]>
Commit | Line | Data |
---|---|---|
89c4ed63 A |
1 | /* |
2 | February 2013(Wouter) patch defines for BSD endianness, from Brad Smith. | |
3 | January 2012(Wouter) added randomised initial value, fallout from 28c3. | |
4 | March 2007(Wouter) adapted from lookup3.c original, add config.h include. | |
5 | added #ifdef VALGRIND to remove 298,384,660 'unused variable k8' warnings. | |
6 | added include of lookup3.h to check definitions match declarations. | |
7 | removed include of stdint - config.h takes care of platform independence. | |
8 | url http://burtleburtle.net/bob/hash/index.html. | |
9 | */ | |
10 | /* | |
11 | ------------------------------------------------------------------------------- | |
12 | lookup3.c, by Bob Jenkins, May 2006, Public Domain. | |
13 | ||
14 | These are functions for producing 32-bit hashes for hash table lookup. | |
15 | hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final() | |
16 | are externally useful functions. Routines to test the hash are included | |
17 | if SELF_TEST is defined. You can use this free for any purpose. It's in | |
18 | the public domain. It has no warranty. | |
19 | ||
20 | You probably want to use hashlittle(). hashlittle() and hashbig() | |
21 | hash byte arrays. hashlittle() is is faster than hashbig() on | |
22 | little-endian machines. Intel and AMD are little-endian machines. | |
23 | On second thought, you probably want hashlittle2(), which is identical to | |
24 | hashlittle() except it returns two 32-bit hashes for the price of one. | |
25 | You could implement hashbig2() if you wanted but I haven't bothered here. | |
26 | ||
27 | If you want to find a hash of, say, exactly 7 integers, do | |
28 | a = i1; b = i2; c = i3; | |
29 | mix(a,b,c); | |
30 | a += i4; b += i5; c += i6; | |
31 | mix(a,b,c); | |
32 | a += i7; | |
33 | final(a,b,c); | |
34 | then use c as the hash value. If you have a variable length array of | |
35 | 4-byte integers to hash, use hashword(). If you have a byte array (like | |
36 | a character string), use hashlittle(). If you have several byte arrays, or | |
37 | a mix of things, see the comments above hashlittle(). | |
38 | ||
39 | Why is this so big? I read 12 bytes at a time into 3 4-byte integers, | |
40 | then mix those integers. This is fast (you can do a lot more thorough | |
41 | mixing with 12*3 instructions on 3 integers than you can with 3 instructions | |
42 | on 1 byte), but shoehorning those bytes into integers efficiently is messy. | |
43 | ------------------------------------------------------------------------------- | |
44 | */ | |
45 | /*#define SELF_TEST 1*/ | |
46 | ||
47 | #include "config.h" | |
48 | #include "util/storage/lookup3.h" | |
49 | #include <stdio.h> /* defines printf for tests */ | |
50 | #include <time.h> /* defines time_t for timings in the test */ | |
51 | /*#include <stdint.h> defines uint32_t etc (from config.h) */ | |
52 | #include <sys/param.h> /* attempt to define endianness */ | |
53 | #ifdef HAVE_SYS_TYPES_H | |
54 | # include <sys/types.h> /* attempt to define endianness (solaris) */ | |
55 | #endif | |
56 | #if defined(linux) || defined(__OpenBSD__) | |
57 | # ifdef HAVE_ENDIAN_H | |
58 | # include <endian.h> /* attempt to define endianness */ | |
59 | # else | |
60 | # include <machine/endian.h> /* on older OpenBSD */ | |
61 | # endif | |
62 | #endif | |
63 | #if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__DragonFly__) | |
64 | #include <sys/endian.h> /* attempt to define endianness */ | |
65 | #endif | |
66 | ||
67 | /* random initial value */ | |
68 | static uint32_t raninit = (uint32_t)0xdeadbeef; | |
69 | ||
70 | void | |
71 | hash_set_raninit(uint32_t v) | |
72 | { | |
73 | raninit = v; | |
74 | } | |
75 | ||
76 | /* | |
77 | * My best guess at if you are big-endian or little-endian. This may | |
78 | * need adjustment. | |
79 | */ | |
80 | #if (defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && \ | |
81 | __BYTE_ORDER == __LITTLE_ENDIAN) || \ | |
82 | (defined(i386) || defined(__i386__) || defined(__i486__) || \ | |
83 | defined(__i586__) || defined(__i686__) || defined(vax) || defined(MIPSEL) || defined(__x86)) | |
84 | # define HASH_LITTLE_ENDIAN 1 | |
85 | # define HASH_BIG_ENDIAN 0 | |
86 | #elif (defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && \ | |
87 | __BYTE_ORDER == __BIG_ENDIAN) || \ | |
88 | (defined(sparc) || defined(__sparc) || defined(__sparc__) || defined(POWERPC) || defined(mc68000) || defined(sel)) | |
89 | # define HASH_LITTLE_ENDIAN 0 | |
90 | # define HASH_BIG_ENDIAN 1 | |
91 | #elif defined(_MACHINE_ENDIAN_H_) | |
92 | /* test for machine_endian_h protects failure if some are empty strings */ | |
93 | # if defined(_BYTE_ORDER) && defined(_BIG_ENDIAN) && _BYTE_ORDER == _BIG_ENDIAN | |
94 | # define HASH_LITTLE_ENDIAN 0 | |
95 | # define HASH_BIG_ENDIAN 1 | |
96 | # endif | |
97 | # if defined(_BYTE_ORDER) && defined(_LITTLE_ENDIAN) && _BYTE_ORDER == _LITTLE_ENDIAN | |
98 | # define HASH_LITTLE_ENDIAN 1 | |
99 | # define HASH_BIG_ENDIAN 0 | |
100 | # endif /* _MACHINE_ENDIAN_H_ */ | |
101 | #else | |
102 | # define HASH_LITTLE_ENDIAN 0 | |
103 | # define HASH_BIG_ENDIAN 0 | |
104 | #endif | |
105 | ||
106 | #define hashsize(n) ((uint32_t)1<<(n)) | |
