1 /* $KAME: sha2.c,v 1.4 2001/09/02 08:59:55 itojun Exp $ */
8 * Written by Aaron D. Gifford <me@aarongifford.com>
10 * Copyright 2000 Aaron D. Gifford. All rights reserved.
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the copyright holder nor the names of contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 #include <sys/types.h>
41 #include <machine/endian.h>
43 #include <openssl/evp.h>
47 #define bcopy(a, b, c) memcpy((b), (a), (c))
48 #define bzero(a, b) memset((a), 0, (b))
49 #define panic(a) err(1, (a))
53 * Some sanity checking code is included using assert(). On my FreeBSD
54 * system, this additional code can be removed by compiling with NDEBUG
55 * defined. Check your own systems manpage on assert() to see how to
56 * compile WITHOUT the sanity checking code on your system.
58 * UNROLLED TRANSFORM LOOP NOTE:
59 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
60 * loop version for the hash transform rounds (defined using macros
61 * later in this file). Either define on the command line, for example:
63 * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
67 * #define SHA2_UNROLL_TRANSFORM
74 /*** SHA-256/384/512 Machine Architecture Definitions *****************/
78 * Please make sure that your system defines BYTE_ORDER. If your
79 * architecture is little-endian, make sure it also defines
80 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
83 * If your system does not define the above, then you can do so by
86 * #define LITTLE_ENDIAN 1234
87 * #define BIG_ENDIAN 4321
89 * And for little-endian machines, add:
91 * #define BYTE_ORDER LITTLE_ENDIAN
93 * Or for big-endian machines:
95 * #define BYTE_ORDER BIG_ENDIAN
97 * The FreeBSD machine this was written on defines BYTE_ORDER
98 * appropriately by including <sys/types.h> (which in turn includes
99 * <machine/endian.h> where the appropriate definitions are actually
102 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
103 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
107 * Define the followingsha2_* types to types of the correct length on
108 * the native archtecture. Most BSD systems and Linux define u_intXX_t
109 * types. Machines with very recent ANSI C headers, can use the
110 * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H
111 * during compile or in the sha.h header file.
113 * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
114 * will need to define these three typedefs below (and the appropriate
115 * ones in sha.h too) by hand according to their system architecture.
117 * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
118 * types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
120 #if 0 /*def SHA2_USE_INTTYPES_H*/
122 typedef uint8_t sha2_byte
; /* Exactly 1 byte */
123 typedef uint32_t sha2_word32
; /* Exactly 4 bytes */
124 typedef uint64_t sha2_word64
; /* Exactly 8 bytes */
126 #else /* SHA2_USE_INTTYPES_H */
128 typedef u_int8_t sha2_byte
; /* Exactly 1 byte */
129 typedef u_int32_t sha2_word32
; /* Exactly 4 bytes */
130 typedef u_int64_t sha2_word64
; /* Exactly 8 bytes */
132 #endif /* SHA2_USE_INTTYPES_H */
135 /*** SHA-256/384/512 Various Length Definitions ***********************/
136 /* NOTE: Most of these are in sha2.h */
137 #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
138 #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
139 #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
142 /*** ENDIAN REVERSAL MACROS *******************************************/
143 #if BYTE_ORDER == LITTLE_ENDIAN
144 #define REVERSE32(w,x) { \
145 sha2_word32 tmp = (w); \
146 tmp = (tmp >> 16) | (tmp << 16); \
147 (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
149 #define REVERSE64(w,x) { \
150 sha2_word64 tmp = (w); \
151 tmp = (tmp >> 32) | (tmp << 32); \
152 tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
153 ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
154 (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
155 ((tmp & 0x0000ffff0000ffffULL) << 16); \
157 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
160 * Macro for incrementally adding the unsigned 64-bit integer n to the
161 * unsigned 128-bit integer (represented using a two-element array of
164 #define ADDINC128(w,n) { \
165 (w)[0] += (sha2_word64)(n); \
166 if ((w)[0] < (n)) { \
171 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
173 * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
175 * NOTE: The naming of R and S appears backwards here (R is a SHIFT and
176 * S is a ROTATION) because the SHA-256/384/512 description document
177 * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
178 * same "backwards" definition.
