* Cache readers (PC-checked by collecting_in_critical())
* objc_msgSend*
* cache_getImp
- * cache_getMethod
*
- * Cache writers (hold cacheUpdateLock while reading or writing; not PC-checked)
- * cache_fill (acquires lock)
- * cache_expand (only called from cache_fill)
- * cache_create (only called from cache_expand)
- * bcopy (only called from instrumented cache_expand)
- * flush_caches (acquires lock)
- * cache_flush (only called from cache_fill and flush_caches)
- * cache_collect_free (only called from cache_expand and cache_flush)
+ * Cache readers/writers (hold cacheUpdateLock during access; not PC-checked)
+ * cache_t::copyCacheNolock (caller must hold the lock)
+ * cache_t::eraseNolock (caller must hold the lock)
+ * cache_t::collectNolock (caller must hold the lock)
+ * cache_t::insert (acquires lock)
+ * cache_t::destroy (acquires lock)
*
* UNPROTECTED cache readers (NOT thread-safe; used for debug info only)
* cache_print
* _class_printDuplicateCacheEntries
* _class_printMethodCacheStatistics
*
- * _class_lookupMethodAndLoadCache is a special case. It may read a
- * method triplet out of one cache and store it in another cache. This
- * is unsafe if the method triplet is a forward:: entry, because the
- * triplet itself could be freed unless _class_lookupMethodAndLoadCache
- * were PC-checked or used a lock. Additionally, storing the method
- * triplet in both caches would result in double-freeing if both caches
- * were flushed or expanded. The solution is for cache_getMethod to
- * ignore all entries whose implementation is _objc_msgForward_impcache,
- * so _class_lookupMethodAndLoadCache cannot look at a forward:: entry
- * unsafely or place it in multiple caches.
***********************************************************************/
#if __OBJC2__
#include "objc-private.h"
-#include "objc-cache.h"
+#if TARGET_OS_OSX
+#include <Cambria/Traps.h>
+#include <Cambria/Cambria.h>
+#endif
-/* Initial cache bucket count. INIT_CACHE_SIZE must be a power of two. */
-enum {
- INIT_CACHE_SIZE_LOG2 = 2,
- INIT_CACHE_SIZE = (1 << INIT_CACHE_SIZE_LOG2)
-};
+#if __arm__ || __x86_64__ || __i386__
-static size_t log2u(size_t x)
-{
- unsigned int log;
+// objc_msgSend has few registers available.
+// Cache scan increments and wraps at special end-marking bucket.
+#define CACHE_END_MARKER 1
+
+// Historical fill ratio of 75% (since the new objc runtime was introduced).
+static inline mask_t cache_fill_ratio(mask_t capacity) {
+ return capacity * 3 / 4;
+}
- log = 0;
- while (x >>= 1)
- log += 1;
+#elif __arm64__ && !__LP64__
- return log;
+// objc_msgSend has lots of registers available.
+// Cache scan decrements. No end marker needed.
+#define CACHE_END_MARKER 0
+
+// Historical fill ratio of 75% (since the new objc runtime was introduced).
+static inline mask_t cache_fill_ratio(mask_t capacity) {
+ return capacity * 3 / 4;
+}
+
+#elif __arm64__ && __LP64__
+
+// objc_msgSend has lots of registers available.
+// Cache scan decrements. No end marker needed.
+#define CACHE_END_MARKER 0
+
+// Allow 87.5% fill ratio in the fast path for all cache sizes.
+// Increasing the cache fill ratio reduces the fragmentation and wasted space
+// in imp-caches at the cost of potentially increasing the average lookup of
+// a selector in imp-caches by increasing collision chains. Another potential
+// change is that cache table resizes / resets happen at different moments.
+static inline mask_t cache_fill_ratio(mask_t capacity) {
+ return capacity * 7 / 8;
}
-static void cache_collect_free(struct bucket_t *data, size_t size);
+// Allow 100% cache utilization for smaller cache sizes. This has the same
+// advantages and disadvantages as the fill ratio. A very large percentage
+// of caches end up with very few entries and the worst case of collision
+// chains in small tables is relatively small.
+// NOTE: objc_msgSend properly handles a cache lookup with a full cache.
+#define CACHE_ALLOW_FULL_UTILIZATION 1
+
+#else
+#error unknown architecture
+#endif
+
+/* Initial cache bucket count. INIT_CACHE_SIZE must be a power of two. */
+enum {
+#if CACHE_END_MARKER || (__arm64__ && !__LP64__)
+ // When we have a cache end marker it fills a bucket slot, so having a
+ // initial cache size of 2 buckets would not be efficient when one of the
+ // slots is always filled with the end marker. So start with a cache size
+ // 4 buckets.
+ INIT_CACHE_SIZE_LOG2 = 2,
+#else
+ // Allow an initial bucket size of 2 buckets, since a large number of
+ // classes, especially metaclasses, have very few imps, and we support
+ // the ability to fill 100% of the cache before resizing.
+ INIT_CACHE_SIZE_LOG2 = 1,
+#endif
+ INIT_CACHE_SIZE = (1 << INIT_CACHE_SIZE_LOG2),
+ MAX_CACHE_SIZE_LOG2 = 16,
+ MAX_CACHE_SIZE = (1 << MAX_CACHE_SIZE_LOG2),
+ FULL_UTILIZATION_CACHE_SIZE_LOG2 = 3,
+ FULL_UTILIZATION_CACHE_SIZE = (1 << FULL_UTILIZATION_CACHE_SIZE_LOG2),
+};
+
static int _collecting_in_critical(void);
static void _garbage_make_room(void);
+#if DEBUG_TASK_THREADS
+static kern_return_t objc_task_threads
+(
+ task_t target_task,
+ thread_act_array_t *act_list,
+ mach_msg_type_number_t *act_listCnt
+);
+#endif
+
+#if DEBUG_TASK_THREADS
+#undef HAVE_TASK_RESTARTABLE_RANGES
+#endif
/***********************************************************************
* Cache statistics for OBJC_PRINT_CACHE_SETUP
static size_t cache_allocations;
static size_t cache_collections;
+static void recordNewCache(mask_t capacity)
+{
+ size_t bucket = log2u(capacity);
+ if (bucket < countof(cache_counts)) {
+ cache_counts[bucket]++;
+ }
+ cache_allocations++;
+}
+
+static void recordDeadCache(mask_t capacity)
+{
+ size_t bucket = log2u(capacity);
+ if (bucket < countof(cache_counts)) {
+ cache_counts[bucket]--;
+ }
+}
/***********************************************************************
* Pointers used by compiled class objects
* These use asm to avoid conflicts with the compiler's internal declarations
**********************************************************************/
+// EMPTY_BYTES includes space for a cache end marker bucket.
+// This end marker doesn't actually have the wrap-around pointer
+// because cache scans always find an empty bucket before they might wrap.