107 | #define hashmask(n) (hashsize(n)-1) | |
108 | #define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k)))) | |
109 | ||
110 | /* | |
111 | ------------------------------------------------------------------------------- | |
112 | mix -- mix 3 32-bit values reversibly. | |
113 | ||
114 | This is reversible, so any information in (a,b,c) before mix() is | |
115 | still in (a,b,c) after mix(). | |
116 | ||
117 | If four pairs of (a,b,c) inputs are run through mix(), or through | |
118 | mix() in reverse, there are at least 32 bits of the output that | |
119 | are sometimes the same for one pair and different for another pair. | |
120 | This was tested for: | |
121 | * pairs that differed by one bit, by two bits, in any combination | |
122 | of top bits of (a,b,c), or in any combination of bottom bits of | |
123 | (a,b,c). | |
124 | * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed | |
125 | the output delta to a Gray code (a^(a>>1)) so a string of 1's (as | |
126 | is commonly produced by subtraction) look like a single 1-bit | |
127 | difference. | |
128 | * the base values were pseudorandom, all zero but one bit set, or | |
129 | all zero plus a counter that starts at zero. | |
130 | ||
131 | Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that | |
132 | satisfy this are | |
133 | 4 6 8 16 19 4 | |
134 | 9 15 3 18 27 15 | |
135 | 14 9 3 7 17 3 | |
136 | Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing | |
137 | for "differ" defined as + with a one-bit base and a two-bit delta. I | |
138 | used http://burtleburtle.net/bob/hash/avalanche.html to choose | |
139 | the operations, constants, and arrangements of the variables. | |
140 | ||
141 | This does not achieve avalanche. There are input bits of (a,b,c) | |
142 | that fail to affect some output bits of (a,b,c), especially of a. The | |
143 | most thoroughly mixed value is c, but it doesn't really even achieve | |
144 | avalanche in c. | |
145 | ||
146 | This allows some parallelism. Read-after-writes are good at doubling | |
147 | the number of bits affected, so the goal of mixing pulls in the opposite | |
148 | direction as the goal of parallelism. I did what I could. Rotates | |
149 | seem to cost as much as shifts on every machine I could lay my hands | |
150 | on, and rotates are much kinder to the top and bottom bits, so I used | |
151 | rotates. | |
152 | ------------------------------------------------------------------------------- | |
153 | */ | |
154 | #define mix(a,b,c) \ | |
155 | { \ | |
156 | a -= c; a ^= rot(c, 4); c += b; \ | |
157 | b -= a; b ^= rot(a, 6); a += c; \ | |
158 | c -= b; c ^= rot(b, 8); b += a; \ | |
159 | a -= c; a ^= rot(c,16); c += b; \ | |
160 | b -= a; b ^= rot(a,19); a += c; \ | |
161 | c -= b; c ^= rot(b, 4); b += a; \ | |
162 | } | |
163 | ||
164 | /* | |
165 | ------------------------------------------------------------------------------- | |
166 | final -- final mixing of 3 32-bit values (a,b,c) into c | |
167 | ||
168 | Pairs of (a,b,c) values differing in only a few bits will usually | |
169 | produce values of c that look totally different. This was tested for | |
170 | * pairs that differed by one bit, by two bits, in any combination | |
171 | of top bits of (a,b,c), or in any combination of bottom bits of | |
172 | (a,b,c). | |
173 | * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed | |
174 | the output delta to a Gray code (a^(a>>1)) so a string of 1's (as | |
175 | is commonly produced by subtraction) look like a single 1-bit | |
176 | difference. | |
177 | * the base values were pseudorandom, all zero but one bit set, or | |
178 | all zero plus a counter that starts at zero. | |
179 | ||
180 | These constants passed: | |
181 | 14 11 25 16 4 14 24 | |
182 | 12 14 25 16 4 14 24 | |
183 | and these came close: | |
184 | 4 8 15 26 3 22 24 | |
185 | 10 8 15 26 3 22 24 | |
186 | 11 8 15 26 3 22 24 | |
187 | ------------------------------------------------------------------------------- | |
188 | */ | |
189 | #define final(a,b,c) \ | |
190 | { \ | |
191 | c ^= b; c -= rot(b,14); \ | |
192 | a ^= c; a -= rot(c,11); \ | |
193 | b ^= a; b -= rot(a,25); \ | |
194 | c ^= b; c -= rot(b,16); \ | |
195 | a ^= c; a -= rot(c,4); \ | |
196 | b ^= a; b -= rot(a,14); \ | |
197 | c ^= b; c -= rot(b,24); \ | |
198 | } | |
199 | ||
200 | /* | |
201 | -------------------------------------------------------------------- | |
202 | This works on all machines. To be useful, it requires | |
203 | -- that the key be an array of uint32_t's, and | |
204 | -- that the length be the number of uint32_t's in the key | |
205 | ||
206 | The function hashword() is identical to hashlittle() on little-endian | |
207 | machines, and identical to hashbig() on big-endian machines, | |
208 | except that the length has to be measured in uint32_ts rather than in | |
209 | bytes. hashlittle() is more complicated than hashword() only because | |
210 | hashlittle() has to dance around fitting the key bytes into registers. | |
211 | -------------------------------------------------------------------- | |
212 | */ | |
213 | uint32_t hashword( | |
214 | const uint32_t *k, /* the key, an array of uint32_t values */ | |
215 | size_t length, /* the length of the key, in uint32_ts */ | |