180 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
181 #define R(b,x) ((x) >> (b))
182 /* 32-bit Rotate-right (used in SHA-256): */
183 #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
184 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
185 #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
187 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
188 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
189 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
191 /* Four of six logical functions used in SHA-256: */
192 #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
193 #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
194 #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
195 #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
197 /* Four of six logical functions used in SHA-384 and SHA-512: */
198 #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
199 #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
200 #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
201 #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
203 /*** INTERNAL FUNCTION PROTOTYPES *************************************/
204 /* NOTE: These should not be accessed directly from outside this
205 * library -- they are intended for private internal visibility/use
208 void SHA512_Last(SHA512_CTX
*);
209 void SHA256_Transform(SHA256_CTX
*, const sha2_word32
*);
210 void SHA512_Transform(SHA512_CTX
*, const sha2_word64
*);
213 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
214 /* Hash constant words K for SHA-256: */
215 const static sha2_word32 K256
[64] = {
216 0x428a2f98UL
, 0x71374491UL
, 0xb5c0fbcfUL
, 0xe9b5dba5UL
,
217 0x3956c25bUL
, 0x59f111f1UL
, 0x923f82a4UL
, 0xab1c5ed5UL
,
218 0xd807aa98UL
, 0x12835b01UL
, 0x243185beUL
, 0x550c7dc3UL
,
219 0x72be5d74UL
, 0x80deb1feUL
, 0x9bdc06a7UL
, 0xc19bf174UL
,
220 0xe49b69c1UL
, 0xefbe4786UL
, 0x0fc19dc6UL
, 0x240ca1ccUL
,
221 0x2de92c6fUL
, 0x4a7484aaUL
, 0x5cb0a9dcUL
, 0x76f988daUL
,
222 0x983e5152UL
, 0xa831c66dUL
, 0xb00327c8UL
, 0xbf597fc7UL
,
223 0xc6e00bf3UL
, 0xd5a79147UL
, 0x06ca6351UL
, 0x14292967UL
,
224 0x27b70a85UL
, 0x2e1b2138UL
, 0x4d2c6dfcUL
, 0x53380d13UL
,
225 0x650a7354UL
, 0x766a0abbUL
, 0x81c2c92eUL
, 0x92722c85UL
,
226 0xa2bfe8a1UL
, 0xa81a664bUL
, 0xc24b8b70UL
, 0xc76c51a3UL
,
227 0xd192e819UL
, 0xd6990624UL
, 0xf40e3585UL
, 0x106aa070UL
,
228 0x19a4c116UL
, 0x1e376c08UL
, 0x2748774cUL
, 0x34b0bcb5UL
,
229 0x391c0cb3UL
, 0x4ed8aa4aUL
, 0x5b9cca4fUL
, 0x682e6ff3UL
,
230 0x748f82eeUL
, 0x78a5636fUL
, 0x84c87814UL
, 0x8cc70208UL
,
231 0x90befffaUL
, 0xa4506cebUL
, 0xbef9a3f7UL
, 0xc67178f2UL
234 /* Initial hash value H for SHA-256: */
235 const static sha2_word32 sha256_initial_hash_value
[8] = {
246 /* Hash constant words K for SHA-384 and SHA-512: */
247 const static sha2_word64 K512
[80] = {
248 0x428a2f98d728ae22ULL
, 0x7137449123ef65cdULL
,
249 0xb5c0fbcfec4d3b2fULL
, 0xe9b5dba58189dbbcULL
,
250 0x3956c25bf348b538ULL
, 0x59f111f1b605d019ULL
,
251 0x923f82a4af194f9bULL
, 0xab1c5ed5da6d8118ULL
,
252 0xd807aa98a3030242ULL
, 0x12835b0145706fbeULL
,
253 0x243185be4ee4b28cULL
, 0x550c7dc3d5ffb4e2ULL
,
254 0x72be5d74f27b896fULL
, 0x80deb1fe3b1696b1ULL
,
255 0x9bdc06a725c71235ULL
, 0xc19bf174cf692694ULL
,
256 0xe49b69c19ef14ad2ULL
, 0xefbe4786384f25e3ULL
,
257 0x0fc19dc68b8cd5b5ULL
, 0x240ca1cc77ac9c65ULL
,
258 0x2de92c6f592b0275ULL
, 0x4a7484aa6ea6e483ULL
,
259 0x5cb0a9dcbd41fbd4ULL
, 0x76f988da831153b5ULL
,
260 0x983e5152ee66dfabULL
, 0xa831c66d2db43210ULL
,
261 0xb00327c898fb213fULL
, 0xbf597fc7beef0ee4ULL
,
262 0xc6e00bf33da88fc2ULL
, 0xd5a79147930aa725ULL
,
263 0x06ca6351e003826fULL
, 0x142929670a0e6e70ULL
,
