--- /dev/null
+//===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the DenseMap class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_DENSEMAP_H
+#define LLVM_ADT_DENSEMAP_H
+
+#include "llvm-type_traits.h"
+#include <algorithm>
+#include <iterator>
+#include <new>
+#include <utility>
+#include <cassert>
+#include <cstddef>
+#include <cstring>
+#include <TargetConditionals.h>
+
+
+namespace objc {
+
+#if TARGET_OS_IPHONE
+
+// lifted from <MathExtras.h>:
+
+/// CountLeadingZeros_32 - this function performs the platform optimal form of
+/// counting the number of zeros from the most significant bit to the first one
+/// bit. Ex. CountLeadingZeros_32(0x00F000FF) == 8.
+/// Returns 32 if the word is zero.
+inline unsigned CountLeadingZeros_32(uint32_t Value) {
+ unsigned Count; // result
+#if __GNUC__ >= 4
+ // PowerPC is defined for __builtin_clz(0)
+#if !defined(__ppc__) && !defined(__ppc64__)
+ if (!Value) return 32;
+#endif
+ Count = __builtin_clz(Value);
+#else
+ if (!Value) return 32;
+ Count = 0;
+ // bisection method for count leading zeros
+ for (unsigned Shift = 32 >> 1; Shift; Shift >>= 1) {
+ uint32_t Tmp = Value >> Shift;
+ if (Tmp) {
+ Value = Tmp;
+ } else {
+ Count |= Shift;
+ }
+ }
+#endif
+ return Count;
+}
+/// CountLeadingOnes_32 - this function performs the operation of
+/// counting the number of ones from the most significant bit to the first zero
+/// bit. Ex. CountLeadingOnes_32(0xFF0FFF00) == 8.
+/// Returns 32 if the word is all ones.
+inline unsigned CountLeadingOnes_32(uint32_t Value) {
+ return CountLeadingZeros_32(~Value);
+}
+/// CountLeadingZeros_64 - This function performs the platform optimal form
+/// of counting the number of zeros from the most significant bit to the first
+/// one bit (64 bit edition.)
+/// Returns 64 if the word is zero.
+inline unsigned CountLeadingZeros_64(uint64_t Value) {
+ unsigned Count; // result
+#if __GNUC__ >= 4
+ // PowerPC is defined for __builtin_clzll(0)
+#if !defined(__ppc__) && !defined(__ppc64__)
+ if (!Value) return 64;
+#endif
+ Count = __builtin_clzll(Value);
+#else
+ if (sizeof(long) == sizeof(int64_t)) {
+ if (!Value) return 64;
+ Count = 0;
+ // bisection method for count leading zeros
+ for (unsigned Shift = 64 >> 1; Shift; Shift >>= 1) {
+ uint64_t Tmp = Value >> Shift;
+ if (Tmp) {
+ Value = Tmp;
+ } else {
+ Count |= Shift;
+ }
+ }
+ } else {
+ // get hi portion
+ uint32_t Hi = Hi_32(Value);
+ // if some bits in hi portion
+ if (Hi) {
+ // leading zeros in hi portion plus all bits in lo portion
+ Count = CountLeadingZeros_32(Hi);
+ } else {
+ // get lo portion
+ uint32_t Lo = Lo_32(Value);
+ // same as 32 bit value
+ Count = CountLeadingZeros_32(Lo)+32;
+ }
+ }
+#endif
+ return Count;
+}
+/// CountLeadingOnes_64 - This function performs the operation
+/// of counting the number of ones from the most significant bit to the first
+/// zero bit (64 bit edition.)
+/// Returns 64 if the word is all ones.
+inline unsigned CountLeadingOnes_64(uint64_t Value) {
+ return CountLeadingZeros_64(~Value);
+}
+/// CountTrailingZeros_32 - this function performs the platform optimal form of
+/// counting the number of zeros from the least significant bit to the first one
+/// bit. Ex. CountTrailingZeros_32(0xFF00FF00) == 8.
+/// Returns 32 if the word is zero.