216 | uint32_t initval) /* the previous hash, or an arbitrary value */ | |
217 | { | |
218 | uint32_t a,b,c; | |
219 | ||
220 | /* Set up the internal state */ | |
221 | a = b = c = raninit + (((uint32_t)length)<<2) + initval; | |
222 | ||
223 | /*------------------------------------------------- handle most of the key */ | |
224 | while (length > 3) | |
225 | { | |
226 | a += k[0]; | |
227 | b += k[1]; | |
228 | c += k[2]; | |
229 | mix(a,b,c); | |
230 | length -= 3; | |
231 | k += 3; | |
232 | } | |
233 | ||
234 | /*------------------------------------------- handle the last 3 uint32_t's */ | |
235 | switch(length) /* all the case statements fall through */ | |
236 | { | |
237 | case 3 : c+=k[2]; | |
238 | case 2 : b+=k[1]; | |
239 | case 1 : a+=k[0]; | |
240 | final(a,b,c); | |
241 | case 0: /* case 0: nothing left to add */ | |
242 | break; | |
243 | } | |
244 | /*------------------------------------------------------ report the result */ | |
245 | return c; | |
246 | } | |
247 | ||
248 | ||
249 | #ifdef SELF_TEST | |
250 | ||
251 | /* | |
252 | -------------------------------------------------------------------- | |
253 | hashword2() -- same as hashword(), but take two seeds and return two | |
254 | 32-bit values. pc and pb must both be nonnull, and *pc and *pb must | |
255 | both be initialized with seeds. If you pass in (*pb)==0, the output | |
256 | (*pc) will be the same as the return value from hashword(). | |
257 | -------------------------------------------------------------------- | |
258 | */ | |
259 | void hashword2 ( | |
260 | const uint32_t *k, /* the key, an array of uint32_t values */ | |
261 | size_t length, /* the length of the key, in uint32_ts */ | |
262 | uint32_t *pc, /* IN: seed OUT: primary hash value */ | |
263 | uint32_t *pb) /* IN: more seed OUT: secondary hash value */ | |
264 | { | |
265 | uint32_t a,b,c; | |
266 | ||
267 | /* Set up the internal state */ | |
268 | a = b = c = raninit + ((uint32_t)(length<<2)) + *pc; | |
269 | c += *pb; | |
270 | ||
271 | /*------------------------------------------------- handle most of the key */ | |
272 | while (length > 3) | |
273 | { | |
274 | a += k[0]; | |
275 | b += k[1]; | |
276 | c += k[2]; | |
277 | mix(a,b,c); | |
278 | length -= 3; | |
279 | k += 3; | |
280 | } | |
281 | ||
282 | /*------------------------------------------- handle the last 3 uint32_t's */ | |
283 | switch(length) /* all the case statements fall through */ | |
284 | { | |
285 | case 3 : c+=k[2]; | |
286 | case 2 : b+=k[1]; | |
287 | case 1 : a+=k[0]; | |
288 | final(a,b,c); | |
289 | case 0: /* case 0: nothing left to add */ | |
290 | break; | |
291 | } | |
292 | /*------------------------------------------------------ report the result */ | |
293 | *pc=c; *pb=b; | |
294 | } | |
295 | ||
296 | #endif /* SELF_TEST */ | |
297 | ||
298 | /* | |
299 | ------------------------------------------------------------------------------- | |
300 | hashlittle() -- hash a variable-length key into a 32-bit value | |
301 | k : the key (the unaligned variable-length array of bytes) | |
302 | length : the length of the key, counting by bytes | |
303 | initval : can be any 4-byte value | |
304 | Returns a 32-bit value. Every bit of the key affects every bit of | |
305 | the return value. Two keys differing by one or two bits will have | |
306 | totally different hash values. | |
307 | ||
308 | The best hash table sizes are powers of 2. There is no need to do | |
309 | mod a prime (mod is sooo slow!). If you need less than 32 bits, | |
310 | use a bitmask. For example, if you need only 10 bits, do | |
311 | h = (h & hashmask(10)); | |
312 | In which case, the hash table should have hashsize(10) elements. | |
313 | ||
314 | If you are hashing n strings (uint8_t **)k, do it like this: | |
315 | for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h); | |
316 | ||
317 | By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this | |
318 | code any way you wish, private, educational, or commercial. It's free. | |
319 | ||
320 | Use for hash table lookup, or anything where one collision in 2^^32 is | |
321 | acceptable. Do NOT use for cryptographic purposes. | |
322 | ------------------------------------------------------------------------------- | |
323 | */ | |
324 | ||
325 | uint32_t hashlittle( const void *key, size_t length, uint32_t initval) | |
326 | { | |
327 | uint32_t a,b,c; /* internal state */ | |
328 | union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */ | |
329 | ||
330 | /* Set up the internal state */ | |
331 | a = b = c = raninit + ((uint32_t)length) + initval; | |
332 | ||
333 | u.ptr = key; | |
334 | if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) { | |
335 | const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */ | |
336 | #ifdef VALGRIND | |
337 | const uint8_t *k8; | |
338 | #endif | |
339 | ||
340 | /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */ | |
341 | while (length > 12) | |
342 | { | |
343 | a += k[0]; | |
344 | b += k[1]; | |
345 | c += k[2]; | |
346 | mix(a,b,c); | |
347 | length -= 12; | |
348 | k += 3; | |
349 | } | |
350 | ||
351 | /*----------------------------- handle the last (probably partial) block */ | |
352 | /* | |
353 | * "k[2]&0xffffff" actually reads beyond the end of the string, but | |