264 0x27b70a8546d22ffcULL
, 0x2e1b21385c26c926ULL
,
265 0x4d2c6dfc5ac42aedULL
, 0x53380d139d95b3dfULL
,
266 0x650a73548baf63deULL
, 0x766a0abb3c77b2a8ULL
,
267 0x81c2c92e47edaee6ULL
, 0x92722c851482353bULL
,
268 0xa2bfe8a14cf10364ULL
, 0xa81a664bbc423001ULL
,
269 0xc24b8b70d0f89791ULL
, 0xc76c51a30654be30ULL
,
270 0xd192e819d6ef5218ULL
, 0xd69906245565a910ULL
,
271 0xf40e35855771202aULL
, 0x106aa07032bbd1b8ULL
,
272 0x19a4c116b8d2d0c8ULL
, 0x1e376c085141ab53ULL
,
273 0x2748774cdf8eeb99ULL
, 0x34b0bcb5e19b48a8ULL
,
274 0x391c0cb3c5c95a63ULL
, 0x4ed8aa4ae3418acbULL
,
275 0x5b9cca4f7763e373ULL
, 0x682e6ff3d6b2b8a3ULL
,
276 0x748f82ee5defb2fcULL
, 0x78a5636f43172f60ULL
,
277 0x84c87814a1f0ab72ULL
, 0x8cc702081a6439ecULL
,
278 0x90befffa23631e28ULL
, 0xa4506cebde82bde9ULL
,
279 0xbef9a3f7b2c67915ULL
, 0xc67178f2e372532bULL
,
280 0xca273eceea26619cULL
, 0xd186b8c721c0c207ULL
,
281 0xeada7dd6cde0eb1eULL
, 0xf57d4f7fee6ed178ULL
,
282 0x06f067aa72176fbaULL
, 0x0a637dc5a2c898a6ULL
,
283 0x113f9804bef90daeULL
, 0x1b710b35131c471bULL
,
284 0x28db77f523047d84ULL
, 0x32caab7b40c72493ULL
,
285 0x3c9ebe0a15c9bebcULL
, 0x431d67c49c100d4cULL
,
286 0x4cc5d4becb3e42b6ULL
, 0x597f299cfc657e2aULL
,
287 0x5fcb6fab3ad6faecULL
, 0x6c44198c4a475817ULL
290 /* Initial hash value H for SHA-384 */
291 const static sha2_word64 sha384_initial_hash_value
[8] = {
292 0xcbbb9d5dc1059ed8ULL
,
293 0x629a292a367cd507ULL
,
294 0x9159015a3070dd17ULL
,
295 0x152fecd8f70e5939ULL
,
296 0x67332667ffc00b31ULL
,
297 0x8eb44a8768581511ULL
,
298 0xdb0c2e0d64f98fa7ULL
,
299 0x47b5481dbefa4fa4ULL
302 /* Initial hash value H for SHA-512 */
303 const static sha2_word64 sha512_initial_hash_value
[8] = {
304 0x6a09e667f3bcc908ULL
,
305 0xbb67ae8584caa73bULL
,
306 0x3c6ef372fe94f82bULL
,
307 0xa54ff53a5f1d36f1ULL
,
308 0x510e527fade682d1ULL
,
309 0x9b05688c2b3e6c1fULL
,
310 0x1f83d9abfb41bd6bULL
,
311 0x5be0cd19137e2179ULL
315 * Constant used by SHA256/384/512_End() functions for converting the
316 * digest to a readable hexadecimal character string:
318 static const char *sha2_hex_digits
= "0123456789abcdef";
321 /*** SHA-256: *********************************************************/
322 void SHA256_Init(SHA256_CTX
* context
) {
323 if (context
== (SHA256_CTX
*)0) {
326 bcopy(sha256_initial_hash_value
, context
->state
, SHA256_DIGEST_LENGTH
);
327 bzero(context
->buffer
, SHA256_BLOCK_LENGTH
);
328 context
->bitcount
= 0;
331 #ifdef SHA2_UNROLL_TRANSFORM
333 /* Unrolled SHA-256 round macros: */
335 #if BYTE_ORDER == LITTLE_ENDIAN
337 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
338 REVERSE32(*data++, W256[j]); \
339 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
342 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
346 #else /* BYTE_ORDER == LITTLE_ENDIAN */
348 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
349 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
350 K256[j] + (W256[j] = *data++); \
352 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
355 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
357 #define ROUND256(a,b,c,d,e,f,g,h) \
358 s0 = W256[(j+1)&0x0f]; \
359 s0 = sigma0_256(s0); \
360 s1 = W256[(j+14)&0x0f]; \
361 s1 = sigma1_256(s1); \
362 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
363 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
365 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
368 void SHA256_Transform(SHA256_CTX
* context
, const sha2_word32
* data
) {
369 sha2_word32 a
, b
, c
, d
, e
, f
, g
, h
, s0
, s1
;
370 sha2_word32 T1
, *W256
;
373 W256
= (sha2_word32
*)context
->buffer
;
375 /* Initialize registers with the prev. intermediate value */
376 a
= context
->state
[0];
377 b
