]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2012 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* Copyright (c) 1995-2005 Apple Computer, Inc. All Rights Reserved */ | |
29 | /* | |
30 | * pthread_synch.c | |
31 | */ | |
32 | ||
33 | #pragma mark - Front Matter | |
34 | ||
35 | #define _PTHREAD_CONDATTR_T | |
36 | #define _PTHREAD_COND_T | |
37 | #define _PTHREAD_MUTEXATTR_T | |
38 | #define _PTHREAD_MUTEX_T | |
39 | #define _PTHREAD_RWLOCKATTR_T | |
40 | #define _PTHREAD_RWLOCK_T | |
41 | ||
42 | #undef pthread_mutexattr_t | |
43 | #undef pthread_mutex_t | |
44 | #undef pthread_condattr_t | |
45 | #undef pthread_cond_t | |
46 | #undef pthread_rwlockattr_t | |
47 | #undef pthread_rwlock_t | |
48 | ||
49 | #include <sys/param.h> | |
50 | #include <sys/queue.h> | |
51 | #include <sys/resourcevar.h> | |
52 | //#include <sys/proc_internal.h> | |
53 | #include <sys/kauth.h> | |
54 | #include <sys/systm.h> | |
55 | #include <sys/timeb.h> | |
56 | #include <sys/times.h> | |
57 | #include <sys/acct.h> | |
58 | #include <sys/kernel.h> | |
59 | #include <sys/wait.h> | |
60 | #include <sys/signalvar.h> | |
61 | #include <sys/sysctl.h> | |
62 | #include <sys/syslog.h> | |
63 | #include <sys/stat.h> | |
64 | #include <sys/lock.h> | |
65 | #include <sys/kdebug.h> | |
66 | //#include <sys/sysproto.h> | |
67 | #include <sys/vm.h> | |
68 | #include <sys/user.h> /* for coredump */ | |
69 | #include <sys/proc_info.h> /* for fill_procworkqueue */ | |
70 | ||
71 | #include <mach/mach_port.h> | |
72 | #include <mach/mach_types.h> | |
73 | #include <mach/semaphore.h> | |
74 | #include <mach/sync_policy.h> | |
75 | #include <mach/task.h> | |
76 | #include <mach/vm_prot.h> | |
77 | #include <kern/kern_types.h> | |
78 | #include <kern/task.h> | |
79 | #include <kern/clock.h> | |
80 | #include <mach/kern_return.h> | |
81 | #include <kern/thread.h> | |
82 | #include <kern/sched_prim.h> | |
83 | #include <kern/kalloc.h> | |
84 | #include <kern/sched_prim.h> /* for thread_exception_return */ | |
85 | #include <kern/processor.h> | |
86 | #include <kern/assert.h> | |
87 | #include <mach/mach_vm.h> | |
88 | #include <mach/mach_param.h> | |
89 | #include <mach/thread_status.h> | |
90 | #include <mach/thread_policy.h> | |
91 | #include <mach/message.h> | |
92 | #include <mach/port.h> | |
93 | //#include <vm/vm_protos.h> | |
94 | #include <vm/vm_fault.h> | |
95 | #include <vm/vm_map.h> | |
96 | #include <mach/thread_act.h> /* for thread_resume */ | |
97 | #include <machine/machine_routines.h> | |
98 | #include <mach/shared_region.h> | |
99 | ||
100 | #include <libkern/OSAtomic.h> | |
101 | ||
102 | #include <sys/pthread_shims.h> | |
103 | #include "kern_internal.h" | |
104 | ||
105 | #if DEBUG | |
106 | #define kevent_qos_internal kevent_qos_internal_stub | |
107 | static int kevent_qos_internal_stub(__unused struct proc *p, __unused int fd, | |
108 | __unused user_addr_t changelist, __unused int nchanges, | |
109 | __unused user_addr_t eventlist, __unused int nevents, | |
110 | __unused user_addr_t data_out, user_size_t *data_available, | |
111 | __unused unsigned int flags, int32_t *retval){ | |
112 | if (data_available){ | |
113 | static int i = 0; | |
114 | switch (i++ % 4) { | |
115 | case 0: | |
116 | case 2: | |
117 | *data_available = *data_available / 2; | |
118 | *retval = 4; | |
119 | break; | |
120 | case 1: | |
121 | *data_available = 0; | |
122 | *retval = 4; | |
123 | break; | |
124 | case 3: | |
125 | *retval = 0; | |
126 | break; | |
127 | } | |
128 | } else { | |
129 | *retval = 0; | |
130 | } | |
131 | return 0; | |
132 | } | |
133 | #endif /* DEBUG */ | |
134 | ||
135 | uint32_t pthread_debug_tracing = 1; | |
136 | ||
137 | SYSCTL_INT(_kern, OID_AUTO, pthread_debug_tracing, CTLFLAG_RW | CTLFLAG_LOCKED, | |
138 | &pthread_debug_tracing, 0, "") | |
139 | ||
140 | // XXX: Dirty import for sys/signarvar.h that's wrapped in BSD_KERNEL_PRIVATE | |
141 | #define sigcantmask (sigmask(SIGKILL) | sigmask(SIGSTOP)) | |
142 | ||
143 | lck_grp_attr_t *pthread_lck_grp_attr; | |
144 | lck_grp_t *pthread_lck_grp; | |
145 | lck_attr_t *pthread_lck_attr; | |
146 | ||
147 | extern void thread_set_cthreadself(thread_t thread, uint64_t pself, int isLP64); | |
148 | extern void workqueue_thread_yielded(void); | |
149 | ||
150 | enum run_nextreq_mode {RUN_NEXTREQ_DEFAULT, RUN_NEXTREQ_OVERCOMMIT, RUN_NEXTREQ_DEFERRED_OVERCOMMIT, RUN_NEXTREQ_UNCONSTRAINED, RUN_NEXTREQ_EVENT_MANAGER}; | |
151 | static boolean_t workqueue_run_nextreq(proc_t p, struct workqueue *wq, thread_t th, enum run_nextreq_mode mode, pthread_priority_t oc_prio); | |
152 | ||
153 | static boolean_t workqueue_run_one(proc_t p, struct workqueue *wq, boolean_t overcommit, pthread_priority_t priority); | |
154 | ||
155 | static void wq_runreq(proc_t p, pthread_priority_t priority, thread_t th, struct threadlist *tl, | |
156 | int reuse_thread, int wake_thread, int return_directly); | |
157 | ||
158 | static int _setup_wqthread(proc_t p, thread_t th, pthread_priority_t priority, int reuse_thread, struct threadlist *tl); | |
159 | ||
160 | static void wq_unpark_continue(void); | |
161 | static void wq_unsuspend_continue(void); | |
162 | ||
163 | static boolean_t workqueue_addnewthread(struct workqueue *wq, boolean_t ignore_constrained_thread_limit); | |
164 | static void workqueue_removethread(struct threadlist *tl, int fromexit); | |
165 | static void workqueue_lock_spin(proc_t); | |
166 | static void workqueue_unlock(proc_t); | |
167 | ||
168 | static boolean_t may_start_constrained_thread(struct workqueue *wq, uint32_t at_priclass, uint32_t my_priclass, boolean_t *start_timer); | |
169 | ||
170 | static mach_vm_offset_t stackaddr_hint(proc_t p); | |
171 | ||
172 | int proc_settargetconc(pid_t pid, int queuenum, int32_t targetconc); | |
173 | int proc_setalltargetconc(pid_t pid, int32_t * targetconcp); | |
174 | ||
175 | #define WQ_MAXPRI_MIN 0 /* low prio queue num */ | |
176 | #define WQ_MAXPRI_MAX 2 /* max prio queuenum */ | |
177 | #define WQ_PRI_NUM 3 /* number of prio work queues */ | |
178 | ||
179 | #define C_32_STK_ALIGN 16 | |
180 | #define C_64_STK_ALIGN 16 | |
181 | #define C_64_REDZONE_LEN 128 | |
182 | ||
183 | #define PTHREAD_T_OFFSET 0 | |
184 | ||
185 | /* | |
186 | * Flags filed passed to bsdthread_create and back in pthread_start | |
187 | 31 <---------------------------------> 0 | |
188 | _________________________________________ | |
189 | | flags(8) | policy(8) | importance(16) | | |
190 | ----------------------------------------- | |
191 | */ | |
192 | ||
193 | #define PTHREAD_START_CUSTOM 0x01000000 | |
194 | #define PTHREAD_START_SETSCHED 0x02000000 | |
195 | #define PTHREAD_START_DETACHED 0x04000000 | |
196 | #define PTHREAD_START_QOSCLASS 0x08000000 | |
197 | #define PTHREAD_START_QOSCLASS_MASK 0xffffff | |
198 | #define PTHREAD_START_POLICY_BITSHIFT 16 | |
199 | #define PTHREAD_START_POLICY_MASK 0xff | |
200 | #define PTHREAD_START_IMPORTANCE_MASK 0xffff | |
201 | ||
202 | #define SCHED_OTHER POLICY_TIMESHARE | |
203 | #define SCHED_FIFO POLICY_FIFO | |
204 | #define SCHED_RR POLICY_RR | |
205 | ||
206 | #define BASEPRI_DEFAULT 31 | |
207 | ||
208 | #pragma mark - Process/Thread Setup/Teardown syscalls | |
209 | ||
210 | static mach_vm_offset_t stackaddr_hint(proc_t p __unused){ | |
211 | mach_vm_offset_t stackaddr; | |
212 | #if defined(__i386__) || defined(__x86_64__) | |
213 | if (proc_is64bit(p)){ | |
214 | // Above nanomalloc range (see NANOZONE_SIGNATURE) | |
215 | stackaddr = 0x700000000000; | |
216 | } else { | |
217 | stackaddr = SHARED_REGION_BASE_I386 + SHARED_REGION_SIZE_I386; | |
218 | } | |
219 | #elif defined(__arm__) || defined(__arm64__) | |
220 | if (proc_is64bit(p)){ | |
221 | // 64 stacks below nanomalloc (see NANOZONE_SIGNATURE) | |
222 | stackaddr = 0x170000000 - 64 * PTH_DEFAULT_STACKSIZE; | |
223 | #if defined(__arm__) | |
224 | } else if (pthread_kern->map_is_1gb(get_task_map(pthread_kern->proc_get_task(p)))){ | |
225 | stackaddr = SHARED_REGION_BASE_ARM - 32 * PTH_DEFAULT_STACKSIZE; | |
226 | #endif | |
227 | } else { | |
228 | stackaddr = SHARED_REGION_BASE_ARM + SHARED_REGION_SIZE_ARM; | |
229 | } | |
230 | #else | |
231 | #error Need to define a stack address hint for this architecture | |
232 | #endif | |
233 | return stackaddr; | |
234 | } | |
235 | ||
236 | /** | |
237 | * bsdthread_create system call. Used by pthread_create. | |
238 | */ | |
239 | int | |
240 | _bsdthread_create(struct proc *p, user_addr_t user_func, user_addr_t user_funcarg, user_addr_t user_stack, user_addr_t user_pthread, uint32_t flags, user_addr_t *retval) | |
241 | { | |
242 | kern_return_t kret; | |
243 | void * sright; | |
244 | int error = 0; | |
245 | int allocated = 0; | |
246 | mach_vm_offset_t stackaddr; | |
247 | mach_vm_size_t th_allocsize = 0; | |
248 | mach_vm_size_t th_guardsize; | |
249 | mach_vm_offset_t th_stack; | |
250 | mach_vm_offset_t th_pthread; | |
251 | mach_port_name_t th_thport; | |
252 | thread_t th; | |
253 | vm_map_t vmap = pthread_kern->current_map(); | |
254 | task_t ctask = current_task(); | |
255 | unsigned int policy, importance; | |
256 | ||
257 | int isLP64 = 0; | |
258 | ||
259 | if (pthread_kern->proc_get_register(p) == 0) { | |
260 | return EINVAL; | |
261 | } | |
262 | ||
263 | PTHREAD_TRACE(TRACE_pthread_thread_create | DBG_FUNC_START, flags, 0, 0, 0, 0); | |
264 | ||
265 | isLP64 = proc_is64bit(p); | |
266 | th_guardsize = vm_map_page_size(vmap); | |
267 | ||
268 | stackaddr = stackaddr_hint(p); | |
269 | kret = pthread_kern->thread_create(ctask, &th); | |
270 | if (kret != KERN_SUCCESS) | |
271 | return(ENOMEM); | |
272 | thread_reference(th); | |
273 | ||
274 | sright = (void *)pthread_kern->convert_thread_to_port(th); | |
275 | th_thport = pthread_kern->ipc_port_copyout_send(sright, pthread_kern->task_get_ipcspace(ctask)); | |
276 | ||
277 | if ((flags & PTHREAD_START_CUSTOM) == 0) { | |
278 | mach_vm_size_t pthread_size = | |
279 | vm_map_round_page_mask(pthread_kern->proc_get_pthsize(p) + PTHREAD_T_OFFSET, vm_map_page_mask(vmap)); | |
280 | th_allocsize = th_guardsize + user_stack + pthread_size; | |
281 | user_stack += PTHREAD_T_OFFSET; | |
282 | ||
283 | kret = mach_vm_map(vmap, &stackaddr, | |
284 | th_allocsize, | |
285 | page_size-1, | |
286 | VM_MAKE_TAG(VM_MEMORY_STACK)| VM_FLAGS_ANYWHERE , NULL, | |
287 | 0, FALSE, VM_PROT_DEFAULT, VM_PROT_ALL, | |
288 | VM_INHERIT_DEFAULT); | |
289 | if (kret != KERN_SUCCESS){ | |
290 | kret = mach_vm_allocate(vmap, | |
291 | &stackaddr, th_allocsize, | |
292 | VM_MAKE_TAG(VM_MEMORY_STACK)| VM_FLAGS_ANYWHERE); | |
293 | } | |
294 | if (kret != KERN_SUCCESS) { | |
295 | error = ENOMEM; | |
296 | goto out; | |
297 | } | |
298 | ||
299 | PTHREAD_TRACE(TRACE_pthread_thread_create|DBG_FUNC_NONE, th_allocsize, stackaddr, 0, 2, 0); | |
300 | ||
301 | allocated = 1; | |
302 | /* | |
303 | * The guard page is at the lowest address | |
304 | * The stack base is the highest address | |
305 | */ | |
306 | kret = mach_vm_protect(vmap, stackaddr, th_guardsize, FALSE, VM_PROT_NONE); | |
307 | ||
308 | if (kret != KERN_SUCCESS) { | |
309 | error = ENOMEM; | |
310 | goto out1; | |
311 | } | |
312 | ||
313 | th_pthread = stackaddr + th_guardsize + user_stack; | |
314 | th_stack = th_pthread; | |
315 | ||
316 | /* | |
317 | * Pre-fault the first page of the new thread's stack and the page that will | |
318 | * contain the pthread_t structure. | |
319 | */ | |
320 | if (vm_map_trunc_page_mask((vm_map_offset_t)(th_stack - C_64_REDZONE_LEN), vm_map_page_mask(vmap)) != | |
321 | vm_map_trunc_page_mask((vm_map_offset_t)th_pthread, vm_map_page_mask(vmap))){ | |
322 | vm_fault( vmap, | |
323 | vm_map_trunc_page_mask((vm_map_offset_t)(th_stack - C_64_REDZONE_LEN), vm_map_page_mask(vmap)), | |
324 | VM_PROT_READ | VM_PROT_WRITE, | |
325 | FALSE, | |
326 | THREAD_UNINT, NULL, 0); | |
327 | } | |
328 | ||
329 | vm_fault( vmap, | |
330 | vm_map_trunc_page_mask((vm_map_offset_t)th_pthread, vm_map_page_mask(vmap)), | |
331 | VM_PROT_READ | VM_PROT_WRITE, | |
332 | FALSE, | |
333 | THREAD_UNINT, NULL, 0); | |
334 | ||
335 | } else { | |
336 | th_stack = user_stack; | |
337 | th_pthread = user_pthread; | |
338 | ||
339 | PTHREAD_TRACE(TRACE_pthread_thread_create|DBG_FUNC_NONE, 0, 0, 0, 3, 0); | |
340 | } | |
341 | ||
342 | #if defined(__i386__) || defined(__x86_64__) | |
343 | /* | |
344 | * Set up i386 registers & function call. | |
345 | */ | |
346 | if (isLP64 == 0) { | |
347 | x86_thread_state32_t state = { | |
348 | .eip = (unsigned int)pthread_kern->proc_get_threadstart(p), | |
349 | .eax = (unsigned int)th_pthread, | |
350 | .ebx = (unsigned int)th_thport, | |
351 | .ecx = (unsigned int)user_func, | |
352 | .edx = (unsigned int)user_funcarg, | |
353 | .edi = (unsigned int)user_stack, | |
354 | .esi = (unsigned int)flags, | |
355 | /* | |
356 | * set stack pointer | |
357 | */ | |
358 | .esp = (int)((vm_offset_t)(th_stack-C_32_STK_ALIGN)) | |
359 | }; | |
360 | ||
361 | error = pthread_kern->thread_set_wq_state32(th, (thread_state_t)&state); | |
362 | if (error != KERN_SUCCESS) { | |
363 | error = EINVAL; | |
364 | goto out; | |
365 | } | |
366 | } else { | |
367 | x86_thread_state64_t state64 = { | |
368 | .rip = (uint64_t)pthread_kern->proc_get_threadstart(p), | |
369 | .rdi = (uint64_t)th_pthread, | |
370 | .rsi = (uint64_t)(th_thport), | |
371 | .rdx = (uint64_t)user_func, | |
372 | .rcx = (uint64_t)user_funcarg, | |
373 | .r8 = (uint64_t)user_stack, | |
374 | .r9 = (uint64_t)flags, | |
375 | /* | |
376 | * set stack pointer aligned to 16 byte boundary | |
377 | */ | |
378 | .rsp = (uint64_t)(th_stack - C_64_REDZONE_LEN) | |
379 | }; | |
380 | ||
381 | error = pthread_kern->thread_set_wq_state64(th, (thread_state_t)&state64); | |
382 | if (error != KERN_SUCCESS) { | |