354 | * then masks off the part it's not allowed to read. Because the | |
355 | * string is aligned, the masked-off tail is in the same word as the | |
356 | * rest of the string. Every machine with memory protection I've seen | |
357 | * does it on word boundaries, so is OK with this. But VALGRIND will | |
358 | * still catch it and complain. The masking trick does make the hash | |
359 | * noticably faster for short strings (like English words). | |
360 | */ | |
361 | #ifndef VALGRIND | |
362 | ||
363 | switch(length) | |
364 | { | |
365 | case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; | |
366 | case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break; | |
367 | case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break; | |
368 | case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break; | |
369 | case 8 : b+=k[1]; a+=k[0]; break; | |
370 | case 7 : b+=k[1]&0xffffff; a+=k[0]; break; | |
371 | case 6 : b+=k[1]&0xffff; a+=k[0]; break; | |
372 | case 5 : b+=k[1]&0xff; a+=k[0]; break; | |
373 | case 4 : a+=k[0]; break; | |
374 | case 3 : a+=k[0]&0xffffff; break; | |
375 | case 2 : a+=k[0]&0xffff; break; | |
376 | case 1 : a+=k[0]&0xff; break; | |
377 | case 0 : return c; /* zero length strings require no mixing */ | |
378 | } | |
379 | ||
380 | #else /* make valgrind happy */ | |
381 | ||
382 | k8 = (const uint8_t *)k; | |
383 | switch(length) | |
384 | { | |
385 | case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; | |
386 | case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ | |
387 | case 10: c+=((uint32_t)k8[9])<<8; /* fall through */ | |
388 | case 9 : c+=k8[8]; /* fall through */ | |
389 | case 8 : b+=k[1]; a+=k[0]; break; | |
390 | case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ | |
391 | case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */ | |
392 | case 5 : b+=k8[4]; /* fall through */ | |
393 | case 4 : a+=k[0]; break; | |
394 | case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ | |
395 | case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */ | |
396 | case 1 : a+=k8[0]; break; | |
397 | case 0 : return c; | |
398 | } | |
399 | ||
400 | #endif /* !valgrind */ | |
401 | ||
402 | } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) { | |
403 | const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */ | |
404 | const uint8_t *k8; | |
405 | ||
406 | /*--------------- all but last block: aligned reads and different mixing */ | |
407 | while (length > 12) | |
408 | { | |
409 | a += k[0] + (((uint32_t)k[1])<<16); | |
410 | b += k[2] + (((uint32_t)k[3])<<16); | |
411 | c += k[4] + (((uint32_t)k[5])<<16); | |
412 | mix(a,b,c); | |
413 | length -= 12; | |
414 | k += 6; | |
415 | } | |
416 | ||
417 | /*----------------------------- handle the last (probably partial) block */ | |
418 | k8 = (const uint8_t *)k; | |
419 | switch(length) | |
420 | { | |
421 | case 12: c+=k[4]+(((uint32_t)k[5])<<16); | |
422 | b+=k[2]+(((uint32_t)k[3])<<16); | |
423 | a+=k[0]+(((uint32_t)k[1])<<16); | |
424 | break; | |
425 | case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ | |
426 | case 10: c+=k[4]; | |
427 | b+=k[2]+(((uint32_t)k[3])<<16); | |
428 | a+=k[0]+(((uint32_t)k[1])<<16); | |
429 | break; | |
430 | case 9 : c+=k8[8]; /* fall through */ | |
431 | case 8 : b+=k[2]+(((uint32_t)k[3])<<16); | |
432 | a+=k[0]+(((uint32_t)k[1])<<16); | |
433 | break; | |
434 | case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ | |
435 | case 6 : b+=k[2]; | |
436 | a+=k[0]+(((uint32_t)k[1])<<16); | |
437 | break; | |
438 | case 5 : b+=k8[4]; /* fall through */ | |
439 | case 4 : a+=k[0]+(((uint32_t)k[1])<<16); | |
440 | break; | |
441 | case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ | |
442 | case 2 : a+=k[0]; | |
443 | break; | |
444 | case 1 : a+=k8[0]; | |
445 | break; | |
446 | case 0 : return c; /* zero length requires no mixing */ | |
447 | } | |
448 | ||
449 | } else { /* need to read the key one byte at a time */ | |
450 | const uint8_t *k = (const uint8_t *)key; | |
451 | ||
452 | /*--------------- all but the last block: affect some 32 bits of (a,b,c) */ | |
453 | while (length > 12) | |
454 | { | |
455 | a += k[0]; | |
456 | a += ((uint32_t)k[1])<<8; | |
457 | a += ((uint32_t)k[2])<<16; | |
458 | a += ((uint32_t)k[3])<<24; | |
459 | b += k[4]; | |
460 | b += ((uint32_t)k[5])<<8; | |
461 | b += ((uint32_t)k[6])<<16; | |
462 | b += ((uint32_t)k[7])<<24; | |
463 | c += k[8]; | |
464 | c += ((uint32_t)k[9])<<8; | |
465 | c += ((uint32_t)k[10])<<16; | |
466 | c += ((uint32_t)k[11])<<24; | |
467 | mix(a,b,c); | |
468 | length -= 12; | |
469 | k += 12; | |
470 | } | |
471 | ||
472 | /*-------------------------------- last block: affect all 32 bits of (c) */ | |
473 | switch(length) /* all the case statements fall through */ | |
474 | { | |
475 | case 12: c+=((uint32_t)k[11])<<24; | |
476 | case 11: c+=((uint32_t)k[10])<<16; | |
477 | case 10: c+=((uint32_t)k[9])<<8; | |
478 | case 9 : c+=k[8]; | |
479 | case 8 : b+=((uint32_t)k[7])<<24; | |
480 | case 7 : b+=((uint32_t)k[6])<<16; | |
481 | case 6 : b+=((uint32_t)k[5])<<8; | |
482 | case 5 : b+=k[4]; | |
483 | case 4 : a+=((uint32_t)k[3])<<24; | |
484 | case 3 : a+=((uint32_t)k[2])<<16; | |