= context
->state
[1];
378 c
= context
->state
[2];
379 d
= context
->state
[3];
380 e
= context
->state
[4];
381 f
= context
->state
[5];
382 g
= context
->state
[6];
383 h
= context
->state
[7];
387 /* Rounds 0 to 15 (unrolled): */
388 ROUND256_0_TO_15(a
,b
,c
,d
,e
,f
,g
,h
);
389 ROUND256_0_TO_15(h
,a
,b
,c
,d
,e
,f
,g
);
390 ROUND256_0_TO_15(g
,h
,a
,b
,c
,d
,e
,f
);
391 ROUND256_0_TO_15(f
,g
,h
,a
,b
,c
,d
,e
);
392 ROUND256_0_TO_15(e
,f
,g
,h
,a
,b
,c
,d
);
393 ROUND256_0_TO_15(d
,e
,f
,g
,h
,a
,b
,c
);
394 ROUND256_0_TO_15(c
,d
,e
,f
,g
,h
,a
,b
);
395 ROUND256_0_TO_15(b
,c
,d
,e
,f
,g
,h
,a
);
398 /* Now for the remaining rounds to 64: */
400 ROUND256(a
,b
,c
,d
,e
,f
,g
,h
);
401 ROUND256(h
,a
,b
,c
,d
,e
,f
,g
);
402 ROUND256(g
,h
,a
,b
,c
,d
,e
,f
);
403 ROUND256(f
,g
,h
,a
,b
,c
,d
,e
);
404 ROUND256(e
,f
,g
,h
,a
,b
,c
,d
);
405 ROUND256(d
,e
,f
,g
,h
,a
,b
,c
);
406 ROUND256(c
,d
,e
,f
,g
,h
,a
,b
);
407 ROUND256(b
,c
,d
,e
,f
,g
,h
,a
);
410 /* Compute the current intermediate hash value */
411 context
->state
[0] += a
;
412 context
->state
[1] += b
;
413 context
->state
[2] += c
;
414 context
->state
[3] += d
;
415 context
->state
[4] += e
;
416 context
->state
[5] += f
;
417 context
->state
[6] += g
;
418 context
->state
[7] += h
;
421 a
= b
= c
= d
= e
= f
= g
= h
= T1
= 0;
424 #else /* SHA2_UNROLL_TRANSFORM */
426 void SHA256_Transform(SHA256_CTX
* context
, const sha2_word32
* data
) {
427 sha2_word32 a
, b
, c
, d
, e
, f
, g
, h
, s0
, s1
;
428 sha2_word32 T1
, T2
, *W256
;
431 W256
= (sha2_word32
*)context
->buffer
;
433 /* Initialize registers with the prev. intermediate value */
434 a
= context
->state
[0];
435 b
= context
->state
[1];
436 c
= context
->state
[2];
437 d
= context
->state
[3];
438 e
= context
->state
[4];
439 f
= context
->state
[5];
440 g
= context
->state
[6];
441 h
= context
->state
[7];
445 #if BYTE_ORDER == LITTLE_ENDIAN
446 /* Copy data while converting to host byte order */
447 REVERSE32(*data
++,W256
[j
]);
448 /* Apply the SHA-256 compression function to update a..h */
449 T1
= h
+ Sigma1_256(e
) + Ch(e
, f
, g
) + K256
[j
] + W256
[j
];
450 #else /* BYTE_ORDER == LITTLE_ENDIAN */
451 /* Apply the SHA-256 compression function to update a..h with copy */
452 T1
= h
+ Sigma1_256(e
) + Ch(e
, f
, g
) + K256
[j
] + (W256
[j
] = *data
++);
453 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
454 T2
= Sigma0_256(a
) + Maj(a
, b
, c
);
468 /* Part of the message block expansion: */
469 s0
= W256
[(j
+1)&0x0f];
471 s1
= W256
[(j
+14)&0x0f];
474 /* Apply the SHA-256 compression function to update a..h */
475 T1
= h
+ Sigma1_256(e
) + Ch(e
, f
, g
) + K256
[j
] +
476 (W256
[j
&0x0f] += s1
+ W256
[(j
+9)&0x0f] + s0
);
477 T2
= Sigma0_256(a
) + Maj(a
, b
, c
);
490 /* Compute the current intermediate hash value */
491 context
->state
[0] += a
;
492 context
->state
[1] += b
;
493 context
->state
[2] += c
;
494 context
->state
[3] += d
;
495 context
->state
[4] += e
;
496 context
->state
[5] += f
;
497 context
->state
[6] += g
;
498 context
->state
[7] += h
;
501 a
= b
= c
= d
= e
= f
= g
= h
= T1
= T2
= 0;
504 #endif /* SHA2_UNROLL_TRANSFORM */
506 void SHA256_Update(SHA256_CTX
* context
, const sha2_byte
*data
, size_t len
) {
507 unsigned int freespace
, usedspace
;
510 /* Calling with no data is valid - we do nothing */
515 assert(context
!= (SHA256_CTX
*)0 && data
!= (sha2_byte
*)0);
517 usedspace
= (context
->bitcount
>> 3) % SHA256_BLOCK_LENGTH
;
519 /* Calculate how much free space is available in the buffer */
520 freespace
= SHA256_BLOCK_LENGTH
- usedspace
;
522 if (len
>= freespace
) {
523 /* Fill the buffer completely and process it */
524 bcopy(data
, &context
