2 * Copyright (c) 2000-2012 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
28 /* Copyright (c) 1995-2005 Apple Computer, Inc. All Rights Reserved */
33 #include <sys/param.h>
34 #include <sys/queue.h>
35 #include <sys/resourcevar.h>
36 //#include <sys/proc_internal.h>
37 #include <sys/kauth.h>
38 #include <sys/systm.h>
39 #include <sys/timeb.h>
40 #include <sys/times.h>
43 #include <sys/kernel.h>
45 #include <sys/signalvar.h>
46 #include <sys/syslog.h>
49 #include <sys/kdebug.h>
50 //#include <sys/sysproto.h>
51 //#include <sys/pthread_internal.h>
55 #include <mach/mach_types.h>
56 #include <mach/vm_prot.h>
57 #include <mach/semaphore.h>
58 #include <mach/sync_policy.h>
59 #include <mach/task.h>
60 #include <kern/kern_types.h>
61 #include <kern/task.h>
62 #include <kern/clock.h>
63 #include <mach/kern_return.h>
64 #include <kern/thread.h>
65 #include <kern/sched_prim.h>
66 #include <kern/thread_call.h>
67 #include <kern/kalloc.h>
68 #include <kern/zalloc.h>
69 #include <kern/sched_prim.h>
70 #include <kern/processor.h>
71 #include <kern/wait_queue.h>
72 //#include <kern/mach_param.h>
73 #include <mach/mach_vm.h>
74 #include <mach/mach_param.h>
75 #include <mach/thread_policy.h>
76 #include <mach/message.h>
77 #include <mach/port.h>
78 //#include <vm/vm_protos.h>
79 #include <vm/vm_map.h>
80 #include <mach/vm_region.h>
82 #include <libkern/OSAtomic.h>
84 #include <pexpert/pexpert.h>
85 #include <sys/pthread_shims.h>
87 #include "kern_internal.h"
88 #include "synch_internal.h"
89 #include "kern_trace.h"
91 typedef struct uthread
*uthread_t
;
93 //#define __FAILEDUSERTEST__(s) do { panic(s); } while (0)
94 #define __FAILEDUSERTEST__(s) do { printf("PSYNCH: pid[%d]: %s\n", proc_pid(current_proc()), s); } while (0)
99 lck_mtx_t
*pthread_list_mlock
;
101 #define PTH_HASHSIZE 100
103 static LIST_HEAD(pthhashhead
, ksyn_wait_queue
) *pth_glob_hashtbl
;
104 static unsigned long pthhash
;
106 static LIST_HEAD(, ksyn_wait_queue
) pth_free_list
;
108 static zone_t kwq_zone
; /* zone for allocation of ksyn_queue */
109 static zone_t kwe_zone
; /* zone for allocation of ksyn_waitq_element */
115 TAILQ_HEAD(ksynq_kwelist_head
, ksyn_waitq_element
) ksynq_kwelist
;
116 uint32_t ksynq_count
; /* number of entries in queue */
117 uint32_t ksynq_firstnum
; /* lowest seq in queue */
118 uint32_t ksynq_lastnum
; /* highest seq in queue */
120 typedef struct ksyn_queue
*ksyn_queue_t
;
128 struct ksyn_wait_queue
{
129 LIST_ENTRY(ksyn_wait_queue
) kw_hash
;
130 LIST_ENTRY(ksyn_wait_queue
) kw_list
;
133 uint64_t kw_object
; /* object backing in shared mode */
134 uint64_t kw_offset
; /* offset inside the object in shared mode */
135 int kw_pflags
; /* flags under listlock protection */
136 struct timeval kw_ts
; /* timeval need for upkeep before free */
137 int kw_iocount
; /* inuse reference */
138 int kw_dropcount
; /* current users unlocking... */
140 int kw_type
; /* queue type like mutex, cvar, etc */
141 uint32_t kw_inqueue
; /* num of waiters held */
142 uint32_t kw_fakecount
; /* number of error/prepost fakes */
143 uint32_t kw_highseq
; /* highest seq in the queue */
144 uint32_t kw_lowseq
; /* lowest seq in the queue */
145 uint32_t kw_lword
; /* L value from userland */
146 uint32_t kw_uword
; /* U world value from userland */
147 uint32_t kw_sword
; /* S word value from userland */
148 uint32_t kw_lastunlockseq
; /* the last seq that unlocked */
149 /* for CV to be used as the seq kernel has seen so far */
150 #define kw_cvkernelseq kw_lastunlockseq
151 uint32_t kw_lastseqword
; /* the last seq that unlocked */
152 /* for mutex and cvar we need to track I bit values */
153 uint32_t kw_nextseqword
; /* the last seq that unlocked; with num of waiters */
154 uint32_t kw_overlapwatch
; /* chance for overlaps */
155 uint32_t kw_pre_rwwc
; /* prepost count */
156 uint32_t kw_pre_lockseq
; /* prepost target seq */
157 uint32_t kw_pre_sseq
; /* prepost target sword, in cvar used for mutexowned */
158 uint32_t kw_pre_intrcount
; /* prepost of missed wakeup due to intrs */
159 uint32_t kw_pre_intrseq
; /* prepost of missed wakeup limit seq */
160 uint32_t kw_pre_intrretbits
; /* return bits value for missed wakeup threads */
161 uint32_t kw_pre_intrtype
; /* type of failed wakueps*/
164 int kw_qos_override
; /* QoS of max waiter during contention period */
165 struct ksyn_queue kw_ksynqueues
[KSYN_QUEUE_MAX
]; /* queues to hold threads */
166 lck_mtx_t kw_lock
; /* mutex lock protecting this structure */
168 typedef struct ksyn_wait_queue
* ksyn_wait_queue_t
;
170 #define TID_ZERO (uint64_t)0
172 /* bits needed in handling the rwlock unlock */
173 #define PTH_RW_TYPE_READ 0x01
174 #define PTH_RW_TYPE_WRITE 0x04
175 #define PTH_RW_TYPE_MASK 0xff
176 #define PTH_RW_TYPE_SHIFT 8
178 #define PTH_RWSHFT_TYPE_READ 0x0100
179 #define PTH_RWSHFT_TYPE_WRITE 0x0400
180 #define PTH_RWSHFT_TYPE_MASK 0xff00
183 * Mutex pshared attributes
185 #define PTHREAD_PROCESS_SHARED _PTHREAD_MTX_OPT_PSHARED
186 #define PTHREAD_PROCESS_PRIVATE 0x20
187 #define PTHREAD_PSHARED_FLAGS_MASK 0x30
190 * Mutex policy attributes
192 #define _PTHREAD_MUTEX_POLICY_NONE 0
193 #define _PTHREAD_MUTEX_POLICY_FAIRSHARE 0x040 /* 1 */
194 #define _PTHREAD_MUTEX_POLICY_FIRSTFIT 0x080 /* 2 */
195 #define _PTHREAD_MUTEX_POLICY_REALTIME 0x0c0 /* 3 */
196 #define _PTHREAD_MUTEX_POLICY_ADAPTIVE 0x100 /* 4 */
197 #define _PTHREAD_MUTEX_POLICY_PRIPROTECT 0x140 /* 5 */
198 #define _PTHREAD_MUTEX_POLICY_PRIINHERIT 0x180 /* 6 */
199 #define PTHREAD_POLICY_FLAGS_MASK 0x1c0
202 #define KSYN_WQ_INHASH 2
203 #define KSYN_WQ_SHARED 4
204 #define KSYN_WQ_WAITING 8 /* threads waiting for this wq to be available */
205 #define KSYN_WQ_FLIST 0X10 /* in free list to be freed after a short delay */
208 #define KSYN_KWF_INITCLEARED 1 /* the init status found and preposts cleared */
209 #define KSYN_KWF_ZEROEDOUT 2 /* the lword, etc are inited to 0 */
210 #define KSYN_KWF_QOS_APPLIED 4 /* QoS override applied to owner */
212 #define KSYN_CLEANUP_DEADLINE 10
213 static int psynch_cleanupset
;
214 thread_call_t psynch_thcall
;
216 #define KSYN_WQTYPE_INWAIT 0x1000
217 #define KSYN_WQTYPE_INDROP 0x2000
218 #define KSYN_WQTYPE_MTX 0x01
219 #define KSYN_WQTYPE_CVAR 0x02
220 #define KSYN_WQTYPE_RWLOCK 0x04
221 #define KSYN_WQTYPE_SEMA 0x08
222 #define KSYN_WQTYPE_MASK 0xff
224 #define KSYN_WQTYPE_MUTEXDROP (KSYN_WQTYPE_INDROP | KSYN_WQTYPE_MTX)
226 #define KW_UNLOCK_PREPOST 0x01
227 #define KW_UNLOCK_PREPOST_READLOCK 0x08
228 #define KW_UNLOCK_PREPOST_WRLOCK 0x20
231 CLEAR_PREPOST_BITS(ksyn_wait_queue_t kwq
)
233 kwq
->kw_pre_lockseq
= 0;
234 kwq
->kw_pre_sseq
= PTHRW_RWS_INIT
;
235 kwq
->kw_pre_rwwc
= 0;
239 CLEAR_INTR_PREPOST_BITS(ksyn_wait_queue_t kwq
)
241 kwq
->kw_pre_intrcount
= 0;
242 kwq
->kw_pre_intrseq
= 0;
243 kwq
->kw_pre_intrretbits
= 0;
244 kwq
->kw_pre_intrtype
= 0;
248 CLEAR_REINIT_BITS(ksyn_wait_queue_t kwq
)
250 if ((kwq
->kw_type
& KSYN_WQTYPE_MASK
) == KSYN_WQTYPE_CVAR
) {
251 if (kwq
->kw_inqueue
!= 0 && kwq
->kw_inqueue
!= kwq
->kw_fakecount
) {
252 panic("CV:entries in queue durinmg reinit %d:%d\n",kwq
->kw_inqueue
, kwq
->kw_fakecount
);
255 if ((kwq
->kw_type
& KSYN_WQTYPE_MASK
) == KSYN_WQTYPE_RWLOCK
) {
256 kwq
->kw_nextseqword
= PTHRW_RWS_INIT
;
257 kwq
->kw_overlapwatch
= 0;
259 CLEAR_PREPOST_BITS(kwq
);
260 kwq
->kw_lastunlockseq
= PTHRW_RWL_INIT
;
261 kwq
->kw_lastseqword
= PTHRW_RWS_INIT
;
262 CLEAR_INTR_PREPOST_BITS(kwq
);
265 kwq
->kw_sword
= PTHRW_RWS_INIT
;
268 static int ksyn_wq_hash_lookup(user_addr_t uaddr
, proc_t p
, int flags
, ksyn_wait_queue_t
*kwq
, struct pthhashhead
**hashptr
, uint64_t *object
, uint64_t *offset
);
269 static int ksyn_wqfind(user_addr_t mutex
, uint32_t mgen
, uint32_t ugen
, uint32_t rw_wc
, int flags
, int wqtype
, ksyn_wait_queue_t
*wq
);
270 static void ksyn_wqrelease(ksyn_wait_queue_t mkwq
, int qfreenow
, int wqtype
);
271 static int ksyn_findobj(user_addr_t uaddr
, uint64_t *objectp
, uint64_t *offsetp
);
273 static int _wait_result_to_errno(wait_result_t result
);
275 static int ksyn_wait(ksyn_wait_queue_t
, int, uint32_t, int, uint64_t, thread_continue_t
);
276 static kern_return_t
ksyn_signal(ksyn_wait_queue_t
, int, ksyn_waitq_element_t
, uint32_t);
277 static void ksyn_freeallkwe(ksyn_queue_t kq
);
279 static kern_return_t
ksyn_mtxsignal(ksyn_wait_queue_t
, ksyn_waitq_element_t kwe
, uint32_t);
280 static void ksyn_mtx_update_owner_qos_override(ksyn_wait_queue_t
, uint64_t tid
, boolean_t prepost
);
281 static void ksyn_mtx_transfer_qos_override(ksyn_wait_queue_t
, ksyn_waitq_element_t
);
282 static void ksyn_mtx_drop_qos_override(ksyn_wait_queue_t
);
284 static int kwq_handle_unlock(ksyn_wait_queue_t
, uint32_t mgen
, uint32_t rw_wc
, uint32_t *updatep
, int flags
, int *blockp
, uint32_t premgen
);