+// 1024 buckets is fairly common.
+#if DEBUG
+ // Use a smaller size to exercise heap-allocated empty caches.
+# define EMPTY_BYTES ((8+1)*16)
+#else
+# define EMPTY_BYTES ((1024+1)*16)
+#endif
+
+#define stringize(x) #x
+#define stringize2(x) stringize(x)
+
// "cache" is cache->buckets; "vtable" is cache->mask/occupied
// hack to avoid conflicts with compiler's internal declaration
asm("\n .section __TEXT,__const"
+ "\n .globl __objc_empty_vtable"
+ "\n .set __objc_empty_vtable, 0"
"\n .globl __objc_empty_cache"
-#if __LP64__
- "\n .align 3"
- "\n __objc_empty_cache: .quad 0"
+#if CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_LOW_4
+ "\n .align 4"
+ "\n L__objc_empty_cache: .space " stringize2(EMPTY_BYTES)
+ "\n .set __objc_empty_cache, L__objc_empty_cache + 0xf"
#else
- "\n .align 2"
- "\n __objc_empty_cache: .long 0"
+ "\n .align 3"
+ "\n __objc_empty_cache: .space " stringize2(EMPTY_BYTES)
#endif
- "\n .globl __objc_empty_vtable"
- "\n .set __objc_empty_vtable, 0"
);
+#if CONFIG_USE_PREOPT_CACHES
+__attribute__((used, section("__DATA_CONST,__objc_scoffs")))
+uintptr_t objc_opt_offsets[__OBJC_OPT_OFFSETS_COUNT];
+#endif
-#if __i386__ || __arm__
-// objc_msgSend has few registers available.
-// Cache scan increments and wraps at special end-marking bucket.
-#define CACHE_END_MARKER 1
+#if CACHE_END_MARKER
static inline mask_t cache_next(mask_t i, mask_t mask) {
return (i+1) & mask;
}
-
-#elif __x86_64__
-// objc_msgSend has lots of registers and/or memory operands available.
-// Cache scan decrements. No end marker needed.
-#define CACHE_END_MARKER 0
+#elif __arm64__
static inline mask_t cache_next(mask_t i, mask_t mask) {
return i ? i-1 : mask;
}
-
#else
-#error unknown architecture
-#endif
-
-
-// cannot mix sel-side caches with ignored selector constant
-// ignored selector constant also not implemented for class-side caches here
-#if SUPPORT_IGNORED_SELECTOR_CONSTANT
-#error sorry
+#error unexpected configuration
#endif
-// copied from dispatch_atomic_maximally_synchronizing_barrier
-// fixme verify that this barrier hack does in fact work here
-#if __x86_64__
-#define mega_barrier() \
- do { unsigned long _clbr; __asm__ __volatile__( \
- "cpuid" \
- : "=a" (_clbr) : "0" (0) : "rbx", "rcx", "rdx", "cc", "memory" \
- ); } while(0)
-#elif __i386__
-#define mega_barrier() \
- do { unsigned long _clbr; __asm__ __volatile__( \
- "cpuid" \
- : "=a" (_clbr) : "0" (0) : "ebx", "ecx", "edx", "cc", "memory" \
- ); } while(0)
-#elif __arm__
+// mega_barrier doesn't really work, but it works enough on ARM that
+// we leave well enough alone and keep using it there.
+#if __arm__
#define mega_barrier() \
__asm__ __volatile__( \
"dsb ish" \
: : : "memory")
-#else
-#error unknown architecture
+
#endif
+#if __arm64__
+
+// Pointer-size register prefix for inline asm
+# if __LP64__
+# define p "x" // true arm64
+# else
+# define p "w" // arm64_32
+# endif
-static inline mask_t cache_hash(cache_key_t key, mask_t mask)
+// Use atomic double-word instructions to update cache entries.
+// This requires cache buckets not cross cache line boundaries.
+static ALWAYS_INLINE void
+stp(uintptr_t onep, uintptr_t twop, void *destp)
{
- return (mask_t)((key >> MASK_SHIFT) & mask);
+ __asm__ ("stp %" p "[one], %" p "[two], [%x[dest]]"
+ : "=m" (((uintptr_t *)(destp))[0]),
+ "=m" (((uintptr_t *)(destp))[1])
+ : [one] "r" (onep),
+ [two] "r" (twop),
+ [dest] "r" (destp)
+ : /* no clobbers */
+ );
}
-
-// Class points to cache. Cache buckets store SEL+IMP.
-cache_t *getCache(Class cls, SEL sel __unused)
+static ALWAYS_INLINE void __unused
+ldp(uintptr_t& onep, uintptr_t& twop, const void *srcp)
{
- assert(cls);
- return &cls->cache;
+ __asm__ ("ldp %" p "[one], %" p "[two], [%x[src]]"
+ : [one] "=r" (onep),
+ [two] "=r" (twop)
+ : "m" (((const uintptr_t *)(srcp))[0]),
+ "m" (((const uintptr_t *)(srcp))[1]),
+ [src] "r" (srcp)
+ : /* no clobbers */
+ );
}
-cache_key_t getKey(Class cls __unused, SEL sel)
+
+#undef p
+#endif
+
+
+// Class points to cache. SEL is key. Cache buckets store SEL+IMP.
+// Caches are never built in the dyld shared cache.
+
+static inline mask_t cache_hash(SEL sel, mask_t mask)
{
- assert(sel);
- return (cache_key_t)sel;
+ uintptr_t value = (uintptr_t)sel;
+#if CONFIG_USE_PREOPT_CACHES
+ value ^= value >> 7;
+#endif
+ return (mask_t)(value & mask);
}
+#if __arm64__
+
+template<Atomicity atomicity, IMPEncoding impEncoding>
+void bucket_t::set(bucket_t *base, SEL newSel, IMP newImp, Class cls)
+{
+ ASSERT(_sel.load(memory_order_relaxed) == 0 ||
+ _sel.load(memory_order_relaxed) == newSel);
-struct bucket_t {
- cache_key_t key;
- IMP imp;
+ static_assert(offsetof(bucket_t,_imp) == 0 &&
+ offsetof(bucket_t,_sel) == sizeof(void *),
+ "bucket_t layout doesn't match arm64 bucket_t::set()");
- void set(cache_key_t newKey, IMP newImp)
- {
- // objc_msgSend uses key and imp with no locks.
- // It is safe for objc_msgSend to see new imp but NULL key
- // (It will get a cache miss but not dispatch to the wrong place.)
- // It is unsafe for objc_msgSend to see old imp and new key.
- // Therefore we write new imp, wait a lot, then write new key.