383 | error = EINVAL; | |
384 | goto out; | |
385 | } | |
386 | ||
387 | } | |
388 | #elif defined(__arm__) | |
389 | arm_thread_state_t state = { | |
390 | .pc = (int)pthread_kern->proc_get_threadstart(p), | |
391 | .r[0] = (unsigned int)th_pthread, | |
392 | .r[1] = (unsigned int)th_thport, | |
393 | .r[2] = (unsigned int)user_func, | |
394 | .r[3] = (unsigned int)user_funcarg, | |
395 | .r[4] = (unsigned int)user_stack, | |
396 | .r[5] = (unsigned int)flags, | |
397 | ||
398 | /* Set r7 & lr to 0 for better back tracing */ | |
399 | .r[7] = 0, | |
400 | .lr = 0, | |
401 | ||
402 | /* | |
403 | * set stack pointer | |
404 | */ | |
405 | .sp = (int)((vm_offset_t)(th_stack-C_32_STK_ALIGN)) | |
406 | }; | |
407 | ||
408 | (void) pthread_kern->thread_set_wq_state32(th, (thread_state_t)&state); | |
409 | ||
410 | #else | |
411 | #error bsdthread_create not defined for this architecture | |
412 | #endif | |
413 | ||
414 | if ((flags & PTHREAD_START_SETSCHED) != 0) { | |
415 | /* Set scheduling parameters if needed */ | |
416 | thread_extended_policy_data_t extinfo; | |
417 | thread_precedence_policy_data_t precedinfo; | |
418 | ||
419 | importance = (flags & PTHREAD_START_IMPORTANCE_MASK); | |
420 | policy = (flags >> PTHREAD_START_POLICY_BITSHIFT) & PTHREAD_START_POLICY_MASK; | |
421 | ||
422 | if (policy == SCHED_OTHER) { | |
423 | extinfo.timeshare = 1; | |
424 | } else { | |
425 | extinfo.timeshare = 0; | |
426 | } | |
427 | ||
428 | thread_policy_set(th, THREAD_EXTENDED_POLICY, (thread_policy_t)&extinfo, THREAD_EXTENDED_POLICY_COUNT); | |
429 | ||
430 | precedinfo.importance = (importance - BASEPRI_DEFAULT); | |
431 | thread_policy_set(th, THREAD_PRECEDENCE_POLICY, (thread_policy_t)&precedinfo, THREAD_PRECEDENCE_POLICY_COUNT); | |
432 | } else if ((flags & PTHREAD_START_QOSCLASS) != 0) { | |
433 | /* Set thread QoS class if requested. */ | |
434 | pthread_priority_t priority = (pthread_priority_t)(flags & PTHREAD_START_QOSCLASS_MASK); | |
435 | ||
436 | thread_qos_policy_data_t qos; | |
437 | qos.qos_tier = pthread_priority_get_qos_class(priority); | |
438 | qos.tier_importance = (qos.qos_tier == QOS_CLASS_UNSPECIFIED) ? 0 : | |
439 | _pthread_priority_get_relpri(priority); | |
440 | ||
441 | pthread_kern->thread_policy_set_internal(th, THREAD_QOS_POLICY, (thread_policy_t)&qos, THREAD_QOS_POLICY_COUNT); | |
442 | } | |
443 | ||
444 | kret = pthread_kern->thread_resume(th); | |
445 | if (kret != KERN_SUCCESS) { | |
446 | error = EINVAL; | |
447 | goto out1; | |
448 | } | |
449 | thread_deallocate(th); /* drop the creator reference */ | |
450 | ||
451 | PTHREAD_TRACE(TRACE_pthread_thread_create|DBG_FUNC_END, error, th_pthread, 0, 0, 0); | |
452 | ||
453 | // cast required as mach_vm_offset_t is always 64 bits even on 32-bit platforms | |
454 | *retval = (user_addr_t)th_pthread; | |
455 | ||
456 | return(0); | |
457 | ||
458 | out1: | |
459 | if (allocated != 0) { | |
460 | (void)mach_vm_deallocate(vmap, stackaddr, th_allocsize); | |
461 | } | |
462 | out: | |
463 | (void)pthread_kern->mach_port_deallocate(pthread_kern->task_get_ipcspace(ctask), th_thport); | |
464 | (void)thread_terminate(th); | |
465 | (void)thread_deallocate(th); | |
466 | return(error); | |
467 | } | |
468 | ||
469 | /** | |
470 | * bsdthread_terminate system call. Used by pthread_terminate | |
471 | */ | |
472 | int | |
473 | _bsdthread_terminate(__unused struct proc *p, | |
474 | user_addr_t stackaddr, | |
475 | size_t size, | |
476 | uint32_t kthport, | |
477 | uint32_t sem, | |
478 | __unused int32_t *retval) | |
479 | { | |
480 | mach_vm_offset_t freeaddr; | |
481 | mach_vm_size_t freesize; | |
482 | kern_return_t kret; | |
483 | ||
484 | freeaddr = (mach_vm_offset_t)stackaddr; | |
485 | freesize = size; | |
486 | ||
487 | PTHREAD_TRACE(TRACE_pthread_thread_terminate|DBG_FUNC_START, freeaddr, freesize, kthport, 0xff, 0); | |
488 | ||
489 | if ((freesize != (mach_vm_size_t)0) && (freeaddr != (mach_vm_offset_t)0)) { | |
490 | kret = mach_vm_deallocate(pthread_kern->current_map(), freeaddr, freesize); | |
491 | if (kret != KERN_SUCCESS) { | |
492 | PTHREAD_TRACE(TRACE_pthread_thread_terminate|DBG_FUNC_END, kret, 0, 0, 0, 0); | |
493 | return(EINVAL); | |
494 | } | |
495 | } | |
496 | ||
497 | (void) thread_terminate(current_thread()); | |
498 | if (sem != MACH_PORT_NULL) { | |
499 | kret = pthread_kern->semaphore_signal_internal_trap(sem); | |
500 | if (kret != KERN_SUCCESS) { | |
501 | PTHREAD_TRACE(TRACE_pthread_thread_terminate|DBG_FUNC_END, kret, 0, 0, 0, 0); | |
502 | return(EINVAL); | |
503 | } | |
504 | } | |
505 | ||
506 | if (kthport != MACH_PORT_NULL) { | |
507 | pthread_kern->mach_port_deallocate(pthread_kern->task_get_ipcspace(current_task()), kthport); | |
508 | } | |
509 | ||
510 | PTHREAD_TRACE(TRACE_pthread_thread_terminate|DBG_FUNC_END, 0, 0, 0, 0, 0); | |
511 | ||
512 | pthread_kern->thread_exception_return(); | |
513 | panic("bsdthread_terminate: still running\n"); | |
514 | ||
515 | PTHREAD_TRACE(TRACE_pthread_thread_terminate|DBG_FUNC_END, 0, 0xff, 0, 0, 0); | |
516 | ||
517 | return(0); | |
518 | } | |
519 | ||
520 | /** | |
521 | * bsdthread_register system call. Performs per-process setup. Responsible for | |
522 | * returning capabilitiy bits to userspace and receiving userspace function addresses. | |
523 | */ | |
524 | int | |
525 | _bsdthread_register(struct proc *p, | |
526 | user_addr_t threadstart, | |
527 | user_addr_t wqthread, | |
528 | int pthsize, | |
529 | user_addr_t pthread_init_data, | |
530 | user_addr_t targetconc_ptr, | |
531 | uint64_t dispatchqueue_offset, | |
532 | int32_t *retval) | |
533 | { | |
534 | /* prevent multiple registrations */ | |
535 | if (pthread_kern->proc_get_register(p) != 0) { | |
536 | return(EINVAL); | |
537 | } | |
538 | /* syscall randomizer test can pass bogus values */ | |
539 | if (pthsize < 0 || pthsize > MAX_PTHREAD_SIZE) { | |
540 | return(EINVAL); | |
541 | } | |
542 | pthread_kern->proc_set_threadstart(p, threadstart); | |
543 | pthread_kern->proc_set_wqthread(p, wqthread); | |
544 | pthread_kern->proc_set_pthsize(p, pthsize); | |
545 | pthread_kern->proc_set_register(p); | |
546 | ||
547 | /* if we have pthread_init_data, then we use that and target_concptr (which is an offset) get data. */ | |
548 | if (pthread_init_data != 0) { | |
549 | thread_qos_policy_data_t qos; | |
550 | ||
551 | struct _pthread_registration_data data; | |
552 | size_t pthread_init_sz = MIN(sizeof(struct _pthread_registration_data), (size_t)targetconc_ptr); | |
553 | ||
554 | kern_return_t kr = copyin(pthread_init_data, &data, pthread_init_sz); | |
555 | if (kr != KERN_SUCCESS) { | |
556 | return EINVAL; | |
557 | } | |
558 | ||
559 | /* Incoming data from the data structure */ | |
560 | pthread_kern->proc_set_dispatchqueue_offset(p, data.dispatch_queue_offset); | |
561 | ||
562 | /* Outgoing data that userspace expects as a reply */ | |
563 | if (pthread_kern->qos_main_thread_active()) { | |
564 | mach_msg_type_number_t nqos = THREAD_QOS_POLICY_COUNT; | |
565 | boolean_t gd = FALSE; | |
566 | ||
567 | kr = pthread_kern->thread_policy_get(current_thread(), THREAD_QOS_POLICY, (thread_policy_t)&qos, &nqos, &gd); | |
568 | if (kr != KERN_SUCCESS || qos.qos_tier == THREAD_QOS_UNSPECIFIED) { | |
569 | /* Unspecified threads means the kernel wants us to impose legacy upon the thread. */ | |
570 | qos.qos_tier = THREAD_QOS_LEGACY; | |
571 | qos.tier_importance = 0; | |
572 | ||
573 | kr = pthread_kern->thread_policy_set_internal(current_thread(), THREAD_QOS_POLICY, (thread_policy_t)&qos, THREAD_QOS_POLICY_COUNT); | |
574 | } | |
575 | ||
576 | if (kr == KERN_SUCCESS) { | |
577 | data.main_qos = pthread_qos_class_get_priority(qos.qos_tier); | |
578 | } else { | |
579 | data.main_qos = _pthread_priority_make_newest(QOS_CLASS_UNSPECIFIED, 0, 0); | |
580 | } | |
581 | } else { | |
582 | data.main_qos = _pthread_priority_make_newest(QOS_CLASS_UNSPECIFIED, 0, 0); | |
583 | } | |
584 | ||
585 | kr = copyout(&data, pthread_init_data, pthread_init_sz); | |
586 | if (kr != KERN_SUCCESS) { | |
587 | return EINVAL; | |
588 | } | |
589 | } else { | |
590 | pthread_kern->proc_set_dispatchqueue_offset(p, dispatchqueue_offset); | |
591 | pthread_kern->proc_set_targconc(p, targetconc_ptr); | |
592 | } | |
593 | ||
594 | /* return the supported feature set as the return value. */ | |
595 | *retval = PTHREAD_FEATURE_SUPPORTED; | |
596 | ||
597 | return(0); | |
598 | } | |
599 | ||
600 | #pragma mark - QoS Manipulation | |
601 | ||
602 | int | |
603 | _bsdthread_ctl_set_qos(struct proc *p, user_addr_t __unused cmd, mach_port_name_t kport, user_addr_t tsd_priority_addr, user_addr_t arg3, int *retval) | |
604 | { | |
605 | kern_return_t kr; | |
606 | thread_t th; | |
607 | ||
608 | pthread_priority_t priority; | |
609 | ||
610 | /* Unused parameters must be zero. */ | |
611 | if (arg3 != 0) { | |
612 | return EINVAL; | |
613 | } | |
614 | ||
615 | /* QoS is stored in a given slot in the pthread TSD. We need to copy that in and set our QoS based on it. */ | |
616 | if (proc_is64bit(p)) { | |
617 | uint64_t v; | |
618 | kr = copyin(tsd_priority_addr, &v, sizeof(v)); | |
619 | if (kr != KERN_SUCCESS) { | |
620 | return kr; | |
621 | } | |
622 | priority = (int)(v & 0xffffffff); | |
623 | } else { | |
624 | uint32_t v; | |
625 | kr = copyin(tsd_priority_addr, &v, sizeof(v)); | |
626 | if (kr != KERN_SUCCESS) { | |
627 | return kr; | |
628 | } | |
629 | priority = v; | |
630 | } | |
631 | ||
632 | if ((th = port_name_to_thread(kport)) == THREAD_NULL) { | |
633 | return ESRCH; | |
634 | } | |
635 | ||
636 | /* <rdar://problem/16211829> Disable pthread_set_qos_class_np() on threads other than pthread_self */ | |
637 | if (th != current_thread()) { | |
638 | thread_deallocate(th); | |
639 | return EPERM; | |
640 | } | |
641 | ||
642 | int rv = _bsdthread_ctl_set_self(p, 0, priority, 0, _PTHREAD_SET_SELF_QOS_FLAG, retval); | |
643 | ||
644 | /* Static param the thread, we just set QoS on it, so its stuck in QoS land now. */ | |
645 | /* pthread_kern->thread_static_param(th, TRUE); */ // see <rdar://problem/16433744>, for details | |
646 | ||
647 | thread_deallocate(th); | |
648 | ||
649 | return rv; | |
650 | } | |
651 | ||
652 | static inline struct threadlist * | |
653 | util_get_thread_threadlist_entry(thread_t th) | |
654 | { | |
655 | struct uthread *uth = pthread_kern->get_bsdthread_info(th); | |
656 | if (uth) { | |
657 | struct threadlist *tl = pthread_kern->uthread_get_threadlist(uth); | |
658 | return tl; | |
659 | } | |
660 | return NULL; | |
661 | } | |
662 | ||
663 | static inline void | |
664 | wq_thread_override_reset(thread_t th, user_addr_t resource) | |
665 | { | |
666 | struct uthread *uth = pthread_kern->get_bsdthread_info(th); | |
667 | struct threadlist *tl = pthread_kern->uthread_get_threadlist(uth); | |
668 | ||
669 | if (tl) { | |
670 | /* | |
671 | * Drop all outstanding overrides on this thread, done outside the wq lock | |
672 | * because proc_usynch_thread_qos_remove_override_for_resource takes a spinlock that | |
673 | * could cause us to panic. | |
674 | */ | |
675 | PTHREAD_TRACE(TRACE_wq_override_reset | DBG_FUNC_NONE, tl->th_workq, 0, 0, 0, 0); | |
676 | ||
677 | pthread_kern->proc_usynch_thread_qos_reset_override_for_resource(current_task(), uth, 0, resource, THREAD_QOS_OVERRIDE_TYPE_DISPATCH_ASYNCHRONOUS_OVERRIDE); | |
678 | } | |
679 | } | |
680 | ||
681 | int | |
682 | _bsdthread_ctl_set_self(struct proc *p, user_addr_t __unused cmd, pthread_priority_t priority, mach_port_name_t voucher, _pthread_set_flags_t flags, int __unused *retval) | |
683 | { | |
684 | thread_qos_policy_data_t qos; | |
685 | mach_msg_type_number_t nqos = THREAD_QOS_POLICY_COUNT; | |
686 | boolean_t gd = FALSE; | |
687 | ||
688 | kern_return_t kr; | |
689 | int qos_rv = 0, voucher_rv = 0, fixedpri_rv = 0; | |
690 | ||
691 | if ((flags & _PTHREAD_SET_SELF_QOS_FLAG) != 0) { | |
692 | kr = pthread_kern->thread_policy_get(current_thread(), THREAD_QOS_POLICY, (thread_policy_t)&qos, &nqos, &gd); | |
693 | if (kr != KERN_SUCCESS) { | |
694 | qos_rv = EINVAL; | |
695 | goto voucher; | |
696 | } | |
697 | ||
698 | /* If we have main-thread QoS then we don't allow a thread to come out of QOS_CLASS_UNSPECIFIED. */ | |
699 | if (pthread_kern->qos_main_thread_active() && qos.qos_tier == THREAD_QOS_UNSPECIFIED) { | |
700 | qos_rv = EPERM; | |
701 | goto voucher; | |
702 | } | |
703 | ||
704 | /* Get the work queue for tracing, also the threadlist for bucket manipluation. */ | |
705 | struct workqueue *wq = NULL; | |
706 | struct threadlist *tl = util_get_thread_threadlist_entry(current_thread()); | |
707 | if (tl) { | |
708 | wq = tl->th_workq; | |
709 | } | |
710 | ||
711 | PTHREAD_TRACE(TRACE_pthread_set_qos_self | DBG_FUNC_START, wq, qos.qos_tier, qos.tier_importance, 0, 0); | |
712 | ||
713 | qos.qos_tier = pthread_priority_get_qos_class(priority); | |
714 | qos.tier_importance = (qos.qos_tier == QOS_CLASS_UNSPECIFIED) ? 0 : _pthread_priority_get_relpri(priority); | |
715 | ||
716 | kr = pthread_kern->thread_policy_set_internal(current_thread(), THREAD_QOS_POLICY, (thread_policy_t)&qos, THREAD_QOS_POLICY_COUNT); | |
717 | if (kr != KERN_SUCCESS) { | |
718 | qos_rv = EINVAL; | |
719 | goto voucher; | |
720 | } | |
721 | ||
722 | /* If we're a workqueue, the threadlist item priority needs adjusting, along with the bucket we were running in. */ | |
723 | if (tl) { | |
724 | workqueue_lock_spin(p); | |
725 | ||
726 | /* Fix up counters. */ | |
727 | uint8_t old_bucket = tl->th_priority; | |
728 | uint8_t new_bucket = pthread_priority_get_class_index(priority); | |
729 | ||
730 | uint32_t old_active = OSAddAtomic(-1, &wq->wq_thactive_count[old_bucket]); | |
731 | OSAddAtomic(1, &wq->wq_thactive_count[new_bucket]); | |
732 | ||