286 static void ksyn_queue_init(ksyn_queue_t kq
);
287 static int ksyn_queue_insert(ksyn_wait_queue_t kwq
, int kqi
, ksyn_waitq_element_t kwe
, uint32_t mgen
, int firstfit
);
288 static void ksyn_queue_remove_item(ksyn_wait_queue_t kwq
, ksyn_queue_t kq
, ksyn_waitq_element_t kwe
);
289 static void ksyn_queue_free_items(ksyn_wait_queue_t kwq
, int kqi
, uint32_t upto
, int all
);
291 static void update_low_high(ksyn_wait_queue_t kwq
, uint32_t lockseq
);
292 static uint32_t find_nextlowseq(ksyn_wait_queue_t kwq
);
293 static uint32_t find_nexthighseq(ksyn_wait_queue_t kwq
);
294 static int find_seq_till(ksyn_wait_queue_t kwq
, uint32_t upto
, uint32_t nwaiters
, uint32_t *countp
);
296 static uint32_t ksyn_queue_count_tolowest(ksyn_queue_t kq
, uint32_t upto
);
298 static ksyn_waitq_element_t
ksyn_queue_find_cvpreposeq(ksyn_queue_t kq
, uint32_t cgen
);
299 static void ksyn_handle_cvbroad(ksyn_wait_queue_t ckwq
, uint32_t upto
, uint32_t *updatep
);
300 static void ksyn_cvupdate_fixup(ksyn_wait_queue_t ckwq
, uint32_t *updatep
);
301 static ksyn_waitq_element_t
ksyn_queue_find_signalseq(ksyn_wait_queue_t kwq
, ksyn_queue_t kq
, uint32_t toseq
, uint32_t lockseq
);
303 static void psynch_cvcontinue(void *, wait_result_t
);
304 static void psynch_mtxcontinue(void *, wait_result_t
);
306 static int ksyn_wakeupreaders(ksyn_wait_queue_t kwq
, uint32_t limitread
, int allreaders
, uint32_t updatebits
, int *wokenp
);
307 static int kwq_find_rw_lowest(ksyn_wait_queue_t kwq
, int flags
, uint32_t premgen
, int *type
, uint32_t lowest
[]);
308 static ksyn_waitq_element_t
ksyn_queue_find_seq(ksyn_wait_queue_t kwq
, ksyn_queue_t kq
, uint32_t seq
);
311 UPDATE_CVKWQ(ksyn_wait_queue_t kwq
, uint32_t mgen
, uint32_t ugen
, uint32_t rw_wc
)
313 int sinit
= ((rw_wc
& PTH_RWS_CV_CBIT
) != 0);
315 // assert((kwq->kw_type & KSYN_WQTYPE_MASK) == KSYN_WQTYPE_CVAR);
317 if ((kwq
->kw_kflags
& KSYN_KWF_ZEROEDOUT
) != 0) {
318 /* the values of L,U and S are cleared out due to L==S in previous transition */
319 kwq
->kw_lword
= mgen
;
320 kwq
->kw_uword
= ugen
;
321 kwq
->kw_sword
= rw_wc
;
322 kwq
->kw_kflags
&= ~KSYN_KWF_ZEROEDOUT
;
324 if (is_seqhigher(mgen
, kwq
->kw_lword
)) {
325 kwq
->kw_lword
= mgen
;
327 if (is_seqhigher(ugen
, kwq
->kw_uword
)) {
328 kwq
->kw_uword
= ugen
;
330 if (sinit
&& is_seqhigher(rw_wc
, kwq
->kw_sword
)) {
331 kwq
->kw_sword
= rw_wc
;
334 if (sinit
&& is_seqlower(kwq
->kw_cvkernelseq
, rw_wc
)) {
335 kwq
->kw_cvkernelseq
= (rw_wc
& PTHRW_COUNT_MASK
);
340 pthread_list_lock(void)
342 lck_mtx_lock(pthread_list_mlock
);
346 pthread_list_unlock(void)
348 lck_mtx_unlock(pthread_list_mlock
);
352 ksyn_wqlock(ksyn_wait_queue_t kwq
)
355 lck_mtx_lock(&kwq
->kw_lock
);
359 ksyn_wqunlock(ksyn_wait_queue_t kwq
)
361 lck_mtx_unlock(&kwq
->kw_lock
);
365 /* routine to drop the mutex unlocks , used both for mutexunlock system call and drop during cond wait */
367 _psynch_mutexdrop_internal(ksyn_wait_queue_t kwq
, uint32_t mgen
, uint32_t ugen
, int flags
)
370 uint32_t returnbits
= 0;
371 int firstfit
= (flags
& PTHREAD_POLICY_FLAGS_MASK
) == _PTHREAD_MUTEX_POLICY_FIRSTFIT
;
372 uint32_t nextgen
= (ugen
+ PTHRW_INC
);
375 kwq
->kw_lastunlockseq
= (ugen
& PTHRW_COUNT_MASK
);
376 uint32_t updatebits
= (kwq
->kw_highseq
& PTHRW_COUNT_MASK
) | (PTH_RWL_EBIT
| PTH_RWL_KBIT
);
380 if (kwq
->kw_inqueue
== 0) {
381 // not set or the new lock sequence is higher
382 if (kwq
->kw_pre_rwwc
== 0 || is_seqhigher(mgen
, kwq
->kw_pre_lockseq
)) {
383 kwq
->kw_pre_lockseq
= (mgen
& PTHRW_COUNT_MASK
);
385 kwq
->kw_pre_rwwc
= 1;
386 ksyn_mtx_drop_qos_override(kwq
);
388 // indicate prepost content in kernel
389 returnbits
= mgen
| PTH_RWL_PBIT
;
391 // signal first waiter
392 ret
= ksyn_mtxsignal(kwq
, NULL
, updatebits
);
393 if (ret
== KERN_NOT_WAITING
) {
399 if (kwq
->kw_inqueue
== 0) {
400 // No waiters in the queue.
403 uint32_t low_writer
= (kwq
->kw_ksynqueues
[KSYN_QUEUE_WRITER
].ksynq_firstnum
& PTHRW_COUNT_MASK
);
404 if (low_writer
== nextgen
) {
405 /* next seq to be granted found */
406 /* since the grant could be cv, make sure mutex wait is set incase the thread interrupted out */
407 ret
= ksyn_mtxsignal(kwq
, NULL
, updatebits
| PTH_RWL_MTX_WAIT
);
408 if (ret
== KERN_NOT_WAITING
) {
410 kwq
->kw_pre_intrcount
= 1;
411 kwq
->kw_pre_intrseq
= nextgen
;
412 kwq
->kw_pre_intrretbits
= updatebits
;
413 kwq
->kw_pre_intrtype
= PTH_RW_TYPE_WRITE
;
416 } else if (is_seqhigher(low_writer
, nextgen
)) {
419 //__FAILEDUSERTEST__("psynch_mutexdrop_internal: FS mutex unlock sequence higher than the lowest one is queue\n");
420 ksyn_waitq_element_t kwe
;
421 kwe
= ksyn_queue_find_seq(kwq
, &kwq
->kw_ksynqueues
[KSYN_QUEUE_WRITER
], nextgen
);
423 /* next seq to be granted found */
424 /* since the grant could be cv, make sure mutex wait is set incase the thread interrupted out */
425 ret
= ksyn_mtxsignal(kwq
, kwe
, updatebits
| PTH_RWL_MTX_WAIT
);
426 if (ret
== KERN_NOT_WAITING
) {
435 ksyn_mtx_drop_qos_override(kwq
);
437 if (++kwq
->kw_pre_rwwc
> 1) {
438 __FAILEDUSERTEST__("_psynch_mutexdrop_internal: multiple preposts\n");
440 kwq
->kw_pre_lockseq
= (nextgen
& PTHRW_COUNT_MASK
);
446 ksyn_wqrelease(kwq
, 1, KSYN_WQTYPE_MUTEXDROP
);
451 _ksyn_check_init(ksyn_wait_queue_t kwq
, uint32_t lgenval
)
453 int res
= (lgenval
& PTHRW_RWL_INIT
) != 0;
455 if ((kwq
->kw_kflags
& KSYN_KWF_INITCLEARED
) == 0) {
456 /* first to notice the reset of the lock, clear preposts */
457 CLEAR_REINIT_BITS(kwq
);
458 kwq
->kw_kflags
|= KSYN_KWF_INITCLEARED
;
465 _ksyn_handle_missed_wakeups(ksyn_wait_queue_t kwq
,
471 if (kwq
->kw_pre_intrcount
!= 0 &&
472 kwq
->kw_pre_intrtype
== type
&&
473 is_seqlower_eq(lockseq
, kwq
->kw_pre_intrseq
)) {
474 kwq
->kw_pre_intrcount
--;
475 *retval
= kwq
->kw_pre_intrretbits
;
476 if (kwq
->kw_pre_intrcount
== 0) {
477 CLEAR_INTR_PREPOST_BITS(kwq
);
485 _ksyn_handle_overlap(ksyn_wait_queue_t kwq
,
492 // check for overlap and no pending W bit (indicates writers)
493 if (kwq
->kw_overlapwatch
!= 0 &&
494 (rw_wc
& PTHRW_RWS_SAVEMASK
) == 0 &&
495 (lgenval
& PTH_RWL_WBIT
) == 0) {
496 /* overlap is set, so no need to check for valid state for overlap */
498 if (is_seqlower_eq(rw_wc
, kwq
->kw_nextseqword
) || is_seqhigher_eq(kwq
->kw_lastseqword
, rw_wc
)) {
499 /* increase the next expected seq by one */
500 kwq
->kw_nextseqword
+= PTHRW_INC
;
501 /* set count by one & bits from the nextseq and add M bit */
502 *retval
= PTHRW_INC
| ((kwq
->kw_nextseqword
& PTHRW_BIT_MASK
) | PTH_RWL_MBIT
);
510 _ksyn_handle_prepost(ksyn_wait_queue_t kwq
,
516 if (kwq
->kw_pre_rwwc
!= 0 && is_seqlower_eq(lockseq
, kwq
->kw_pre_lockseq
)) {
518 if (kwq
->kw_pre_rwwc
== 0) {
519 uint32_t preseq
= kwq
->kw_pre_lockseq
;
520 uint32_t prerw_wc
= kwq
->kw_pre_sseq
;
521 CLEAR_PREPOST_BITS(kwq
);
522 if ((kwq
->kw_kflags
& KSYN_KWF_INITCLEARED
) != 0){
523 kwq
->kw_kflags
&= ~KSYN_KWF_INITCLEARED
;
528 error
= kwq_handle_unlock(kwq
, preseq
, prerw_wc
, &updatebits
, (type
|KW_UNLOCK_PREPOST
), &block
, lockseq
);
530 panic("kwq_handle_unlock failed %d\n", error
);
534 *retval
= updatebits
;
542 /* Helpers for QoS override management. Only applies to mutexes */
543 static void ksyn_mtx_update_owner_qos_override(ksyn_wait_queue_t kwq
, uint64_t tid
, boolean_t prepost
)
545 if (!(kwq
->kw_pflags
& KSYN_WQ_SHARED
)) {
546 boolean_t wasboosted
= (kwq
->kw_kflags
& KSYN_KWF_QOS_APPLIED
) ? TRUE
: FALSE
;
547 int waiter_qos
= pthread_kern
->proc_usynch_get_requested_thread_qos(current_uthread());
549 kwq
->kw_qos_override
= MAX(waiter_qos
, kwq
->kw_qos_override
);
551 if (prepost
&& kwq
->kw_inqueue
== 0) {
552 // if there are no more waiters in the queue after the new (prepost-receiving) owner, we do not set an
553 // override, because the receiving owner may not re-enter the kernel to signal someone else if it is
554 // the last one to unlock. If other waiters end up entering the kernel, they will boost the owner
559 if ((tid
== kwq
->kw_owner
) && (kwq
->kw_kflags
& KSYN_KWF_QOS_APPLIED
)) {
560 // hint continues to be accurate, and a boost was already applied
561 pthread_kern
->proc_usynch_thread_qos_add_override(NULL
, tid
, kwq
->kw_qos_override
, FALSE
);
563 // either hint did not match previous owner, or hint was accurate but mutex was not contended enough for a boost previously
564 boolean_t boostsucceded
;
566 boostsucceded
= pthread_kern
->proc_usynch_thread_qos_add_override(NULL
, tid
, kwq
->kw_qos_override
, TRUE
);
569 kwq
->kw_kflags
|= KSYN_KWF_QOS_APPLIED
;
572 if (wasboosted
&& (tid
!= kwq
->kw_owner
) && (kwq
->kw_owner
!= 0)) {
573 // the hint did not match the previous owner, so drop overrides
574 PTHREAD_TRACE(TRACE_psynch_ksyn_incorrect_owner
, kwq
->kw_owner
, 0, 0, 0, 0);
575 pthread_kern
->proc_usynch_thread_qos_remove_override(NULL