+ uintptr_t encodedImp = (impEncoding == Encoded
+ ? encodeImp(base, newImp, newSel, cls)
+ : (uintptr_t)newImp);
- assert(key == 0 || key == newKey);
-
- imp = newImp;
+ // LDP/STP guarantees that all observers get
+ // either imp/sel or newImp/newSel
+ stp(encodedImp, (uintptr_t)newSel, this);
+}
+
+#else
+
+template<Atomicity atomicity, IMPEncoding impEncoding>
+void bucket_t::set(bucket_t *base, SEL newSel, IMP newImp, Class cls)
+{
+ ASSERT(_sel.load(memory_order_relaxed) == 0 ||
+ _sel.load(memory_order_relaxed) == newSel);
+
+ // objc_msgSend uses sel and imp with no locks.
+ // It is safe for objc_msgSend to see new imp but NULL sel
+ // (It will get a cache miss but not dispatch to the wrong place.)
+ // It is unsafe for objc_msgSend to see old imp and new sel.
+ // Therefore we write new imp, wait a lot, then write new sel.
+
+ uintptr_t newIMP = (impEncoding == Encoded
+ ? encodeImp(base, newImp, newSel, cls)
+ : (uintptr_t)newImp);
- if (key != newKey) {
+ if (atomicity == Atomic) {
+ _imp.store(newIMP, memory_order_relaxed);
+
+ if (_sel.load(memory_order_relaxed) != newSel) {
+#ifdef __arm__
mega_barrier();
- key = newKey;
+ _sel.store(newSel, memory_order_relaxed);
+#elif __x86_64__ || __i386__
+ _sel.store(newSel, memory_order_release);
+#else
+#error Don't know how to do bucket_t::set on this architecture.
+#endif
}
+ } else {
+ _imp.store(newIMP, memory_order_relaxed);
+ _sel.store(newSel, memory_order_relaxed);
}
-};
+}
+#endif
-void cache_t::reallocate(mask_t oldCapacity, mask_t newCapacity)
+void cache_t::initializeToEmpty()
{
- if (PrintCaches) {
- size_t bucket = log2u(newCapacity);
- if (bucket < sizeof(cache_counts) / sizeof(cache_counts[0])) {
- cache_counts[bucket]++;
+ _bucketsAndMaybeMask.store((uintptr_t)&_objc_empty_cache, std::memory_order_relaxed);
+ _originalPreoptCache.store(nullptr, std::memory_order_relaxed);
+}
+
+#if CONFIG_USE_PREOPT_CACHES
+/*
+ * The shared cache builder will sometimes have prebuilt an IMP cache
+ * for the class and left a `preopt_cache_t` pointer in _originalPreoptCache.
+ *
+ * However we have this tension:
+ * - when the class is realized it has to have a cache that can't resolve any
+ * selector until the class is properly initialized so that every
+ * caller falls in the slowpath and synchronizes with the class initializing,
+ * - we need to remember that cache pointer and we have no space for that.
+ *
+ * The caches are designed so that preopt_cache::bit_one is set to 1,
+ * so we "disguise" the pointer so that it looks like a cache of capacity 1
+ * where that bit one aliases with where the top bit of a SEL in the bucket_t
+ * would live:
+ *
+ * +----------------+----------------+
+ * | IMP | SEL | << a bucket_t
+ * +----------------+----------------+--------------...
+ * preopt_cache_t >>| 1| ...
+ * +----------------+--------------...
+ *
+ * The shared cache guarantees that there's valid memory to read under "IMP"
+ *
+ * This lets us encode the original preoptimized cache pointer during
+ * initialization, and we can reconstruct its original address and install
+ * it back later.
+ */
+void cache_t::initializeToPreoptCacheInDisguise(const preopt_cache_t *cache)
+{
+ // preopt_cache_t::bit_one is 1 which sets the top bit
+ // and is never set on any valid selector
+
+ uintptr_t value = (uintptr_t)cache + sizeof(preopt_cache_t) -
+ (bucket_t::offsetOfSel() + sizeof(SEL));
+
+ _originalPreoptCache.store(nullptr, std::memory_order_relaxed);
+ setBucketsAndMask((bucket_t *)value, 0);
+ _occupied = cache->occupied;
+}
+
+void cache_t::maybeConvertToPreoptimized()
+{
+ const preopt_cache_t *cache = disguised_preopt_cache();
+
+ if (cache == nil) {
+ return;
+ }
+
+ if (!cls()->allowsPreoptCaches() ||
+ (cache->has_inlines && !cls()->allowsPreoptInlinedSels())) {
+ if (PrintCaches) {
+ _objc_inform("CACHES: %sclass %s: dropping cache (from %s)",
+ cls()->isMetaClass() ? "meta" : "",
+ cls()->nameForLogging(), "setInitialized");
}
- cache_allocations++;
-
- if (oldCapacity) {
- bucket = log2u(oldCapacity);
- if (bucket < sizeof(cache_counts) / sizeof(cache_counts[0])) {
- cache_counts[bucket]--;
+ return setBucketsAndMask(emptyBuckets(), 0);
+ }
+
+ uintptr_t value = (uintptr_t)&cache->entries;
+#if __has_feature(ptrauth_calls)
+ value = (uintptr_t)ptrauth_sign_unauthenticated((void *)value,
+ ptrauth_key_process_dependent_data, (uintptr_t)cls());
+#endif
+ value |= preoptBucketsHashParams(cache) | preoptBucketsMarker;
+ _bucketsAndMaybeMask.store(value, memory_order_relaxed);
+ _occupied = cache->occupied;
+}
+
+void cache_t::initializeToEmptyOrPreoptimizedInDisguise()
+{
+ if (os_fastpath(!DisablePreoptCaches)) {
+ if (!objc::dataSegmentsRanges.inSharedCache((uintptr_t)this)) {
+ if (dyld_shared_cache_some_image_overridden()) {
+ // If the system has roots, then we must disable preoptimized
+ // caches completely. If a class in another image has a
+ // superclass in the root, the offset to the superclass will
+ // be wrong. rdar://problem/61601961
+ cls()->setDisallowPreoptCachesRecursively("roots");
}
+ return initializeToEmpty();
+ }
+
+ auto cache = _originalPreoptCache.load(memory_order_relaxed);
+ if (cache) {
+ return initializeToPreoptCacheInDisguise(cache);
}
}
-
- // objc_msgSend uses shiftmask and buckets with no locks.
- // It is safe for objc_msgSend to see new buckets but old shiftmask.
- // (It will get a cache miss but not overrun the buckets' bounds).
- // It is unsafe for objc_msgSend to see old buckets and new shiftmask.
- // Therefore we write new buckets, wait a lot, then write new shiftmask.
- // objc_msgSend reads shiftmask first, then buckets.
- bucket_t *oldBuckets = buckets;
-
-#if CACHE_END_MARKER
- // Allocate one extra bucket to mark the end of the list.
- // fixme instead put the end mark inline when +1 is malloc-inefficient
- bucket_t *newBuckets =
- (bucket_t *)_calloc_internal(newCapacity + 1, sizeof(bucket_t));
-
- // End marker's key is 1 and imp points to the first bucket.