->buffer
[usedspace
], freespace
);
525 context
->bitcount
+= freespace
<< 3;
528 SHA256_Transform(context
, (sha2_word32
*)context
->buffer
);
530 /* The buffer is not yet full */
531 bcopy(data
, &context
->buffer
[usedspace
], len
);
532 context
->bitcount
+= len
<< 3;
534 usedspace
= freespace
= 0;
538 while (len
>= SHA256_BLOCK_LENGTH
) {
539 /* Process as many complete blocks as we can */
540 SHA256_Transform(context
, (const sha2_word32
*)data
);
541 context
->bitcount
+= SHA256_BLOCK_LENGTH
<< 3;
542 len
-= SHA256_BLOCK_LENGTH
;
543 data
+= SHA256_BLOCK_LENGTH
;
546 /* There's left-overs, so save 'em */
547 bcopy(data
, context
->buffer
, len
);
548 context
->bitcount
+= len
<< 3;
551 usedspace
= freespace
= 0;
554 void SHA256_Final(sha2_byte digest
[], SHA256_CTX
* context
) {
555 sha2_word32
*d
= (sha2_word32
*)digest
;
556 unsigned int usedspace
;
559 assert(context
!= (SHA256_CTX
*)0);
561 /* If no digest buffer is passed, we don't bother doing this: */
562 if (digest
!= (sha2_byte
*)0) {
563 usedspace
= (context
->bitcount
>> 3) % SHA256_BLOCK_LENGTH
;
564 #if BYTE_ORDER == LITTLE_ENDIAN
565 /* Convert FROM host byte order */
566 REVERSE64(context
->bitcount
,context
->bitcount
);
569 /* Begin padding with a 1 bit: */
570 context
->buffer
[usedspace
++] = 0x80;
572 if (usedspace
<= SHA256_SHORT_BLOCK_LENGTH
) {
573 /* Set-up for the last transform: */
574 bzero(&context
->buffer
[usedspace
], SHA256_SHORT_BLOCK_LENGTH
- usedspace
);
576 if (usedspace
< SHA256_BLOCK_LENGTH
) {
577 bzero(&context
->buffer
[usedspace
], SHA256_BLOCK_LENGTH
- usedspace
);
579 /* Do second-to-last transform: */
580 SHA256_Transform(context
, (sha2_word32
*)context
->buffer
);
582 /* And set-up for the last transform: */
583 bzero(context
->buffer
, SHA256_SHORT_BLOCK_LENGTH
);
586 /* Set-up for the last transform: */
587 bzero(context
->buffer
, SHA256_SHORT_BLOCK_LENGTH
);
589 /* Begin padding with a 1 bit: */
590 *context
->buffer
= 0x80;
592 /* Set the bit count: */
593 *(sha2_word64
*)&context
->buffer
[SHA256_SHORT_BLOCK_LENGTH
] = context
->bitcount
;
595 /* Final transform: */
596 SHA256_Transform(context
, (sha2_word32
*)context
->buffer
);
598 #if BYTE_ORDER == LITTLE_ENDIAN
600 /* Convert TO host byte order */
602 for (j
= 0; j
< 8; j
++) {
603 REVERSE32(context
->state
[j
],context
->state
[j
]);
604 *d
++ = context
->state
[j
];
608 bcopy(context
->state
, d
, SHA256_DIGEST_LENGTH
);
612 /* Clean up state data: */
613 bzero(context
, sizeof(context
));
617 char *SHA256_End(SHA256_CTX
* context
, char buffer
[]) {
618 sha2_byte digest
[SHA256_DIGEST_LENGTH
], *d
= digest
;
622 assert(context
!= (SHA256_CTX
*)0);
624 if (buffer
!= (char*)0) {
625 SHA256_Final(digest
, context
);
627 for (i
= 0; i
< SHA256_DIGEST_LENGTH
; i
++) {
628 *buffer
++ = sha2_hex_digits
[(*d
& 0xf0) >> 4];
629 *buffer
++ = sha2_hex_digits
[*d
& 0x0f];
634 bzero(context
, sizeof(context
));
636 bzero(digest
, SHA256_DIGEST_LENGTH
);
640 char* SHA256_Data(const sha2_byte
* data
, size_t len
, char digest
[SHA256_DIGEST_STRING_LENGTH
]) {
643 SHA256_Init(&context
);
644 SHA256_Update(&context
, data
, len
);
645 return SHA256_End(&context
, digest
);
649 /*** SHA-512: *********************************************************/
650 void SHA512_Init(SHA512_CTX
* context
) {
651 if (context
== (SHA512_CTX
*)0) {
654 bcopy(sha512_initial_hash_value
, context
->state
, SHA512_DIGEST_LENGTH
);
655 bzero(context
->buffer
, SHA512_BLOCK_LENGTH
);
656 context
->bitcount
[0] = context
->bitcount
[1] = 0;
659 #ifdef SHA2_UNROLL_TRANSFORM
661 /* Unrolled SHA-512 round macros: */
662 #if BYTE_ORDER == LITTLE_ENDIAN
664 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