733 | wq->wq_thscheduled_count[old_bucket]--; | |
734 | wq->wq_thscheduled_count[new_bucket]++; | |
735 | ||
736 | tl->th_priority = new_bucket; | |
737 | ||
738 | /* If we were at the ceiling of non-overcommitted threads for a given bucket, we have to | |
739 | * reevaluate whether we should start more work. | |
740 | */ | |
741 | if (old_active == wq->wq_reqconc[old_bucket]) { | |
742 | /* workqueue_run_nextreq will drop the workqueue lock in all exit paths. */ | |
743 | (void)workqueue_run_nextreq(p, wq, THREAD_NULL, RUN_NEXTREQ_DEFAULT, 0); | |
744 | } else { | |
745 | workqueue_unlock(p); | |
746 | } | |
747 | } | |
748 | ||
749 | PTHREAD_TRACE(TRACE_pthread_set_qos_self | DBG_FUNC_END, wq, qos.qos_tier, qos.tier_importance, 0, 0); | |
750 | } | |
751 | ||
752 | voucher: | |
753 | if ((flags & _PTHREAD_SET_SELF_VOUCHER_FLAG) != 0) { | |
754 | kr = pthread_kern->thread_set_voucher_name(voucher); | |
755 | if (kr != KERN_SUCCESS) { | |
756 | voucher_rv = ENOENT; | |
757 | goto fixedpri; | |
758 | } | |
759 | } | |
760 | ||
761 | fixedpri: | |
762 | if ((flags & _PTHREAD_SET_SELF_FIXEDPRIORITY_FLAG) != 0) { | |
763 | thread_extended_policy_data_t extpol = {.timeshare = 0}; | |
764 | thread_t thread = current_thread(); | |
765 | ||
766 | struct threadlist *tl = util_get_thread_threadlist_entry(thread); | |
767 | if (tl) { | |
768 | /* Not allowed on workqueue threads */ | |
769 | fixedpri_rv = ENOTSUP; | |
770 | goto done; | |
771 | } | |
772 | ||
773 | kr = pthread_kern->thread_policy_set_internal(thread, THREAD_EXTENDED_POLICY, (thread_policy_t)&extpol, THREAD_EXTENDED_POLICY_COUNT); | |
774 | if (kr != KERN_SUCCESS) { | |
775 | fixedpri_rv = EINVAL; | |
776 | goto done; | |
777 | } | |
778 | } else if ((flags & _PTHREAD_SET_SELF_TIMESHARE_FLAG) != 0) { | |
779 | thread_extended_policy_data_t extpol = {.timeshare = 1}; | |
780 | thread_t thread = current_thread(); | |
781 | ||
782 | struct threadlist *tl = util_get_thread_threadlist_entry(thread); | |
783 | if (tl) { | |
784 | /* Not allowed on workqueue threads */ | |
785 | fixedpri_rv = ENOTSUP; | |
786 | goto done; | |
787 | } | |
788 | ||
789 | kr = pthread_kern->thread_policy_set_internal(thread, THREAD_EXTENDED_POLICY, (thread_policy_t)&extpol, THREAD_EXTENDED_POLICY_COUNT); | |
790 | if (kr != KERN_SUCCESS) { | |
791 | fixedpri_rv = EINVAL; | |
792 | goto done; | |
793 | } | |
794 | } | |
795 | ||
796 | done: | |
797 | if (qos_rv && voucher_rv) { | |
798 | /* Both failed, give that a unique error. */ | |
799 | return EBADMSG; | |
800 | } | |
801 | ||
802 | if (qos_rv) { | |
803 | return qos_rv; | |
804 | } | |
805 | ||
806 | if (voucher_rv) { | |
807 | return voucher_rv; | |
808 | } | |
809 | ||
810 | if (fixedpri_rv) { | |
811 | return fixedpri_rv; | |
812 | } | |
813 | ||
814 | return 0; | |
815 | } | |
816 | ||
817 | int | |
818 | _bsdthread_ctl_qos_override_start(struct proc __unused *p, user_addr_t __unused cmd, mach_port_name_t kport, pthread_priority_t priority, user_addr_t resource, int __unused *retval) | |
819 | { | |
820 | thread_t th; | |
821 | int rv = 0; | |
822 | ||
823 | if ((th = port_name_to_thread(kport)) == THREAD_NULL) { | |
824 | return ESRCH; | |
825 | } | |
826 | ||
827 | struct uthread *uth = pthread_kern->get_bsdthread_info(th); | |
828 | int override_qos = pthread_priority_get_qos_class(priority); | |
829 | ||
830 | struct threadlist *tl = util_get_thread_threadlist_entry(th); | |
831 | if (tl) { | |
832 | PTHREAD_TRACE(TRACE_wq_override_start | DBG_FUNC_NONE, tl->th_workq, thread_tid(th), 1, priority, 0); | |
833 | } | |
834 | ||
835 | /* The only failure case here is if we pass a tid and have it lookup the thread, we pass the uthread, so this all always succeeds. */ | |
836 | pthread_kern->proc_usynch_thread_qos_add_override_for_resource(current_task(), uth, 0, override_qos, TRUE, resource, THREAD_QOS_OVERRIDE_TYPE_PTHREAD_EXPLICIT_OVERRIDE); | |
837 | ||
838 | thread_deallocate(th); | |
839 | return rv; | |
840 | } | |
841 | ||
842 | int | |
843 | _bsdthread_ctl_qos_override_end(struct proc __unused *p, user_addr_t __unused cmd, mach_port_name_t kport, user_addr_t resource, user_addr_t arg3, int __unused *retval) | |
844 | { | |
845 | thread_t th; | |
846 | int rv = 0; | |
847 | ||
848 | if (arg3 != 0) { | |
849 | return EINVAL; | |
850 | } | |
851 | ||
852 | if ((th = port_name_to_thread(kport)) == THREAD_NULL) { | |
853 | return ESRCH; | |
854 | } | |
855 | ||
856 | struct uthread *uth = pthread_kern->get_bsdthread_info(th); | |
857 | ||
858 | struct threadlist *tl = util_get_thread_threadlist_entry(th); | |
859 | if (tl) { | |
860 | PTHREAD_TRACE(TRACE_wq_override_end | DBG_FUNC_NONE, tl->th_workq, thread_tid(th), 0, 0, 0); | |
861 | } | |
862 | ||
863 | pthread_kern->proc_usynch_thread_qos_remove_override_for_resource(current_task(), uth, 0, resource, THREAD_QOS_OVERRIDE_TYPE_PTHREAD_EXPLICIT_OVERRIDE); | |
864 | ||
865 | thread_deallocate(th); | |
866 | return rv; | |
867 | } | |
868 | ||
869 | int | |
870 | _bsdthread_ctl_qos_override_dispatch(struct proc *p, user_addr_t cmd, mach_port_name_t kport, pthread_priority_t priority, user_addr_t arg3, int *retval) | |
871 | { | |
872 | if (arg3 != 0) { | |
873 | return EINVAL; | |
874 | } | |
875 | ||
876 | return _bsdthread_ctl_qos_dispatch_asynchronous_override_add(p, cmd, kport, priority, USER_ADDR_NULL, retval); | |
877 | } | |
878 | ||
879 | int | |
880 | _bsdthread_ctl_qos_dispatch_asynchronous_override_add(struct proc __unused *p, user_addr_t __unused cmd, mach_port_name_t kport, pthread_priority_t priority, user_addr_t resource, int __unused *retval) | |
881 | { | |
882 | thread_t th; | |
883 | int rv = 0; | |
884 | ||
885 | if ((th = port_name_to_thread(kport)) == THREAD_NULL) { | |
886 | return ESRCH; | |
887 | } | |
888 | ||
889 | struct uthread *uth = pthread_kern->get_bsdthread_info(th); | |
890 | int override_qos = pthread_priority_get_qos_class(priority); | |
891 | ||
892 | struct threadlist *tl = util_get_thread_threadlist_entry(th); | |
893 | if (!tl) { | |
894 | thread_deallocate(th); | |
895 | return EPERM; | |
896 | } | |
897 | ||
898 | PTHREAD_TRACE(TRACE_wq_override_dispatch | DBG_FUNC_NONE, tl->th_workq, thread_tid(th), 1, priority, 0); | |
899 | ||
900 | /* The only failure case here is if we pass a tid and have it lookup the thread, we pass the uthread, so this all always succeeds. */ | |
901 | pthread_kern->proc_usynch_thread_qos_add_override_for_resource(current_task(), uth, 0, override_qos, TRUE, resource, THREAD_QOS_OVERRIDE_TYPE_DISPATCH_ASYNCHRONOUS_OVERRIDE); | |
902 | ||
903 | thread_deallocate(th); | |
904 | return rv; | |
905 | } | |
906 | ||
907 | int | |
908 | _bsdthread_ctl_qos_override_reset(struct proc *p, user_addr_t cmd, user_addr_t arg1, user_addr_t arg2, user_addr_t arg3, int *retval) | |
909 | { | |
910 | if (arg1 != 0 || arg2 != 0 || arg3 != 0) { | |
911 | return EINVAL; | |
912 | } | |
913 | ||
914 | return _bsdthread_ctl_qos_dispatch_asynchronous_override_reset(p, cmd, 1 /* reset_all */, 0, 0, retval); | |
915 | } | |
916 | ||
917 | int | |
918 | _bsdthread_ctl_qos_dispatch_asynchronous_override_reset(struct proc __unused *p, user_addr_t __unused cmd, int reset_all, user_addr_t resource, user_addr_t arg3, int __unused *retval) | |
919 | { | |
920 | thread_t th; | |
921 | struct threadlist *tl; | |
922 | int rv = 0; | |
923 | ||
924 | if ((reset_all && (resource != 0)) || arg3 != 0) { | |
925 | return EINVAL; | |
926 | } | |
927 | ||
928 | th = current_thread(); | |
929 | tl = util_get_thread_threadlist_entry(th); | |
930 | ||
931 | if (tl) { | |
932 | wq_thread_override_reset(th, reset_all ? THREAD_QOS_OVERRIDE_RESOURCE_WILDCARD : resource); | |
933 | } else { | |
934 | rv = EPERM; | |
935 | } | |
936 | ||
937 | return rv; | |
938 | } | |
939 | ||
940 | int | |
941 | _bsdthread_ctl(struct proc *p, user_addr_t cmd, user_addr_t arg1, user_addr_t arg2, user_addr_t arg3, int *retval) | |
942 | { | |
943 | switch (cmd) { | |
944 | case BSDTHREAD_CTL_SET_QOS: | |
945 | return _bsdthread_ctl_set_qos(p, cmd, (mach_port_name_t)arg1, arg2, arg3, retval); | |
946 | case BSDTHREAD_CTL_QOS_OVERRIDE_START: | |
947 | return _bsdthread_ctl_qos_override_start(p, cmd, (mach_port_name_t)arg1, (pthread_priority_t)arg2, arg3, retval); | |
948 | case BSDTHREAD_CTL_QOS_OVERRIDE_END: | |
949 | return _bsdthread_ctl_qos_override_end(p, cmd, (mach_port_name_t)arg1, arg2, arg3, retval); | |
950 | case BSDTHREAD_CTL_QOS_OVERRIDE_RESET: | |
951 | return _bsdthread_ctl_qos_override_reset(p, cmd, arg1, arg2, arg3, retval); | |
952 | case BSDTHREAD_CTL_QOS_OVERRIDE_DISPATCH: | |
953 | return _bsdthread_ctl_qos_override_dispatch(p, cmd, (mach_port_name_t)arg1, (pthread_priority_t)arg2, arg3, retval); | |
954 | case BSDTHREAD_CTL_QOS_DISPATCH_ASYNCHRONOUS_OVERRIDE_ADD: | |
955 | return _bsdthread_ctl_qos_dispatch_asynchronous_override_add(p, cmd, (mach_port_name_t)arg1, (pthread_priority_t)arg2, arg3, retval); | |
956 | case BSDTHREAD_CTL_QOS_DISPATCH_ASYNCHRONOUS_OVERRIDE_RESET: | |
957 | return _bsdthread_ctl_qos_dispatch_asynchronous_override_reset(p, cmd, (int)arg1, arg2, arg3, retval); | |
958 | case BSDTHREAD_CTL_SET_SELF: | |
959 | return _bsdthread_ctl_set_self(p, cmd, (pthread_priority_t)arg1, (mach_port_name_t)arg2, (_pthread_set_flags_t)arg3, retval); | |
960 | default: | |
961 | return EINVAL; | |
962 | } | |
963 | } | |
964 | ||
965 | #pragma mark - Workqueue Implementation | |
966 | #pragma mark sysctls | |
967 | ||
968 | uint32_t wq_yielded_threshold = WQ_YIELDED_THRESHOLD; | |
969 | uint32_t wq_yielded_window_usecs = WQ_YIELDED_WINDOW_USECS; | |
970 | uint32_t wq_stalled_window_usecs = WQ_STALLED_WINDOW_USECS; | |
971 | uint32_t wq_reduce_pool_window_usecs = WQ_REDUCE_POOL_WINDOW_USECS; | |
972 | uint32_t wq_max_timer_interval_usecs = WQ_MAX_TIMER_INTERVAL_USECS; | |
973 | uint32_t wq_max_threads = WORKQUEUE_MAXTHREADS; | |
974 | uint32_t wq_max_constrained_threads = WORKQUEUE_MAXTHREADS / 8; | |
975 | uint32_t wq_max_concurrency = 1; // set to ncpus on load | |
976 | ||
977 | SYSCTL_INT(_kern, OID_AUTO, wq_yielded_threshold, CTLFLAG_RW | CTLFLAG_LOCKED, | |
978 | &wq_yielded_threshold, 0, ""); | |
979 | ||
980 | SYSCTL_INT(_kern, OID_AUTO, wq_yielded_window_usecs, CTLFLAG_RW | CTLFLAG_LOCKED, | |
981 | &wq_yielded_window_usecs, 0, ""); | |
982 | ||
983 | SYSCTL_INT(_kern, OID_AUTO, wq_stalled_window_usecs, CTLFLAG_RW | CTLFLAG_LOCKED, | |
984 | &wq_stalled_window_usecs, 0, ""); | |
985 | ||
986 | SYSCTL_INT(_kern, OID_AUTO, wq_reduce_pool_window_usecs, CTLFLAG_RW | CTLFLAG_LOCKED, | |
987 | &wq_reduce_pool_window_usecs, 0, ""); | |
988 | ||
989 | SYSCTL_INT(_kern, OID_AUTO, wq_max_timer_interval_usecs, CTLFLAG_RW | CTLFLAG_LOCKED, | |
990 | &wq_max_timer_interval_usecs, 0, ""); | |
991 | ||
992 | SYSCTL_INT(_kern, OID_AUTO, wq_max_threads, CTLFLAG_RW | CTLFLAG_LOCKED, | |
993 | &wq_max_threads, 0, ""); | |
994 | ||
995 | SYSCTL_INT(_kern, OID_AUTO, wq_max_constrained_threads, CTLFLAG_RW | CTLFLAG_LOCKED, | |
996 | &wq_max_constrained_threads, 0, ""); | |
997 | ||
998 | #ifdef DEBUG | |
999 | SYSCTL_INT(_kern, OID_AUTO, wq_max_concurrency, CTLFLAG_RW | CTLFLAG_LOCKED, | |
1000 | &wq_max_concurrency, 0, ""); | |
1001 | ||
1002 | static int wq_kevent_test SYSCTL_HANDLER_ARGS; | |
1003 | SYSCTL_PROC(_debug, OID_AUTO, wq_kevent_test, CTLFLAG_MASKED | CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_ANYBODY | CTLTYPE_OPAQUE, NULL, 0, wq_kevent_test, 0, "-"); | |
1004 | #endif | |
1005 | ||
1006 | static uint32_t wq_init_constrained_limit = 1; | |
1007 | ||
1008 | #pragma mark workqueue lock | |
1009 | ||
1010 | void | |
1011 | _workqueue_init_lock(proc_t p) | |
1012 | { | |
1013 | lck_spin_init(pthread_kern->proc_get_wqlockptr(p), pthread_lck_grp, pthread_lck_attr); | |
1014 | *(pthread_kern->proc_get_wqinitingptr(p)) = FALSE; | |
1015 | } | |
1016 | ||
1017 | void | |
1018 | _workqueue_destroy_lock(proc_t p) | |
1019 | { | |
1020 | lck_spin_destroy(pthread_kern->proc_get_wqlockptr(p), pthread_lck_grp); | |
1021 | } | |
1022 | ||
1023 | ||
1024 | static void | |
1025 | workqueue_lock_spin(proc_t p) | |
1026 | { | |
1027 | lck_spin_lock(pthread_kern->proc_get_wqlockptr(p)); | |
1028 | } | |
1029 | ||
1030 | static void | |
1031 | workqueue_unlock(proc_t p) | |
1032 | { | |
1033 | lck_spin_unlock(pthread_kern->proc_get_wqlockptr(p)); | |
1034 | } | |
1035 | ||
1036 | #pragma mark workqueue add timer | |
1037 | ||
1038 | /** | |
1039 | * Sets up the timer which will call out to workqueue_add_timer | |
1040 | */ | |
1041 | static void | |
1042 | workqueue_interval_timer_start(struct workqueue *wq) | |
1043 | { | |
1044 | uint64_t deadline; | |
1045 | ||
1046 | /* n.b. wq_timer_interval is reset to 0 in workqueue_add_timer if the | |
1047 | ATIMER_RUNNING flag is not present. The net effect here is that if a | |
1048 | sequence of threads is required, we'll double the time before we give out | |
1049 | the next one. */ | |
1050 | if (wq->wq_timer_interval == 0) { | |
1051 | wq->wq_timer_interval = wq_stalled_window_usecs; | |
1052 | ||
1053 | } else { | |
1054 | wq->wq_timer_interval = wq->wq_timer_interval * 2; | |
1055 | ||
1056 | if (wq->wq_timer_interval > wq_max_timer_interval_usecs) { | |
1057 | wq->wq_timer_interval = wq_max_timer_interval_usecs; | |
1058 | } | |
1059 | } | |
1060 | clock_interval_to_deadline(wq->wq_timer_interval, 1000, &deadline); | |
1061 | ||
1062 | thread_call_enter_delayed(wq->wq_atimer_call, deadline); | |
1063 | ||
1064 | PTHREAD_TRACE(TRACE_wq_start_add_timer, wq, wq->wq_reqcount, wq->wq_flags, wq->wq_timer_interval, 0); | |
1065 | } | |
1066 | ||
1067 | /** | |
1068 | * returns whether lastblocked_tsp is within wq_stalled_window_usecs of cur_ts | |
1069 | */ | |
1070 | static boolean_t | |