- newBuckets[newCapacity].key = (cache_key_t)(uintptr_t)1;
-# if __arm__
- // Point before the first bucket instead to save an instruction in msgSend
- newBuckets[newCapacity].imp = (IMP)(newBuckets - 1);
-# else
- newBuckets[newCapacity].imp = (IMP)newBuckets;
-# endif
+ return initializeToEmpty();
+}
+
+const preopt_cache_t *cache_t::preopt_cache() const
+{
+ auto addr = _bucketsAndMaybeMask.load(memory_order_relaxed);
+ addr &= preoptBucketsMask;
+#if __has_feature(ptrauth_calls)
+#if __BUILDING_OBJCDT__
+ addr = (uintptr_t)ptrauth_strip((preopt_cache_entry_t *)addr,
+ ptrauth_key_process_dependent_data);
#else
- bucket_t *newBuckets =
- (bucket_t *)_calloc_internal(newCapacity, sizeof(bucket_t));
+ addr = (uintptr_t)ptrauth_auth_data((preopt_cache_entry_t *)addr,
+ ptrauth_key_process_dependent_data, (uintptr_t)cls());
#endif
-
- // Cache's old contents are not propagated.
- // This is thought to save cache memory at the cost of extra cache fills.
- // fixme re-measure this
-
- // ensure other threads see buckets contents before buckets pointer
- mega_barrier();
-
- buckets = newBuckets;
-
- // ensure other threads see new buckets before new shiftmask
- mega_barrier();
-
- setCapacity(newCapacity);
- occupied = 0;
-
- if (oldCapacity > 0) {
- cache_collect_free(oldBuckets, oldCapacity * sizeof(bucket_t));
- cache_collect(false);
+#endif
+ return (preopt_cache_t *)(addr - sizeof(preopt_cache_t));
+}
+
+const preopt_cache_t *cache_t::disguised_preopt_cache() const
+{
+ bucket_t *b = buckets();
+ if ((intptr_t)b->sel() >= 0) return nil;
+
+ uintptr_t value = (uintptr_t)b + bucket_t::offsetOfSel() + sizeof(SEL);
+ return (preopt_cache_t *)(value - sizeof(preopt_cache_t));
+}
+
+Class cache_t::preoptFallbackClass() const
+{
+ return (Class)((uintptr_t)cls() + preopt_cache()->fallback_class_offset);
+}
+
+bool cache_t::isConstantOptimizedCache(bool strict, uintptr_t empty_addr) const
+{
+ uintptr_t addr = _bucketsAndMaybeMask.load(memory_order_relaxed);
+ if (addr & preoptBucketsMarker) {
+ return true;
+ }
+ if (strict) {
+ return false;
}
+ return mask() == 0 && addr != empty_addr;
}
+bool cache_t::shouldFlush(SEL sel, IMP imp) const
+{
+ // This test isn't backwards: disguised caches aren't "strict"
+ // constant optimized caches
+ if (!isConstantOptimizedCache(/*strict*/true)) {
+ const preopt_cache_t *cache = disguised_preopt_cache();
+ if (cache) {
+ uintptr_t offs = (uintptr_t)sel - (uintptr_t)@selector(🤯);
+ uintptr_t slot = ((offs >> cache->shift) & cache->mask);
+ auto &entry = cache->entries[slot];
+
+ return entry.sel_offs == offs &&
+ (uintptr_t)cls() - entry.imp_offs ==
+ (uintptr_t)ptrauth_strip(imp, ptrauth_key_function_pointer);
+ }
+ }
+
+ return cache_getImp(cls(), sel) == imp;
+}
-// called by objc_msgSend
-extern "C"
-void objc_msgSend_corrupt_cache_error(id receiver, SEL sel, Class isa,
- bucket_t *bucket)
+bool cache_t::isConstantOptimizedCacheWithInlinedSels() const
{
- cache_t::bad_cache(receiver, sel, isa, bucket);
+ return isConstantOptimizedCache(/* strict */true) && preopt_cache()->has_inlines;
}
+#endif // CONFIG_USE_PREOPT_CACHES
+
+#if CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_OUTLINED
-extern "C"
-void cache_getImp_corrupt_cache_error(id receiver, SEL sel, Class isa,
- bucket_t *bucket)
+void cache_t::setBucketsAndMask(struct bucket_t *newBuckets, mask_t newMask)
{
- cache_t::bad_cache(receiver, sel, isa, bucket);
+ // objc_msgSend uses mask and buckets with no locks.
+ // It is safe for objc_msgSend to see new buckets but old mask.
+ // (It will get a cache miss but not overrun the buckets' bounds).
+ // It is unsafe for objc_msgSend to see old buckets and new mask.
+ // Therefore we write new buckets, wait a lot, then write new mask.
+ // objc_msgSend reads mask first, then buckets.
+
+#ifdef __arm__
+ // ensure other threads see buckets contents before buckets pointer
+ mega_barrier();
+
+ _bucketsAndMaybeMask.store((uintptr_t)newBuckets, memory_order_relaxed);
+
+ // ensure other threads see new buckets before new mask
+ mega_barrier();
+
+ _maybeMask.store(newMask, memory_order_relaxed);
+ _occupied = 0;
+#elif __x86_64__ || i386
+ // ensure other threads see buckets contents before buckets pointer
+ _bucketsAndMaybeMask.store((uintptr_t)newBuckets, memory_order_release);
+
+ // ensure other threads see new buckets before new mask
+ _maybeMask.store(newMask, memory_order_release);
+ _occupied = 0;
+#else
+#error Don't know how to do setBucketsAndMask on this architecture.
+#endif
}
-void cache_t::bad_cache(id receiver, SEL sel, Class isa, bucket_t *bucket)
+mask_t cache_t::mask() const
{
- // Log in separate steps in case the logging itself causes a crash.