665 REVERSE64(*data++, W512[j]); \
666 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
669 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
673 #else /* BYTE_ORDER == LITTLE_ENDIAN */
675 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
676 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
677 K512[j] + (W512[j] = *data++); \
679 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
682 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
684 #define ROUND512(a,b,c,d,e,f,g,h) \
685 s0 = W512[(j+1)&0x0f]; \
686 s0 = sigma0_512(s0); \
687 s1 = W512[(j+14)&0x0f]; \
688 s1 = sigma1_512(s1); \
689 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
690 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
692 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
695 void SHA512_Transform(SHA512_CTX
* context
, const sha2_word64
* data
) {
696 sha2_word64 a
, b
, c
, d
, e
, f
, g
, h
, s0
, s1
;
697 sha2_word64 T1
, *W512
= (sha2_word64
*)context
->buffer
;
700 /* Initialize registers with the prev. intermediate value */
701 a
= context
->state
[0];
702 b
= context
->state
[1];
703 c
= context
->state
[2];
704 d
= context
->state
[3];
705 e
= context
->state
[4];
706 f
= context
->state
[5];
707 g
= context
->state
[6];
708 h
= context
->state
[7];
712 ROUND512_0_TO_15(a
,b
,c
,d
,e
,f
,g
,h
);
713 ROUND512_0_TO_15(h
,a
,b
,c
,d
,e
,f
,g
);
714 ROUND512_0_TO_15(g
,h
,a
,b
,c
,d
,e
,f
);
715 ROUND512_0_TO_15(f
,g
,h
,a
,b
,c
,d
,e
);
716 ROUND512_0_TO_15(e
,f
,g
,h
,a
,b
,c
,d
);
717 ROUND512_0_TO_15(d
,e
,f
,g
,h
,a
,b
,c
);
718 ROUND512_0_TO_15(c
,d
,e
,f
,g
,h
,a
,b
);
719 ROUND512_0_TO_15(b
,c
,d
,e
,f
,g
,h
,a
);
722 /* Now for the remaining rounds up to 79: */
724 ROUND512(a
,b
,c
,d
,e
,f
,g
,h
);
725 ROUND512(h
,a
,b
,c
,d
,e
,f
,g
);
726 ROUND512(g
,h
,a
,b
,c
,d
,e
,f
);
727 ROUND512(f
,g
,h
,a
,b
,c
,d
,e
);
728 ROUND512(e
,f
,g
,h
,a
,b
,c
,d
);
729 ROUND512(d
,e
,f
,g
,h
,a
,b
,c
);
730 ROUND512(c
,d
,e
,f
,g
,h
,a
,b
);
731 ROUND512(b
,c
,d
,e
,f
,g
,h
,a
);
734 /* Compute the current intermediate hash value */
735 context
->state
[0] += a
;
736 context
->state
[1] += b
;
737 context
->state
[2] += c
;
738 context
->state
[3] += d
;
739 context
->state
[4] += e
;
740 context
->state
[5] += f
;
741 context
->state
[6] += g
;
742 context
->state
[7] += h
;
745 a
= b
= c
= d
= e
= f
= g
= h
= T1
= 0;
748 #else /* SHA2_UNROLL_TRANSFORM */
750 void SHA512_Transform(SHA512_CTX
* context
, const sha2_word64
* data
) {
751 sha2_word64 a
, b
, c
, d
, e
, f
, g
, h
, s0
, s1
;
752 sha2_word64 T1
, T2
, *W512
= (sha2_word64
*)context
->buffer
;
755 /* Initialize registers with the prev. intermediate value */
756 a
= context
->state
[0];
757 b
= context
->state
[1];
758 c
= context
->state
[2];
759 d
= context
->state
[3];
760 e
= context
->state
[4];
761 f
= context
->state
[5];
762 g
= context
->state
[6];
763 h
= context
->state
[7];
767 #if BYTE_ORDER == LITTLE_ENDIAN
768 /* Convert TO host byte order */
769 REVERSE64(*data
++, W512
[j
]);
770 /* Apply the SHA-512 compression function to update a..h */
771 T1
= h
+ Sigma1_512(e
) + Ch(e
, f
, g
) + K512
[j
] + W512
[j
];
772 #else /* BYTE_ORDER == LITTLE_ENDIAN */
773 /* Apply the SHA-512 compression function to update a..h with copy */
774 T1
= h
+ Sigma1_512(e
) + Ch(e
, f
, g
) + K512
[j
] + (W512
[j
] = *data
++);
775 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
776 T2
= Sigma0_512(a
) + Maj(a
, b
, c
);
790 /* Part of the message block expansion: */
791 s0
= W512
[(j
+1)&0x0f];
793 s1
= W512
[(j
+14)&0x0f];
796 /* Apply the SHA-512 compression function to update a..h */
797 T1
= h
+ Sigma1_512(e