485 | case 2 : a+=((uint32_t)k[1])<<8; | |
486 | case 1 : a+=k[0]; | |
487 | break; | |
488 | case 0 : return c; | |
489 | } | |
490 | } | |
491 | ||
492 | final(a,b,c); | |
493 | return c; | |
494 | } | |
495 | ||
496 | #ifdef SELF_TEST | |
497 | ||
498 | /* | |
499 | * hashlittle2: return 2 32-bit hash values | |
500 | * | |
501 | * This is identical to hashlittle(), except it returns two 32-bit hash | |
502 | * values instead of just one. This is good enough for hash table | |
503 | * lookup with 2^^64 buckets, or if you want a second hash if you're not | |
504 | * happy with the first, or if you want a probably-unique 64-bit ID for | |
505 | * the key. *pc is better mixed than *pb, so use *pc first. If you want | |
506 | * a 64-bit value do something like "*pc + (((uint64_t)*pb)<<32)". | |
507 | */ | |
508 | void hashlittle2( | |
509 | const void *key, /* the key to hash */ | |
510 | size_t length, /* length of the key */ | |
511 | uint32_t *pc, /* IN: primary initval, OUT: primary hash */ | |
512 | uint32_t *pb) /* IN: secondary initval, OUT: secondary hash */ | |
513 | { | |
514 | uint32_t a,b,c; /* internal state */ | |
515 | union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */ | |
516 | ||
517 | /* Set up the internal state */ | |
518 | a = b = c = raninit + ((uint32_t)length) + *pc; | |
519 | c += *pb; | |
520 | ||
521 | u.ptr = key; | |
522 | if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) { | |
523 | const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */ | |
524 | #ifdef VALGRIND | |
525 | const uint8_t *k8; | |
526 | #endif | |
527 | ||
528 | /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */ | |
529 | while (length > 12) | |
530 | { | |
531 | a += k[0]; | |
532 | b += k[1]; | |
533 | c += k[2]; | |
534 | mix(a,b,c); | |
535 | length -= 12; | |
536 | k += 3; | |
537 | } | |
538 | ||
539 | /*----------------------------- handle the last (probably partial) block */ | |
540 | /* | |
541 | * "k[2]&0xffffff" actually reads beyond the end of the string, but | |
542 | * then masks off the part it's not allowed to read. Because the | |
543 | * string is aligned, the masked-off tail is in the same word as the | |
544 | * rest of the string. Every machine with memory protection I've seen | |
545 | * does it on word boundaries, so is OK with this. But VALGRIND will | |
546 | * still catch it and complain. The masking trick does make the hash | |
547 | * noticably faster for short strings (like English words). | |
548 | */ | |
549 | #ifndef VALGRIND | |
550 | ||
551 | switch(length) | |
552 | { | |
553 | case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; | |
554 | case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break; | |
555 | case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break; | |
556 | case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break; | |
557 | case 8 : b+=k[1]; a+=k[0]; break; | |
558 | case 7 : b+=k[1]&0xffffff; a+=k[0]; break; | |
559 | case 6 : b+=k[1]&0xffff; a+=k[0]; break; | |
560 | case 5 : b+=k[1]&0xff; a+=k[0]; break; | |
561 | case 4 : a+=k[0]; break; | |
562 | case 3 : a+=k[0]&0xffffff; break; | |
563 | case 2 : a+=k[0]&0xffff; break; | |
564 | case 1 : a+=k[0]&0xff; break; | |
565 | case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */ | |
566 | } | |
567 | ||
568 | #else /* make valgrind happy */ | |
569 | ||
570 | k8 = (const uint8_t *)k; | |
571 | switch(length) | |
572 | { | |
573 | case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; | |
574 | case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ | |
575 | case 10: c+=((uint32_t)k8[9])<<8; /* fall through */ | |
576 | case 9 : c+=k8[8]; /* fall through */ | |
577 | case 8 : b+=k[1]; a+=k[0]; break; | |
578 | case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ | |
579 | case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */ | |
580 | case 5 : b+=k8[4]; /* fall through */ | |
581 | case 4 : a+=k[0]; break; | |
582 | case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ | |
583 | case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */ | |
584 | case 1 : a+=k8[0]; break; | |
585 | case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */ | |
586 | } | |
587 | ||
588 | #endif /* !valgrind */ | |
589 | ||
590 | } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) { | |
591 | const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */ | |
592 | const uint8_t *k8; | |
593 | ||
594 | /*--------------- all but last block: aligned reads and different mixing */ | |
595 | while (length > 12) | |
596 | { | |
597 | a += k[0] + (((uint32_t)k[1])<<16); | |
598 | b += k[2] + (((uint32_t)k[3])<<16); | |
599 | c += k[4] + (((uint32_t)k[5])<<16); | |
600 | mix(a,b,c); | |
601 | length -= 12; | |
602 | k += 6; | |
603 | } | |
604 | ||
605 | /*----------------------------- handle the last (probably partial) block */ | |
606 | k8 = (const uint8_t *)k; | |
607 | switch(length) | |
608 | { | |
609 | case 12: c+=k[4]+(((uint32_t)k[5])<<16); | |
610 | b+=k[2]+(((uint32_t)k[3])<<16); | |
611 | a+=k[0]+(((uint32_t)k[1])<<16); | |
612 | break; | |
613 | case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ | |
614 | case 10: c+=k[4]; | |
615 | b+=k[2]+(((uint32_t)k[3])<<16); | |
616 | a+=k[0]+(((uint32_t)k[1])<<16); | |