, kwq
->kw_owner
);
579 // new hint tells us that we don't know the owner, so drop any existing overrides
580 kwq
->kw_kflags
&= ~KSYN_KWF_QOS_APPLIED
;
581 kwq
->kw_qos_override
= THREAD_QOS_UNSPECIFIED
;
583 if (wasboosted
&& (kwq
->kw_owner
!= 0)) {
584 // the hint did not match the previous owner, so drop overrides
585 PTHREAD_TRACE(TRACE_psynch_ksyn_incorrect_owner
, kwq
->kw_owner
, 0, 0, 0, 0);
586 pthread_kern
->proc_usynch_thread_qos_remove_override(NULL
, kwq
->kw_owner
);
592 static void ksyn_mtx_transfer_qos_override(ksyn_wait_queue_t kwq
, ksyn_waitq_element_t kwe
)
594 if (!(kwq
->kw_pflags
& KSYN_WQ_SHARED
)) {
595 boolean_t wasboosted
= (kwq
->kw_kflags
& KSYN_KWF_QOS_APPLIED
) ? TRUE
: FALSE
;
597 if (kwq
->kw_inqueue
> 1) {
598 boolean_t boostsucceeded
;
600 // More than one waiter, so resource will still be contended after handing off ownership
601 boostsucceeded
= pthread_kern
->proc_usynch_thread_qos_add_override(kwe
->kwe_uth
, 0, kwq
->kw_qos_override
, TRUE
);
603 if (boostsucceeded
) {
604 kwq
->kw_kflags
|= KSYN_KWF_QOS_APPLIED
;
607 // kw_inqueue == 1 to get to this point, which means there will be no contention after this point
608 kwq
->kw_kflags
&= ~KSYN_KWF_QOS_APPLIED
;
609 kwq
->kw_qos_override
= THREAD_QOS_UNSPECIFIED
;
612 // Remove the override that was applied to kw_owner. There may have been a race,
613 // in which case it may not match the current thread
615 if (kwq
->kw_owner
== 0) {
616 PTHREAD_TRACE(TRACE_psynch_ksyn_incorrect_owner
, 0, 0, 0, 0, 0);
617 } else if (thread_tid(current_thread()) != kwq
->kw_owner
) {
618 PTHREAD_TRACE(TRACE_psynch_ksyn_incorrect_owner
, kwq
->kw_owner
, 0, 0, 0, 0);
619 pthread_kern
->proc_usynch_thread_qos_remove_override(NULL
, kwq
->kw_owner
);
621 pthread_kern
->proc_usynch_thread_qos_remove_override(current_uthread(), 0);
627 static void ksyn_mtx_drop_qos_override(ksyn_wait_queue_t kwq
)
629 if (!(kwq
->kw_pflags
& KSYN_WQ_SHARED
)) {
630 boolean_t wasboosted
= (kwq
->kw_kflags
& KSYN_KWF_QOS_APPLIED
) ? TRUE
: FALSE
;
632 // assume nobody else in queue if this routine was called
633 kwq
->kw_kflags
&= ~KSYN_KWF_QOS_APPLIED
;
634 kwq
->kw_qos_override
= THREAD_QOS_UNSPECIFIED
;
636 // Remove the override that was applied to kw_owner. There may have been a race,
637 // in which case it may not match the current thread
639 if (kwq
->kw_owner
== 0) {
640 PTHREAD_TRACE(TRACE_psynch_ksyn_incorrect_owner
, 0, 0, 0, 0, 0);
641 } else if (thread_tid(current_thread()) != kwq
->kw_owner
) {
642 PTHREAD_TRACE(TRACE_psynch_ksyn_incorrect_owner
, kwq
->kw_owner
, 0, 0, 0, 0);
643 pthread_kern
->proc_usynch_thread_qos_remove_override(NULL
, kwq
->kw_owner
);
645 pthread_kern
->proc_usynch_thread_qos_remove_override(current_uthread(), 0);
652 * psynch_mutexwait: This system call is used for contended psynch mutexes to block.
656 _psynch_mutexwait(__unused proc_t p
,
664 ksyn_wait_queue_t kwq
;
668 int firstfit
= (flags
& PTHREAD_POLICY_FLAGS_MASK
) == _PTHREAD_MUTEX_POLICY_FIRSTFIT
;
669 uint32_t updatebits
= 0;
671 uint32_t lockseq
= (mgen
& PTHRW_COUNT_MASK
);
677 ins_flags
= FIRSTFIT
;
680 error
= ksyn_wqfind(mutex
, mgen
, ugen
, 0, flags
, (KSYN_WQTYPE_INWAIT
|KSYN_WQTYPE_MTX
), &kwq
);
687 // mutexwait passes in an owner hint at the time userspace contended for the mutex, however, the
688 // owner tid in the userspace data structure may be unset or SWITCHING (-1), or it may correspond
689 // to a stale snapshot after the lock has subsequently been unlocked by another thread.
691 // contender came in before owner could write TID
693 } else if (kwq
->kw_lastunlockseq
!= PTHRW_RWL_INIT
&& is_seqlower(ugen
, kwq
->kw_lastunlockseq
)) {
694 // owner is stale, someone has come in and unlocked since this contended read the TID, so
695 // assume what is known in the kernel is accurate
697 } else if (tid
== PTHREAD_MTX_TID_SWITCHING
) {
698 // userspace didn't know the owner because it was being unlocked, but that unlocker hasn't
699 // reached the kernel yet. So assume what is known in the kernel is accurate
702 // hint is being passed in for a specific thread, and we have no reason not to trust
703 // it (like the kernel unlock sequence being higher
707 if (_ksyn_handle_missed_wakeups(kwq
, PTH_RW_TYPE_WRITE
, lockseq
, retval
)) {
708 ksyn_mtx_update_owner_qos_override(kwq
, thread_tid(current_thread()), TRUE
);
709 kwq
->kw_owner
= thread_tid(current_thread());
715 if ((kwq
->kw_pre_rwwc
!= 0) && ((ins_flags
== FIRSTFIT
) || ((lockseq
& PTHRW_COUNT_MASK
) == (kwq
->kw_pre_lockseq
& PTHRW_COUNT_MASK
) ))) {
716 /* got preposted lock */
718 if (kwq
->kw_pre_rwwc
== 0) {
719 CLEAR_PREPOST_BITS(kwq
);
720 if (kwq
->kw_inqueue
== 0) {
721 updatebits
= lockseq
| (PTH_RWL_KBIT
| PTH_RWL_EBIT
);
723 updatebits
= (kwq
->kw_highseq
& PTHRW_COUNT_MASK
) | (PTH_RWL_KBIT
| PTH_RWL_EBIT
);
725 updatebits
&= ~PTH_RWL_MTX_WAIT
;
727 if (updatebits
== 0) {
728 __FAILEDUSERTEST__("psynch_mutexwait(prepost): returning 0 lseq in mutexwait with no EBIT \n");
731 ksyn_mtx_update_owner_qos_override(kwq
, thread_tid(current_thread()), TRUE
);
732 kwq
->kw_owner
= thread_tid(current_thread());
735 *retval
= updatebits
;
738 __FAILEDUSERTEST__("psynch_mutexwait: more than one prepost\n");
739 kwq
->kw_pre_lockseq
+= PTHRW_INC
; /* look for next one */
746 ksyn_mtx_update_owner_qos_override(kwq
, tid
, FALSE
);
749 error
= ksyn_wait(kwq
, KSYN_QUEUE_WRITER
, mgen
, ins_flags
, 0, psynch_mtxcontinue
);
750 // ksyn_wait drops wait queue lock
752 ksyn_wqrelease(kwq
, 1, (KSYN_WQTYPE_INWAIT
|KSYN_WQTYPE_MTX
));
757 psynch_mtxcontinue(void *parameter
, wait_result_t result
)
759 uthread_t uth
= current_uthread();
760 ksyn_wait_queue_t kwq
= parameter
;
761 ksyn_waitq_element_t kwe
= pthread_kern
->uthread_get_uukwe(uth
);
763 int error
= _wait_result_to_errno(result
);
766 if (kwe
->kwe_kwqqueue
) {
767 ksyn_queue_remove_item(kwq
, &kwq
->kw_ksynqueues
[KSYN_QUEUE_WRITER
], kwe
);
771 uint32_t updatebits
= kwe
->kwe_psynchretval
& ~PTH_RWL_MTX_WAIT
;
772 pthread_kern
->uthread_set_returnval(uth
, updatebits
);
775 __FAILEDUSERTEST__("psynch_mutexwait: returning 0 lseq in mutexwait with no EBIT \n");
777 ksyn_wqrelease(kwq
, 1, (KSYN_WQTYPE_INWAIT
|KSYN_WQTYPE_MTX
));
778 pthread_kern
->unix_syscall_return(error
);
782 * psynch_mutexdrop: This system call is used for unlock postings on contended psynch mutexes.
785 _psynch_mutexdrop(__unused proc_t p
,
789 uint64_t tid __unused
,
794 ksyn_wait_queue_t kwq
;
796 res
= ksyn_wqfind(mutex
, mgen
, ugen
, 0, flags
, KSYN_WQTYPE_MUTEXDROP
, &kwq
);
798 uint32_t updateval
= _psynch_mutexdrop_internal(kwq
, mgen
, ugen
, flags
);
799 /* drops the kwq reference */
809 ksyn_mtxsignal(ksyn_wait_queue_t kwq
, ksyn_waitq_element_t kwe
, uint32_t updateval
)
814 kwe
= TAILQ_FIRST(&kwq
->kw_ksynqueues
[KSYN_QUEUE_WRITER
].ksynq_kwelist
);
816 panic("ksyn_mtxsignal: panic signaling empty queue");
820 ksyn_mtx_transfer_qos_override(kwq
, kwe
);
821 kwq
->kw_owner
= kwe
->kwe_tid
;
823 ret
= ksyn_signal(kwq
, KSYN_QUEUE_WRITER
, kwe
, updateval
);
825 // if waking the new owner failed, remove any overrides
826 if (ret
!= KERN_SUCCESS
) {
827 ksyn_mtx_drop_qos_override(kwq
);
836 ksyn_prepost(ksyn_wait_queue_t kwq
,
837 ksyn_waitq_element_t kwe
,
841 bzero(kwe
, sizeof(*kwe
));
842 kwe
->kwe_state
= state
;
843 kwe
->kwe_lockseq
= lockseq
;
846 (void)ksyn_queue_insert(kwq
, KSYN_QUEUE_WRITER
, kwe
, lockseq
, SEQFIT
);
851 ksyn_cvsignal(ksyn_wait_queue_t ckwq
,
855 uint32_t *updatebits
,
857 ksyn_waitq_element_t
*nkwep
)
859 ksyn_waitq_element_t kwe
= NULL
;
860 ksyn_waitq_element_t nkwe
= NULL
;
861 ksyn_queue_t kq
= &ckwq
->kw_ksynqueues
[KSYN_QUEUE_WRITER
];
863 uptoseq
&= PTHRW_COUNT_MASK
;
865 // Find the specified thread to wake.
866 if (th
!= THREAD_NULL
) {
867 uthread_t uth
= pthread_kern
->get_bsdthread_info(th
);
868 kwe
= pthread_kern
->uthread_get_uukwe(uth
);
869 if (kwe
->kwe_kwqqueue
!= ckwq
||
870 is_seqhigher(kwe
->kwe_lockseq
, uptoseq
)) {
871 // Unless it's no longer waiting on this CV...
873 // ...in which case we post a broadcast instead.
879 // If no thread was specified, find any thread to wake (with the right
881 while (th
== THREAD_NULL
) {
883 kwe
= ksyn_queue_find_signalseq(ckwq
, kq
, uptoseq
, signalseq
);
885 if (kwe
== NULL
&& nkwe
== NULL
) {
886 // No eligible entries; need to allocate a new
887 // entry to prepost. Loop to rescan after
888 // reacquiring the lock after allocation in
889 // case anything new shows up.
891 nkwe
= (ksyn_waitq_element_t
)pthread_kern
->zalloc(kwe_zone
);
899 // If we found a thread to wake...
900 if (kwe
->kwe_state
== KWE_THREAD_INWAIT
) {
901 if (is_seqlower(kwe
->kwe_lockseq
, signalseq
)) {
903 * A valid thread in our range, but lower than our signal.