) + Ch(e
, f
, g
) + K512
[j
] +
798 (W512
[j
&0x0f] += s1
+ W512
[(j
+9)&0x0f] + s0
);
799 T2
= Sigma0_512(a
) + Maj(a
, b
, c
);
812 /* Compute the current intermediate hash value */
813 context
->state
[0] += a
;
814 context
->state
[1] += b
;
815 context
->state
[2] += c
;
816 context
->state
[3] += d
;
817 context
->state
[4] += e
;
818 context
->state
[5] += f
;
819 context
->state
[6] += g
;
820 context
->state
[7] += h
;
823 a
= b
= c
= d
= e
= f
= g
= h
= T1
= T2
= 0;
826 #endif /* SHA2_UNROLL_TRANSFORM */
828 void SHA512_Update(SHA512_CTX
* context
, const sha2_byte
*data
, size_t len
) {
829 unsigned int freespace
, usedspace
;
832 /* Calling with no data is valid - we do nothing */
837 assert(context
!= (SHA512_CTX
*)0 && data
!= (sha2_byte
*)0);
839 usedspace
= (context
->bitcount
[0] >> 3) % SHA512_BLOCK_LENGTH
;
841 /* Calculate how much free space is available in the buffer */
842 freespace
= SHA512_BLOCK_LENGTH
- usedspace
;
844 if (len
>= freespace
) {
845 /* Fill the buffer completely and process it */
846 bcopy(data
, &context
->buffer
[usedspace
], freespace
);
847 ADDINC128(context
->bitcount
, freespace
<< 3);
850 SHA512_Transform(context
, (sha2_word64
*)context
->buffer
);
852 /* The buffer is not yet full */
853 bcopy(data
, &context
->buffer
[usedspace
], len
);
854 ADDINC128(context
->bitcount
, len
<< 3);
856 usedspace
= freespace
= 0;
860 while (len
>= SHA512_BLOCK_LENGTH
) {
861 /* Process as many complete blocks as we can */
862 SHA512_Transform(context
, (const sha2_word64
*)data
);
863 ADDINC128(context
->bitcount
, SHA512_BLOCK_LENGTH
<< 3);
864 len
-= SHA512_BLOCK_LENGTH
;
865 data
+= SHA512_BLOCK_LENGTH
;
868 /* There's left-overs, so save 'em */
869 bcopy(data
, context
->buffer
, len
);
870 ADDINC128(context
->bitcount
, len
<< 3);
873 usedspace
= freespace
= 0;
876 void SHA512_Last(SHA512_CTX
* context
) {
877 unsigned int usedspace
;
879 usedspace
= (context
->bitcount
[0] >> 3) % SHA512_BLOCK_LENGTH
;
880 #if BYTE_ORDER == LITTLE_ENDIAN
881 /* Convert FROM host byte order */
882 REVERSE64(context
->bitcount
[0],context
->bitcount
[0]);
883 REVERSE64(context
->bitcount
[1],context
->bitcount
[1]);
886 /* Begin padding with a 1 bit: */
887 context
->buffer
[usedspace
++] = 0x80;
889 if (usedspace
<= SHA512_SHORT_BLOCK_LENGTH
) {
890 /* Set-up for the last transform: */
891 bzero(&context
->buffer
[usedspace
], SHA512_SHORT_BLOCK_LENGTH
- usedspace
);
893 if (usedspace
< SHA512_BLOCK_LENGTH
) {
894 bzero(&context
->buffer
[usedspace
], SHA512_BLOCK_LENGTH
- usedspace
);
896 /* Do second-to-last transform: */
897 SHA512_Transform(context
, (sha2_word64
*)context
->buffer
);
899 /* And set-up for the last transform: */
900 bzero(context
->buffer
, SHA512_BLOCK_LENGTH
- 2);
903 /* Prepare for final transform: */
904 bzero(context
->buffer
, SHA512_SHORT_BLOCK_LENGTH
);
906 /* Begin padding with a 1 bit: */
907 *context
->buffer
= 0x80;
909 /* Store the length of input data (in bits): */
910 *(sha2_word64
*)&context
->buffer
[SHA512_SHORT_BLOCK_LENGTH
] = context
->bitcount
[1];
911 *(sha2_word64
*)&context
->buffer
[SHA512_SHORT_BLOCK_LENGTH
+8] = context
->bitcount
[0];
913 /* Final transform: */
914 SHA512_Transform(context
, (sha2_word64
*)context
->buffer
);
917 void SHA512_Final(sha2_byte digest
[], SHA512_CTX
* context
) {
918 sha2_word64
*d
= (sha2_word64
*)digest
;
921 assert(context
!= (SHA512_CTX
*)0);
923 /* If no digest buffer is passed, we don't bother doing this: */
924 if (digest
!= (sha2_byte
*)0) {
925 SHA512_Last(context
);
927 /* Save the hash data for output: */
928 #if BYTE_ORDER == LITTLE_ENDIAN
930 /* Convert TO host byte order */
932 for (j
= 0; j