617 | break; | |
618 | case 9 : c+=k8[8]; /* fall through */ | |
619 | case 8 : b+=k[2]+(((uint32_t)k[3])<<16); | |
620 | a+=k[0]+(((uint32_t)k[1])<<16); | |
621 | break; | |
622 | case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ | |
623 | case 6 : b+=k[2]; | |
624 | a+=k[0]+(((uint32_t)k[1])<<16); | |
625 | break; | |
626 | case 5 : b+=k8[4]; /* fall through */ | |
627 | case 4 : a+=k[0]+(((uint32_t)k[1])<<16); | |
628 | break; | |
629 | case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ | |
630 | case 2 : a+=k[0]; | |
631 | break; | |
632 | case 1 : a+=k8[0]; | |
633 | break; | |
634 | case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */ | |
635 | } | |
636 | ||
637 | } else { /* need to read the key one byte at a time */ | |
638 | const uint8_t *k = (const uint8_t *)key; | |
639 | ||
640 | /*--------------- all but the last block: affect some 32 bits of (a,b,c) */ | |
641 | while (length > 12) | |
642 | { | |
643 | a += k[0]; | |
644 | a += ((uint32_t)k[1])<<8; | |
645 | a += ((uint32_t)k[2])<<16; | |
646 | a += ((uint32_t)k[3])<<24; | |
647 | b += k[4]; | |
648 | b += ((uint32_t)k[5])<<8; | |
649 | b += ((uint32_t)k[6])<<16; | |
650 | b += ((uint32_t)k[7])<<24; | |
651 | c += k[8]; | |
652 | c += ((uint32_t)k[9])<<8; | |
653 | c += ((uint32_t)k[10])<<16; | |
654 | c += ((uint32_t)k[11])<<24; | |
655 | mix(a,b,c); | |
656 | length -= 12; | |
657 | k += 12; | |
658 | } | |
659 | ||
660 | /*-------------------------------- last block: affect all 32 bits of (c) */ | |
661 | switch(length) /* all the case statements fall through */ | |
662 | { | |
663 | case 12: c+=((uint32_t)k[11])<<24; | |
664 | case 11: c+=((uint32_t)k[10])<<16; | |
665 | case 10: c+=((uint32_t)k[9])<<8; | |
666 | case 9 : c+=k[8]; | |
667 | case 8 : b+=((uint32_t)k[7])<<24; | |
668 | case 7 : b+=((uint32_t)k[6])<<16; | |
669 | case 6 : b+=((uint32_t)k[5])<<8; | |
670 | case 5 : b+=k[4]; | |
671 | case 4 : a+=((uint32_t)k[3])<<24; | |
672 | case 3 : a+=((uint32_t)k[2])<<16; | |
673 | case 2 : a+=((uint32_t)k[1])<<8; | |
674 | case 1 : a+=k[0]; | |
675 | break; | |
676 | case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */ | |
677 | } | |
678 | } | |
679 | ||
680 | final(a,b,c); | |
681 | *pc=c; *pb=b; | |
682 | } | |
683 | ||
684 | #endif /* SELF_TEST */ | |
685 | ||
686 | #if 0 /* currently not used */ | |
687 | ||
688 | /* | |
689 | * hashbig(): | |
690 | * This is the same as hashword() on big-endian machines. It is different | |
691 | * from hashlittle() on all machines. hashbig() takes advantage of | |
692 | * big-endian byte ordering. | |
693 | */ | |
694 | uint32_t hashbig( const void *key, size_t length, uint32_t initval) | |
695 | { | |
696 | uint32_t a,b,c; | |
697 | union { const void *ptr; size_t i; } u; /* to cast key to (size_t) happily */ | |
698 | ||
699 | /* Set up the internal state */ | |
700 | a = b = c = raninit + ((uint32_t)length) + initval; | |
701 | ||
702 | u.ptr = key; | |
703 | if (HASH_BIG_ENDIAN && ((u.i & 0x3) == 0)) { | |
704 | const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */ | |
705 | #ifdef VALGRIND | |
706 | const uint8_t *k8; | |
707 | #endif | |
708 | ||
709 | /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */ | |
710 | while (length > 12) | |
711 | { | |
712 | a += k[0]; | |
713 | b += k[1]; | |
714 | c += k[2]; | |
715 | mix(a,b,c); | |
716 | length -= 12; | |
717 | k += 3; | |
718 | } | |
719 | ||
720 | /*----------------------------- handle the last (probably partial) block */ | |
721 | /* | |
722 | * "k[2]<<8" actually reads beyond the end of the string, but | |
723 | * then shifts out the part it's not allowed to read. Because the | |
724 | * string is aligned, the illegal read is in the same word as the | |
725 | * rest of the string. Every machine with memory protection I've seen | |
726 | * does it on word boundaries, so is OK with this. But VALGRIND will | |
727 | * still catch it and complain. The masking trick does make the hash | |
728 | * noticably faster for short strings (like English words). | |
729 | */ | |
730 | #ifndef VALGRIND | |
731 | ||
732 | switch(length) | |
733 | { | |
734 | case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; | |
735 | case 11: c+=k[2]&0xffffff00; b+=k[1]; a+=k[0]; break; | |
736 | case 10: c+=k[2]&0xffff0000; b+=k[1]; a+=k[0]; break; | |
737 | case 9 : c+=k[2]&0xff000000; b+=k[1]; a+=k[0]; break; | |
738 | case 8 : b+=k[1]; a+=k[0]; break; | |
739 | case 7 : b+=k[1]&0xffffff00; a+=k[0]; break; | |
740 | case 6 : b+=k[1]&0xffff0000; a+=k[0]; break; | |
741 | case 5 : b+=k[1]&0xff000000; a+=k[0]; break; | |
742 | case 4 : a+=k[0]; break; | |
743 | case 3 : a+=k[0]&0xffffff00; break; | |
744 | case 2 : a+=k[0]&0xffff0000; break; | |
745 | case 1 : a+=k[0]&0xff000000; break; | |
746 | case 0 : return c; /* zero length strings require no mixing */ | |
747 | } | |
748 | ||
749 | #else /* make valgrind happy */ | |
750 | ||
751 | k8 = (const uint8_t *)k; | |
752 | switch(length) /* all the case statements fall through */ | |
753 | { | |
754 | case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; | |
755 | case 11: c+=((uint32_t)k8[10])<<8; /* fall through */ | |
756 | case 10: c+=((uint32_t)k8[9])<<16; /* fall through */ | |