- _objc_inform_now_and_on_crash
- ("Method cache corrupted. This may be a message to an "
- "invalid object, or a memory error somewhere else.");
- cache_t *cache = &isa->cache;
- _objc_inform_now_and_on_crash
- ("%s %p, SEL %p, isa %p, cache %p, buckets %p, "
- "mask 0x%x, occupied 0x%x, wrap bucket %p",
- receiver ? "receiver" : "unused", receiver,
- sel, isa, cache, cache->buckets,
- cache->shiftmask >> MASK_SHIFT, cache->occupied, bucket);
- _objc_inform_now_and_on_crash
- ("%s %zu bytes, buckets %zu bytes",
- receiver ? "receiver" : "unused", malloc_size(receiver),
- malloc_size(cache->buckets));
- _objc_inform_now_and_on_crash
- ("selector '%s'", sel_getName(sel));
- _objc_inform_now_and_on_crash
- ("isa '%s'", isa->getName());
- _objc_fatal
- ("Method cache corrupted.");
+ return _maybeMask.load(memory_order_relaxed);
}
+#elif CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_HIGH_16 || CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_HIGH_16_BIG_ADDRS
-bucket_t * cache_t::find(cache_key_t k)
+void cache_t::setBucketsAndMask(struct bucket_t *newBuckets, mask_t newMask)
{
- mask_t m = mask();
- mask_t begin = cache_hash(k, m);
- mask_t i = begin;
- do {
- if (buckets[i].key == 0 || buckets[i].key == k) {
- return &buckets[i];
- }
- } while ((i = cache_next(i, m)) != begin);
+ uintptr_t buckets = (uintptr_t)newBuckets;
+ uintptr_t mask = (uintptr_t)newMask;
+
+ ASSERT(buckets <= bucketsMask);
+ ASSERT(mask <= maxMask);
+
+ _bucketsAndMaybeMask.store(((uintptr_t)newMask << maskShift) | (uintptr_t)newBuckets, memory_order_relaxed);
+ _occupied = 0;
+}
- // hack
- Class cls = (Class)((uintptr_t)this - offsetof(objc_class, cache));
- cache_t::bad_cache(nil, (SEL)k, cls, nil);
+mask_t cache_t::mask() const
+{
+ uintptr_t maskAndBuckets = _bucketsAndMaybeMask.load(memory_order_relaxed);
+ return maskAndBuckets >> maskShift;
}
+#elif CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_LOW_4
-void cache_t::expand()
+void cache_t::setBucketsAndMask(struct bucket_t *newBuckets, mask_t newMask)
{
- mutex_assert_locked(&cacheUpdateLock);
-
- mask_t oldCapacity = capacity();
- mask_t newCapacity = oldCapacity ? oldCapacity*2 : INIT_CACHE_SIZE;
+ uintptr_t buckets = (uintptr_t)newBuckets;
+ unsigned mask = (unsigned)newMask;
- if ((((newCapacity-1) << MASK_SHIFT) >> MASK_SHIFT) != newCapacity-1) {
- // shiftmask overflow - can't grow further
- newCapacity = oldCapacity;
- }
+ ASSERT(buckets == (buckets & bucketsMask));
+ ASSERT(mask <= 0xffff);
+
+ _bucketsAndMaybeMask.store(buckets | objc::mask16ShiftBits(mask), memory_order_relaxed);
+ _occupied = 0;
+
+ ASSERT(this->buckets() == newBuckets);
+ ASSERT(this->mask() == newMask);
+}
- reallocate(oldCapacity, newCapacity);
+mask_t cache_t::mask() const
+{
+ uintptr_t maskAndBuckets = _bucketsAndMaybeMask.load(memory_order_relaxed);
+ uintptr_t maskShift = (maskAndBuckets & maskMask);
+ return 0xffff >> maskShift;
}
+#else
+#error Unknown cache mask storage type.
+#endif
-static void cache_fill_nolock(Class cls, SEL sel, IMP imp)
+struct bucket_t *cache_t::buckets() const
{
- mutex_assert_locked(&cacheUpdateLock);
+ uintptr_t addr = _bucketsAndMaybeMask.load(memory_order_relaxed);
+ return (bucket_t *)(addr & bucketsMask);
+}
- // Never cache before +initialize is done
- if (!cls->isInitialized()) return;
+mask_t cache_t::occupied() const
+{
+ return _occupied;
+}
+
+void cache_t::incrementOccupied()
+{
+ _occupied++;
+}
- // Make sure the entry wasn't added to the cache by some other thread
- // before we grabbed the cacheUpdateLock.
- if (cache_getImp(cls, sel)) return;
+unsigned cache_t::capacity() const
+{
+ return mask() ? mask()+1 : 0;
+}
- cache_t *cache = getCache(cls, sel);
- cache_key_t key = getKey(cls, sel);
+Class cache_t::cls() const
+{
+ return (Class)((uintptr_t)this - offsetof(objc_class, cache));
+}
- // Use the cache as-is if it is less than 3/4 full
- mask_t newOccupied = cache->occupied + 1;
- if ((newOccupied * 4) <= (cache->mask() + 1) * 3) {
- // Cache is less than 3/4 full.
- } else {
- // Cache is too full. Expand it.
- cache->expand();
- }
+size_t cache_t::bytesForCapacity(uint32_t cap)
+{
+ return sizeof(bucket_t) * cap;
+}
+
+#if CACHE_END_MARKER
- // Scan for the first unused slot (or used for this class) and insert there
- // There is guaranteed to be an empty slot because the
- // minimum size is 4 and we resized at 3/4 full.
- bucket_t *bucket = cache->find(key);
- if (bucket->key == 0) cache->occupied++;
- bucket->set(key, imp);
+bucket_t *cache_t::endMarker(struct bucket_t *b, uint32_t cap)
+{
+ return (bucket_t *)((uintptr_t)b + bytesForCapacity(cap)) - 1;
}
-void cache_fill(Class cls, SEL sel, IMP imp)
+bucket_t *cache_t::allocateBuckets(mask_t newCapacity)
{
-#if !DEBUG_TASK_THREADS
- mutex_lock(&cacheUpdateLock);
- cache_fill_nolock(cls, sel, imp);
- mutex_unlock(&cacheUpdateLock);
+ // Allocate one extra bucket to mark the end of the list.
+ // This can't overflow mask_t because newCapacity is a power of 2.
+ bucket_t *newBuckets = (bucket_t *)calloc(bytesForCapacity(newCapacity), 1);
+
+ bucket_t *end = endMarker(newBuckets, newCapacity);
+
+#if __arm__
+ // End marker's sel is 1 and imp points BEFORE the first bucket.
+ // This saves an instruction in objc_msgSend.
+ end->set<NotAtomic, Raw>(newBuckets, (SEL)(uintptr_t)1, (IMP)(newBuckets - 1), nil);
#else
- _collecting_in_critical();
- return;
+ // End marker's sel is 1 and imp points to the first bucket.
+ end->set<NotAtomic, Raw>(newBuckets, (SEL)(uintptr_t)1, (IMP)newBuckets, nil);
#endif
+
+ if (PrintCaches) recordNewCache(newCapacity);
+
+ return newBuckets;
}
+#else
-// Reset any entry for cls/sel to the uncached lookup
-static void cache_eraseMethod_nolock(Class cls, SEL sel)
+bucket_t *cache_t::allocateBuckets(mask_t newCapacity)
{
- mutex_assert_locked(&cacheUpdateLock);
-
- cache_t *cache = getCache(cls, sel);
- cache_key_t key = getKey(cls, sel);
+ if (PrintCaches) recordNewCache(newCapacity);
- bucket_t *bucket = cache->find(key);
- if (bucket->key == key) {
- bucket->imp = _objc_msgSend_uncached_impcache;
- }
+ return (bucket_t *)calloc(bytesForCapacity(newCapacity), 1);
}
+#endif
+
+struct bucket_t *cache_t::emptyBuckets()
+{
+ return (bucket_t *)((uintptr_t)&_objc_empty_cache & bucketsMask);
+}
-// Resets cache entries for all methods in mlist for cls and its subclasses.