1071 | wq_thread_is_busy(uint64_t cur_ts, uint64_t *lastblocked_tsp) | |
1072 | { | |
1073 | clock_sec_t secs; | |
1074 | clock_usec_t usecs; | |
1075 | uint64_t lastblocked_ts; | |
1076 | uint64_t elapsed; | |
1077 | ||
1078 | /* | |
1079 | * the timestamp is updated atomically w/o holding the workqueue lock | |
1080 | * so we need to do an atomic read of the 64 bits so that we don't see | |
1081 | * a mismatched pair of 32 bit reads... we accomplish this in an architecturally | |
1082 | * independent fashion by using OSCompareAndSwap64 to write back the | |
1083 | * value we grabbed... if it succeeds, then we have a good timestamp to | |
1084 | * evaluate... if it fails, we straddled grabbing the timestamp while it | |
1085 | * was being updated... treat a failed update as a busy thread since | |
1086 | * it implies we are about to see a really fresh timestamp anyway | |
1087 | */ | |
1088 | lastblocked_ts = *lastblocked_tsp; | |
1089 | ||
1090 | if ( !OSCompareAndSwap64((UInt64)lastblocked_ts, (UInt64)lastblocked_ts, lastblocked_tsp)) | |
1091 | return (TRUE); | |
1092 | ||
1093 | if (lastblocked_ts >= cur_ts) { | |
1094 | /* | |
1095 | * because the update of the timestamp when a thread blocks isn't | |
1096 | * serialized against us looking at it (i.e. we don't hold the workq lock) | |
1097 | * it's possible to have a timestamp that matches the current time or | |
1098 | * that even looks to be in the future relative to when we grabbed the current | |
1099 | * time... just treat this as a busy thread since it must have just blocked. | |
1100 | */ | |
1101 | return (TRUE); | |
1102 | } | |
1103 | elapsed = cur_ts - lastblocked_ts; | |
1104 | ||
1105 | pthread_kern->absolutetime_to_microtime(elapsed, &secs, &usecs); | |
1106 | ||
1107 | if (secs == 0 && usecs < wq_stalled_window_usecs) | |
1108 | return (TRUE); | |
1109 | return (FALSE); | |
1110 | } | |
1111 | ||
1112 | #define WQ_TIMER_NEEDED(wq, start_timer) do { \ | |
1113 | int oldflags = wq->wq_flags; \ | |
1114 | \ | |
1115 | if ( !(oldflags & (WQ_EXITING | WQ_ATIMER_RUNNING))) { \ | |
1116 | if (OSCompareAndSwap(oldflags, oldflags | WQ_ATIMER_RUNNING, (UInt32 *)&wq->wq_flags)) \ | |
1117 | start_timer = TRUE; \ | |
1118 | } \ | |
1119 | } while (0) | |
1120 | ||
1121 | /** | |
1122 | * handler function for the timer | |
1123 | */ | |
1124 | static void | |
1125 | workqueue_add_timer(struct workqueue *wq, __unused int param1) | |
1126 | { | |
1127 | proc_t p; | |
1128 | boolean_t start_timer = FALSE; | |
1129 | boolean_t retval; | |
1130 | ||
1131 | PTHREAD_TRACE(TRACE_wq_add_timer | DBG_FUNC_START, wq, wq->wq_flags, wq->wq_nthreads, wq->wq_thidlecount, 0); | |
1132 | ||
1133 | p = wq->wq_proc; | |
1134 | ||
1135 | workqueue_lock_spin(p); | |
1136 | ||
1137 | /* | |
1138 | * because workqueue_callback now runs w/o taking the workqueue lock | |
1139 | * we are unsynchronized w/r to a change in state of the running threads... | |
1140 | * to make sure we always evaluate that change, we allow it to start up | |
1141 | * a new timer if the current one is actively evalutating the state | |
1142 | * however, we do not need more than 2 timers fired up (1 active and 1 pending) | |
1143 | * and we certainly do not want 2 active timers evaluating the state | |
1144 | * simultaneously... so use WQL_ATIMER_BUSY to serialize the timers... | |
1145 | * note that WQL_ATIMER_BUSY is in a different flag word from WQ_ATIMER_RUNNING since | |
1146 | * it is always protected by the workq lock... WQ_ATIMER_RUNNING is evaluated | |
1147 | * and set atomimcally since the callback function needs to manipulate it | |
1148 | * w/o holding the workq lock... | |
1149 | * | |
1150 | * !WQ_ATIMER_RUNNING && !WQL_ATIMER_BUSY == no pending timer, no active timer | |
1151 | * !WQ_ATIMER_RUNNING && WQL_ATIMER_BUSY == no pending timer, 1 active timer | |
1152 | * WQ_ATIMER_RUNNING && !WQL_ATIMER_BUSY == 1 pending timer, no active timer | |
1153 | * WQ_ATIMER_RUNNING && WQL_ATIMER_BUSY == 1 pending timer, 1 active timer | |
1154 | */ | |
1155 | while (wq->wq_lflags & WQL_ATIMER_BUSY) { | |
1156 | wq->wq_lflags |= WQL_ATIMER_WAITING; | |
1157 | ||
1158 | assert_wait((caddr_t)wq, (THREAD_UNINT)); | |
1159 | workqueue_unlock(p); | |
1160 | ||
1161 | thread_block(THREAD_CONTINUE_NULL); | |
1162 | ||
1163 | workqueue_lock_spin(p); | |
1164 | } | |
1165 | wq->wq_lflags |= WQL_ATIMER_BUSY; | |
1166 | ||
1167 | /* | |
1168 | * the workq lock will protect us from seeing WQ_EXITING change state, but we | |
1169 | * still need to update this atomically in case someone else tries to start | |
1170 | * the timer just as we're releasing it | |
1171 | */ | |
1172 | while ( !(OSCompareAndSwap(wq->wq_flags, (wq->wq_flags & ~WQ_ATIMER_RUNNING), (UInt32 *)&wq->wq_flags))); | |
1173 | ||
1174 | again: | |
1175 | retval = TRUE; | |
1176 | if ( !(wq->wq_flags & WQ_EXITING)) { | |
1177 | boolean_t add_thread = FALSE; | |
1178 | /* | |
1179 | * check to see if the stall frequency was beyond our tolerance | |
1180 | * or we have work on the queue, but haven't scheduled any | |
1181 | * new work within our acceptable time interval because | |
1182 | * there were no idle threads left to schedule | |
1183 | */ | |
1184 | if (wq->wq_reqcount) { | |
1185 | uint32_t priclass = 0; | |
1186 | uint32_t thactive_count = 0; | |
1187 | uint64_t curtime = mach_absolute_time(); | |
1188 | uint64_t busycount = 0; | |
1189 | ||
1190 | if (wq->wq_requests[WORKQUEUE_EVENT_MANAGER_BUCKET] && | |
1191 | wq->wq_thscheduled_count[WORKQUEUE_EVENT_MANAGER_BUCKET] == 0){ | |
1192 | priclass = WORKQUEUE_EVENT_MANAGER_BUCKET; | |
1193 | } else { | |
1194 | for (priclass = 0; priclass < WORKQUEUE_NUM_BUCKETS; priclass++) { | |
1195 | if (wq->wq_requests[priclass]) | |
1196 | break; | |
1197 | } | |
1198 | } | |
1199 | ||
1200 | if (priclass < WORKQUEUE_EVENT_MANAGER_BUCKET){ | |
1201 | /* | |
1202 | * Compute a metric for many how many threads are active. We | |
1203 | * find the highest priority request outstanding and then add up | |
1204 | * the number of active threads in that and all higher-priority | |
1205 | * buckets. We'll also add any "busy" threads which are not | |
1206 | * active but blocked recently enough that we can't be sure | |
1207 | * they've gone idle yet. We'll then compare this metric to our | |
1208 | * max concurrency to decide whether to add a new thread. | |
1209 | */ | |
1210 | for (uint32_t i = 0; i <= priclass; i++) { | |
1211 | thactive_count += wq->wq_thactive_count[i]; | |
1212 | ||
1213 | // XXX why isn't this checking thscheduled_count < thactive_count ? | |
1214 | if (wq->wq_thscheduled_count[i]) { | |
1215 | if (wq_thread_is_busy(curtime, &wq->wq_lastblocked_ts[i])) | |
1216 | busycount++; | |
1217 | } | |
1218 | } | |
1219 | } | |
1220 | ||
1221 | if (thactive_count + busycount < wq->wq_max_concurrency || | |
1222 | priclass == WORKQUEUE_EVENT_MANAGER_BUCKET) { | |
1223 | ||
1224 | if (wq->wq_thidlecount == 0) { | |
1225 | /* | |
1226 | * if we have no idle threads, try to add one | |
1227 | */ | |
1228 | retval = workqueue_addnewthread(wq, priclass == WORKQUEUE_EVENT_MANAGER_BUCKET); | |
1229 | } | |
1230 | add_thread = TRUE; | |
1231 | } | |
1232 | ||
1233 | if (wq->wq_reqcount) { | |
1234 | /* | |
1235 | * as long as we have threads to schedule, and we successfully | |
1236 | * scheduled new work, keep trying | |
1237 | */ | |
1238 | while (wq->wq_thidlecount && !(wq->wq_flags & WQ_EXITING)) { | |
1239 | /* | |
1240 | * workqueue_run_nextreq is responsible for | |
1241 | * dropping the workqueue lock in all cases | |
1242 | */ | |
1243 | retval = workqueue_run_nextreq(p, wq, THREAD_NULL, RUN_NEXTREQ_DEFAULT, 0); | |
1244 | workqueue_lock_spin(p); | |
1245 | ||
1246 | if (retval == FALSE) | |
1247 | break; | |
1248 | } | |
1249 | if ( !(wq->wq_flags & WQ_EXITING) && wq->wq_reqcount) { | |
1250 | ||
1251 | if (wq->wq_thidlecount == 0 && retval == TRUE && add_thread == TRUE) | |
1252 | goto again; | |
1253 | ||
1254 | if (wq->wq_thidlecount == 0 || busycount) | |
1255 | WQ_TIMER_NEEDED(wq, start_timer); | |
1256 | ||
1257 | PTHREAD_TRACE(TRACE_wq_add_timer | DBG_FUNC_NONE, wq, wq->wq_reqcount, wq->wq_thidlecount, busycount, 0); | |
1258 | } | |
1259 | } | |
1260 | } | |
1261 | } | |
1262 | ||
1263 | /* | |
1264 | * If we called WQ_TIMER_NEEDED above, then this flag will be set if that | |
1265 | * call marked the timer running. If so, we let the timer interval grow. | |
1266 | * Otherwise, we reset it back to 0. | |
1267 | */ | |
1268 | if ( !(wq->wq_flags & WQ_ATIMER_RUNNING)) | |
1269 | wq->wq_timer_interval = 0; | |
1270 | ||
1271 | wq->wq_lflags &= ~WQL_ATIMER_BUSY; | |
1272 | ||
1273 | if ((wq->wq_flags & WQ_EXITING) || (wq->wq_lflags & WQL_ATIMER_WAITING)) { | |
1274 | /* | |
1275 | * wakeup the thread hung up in workqueue_exit or workqueue_add_timer waiting for this timer | |
1276 | * to finish getting out of the way | |
1277 | */ | |
1278 | wq->wq_lflags &= ~WQL_ATIMER_WAITING; | |
1279 | wakeup(wq); | |
1280 | } | |
1281 | ||
1282 | PTHREAD_TRACE(TRACE_wq_add_timer | DBG_FUNC_END, wq, start_timer, wq->wq_nthreads, wq->wq_thidlecount, 0); | |
1283 | ||
1284 | workqueue_unlock(p); | |
1285 | ||
1286 | if (start_timer == TRUE) | |
1287 | workqueue_interval_timer_start(wq); | |
1288 | } | |
1289 | ||
1290 | #pragma mark thread state tracking | |
1291 | ||
1292 | // called by spinlock code when trying to yield to lock owner | |
1293 | void | |
1294 | _workqueue_thread_yielded(void) | |
1295 | { | |
1296 | struct workqueue *wq; | |
1297 | proc_t p; | |
1298 | ||
1299 | p = current_proc(); | |
1300 | ||
1301 | if ((wq = pthread_kern->proc_get_wqptr(p)) == NULL || wq->wq_reqcount == 0) | |
1302 | return; | |
1303 | ||
1304 | workqueue_lock_spin(p); | |
1305 | ||
1306 | if (wq->wq_reqcount) { | |
1307 | uint64_t curtime; | |
1308 | uint64_t elapsed; | |
1309 | clock_sec_t secs; | |
1310 | clock_usec_t usecs; | |
1311 | ||
1312 | if (wq->wq_thread_yielded_count++ == 0) | |
1313 | wq->wq_thread_yielded_timestamp = mach_absolute_time(); | |
1314 | ||
1315 | if (wq->wq_thread_yielded_count < wq_yielded_threshold) { | |
1316 | workqueue_unlock(p); | |
1317 | return; | |
1318 | } | |
1319 | ||
1320 | PTHREAD_TRACE(TRACE_wq_thread_yielded | DBG_FUNC_START, wq, wq->wq_thread_yielded_count, wq->wq_reqcount, 0, 0); | |
1321 | ||
1322 | wq->wq_thread_yielded_count = 0; | |
1323 | ||
1324 | curtime = mach_absolute_time(); | |
1325 | elapsed = curtime - wq->wq_thread_yielded_timestamp; | |
1326 | pthread_kern->absolutetime_to_microtime(elapsed, &secs, &usecs); | |
1327 | ||
1328 | if (secs == 0 && usecs < wq_yielded_window_usecs) { | |
1329 | ||
1330 | if (wq->wq_thidlecount == 0) { | |
1331 | workqueue_addnewthread(wq, TRUE); | |
1332 | /* | |
1333 | * 'workqueue_addnewthread' drops the workqueue lock | |
1334 | * when creating the new thread and then retakes it before | |
1335 | * returning... this window allows other threads to process | |
1336 | * requests, so we need to recheck for available work | |
1337 | * if none found, we just return... the newly created thread | |
1338 | * will eventually get used (if it hasn't already)... | |
1339 | */ | |
1340 | if (wq->wq_reqcount == 0) { | |
1341 | workqueue_unlock(p); | |
1342 | return; | |
1343 | } | |
1344 | } | |
1345 | if (wq->wq_thidlecount) { | |
1346 | (void)workqueue_run_nextreq(p, wq, THREAD_NULL, RUN_NEXTREQ_UNCONSTRAINED, 0); | |
1347 | /* | |
1348 | * workqueue_run_nextreq is responsible for | |
1349 | * dropping the workqueue lock in all cases | |
1350 | */ | |
1351 | PTHREAD_TRACE(TRACE_wq_thread_yielded | DBG_FUNC_END, wq, wq->wq_thread_yielded_count, wq->wq_reqcount, 1, 0); | |
1352 | ||
1353 | return; | |
1354 | } | |
1355 | } | |
1356 | PTHREAD_TRACE(TRACE_wq_thread_yielded | DBG_FUNC_END, wq, wq->wq_thread_yielded_count, wq->wq_reqcount, 2, 0); | |
1357 | } | |
1358 | workqueue_unlock(p); | |
1359 | } | |
1360 | ||
1361 | ||
1362 | ||
1363 | static void | |
1364 | workqueue_callback(int type, thread_t thread) | |
1365 | { | |
1366 | struct uthread *uth; | |
1367 | struct threadlist *tl; | |
1368 | struct workqueue *wq; | |
1369 | ||
1370 | uth = pthread_kern->get_bsdthread_info(thread); | |
1371 | tl = pthread_kern->uthread_get_threadlist(uth); | |
1372 | wq = tl->th_workq; | |
1373 | ||
1374 | switch (type) { | |
1375 | case SCHED_CALL_BLOCK: { | |
1376 | uint32_t old_activecount; | |
1377 | boolean_t start_timer = FALSE; | |
1378 | ||
1379 | old_activecount = OSAddAtomic(-1, &wq->wq_thactive_count[tl->th_priority]); | |
1380 | ||
1381 | /* | |
1382 | * If we blocked and were at the requested concurrency previously, we may | |
1383 | * need to spin up a new thread. Of course, if it's the event manager | |
1384 | * then that's moot, so ignore that case. | |
1385 | */ | |
1386 | if (old_activecount == wq->wq_reqconc[tl->th_priority] && | |
1387 | tl->th_priority != WORKQUEUE_EVENT_MANAGER_BUCKET) { | |
1388 | uint64_t curtime; | |
1389 | UInt64 *lastblocked_ptr; | |
1390 | ||
1391 | /* | |
1392 | * the number of active threads at this priority | |
1393 | * has fallen below the maximum number of concurrent | |
1394 | * threads that we're allowed to run | |
1395 | */ | |
1396 | lastblocked_ptr = (UInt64 *)&wq->wq_lastblocked_ts[tl->th_priority]; | |
1397 | curtime = mach_absolute_time(); | |
1398 | ||
1399 | /* | |
1400 | * if we collide with another thread trying to update the last_blocked (really unlikely | |
1401 | * since another thread would have to get scheduled and then block after we start down | |
1402 | * this path), it's not a problem. Either timestamp is adequate, so no need to retry | |
1403 | */ | |
1404 | ||
1405 | OSCompareAndSwap64(*lastblocked_ptr, (UInt64)curtime, lastblocked_ptr); | |
1406 | ||
1407 | if (wq->wq_reqcount) { | |