+inline unsigned CountTrailingZeros_32(uint32_t Value) {
+#if __GNUC__ >= 4
+ return Value ? __builtin_ctz(Value) : 32;
+#else
+ static const unsigned Mod37BitPosition[] = {
+ 32, 0, 1, 26, 2, 23, 27, 0, 3, 16, 24, 30, 28, 11, 0, 13,
+ 4, 7, 17, 0, 25, 22, 31, 15, 29, 10, 12, 6, 0, 21, 14, 9,
+ 5, 20, 8, 19, 18
+ };
+ return Mod37BitPosition[(-Value & Value) % 37];
+#endif
+}
+/// CountTrailingOnes_32 - this function performs the operation of
+/// counting the number of ones from the least significant bit to the first zero
+/// bit. Ex. CountTrailingOnes_32(0x00FF00FF) == 8.
+/// Returns 32 if the word is all ones.
+inline unsigned CountTrailingOnes_32(uint32_t Value) {
+ return CountTrailingZeros_32(~Value);
+}
+/// CountTrailingZeros_64 - This function performs the platform optimal form
+/// of counting the number of zeros from the least significant bit to the first
+/// one bit (64 bit edition.)
+/// Returns 64 if the word is zero.
+inline unsigned CountTrailingZeros_64(uint64_t Value) {
+#if __GNUC__ >= 4
+ return Value ? __builtin_ctzll(Value) : 64;
+#else
+ static const unsigned Mod67Position[] = {
+ 64, 0, 1, 39, 2, 15, 40, 23, 3, 12, 16, 59, 41, 19, 24, 54,
+ 4, 64, 13, 10, 17, 62, 60, 28, 42, 30, 20, 51, 25, 44, 55,
+ 47, 5, 32, 65, 38, 14, 22, 11, 58, 18, 53, 63, 9, 61, 27,
+ 29, 50, 43, 46, 31, 37, 21, 57, 52, 8, 26, 49, 45, 36, 56,
+ 7, 48, 35, 6, 34, 33, 0
+ };
+ return Mod67Position[(-Value & Value) % 67];
+#endif
+}
+
+/// CountTrailingOnes_64 - This function performs the operation
+/// of counting the number of ones from the least significant bit to the first
+/// zero bit (64 bit edition.)
+/// Returns 64 if the word is all ones.
+inline unsigned CountTrailingOnes_64(uint64_t Value) {
+ return CountTrailingZeros_64(~Value);
+}
+/// CountPopulation_32 - this function counts the number of set bits in a value.
+/// Ex. CountPopulation(0xF000F000) = 8
+/// Returns 0 if the word is zero.
+inline unsigned CountPopulation_32(uint32_t Value) {
+#if __GNUC__ >= 4
+ return __builtin_popcount(Value);
+#else
+ uint32_t v = Value - ((Value >> 1) & 0x55555555);
+ v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
+ return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
+#endif
+}
+/// CountPopulation_64 - this function counts the number of set bits in a value,
+/// (64 bit edition.)
+inline unsigned CountPopulation_64(uint64_t Value) {
+#if __GNUC__ >= 4
+ return __builtin_popcountll(Value);
+#else
+ uint64_t v = Value - ((Value >> 1) & 0x5555555555555555ULL);
+ v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL);
+ v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
+ return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56);
+#endif
+}
+/// Log2_32 - This function returns the floor log base 2 of the specified value,
+/// -1 if the value is zero. (32 bit edition.)
+/// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
+inline unsigned Log2_32(uint32_t Value) {
+ return 31 - CountLeadingZeros_32(Value);
+}
+/// Log2_64 - This function returns the floor log base 2 of the specified value,
+/// -1 if the value is zero. (64 bit edition.)
+inline unsigned Log2_64(uint64_t Value) {
+ return 63 - CountLeadingZeros_64(Value);
+}
+/// Log2_32_Ceil - This function returns the ceil log base 2 of the specified
+/// value, 32 if the value is zero. (32 bit edition).
+/// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
+inline unsigned Log2_32_Ceil(uint32_t Value) {
+ return 32-CountLeadingZeros_32(Value-1);
+}
+
+#endif /* TARGET_OS_IPHONE */
+
+template<typename T>
+struct DenseMapInfo {
+ //static inline T getEmptyKey();
+ //static inline T getTombstoneKey();
+ //static unsigned getHashValue(const T &Val);
+ //static bool isEqual(const T &LHS, const T &RHS);
+};
+
+// Provide DenseMapInfo for all pointers.