904 * Matching it may leave our match with nobody to wake it if/when
905 * it arrives (the signal originally meant for this thread might
906 * not successfully wake it).
908 * Convert to broadcast - may cause some spurious wakeups
909 * (allowed by spec), but avoids starvation (better choice).
913 (void)ksyn_signal(ckwq
, KSYN_QUEUE_WRITER
, kwe
, PTH_RWL_MTX_WAIT
);
914 *updatebits
+= PTHRW_INC
;
916 } else if (kwe
->kwe_state
== KWE_THREAD_PREPOST
) {
917 // Merge with existing prepost at same uptoseq.
919 } else if (kwe
->kwe_state
== KWE_THREAD_BROADCAST
) {
920 // Existing broadcasts subsume this signal.
922 panic("unknown kwe state\n");
926 * If we allocated a new kwe above but then found a different kwe to
927 * use then we need to deallocate the spare one.
929 pthread_kern
->zfree(kwe_zone
, nkwe
);
932 } else if (nkwe
!= NULL
) {
933 // ... otherwise, insert the newly allocated prepost.
934 ksyn_prepost(ckwq
, nkwe
, KWE_THREAD_PREPOST
, uptoseq
);
937 panic("failed to allocate kwe\n");
944 __psynch_cvsignal(user_addr_t cv
,
950 mach_port_name_t threadport
,
954 thread_t th
= THREAD_NULL
;
955 ksyn_wait_queue_t kwq
;
957 uint32_t uptoseq
= cgen
& PTHRW_COUNT_MASK
;
958 uint32_t fromseq
= (cugen
& PTHRW_COUNT_MASK
) + PTHRW_INC
;
960 // validate sane L, U, and S values
961 if ((threadport
== 0 && is_seqhigher(fromseq
, uptoseq
)) || is_seqhigher(csgen
, uptoseq
)) {
962 __FAILEDUSERTEST__("cvbroad: invalid L, U and S values\n");
966 if (threadport
!= 0) {
967 th
= port_name_to_thread((mach_port_name_t
)threadport
);
968 if (th
== THREAD_NULL
) {
973 error
= ksyn_wqfind(cv
, cgen
, cugen
, csgen
, flags
, (KSYN_WQTYPE_CVAR
| KSYN_WQTYPE_INDROP
), &kwq
);
975 uint32_t updatebits
= 0;
976 ksyn_waitq_element_t nkwe
= NULL
;
980 // update L, U and S...
981 UPDATE_CVKWQ(kwq
, cgen
, cugen
, csgen
);
984 // No need to signal if the CV is already balanced.
985 if (diff_genseq(kwq
->kw_lword
, kwq
->kw_sword
)) {
986 ksyn_cvsignal(kwq
, th
, uptoseq
, fromseq
, &updatebits
, &broadcast
, &nkwe
);
991 ksyn_handle_cvbroad(kwq
, uptoseq
, &updatebits
);
994 kwq
->kw_sword
+= (updatebits
& PTHRW_COUNT_MASK
);
995 // set C or P bits and free if needed
996 ksyn_cvupdate_fixup(kwq
, &updatebits
);
997 *retval
= updatebits
;
1002 pthread_kern
->zfree(kwe_zone
, nkwe
);
1005 ksyn_wqrelease(kwq
, 1, (KSYN_WQTYPE_INDROP
| KSYN_WQTYPE_CVAR
));
1009 thread_deallocate(th
);
1016 * psynch_cvbroad: This system call is used for broadcast posting on blocked waiters of psynch cvars.
1019 _psynch_cvbroad(__unused proc_t p
,
1024 __unused user_addr_t mutex
,
1025 __unused
uint64_t mugen
,
1026 __unused
uint64_t tid
,
1029 uint32_t diffgen
= cvudgen
& 0xffffffff;
1030 uint32_t count
= diffgen
>> PTHRW_COUNT_SHIFT
;
1031 if (count
> pthread_kern
->get_task_threadmax()) {
1032 __FAILEDUSERTEST__("cvbroad: difference greater than maximum possible thread count\n");
1036 uint32_t csgen
= (cvlsgen
>> 32) & 0xffffffff;
1037 uint32_t cgen
= cvlsgen
& 0xffffffff;
1038 uint32_t cugen
= (cvudgen
>> 32) & 0xffffffff;
1040 return __psynch_cvsignal(cv
, cgen
, cugen
, csgen
, flags
, 1, 0, retval
);
1044 * psynch_cvsignal: This system call is used for signalling the blocked waiters of psynch cvars.
1047 _psynch_cvsignal(__unused proc_t p
,
1052 __unused user_addr_t mutex
,
1053 __unused
uint64_t mugen
,
1054 __unused
uint64_t tid
,
1058 uint32_t csgen
= (cvlsgen
>> 32) & 0xffffffff;
1059 uint32_t cgen
= cvlsgen
& 0xffffffff;
1061 return __psynch_cvsignal(cv
, cgen
, cvugen
, csgen
, flags
, 0, threadport
, retval
);
1065 * psynch_cvwait: This system call is used for psynch cvar waiters to block in kernel.
1068 _psynch_cvwait(__unused proc_t p
,
1080 uint32_t updatebits
= 0;
1081 ksyn_wait_queue_t ckwq
= NULL
;
1082 ksyn_waitq_element_t kwe
, nkwe
= NULL
;
1084 /* for conformance reasons */
1085 pthread_kern
->__pthread_testcancel(0);
1087 uint32_t csgen
= (cvlsgen
>> 32) & 0xffffffff;
1088 uint32_t cgen
= cvlsgen
& 0xffffffff;
1089 uint32_t ugen
= (mugen
>> 32) & 0xffffffff;
1090 uint32_t mgen
= mugen
& 0xffffffff;
1092 uint32_t lockseq
= (cgen
& PTHRW_COUNT_MASK
);
1095 * In cvwait U word can be out of range as cv could be used only for
1096 * timeouts. However S word needs to be within bounds and validated at
1097 * user level as well.
1099 if (is_seqhigher_eq(csgen
, lockseq
) != 0) {
1100 __FAILEDUSERTEST__("psync_cvwait; invalid sequence numbers\n");
1104 error
= ksyn_wqfind(cv
, cgen
, cvugen
, csgen
, flags
, KSYN_WQTYPE_CVAR
| KSYN_WQTYPE_INWAIT
, &ckwq
);
1110 error
= _psynch_mutexdrop(NULL
, mutex
, mgen
, ugen
, 0, flags
, NULL
);
1118 // update L, U and S...
1119 UPDATE_CVKWQ(ckwq
, cgen
, cvugen
, csgen
);
1121 /* Look for the sequence for prepost (or conflicting thread */
1122 ksyn_queue_t kq
= &ckwq
->kw_ksynqueues
[KSYN_QUEUE_WRITER
];
1123 kwe
= ksyn_queue_find_cvpreposeq(kq
, lockseq
);
1125 if (kwe
->kwe_state
== KWE_THREAD_PREPOST
) {
1126 if ((kwe
->kwe_lockseq
& PTHRW_COUNT_MASK
) == lockseq
) {
1127 /* we can safely consume a reference, so do so */
1128 if (--kwe
->kwe_count
== 0) {
1129 ksyn_queue_remove_item(ckwq
, kq
, kwe
);
1130 ckwq
->kw_fakecount
--;
1135 * consuming a prepost higher than our lock sequence is valid, but
1136 * can leave the higher thread without a match. Convert the entry
1137 * to a broadcast to compensate for this.
1139 ksyn_handle_cvbroad(ckwq
, kwe
->kwe_lockseq
, &updatebits
);
1141 if (updatebits
!= 0)
1142 panic("psync_cvwait: convert pre-post to broadcast: woke up %d threads that shouldn't be there\n", updatebits
);
1143 #endif /* __TESTPANICS__ */
1145 } else if (kwe
->kwe_state
== KWE_THREAD_BROADCAST
) {
1148 } else if (kwe
->kwe_state
== KWE_THREAD_INWAIT
) {
1149 __FAILEDUSERTEST__("cvwait: thread entry with same sequence already present\n");
1152 panic("psync_cvwait: unexpected wait queue element type\n");
1156 updatebits
= PTHRW_INC
;
1157 ckwq
->kw_sword
+= PTHRW_INC
;
1159 /* set C or P bits and free if needed */
1160 ksyn_cvupdate_fixup(ckwq
, &updatebits
);
1161 *retval
= updatebits
;
1164 uint64_t abstime
= 0;
1166 if (sec
!= 0 || (nsec
& 0x3fffffff) != 0) {
1168 ts
.tv_sec
= (__darwin_time_t
)sec
;
1169 ts
.tv_nsec
= (nsec
& 0x3fffffff);
1170 nanoseconds_to_absolutetime((uint64_t)ts
.tv_sec
* NSEC_PER_SEC
+ ts
.tv_nsec
, &abstime
);
1171 clock_absolutetime_interval_to_deadline(abstime
, &abstime
);
1174 error
= ksyn_wait(ckwq
, KSYN_QUEUE_WRITER
, cgen
, SEQFIT
, abstime
, psynch_cvcontinue
);
1175 // ksyn_wait drops wait queue lock
1178 ksyn_wqunlock(ckwq
);
1181 pthread_kern
->zfree(kwe_zone
, nkwe
);
1184 ksyn_wqrelease(ckwq
, 1, (KSYN_WQTYPE_INWAIT
| KSYN_WQTYPE_CVAR
));
1190 psynch_cvcontinue(void *parameter
, wait_result_t result
)
1192 uthread_t uth
= current_uthread();
1193 ksyn_wait_queue_t ckwq
= parameter
;
1194 ksyn_waitq_element_t kwe
= pthread_kern
->uthread_get_uukwe(uth
);
1196 int error
= _wait_result_to_errno(result
);
1199 /* just in case it got woken up as we were granting */
1200 pthread_kern
->uthread_set_returnval(uth
, kwe
->kwe_psynchretval
);
1202 if (kwe
->kwe_kwqqueue
) {
1203 ksyn_queue_remove_item(ckwq
, &ckwq
->kw_ksynqueues
[KSYN_QUEUE_WRITER
], kwe
);
1205 if ((kwe
->kwe_psynchretval
& PTH_RWL_MTX_WAIT
) != 0) {
1206 /* the condition var granted.
1207 * reset the error so that the thread returns back.
1210 /* no need to set any bits just return as cvsig/broad covers this */
1212 ckwq
->kw_sword
+= PTHRW_INC
;
1214 /* set C and P bits, in the local error */
1215 if ((ckwq
->kw_lword
& PTHRW_COUNT_MASK
) == (ckwq
->kw_sword
& PTHRW_COUNT_MASK
)) {
1217 if (ckwq
->kw_inqueue
!= 0) {
1218 ksyn_queue_free_items(ckwq
, KSYN_QUEUE_WRITER
, ckwq
->kw_lword
, 1);
1220 ckwq
->kw_lword
= ckwq
->kw_uword
= ckwq
->kw_sword
= 0;
1221 ckwq
->kw_kflags
|= KSYN_KWF_ZEROEDOUT
;
1223 /* everythig in the queue is a fake entry ? */
1224 if (ckwq
->kw_inqueue
!= 0 && ckwq
->kw_fakecount
== ckwq
->kw_inqueue
) {
1229 ksyn_wqunlock(ckwq
);
1232 // PTH_RWL_MTX_WAIT is removed
1233 if ((kwe
->kwe_psynchretval
& PTH_RWS_CV_MBIT
) != 0) {
1234 val
= PTHRW_INC
| PTH_RWS_CV_CBIT
;
1236 pthread_kern
->uthread_set_returnval(uth
, val
);
1239 ksyn_wqrelease(ckwq
, 1, (KSYN_WQTYPE_INWAIT
| KSYN_WQTYPE_CVAR
));
1240 pthread_kern
->unix_syscall_return(error
);
1244 * psynch_cvclrprepost: This system call clears pending prepost if present.