-void cache_eraseMethods(Class cls, method_list_t *mlist)
+bucket_t *cache_t::emptyBucketsForCapacity(mask_t capacity, bool allocate)
{
- rwlock_assert_writing(&runtimeLock);
- mutex_lock(&cacheUpdateLock);
+#if CONFIG_USE_CACHE_LOCK
+ cacheUpdateLock.assertLocked();
+#else
+ runtimeLock.assertLocked();
+#endif
+
+ size_t bytes = bytesForCapacity(capacity);
+
+ // Use _objc_empty_cache if the buckets is small enough.
+ if (bytes <= EMPTY_BYTES) {
+ return emptyBuckets();
+ }
+
+ // Use shared empty buckets allocated on the heap.
+ static bucket_t **emptyBucketsList = nil;
+ static mask_t emptyBucketsListCount = 0;
+
+ mask_t index = log2u(capacity);
+
+ if (index >= emptyBucketsListCount) {
+ if (!allocate) return nil;
+
+ mask_t newListCount = index + 1;
+ bucket_t *newBuckets = (bucket_t *)calloc(bytes, 1);
+ emptyBucketsList = (bucket_t**)
+ realloc(emptyBucketsList, newListCount * sizeof(bucket_t *));
+ // Share newBuckets for every un-allocated size smaller than index.
+ // The array is therefore always fully populated.
+ for (mask_t i = emptyBucketsListCount; i < newListCount; i++) {
+ emptyBucketsList[i] = newBuckets;
+ }
+ emptyBucketsListCount = newListCount;
- FOREACH_REALIZED_CLASS_AND_SUBCLASS(c, cls, {
- for (uint32_t m = 0; m < mlist->count; m++) {
- SEL sel = mlist->get(m).name;
- cache_eraseMethod_nolock(c, sel);
+ if (PrintCaches) {
+ _objc_inform("CACHES: new empty buckets at %p (capacity %zu)",
+ newBuckets, (size_t)capacity);
}
- });
+ }
+
+ return emptyBucketsList[index];
+}
- mutex_unlock(&cacheUpdateLock);
+bool cache_t::isConstantEmptyCache() const
+{
+ return
+ occupied() == 0 &&
+ buckets() == emptyBucketsForCapacity(capacity(), false);
}
+bool cache_t::canBeFreed() const
+{
+ return !isConstantEmptyCache() && !isConstantOptimizedCache();
+}
-// Reset any copies of imp in this cache to the uncached lookup
-void cache_eraseImp_nolock(Class cls, SEL sel, IMP imp)
+ALWAYS_INLINE
+void cache_t::reallocate(mask_t oldCapacity, mask_t newCapacity, bool freeOld)
{
- mutex_assert_locked(&cacheUpdateLock);
+ bucket_t *oldBuckets = buckets();
+ bucket_t *newBuckets = allocateBuckets(newCapacity);
+
+ // Cache's old contents are not propagated.
+ // This is thought to save cache memory at the cost of extra cache fills.
+ // fixme re-measure this
- cache_t *cache = getCache(cls, sel);
+ ASSERT(newCapacity > 0);
+ ASSERT((uintptr_t)(mask_t)(newCapacity-1) == newCapacity-1);
- bucket_t *buckets = cache->buckets;
- mask_t count = cache->capacity();
- for (mask_t i = 0; i < count; i++) {
- if (buckets[i].imp == imp) {
- buckets[i].imp = _objc_msgSend_uncached_impcache;
- }
+ setBucketsAndMask(newBuckets, newCapacity - 1);
+
+ if (freeOld) {
+ collect_free(oldBuckets, oldCapacity);
}
}
-void cache_eraseImp(Class cls, SEL sel, IMP imp)
+void cache_t::bad_cache(id receiver, SEL sel)
+{
+ // Log in separate steps in case the logging itself causes a crash.
+ _objc_inform_now_and_on_crash
+ ("Method cache corrupted. This may be a message to an "
+ "invalid object, or a memory error somewhere else.");
+#if CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_OUTLINED
+ bucket_t *b = buckets();
+ _objc_inform_now_and_on_crash
+ ("%s %p, SEL %p, isa %p, cache %p, buckets %p, "
+ "mask 0x%x, occupied 0x%x",
+ receiver ? "receiver" : "unused", receiver,
+ sel, cls(), this, b,
+ _maybeMask.load(memory_order_relaxed),
+ _occupied);
+ _objc_inform_now_and_on_crash
+ ("%s %zu bytes, buckets %zu bytes",
+ receiver ? "receiver" : "unused", malloc_size(receiver),
+ malloc_size(b));
+#elif (CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_HIGH_16 || \
+ CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_HIGH_16_BIG_ADDRS || \
+ CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_LOW_4)
+ uintptr_t maskAndBuckets = _bucketsAndMaybeMask.load(memory_order_relaxed);
+ _objc_inform_now_and_on_crash
+ ("%s %p, SEL %p, isa %p, cache %p, buckets and mask 0x%lx, "
+ "occupied 0x%x",
+ receiver ? "receiver" : "unused", receiver,
+ sel, cls(), this, maskAndBuckets, _occupied);
+ _objc_inform_now_and_on_crash
+ ("%s %zu bytes, buckets %zu bytes",
+ receiver ? "receiver" : "unused", malloc_size(receiver),
+ malloc_size(buckets()));
+#else
+#error Unknown cache mask storage type.
+#endif
+ _objc_inform_now_and_on_crash
+ ("selector '%s'", sel_getName(sel));
+ _objc_inform_now_and_on_crash
+ ("isa '%s'", cls()->nameForLogging());
+ _objc_fatal
+ ("Method cache corrupted. This may be a message to an "
+ "invalid object, or a memory error somewhere else.");
+}
+
+void cache_t::insert(SEL sel, IMP imp, id receiver)
{
- mutex_lock(&cacheUpdateLock);
- cache_eraseImp_nolock(cls, sel, imp);
- mutex_unlock(&cacheUpdateLock);
+ runtimeLock.assertLocked();
+
+ // Never cache before +initialize is done
+ if (slowpath(!cls()->isInitialized())) {
+ return;
+ }
+
+ if (isConstantOptimizedCache()) {
+ _objc_fatal("cache_t::insert() called with a preoptimized cache for %s",
+ cls()->nameForLogging());
+ }
+
+#if DEBUG_TASK_THREADS
+ return _collecting_in_critical();
+#else
+#if CONFIG_USE_CACHE_LOCK
+ mutex_locker_t lock(cacheUpdateLock);
+#endif
+
+ ASSERT(sel != 0 && cls()->isInitialized());
+
+ // Use the cache as-is if until we exceed our expected fill ratio.