+template<typename T>
+struct DenseMapInfo<T*> {
+ static inline T* getEmptyKey() {
+ intptr_t Val = -1;
+ return reinterpret_cast<T*>(Val);
+ }
+ static inline T* getTombstoneKey() {
+ intptr_t Val = -2;
+ return reinterpret_cast<T*>(Val);
+ }
+ static unsigned getHashValue(const T *PtrVal) {
+ return (unsigned((uintptr_t)PtrVal) >> 4) ^
+ (unsigned((uintptr_t)PtrVal) >> 9);
+ }
+ static bool isEqual(const T *LHS, const T *RHS) { return LHS == RHS; }
+};
+
+// Provide DenseMapInfo for chars.
+template<> struct DenseMapInfo<char> {
+ static inline char getEmptyKey() { return ~0; }
+ static inline char getTombstoneKey() { return ~0 - 1; }
+ static unsigned getHashValue(const char& Val) { return Val * 37; }
+ static bool isEqual(const char &LHS, const char &RHS) {
+ return LHS == RHS;
+ }
+};
+
+// Provide DenseMapInfo for unsigned ints.
+template<> struct DenseMapInfo<unsigned> {
+ static inline unsigned getEmptyKey() { return ~0; }
+ static inline unsigned getTombstoneKey() { return ~0U - 1; }
+ static unsigned getHashValue(const unsigned& Val) { return Val * 37; }
+ static bool isEqual(const unsigned& LHS, const unsigned& RHS) {
+ return LHS == RHS;
+ }
+};
+
+// Provide DenseMapInfo for unsigned longs.
+template<> struct DenseMapInfo<unsigned long> {
+ static inline unsigned long getEmptyKey() { return ~0UL; }
+ static inline unsigned long getTombstoneKey() { return ~0UL - 1L; }
+ static unsigned getHashValue(const unsigned long& Val) {
+ return (unsigned)(Val * 37UL);
+ }
+ static bool isEqual(const unsigned long& LHS, const unsigned long& RHS) {
+ return LHS == RHS;
+ }
+};
+
+// Provide DenseMapInfo for unsigned long longs.
+template<> struct DenseMapInfo<unsigned long long> {
+ static inline unsigned long long getEmptyKey() { return ~0ULL; }
+ static inline unsigned long long getTombstoneKey() { return ~0ULL - 1ULL; }
+ static unsigned getHashValue(const unsigned long long& Val) {
+ return (unsigned)(Val * 37ULL);
+ }
+ static bool isEqual(const unsigned long long& LHS,
+ const unsigned long long& RHS) {
+ return LHS == RHS;
+ }
+};
+
+// Provide DenseMapInfo for ints.
+template<> struct DenseMapInfo<int> {
+ static inline int getEmptyKey() { return 0x7fffffff; }
+ static inline int getTombstoneKey() { return -0x7fffffff - 1; }
+ static unsigned getHashValue(const int& Val) { return (unsigned)(Val * 37); }
+ static bool isEqual(const int& LHS, const int& RHS) {
+ return LHS == RHS;
+ }
+};
+
+// Provide DenseMapInfo for longs.
+template<> struct DenseMapInfo<long> {
+ static inline long getEmptyKey() {
+ return (1UL << (sizeof(long) * 8 - 1)) - 1L;
+ }
+ static inline long getTombstoneKey() { return getEmptyKey() - 1L; }
+ static unsigned getHashValue(const long& Val) {
+ return (unsigned)(Val * 37L);
+ }
+ static bool isEqual(const long& LHS, const long& RHS) {
+ return LHS == RHS;
+ }
+};
+
+// Provide DenseMapInfo for long longs.
+template<> struct DenseMapInfo<long long> {
+ static inline long long getEmptyKey() { return 0x7fffffffffffffffLL; }
+ static inline long long getTombstoneKey() { return -0x7fffffffffffffffLL-1; }
+ static unsigned getHashValue(const long long& Val) {
+ return (unsigned)(Val * 37LL);
+ }
+ static bool isEqual(const long long& LHS,
+ const long long& RHS) {
+ return LHS == RHS;
+ }
+};
+
+// Provide DenseMapInfo for all pairs whose members have info.