1247 _psynch_cvclrprepost(__unused proc_t p
,
1252 __unused
uint32_t prepocnt
,
1258 int mutex
= (flags
& _PTHREAD_MTX_OPT_MUTEX
);
1259 int wqtype
= (mutex
? KSYN_WQTYPE_MTX
: KSYN_WQTYPE_CVAR
) | KSYN_WQTYPE_INDROP
;
1260 ksyn_wait_queue_t kwq
= NULL
;
1264 error
= ksyn_wqfind(cv
, cvgen
, cvugen
, mutex
? 0 : cvsgen
, flags
, wqtype
, &kwq
);
1272 int firstfit
= (flags
& PTHREAD_POLICY_FLAGS_MASK
) == _PTHREAD_MUTEX_POLICY_FIRSTFIT
;
1273 if (firstfit
&& kwq
->kw_pre_rwwc
!= 0) {
1274 if (is_seqlower_eq(kwq
->kw_pre_lockseq
, cvgen
)) {
1276 kwq
->kw_pre_rwwc
= 0;
1277 kwq
->kw_pre_lockseq
= 0;
1281 ksyn_queue_free_items(kwq
, KSYN_QUEUE_WRITER
, preposeq
, 0);
1285 ksyn_wqrelease(kwq
, 1, wqtype
);
1289 /* ***************** pthread_rwlock ************************ */
1292 __psynch_rw_lock(int type
,
1300 int prepost_type
, kqi
;
1302 if (type
== PTH_RW_TYPE_READ
) {
1303 prepost_type
= KW_UNLOCK_PREPOST_READLOCK
;
1304 kqi
= KSYN_QUEUE_READ
;
1306 prepost_type
= KW_UNLOCK_PREPOST_WRLOCK
;
1307 kqi
= KSYN_QUEUE_WRITER
;
1310 uint32_t lockseq
= lgenval
& PTHRW_COUNT_MASK
;
1313 ksyn_wait_queue_t kwq
;
1314 error
= ksyn_wqfind(rwlock
, lgenval
, ugenval
, rw_wc
, flags
, (KSYN_WQTYPE_INWAIT
|KSYN_WQTYPE_RWLOCK
), &kwq
);
1317 _ksyn_check_init(kwq
, lgenval
);
1318 if (_ksyn_handle_missed_wakeups(kwq
, type
, lockseq
, retval
) ||
1319 // handle overlap first as they are not counted against pre_rwwc
1320 (type
== PTH_RW_TYPE_READ
&& _ksyn_handle_overlap(kwq
, lgenval
, rw_wc
, retval
)) ||
1321 _ksyn_handle_prepost(kwq
, prepost_type
, lockseq
, retval
)) {
1324 error
= ksyn_wait(kwq
, kqi
, lgenval
, SEQFIT
, 0, THREAD_CONTINUE_NULL
);
1325 // ksyn_wait drops wait queue lock
1327 uthread_t uth
= current_uthread();
1328 ksyn_waitq_element_t kwe
= pthread_kern
->uthread_get_uukwe(uth
);
1329 *retval
= kwe
->kwe_psynchretval
;
1332 ksyn_wqrelease(kwq
, 0, (KSYN_WQTYPE_INWAIT
|KSYN_WQTYPE_RWLOCK
));
1338 * psynch_rw_rdlock: This system call is used for psync rwlock readers to block.
1341 _psynch_rw_rdlock(__unused proc_t p
,
1349 return __psynch_rw_lock(PTH_RW_TYPE_READ
, rwlock
, lgenval
, ugenval
, rw_wc
, flags
, retval
);
1353 * psynch_rw_longrdlock: This system call is used for psync rwlock long readers to block.
1356 _psynch_rw_longrdlock(__unused proc_t p
,
1357 __unused user_addr_t rwlock
,
1358 __unused
uint32_t lgenval
,
1359 __unused
uint32_t ugenval
,
1360 __unused
uint32_t rw_wc
,
1362 __unused
uint32_t *retval
)
1369 * psynch_rw_wrlock: This system call is used for psync rwlock writers to block.
1372 _psynch_rw_wrlock(__unused proc_t p
,
1380 return __psynch_rw_lock(PTH_RW_TYPE_WRITE
, rwlock
, lgenval
, ugenval
, rw_wc
, flags
, retval
);
1384 * psynch_rw_yieldwrlock: This system call is used for psync rwlock yielding writers to block.
1387 _psynch_rw_yieldwrlock(__unused proc_t p
,
1388 __unused user_addr_t rwlock
,
1389 __unused
uint32_t lgenval
,
1390 __unused
uint32_t ugenval
,
1391 __unused
uint32_t rw_wc
,
1393 __unused
uint32_t *retval
)
1399 * psynch_rw_unlock: This system call is used for unlock state postings. This will grant appropriate
1400 * reader/writer variety lock.
1403 _psynch_rw_unlock(__unused proc_t p
,
1412 ksyn_wait_queue_t kwq
;
1413 uint32_t updatebits
= 0;
1416 uint32_t curgen
= lgenval
& PTHRW_COUNT_MASK
;
1418 error
= ksyn_wqfind(rwlock
, lgenval
, ugenval
, rw_wc
, flags
, (KSYN_WQTYPE_INDROP
| KSYN_WQTYPE_RWLOCK
), &kwq
);
1424 int isinit
= _ksyn_check_init(kwq
, lgenval
);
1426 /* if lastunlock seq is set, ensure the current one is not lower than that, as it would be spurious */
1427 if ((kwq
->kw_lastunlockseq
!= PTHRW_RWL_INIT
) && (is_seqlower(ugenval
, kwq
->kw_lastunlockseq
)!= 0)) {
1432 /* If L-U != num of waiters, then it needs to be preposted or spr */
1433 diff
= find_diff(lgenval
, ugenval
);
1435 if (find_seq_till(kwq
, curgen
, diff
, &count
) == 0) {
1436 if ((count
== 0) || (count
< (uint32_t)diff
))
1440 /* no prepost and all threads are in place, reset the bit */
1441 if ((isinit
!= 0) && ((kwq
->kw_kflags
& KSYN_KWF_INITCLEARED
) != 0)){
1442 kwq
->kw_kflags
&= ~KSYN_KWF_INITCLEARED
;
1445 /* can handle unlock now */
1447 CLEAR_PREPOST_BITS(kwq
);
1449 error
= kwq_handle_unlock(kwq
, lgenval
, rw_wc
, &updatebits
, 0, NULL
, 0);
1452 panic("psynch_rw_unlock: kwq_handle_unlock failed %d\n",error
);
1453 #endif /* __TESTPANICS__ */
1457 *retval
= updatebits
;
1462 ksyn_wqrelease(kwq
, 0, (KSYN_WQTYPE_INDROP
| KSYN_WQTYPE_RWLOCK
));
1467 /* update if the new seq is higher than prev prepost, or first set */
1468 if (is_rws_setseq(kwq
->kw_pre_sseq
) ||
1469 is_seqhigher_eq(rw_wc
, kwq
->kw_pre_sseq
)) {
1470 kwq
->kw_pre_rwwc
= (diff
- count
);
1471 kwq
->kw_pre_lockseq
= curgen
;
1472 kwq
->kw_pre_sseq
= rw_wc
;
1473 updatebits
= lgenval
; /* let this not do unlock handling */
1480 /* ************************************************************************** */
1482 pth_global_hashinit(void)
1484 pth_glob_hashtbl
= hashinit(PTH_HASHSIZE
* 4, M_PROC
, &pthhash
);
1488 _pth_proc_hashinit(proc_t p
)
1490 void *ptr
= hashinit(PTH_HASHSIZE
, M_PCB
, &pthhash
);
1492 panic("pth_proc_hashinit: hash init returned 0\n");
1495 pthread_kern
->proc_set_pthhash(p
, ptr
);
1500 ksyn_wq_hash_lookup(user_addr_t uaddr
,
1503 ksyn_wait_queue_t
*out_kwq
,
1504 struct pthhashhead
**out_hashptr
,
1505 uint64_t *out_object
,
1506 uint64_t *out_offset
)
1509 ksyn_wait_queue_t kwq
;
1510 uint64_t object
= 0, offset
= 0;
1511 struct pthhashhead
*hashptr
;
1512 if ((flags
& PTHREAD_PSHARED_FLAGS_MASK
) == PTHREAD_PROCESS_SHARED
) {
1513 hashptr
= pth_glob_hashtbl
;
1514 res
= ksyn_findobj(uaddr
, &object
, &offset
);
1516 LIST_FOREACH(kwq
, &hashptr
[object
& pthhash
], kw_hash
) {
1517 if (kwq
->kw_object
== object
&& kwq
->kw_offset
== offset
) {
1525 hashptr
= pthread_kern
->proc_get_pthhash(p
);
1526 LIST_FOREACH(kwq
, &hashptr
[uaddr
& pthhash
], kw_hash
) {
1527 if (kwq
->kw_addr
== uaddr
) {
1533 *out_object
= object
;
1534 *out_offset
= offset
;
1535 *out_hashptr
= hashptr
;
1540 _pth_proc_hashdelete(proc_t p
)
1542 struct pthhashhead
* hashptr
;
1543 ksyn_wait_queue_t kwq
;
1544 unsigned long hashsize
= pthhash
+ 1;
1547 hashptr
= pthread_kern
->proc_get_pthhash(p
);
1548 pthread_kern
->proc_set_pthhash(p
, NULL
);
1549 if (hashptr
== NULL
) {
1553 pthread_list_lock();
1554 for(i
= 0; i
< hashsize
; i
++) {
1555 while ((kwq
= LIST_FIRST(&hashptr
[i
])) != NULL
) {
1556 if ((kwq
->kw_pflags
& KSYN_WQ_INHASH
) != 0) {
1557 kwq
->kw_pflags
&= ~KSYN_WQ_INHASH
;
1558 LIST_REMOVE(kwq
, kw_hash
);
1560 if ((kwq
->kw_pflags
& KSYN_WQ_FLIST
) != 0) {
1561 kwq
->kw_pflags
&= ~KSYN_WQ_FLIST
;
1562 LIST_REMOVE(kwq
, kw_list
);
1564 pthread_list_unlock();
1565 /* release fake entries if present for cvars */
1566 if (((kwq
->kw_type
& KSYN_WQTYPE_MASK
) == KSYN_WQTYPE_CVAR
) && (kwq
->kw_inqueue
!= 0))
1567 ksyn_freeallkwe(&kwq
->kw_ksynqueues
[KSYN_QUEUE_WRITER
]);
1568 lck_mtx_destroy(&kwq
->kw_lock
, pthread_lck_grp
);
1569 pthread_kern
->zfree(kwq_zone
, kwq
);
1570 pthread_list_lock();
1573 pthread_list_unlock();
1574 FREE(hashptr
, M_PROC
);
1577 /* no lock held for this as the waitqueue is getting freed */
1579 ksyn_freeallkwe(ksyn_queue_t kq
)
1581 ksyn_waitq_element_t kwe
;
1582 while ((kwe
= TAILQ_FIRST(&kq
->ksynq_kwelist
)) != NULL
) {
1583 TAILQ_REMOVE(&kq
->ksynq_kwelist
, kwe
, kwe_list
);
1584 if (kwe
->kwe_state
!= KWE_THREAD_INWAIT
) {
1585 pthread_kern
->zfree(kwe_zone
, kwe
);
1590 /* find kernel waitqueue, if not present create one. Grants a reference */
1592 ksyn_wqfind(user_addr_t uaddr
, uint32_t mgen
, uint32_t ugen
, uint32_t sgen
, int flags
, int wqtype
, ksyn_wait_queue_t
*kwqp
)
1595 ksyn_wait_queue_t kwq
= NULL
;
1596 ksyn_wait_queue_t nkwq
= NULL
;
1597 struct pthhashhead
*hashptr
;
1598 proc_t p
= current_proc();
1600 uint64_t object
= 0, offset
= 0;
1601 if ((flags
& PTHREAD_PSHARED_FLAGS_MASK
) == PTHREAD_PROCESS_SHARED
) {
1602 res
= ksyn_findobj(uaddr
, &object
, &offset
);
1603 hashptr
= pth_glob_hashtbl
;
1605 hashptr
= pthread_kern
->proc_get_pthhash(p
);
1609 pthread_list_lock();
1610 res
= ksyn_wq_hash_lookup(uaddr
, current_proc(), flags
, &kwq
, &hashptr
, &object
, &offset
);
1614 if (kwq
== NULL
&& nkwq
== NULL
) {
1615 // Drop the lock to allocate a new kwq and retry.
1616 pthread_list_unlock();
1618 nkwq
= (ksyn_wait_queue_t
)pthread_kern
->zalloc(kwq_zone
);
1619 bzero(nkwq
, sizeof(struct ksyn_wait_queue
));
1621 for (i
= 0; i
< KSYN_QUEUE_MAX
; i
++) {
1622 ksyn_queue_init(&nkwq
->kw_ksynqueues
[i
]);
1624 lck_mtx_init(&nkwq
->kw_lock
, pthread_lck_grp
, pthread_lck_attr
);
1626 } else if (kwq
== NULL
&& nkwq
!= NULL
) {
1627 // Still not found, add the new kwq to the hash.
1629 nkwq
= NULL
; // Don't free.