757 | case 9 : c+=((uint32_t)k8[8])<<24; /* fall through */ | |
758 | case 8 : b+=k[1]; a+=k[0]; break; | |
759 | case 7 : b+=((uint32_t)k8[6])<<8; /* fall through */ | |
760 | case 6 : b+=((uint32_t)k8[5])<<16; /* fall through */ | |
761 | case 5 : b+=((uint32_t)k8[4])<<24; /* fall through */ | |
762 | case 4 : a+=k[0]; break; | |
763 | case 3 : a+=((uint32_t)k8[2])<<8; /* fall through */ | |
764 | case 2 : a+=((uint32_t)k8[1])<<16; /* fall through */ | |
765 | case 1 : a+=((uint32_t)k8[0])<<24; break; | |
766 | case 0 : return c; | |
767 | } | |
768 | ||
769 | #endif /* !VALGRIND */ | |
770 | ||
771 | } else { /* need to read the key one byte at a time */ | |
772 | const uint8_t *k = (const uint8_t *)key; | |
773 | ||
774 | /*--------------- all but the last block: affect some 32 bits of (a,b,c) */ | |
775 | while (length > 12) | |
776 | { | |
777 | a += ((uint32_t)k[0])<<24; | |
778 | a += ((uint32_t)k[1])<<16; | |
779 | a += ((uint32_t)k[2])<<8; | |
780 | a += ((uint32_t)k[3]); | |
781 | b += ((uint32_t)k[4])<<24; | |
782 | b += ((uint32_t)k[5])<<16; | |
783 | b += ((uint32_t)k[6])<<8; | |
784 | b += ((uint32_t)k[7]); | |
785 | c += ((uint32_t)k[8])<<24; | |
786 | c += ((uint32_t)k[9])<<16; | |
787 | c += ((uint32_t)k[10])<<8; | |
788 | c += ((uint32_t)k[11]); | |
789 | mix(a,b,c); | |
790 | length -= 12; | |
791 | k += 12; | |
792 | } | |
793 | ||
794 | /*-------------------------------- last block: affect all 32 bits of (c) */ | |
795 | switch(length) /* all the case statements fall through */ | |
796 | { | |
797 | case 12: c+=k[11]; | |
798 | case 11: c+=((uint32_t)k[10])<<8; | |
799 | case 10: c+=((uint32_t)k[9])<<16; | |
800 | case 9 : c+=((uint32_t)k[8])<<24; | |
801 | case 8 : b+=k[7]; | |
802 | case 7 : b+=((uint32_t)k[6])<<8; | |
803 | case 6 : b+=((uint32_t)k[5])<<16; | |
804 | case 5 : b+=((uint32_t)k[4])<<24; | |
805 | case 4 : a+=k[3]; | |
806 | case 3 : a+=((uint32_t)k[2])<<8; | |
807 | case 2 : a+=((uint32_t)k[1])<<16; | |
808 | case 1 : a+=((uint32_t)k[0])<<24; | |
809 | break; | |
810 | case 0 : return c; | |
811 | } | |
812 | } | |
813 | ||
814 | final(a,b,c); | |
815 | return c; | |
816 | } | |
817 | ||
818 | #endif /* 0 == currently not used */ | |
819 | ||
820 | #ifdef SELF_TEST | |
821 | ||
822 | /* used for timings */ | |
823 | void driver1() | |
824 | { | |
825 | uint8_t buf[256]; | |
826 | uint32_t i; | |
827 | uint32_t h=0; | |
828 | time_t a,z; | |
829 | ||
830 | time(&a); | |
831 | for (i=0; i<256; ++i) buf[i] = 'x'; | |
832 | for (i=0; i<1; ++i) | |
833 | { | |
834 | h = hashlittle(&buf[0],1,h); | |
835 | } | |
836 | time(&z); | |
837 | if (z-a > 0) printf("time %d %.8x\n", z-a, h); | |
838 | } | |
839 | ||
840 | /* check that every input bit changes every output bit half the time */ | |
841 | #define HASHSTATE 1 | |
842 | #define HASHLEN 1 | |
843 | #define MAXPAIR 60 | |
844 | #define MAXLEN 70 | |
845 | void driver2() | |
846 | { | |
847 | uint8_t qa[MAXLEN+1], qb[MAXLEN+2], *a = &qa[0], *b = &qb[1]; | |
848 | uint32_t c[HASHSTATE], d[HASHSTATE], i=0, j=0, k, l, m=0, z; | |
849 | uint32_t e[HASHSTATE],f[HASHSTATE],g[HASHSTATE],h[HASHSTATE]; | |
850 | uint32_t x[HASHSTATE],y[HASHSTATE]; | |
851 | uint32_t hlen; | |
852 | ||
853 | printf("No more than %d trials should ever be needed \n",MAXPAIR/2); | |
854 | for (hlen=0; hlen < MAXLEN; ++hlen) | |
855 | { | |
856 | z=0; | |
857 | for (i=0; i<hlen; ++i) /*----------------------- for each input byte, */ | |
858 | { | |
859 | for (j=0; j<8; ++j) /*------------------------ for each input bit, */ | |
860 | { | |
861 | for (m=1; m<8; ++m) /*------------ for serveral possible initvals, */ | |
862 | { | |
863 | for (l=0; l<HASHSTATE; ++l) | |
864 | e[l]=f[l]=g[l]=h[l]=x[l]=y[l]=~((uint32_t)0); | |
865 | ||
866 | /*---- check that every output bit is affected by that input bit */ | |
867 | for (k=0; k<MAXPAIR; k+=2) | |
868 | { | |
869 | uint32_t finished=1; | |
870 | /* keys have one bit different */ | |
871 | for (l=0; l<hlen+1; ++l) {a[l] = b[l] = (uint8_t)0;} | |
872 | /* have a and b be two keys differing in only one bit */ | |
873 | a[i] ^= (k<<j); | |
874 | a[i] ^= (k>>(8-j)); | |
875 | c[0] = hashlittle(a, hlen, m); | |
876 | b[i] ^= ((k+1)<<j); | |
877 | b[i] ^= ((k+1)>>(8-j)); | |
878 | d[0] = hashlittle(b, hlen, m); | |
879 | /* check every bit is 1, 0, set, and not set at least once */ | |
880 | for (l=0; l<HASHSTATE; ++l) | |
881 | { | |
882 | e[l] &= (c[l]^d[l]); | |
883 | f[l] &= ~(c[l]^d[l]); | |
884 | g[l] &= c[l]; | |
885 | h[l] &= ~c[l]; | |
886 | x[l] &= d[l]; | |
887 | y[l] &= ~d[l]; | |
888 | if (e[l]|f[l]|g[l]|h[l]|x[l]|y[l]) finished=0; | |
889 | } | |
890 | if (finished) break; | |
891 | } | |
892 | if (k>z) z=k; | |
893 | if (k==MAXPAIR) | |
894 | { | |
895 | printf("Some bit didn't change: "); | |
896 | printf("%.8x %.8x %.8x %.8x %.8x %.8x ", | |
897 | e[0],f[0],g[0],h[0],x[0],y[0]); | |
898 | printf("i %d j %d m %d len %d\n", i, j, m, hlen); | |
899 | } | |
900 | if (z==MAXPAIR) goto done; | |
901 | } | |
902 | } | |
903 | } | |
904 | done: | |
905 | if (z < MAXPAIR) | |
906 | { | |
907 | printf("Mix success %2d bytes %2d initvals ",i,m); | |
908 | printf("required %d trials\n", z/2); | |
909 | } | |
910 | } | |
911 | printf("\n"); | |
912 | } | |
913 | ||