+template<typename T, typename U>
+struct DenseMapInfo<std::pair<T, U> > {
+ typedef std::pair<T, U> Pair;
+ typedef DenseMapInfo<T> FirstInfo;
+ typedef DenseMapInfo<U> SecondInfo;
+
+ static inline Pair getEmptyKey() {
+ return std::make_pair(FirstInfo::getEmptyKey(),
+ SecondInfo::getEmptyKey());
+ }
+ static inline Pair getTombstoneKey() {
+ return std::make_pair(FirstInfo::getTombstoneKey(),
+ SecondInfo::getEmptyKey());
+ }
+ static unsigned getHashValue(const Pair& PairVal) {
+ uint64_t key = (uint64_t)FirstInfo::getHashValue(PairVal.first) << 32
+ | (uint64_t)SecondInfo::getHashValue(PairVal.second);
+ key += ~(key << 32);
+ key ^= (key >> 22);
+ key += ~(key << 13);
+ key ^= (key >> 8);
+ key += (key << 3);
+ key ^= (key >> 15);
+ key += ~(key << 27);
+ key ^= (key >> 31);
+ return (unsigned)key;
+ }
+ static bool isEqual(const Pair& LHS, const Pair& RHS) { return LHS == RHS; }
+};
+
+} // end namespace objc
+
+
+
+namespace objc {
+
+template<typename KeyT, typename ValueT,
+ typename KeyInfoT = DenseMapInfo<KeyT>,
+ typename ValueInfoT = DenseMapInfo<ValueT>, bool IsConst = false>
+class DenseMapIterator;
+
+// ZeroValuesArePurgeable=true is used by the refcount table.
+// A key/value pair with value==0 is not required to be stored
+// in the refcount table; it could correctly be erased instead.
+// For performance, we do keep zero values in the table when the
+// true refcount decreases to 1: this makes any future retain faster.
+// For memory size, we allow rehashes and table insertions to
+// remove a zero value as if it were a tombstone.
+
+template<typename KeyT, typename ValueT,
+ bool ZeroValuesArePurgeable = false,
+ typename KeyInfoT = DenseMapInfo<KeyT>,
+ typename ValueInfoT = DenseMapInfo<ValueT> >
+class DenseMap {
+ typedef std::pair<KeyT, ValueT> BucketT;
+ unsigned NumBuckets;
+ BucketT *Buckets;
+
+ unsigned NumEntries;
+ unsigned NumTombstones;
+public:
+ typedef KeyT key_type;
+ typedef ValueT mapped_type;
+ typedef BucketT value_type;
+
+ DenseMap(const DenseMap &other) {
+ NumBuckets = 0;
+ CopyFrom(other);
+ }
+
+ explicit DenseMap(unsigned NumInitBuckets = 64) {
+ init(NumInitBuckets);
+ }
+
+ template<typename InputIt>
+ DenseMap(const InputIt &I, const InputIt &E) {
+ init(64);
+ insert(I, E);
+ }
+
+ ~DenseMap() {
+ const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
+ for (BucketT *P = Buckets, *E = Buckets+NumBuckets; P != E; ++P) {
+ if (!KeyInfoT::isEqual(P->first, EmptyKey) &&
+ !KeyInfoT::isEqual(P->first, TombstoneKey))
+ P->second.~ValueT();
+ P->first.~KeyT();
+ }
+#ifndef NDEBUG
+ memset(Buckets, 0x5a, sizeof(BucketT)*NumBuckets);
+#endif
+ operator delete(Buckets);
+ }
+
+ typedef DenseMapIterator<KeyT, ValueT, KeyInfoT> iterator;
+ typedef DenseMapIterator<KeyT, ValueT,
+ KeyInfoT, ValueInfoT, true> const_iterator;
+ inline iterator begin() {
+ // When the map is empty, avoid the overhead of AdvancePastEmptyBuckets().
+ return empty() ? end() : iterator(Buckets, Buckets+NumBuckets);
+ }
+ inline iterator end() {
+ return iterator(Buckets+NumBuckets, Buckets+NumBuckets);
+ }
+ inline const_iterator begin() const {
+ return empty() ? end() : const_iterator(Buckets, Buckets+NumBuckets);
+ }
+ inline const_iterator end() const {
+ return const_iterator(Buckets+NumBuckets, Buckets+NumBuckets);
+ }
+
+ bool empty() const { return NumEntries == 0; }
+ unsigned size() const { return NumEntries; }
+
+ /// Grow the densemap so that it has at least Size buckets. Does not shrink
+ void resize(size_t Size) { grow(Size); }
+
+ void clear() {
+ if (NumEntries == 0 && NumTombstones == 0) return;
+
+ // If the capacity of the array is huge, and the # elements used is small,
+ // shrink the array.