1630 if ((flags
& PTHREAD_PSHARED_FLAGS_MASK
) == PTHREAD_PROCESS_SHARED
) {
1631 kwq
->kw_pflags
|= KSYN_WQ_SHARED
;
1632 LIST_INSERT_HEAD(&hashptr
[object
& pthhash
], kwq
, kw_hash
);
1634 LIST_INSERT_HEAD(&hashptr
[uaddr
& pthhash
], kwq
, kw_hash
);
1636 kwq
->kw_pflags
|= KSYN_WQ_INHASH
;
1637 } else if (kwq
!= NULL
) {
1638 // Found an existing kwq, use it.
1639 if ((kwq
->kw_pflags
& KSYN_WQ_FLIST
) != 0) {
1640 LIST_REMOVE(kwq
, kw_list
);
1641 kwq
->kw_pflags
&= ~KSYN_WQ_FLIST
;
1643 if ((kwq
->kw_type
& KSYN_WQTYPE_MASK
) != (wqtype
& KSYN_WQTYPE_MASK
)) {
1644 if (kwq
->kw_inqueue
== 0 && kwq
->kw_pre_rwwc
== 0 && kwq
->kw_pre_intrcount
== 0) {
1645 if (kwq
->kw_iocount
== 0) {
1646 kwq
->kw_type
= 0; // mark for reinitialization
1647 } else if (kwq
->kw_iocount
== 1 && kwq
->kw_dropcount
== kwq
->kw_iocount
) {
1648 /* if all users are unlockers then wait for it to finish */
1649 kwq
->kw_pflags
|= KSYN_WQ_WAITING
;
1650 // Drop the lock and wait for the kwq to be free.
1651 (void)msleep(&kwq
->kw_pflags
, pthread_list_mlock
, PDROP
, "ksyn_wqfind", 0);
1654 __FAILEDUSERTEST__("address already known to kernel for another [busy] synchronizer type\n");
1658 __FAILEDUSERTEST__("address already known to kernel for another [busy] synchronizer type\n");
1664 if (kwq
->kw_type
== 0) {
1665 kwq
->kw_addr
= uaddr
;
1666 kwq
->kw_object
= object
;
1667 kwq
->kw_offset
= offset
;
1668 kwq
->kw_type
= (wqtype
& KSYN_WQTYPE_MASK
);
1669 CLEAR_REINIT_BITS(kwq
);
1670 kwq
->kw_lword
= mgen
;
1671 kwq
->kw_uword
= ugen
;
1672 kwq
->kw_sword
= sgen
;
1675 kwq
->kw_qos_override
= THREAD_QOS_UNSPECIFIED
;
1678 if (wqtype
== KSYN_WQTYPE_MUTEXDROP
) {
1679 kwq
->kw_dropcount
++;
1684 pthread_list_unlock();
1689 lck_mtx_destroy(&nkwq
->kw_lock
, pthread_lck_grp
);
1690 pthread_kern
->zfree(kwq_zone
, nkwq
);
1695 /* Reference from find is dropped here. Starts the free process if needed */
1697 ksyn_wqrelease(ksyn_wait_queue_t kwq
, int qfreenow
, int wqtype
)
1700 ksyn_wait_queue_t free_elem
= NULL
;
1702 pthread_list_lock();
1703 if (wqtype
== KSYN_WQTYPE_MUTEXDROP
) {
1704 kwq
->kw_dropcount
--;
1706 if (--kwq
->kw_iocount
== 0) {
1707 if ((kwq
->kw_pflags
& KSYN_WQ_WAITING
) != 0) {
1708 /* some one is waiting for the waitqueue, wake them up */
1709 kwq
->kw_pflags
&= ~KSYN_WQ_WAITING
;
1710 wakeup(&kwq
->kw_pflags
);
1713 if (kwq
->kw_pre_rwwc
== 0 && kwq
->kw_inqueue
== 0 && kwq
->kw_pre_intrcount
== 0) {
1714 if (qfreenow
== 0) {
1715 microuptime(&kwq
->kw_ts
);
1716 LIST_INSERT_HEAD(&pth_free_list
, kwq
, kw_list
);
1717 kwq
->kw_pflags
|= KSYN_WQ_FLIST
;
1718 if (psynch_cleanupset
== 0) {
1721 t
.tv_sec
+= KSYN_CLEANUP_DEADLINE
;
1722 deadline
= tvtoabstime(&t
);
1723 thread_call_enter_delayed(psynch_thcall
, deadline
);
1724 psynch_cleanupset
= 1;
1727 kwq
->kw_pflags
&= ~KSYN_WQ_INHASH
;
1728 LIST_REMOVE(kwq
, kw_hash
);
1733 pthread_list_unlock();
1734 if (free_elem
!= NULL
) {
1735 lck_mtx_destroy(&free_elem
->kw_lock
, pthread_lck_grp
);
1736 pthread_kern
->zfree(kwq_zone
, free_elem
);
1740 /* responsible to free the waitqueues */
1742 psynch_wq_cleanup(__unused
void *param
, __unused
void * param1
)
1744 ksyn_wait_queue_t kwq
;
1747 uint64_t deadline
= 0;
1748 LIST_HEAD(, ksyn_wait_queue
) freelist
;
1749 LIST_INIT(&freelist
);
1751 pthread_list_lock();
1755 LIST_FOREACH(kwq
, &pth_free_list
, kw_list
) {
1756 if (kwq
->kw_iocount
!= 0 || kwq
->kw_pre_rwwc
!= 0 || kwq
->kw_inqueue
!= 0 || kwq
->kw_pre_intrcount
!= 0) {
1760 __darwin_time_t diff
= t
.tv_sec
- kwq
->kw_ts
.tv_sec
;
1763 if (diff
>= KSYN_CLEANUP_DEADLINE
) {
1764 kwq
->kw_pflags
&= ~(KSYN_WQ_FLIST
| KSYN_WQ_INHASH
);
1765 LIST_REMOVE(kwq
, kw_hash
);
1766 LIST_REMOVE(kwq
, kw_list
);
1767 LIST_INSERT_HEAD(&freelist
, kwq
, kw_list
);
1773 if (reschedule
!= 0) {
1774 t
.tv_sec
+= KSYN_CLEANUP_DEADLINE
;
1775 deadline
= tvtoabstime(&t
);
1776 thread_call_enter_delayed(psynch_thcall
, deadline
);
1777 psynch_cleanupset
= 1;
1779 psynch_cleanupset
= 0;
1781 pthread_list_unlock();
1783 while ((kwq
= LIST_FIRST(&freelist
)) != NULL
) {
1784 LIST_REMOVE(kwq
, kw_list
);
1785 lck_mtx_destroy(&kwq
->kw_lock
, pthread_lck_grp
);
1786 pthread_kern
->zfree(kwq_zone
, kwq
);
1791 _wait_result_to_errno(wait_result_t result
)
1795 case THREAD_TIMED_OUT
:
1798 case THREAD_INTERRUPTED
:
1806 ksyn_wait(ksyn_wait_queue_t kwq
,
1811 thread_continue_t continuation
)
1815 thread_t th
= current_thread();
1816 uthread_t uth
= pthread_kern
->get_bsdthread_info(th
);
1817 ksyn_waitq_element_t kwe
= pthread_kern
->uthread_get_uukwe(uth
);
1818 bzero(kwe
, sizeof(*kwe
));
1820 kwe
->kwe_lockseq
= lockseq
& PTHRW_COUNT_MASK
;
1821 kwe
->kwe_state
= KWE_THREAD_INWAIT
;
1823 kwe
->kwe_tid
= thread_tid(th
);
1825 res
= ksyn_queue_insert(kwq
, kqi
, kwe
, lockseq
, fit
);
1827 //panic("psynch_rw_wrlock: failed to enqueue\n"); // XXX
1832 assert_wait_deadline_with_leeway(&kwe
->kwe_psynchretval
, THREAD_ABORTSAFE
, TIMEOUT_URGENCY_USER_NORMAL
, abstime
, 0);
1836 if (continuation
== THREAD_CONTINUE_NULL
) {
1837 ret
= thread_block(NULL
);
1839 ret
= thread_block_parameter(continuation
, kwq
);
1841 // If thread_block_parameter returns (interrupted) call the
1842 // continuation manually to clean up.
1843 continuation(kwq
, ret
);
1846 panic("ksyn_wait continuation returned");
1849 res
= _wait_result_to_errno(ret
);
1852 if (kwe
->kwe_kwqqueue
) {
1853 ksyn_queue_remove_item(kwq
, &kwq
->kw_ksynqueues
[kqi
], kwe
);
1861 ksyn_signal(ksyn_wait_queue_t kwq
,
1863 ksyn_waitq_element_t kwe
,
1868 // If no wait element was specified, wake the first.
1870 kwe
= TAILQ_FIRST(&kwq
->kw_ksynqueues
[kqi
].ksynq_kwelist
);
1872 panic("ksyn_signal: panic signaling empty queue");
1876 if (kwe
->kwe_state
!= KWE_THREAD_INWAIT
) {
1877 panic("ksyn_signal: panic signaling non-waiting element");
1880 ksyn_queue_remove_item(kwq
, &kwq
->kw_ksynqueues
[kqi
], kwe
);
1881 kwe
->kwe_psynchretval
= updateval
;
1883 ret
= thread_wakeup_one((caddr_t
)&kwe
->kwe_psynchretval
);
1884 if (ret
!= KERN_SUCCESS
&& ret
!= KERN_NOT_WAITING
) {
1885 panic("ksyn_signal: panic waking up thread %x\n", ret
);
1891 ksyn_findobj(user_addr_t uaddr
, uint64_t *objectp
, uint64_t *offsetp
)
1894 vm_page_info_basic_data_t info
;
1895 mach_msg_type_number_t count
= VM_PAGE_INFO_BASIC_COUNT
;
1896 ret
= pthread_kern
->vm_map_page_info(pthread_kern
->current_map(), uaddr
, VM_PAGE_INFO_BASIC
, (vm_page_info_t
)&info
, &count
);
1897 if (ret
!= KERN_SUCCESS
) {
1901 if (objectp
!= NULL
) {
1902 *objectp
= (uint64_t)info
.object_id
;
1904 if (offsetp
!= NULL
) {
1905 *offsetp
= (uint64_t)info
.offset
;
1912 /* lowest of kw_fr, kw_flr, kw_fwr, kw_fywr */
1914 kwq_find_rw_lowest(ksyn_wait_queue_t kwq
, int flags
, uint32_t premgen
, int *typep
, uint32_t lowest
[])
1916 uint32_t kw_fr
, kw_fwr
, low
;
1917 int type
= 0, lowtype
, typenum
[2] = { 0 };
1918 uint32_t numbers
[2] = { 0 };
1922 if ((kwq
->kw_ksynqueues
[KSYN_QUEUE_READ
].ksynq_count
!= 0) || ((flags
& KW_UNLOCK_PREPOST_READLOCK
) != 0)) {
1923 type
|= PTH_RWSHFT_TYPE_READ
;
1924 /* read entries are present */
1925 if (kwq
->kw_ksynqueues
[KSYN_QUEUE_READ
].ksynq_count
!= 0) {
1926 kw_fr
= kwq
->kw_ksynqueues
[KSYN_QUEUE_READ
].ksynq_firstnum
;
1927 if (((flags
& KW_UNLOCK_PREPOST_READLOCK
) != 0) && (is_seqlower(premgen
, kw_fr
) != 0))
1932 lowest
[KSYN_QUEUE_READ
] = kw_fr
;
1933 numbers
[count
]= kw_fr
;
1934 typenum
[count
] = PTH_RW_TYPE_READ
;
1937 lowest
[KSYN_QUEUE_READ
] = 0;
1939 if ((kwq
->kw_ksynqueues
[KSYN_QUEUE_WRITER
].ksynq_count
!= 0) || ((flags
& KW_UNLOCK_PREPOST_WRLOCK
) != 0)) {
1940 type
|= PTH_RWSHFT_TYPE_WRITE
;
1941 /* read entries are present */
1942 if (kwq
->kw_ksynqueues
[KSYN_QUEUE_WRITER
].ksynq_count
!= 0) {
1943 kw_fwr
= kwq
->kw_ksynqueues
[KSYN_QUEUE_WRITER
].ksynq_firstnum
;
1944 if (((flags
& KW_UNLOCK_PREPOST_WRLOCK
) != 0) && (is_seqlower(premgen
, kw_fwr
) != 0))
1949 lowest
[KSYN_QUEUE_WRITER
] = kw_fwr
;
1950 numbers
[count
]= kw_fwr
;
1951 typenum
[count
] = PTH_RW_TYPE_WRITE
;
1954 lowest
[KSYN_QUEUE_WRITER
] = 0;
1958 panic("nothing in the queue???\n");
1959 #endif /* __TESTPANICS__ */
1962 lowtype
= typenum
[0];
1964 for (i
= 1; i
< count
; i
++) {
1965 if (is_seqlower(numbers
[i
] , low
) != 0) {
1967 lowtype
= typenum
[i
];
1978 /* wakeup readers to upto the writer limits */
1980 ksyn_wakeupreaders(ksyn_wait_queue_t kwq
, uint32_t limitread
, int allreaders
, uint32_t updatebits
, int *wokenp
)
1983 int failedwakeup
= 0;
1985 kern_return_t kret
= KERN_SUCCESS
;
1990 kq
= &kwq
->kw_ksynqueues
[KSYN_QUEUE_READ
];
1991 while ((kq
->ksynq_count
!= 0) && (allreaders
|| (is_seqlower(kq
->ksynq_firstnum
, limitread
) != 0))) {
1992 kret
= ksyn_signal(kwq
, KSYN_QUEUE_READ
, NULL
, lbits
);
1993 if (kret
== KERN_NOT_WAITING
) {
2001 return(failedwakeup
);
2005 /* This handles the unlock grants for next set on rw_unlock() or on arrival of all preposted waiters */
2007 kwq_handle_unlock(ksyn_wait_queue_t kwq
,
2008 __unused
uint32_t mgen
,
2015 uint32_t low_writer
, limitrdnum
;
2016 int rwtype
, error
=0;