1408 | /* | |
1409 | * we have work to do so start up the timer | |
1410 | * if it's not running... we'll let it sort | |
1411 | * out whether we really need to start up | |
1412 | * another thread | |
1413 | */ | |
1414 | WQ_TIMER_NEEDED(wq, start_timer); | |
1415 | } | |
1416 | ||
1417 | if (start_timer == TRUE) { | |
1418 | workqueue_interval_timer_start(wq); | |
1419 | } | |
1420 | } | |
1421 | PTHREAD_TRACE1(TRACE_wq_thread_block | DBG_FUNC_START, wq, old_activecount, tl->th_priority, start_timer, thread_tid(thread)); | |
1422 | break; | |
1423 | } | |
1424 | case SCHED_CALL_UNBLOCK: | |
1425 | /* | |
1426 | * we cannot take the workqueue_lock here... | |
1427 | * an UNBLOCK can occur from a timer event which | |
1428 | * is run from an interrupt context... if the workqueue_lock | |
1429 | * is already held by this processor, we'll deadlock... | |
1430 | * the thread lock for the thread being UNBLOCKED | |
1431 | * is also held | |
1432 | */ | |
1433 | OSAddAtomic(1, &wq->wq_thactive_count[tl->th_priority]); | |
1434 | ||
1435 | PTHREAD_TRACE1(TRACE_wq_thread_block | DBG_FUNC_END, wq, wq->wq_threads_scheduled, tl->th_priority, 0, thread_tid(thread)); | |
1436 | ||
1437 | break; | |
1438 | } | |
1439 | } | |
1440 | ||
1441 | sched_call_t | |
1442 | _workqueue_get_sched_callback(void) | |
1443 | { | |
1444 | return workqueue_callback; | |
1445 | } | |
1446 | ||
1447 | #pragma mark thread addition/removal | |
1448 | ||
1449 | /** | |
1450 | * pop goes the thread | |
1451 | */ | |
1452 | static void | |
1453 | workqueue_removethread(struct threadlist *tl, int fromexit) | |
1454 | { | |
1455 | struct workqueue *wq; | |
1456 | struct uthread * uth; | |
1457 | ||
1458 | /* | |
1459 | * If fromexit is set, the call is from workqueue_exit(, | |
1460 | * so some cleanups are to be avoided. | |
1461 | */ | |
1462 | wq = tl->th_workq; | |
1463 | ||
1464 | TAILQ_REMOVE(&wq->wq_thidlelist, tl, th_entry); | |
1465 | ||
1466 | if (fromexit == 0) { | |
1467 | wq->wq_nthreads--; | |
1468 | wq->wq_thidlecount--; | |
1469 | } | |
1470 | ||
1471 | /* | |
1472 | * Clear the threadlist pointer in uthread so | |
1473 | * blocked thread on wakeup for termination will | |
1474 | * not access the thread list as it is going to be | |
1475 | * freed. | |
1476 | */ | |
1477 | pthread_kern->thread_sched_call(tl->th_thread, NULL); | |
1478 | ||
1479 | uth = pthread_kern->get_bsdthread_info(tl->th_thread); | |
1480 | if (uth != (struct uthread *)0) { | |
1481 | pthread_kern->uthread_set_threadlist(uth, NULL); | |
1482 | } | |
1483 | if (fromexit == 0) { | |
1484 | /* during exit the lock is not held */ | |
1485 | workqueue_unlock(wq->wq_proc); | |
1486 | } | |
1487 | ||
1488 | if ( (tl->th_flags & TH_LIST_SUSPENDED) ) { | |
1489 | /* | |
1490 | * thread was created, but never used... | |
1491 | * need to clean up the stack and port ourselves | |
1492 | * since we're not going to spin up through the | |
1493 | * normal exit path triggered from Libc | |
1494 | */ | |
1495 | if (fromexit == 0) { | |
1496 | /* vm map is already deallocated when this is called from exit */ | |
1497 | (void)mach_vm_deallocate(wq->wq_map, tl->th_stackaddr, tl->th_allocsize); | |
1498 | } | |
1499 | (void)pthread_kern->mach_port_deallocate(pthread_kern->task_get_ipcspace(wq->wq_task), tl->th_thport); | |
1500 | ||
1501 | PTHREAD_TRACE1(TRACE_wq_thread_suspend | DBG_FUNC_END, wq, (uintptr_t)thread_tid(current_thread()), wq->wq_nthreads, 0xdead, thread_tid(tl->th_thread)); | |
1502 | } else { | |
1503 | ||
1504 | PTHREAD_TRACE1(TRACE_wq_thread_park | DBG_FUNC_END, wq, (uintptr_t)thread_tid(current_thread()), wq->wq_nthreads, 0xdead, thread_tid(tl->th_thread)); | |
1505 | } | |
1506 | /* | |
1507 | * drop our ref on the thread | |
1508 | */ | |
1509 | thread_deallocate(tl->th_thread); | |
1510 | ||
1511 | kfree(tl, sizeof(struct threadlist)); | |
1512 | } | |
1513 | ||
1514 | ||
1515 | /** | |
1516 | * Try to add a new workqueue thread. | |
1517 | * | |
1518 | * - called with workq lock held | |
1519 | * - dropped and retaken around thread creation | |
1520 | * - return with workq lock held | |
1521 | */ | |
1522 | static boolean_t | |
1523 | workqueue_addnewthread(struct workqueue *wq, boolean_t ignore_constrained_thread_limit) | |
1524 | { | |
1525 | struct threadlist *tl; | |
1526 | struct uthread *uth; | |
1527 | kern_return_t kret; | |
1528 | thread_t th; | |
1529 | proc_t p; | |
1530 | void *sright; | |
1531 | mach_vm_offset_t stackaddr; | |
1532 | ||
1533 | if ((wq->wq_flags & WQ_EXITING) == WQ_EXITING) { | |
1534 | PTHREAD_TRACE(TRACE_wq_thread_add_during_exit | DBG_FUNC_NONE, wq, 0, 0, 0, 0); | |
1535 | return (FALSE); | |
1536 | } | |
1537 | ||
1538 | if (wq->wq_nthreads >= wq_max_threads || wq->wq_nthreads >= (pthread_kern->config_thread_max - 20)) { | |
1539 | wq->wq_lflags |= WQL_EXCEEDED_TOTAL_THREAD_LIMIT; | |
1540 | ||
1541 | PTHREAD_TRACE(TRACE_wq_thread_limit_exceeded | DBG_FUNC_NONE, wq, wq->wq_nthreads, wq_max_threads, | |
1542 | pthread_kern->config_thread_max - 20, 0); | |
1543 | return (FALSE); | |
1544 | } | |
1545 | wq->wq_lflags &= ~WQL_EXCEEDED_TOTAL_THREAD_LIMIT; | |
1546 | ||
1547 | if (ignore_constrained_thread_limit == FALSE && | |
1548 | wq->wq_constrained_threads_scheduled >= wq_max_constrained_threads) { | |
1549 | /* | |
1550 | * If we're not creating this thread to service an overcommit or | |
1551 | * event manager request, then we check to see if we are over our | |
1552 | * constrained thread limit, in which case we error out. | |
1553 | */ | |
1554 | wq->wq_lflags |= WQL_EXCEEDED_CONSTRAINED_THREAD_LIMIT; | |
1555 | ||
1556 | PTHREAD_TRACE(TRACE_wq_thread_constrained_maxed | DBG_FUNC_NONE, wq, wq->wq_constrained_threads_scheduled, | |
1557 | wq_max_constrained_threads, 0, 0); | |
1558 | return (FALSE); | |
1559 | } | |
1560 | if (wq->wq_constrained_threads_scheduled < wq_max_constrained_threads) | |
1561 | wq->wq_lflags &= ~WQL_EXCEEDED_CONSTRAINED_THREAD_LIMIT; | |
1562 | ||
1563 | wq->wq_nthreads++; | |
1564 | ||
1565 | p = wq->wq_proc; | |
1566 | workqueue_unlock(p); | |
1567 | ||
1568 | kret = pthread_kern->thread_create_workq(wq->wq_task, (thread_continue_t)wq_unsuspend_continue, &th); | |
1569 | if (kret != KERN_SUCCESS) { | |
1570 | PTHREAD_TRACE(TRACE_wq_thread_create_failed | DBG_FUNC_NONE, wq, kret, 0, 0, 0); | |
1571 | goto failed; | |
1572 | } | |
1573 | ||
1574 | tl = kalloc(sizeof(struct threadlist)); | |
1575 | bzero(tl, sizeof(struct threadlist)); | |
1576 | ||
1577 | stackaddr = stackaddr_hint(p); | |
1578 | ||
1579 | mach_vm_size_t guardsize = vm_map_page_size(wq->wq_map); | |
1580 | mach_vm_size_t pthread_size = | |
1581 | vm_map_round_page_mask(pthread_kern->proc_get_pthsize(p) + PTHREAD_T_OFFSET, vm_map_page_mask(wq->wq_map)); | |
1582 | tl->th_allocsize = guardsize + PTH_DEFAULT_STACKSIZE + pthread_size; | |
1583 | ||
1584 | kret = mach_vm_map(wq->wq_map, &stackaddr, | |
1585 | tl->th_allocsize, | |
1586 | page_size-1, | |
1587 | VM_MAKE_TAG(VM_MEMORY_STACK)| VM_FLAGS_ANYWHERE , NULL, | |
1588 | 0, FALSE, VM_PROT_DEFAULT, VM_PROT_ALL, | |
1589 | VM_INHERIT_DEFAULT); | |
1590 | ||
1591 | if (kret != KERN_SUCCESS) { | |
1592 | PTHREAD_TRACE(TRACE_wq_thread_create_failed | DBG_FUNC_NONE, wq, kret, 1, 0, 0); | |
1593 | ||
1594 | kret = mach_vm_allocate(wq->wq_map, | |
1595 | &stackaddr, tl->th_allocsize, | |
1596 | VM_MAKE_TAG(VM_MEMORY_STACK) | VM_FLAGS_ANYWHERE); | |
1597 | } | |
1598 | if (kret == KERN_SUCCESS) { | |
1599 | /* | |
1600 | * The guard page is at the lowest address | |
1601 | * The stack base is the highest address | |
1602 | */ | |
1603 | kret = mach_vm_protect(wq->wq_map, stackaddr, guardsize, FALSE, VM_PROT_NONE); | |
1604 | ||
1605 | if (kret != KERN_SUCCESS) { | |
1606 | (void) mach_vm_deallocate(wq->wq_map, stackaddr, tl->th_allocsize); | |
1607 | PTHREAD_TRACE(TRACE_wq_thread_create_failed | DBG_FUNC_NONE, wq, kret, 2, 0, 0); | |
1608 | } | |
1609 | } | |
1610 | if (kret != KERN_SUCCESS) { | |
1611 | (void) thread_terminate(th); | |
1612 | thread_deallocate(th); | |
1613 | ||
1614 | kfree(tl, sizeof(struct threadlist)); | |
1615 | goto failed; | |
1616 | } | |
1617 | thread_reference(th); | |
1618 | ||
1619 | sright = (void *)pthread_kern->convert_thread_to_port(th); | |
1620 | tl->th_thport = pthread_kern->ipc_port_copyout_send(sright, pthread_kern->task_get_ipcspace(wq->wq_task)); | |
1621 | ||
1622 | pthread_kern->thread_static_param(th, TRUE); | |
1623 | ||
1624 | tl->th_flags = TH_LIST_INITED | TH_LIST_SUSPENDED; | |
1625 | ||
1626 | tl->th_thread = th; | |
1627 | tl->th_workq = wq; | |
1628 | tl->th_stackaddr = stackaddr; | |
1629 | tl->th_priority = WORKQUEUE_NUM_BUCKETS; | |
1630 | tl->th_policy = -1; | |
1631 | ||
1632 | uth = pthread_kern->get_bsdthread_info(tl->th_thread); | |
1633 | ||
1634 | workqueue_lock_spin(p); | |
1635 | ||
1636 | pthread_kern->uthread_set_threadlist(uth, tl); | |
1637 | TAILQ_INSERT_TAIL(&wq->wq_thidlelist, tl, th_entry); | |
1638 | ||
1639 | wq->wq_thidlecount++; | |
1640 | ||
1641 | PTHREAD_TRACE1(TRACE_wq_thread_suspend | DBG_FUNC_START, wq, wq->wq_nthreads, 0, thread_tid(current_thread()), thread_tid(tl->th_thread)); | |
1642 | ||
1643 | return (TRUE); | |
1644 | ||
1645 | failed: | |
1646 | workqueue_lock_spin(p); | |
1647 | wq->wq_nthreads--; | |
1648 | ||
1649 | return (FALSE); | |
1650 | } | |
1651 | ||
1652 | /** | |
1653 | * Setup per-process state for the workqueue. | |
1654 | */ | |
1655 | int | |
1656 | _workq_open(struct proc *p, __unused int32_t *retval) | |
1657 | { | |
1658 | struct workqueue * wq; | |
1659 | int wq_size; | |
1660 | char * ptr; | |
1661 | uint32_t i; | |
1662 | uint32_t num_cpus; | |
1663 | int error = 0; | |
1664 | boolean_t need_wakeup = FALSE; | |
1665 | ||
1666 | if (pthread_kern->proc_get_register(p) == 0) { | |
1667 | return EINVAL; | |
1668 | } | |
1669 | ||
1670 | num_cpus = pthread_kern->ml_get_max_cpus(); | |
1671 | ||
1672 | if (wq_init_constrained_limit) { | |
1673 | uint32_t limit; | |
1674 | /* | |
1675 | * set up the limit for the constrained pool | |
1676 | * this is a virtual pool in that we don't | |
1677 | * maintain it on a separate idle and run list | |
1678 | */ | |
1679 | limit = num_cpus * WORKQUEUE_CONSTRAINED_FACTOR; | |
1680 | ||
1681 | if (limit > wq_max_constrained_threads) | |
1682 | wq_max_constrained_threads = limit; | |
1683 | ||
1684 | wq_init_constrained_limit = 0; | |
1685 | } | |
1686 | workqueue_lock_spin(p); | |
1687 | ||
1688 | if (pthread_kern->proc_get_wqptr(p) == NULL) { | |
1689 | ||
1690 | while (*pthread_kern->proc_get_wqinitingptr(p) == TRUE) { | |
1691 | ||
1692 | assert_wait((caddr_t)pthread_kern->proc_get_wqinitingptr(p), THREAD_UNINT); | |
1693 | workqueue_unlock(p); | |
1694 | ||
1695 | thread_block(THREAD_CONTINUE_NULL); | |
1696 | ||
1697 | workqueue_lock_spin(p); | |
1698 | } | |
1699 | if (pthread_kern->proc_get_wqptr(p) != NULL) { | |
1700 | goto out; | |
1701 | } | |
1702 | ||
1703 | *(pthread_kern->proc_get_wqinitingptr(p)) = TRUE; | |
1704 | ||
1705 | workqueue_unlock(p); | |
1706 | ||
1707 | wq_size = sizeof(struct workqueue); | |
1708 | ||
1709 | ptr = (char *)kalloc(wq_size); | |
1710 | bzero(ptr, wq_size); | |
1711 | ||
1712 | wq = (struct workqueue *)ptr; | |
1713 | wq->wq_flags = WQ_LIST_INITED; | |
1714 | wq->wq_proc = p; | |
1715 | wq->wq_max_concurrency = wq_max_concurrency; | |
1716 | wq->wq_task = current_task(); | |
1717 | wq->wq_map = pthread_kern->current_map(); | |
1718 | ||
1719 | for (i = 0; i < WORKQUEUE_NUM_BUCKETS; i++) | |
1720 | wq->wq_reqconc[i] = (uint16_t)wq->wq_max_concurrency; | |
1721 | ||
1722 | // The event manager bucket is special, so its gets a concurrency of 1 | |
1723 | // though we shouldn't ever read this value for that bucket | |
1724 | wq->wq_reqconc[WORKQUEUE_EVENT_MANAGER_BUCKET] = 1; | |
1725 | ||
1726 | // Always start the event manager at BACKGROUND | |
1727 | wq->wq_event_manager_priority = (uint32_t)pthread_qos_class_get_priority(THREAD_QOS_BACKGROUND) | _PTHREAD_PRIORITY_EVENT_MANAGER_FLAG; | |
1728 | ||
1729 | TAILQ_INIT(&wq->wq_thrunlist); | |
1730 | TAILQ_INIT(&wq->wq_thidlelist); | |
1731 | ||
1732 | wq->wq_atimer_call = thread_call_allocate((thread_call_func_t)workqueue_add_timer, (thread_call_param_t)wq); | |
1733 | ||
1734 | workqueue_lock_spin(p); | |
1735 | ||
1736 | pthread_kern->proc_set_wqptr(p, wq); | |
1737 | pthread_kern->proc_set_wqsize(p, wq_size); | |
1738 | ||
1739 | *(pthread_kern->proc_get_wqinitingptr(p)) = FALSE; | |
1740 | need_wakeup = TRUE; | |
1741 | } | |
1742 | out: | |
1743 | workqueue_unlock(p); | |
1744 | ||
1745 | if (need_wakeup == TRUE) { | |
1746 | wakeup(pthread_kern->proc_get_wqinitingptr(p)); | |
1747 | } | |
1748 | return(error); | |
1749 | } | |
1750 | ||
1751 | /* | |
1752 | * Routine: workqueue_mark_exiting | |
1753 | * | |
1754 | * Function: Mark the work queue such that new threads will not be added to the | |
1755 | * work queue after we return. | |
1756 | * | |
1757 | * Conditions: Called against the current process. | |
1758 | */ | |
1759 | void | |
1760 | _workqueue_mark_exiting(struct proc *p) | |
1761 | { | |
1762 | struct workqueue *wq = pthread_kern->proc_get_wqptr(p); | |
1763 | ||
1764 | if (wq != NULL) { | |
1765 | ||
1766 | PTHREAD_TRACE(TRACE_wq_pthread_exit|DBG_FUNC_START, wq, 0, 0, 0, 0); | |
1767 | ||
1768 | workqueue_lock_spin(p); | |
1769 | ||
1770 | /* | |
1771 | * we now arm the timer in the callback function w/o holding the workq lock... | |
1772 | * we do this by setting WQ_ATIMER_RUNNING via OSCompareAndSwap in order to | |
1773 | * insure only a single timer if running and to notice that WQ_EXITING has | |
1774 | * been set (we don't want to start a timer once WQ_EXITING is posted) | |
1775 | * | |