+ if (NumEntries * 4 < NumBuckets && NumBuckets > 64) {
+ shrink_and_clear();
+ return;
+ }
+
+ const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
+ for (BucketT *P = Buckets, *E = Buckets+NumBuckets; P != E; ++P) {
+ if (!KeyInfoT::isEqual(P->first, EmptyKey)) {
+ if (!KeyInfoT::isEqual(P->first, TombstoneKey)) {
+ P->second.~ValueT();
+ --NumEntries;
+ }
+ P->first = EmptyKey;
+ }
+ }
+ assert(NumEntries == 0 && "Node count imbalance!");
+ NumTombstones = 0;
+ }
+
+ /// count - Return true if the specified key is in the map.
+ bool count(const KeyT &Val) const {
+ BucketT *TheBucket;
+ return LookupBucketFor(Val, TheBucket);
+ }
+
+ iterator find(const KeyT &Val) {
+ BucketT *TheBucket;
+ if (LookupBucketFor(Val, TheBucket))
+ return iterator(TheBucket, Buckets+NumBuckets);
+ return end();
+ }
+ const_iterator find(const KeyT &Val) const {
+ BucketT *TheBucket;
+ if (LookupBucketFor(Val, TheBucket))
+ return const_iterator(TheBucket, Buckets+NumBuckets);
+ return end();
+ }
+
+ /// lookup - Return the entry for the specified key, or a default
+ /// constructed value if no such entry exists.
+ ValueT lookup(const KeyT &Val) const {
+ BucketT *TheBucket;
+ if (LookupBucketFor(Val, TheBucket))
+ return TheBucket->second;
+ return ValueT();
+ }
+
+ // Inserts key,value pair into the map if the key isn't already in the map.
+ // If the key is already in the map, it returns false and doesn't update the
+ // value.
+ std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
+ BucketT *TheBucket;
+ if (LookupBucketFor(KV.first, TheBucket))
+ return std::make_pair(iterator(TheBucket, Buckets+NumBuckets),
+ false); // Already in map.
+
+ // Otherwise, insert the new element.
+ TheBucket = InsertIntoBucket(KV.first, KV.second, TheBucket);
+ return std::make_pair(iterator(TheBucket, Buckets+NumBuckets),
+ true);
+ }
+
+ /// insert - Range insertion of pairs.
+ template<typename InputIt>
+ void insert(InputIt I, InputIt E) {
+ for (; I != E; ++I)
+ insert(*I);
+ }
+
+
+ bool erase(const KeyT &Val) {
+ BucketT *TheBucket;
+ if (!LookupBucketFor(Val, TheBucket))
+ return false; // not in map.
+
+ TheBucket->second.~ValueT();
+ TheBucket->first = getTombstoneKey();
+ --NumEntries;
+ ++NumTombstones;
+ return true;
+ }
+ void erase(iterator I) {
+ BucketT *TheBucket = &*I;
+ TheBucket->second.~ValueT();
+ TheBucket->first = getTombstoneKey();
+ --NumEntries;
+ ++NumTombstones;
+ }
+
+ void swap(DenseMap& RHS) {
+ std::swap(NumBuckets, RHS.NumBuckets);
+ std::swap(Buckets, RHS.Buckets);
+ std::swap(NumEntries, RHS.NumEntries);
+ std::swap(NumTombstones, RHS.NumTombstones);
+ }
+
+ value_type& FindAndConstruct(const KeyT &Key) {
+ BucketT *TheBucket;
+ if (LookupBucketFor(Key, TheBucket))
+ return *TheBucket;
+
+ return *InsertIntoBucket(Key, ValueT(), TheBucket);
+ }
+
+ ValueT &operator[](const KeyT &Key) {
+ return FindAndConstruct(Key).second;
+ }
+
+ DenseMap& operator=(const DenseMap& other) {
+ CopyFrom(other);
+ return *this;
+ }
+
+ /// isPointerIntoBucketsArray - Return true if the specified pointer points
+ /// somewhere into the DenseMap's array of buckets (i.e. either to a key or
+ /// value in the DenseMap).