2017 int allreaders
, failed
;
2018 uint32_t updatebits
=0, numneeded
= 0;;
2019 int prepost
= flags
& KW_UNLOCK_PREPOST
;
2020 thread_t preth
= THREAD_NULL
;
2021 ksyn_waitq_element_t kwe
;
2026 uint32_t lowest
[KSYN_QUEUE_MAX
]; /* np need for upgrade as it is handled separately */
2027 kern_return_t kret
= KERN_SUCCESS
;
2029 int curthreturns
= 0;
2032 preth
= current_thread();
2035 kq
= &kwq
->kw_ksynqueues
[KSYN_QUEUE_READ
];
2036 kwq
->kw_lastseqword
= rw_wc
;
2037 kwq
->kw_lastunlockseq
= (rw_wc
& PTHRW_COUNT_MASK
);
2038 kwq
->kw_overlapwatch
= 0;
2040 error
= kwq_find_rw_lowest(kwq
, flags
, premgen
, &rwtype
, lowest
);
2043 panic("rwunlock: cannot fails to slot next round of threads");
2044 #endif /* __TESTPANICS__ */
2046 low_writer
= lowest
[KSYN_QUEUE_WRITER
];
2051 switch (rwtype
& PTH_RW_TYPE_MASK
) {
2052 case PTH_RW_TYPE_READ
: {
2054 /* what about the preflight which is LREAD or READ ?? */
2055 if ((rwtype
& PTH_RWSHFT_TYPE_MASK
) != 0) {
2056 if (rwtype
& PTH_RWSHFT_TYPE_WRITE
) {
2057 updatebits
|= (PTH_RWL_WBIT
| PTH_RWL_KBIT
);
2061 if ((rwtype
& PTH_RWSHFT_TYPE_WRITE
) != 0) {
2062 limitrdnum
= low_writer
;
2069 if ((rwtype
& PTH_RWSHFT_TYPE_WRITE
) != 0) {
2070 limitrdnum
= low_writer
;
2071 numneeded
= ksyn_queue_count_tolowest(kq
, limitrdnum
);
2072 if (((flags
& KW_UNLOCK_PREPOST_READLOCK
) != 0) && (is_seqlower(premgen
, limitrdnum
) != 0)) {
2077 // no writers at all
2078 // no other waiters only readers
2079 kwq
->kw_overlapwatch
= 1;
2080 numneeded
+= kwq
->kw_ksynqueues
[KSYN_QUEUE_READ
].ksynq_count
;
2081 if ((flags
& KW_UNLOCK_PREPOST_READLOCK
) != 0) {
2087 updatebits
+= (numneeded
<< PTHRW_COUNT_SHIFT
);
2089 kwq
->kw_nextseqword
= (rw_wc
& PTHRW_COUNT_MASK
) + updatebits
;
2091 if (curthreturns
!= 0) {
2093 uth
= current_uthread();
2094 kwe
= pthread_kern
->uthread_get_uukwe(uth
);
2095 kwe
->kwe_psynchretval
= updatebits
;
2099 failed
= ksyn_wakeupreaders(kwq
, limitrdnum
, allreaders
, updatebits
, &woken
);
2101 kwq
->kw_pre_intrcount
= failed
; /* actually a count */
2102 kwq
->kw_pre_intrseq
= limitrdnum
;
2103 kwq
->kw_pre_intrretbits
= updatebits
;
2104 kwq
->kw_pre_intrtype
= PTH_RW_TYPE_READ
;
2109 if ((kwq
->kw_ksynqueues
[KSYN_QUEUE_WRITER
].ksynq_count
!= 0) && ((updatebits
& PTH_RWL_WBIT
) == 0))
2110 panic("kwq_handle_unlock: writer pending but no writebit set %x\n", updatebits
);
2114 case PTH_RW_TYPE_WRITE
: {
2116 /* only one thread is goin to be granted */
2117 updatebits
|= (PTHRW_INC
);
2118 updatebits
|= PTH_RWL_KBIT
| PTH_RWL_EBIT
;
2120 if (((flags
& KW_UNLOCK_PREPOST_WRLOCK
) != 0) && (low_writer
== premgen
)) {
2122 if (kwq
->kw_ksynqueues
[KSYN_QUEUE_WRITER
].ksynq_count
!= 0) {
2123 updatebits
|= PTH_RWL_WBIT
;
2126 uth
= pthread_kern
->get_bsdthread_info(th
);
2127 kwe
= pthread_kern
->uthread_get_uukwe(uth
);
2128 kwe
->kwe_psynchretval
= updatebits
;
2130 /* we are not granting writelock to the preposting thread */
2131 /* if there are writers present or the preposting write thread then W bit is to be set */
2132 if (kwq
->kw_ksynqueues
[KSYN_QUEUE_WRITER
].ksynq_count
> 1 ||
2133 (flags
& KW_UNLOCK_PREPOST_WRLOCK
) != 0) {
2134 updatebits
|= PTH_RWL_WBIT
;
2136 /* setup next in the queue */
2137 kret
= ksyn_signal(kwq
, KSYN_QUEUE_WRITER
, NULL
, updatebits
);
2138 if (kret
== KERN_NOT_WAITING
) {
2139 kwq
->kw_pre_intrcount
= 1; /* actually a count */
2140 kwq
->kw_pre_intrseq
= low_writer
;
2141 kwq
->kw_pre_intrretbits
= updatebits
;
2142 kwq
->kw_pre_intrtype
= PTH_RW_TYPE_WRITE
;
2146 kwq
->kw_nextseqword
= (rw_wc
& PTHRW_COUNT_MASK
) + updatebits
;
2147 if ((updatebits
& (PTH_RWL_KBIT
| PTH_RWL_EBIT
)) != (PTH_RWL_KBIT
| PTH_RWL_EBIT
))
2148 panic("kwq_handle_unlock: writer lock granted but no ke set %x\n", updatebits
);
2153 panic("rwunlock: invalid type for lock grants");
2157 if (updatep
!= NULL
)
2158 *updatep
= updatebits
;
2164 /************* Indiv queue support routines ************************/
2166 ksyn_queue_init(ksyn_queue_t kq
)
2168 TAILQ_INIT(&kq
->ksynq_kwelist
);
2169 kq
->ksynq_count
= 0;
2170 kq
->ksynq_firstnum
= 0;
2171 kq
->ksynq_lastnum
= 0;
2175 ksyn_queue_insert(ksyn_wait_queue_t kwq
, int kqi
, ksyn_waitq_element_t kwe
, uint32_t mgen
, int fit
)
2177 ksyn_queue_t kq
= &kwq
->kw_ksynqueues
[kqi
];
2178 uint32_t lockseq
= mgen
& PTHRW_COUNT_MASK
;
2181 if (kwe
->kwe_kwqqueue
!= NULL
) {
2182 panic("adding enqueued item to another queue");
2185 if (kq
->ksynq_count
== 0) {
2186 TAILQ_INSERT_HEAD(&kq
->ksynq_kwelist
, kwe
, kwe_list
);
2187 kq
->ksynq_firstnum
= lockseq
;
2188 kq
->ksynq_lastnum
= lockseq
;
2189 } else if (fit
== FIRSTFIT
) {
2190 /* TBD: if retry bit is set for mutex, add it to the head */
2191 /* firstfit, arriving order */
2192 TAILQ_INSERT_TAIL(&kq
->ksynq_kwelist
, kwe
, kwe_list
);
2193 if (is_seqlower(lockseq
, kq
->ksynq_firstnum
)) {
2194 kq
->ksynq_firstnum
= lockseq
;
2196 if (is_seqhigher(lockseq
, kq
->ksynq_lastnum
)) {
2197 kq
->ksynq_lastnum
= lockseq
;
2199 } else if (lockseq
== kq
->ksynq_firstnum
|| lockseq
== kq
->ksynq_lastnum
) {
2200 /* During prepost when a thread is getting cancelled, we could have two with same seq */
2202 if (kwe
->kwe_state
== KWE_THREAD_PREPOST
) {
2203 ksyn_waitq_element_t tmp
= ksyn_queue_find_seq(kwq
, kq
, lockseq
);
2204 if (tmp
!= NULL
&& tmp
->kwe_uth
!= NULL
&& pthread_kern
->uthread_is_cancelled(tmp
->kwe_uth
)) {
2205 TAILQ_INSERT_TAIL(&kq
->ksynq_kwelist
, kwe
, kwe_list
);
2209 } else if (is_seqlower(kq
->ksynq_lastnum
, lockseq
)) { // XXX is_seqhigher
2210 TAILQ_INSERT_TAIL(&kq
->ksynq_kwelist
, kwe
, kwe_list
);
2211 kq
->ksynq_lastnum
= lockseq
;
2212 } else if (is_seqlower(lockseq
, kq
->ksynq_firstnum
)) {
2213 TAILQ_INSERT_HEAD(&kq
->ksynq_kwelist
, kwe
, kwe_list
);
2214 kq
->ksynq_firstnum
= lockseq
;
2216 ksyn_waitq_element_t q_kwe
, r_kwe
;
2219 TAILQ_FOREACH_SAFE(q_kwe
, &kq
->ksynq_kwelist
, kwe_list
, r_kwe
) {
2220 if (is_seqhigher(q_kwe
->kwe_lockseq
, lockseq
)) {
2221 TAILQ_INSERT_BEFORE(q_kwe
, kwe
, kwe_list
);
2229 kwe
->kwe_kwqqueue
= kwq
;
2232 update_low_high(kwq
, lockseq
);
2238 ksyn_queue_remove_item(ksyn_wait_queue_t kwq
, ksyn_queue_t kq
, ksyn_waitq_element_t kwe
)
2240 if (kq
->ksynq_count
== 0) {
2241 panic("removing item from empty queue");
2244 if (kwe
->kwe_kwqqueue
!= kwq
) {
2245 panic("removing item from wrong queue");
2248 TAILQ_REMOVE(&kq
->ksynq_kwelist
, kwe
, kwe_list
);
2249 kwe
->kwe_list
.tqe_next
= NULL
;
2250 kwe
->kwe_list
.tqe_prev
= NULL
;
2251 kwe
->kwe_kwqqueue
= NULL
;
2253 if (--kq
->ksynq_count
> 0) {
2254 ksyn_waitq_element_t tmp
;
2255 tmp
= TAILQ_FIRST(&kq
->ksynq_kwelist
);
2256 kq
->ksynq_firstnum
= tmp
->kwe_lockseq
& PTHRW_COUNT_MASK
;
2257 tmp
= TAILQ_LAST(&kq
->ksynq_kwelist
, ksynq_kwelist_head
);
2258 kq
->ksynq_lastnum
= tmp
->kwe_lockseq
& PTHRW_COUNT_MASK
;
2260 kq
->ksynq_firstnum
= 0;
2261 kq
->ksynq_lastnum
= 0;
2264 if (--kwq
->kw_inqueue
> 0) {
2265 uint32_t curseq
= kwe
->kwe_lockseq
& PTHRW_COUNT_MASK
;
2266 if (kwq
->kw_lowseq
== curseq
) {
2267 kwq
->kw_lowseq
= find_nextlowseq(kwq
);
2269 if (kwq
->kw_highseq
== curseq
) {
2270 kwq
->kw_highseq
= find_nexthighseq(kwq
);
2274 kwq
->kw_highseq
= 0;
2278 ksyn_waitq_element_t
2279 ksyn_queue_find_seq(__unused ksyn_wait_queue_t kwq
, ksyn_queue_t kq
, uint32_t seq
)
2281 ksyn_waitq_element_t kwe
;
2283 // XXX: should stop searching when higher sequence number is seen
2284 TAILQ_FOREACH(kwe
, &kq
->ksynq_kwelist
, kwe_list
) {
2285 if ((kwe
->kwe_lockseq
& PTHRW_COUNT_MASK
) == seq
) {
2292 /* find the thread at the target sequence (or a broadcast/prepost at or above) */
2293 ksyn_waitq_element_t
2294 ksyn_queue_find_cvpreposeq(ksyn_queue_t kq
, uint32_t cgen
)
2296 ksyn_waitq_element_t result
= NULL
;
2297 ksyn_waitq_element_t kwe
;
2298 uint32_t lgen
= (cgen
& PTHRW_COUNT_MASK
);
2300 TAILQ_FOREACH(kwe
, &kq
->ksynq_kwelist
, kwe_list
) {
2301 if (is_seqhigher_eq(kwe
->kwe_lockseq
, cgen
)) {
2304 // KWE_THREAD_INWAIT must be strictly equal
2305 if (kwe
->kwe_state
== KWE_THREAD_INWAIT
&& (kwe
->kwe_lockseq
& PTHRW_COUNT_MASK
) != lgen
) {
2314 /* look for a thread at lockseq, a */
2315 ksyn_waitq_element_t
2316 ksyn_queue_find_signalseq(__unused ksyn_wait_queue_t kwq
, ksyn_queue_t kq
, uint32_t uptoseq
, uint32_t signalseq
)
2318 ksyn_waitq_element_t result
= NULL
;
2319 ksyn_waitq_element_t q_kwe
, r_kwe
;
2322 /* case where wrap in the tail of the queue exists */
2323 TAILQ_FOREACH_SAFE(q_kwe
, &kq
->ksynq_kwelist
, kwe_list
, r_kwe
) {
2324 if (q_kwe
->kwe_state
== KWE_THREAD_PREPOST
) {
2325 if (is_seqhigher(q_kwe
->kwe_lockseq
, uptoseq
)) {
2329 if (q_kwe
->kwe_state
== KWE_THREAD_PREPOST
|| q_kwe
->kwe_state
== KWE_THREAD_BROADCAST
) {
2330 /* match any prepost at our same uptoseq or any broadcast above */
2331 if (is_seqlower(q_kwe
->kwe_lockseq
, uptoseq
)) {
2335 } else if (q_kwe
->kwe_state
== KWE_THREAD_INWAIT
) {
2337 * Match any (non-cancelled) thread at or below our upto sequence -
2338 * but prefer an exact match to our signal sequence (if present) to
2339 * keep exact matches happening.