1776 | * so once we have successfully set WQ_EXITING, we cannot fire up a new timer... | |
1777 | * therefor no need to clear the timer state atomically from the flags | |
1778 | * | |
1779 | * since we always hold the workq lock when dropping WQ_ATIMER_RUNNING | |
1780 | * the check for and sleep until clear is protected | |
1781 | */ | |
1782 | while (!(OSCompareAndSwap(wq->wq_flags, (wq->wq_flags | WQ_EXITING), (UInt32 *)&wq->wq_flags))); | |
1783 | ||
1784 | if (wq->wq_flags & WQ_ATIMER_RUNNING) { | |
1785 | if (thread_call_cancel(wq->wq_atimer_call) == TRUE) { | |
1786 | wq->wq_flags &= ~WQ_ATIMER_RUNNING; | |
1787 | } | |
1788 | } | |
1789 | while ((wq->wq_flags & WQ_ATIMER_RUNNING) || (wq->wq_lflags & WQL_ATIMER_BUSY)) { | |
1790 | assert_wait((caddr_t)wq, (THREAD_UNINT)); | |
1791 | workqueue_unlock(p); | |
1792 | ||
1793 | thread_block(THREAD_CONTINUE_NULL); | |
1794 | ||
1795 | workqueue_lock_spin(p); | |
1796 | } | |
1797 | workqueue_unlock(p); | |
1798 | ||
1799 | PTHREAD_TRACE(TRACE_wq_pthread_exit|DBG_FUNC_END, 0, 0, 0, 0, 0); | |
1800 | } | |
1801 | } | |
1802 | ||
1803 | /* | |
1804 | * Routine: workqueue_exit | |
1805 | * | |
1806 | * Function: clean up the work queue structure(s) now that there are no threads | |
1807 | * left running inside the work queue (except possibly current_thread). | |
1808 | * | |
1809 | * Conditions: Called by the last thread in the process. | |
1810 | * Called against current process. | |
1811 | */ | |
1812 | void | |
1813 | _workqueue_exit(struct proc *p) | |
1814 | { | |
1815 | struct workqueue * wq; | |
1816 | struct threadlist * tl, *tlist; | |
1817 | struct uthread *uth; | |
1818 | int wq_size = 0; | |
1819 | ||
1820 | wq = pthread_kern->proc_get_wqptr(p); | |
1821 | if (wq != NULL) { | |
1822 | ||
1823 | PTHREAD_TRACE(TRACE_wq_workqueue_exit|DBG_FUNC_START, wq, 0, 0, 0, 0); | |
1824 | ||
1825 | wq_size = pthread_kern->proc_get_wqsize(p); | |
1826 | pthread_kern->proc_set_wqptr(p, NULL); | |
1827 | pthread_kern->proc_set_wqsize(p, 0); | |
1828 | ||
1829 | /* | |
1830 | * Clean up workqueue data structures for threads that exited and | |
1831 | * didn't get a chance to clean up after themselves. | |
1832 | */ | |
1833 | TAILQ_FOREACH_SAFE(tl, &wq->wq_thrunlist, th_entry, tlist) { | |
1834 | pthread_kern->thread_sched_call(tl->th_thread, NULL); | |
1835 | ||
1836 | uth = pthread_kern->get_bsdthread_info(tl->th_thread); | |
1837 | if (uth != (struct uthread *)0) { | |
1838 | pthread_kern->uthread_set_threadlist(uth, NULL); | |
1839 | } | |
1840 | TAILQ_REMOVE(&wq->wq_thrunlist, tl, th_entry); | |
1841 | ||
1842 | /* | |
1843 | * drop our last ref on the thread | |
1844 | */ | |
1845 | thread_deallocate(tl->th_thread); | |
1846 | ||
1847 | kfree(tl, sizeof(struct threadlist)); | |
1848 | } | |
1849 | TAILQ_FOREACH_SAFE(tl, &wq->wq_thidlelist, th_entry, tlist) { | |
1850 | workqueue_removethread(tl, 1); | |
1851 | } | |
1852 | thread_call_free(wq->wq_atimer_call); | |
1853 | ||
1854 | kfree(wq, wq_size); | |
1855 | ||
1856 | PTHREAD_TRACE(TRACE_wq_workqueue_exit|DBG_FUNC_END, 0, 0, 0, 0, 0); | |
1857 | } | |
1858 | } | |
1859 | ||
1860 | ||
1861 | #pragma mark workqueue thread manipulation | |
1862 | ||
1863 | /** | |
1864 | * Entry point for libdispatch to ask for threads | |
1865 | */ | |
1866 | static int wqops_queue_reqthreads(struct proc *p, int reqcount, pthread_priority_t priority){ | |
1867 | struct workqueue *wq; | |
1868 | ||
1869 | boolean_t overcommit = (_pthread_priority_get_flags(priority) & _PTHREAD_PRIORITY_OVERCOMMIT_FLAG) != 0; | |
1870 | int class = pthread_priority_get_class_index(priority); | |
1871 | ||
1872 | boolean_t event_manager = (_pthread_priority_get_flags(priority) & _PTHREAD_PRIORITY_EVENT_MANAGER_FLAG) != 0; | |
1873 | if (event_manager){ | |
1874 | class = WORKQUEUE_EVENT_MANAGER_BUCKET; | |
1875 | } | |
1876 | ||
1877 | if ((reqcount <= 0) || (class < 0) || (class >= WORKQUEUE_NUM_BUCKETS) || (overcommit && event_manager)) { | |
1878 | return EINVAL; | |
1879 | } | |
1880 | ||
1881 | workqueue_lock_spin(p); | |
1882 | ||
1883 | if ((wq = (struct workqueue *)pthread_kern->proc_get_wqptr(p)) == NULL) { | |
1884 | workqueue_unlock(p); | |
1885 | ||
1886 | return EINVAL; | |
1887 | } | |
1888 | ||
1889 | if (overcommit == 0 && event_manager == 0) { | |
1890 | wq->wq_reqcount += reqcount; | |
1891 | wq->wq_requests[class] += reqcount; | |
1892 | ||
1893 | PTHREAD_TRACE(TRACE_wq_req_threads | DBG_FUNC_NONE, wq, priority, wq->wq_requests[class], reqcount, 0); | |
1894 | ||
1895 | while (wq->wq_reqcount) { | |
1896 | if (!workqueue_run_one(p, wq, overcommit, 0)) | |
1897 | break; | |
1898 | } | |
1899 | } else if (overcommit){ | |
1900 | PTHREAD_TRACE(TRACE_wq_req_octhreads | DBG_FUNC_NONE, wq, priority, wq->wq_ocrequests[class], reqcount, 0); | |
1901 | ||
1902 | while (reqcount) { | |
1903 | if (!workqueue_run_one(p, wq, overcommit, priority)) | |
1904 | break; | |
1905 | reqcount--; | |
1906 | } | |
1907 | if (reqcount) { | |
1908 | /* | |
1909 | * we need to delay starting some of the overcommit requests... | |
1910 | * we should only fail to create the overcommit threads if | |
1911 | * we're at the max thread limit... as existing threads | |
1912 | * return to the kernel, we'll notice the ocrequests | |
1913 | * and spin them back to user space as the overcommit variety | |
1914 | */ | |
1915 | wq->wq_reqcount += reqcount; | |
1916 | wq->wq_requests[class] += reqcount; | |
1917 | wq->wq_ocrequests[class] += reqcount; | |
1918 | ||
1919 | PTHREAD_TRACE(TRACE_wq_delay_octhreads | DBG_FUNC_NONE, wq, priority, wq->wq_ocrequests[class], reqcount, 0); | |
1920 | ||
1921 | /* if we delayed this thread coming up but we're not constrained | |
1922 | * or at max threads then we need to start the timer so we don't | |
1923 | * risk dropping this request on the floor. | |
1924 | */ | |
1925 | if ((wq->wq_lflags & (WQL_EXCEEDED_TOTAL_THREAD_LIMIT | WQL_EXCEEDED_CONSTRAINED_THREAD_LIMIT)) == 0) { | |
1926 | boolean_t start_timer = FALSE; | |
1927 | WQ_TIMER_NEEDED(wq, start_timer); | |
1928 | ||
1929 | if (start_timer) { | |
1930 | workqueue_interval_timer_start(wq); | |
1931 | } | |
1932 | } | |
1933 | } | |
1934 | } else if (event_manager) { | |
1935 | PTHREAD_TRACE(TRACE_wq_req_event_manager | DBG_FUNC_NONE, wq, wq->wq_event_manager_priority, wq->wq_requests[WORKQUEUE_EVENT_MANAGER_BUCKET], wq->wq_thscheduled_count[WORKQUEUE_EVENT_MANAGER_BUCKET], 0); | |
1936 | ||
1937 | if (wq->wq_requests[WORKQUEUE_EVENT_MANAGER_BUCKET] == 0){ | |
1938 | wq->wq_reqcount += 1; | |
1939 | wq->wq_requests[WORKQUEUE_EVENT_MANAGER_BUCKET] = 1; | |
1940 | } | |
1941 | ||
1942 | // We've recorded the request for an event manager thread above. We'll | |
1943 | // let the timer pick it up as we would for a kernel callout. We can | |
1944 | // do a direct add/wakeup when that support is added for the kevent path. | |
1945 | boolean_t start_timer = FALSE; | |
1946 | if (wq->wq_thscheduled_count[WORKQUEUE_EVENT_MANAGER_BUCKET] == 0) | |
1947 | WQ_TIMER_NEEDED(wq, start_timer); | |
1948 | if (start_timer == TRUE) | |
1949 | workqueue_interval_timer_start(wq); | |
1950 | } | |
1951 | workqueue_unlock(p); | |
1952 | ||
1953 | return 0; | |
1954 | } | |
1955 | ||
1956 | /* Used by the kevent system to request threads. Currently count is ignored | |
1957 | * and we always return one thread per invocation. | |
1958 | */ | |
1959 | thread_t _workq_reqthreads(struct proc *p, int requests_count, workq_reqthreads_req_t requests){ | |
1960 | boolean_t start_timer = FALSE; | |
1961 | assert(requests_count > 0); | |
1962 | ||
1963 | #if DEBUG | |
1964 | // Make sure that the requests array is sorted, highest priority first | |
1965 | if (requests_count > 1){ | |
1966 | __assert_only qos_class_t priority = _pthread_priority_get_qos_newest(requests[0].priority); | |
1967 | __assert_only unsigned long flags = ((_pthread_priority_get_flags(requests[0].priority) & (_PTHREAD_PRIORITY_OVERCOMMIT_FLAG|_PTHREAD_PRIORITY_EVENT_MANAGER_FLAG)) != 0); | |
1968 | for (int i = 1; i < requests_count; i++){ | |
1969 | if (requests[i].count == 0) continue; | |
1970 | __assert_only qos_class_t next_priority = _pthread_priority_get_qos_newest(requests[i].priority); | |
1971 | __assert_only unsigned long next_flags = ((_pthread_priority_get_flags(requests[i].priority) & (_PTHREAD_PRIORITY_OVERCOMMIT_FLAG|_PTHREAD_PRIORITY_EVENT_MANAGER_FLAG)) != 0); | |
1972 | if (next_flags != flags){ | |
1973 | flags = next_flags; | |
1974 | priority = next_priority; | |
1975 | } else { | |
1976 | assert(next_priority <= priority); | |
1977 | } | |
1978 | } | |
1979 | } | |
1980 | #endif // DEBUG | |
1981 | ||
1982 | int error = 0; | |
1983 | struct workqueue *wq; | |
1984 | ||
1985 | workqueue_lock_spin(p); | |
1986 | ||
1987 | if ((wq = (struct workqueue *)pthread_kern->proc_get_wqptr(p)) == NULL) { | |
1988 | error = EINVAL; | |
1989 | goto done; | |
1990 | } | |
1991 | ||
1992 | PTHREAD_TRACE(TRACE_wq_kevent_req_threads | DBG_FUNC_START, wq, requests_count, 0, 0, 0); | |
1993 | ||
1994 | // Look for overcommit or event-manager-only requests. | |
1995 | boolean_t have_overcommit = FALSE; | |
1996 | pthread_priority_t priority = 0; | |
1997 | for (int i = 0; i < requests_count; i++){ | |
1998 | if (requests[i].count == 0) | |
1999 | continue; | |
2000 | priority = requests[i].priority; | |
2001 | if (_pthread_priority_get_qos_newest(priority) == QOS_CLASS_UNSPECIFIED){ | |
2002 | priority |= _PTHREAD_PRIORITY_EVENT_MANAGER_FLAG; | |
2003 | } | |
2004 | if ((_pthread_priority_get_flags(priority) & _PTHREAD_PRIORITY_EVENT_MANAGER_FLAG) != 0){ | |
2005 | goto event_manager; | |
2006 | } | |
2007 | if ((_pthread_priority_get_flags(priority) & _PTHREAD_PRIORITY_OVERCOMMIT_FLAG) != 0){ | |
2008 | have_overcommit = TRUE; | |
2009 | break; | |
2010 | } | |
2011 | } | |
2012 | ||
2013 | if (have_overcommit){ | |
2014 | // I can't make this call, since it's not safe from some contexts yet, | |
2015 | // so just setup a delayed overcommit and let the timer do the work | |
2016 | //boolean_t success = workqueue_run_one(p, wq, TRUE, priority); | |
2017 | if (/* !success */ TRUE){ | |
2018 | int class = pthread_priority_get_class_index(priority); | |
2019 | wq->wq_reqcount += 1; | |
2020 | wq->wq_requests[class] += 1; | |
2021 | wq->wq_kevent_ocrequests[class] += 1; | |
2022 | ||
2023 | PTHREAD_TRACE(TRACE_wq_req_kevent_octhreads | DBG_FUNC_NONE, wq, priority, wq->wq_kevent_ocrequests[class], 1, 0); | |
2024 | ||
2025 | WQ_TIMER_NEEDED(wq, start_timer); | |
2026 | } | |
2027 | goto done; | |
2028 | } | |
2029 | ||
2030 | // Having no overcommit requests, try to find any request that can start | |
2031 | // There's no TOCTTOU since we hold the workqueue lock | |
2032 | for (int i = 0; i < requests_count; i++){ | |
2033 | workq_reqthreads_req_t req = requests + i; | |
2034 | priority = req->priority; | |
2035 | ||
2036 | if (req->count == 0) | |
2037 | continue; | |
2038 | ||
2039 | int class = pthread_priority_get_class_index(priority); | |
2040 | ||
2041 | // Ask if we can start a new thread at the given class. Pass NUM_BUCKETS as | |
2042 | // my class to indicate we won't reuse this thread | |
2043 | if (may_start_constrained_thread(wq, class, WORKQUEUE_NUM_BUCKETS, NULL)){ | |
2044 | wq->wq_reqcount += 1; | |
2045 | wq->wq_requests[class] += 1; | |
2046 | wq->wq_kevent_requests[class] += 1; | |
2047 | ||
2048 | PTHREAD_TRACE(TRACE_wq_req_kevent_threads | DBG_FUNC_NONE, wq, priority, wq->wq_kevent_requests[class], 1, 0); | |
2049 | ||
2050 | // I can't make this call because it's not yet safe to make from | |
2051 | // scheduler callout context, so instead we'll just start up the timer | |
2052 | // which will spin up the thread when it files. | |
2053 | // workqueue_run_one(p, wq, FALSE, priority); | |
2054 | ||
2055 | WQ_TIMER_NEEDED(wq, start_timer); | |
2056 | ||
2057 | goto done; | |
2058 | } | |
2059 | } | |
2060 | ||
2061 | // Okay, here's the fun case: we can't spin up any of the non-overcommit threads | |
2062 | // that we've seen a request for, so we kick this over to the event manager thread | |
2063 | ||
2064 | event_manager: | |
2065 | PTHREAD_TRACE(TRACE_wq_req_event_manager | DBG_FUNC_NONE, wq, wq->wq_event_manager_priority, wq->wq_requests[WORKQUEUE_EVENT_MANAGER_BUCKET], wq->wq_thscheduled_count[WORKQUEUE_EVENT_MANAGER_BUCKET], 0); | |
2066 | ||
2067 | if (wq->wq_requests[WORKQUEUE_EVENT_MANAGER_BUCKET] == 0){ | |
2068 | wq->wq_reqcount += 1; | |
2069 | wq->wq_requests[WORKQUEUE_EVENT_MANAGER_BUCKET] = 1; | |
2070 | } | |
2071 | wq->wq_kevent_requests[WORKQUEUE_EVENT_MANAGER_BUCKET] = 1; | |
2072 | ||
2073 | if (wq->wq_thscheduled_count[WORKQUEUE_EVENT_MANAGER_BUCKET] == 0) | |
2074 | WQ_TIMER_NEEDED(wq, start_timer); | |
2075 | ||
2076 | done: | |
2077 | workqueue_unlock(p); | |
2078 | ||
2079 | if (start_timer == TRUE) | |
2080 | workqueue_interval_timer_start(wq); | |
2081 | ||
2082 | PTHREAD_TRACE(TRACE_wq_kevent_req_threads | DBG_FUNC_END, wq, start_timer, 0, 0, 0); | |
2083 | ||
2084 | return THREAD_NULL; | |
2085 | } | |
2086 | ||
2087 | ||
2088 | static int wqops_thread_return(struct proc *p){ | |
2089 | thread_t th = current_thread(); | |
2090 | struct uthread *uth = pthread_kern->get_bsdthread_info(th); | |
2091 | struct threadlist *tl = util_get_thread_threadlist_entry(th); | |
2092 | ||
2093 | /* reset signal mask on the workqueue thread to default state */ | |
2094 | if (pthread_kern->uthread_get_sigmask(uth) != (sigset_t)(~workq_threadmask)) { | |
2095 | pthread_kern->proc_lock(p); | |
2096 | pthread_kern->uthread_set_sigmask(uth, ~workq_threadmask); | |
2097 | pthread_kern->proc_unlock(p); | |
2098 | } | |
2099 | ||
2100 | /* dropping WQ override counts has to be done outside the wq lock. */ | |