+ bool isPointerIntoBucketsArray(const void *Ptr) const {
+ return Ptr >= Buckets && Ptr < Buckets+NumBuckets;
+ }
+
+ /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
+ /// array. In conjunction with the previous method, this can be used to
+ /// determine whether an insertion caused the DenseMap to reallocate.
+ const void *getPointerIntoBucketsArray() const { return Buckets; }
+
+private:
+ void CopyFrom(const DenseMap& other) {
+ if (NumBuckets != 0 &&
+ (!isPodLike<KeyInfoT>::value || !isPodLike<ValueInfoT>::value)) {
+ const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
+ for (BucketT *P = Buckets, *E = Buckets+NumBuckets; P != E; ++P) {
+ if (!KeyInfoT::isEqual(P->first, EmptyKey) &&
+ !KeyInfoT::isEqual(P->first, TombstoneKey))
+ P->second.~ValueT();
+ P->first.~KeyT();
+ }
+ }
+
+ NumEntries = other.NumEntries;
+ NumTombstones = other.NumTombstones;
+
+ if (NumBuckets) {
+#ifndef NDEBUG
+ memset(Buckets, 0x5a, sizeof(BucketT)*NumBuckets);
+#endif
+ operator delete(Buckets);
+ }
+ Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT) *
+ other.NumBuckets));
+
+ if (isPodLike<KeyInfoT>::value && isPodLike<ValueInfoT>::value)
+ memcpy(Buckets, other.Buckets, other.NumBuckets * sizeof(BucketT));
+ else
+ for (size_t i = 0; i < other.NumBuckets; ++i) {
+ new (&Buckets[i].first) KeyT(other.Buckets[i].first);
+ if (!KeyInfoT::isEqual(Buckets[i].first, getEmptyKey()) &&
+ !KeyInfoT::isEqual(Buckets[i].first, getTombstoneKey()))
+ new (&Buckets[i].second) ValueT(other.Buckets[i].second);
+ }
+ NumBuckets = other.NumBuckets;
+ }
+
+ BucketT *InsertIntoBucket(const KeyT &Key, const ValueT &Value,
+ BucketT *TheBucket) {
+ // If the load of the hash table is more than 3/4, grow the table.
+ // If fewer than 1/8 of the buckets are empty (meaning that many are
+ // filled with tombstones), rehash the table without growing.
+ //
+ // The later case is tricky. For example, if we had one empty bucket with
+ // tons of tombstones, failing lookups (e.g. for insertion) would have to
+ // probe almost the entire table until it found the empty bucket. If the
+ // table completely filled with tombstones, no lookup would ever succeed,
+ // causing infinite loops in lookup.
+ ++NumEntries;
+ if (NumEntries*4 >= NumBuckets*3) {
+ this->grow(NumBuckets * 2);
+ LookupBucketFor(Key, TheBucket);
+ }
+ else if (NumBuckets-(NumEntries+NumTombstones) < NumBuckets/8) {
+ this->grow(NumBuckets);
+ LookupBucketFor(Key, TheBucket);
+ }
+
+ // If we are writing over a tombstone or zero value, remember this.
+ if (!KeyInfoT::isEqual(TheBucket->first, getEmptyKey())) {
+ if (KeyInfoT::isEqual(TheBucket->first, getTombstoneKey())) {
+ --NumTombstones;
+ } else {
+ assert(ZeroValuesArePurgeable && TheBucket->second == 0);
+ TheBucket->second.~ValueT();
+ --NumEntries;
+ }
+ }
+
+ TheBucket->first = Key;
+ new (&TheBucket->second) ValueT(Value);
+ return TheBucket;
+ }
+
+ static unsigned getHashValue(const KeyT &Val) {
+ return KeyInfoT::getHashValue(Val);
+ }
+ static const KeyT getEmptyKey() {
+ return KeyInfoT::getEmptyKey();
+ }
+ static const KeyT getTombstoneKey() {
+ return KeyInfoT::getTombstoneKey();
+ }
+
+ /// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in
+ /// FoundBucket. If the bucket contains the key and a value, this returns
+ /// true, otherwise it returns a bucket with an empty marker or tombstone
+ /// or zero value and returns false.