2341 if (is_seqhigher(q_kwe
->kwe_lockseq
, uptoseq
)) {
2344 if (q_kwe
->kwe_kwqqueue
== kwq
) {
2345 if (!pthread_kern
->uthread_is_cancelled(q_kwe
->kwe_uth
)) {
2346 /* if equal or higher than our signal sequence, return this one */
2347 if (is_seqhigher_eq(q_kwe
->kwe_lockseq
, signalseq
)) {
2351 /* otherwise, just remember this eligible thread and move on */
2352 if (result
== NULL
) {
2358 panic("ksyn_queue_find_signalseq(): unknown wait queue element type (%d)\n", q_kwe
->kwe_state
);
2365 ksyn_queue_free_items(ksyn_wait_queue_t kwq
, int kqi
, uint32_t upto
, int all
)
2367 ksyn_waitq_element_t kwe
;
2368 uint32_t tseq
= upto
& PTHRW_COUNT_MASK
;
2369 ksyn_queue_t kq
= &kwq
->kw_ksynqueues
[kqi
];
2371 while ((kwe
= TAILQ_FIRST(&kq
->ksynq_kwelist
)) != NULL
) {
2372 if (all
== 0 && is_seqhigher(kwe
->kwe_lockseq
, tseq
)) {
2375 if (kwe
->kwe_state
== KWE_THREAD_INWAIT
) {
2377 * This scenario is typically noticed when the cvar is
2378 * reinited and the new waiters are waiting. We can
2379 * return them as spurious wait so the cvar state gets
2383 /* skip canceled ones */
2385 /* set M bit to indicate to waking CV to retun Inc val */
2386 (void)ksyn_signal(kwq
, kqi
, kwe
, PTHRW_INC
| PTH_RWS_CV_MBIT
| PTH_RWL_MTX_WAIT
);
2388 ksyn_queue_remove_item(kwq
, kq
, kwe
);
2389 pthread_kern
->zfree(kwe_zone
, kwe
);
2390 kwq
->kw_fakecount
--;
2395 /*************************************************************************/
2398 update_low_high(ksyn_wait_queue_t kwq
, uint32_t lockseq
)
2400 if (kwq
->kw_inqueue
== 1) {
2401 kwq
->kw_lowseq
= lockseq
;
2402 kwq
->kw_highseq
= lockseq
;
2404 if (is_seqlower(lockseq
, kwq
->kw_lowseq
)) {
2405 kwq
->kw_lowseq
= lockseq
;
2407 if (is_seqhigher(lockseq
, kwq
->kw_highseq
)) {
2408 kwq
->kw_highseq
= lockseq
;
2414 find_nextlowseq(ksyn_wait_queue_t kwq
)
2416 uint32_t lowest
= 0;
2420 for (i
= 0; i
< KSYN_QUEUE_MAX
; i
++) {
2421 if (kwq
->kw_ksynqueues
[i
].ksynq_count
> 0) {
2422 uint32_t current
= kwq
->kw_ksynqueues
[i
].ksynq_firstnum
;
2423 if (first
|| is_seqlower(current
, lowest
)) {
2434 find_nexthighseq(ksyn_wait_queue_t kwq
)
2436 uint32_t highest
= 0;
2440 for (i
= 0; i
< KSYN_QUEUE_MAX
; i
++) {
2441 if (kwq
->kw_ksynqueues
[i
].ksynq_count
> 0) {
2442 uint32_t current
= kwq
->kw_ksynqueues
[i
].ksynq_lastnum
;
2443 if (first
|| is_seqhigher(current
, highest
)) {
2454 find_seq_till(ksyn_wait_queue_t kwq
, uint32_t upto
, uint32_t nwaiters
, uint32_t *countp
)
2459 for (i
= 0; i
< KSYN_QUEUE_MAX
; i
++) {
2460 count
+= ksyn_queue_count_tolowest(&kwq
->kw_ksynqueues
[i
], upto
);
2461 if (count
>= nwaiters
) {
2466 if (countp
!= NULL
) {
2472 } else if (count
>= nwaiters
) {
2481 ksyn_queue_count_tolowest(ksyn_queue_t kq
, uint32_t upto
)
2484 ksyn_waitq_element_t kwe
, newkwe
;
2486 if (kq
->ksynq_count
== 0 || is_seqhigher(kq
->ksynq_firstnum
, upto
)) {
2489 if (upto
== kq
->ksynq_firstnum
) {
2492 TAILQ_FOREACH_SAFE(kwe
, &kq
->ksynq_kwelist
, kwe_list
, newkwe
) {
2493 uint32_t curval
= (kwe
->kwe_lockseq
& PTHRW_COUNT_MASK
);
2494 if (is_seqhigher(curval
, upto
)) {
2498 if (upto
== curval
) {
2505 /* handles the cond broadcast of cvar and returns number of woken threads and bits for syscall return */
2507 ksyn_handle_cvbroad(ksyn_wait_queue_t ckwq
, uint32_t upto
, uint32_t *updatep
)
2509 ksyn_waitq_element_t kwe
, newkwe
;
2510 uint32_t updatebits
= 0;
2511 ksyn_queue_t kq
= &ckwq
->kw_ksynqueues
[KSYN_QUEUE_WRITER
];
2513 struct ksyn_queue kfreeq
;
2514 ksyn_queue_init(&kfreeq
);
2517 TAILQ_FOREACH_SAFE(kwe
, &kq
->ksynq_kwelist
, kwe_list
, newkwe
) {
2518 if (is_seqhigher(kwe
->kwe_lockseq
, upto
)) {
2519 // outside our range
2523 if (kwe
->kwe_state
== KWE_THREAD_INWAIT
) {
2524 // Wake only non-canceled threads waiting on this CV.
2525 if (!pthread_kern
->uthread_is_cancelled(kwe
->kwe_uth
)) {
2526 (void)ksyn_signal(ckwq
, KSYN_QUEUE_WRITER
, kwe
, PTH_RWL_MTX_WAIT
);
2527 updatebits
+= PTHRW_INC
;
2529 } else if (kwe
->kwe_state
== KWE_THREAD_BROADCAST
||
2530 kwe
->kwe_state
== KWE_THREAD_PREPOST
) {
2531 ksyn_queue_remove_item(ckwq
, kq
, kwe
);
2532 TAILQ_INSERT_TAIL(&kfreeq
.ksynq_kwelist
, kwe
, kwe_list
);
2533 ckwq
->kw_fakecount
--;
2535 panic("unknown kwe state\n");
2539 /* Need to enter a broadcast in the queue (if not already at L == S) */
2541 if (diff_genseq(ckwq
->kw_lword
, ckwq
->kw_sword
)) {
2542 newkwe
= TAILQ_FIRST(&kfreeq
.ksynq_kwelist
);
2543 if (newkwe
== NULL
) {
2544 ksyn_wqunlock(ckwq
);
2545 newkwe
= (ksyn_waitq_element_t
)pthread_kern
->zalloc(kwe_zone
);
2546 TAILQ_INSERT_TAIL(&kfreeq
.ksynq_kwelist
, newkwe
, kwe_list
);
2550 TAILQ_REMOVE(&kfreeq
.ksynq_kwelist
, newkwe
, kwe_list
);
2551 ksyn_prepost(ckwq
, newkwe
, KWE_THREAD_BROADCAST
, upto
);
2555 // free up any remaining things stumbled across above
2556 while ((kwe
= TAILQ_FIRST(&kfreeq
.ksynq_kwelist
)) != NULL
) {
2557 TAILQ_REMOVE(&kfreeq
.ksynq_kwelist
, kwe
, kwe_list
);
2558 pthread_kern
->zfree(kwe_zone
, kwe
);
2561 if (updatep
!= NULL
) {
2562 *updatep
= updatebits
;
2567 ksyn_cvupdate_fixup(ksyn_wait_queue_t ckwq
, uint32_t *updatebits
)
2569 if ((ckwq
->kw_lword
& PTHRW_COUNT_MASK
) == (ckwq
->kw_sword
& PTHRW_COUNT_MASK
)) {
2570 if (ckwq
->kw_inqueue
!= 0) {
2571 /* FREE THE QUEUE */
2572 ksyn_queue_free_items(ckwq
, KSYN_QUEUE_WRITER
, ckwq
->kw_lword
, 0);
2574 if (ckwq
->kw_inqueue
!= 0)
2575 panic("ksyn_cvupdate_fixup: L == S, but entries in queue beyond S");
2576 #endif /* __TESTPANICS__ */
2578 ckwq
->kw_lword
= ckwq
->kw_uword
= ckwq
->kw_sword
= 0;
2579 ckwq
->kw_kflags
|= KSYN_KWF_ZEROEDOUT
;
2580 *updatebits
|= PTH_RWS_CV_CBIT
;
2581 } else if (ckwq
->kw_inqueue
!= 0 && ckwq
->kw_fakecount
== ckwq
->kw_inqueue
) {
2582 // only fake entries are present in the queue
2583 *updatebits
|= PTH_RWS_CV_PBIT
;
2588 psynch_zoneinit(void)
2590 kwq_zone
= (zone_t
)pthread_kern
->zinit(sizeof(struct ksyn_wait_queue
), 8192 * sizeof(struct ksyn_wait_queue
), 4096, "ksyn_wait_queue");
2591 kwe_zone
= (zone_t
)pthread_kern
->zinit(sizeof(struct ksyn_waitq_element
), 8192 * sizeof(struct ksyn_waitq_element
), 4096, "ksyn_waitq_element");