< 8; j
++) {
933 REVERSE64(context
->state
[j
],context
->state
[j
]);
934 *d
++ = context
->state
[j
];
938 bcopy(context
->state
, d
, SHA512_DIGEST_LENGTH
);
942 /* Zero out state data */
943 bzero(context
, sizeof(context
));
946 char *SHA512_End(SHA512_CTX
* context
, char buffer
[]) {
947 sha2_byte digest
[SHA512_DIGEST_LENGTH
], *d
= digest
;
951 assert(context
!= (SHA512_CTX
*)0);
953 if (buffer
!= (char*)0) {
954 SHA512_Final(digest
, context
);
956 for (i
= 0; i
< SHA512_DIGEST_LENGTH
; i
++) {
957 *buffer
++ = sha2_hex_digits
[(*d
& 0xf0) >> 4];
958 *buffer
++ = sha2_hex_digits
[*d
& 0x0f];
963 bzero(context
, sizeof(context
));
965 bzero(digest
, SHA512_DIGEST_LENGTH
);
969 char* SHA512_Data(const sha2_byte
* data
, size_t len
, char digest
[SHA512_DIGEST_STRING_LENGTH
]) {
972 SHA512_Init(&context
);
973 SHA512_Update(&context
, data
, len
);
974 return SHA512_End(&context
, digest
);
978 /*** SHA-384: *********************************************************/
979 void SHA384_Init(SHA384_CTX
* context
) {
980 if (context
== (SHA384_CTX
*)0) {
983 bcopy(sha384_initial_hash_value
, context
->state
, SHA512_DIGEST_LENGTH
);
984 bzero(context
->buffer
, SHA384_BLOCK_LENGTH
);
985 context
->bitcount
[0] = context
->bitcount
[1] = 0;
988 void SHA384_Update(SHA384_CTX
* context
, const sha2_byte
* data
, size_t len
) {
989 SHA512_Update((SHA512_CTX
*)context
, data
, len
);
992 void SHA384_Final(sha2_byte digest
[], SHA384_CTX
* context
) {
993 sha2_word64
*d
= (sha2_word64
*)digest
;
996 assert(context
!= (SHA384_CTX
*)0);
998 /* If no digest buffer is passed, we don't bother doing this: */
999 if (digest
!= (sha2_byte
*)0) {
1000 SHA512_Last((SHA512_CTX
*)context
);
1002 /* Save the hash data for output: */
1003 #if BYTE_ORDER == LITTLE_ENDIAN
1005 /* Convert TO host byte order */
1007 for (j
= 0; j
< 6; j
++) {
1008 REVERSE64(context
->state
[j
],context
->state
[j
]);
1009 *d
++ = context
->state
[j
];
1013 bcopy(context
->state
, d
, SHA384_DIGEST_LENGTH
);
1017 /* Zero out state data */
1018 bzero(context
, sizeof(context
));
1021 char *SHA384_End(SHA384_CTX
* context
, char buffer
[]) {
1022 sha2_byte digest
[SHA384_DIGEST_LENGTH
], *d
= digest
;
1026 assert(context
!= (SHA384_CTX
*)0);
1028 if (buffer
!= (char*)0) {
1029 SHA384_Final(digest
, context
);
1031 for (i
= 0; i
< SHA384_DIGEST_LENGTH
; i
++) {
1032 *buffer
++ = sha2_hex_digits
[(*d
& 0xf0) >> 4];
1033 *buffer
++ = sha2_hex_digits
[*d
& 0x0f];
1038 bzero(context
, sizeof(context
));
1040 bzero(digest
, SHA384_DIGEST_LENGTH
);
1044 char* SHA384_Data(const sha2_byte
* data
, size_t len
, char digest
[SHA384_DIGEST_STRING_LENGTH
]) {
1047 SHA384_Init(&context
);
1048 SHA384_Update(&context
, data
, len
);
1049 return SHA384_End(&context
, digest
);
1053 static struct env_md_st sha2_256_md
= {
1055 0, /*NID_sha1WithRSAEncryption*/
1056 SHA256_DIGEST_LENGTH
,
1060 NULL
, NULL
, {0, 0, 0, 0},
1061 SHA256_BLOCK_LENGTH
,
1062 sizeof(struct env_md_st
*) + sizeof(SHA256_CTX
),
1065 struct env_md_st
*EVP_sha2_256(void)
1067 return(&sha2_256_md
);
1070 static struct env_md_st sha2_384_md
= {
1072 0, /*NID_sha1WithRSAEncryption*/
1073 SHA384_DIGEST_LENGTH
,
1077 NULL
, NULL
, {0, 0, 0, 0},
1078 SHA384_BLOCK_LENGTH
,
1079 sizeof(struct env_md_st
*) + sizeof(SHA384_CTX
),
1082 struct env_md_st
*EVP_sha2_384(void)
1084 return(&sha2_384_md
);
1087 static struct env_md_st sha2_512_md
= {
1089 0, /*NID_sha1WithRSAEncryption*/
1090 SHA512_DIGEST_LENGTH
,
1094 NULL
, NULL
, {0, 0, 0, 0}, /*EVP_PKEY_RSA_method*/
1095 SHA512_BLOCK_LENGTH
,
1096 sizeof(struct env_md_st
*) + sizeof(SHA512_CTX
),
1099 struct env_md_st
*EVP_sha2_512(void)
1101 return(&sha2_512_md
);