2101 | wq_thread_override_reset(th, THREAD_QOS_OVERRIDE_RESOURCE_WILDCARD); | |
2102 | ||
2103 | workqueue_lock_spin(p); | |
2104 | ||
2105 | struct workqueue *wq = (struct workqueue *)pthread_kern->proc_get_wqptr(p); | |
2106 | if (wq == NULL || !tl) { | |
2107 | workqueue_unlock(p); | |
2108 | ||
2109 | return EINVAL; | |
2110 | } | |
2111 | PTHREAD_TRACE(TRACE_wq_runitem | DBG_FUNC_END, wq, 0, 0, 0, 0); | |
2112 | ||
2113 | (void)workqueue_run_nextreq(p, wq, th, RUN_NEXTREQ_DEFAULT, 0); | |
2114 | /* | |
2115 | * workqueue_run_nextreq is responsible for | |
2116 | * dropping the workqueue lock in all cases | |
2117 | */ | |
2118 | return 0; | |
2119 | } | |
2120 | ||
2121 | /** | |
2122 | * Multiplexed call to interact with the workqueue mechanism | |
2123 | */ | |
2124 | int | |
2125 | _workq_kernreturn(struct proc *p, | |
2126 | int options, | |
2127 | __unused user_addr_t item, | |
2128 | int arg2, | |
2129 | int arg3, | |
2130 | int32_t *retval) | |
2131 | { | |
2132 | int error = 0; | |
2133 | ||
2134 | if (pthread_kern->proc_get_register(p) == 0) { | |
2135 | return EINVAL; | |
2136 | } | |
2137 | ||
2138 | switch (options) { | |
2139 | case WQOPS_QUEUE_NEWSPISUPP: { | |
2140 | /* | |
2141 | * arg2 = offset of serialno into dispatch queue | |
2142 | * arg3 = kevent support | |
2143 | */ | |
2144 | int offset = arg2; | |
2145 | if (arg3 & 0x01){ | |
2146 | // If we get here, then userspace has indicated support for kevent delivery. | |
2147 | } | |
2148 | ||
2149 | pthread_kern->proc_set_dispatchqueue_serialno_offset(p, (uint64_t)offset); | |
2150 | break; | |
2151 | } | |
2152 | case WQOPS_QUEUE_REQTHREADS: { | |
2153 | /* | |
2154 | * arg2 = number of threads to start | |
2155 | * arg3 = priority | |
2156 | */ | |
2157 | error = wqops_queue_reqthreads(p, arg2, arg3); | |
2158 | break; | |
2159 | } | |
2160 | case WQOPS_SET_EVENT_MANAGER_PRIORITY: { | |
2161 | /* | |
2162 | * arg2 = priority for the manager thread | |
2163 | * | |
2164 | * if _PTHREAD_PRIORITY_EVENT_MANAGER_FLAG is set, the | |
2165 | * ~_PTHREAD_PRIORITY_FLAGS_MASK contains a scheduling priority instead | |
2166 | * of a QOS value | |
2167 | */ | |
2168 | pthread_priority_t pri = arg2; | |
2169 | ||
2170 | workqueue_lock_spin(p); | |
2171 | struct workqueue *wq = (struct workqueue *)pthread_kern->proc_get_wqptr(p); | |
2172 | if (wq == NULL ) { | |
2173 | workqueue_unlock(p); | |
2174 | error = EINVAL; | |
2175 | break; | |
2176 | } | |
2177 | if (pri & _PTHREAD_PRIORITY_SCHED_PRI_FLAG){ | |
2178 | // If userspace passes a scheduling priority, that takes precidence | |
2179 | // over any QoS. (So, userspace should take care not to accidenatally | |
2180 | // lower the priority this way.) | |
2181 | uint32_t sched_pri = pri & (~_PTHREAD_PRIORITY_FLAGS_MASK); | |
2182 | if (wq->wq_event_manager_priority & _PTHREAD_PRIORITY_SCHED_PRI_FLAG){ | |
2183 | wq->wq_event_manager_priority = MAX(sched_pri, wq->wq_event_manager_priority & (~_PTHREAD_PRIORITY_FLAGS_MASK)) | |
2184 | | _PTHREAD_PRIORITY_SCHED_PRI_FLAG | _PTHREAD_PRIORITY_EVENT_MANAGER_FLAG; | |
2185 | } else { | |
2186 | wq->wq_event_manager_priority = sched_pri | |
2187 | | _PTHREAD_PRIORITY_SCHED_PRI_FLAG | _PTHREAD_PRIORITY_EVENT_MANAGER_FLAG; | |
2188 | } | |
2189 | } else if ((wq->wq_event_manager_priority & _PTHREAD_PRIORITY_SCHED_PRI_FLAG) == 0){ | |
2190 | int cur_qos = pthread_priority_get_qos_class(wq->wq_event_manager_priority); | |
2191 | int new_qos = pthread_priority_get_qos_class(pri); | |
2192 | wq->wq_event_manager_priority = (uint32_t)pthread_qos_class_get_priority(MAX(cur_qos, new_qos)) | _PTHREAD_PRIORITY_EVENT_MANAGER_FLAG; | |
2193 | } | |
2194 | workqueue_unlock(p); | |
2195 | break; | |
2196 | } | |
2197 | case WQOPS_THREAD_KEVENT_RETURN: { | |
2198 | int32_t kevent_retval; | |
2199 | int ret = kevent_qos_internal(p, -1, item, arg2, item, arg2, NULL, NULL, KEVENT_FLAG_WORKQ | KEVENT_FLAG_IMMEDIATE | KEVENT_FLAG_ERROR_EVENTS, &kevent_retval); | |
2200 | // We shouldn't be getting more errors out than events we put in, so | |
2201 | // reusing the input buffer should always provide enough space | |
2202 | assert(ret == KERN_SUCCESS && kevent_retval >= 0); | |
2203 | if (ret != KERN_SUCCESS){ | |
2204 | error = ret; | |
2205 | break; | |
2206 | } else if (kevent_retval > 0){ | |
2207 | assert(kevent_retval <= arg2); | |
2208 | *retval = kevent_retval; | |
2209 | error = 0; | |
2210 | break; | |
2211 | } | |
2212 | } /* FALLTHROUGH */ | |
2213 | case WQOPS_THREAD_RETURN: { | |
2214 | error = wqops_thread_return(p); | |
2215 | // NOT REACHED except in case of error | |
2216 | assert(error); | |
2217 | break; | |
2218 | } | |
2219 | default: | |
2220 | error = EINVAL; | |
2221 | break; | |
2222 | } | |
2223 | return (error); | |
2224 | } | |
2225 | ||
2226 | ||
2227 | static boolean_t | |
2228 | workqueue_run_one(proc_t p, struct workqueue *wq, boolean_t overcommit, pthread_priority_t priority) | |
2229 | { | |
2230 | boolean_t ran_one; | |
2231 | ||
2232 | if (wq->wq_thidlecount == 0) { | |
2233 | if (overcommit == FALSE) { | |
2234 | if (wq->wq_constrained_threads_scheduled < wq->wq_max_concurrency) | |
2235 | workqueue_addnewthread(wq, overcommit); | |
2236 | } else { | |
2237 | workqueue_addnewthread(wq, overcommit); | |
2238 | ||
2239 | if (wq->wq_thidlecount == 0) | |
2240 | return (FALSE); | |
2241 | } | |
2242 | } | |
2243 | ran_one = workqueue_run_nextreq(p, wq, THREAD_NULL, overcommit ? RUN_NEXTREQ_OVERCOMMIT : RUN_NEXTREQ_DEFAULT, priority); | |
2244 | /* | |
2245 | * workqueue_run_nextreq is responsible for | |
2246 | * dropping the workqueue lock in all cases | |
2247 | */ | |
2248 | workqueue_lock_spin(p); | |
2249 | ||
2250 | return (ran_one); | |
2251 | } | |
2252 | ||
2253 | /* | |
2254 | * this is a workqueue thread with no more | |
2255 | * work to do... park it for now | |
2256 | */ | |
2257 | static void | |
2258 | parkit(struct workqueue *wq, struct threadlist *tl, thread_t thread) | |
2259 | { | |
2260 | uint32_t us_to_wait; | |
2261 | ||
2262 | TAILQ_REMOVE(&wq->wq_thrunlist, tl, th_entry); | |
2263 | tl->th_flags &= ~TH_LIST_RUNNING; | |
2264 | ||
2265 | tl->th_flags |= TH_LIST_BLOCKED; | |
2266 | TAILQ_INSERT_HEAD(&wq->wq_thidlelist, tl, th_entry); | |
2267 | ||
2268 | pthread_kern->thread_sched_call(thread, NULL); | |
2269 | ||
2270 | OSAddAtomic(-1, &wq->wq_thactive_count[tl->th_priority]); | |
2271 | wq->wq_thscheduled_count[tl->th_priority]--; | |
2272 | wq->wq_threads_scheduled--; | |
2273 | ||
2274 | if (tl->th_flags & TH_LIST_CONSTRAINED) { | |
2275 | wq->wq_constrained_threads_scheduled--; | |
2276 | wq->wq_lflags &= ~WQL_EXCEEDED_CONSTRAINED_THREAD_LIMIT; | |
2277 | tl->th_flags &= ~TH_LIST_CONSTRAINED; | |
2278 | } | |
2279 | ||
2280 | if (wq->wq_thidlecount < 100) | |
2281 | us_to_wait = wq_reduce_pool_window_usecs - (wq->wq_thidlecount * (wq_reduce_pool_window_usecs / 100)); | |
2282 | else | |
2283 | us_to_wait = wq_reduce_pool_window_usecs / 100; | |
2284 | ||
2285 | wq->wq_thidlecount++; | |
2286 | wq->wq_lflags &= ~WQL_EXCEEDED_TOTAL_THREAD_LIMIT; | |
2287 | ||
2288 | assert_wait_timeout_with_leeway((caddr_t)tl, (THREAD_INTERRUPTIBLE), | |
2289 | TIMEOUT_URGENCY_SYS_BACKGROUND|TIMEOUT_URGENCY_LEEWAY, us_to_wait, | |
2290 | wq_reduce_pool_window_usecs, NSEC_PER_USEC); | |
2291 | ||
2292 | PTHREAD_TRACE1(TRACE_wq_thread_park | DBG_FUNC_START, wq, wq->wq_threads_scheduled, wq->wq_thidlecount, us_to_wait, thread_tid(thread)); | |
2293 | } | |
2294 | ||
2295 | static boolean_t may_start_constrained_thread(struct workqueue *wq, uint32_t at_priclass, uint32_t my_priclass, boolean_t *start_timer){ | |
2296 | if (wq->wq_constrained_threads_scheduled >= wq_max_constrained_threads) { | |
2297 | /* | |
2298 | * we need 1 or more constrained threads to return to the kernel before | |
2299 | * we can dispatch additional work | |
2300 | */ | |
2301 | return FALSE; | |
2302 | } | |
2303 | ||
2304 | uint32_t busycount = 0; | |
2305 | uint32_t thactive_count = wq->wq_thactive_count[at_priclass]; | |
2306 | ||
2307 | // Has our most recently blocked thread blocked recently enough that we | |
2308 | // should still consider it busy? | |
2309 | // XXX should this be wq->wq_thscheduled_count[at_priclass] > thactive_count ? | |
2310 | if (wq->wq_thscheduled_count[at_priclass]) { | |
2311 | if (wq_thread_is_busy(mach_absolute_time(), &wq->wq_lastblocked_ts[at_priclass])) { | |
2312 | busycount++; | |
2313 | } | |
2314 | } | |
2315 | ||
2316 | if (my_priclass < WORKQUEUE_NUM_BUCKETS && my_priclass == at_priclass){ | |
2317 | /* | |
2318 | * dont't count this thread as currently active | |
2319 | */ | |
2320 | thactive_count--; | |
2321 | } | |
2322 | ||
2323 | if (thactive_count + busycount >= wq->wq_max_concurrency) { | |
2324 | if (busycount && start_timer) { | |
2325 | /* | |
2326 | * we found at least 1 thread in the | |
2327 | * 'busy' state... make sure we start | |
2328 | * the timer because if they are the only | |
2329 | * threads keeping us from scheduling | |
2330 | * this work request, we won't get a callback | |
2331 | * to kick off the timer... we need to | |
2332 | * start it now... | |
2333 | */ | |
2334 | WQ_TIMER_NEEDED(wq, *start_timer); | |
2335 | } | |
2336 | ||
2337 | PTHREAD_TRACE(TRACE_wq_overcommitted|DBG_FUNC_NONE, wq, (start_timer ? 1<<7 : 0) | pthread_priority_from_class_index(at_priclass), thactive_count, busycount, 0); | |
2338 | ||
2339 | return FALSE; | |
2340 | } | |
2341 | return TRUE; | |
2342 | } | |
2343 | ||
2344 | static struct threadlist *pop_from_thidlelist(struct workqueue *wq, uint32_t priclass, int *upcall_flags, int *wake_thread){ | |
2345 | struct threadlist *tl = TAILQ_FIRST(&wq->wq_thidlelist); | |
2346 | TAILQ_REMOVE(&wq->wq_thidlelist, tl, th_entry); | |
2347 | wq->wq_thidlecount--; | |
2348 | ||
2349 | TAILQ_INSERT_TAIL(&wq->wq_thrunlist, tl, th_entry); | |
2350 | ||
2351 | if ((tl->th_flags & TH_LIST_SUSPENDED) == TH_LIST_SUSPENDED) { | |
2352 | tl->th_flags &= ~TH_LIST_SUSPENDED; | |
2353 | *upcall_flags &= ~WQ_FLAG_THREAD_REUSE; | |
2354 | ||
2355 | } else if ((tl->th_flags & TH_LIST_BLOCKED) == TH_LIST_BLOCKED) { | |
2356 | tl->th_flags &= ~TH_LIST_BLOCKED; | |
2357 | *wake_thread = 1; | |
2358 | } | |
2359 | tl->th_flags |= TH_LIST_RUNNING | TH_LIST_BUSY; | |
2360 | ||
2361 | wq->wq_threads_scheduled++; | |
2362 | wq->wq_thscheduled_count[priclass]++; | |
2363 | OSAddAtomic(1, &wq->wq_thactive_count[priclass]); | |
2364 | ||
2365 | return tl; | |
2366 | } | |
2367 | ||
2368 | static void | |
2369 | reset_to_priority(struct threadlist *tl, pthread_priority_t pri){ | |
2370 | kern_return_t ret; | |
2371 | thread_t th = tl->th_thread; | |
2372 | ||
2373 | if (tl->th_flags & TH_LIST_EVENT_MGR_SCHED_PRI){ | |
2374 | thread_precedence_policy_data_t precedinfo = { | |
2375 | .importance = 0 | |
2376 | }; | |
2377 | ret = pthread_kern->thread_policy_set_internal(th, THREAD_PRECEDENCE_POLICY, (thread_policy_t)&precedinfo, THREAD_PRECEDENCE_POLICY_COUNT); | |
2378 | assert(ret == KERN_SUCCESS || ret == KERN_TERMINATED); | |
2379 | tl->th_flags &= ~TH_LIST_EVENT_MGR_SCHED_PRI; | |
2380 | } | |
2381 | ||
2382 | thread_qos_policy_data_t qosinfo = { | |
2383 | .qos_tier = pthread_priority_get_qos_class(pri), | |
2384 | .tier_importance = 0 | |
2385 | }; | |
2386 | ret = pthread_kern->thread_policy_set_internal(th, THREAD_QOS_POLICY, (thread_policy_t)&qosinfo, THREAD_QOS_POLICY_COUNT); | |
2387 | assert(ret == KERN_SUCCESS || ret == KERN_TERMINATED); | |
2388 | } | |
2389 | ||
2390 | static void | |
2391 | reset_to_schedpri(struct threadlist *tl, pthread_priority_t pri){ | |
2392 | kern_return_t ret; | |
2393 | thread_t th = tl->th_thread; | |
2394 | ||
2395 | thread_qos_policy_data_t qosinfo = { | |
2396 | .qos_tier = THREAD_QOS_UNSPECIFIED, | |
2397 | .tier_importance = 0 | |
2398 | }; | |
2399 | ret = pthread_kern->thread_policy_set_internal(th, THREAD_QOS_POLICY, (thread_policy_t)&qosinfo, THREAD_QOS_POLICY_COUNT); | |
2400 | assert(ret == KERN_SUCCESS || ret == KERN_TERMINATED); | |
2401 | ||
2402 | thread_precedence_policy_data_t precedinfo = { | |
2403 | .importance = ((pri & (~_PTHREAD_PRIORITY_FLAGS_MASK)) - BASEPRI_DEFAULT) | |
2404 | }; | |
2405 | ret = pthread_kern->thread_policy_set_internal(th, THREAD_PRECEDENCE_POLICY, (thread_policy_t)&precedinfo, THREAD_PRECEDENCE_POLICY_COUNT); | |
2406 | assert(ret == KERN_SUCCESS || ret == KERN_TERMINATED); | |
2407 | ||
2408 | tl->th_flags |= TH_LIST_EVENT_MGR_SCHED_PRI; | |
2409 | } | |
2410 | ||
2411 | /** | |
2412 | * grabs a thread for a request | |
2413 | * | |
2414 | * - called with the workqueue lock held... | |
2415 | * - responsible for dropping it in all cases | |
2416 | * - if provided mode is for overcommit, doesn't consume a reqcount | |
2417 | * | |
2418 | */ | |
2419 | static boolean_t | |
2420 | workqueue_run_nextreq(proc_t p, struct workqueue *wq, thread_t thread, | |
2421 | enum run_nextreq_mode mode, pthread_priority_t oc_prio) | |
2422 | { | |
2423 | thread_t th_to_run = THREAD_NULL; | |
2424 | int wake_thread = 0; | |
2425 | int upcall_flags = WQ_FLAG_THREAD_REUSE; | |
2426 | uint32_t priclass; | |
2427 | struct threadlist *tl = NULL; | |
2428 | struct uthread *uth = NULL; | |
2429 | boolean_t start_timer = FALSE; | |
2430 | ||
2431 | // valid modes to call this function with | |
2432 | assert(mode == RUN_NEXTREQ_DEFAULT || mode == RUN_NEXTREQ_OVERCOMMIT || mode == RUN_NEXTREQ_UNCONSTRAINED); | |
2433 | // may only have a priority if in OVERCOMMIT mode | |
2434 | assert(mode == RUN_NEXTREQ_OVERCOMMIT || oc_prio == 0); | |
2435 | // thread == thread_null means "please spin up a new workqueue thread, we can't reuse this" | |
2436 | // thread != thread_null is thread reuse, and must be the current thread | |
2437 | assert(thread == THREAD_NULL || thread == current_thread()); | |