914 | /* Check for reading beyond the end of the buffer and alignment problems */ | |
915 | void driver3() | |
916 | { | |
917 | uint8_t buf[MAXLEN+20], *b; | |
918 | uint32_t len; | |
919 | uint8_t q[] = "This is the time for all good men to come to the aid of their country..."; | |
920 | uint32_t h; | |
921 | uint8_t qq[] = "xThis is the time for all good men to come to the aid of their country..."; | |
922 | uint32_t i; | |
923 | uint8_t qqq[] = "xxThis is the time for all good men to come to the aid of their country..."; | |
924 | uint32_t j; | |
925 | uint8_t qqqq[] = "xxxThis is the time for all good men to come to the aid of their country..."; | |
926 | uint32_t ref,x,y; | |
927 | uint8_t *p; | |
928 | ||
929 | printf("Endianness. These lines should all be the same (for values filled in):\n"); | |
930 | printf("%.8x %.8x %.8x\n", | |
931 | hashword((const uint32_t *)q, (sizeof(q)-1)/4, 13), | |
932 | hashword((const uint32_t *)q, (sizeof(q)-5)/4, 13), | |
933 | hashword((const uint32_t *)q, (sizeof(q)-9)/4, 13)); | |
934 | p = q; | |
935 | printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", | |
936 | hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13), | |
937 | hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13), | |
938 | hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13), | |
939 | hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13), | |
940 | hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13), | |
941 | hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13)); | |
942 | p = &qq[1]; | |
943 | printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", | |
944 | hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13), | |
945 | hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13), | |
946 | hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13), | |
947 | hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13), | |
948 | hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13), | |
949 | hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13)); | |
950 | p = &qqq[2]; | |
951 | printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", | |
952 | hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13), | |
953 | hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13), | |
954 | hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13), | |
955 | hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13), | |
956 | hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13), | |
957 | hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13)); | |
958 | p = &qqqq[3]; | |
959 | printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", | |
960 | hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13), | |
961 | hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13), | |
962 | hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13), | |
963 | hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13), | |
964 | hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13), | |
965 | hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13)); | |
966 | printf("\n"); | |
967 | ||
968 | /* check that hashlittle2 and hashlittle produce the same results */ | |
969 | i=47; j=0; | |
970 | hashlittle2(q, sizeof(q), &i, &j); | |
971 | if (hashlittle(q, sizeof(q), 47) != i) | |
972 | printf("hashlittle2 and hashlittle mismatch\n"); | |
973 | ||
974 | /* check that hashword2 and hashword produce the same results */ | |
975 | len = raninit; | |
976 | i=47, j=0; | |
977 | hashword2(&len, 1, &i, &j); | |
978 | if (hashword(&len, 1, 47) != i) | |
979 | printf("hashword2 and hashword mismatch %x %x\n", | |
980 | i, hashword(&len, 1, 47)); | |
981 | ||
982 | /* check hashlittle doesn't read before or after the ends of the string */ | |
983 | for (h=0, b=buf+1; h<8; ++h, ++b) | |
984 | { | |
985 | for (i=0; i<MAXLEN; ++i) | |
986 | { | |
987 | len = i; | |
988 | for (j=0; j<i; ++j) *(b+j)=0; | |
989 | ||
990 | /* these should all be equal */ | |
991 | ref = hashlittle(b, len, (uint32_t)1); | |
992 | *(b+i)=(uint8_t)~0; | |
993 | *(b-1)=(uint8_t)~0; | |
994 | x = hashlittle(b, len, (uint32_t)1); | |
995 | y = hashlittle(b, len, (uint32_t)1); | |
996 | if ((ref != x) || (ref != y)) | |
997 | { | |
998 | printf("alignment error: %.8x %.8x %.8x %d %d\n",ref,x,y, | |
999 | h, i); | |
1000 | } | |
1001 | } | |
1002 | } | |
1003 | } | |
1004 | ||
1005 | /* check for problems with nulls */ | |
1006 | void driver4() | |
1007 | { | |
1008 | uint8_t buf[1]; | |
1009 | uint32_t h,i,state[HASHSTATE]; | |
1010 | ||
1011 | ||
1012 | buf[0] = ~0; | |
1013 | for (i=0; i<HASHSTATE; ++i) state[i] = 1; | |
1014 | printf("These should all be different\n"); | |
1015 | for (i=0, h=0; i<8; ++i) | |
1016 | { | |
1017 | h = hashlittle(buf, 0, h); | |
1018 | printf("%2ld 0-byte strings, hash is %.8x\n", i, h); | |
1019 | } | |
1020 | } | |
1021 | ||
1022 | ||
1023 | int main() | |
1024 | { | |
1025 | driver1(); /* test that the key is hashed: used for timings */ | |
1026 | driver2(); /* test that whole key is hashed thoroughly */ | |
1027 | driver3(); /* test that nothing but the key is hashed */ | |
1028 | driver4(); /* test hashing multiple buffers (all buffers are null) */ | |
1029 | return 1; | |
1030 | } | |
1031 | ||
1032 | #endif /* SELF_TEST */ |