+ bool LookupBucketFor(const KeyT &Val, BucketT *&FoundBucket) const {
+ unsigned BucketNo = getHashValue(Val);
+ unsigned ProbeAmt = 1;
+ BucketT *BucketsPtr = Buckets;
+
+ // FoundTombstone - Keep track of whether we find a tombstone or zero value while probing.
+ BucketT *FoundTombstone = 0;
+ const KeyT EmptyKey = getEmptyKey();
+ const KeyT TombstoneKey = getTombstoneKey();
+ assert(!KeyInfoT::isEqual(Val, EmptyKey) &&
+ !KeyInfoT::isEqual(Val, TombstoneKey) &&
+ "Empty/Tombstone value shouldn't be inserted into map!");
+
+ while (1) {
+ BucketT *ThisBucket = BucketsPtr + (BucketNo & (NumBuckets-1));
+ // Found Val's bucket? If so, return it.
+ if (KeyInfoT::isEqual(ThisBucket->first, Val)) {
+ FoundBucket = ThisBucket;
+ return true;
+ }
+
+ // If we found an empty bucket, the key doesn't exist in the set.
+ // Insert it and return the default value.
+ if (KeyInfoT::isEqual(ThisBucket->first, EmptyKey)) {
+ // If we've already seen a tombstone while probing, fill it in instead
+ // of the empty bucket we eventually probed to.
+ if (FoundTombstone) ThisBucket = FoundTombstone;
+ FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket;
+ return false;
+ }
+
+ // If this is a tombstone, remember it. If Val ends up not in the map, we
+ // prefer to return it than something that would require more probing.
+ // Ditto for zero values.
+ if (KeyInfoT::isEqual(ThisBucket->first, TombstoneKey) && !FoundTombstone)
+ FoundTombstone = ThisBucket; // Remember the first tombstone found.
+ if (ZeroValuesArePurgeable &&
+ ThisBucket->second == 0 && !FoundTombstone)
+ FoundTombstone = ThisBucket;
+
+ // Otherwise, it's a hash collision or a tombstone, continue quadratic
+ // probing.
+ BucketNo += ProbeAmt++;
+ }
+ }
+
+ void init(unsigned InitBuckets) {
+ NumEntries = 0;
+ NumTombstones = 0;
+ NumBuckets = InitBuckets;
+ assert(InitBuckets && (InitBuckets & (InitBuckets-1)) == 0 &&
+ "# initial buckets must be a power of two!");
+ Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT)*InitBuckets));
+ // Initialize all the keys to EmptyKey.
+ const KeyT EmptyKey = getEmptyKey();
+ for (unsigned i = 0; i != InitBuckets; ++i)
+ new (&Buckets[i].first) KeyT(EmptyKey);
+ }
+
+ void grow(unsigned AtLeast) {
+ unsigned OldNumBuckets = NumBuckets;
+ BucketT *OldBuckets = Buckets;
+
+ // Double the number of buckets.
+ while (NumBuckets < AtLeast)
+ NumBuckets <<= 1;
+ NumTombstones = 0;
+ Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT)*NumBuckets));
+
+ // Initialize all the keys to EmptyKey.
+ const KeyT EmptyKey = getEmptyKey();
+ for (unsigned i = 0, e = NumBuckets; i != e; ++i)
+ new (&Buckets[i].first) KeyT(EmptyKey);
+
+ // Insert all the old elements.
+ const KeyT TombstoneKey = getTombstoneKey();
+ for (BucketT *B = OldBuckets, *E = OldBuckets+OldNumBuckets; B != E; ++B) {
+ if (!KeyInfoT::isEqual(B->first, EmptyKey) &&
+ !KeyInfoT::isEqual(B->first, TombstoneKey))
+ {
+ // Valid key/value, or zero value
+ if (!ZeroValuesArePurgeable || B->second != 0) {
+ // Insert the key/value into the new table.
+ BucketT *DestBucket;
+ bool FoundVal = LookupBucketFor(B->first, DestBucket);
+ (void)FoundVal; // silence warning.
+ assert(!FoundVal && "Key already in new map?");
+ DestBucket->first = B->first;
+ new (&DestBucket->second) ValueT(B->second);
+ } else {
+ NumEntries--;
+ }
+
+ // Free the value.