+ mask_t newOccupied = occupied() + 1;
+ unsigned oldCapacity = capacity(), capacity = oldCapacity;
+ if (slowpath(isConstantEmptyCache())) {
+ // Cache is read-only. Replace it.
+ if (!capacity) capacity = INIT_CACHE_SIZE;
+ reallocate(oldCapacity, capacity, /* freeOld */false);
+ }
+ else if (fastpath(newOccupied + CACHE_END_MARKER <= cache_fill_ratio(capacity))) {
+ // Cache is less than 3/4 or 7/8 full. Use it as-is.
+ }
+#if CACHE_ALLOW_FULL_UTILIZATION
+ else if (capacity <= FULL_UTILIZATION_CACHE_SIZE && newOccupied + CACHE_END_MARKER <= capacity) {
+ // Allow 100% cache utilization for small buckets. Use it as-is.
+ }
+#endif
+ else {
+ capacity = capacity ? capacity * 2 : INIT_CACHE_SIZE;
+ if (capacity > MAX_CACHE_SIZE) {
+ capacity = MAX_CACHE_SIZE;
+ }
+ reallocate(oldCapacity, capacity, true);
+ }
+
+ bucket_t *b = buckets();
+ mask_t m = capacity - 1;
+ mask_t begin = cache_hash(sel, m);
+ mask_t i = begin;
+
+ // Scan for the first unused slot and insert there.
+ // There is guaranteed to be an empty slot.
+ do {
+ if (fastpath(b[i].sel() == 0)) {
+ incrementOccupied();
+ b[i].set<Atomic, Encoded>(b, sel, imp, cls());
+ return;
+ }
+ if (b[i].sel() == sel) {
+ // The entry was added to the cache by some other thread
+ // before we grabbed the cacheUpdateLock.
+ return;
+ }
+ } while (fastpath((i = cache_next(i, m)) != begin));
+
+ bad_cache(receiver, (SEL)sel);
+#endif // !DEBUG_TASK_THREADS
}
+void cache_t::copyCacheNolock(objc_imp_cache_entry *buffer, int len)
+{
+#if CONFIG_USE_CACHE_LOCK
+ cacheUpdateLock.assertLocked();
+#else
+ runtimeLock.assertLocked();
+#endif
+ int wpos = 0;
+
+#if CONFIG_USE_PREOPT_CACHES
+ if (isConstantOptimizedCache()) {
+ auto cache = preopt_cache();
+ auto mask = cache->mask;
+ uintptr_t sel_base = objc_opt_offsets[OBJC_OPT_METHODNAME_START];
+ uintptr_t imp_base = (uintptr_t)&cache->entries;
+
+ for (uintptr_t index = 0; index <= mask && wpos < len; index++) {
+ auto &ent = cache->entries[index];
+ if (~ent.sel_offs) {
+ buffer[wpos].sel = (SEL)(sel_base + ent.sel_offs);
+ buffer[wpos].imp = (IMP)(imp_base - ent.imp_offs);
+ wpos++;
+ }
+ }
+ return;
+ }
+#endif
+ {
+ bucket_t *buckets = this->buckets();
+ uintptr_t count = capacity();
+
+ for (uintptr_t index = 0; index < count && wpos < len; index++) {
+ if (buckets[index].sel()) {
+ buffer[wpos].imp = buckets[index].imp(buckets, cls());
+ buffer[wpos].sel = buckets[index].sel();
+ wpos++;
+ }
+ }
+ }
+}
// Reset this entire cache to the uncached lookup by reallocating it.
// This must not shrink the cache - that breaks the lock-free scheme.
-void cache_erase_nolock(cache_t *cache)
+void cache_t::eraseNolock(const char *func)
{
- mutex_assert_locked(&cacheUpdateLock);
+#if CONFIG_USE_CACHE_LOCK
+ cacheUpdateLock.assertLocked();
+#else
+ runtimeLock.assertLocked();
+#endif
+
+ if (isConstantOptimizedCache()) {
+ auto c = cls();
+ if (PrintCaches) {
+ _objc_inform("CACHES: %sclass %s: dropping and disallowing preopt cache (from %s)",
+ c->isMetaClass() ? "meta" : "",
+ c->nameForLogging(), func);
+ }
+ setBucketsAndMask(emptyBuckets(), 0);
+ c->setDisallowPreoptCaches();
+ } else if (occupied() > 0) {
+ auto capacity = this->capacity();
+ auto oldBuckets = buckets();
+ auto buckets = emptyBucketsForCapacity(capacity);
+
+ setBucketsAndMask(buckets, capacity - 1); // also clears occupied
+ collect_free(oldBuckets, capacity);
+ }
+}
+
- mask_t capacity = cache->capacity();
- if (capacity > 0 && cache->occupied > 0) {
- cache->reallocate(capacity, capacity);
+void cache_t::destroy()
+{
+#if CONFIG_USE_CACHE_LOCK
+ mutex_locker_t lock(cacheUpdateLock);
+#else
+ runtimeLock.assertLocked();
+#endif
+ if (canBeFreed()) {
+ if (PrintCaches) recordDeadCache(capacity());
+ free(buckets());
}
}
kern_return_t okay = thread_get_state (thread, ARM_THREAD_STATE, (thread_state_t)&state, &count);
return (okay == KERN_SUCCESS) ? state.__pc : PC_SENTINEL;
}
+#elif defined(__arm64__)
+{
+ arm_thread_state64_t state;
+ unsigned int count = ARM_THREAD_STATE64_COUNT;
+ kern_return_t okay = thread_get_state (thread, ARM_THREAD_STATE64, (thread_state_t)&state, &count);
+ return (okay == KERN_SUCCESS) ? (uintptr_t)arm_thread_state64_get_pc(state) : PC_SENTINEL;
+}
#else
{
#error _get_pc_for_thread () not implemented for this architecture
* reading function is in progress because it might still be using
* the garbage memory.
**********************************************************************/
-OBJC_EXPORT uintptr_t objc_entryPoints[];
-OBJC_EXPORT uintptr_t objc_exitPoints[];
+#if HAVE_TASK_RESTARTABLE_RANGES
+#include <kern/restartable.h>
+#else
+typedef struct {
+ uint64_t location;
+ unsigned short length;
+ unsigned short recovery_offs;
+ unsigned int flags;
+} task_restartable_range_t;
+#endif
+
+extern "C" task_restartable_range_t objc_restartableRanges[];
+
+#if HAVE_TASK_RESTARTABLE_RANGES
+static bool shouldUseRestartableRanges = true;
+#endif
+
+void cache_t::init()
+{
+#if HAVE_TASK_RESTARTABLE_RANGES
+ mach_msg_type_number_t count = 0;
+ kern_return_t kr;
+
+ while (objc_restartableRanges[count].location) {
+ count++;
+ }
+
+ kr = task_restartable_ranges_register(mach_task_self(),
+ objc_restartableRanges, count);
+ if (kr == KERN_SUCCESS) return;
+ _objc_fatal("task_restartable_ranges_register failed (result 0x%x: %s)",
+ kr, mach_error_string(kr));
+#endif // HAVE_TASK_RESTARTABLE_RANGES
+}
static int _collecting_in_critical(void)
{
#if TARGET_OS_WIN32
return TRUE;
-#else
+#elif HAVE_TASK_RESTARTABLE_RANGES
+ // Only use restartable ranges if we registered them earlier.
