | |
809 | r+=4; | |
810 | b+=4; | |
811 | } | |
812 | } |