+ B->second.~ValueT();
+ }
+ B->first.~KeyT();
+ }
+
+#ifndef NDEBUG
+ memset(OldBuckets, 0x5a, sizeof(BucketT)*OldNumBuckets);
+#endif
+ // Free the old table.
+ operator delete(OldBuckets);
+ }
+
+ void shrink_and_clear() {
+ unsigned OldNumBuckets = NumBuckets;
+ BucketT *OldBuckets = Buckets;
+
+ // Reduce the number of buckets.
+ NumBuckets = NumEntries > 32 ? 1 << (Log2_32_Ceil(NumEntries) + 1)
+ : 64;
+ NumTombstones = 0;
+ Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT)*NumBuckets));
+
+ // Initialize all the keys to EmptyKey.
+ const KeyT EmptyKey = getEmptyKey();
+ for (unsigned i = 0, e = NumBuckets; i != e; ++i)
+ new (&Buckets[i].first) KeyT(EmptyKey);
+
+ // Free the old buckets.
+ const KeyT TombstoneKey = getTombstoneKey();
+ for (BucketT *B = OldBuckets, *E = OldBuckets+OldNumBuckets; B != E; ++B) {
+ if (!KeyInfoT::isEqual(B->first, EmptyKey) &&
+ !KeyInfoT::isEqual(B->first, TombstoneKey)) {
+ // Free the value.
+ B->second.~ValueT();
+ }
+ B->first.~KeyT();
+ }
+
+#ifndef NDEBUG
+ memset(OldBuckets, 0x5a, sizeof(BucketT)*OldNumBuckets);
+#endif
+ // Free the old table.
+ operator delete(OldBuckets);
+
+ NumEntries = 0;
+ }
+};
+
+template<typename KeyT, typename ValueT,
+ typename KeyInfoT, typename ValueInfoT, bool IsConst>
+class DenseMapIterator {
+ typedef std::pair<KeyT, ValueT> Bucket;
+ typedef DenseMapIterator<KeyT, ValueT,
+ KeyInfoT, ValueInfoT, true> ConstIterator;
+ friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, ValueInfoT, true>;
+public:
+ typedef ptrdiff_t difference_type;
+ typedef typename conditional<IsConst, const Bucket, Bucket>::type value_type;
+ typedef value_type *pointer;
+ typedef value_type &reference;
+ typedef std::forward_iterator_tag iterator_category;
+private:
+ pointer Ptr, End;
+public:
+ DenseMapIterator() : Ptr(0), End(0) {}
+
+ DenseMapIterator(pointer Pos, pointer E) : Ptr(Pos), End(E) {
+ AdvancePastEmptyBuckets();
+ }
+
+ // If IsConst is true this is a converting constructor from iterator to
+ // const_iterator and the default copy constructor is used.
+ // Otherwise this is a copy constructor for iterator.
+ DenseMapIterator(const DenseMapIterator<KeyT, ValueT,
+ KeyInfoT, ValueInfoT, false>& I)
+ : Ptr(I.Ptr), End(I.End) {}
+
+ reference operator*() const {
+ return *Ptr;
+ }
+ pointer operator->() const {
+ return Ptr;
+ }
+
+ bool operator==(const ConstIterator &RHS) const {
+ return Ptr == RHS.operator->();
+ }
+ bool operator!=(const ConstIterator &RHS) const {
+ return Ptr != RHS.operator->();
+ }
+
+ inline DenseMapIterator& operator++() { // Preincrement
+ ++Ptr;
+ AdvancePastEmptyBuckets();
+ return *this;
+ }
+ DenseMapIterator operator++(int) { // Postincrement
+ DenseMapIterator tmp = *this; ++*this; return tmp;
+ }
+
+private:
+ void AdvancePastEmptyBuckets() {
+ const KeyT Empty = KeyInfoT::getEmptyKey();
+ const KeyT Tombstone = KeyInfoT::getTombstoneKey();
+
+ while (Ptr != End &&
+ (KeyInfoT::isEqual(Ptr->first, Empty) ||
+ KeyInfoT::isEqual(Ptr->first, Tombstone)))
+ ++Ptr;
+ }
+};
+
+} // end namespace objc
+
+#endif