+ if (shouldUseRestartableRanges) {
+ kern_return_t kr = task_restartable_ranges_synchronize(mach_task_self());
+ if (kr == KERN_SUCCESS) return FALSE;
+ _objc_fatal("task_restartable_ranges_synchronize failed (result 0x%x: %s)",
+ kr, mach_error_string(kr));
+ }
+#endif // !HAVE_TASK_RESTARTABLE_RANGES
+
+ // Fallthrough if we didn't use restartable ranges.
+
thread_act_port_array_t threads;
unsigned number;
unsigned count;
kern_return_t ret;
int result;
- mach_port_t mythread = pthread_mach_thread_np(pthread_self());
+ mach_port_t mythread = pthread_mach_thread_np(objc_thread_self());
// Get a list of all the threads in the current task
#if !DEBUG_TASK_THREADS
continue;
// Find out where thread is executing
+#if TARGET_OS_OSX
+ if (oah_is_current_process_translated()) {
+ kern_return_t ret = objc_thread_get_rip(threads[count], (uint64_t*)&pc);
+ if (ret != KERN_SUCCESS) {
+ pc = PC_SENTINEL;
+ }
+ } else {
+ pc = _get_pc_for_thread (threads[count]);
+ }
+#else
pc = _get_pc_for_thread (threads[count]);
+#endif
// Check for bad status, and if so, assume the worse (can't collect)
if (pc == PC_SENTINEL)
}
// Check whether it is in the cache lookup code
- for (region = 0; objc_entryPoints[region] != 0; region++)
+ for (region = 0; objc_restartableRanges[region].location != 0; region++)
{
- if ((pc >= objc_entryPoints[region]) &&
- (pc <= objc_exitPoints[region]))
+ uint64_t loc = objc_restartableRanges[region].location;
+ if ((pc > loc) &&
+ (pc - loc < (uint64_t)objc_restartableRanges[region].length))
{
result = TRUE;
goto done;
// Return our finding
return result;
-#endif
}
{
first = 0;
garbage_refs = (bucket_t**)
- _malloc_internal(INIT_GARBAGE_COUNT * sizeof(void *));
+ malloc(INIT_GARBAGE_COUNT * sizeof(void *));
garbage_max = INIT_GARBAGE_COUNT;
}
else if (garbage_count == garbage_max)
{
garbage_refs = (bucket_t**)
- _realloc_internal(garbage_refs, garbage_max * 2 * sizeof(void *));
+ realloc(garbage_refs, garbage_max * 2 * sizeof(void *));
garbage_max *= 2;
}
}
/***********************************************************************
-* cache_collect_free. Add the specified malloc'd memory to the list
+* cache_t::collect_free. Add the specified malloc'd memory to the list
* of them to free at some later point.
* size is used for the collection threshold. It does not have to be
* precisely the block's size.
* Cache locks: cacheUpdateLock must be held by the caller.
**********************************************************************/
-static void cache_collect_free(bucket_t *data, size_t size)
+void cache_t::collect_free(bucket_t *data, mask_t capacity)
{
- mutex_assert_locked(&cacheUpdateLock);
+#if CONFIG_USE_CACHE_LOCK
+ cacheUpdateLock.assertLocked();
+#else
+ runtimeLock.assertLocked();
+#endif
+
+ if (PrintCaches) recordDeadCache(capacity);
_garbage_make_room ();
- garbage_byte_size += size;
+ garbage_byte_size += cache_t::bytesForCapacity(capacity);
garbage_refs[garbage_count++] = data;
+ cache_t::collectNolock(false);
}
* collectALot tries harder to free memory.
* Cache locks: cacheUpdateLock must be held by the caller.
**********************************************************************/
-void cache_collect(bool collectALot)
+void cache_t::collectNolock(bool collectALot)
{
- mutex_assert_locked(&cacheUpdateLock);
+#if CONFIG_USE_CACHE_LOCK
+ cacheUpdateLock.assertLocked();
+#else
+ runtimeLock.assertLocked();
+#endif
// Done if the garbage is not full
if (garbage_byte_size < garbage_threshold && !collectALot) {
}
// Dispose all refs now in the garbage
+ // Erase each entry so debugging tools don't see stale pointers.
while (garbage_count--) {
- free(garbage_refs[garbage_count]);
+ auto dead = garbage_refs[garbage_count];
+ garbage_refs[garbage_count] = nil;
+ free(dead);
}
// Clear the garbage count and total size indicator
size_t total_count = 0;
size_t total_size = 0;
- for (i = 0; i < sizeof(cache_counts) / sizeof(cache_counts[0]); i++) {
+ for (i = 0; i < countof(cache_counts); i++) {
int count = cache_counts[i];
int slots = 1 << i;
size_t size = count * slots * sizeof(bucket_t);
// DEBUG_TASK_THREADS
#endif
+OBJC_EXPORT bucket_t * objc_cache_buckets(const cache_t * cache) {
+ return cache->buckets();
+}
+
+#if CONFIG_USE_PREOPT_CACHES
+
+OBJC_EXPORT const preopt_cache_t * _Nonnull objc_cache_preoptCache(const cache_t * _Nonnull cache) {
+ return cache->preopt_cache();
+}
+
+OBJC_EXPORT bool objc_cache_isConstantOptimizedCache(const cache_t * _Nonnull cache, bool strict, uintptr_t empty_addr) {
+ return cache->isConstantOptimizedCache(strict, empty_addr);
+}
+
+OBJC_EXPORT unsigned objc_cache_preoptCapacity(const cache_t * _Nonnull cache) {
+ return cache->preopt_cache()->capacity();
+}
+
+OBJC_EXPORT Class _Nonnull objc_cache_preoptFallbackClass(const cache_t * _Nonnull cache) {
+ return cache->preoptFallbackClass();
+}
+
+#endif
+
+OBJC_EXPORT size_t objc_cache_bytesForCapacity(uint32_t cap) {
+ return cache_t::bytesForCapacity(cap);
+}
+
+OBJC_EXPORT uint32_t objc_cache_occupied(const cache_t * _Nonnull cache) {
+ return cache->occupied();
+}
+
+OBJC_EXPORT unsigned objc_cache_capacity(const struct cache_t * _Nonnull cache) {
+ return cache->capacity();
+}
// __OBJC2__
#endif