2438 | ||
2439 | PTHREAD_TRACE(TRACE_wq_run_nextitem|DBG_FUNC_START, wq, thread, wq->wq_thidlecount, wq->wq_reqcount, 0); | |
2440 | ||
2441 | if (thread != THREAD_NULL) { | |
2442 | uth = pthread_kern->get_bsdthread_info(thread); | |
2443 | ||
2444 | if ((tl = pthread_kern->uthread_get_threadlist(uth)) == NULL) { | |
2445 | panic("wq thread with no threadlist"); | |
2446 | } | |
2447 | } | |
2448 | ||
2449 | /* | |
2450 | * from here until we drop the workq lock | |
2451 | * we can't be pre-empted since we hold | |
2452 | * the lock in spin mode... this is important | |
2453 | * since we have to independently update the priority that | |
2454 | * the thread is associated with and the priorty based | |
2455 | * counters that "workqueue_callback" also changes and bases | |
2456 | * decisons on. | |
2457 | */ | |
2458 | ||
2459 | if (mode == RUN_NEXTREQ_OVERCOMMIT) { | |
2460 | priclass = pthread_priority_get_class_index(oc_prio); | |
2461 | upcall_flags |= WQ_FLAG_THREAD_OVERCOMMIT; | |
2462 | } else if (wq->wq_reqcount == 0){ | |
2463 | // no work to do. we'll check again when new work arrives. | |
2464 | goto done; | |
2465 | } else if (wq->wq_requests[WORKQUEUE_EVENT_MANAGER_BUCKET] && | |
2466 | ((wq->wq_thscheduled_count[WORKQUEUE_EVENT_MANAGER_BUCKET] == 0) || | |
2467 | (thread != THREAD_NULL && tl->th_priority == WORKQUEUE_EVENT_MANAGER_BUCKET))){ | |
2468 | // There's an event manager request and either: | |
2469 | // - no event manager currently running | |
2470 | // - we are re-using the event manager | |
2471 | mode = RUN_NEXTREQ_EVENT_MANAGER; | |
2472 | priclass = WORKQUEUE_EVENT_MANAGER_BUCKET; | |
2473 | upcall_flags |= WQ_FLAG_THREAD_EVENT_MANAGER; | |
2474 | if (wq->wq_kevent_requests[WORKQUEUE_EVENT_MANAGER_BUCKET]) | |
2475 | upcall_flags |= WQ_FLAG_THREAD_KEVENT; | |
2476 | } else { | |
2477 | // Find highest priority and check for special request types | |
2478 | for (priclass = 0; priclass < WORKQUEUE_EVENT_MANAGER_BUCKET; priclass++) { | |
2479 | if (wq->wq_requests[priclass]) | |
2480 | break; | |
2481 | } | |
2482 | if (priclass == WORKQUEUE_EVENT_MANAGER_BUCKET){ | |
2483 | // only request should have been event manager since it's not in a bucket, | |
2484 | // but we weren't able to handle it since there's already an event manager running, | |
2485 | // so we fell into this case | |
2486 | assert(wq->wq_requests[WORKQUEUE_EVENT_MANAGER_BUCKET] == 1 && | |
2487 | wq->wq_thscheduled_count[WORKQUEUE_EVENT_MANAGER_BUCKET] == 1 && | |
2488 | wq->wq_reqcount == 1); | |
2489 | goto done; | |
2490 | } | |
2491 | ||
2492 | if (wq->wq_kevent_ocrequests[priclass]){ | |
2493 | mode = RUN_NEXTREQ_DEFERRED_OVERCOMMIT; | |
2494 | upcall_flags |= WQ_FLAG_THREAD_KEVENT; | |
2495 | upcall_flags |= WQ_FLAG_THREAD_OVERCOMMIT; | |
2496 | } else if (wq->wq_ocrequests[priclass]){ | |
2497 | mode = RUN_NEXTREQ_DEFERRED_OVERCOMMIT; | |
2498 | upcall_flags |= WQ_FLAG_THREAD_OVERCOMMIT; | |
2499 | } else if (wq->wq_kevent_requests[priclass]){ | |
2500 | upcall_flags |= WQ_FLAG_THREAD_KEVENT; | |
2501 | } | |
2502 | } | |
2503 | ||
2504 | if (mode == RUN_NEXTREQ_DEFAULT /* non-overcommit */){ | |
2505 | uint32_t my_priclass = (thread != THREAD_NULL) ? tl->th_priority : WORKQUEUE_NUM_BUCKETS; | |
2506 | if (may_start_constrained_thread(wq, priclass, my_priclass, &start_timer) == FALSE){ | |
2507 | // per policy, we won't start another constrained thread | |
2508 | goto done; | |
2509 | } | |
2510 | } | |
2511 | ||
2512 | if (thread != THREAD_NULL) { | |
2513 | /* | |
2514 | * thread is non-NULL here when we return from userspace | |
2515 | * in workq_kernreturn, rather than trying to find a thread | |
2516 | * we pick up new work for this specific thread. | |
2517 | */ | |
2518 | th_to_run = thread; | |
2519 | } else if (wq->wq_thidlecount == 0) { | |
2520 | /* | |
2521 | * we have no additional threads waiting to pick up | |
2522 | * work, however, there is additional work to do. | |
2523 | */ | |
2524 | WQ_TIMER_NEEDED(wq, start_timer); | |
2525 | ||
2526 | PTHREAD_TRACE(TRACE_wq_stalled, wq, wq->wq_nthreads, start_timer, 0, 0); | |
2527 | ||
2528 | goto done; | |
2529 | } else { | |
2530 | // there is both work available and an idle thread, so activate a thread | |
2531 | tl = pop_from_thidlelist(wq, priclass, &upcall_flags, &wake_thread); | |
2532 | th_to_run = tl->th_thread; | |
2533 | } | |
2534 | ||
2535 | // Adjust counters and thread flags AKA consume the request | |
2536 | // TODO: It would be lovely if OVERCOMMIT consumed reqcount | |
2537 | switch (mode) { | |
2538 | case RUN_NEXTREQ_DEFAULT: | |
2539 | case RUN_NEXTREQ_UNCONSTRAINED: | |
2540 | wq->wq_reqcount--; | |
2541 | wq->wq_requests[priclass]--; | |
2542 | ||
2543 | if (mode == RUN_NEXTREQ_DEFAULT){ | |
2544 | if (!(tl->th_flags & TH_LIST_CONSTRAINED)) { | |
2545 | wq->wq_constrained_threads_scheduled++; | |
2546 | tl->th_flags |= TH_LIST_CONSTRAINED; | |
2547 | } | |
2548 | } else if (mode == RUN_NEXTREQ_UNCONSTRAINED){ | |
2549 | if (tl->th_flags & TH_LIST_CONSTRAINED) { | |
2550 | // XXX: Why aren't we unsetting CONSTRAINED_THREAD_LIMIT here | |
2551 | wq->wq_constrained_threads_scheduled--; | |
2552 | tl->th_flags &= ~TH_LIST_CONSTRAINED; | |
2553 | } | |
2554 | } | |
2555 | if (upcall_flags & WQ_FLAG_THREAD_KEVENT){ | |
2556 | wq->wq_kevent_requests[priclass]--; | |
2557 | } | |
2558 | break; | |
2559 | ||
2560 | case RUN_NEXTREQ_EVENT_MANAGER: | |
2561 | wq->wq_reqcount--; | |
2562 | wq->wq_requests[priclass]--; | |
2563 | ||
2564 | if (tl->th_flags & TH_LIST_CONSTRAINED) { | |
2565 | wq->wq_constrained_threads_scheduled--; | |
2566 | tl->th_flags &= ~TH_LIST_CONSTRAINED; | |
2567 | } | |
2568 | if (upcall_flags & WQ_FLAG_THREAD_KEVENT){ | |
2569 | wq->wq_kevent_requests[priclass]--; | |
2570 | } | |
2571 | break; | |
2572 | ||
2573 | case RUN_NEXTREQ_DEFERRED_OVERCOMMIT: | |
2574 | wq->wq_reqcount--; | |
2575 | wq->wq_requests[priclass]--; | |
2576 | if (upcall_flags & WQ_FLAG_THREAD_KEVENT){ | |
2577 | wq->wq_kevent_ocrequests[priclass]--; | |
2578 | } else { | |
2579 | wq->wq_ocrequests[priclass]--; | |
2580 | } | |
2581 | /* FALLTHROUGH */ | |
2582 | case RUN_NEXTREQ_OVERCOMMIT: | |
2583 | if (tl->th_flags & TH_LIST_CONSTRAINED) { | |
2584 | wq->wq_constrained_threads_scheduled--; | |
2585 | tl->th_flags &= ~TH_LIST_CONSTRAINED; | |
2586 | } | |
2587 | break; | |
2588 | } | |
2589 | ||
2590 | // Confirm we've maintained our counter invariants | |
2591 | assert(wq->wq_requests[priclass] < UINT16_MAX); | |
2592 | assert(wq->wq_ocrequests[priclass] < UINT16_MAX); | |
2593 | assert(wq->wq_kevent_requests[priclass] < UINT16_MAX); | |
2594 | assert(wq->wq_kevent_ocrequests[priclass] < UINT16_MAX); | |
2595 | assert(wq->wq_ocrequests[priclass] + wq->wq_kevent_requests[priclass] + | |
2596 | wq->wq_kevent_ocrequests[priclass] <= | |
2597 | wq->wq_requests[priclass]); | |
2598 | ||
2599 | uint32_t orig_class = tl->th_priority; | |
2600 | tl->th_priority = (uint8_t)priclass; | |
2601 | ||
2602 | if ((thread != THREAD_NULL) && (orig_class != priclass)) { | |
2603 | /* | |
2604 | * we need to adjust these counters based on this | |
2605 | * thread's new disposition w/r to priority | |
2606 | */ | |
2607 | OSAddAtomic(-1, &wq->wq_thactive_count[orig_class]); | |
2608 | OSAddAtomic(1, &wq->wq_thactive_count[priclass]); | |
2609 | ||
2610 | wq->wq_thscheduled_count[orig_class]--; | |
2611 | wq->wq_thscheduled_count[priclass]++; | |
2612 | } | |
2613 | wq->wq_thread_yielded_count = 0; | |
2614 | ||
2615 | workqueue_unlock(p); | |
2616 | ||
2617 | pthread_priority_t outgoing_priority; | |
2618 | if (mode == RUN_NEXTREQ_EVENT_MANAGER){ | |
2619 | outgoing_priority = wq->wq_event_manager_priority; | |
2620 | } else { | |
2621 | outgoing_priority = pthread_priority_from_class_index(priclass); | |
2622 | } | |
2623 | ||
2624 | PTHREAD_TRACE(TRACE_wq_reset_priority | DBG_FUNC_START, wq, thread_tid(tl->th_thread), outgoing_priority, 0, 0); | |
2625 | if (outgoing_priority & _PTHREAD_PRIORITY_SCHED_PRI_FLAG){ | |
2626 | reset_to_schedpri(tl, outgoing_priority & (~_PTHREAD_PRIORITY_FLAGS_MASK)); | |
2627 | } else if (orig_class != priclass) { | |
2628 | reset_to_priority(tl, outgoing_priority); | |
2629 | } | |
2630 | PTHREAD_TRACE(TRACE_wq_reset_priority | DBG_FUNC_END, wq, thread_tid(tl->th_thread), outgoing_priority, 0, 0); | |
2631 | ||
2632 | /* | |
2633 | * if current thread is reused for work request, does not return via unix_syscall | |
2634 | */ | |
2635 | wq_runreq(p, outgoing_priority, th_to_run, tl, upcall_flags, wake_thread, (thread == th_to_run)); | |
2636 | ||
2637 | PTHREAD_TRACE(TRACE_wq_run_nextitem|DBG_FUNC_END, wq, thread_tid(th_to_run), mode == RUN_NEXTREQ_OVERCOMMIT, 1, 0); | |
2638 | ||
2639 | return (TRUE); | |
2640 | ||
2641 | done: | |
2642 | if (thread != THREAD_NULL){ | |
2643 | parkit(wq,tl,thread); | |
2644 | } | |
2645 | ||
2646 | workqueue_unlock(p); | |
2647 | ||
2648 | if (start_timer) | |
2649 | workqueue_interval_timer_start(wq); | |
2650 | ||
2651 | PTHREAD_TRACE(TRACE_wq_run_nextitem | DBG_FUNC_END, wq, thread_tid(thread), start_timer, 3, 0); | |
2652 | ||
2653 | if (thread != THREAD_NULL){ | |
2654 | thread_block((thread_continue_t)wq_unpark_continue); | |
2655 | /* NOT REACHED */ | |
2656 | } | |
2657 | ||
2658 | return (FALSE); | |
2659 | } | |
2660 | ||
2661 | /** | |
2662 | * Called when a new thread is created | |
2663 | */ | |
2664 | static void | |
2665 | wq_unsuspend_continue(void) | |
2666 | { | |
2667 | struct uthread *uth = NULL; | |
2668 | thread_t th_to_unsuspend; | |
2669 | struct threadlist *tl; | |
2670 | proc_t p; | |
2671 | ||
2672 | th_to_unsuspend = current_thread(); | |
2673 | uth = pthread_kern->get_bsdthread_info(th_to_unsuspend); | |
2674 | ||
2675 | if (uth != NULL && (tl = pthread_kern->uthread_get_threadlist(uth)) != NULL) { | |
2676 | ||
2677 | if ((tl->th_flags & (TH_LIST_RUNNING | TH_LIST_BUSY)) == TH_LIST_RUNNING) { | |
2678 | /* | |
2679 | * most likely a normal resume of this thread occurred... | |
2680 | * it's also possible that the thread was aborted after we | |
2681 | * finished setting it up so that it could be dispatched... if | |
2682 | * so, thread_bootstrap_return will notice the abort and put | |
2683 | * the thread on the path to self-destruction | |
2684 | */ | |
2685 | normal_resume_to_user: | |
2686 | pthread_kern->thread_sched_call(th_to_unsuspend, workqueue_callback); | |
2687 | pthread_kern->thread_bootstrap_return(); | |
2688 | } | |
2689 | /* | |
2690 | * if we get here, it's because we've been resumed due to | |
2691 | * an abort of this thread (process is crashing) | |
2692 | */ | |
2693 | p = current_proc(); | |
2694 | ||
2695 | workqueue_lock_spin(p); | |
2696 | ||
2697 | if (tl->th_flags & TH_LIST_SUSPENDED) { | |
2698 | /* | |
2699 | * thread has been aborted while still on our idle | |
2700 | * queue... remove it from our domain... | |
2701 | * workqueue_removethread consumes the lock | |
2702 | */ | |
2703 | workqueue_removethread(tl, 0); | |
2704 | pthread_kern->thread_bootstrap_return(); | |
2705 | } | |
2706 | while ((tl->th_flags & TH_LIST_BUSY)) { | |
2707 | /* | |
2708 | * this thread was aborted after we started making | |
2709 | * it runnable, but before we finished dispatching it... | |
2710 | * we need to wait for that process to finish, | |
2711 | * and we need to ask for a wakeup instead of a | |
2712 | * thread_resume since the abort has already resumed us | |
2713 | */ | |
2714 | tl->th_flags |= TH_LIST_NEED_WAKEUP; | |
2715 | ||
2716 | assert_wait((caddr_t)tl, (THREAD_UNINT)); | |
2717 | ||
2718 | workqueue_unlock(p); | |
2719 | thread_block(THREAD_CONTINUE_NULL); | |
2720 | workqueue_lock_spin(p); | |
2721 | } | |
2722 | workqueue_unlock(p); | |
2723 | /* | |
2724 | * we have finished setting up the thread's context... | |
2725 | * thread_bootstrap_return will take us through the abort path | |
2726 | * where the thread will self destruct | |
2727 | */ | |
2728 | goto normal_resume_to_user; | |
2729 | } | |
2730 | pthread_kern->thread_bootstrap_return(); | |
2731 | } | |
2732 | ||
2733 | /** | |
2734 | * parked thread wakes up | |
2735 | */ | |
2736 | static void | |
2737 | wq_unpark_continue(void) | |
2738 | { | |
2739 | struct uthread *uth; | |
2740 | struct threadlist *tl; | |
2741 | ||
2742 | thread_t th_to_unpark = current_thread(); | |
2743 | ||
2744 | if ((uth = pthread_kern->get_bsdthread_info(th_to_unpark)) == NULL) | |
2745 | goto done; | |
2746 | if ((tl = pthread_kern->uthread_get_threadlist(uth)) == NULL) | |
2747 | goto done; | |
2748 | ||
2749 | /* | |
2750 | * check if a normal wakeup of this thread occurred... if so, there's no need | |
2751 | * for any synchronization with the timer and wq_runreq so we just skip all this. | |
2752 | */ | |
2753 | if ((tl->th_flags & (TH_LIST_RUNNING | TH_LIST_BUSY)) != TH_LIST_RUNNING) { | |
2754 | proc_t p = current_proc(); | |
2755 | ||
2756 | workqueue_lock_spin(p); | |
2757 | ||
2758 | if ( !(tl->th_flags & TH_LIST_RUNNING)) { | |
2759 | /* | |
2760 | * the timer popped us out and we've not | |
2761 | * been moved off of the idle list | |
2762 | * so we should now self-destruct | |
2763 | * | |
2764 | * workqueue_removethread consumes the lock | |
2765 | */ | |
2766 | workqueue_removethread(tl, 0); | |
2767 | pthread_kern->unix_syscall_return(0); | |
2768 | } | |
2769 | ||
2770 | /* | |
2771 | * the timer woke us up, but we have already | |
2772 | * started to make this a runnable thread, | |
2773 | * but have not yet finished that process... | |
2774 | * so wait for the normal wakeup | |
2775 | */ | |
2776 | while ((tl->th_flags & TH_LIST_BUSY)) { | |
2777 | ||
2778 | assert_wait((caddr_t)tl, (THREAD_UNINT)); | |
2779 | ||
2780 | workqueue_unlock(p); | |
2781 | ||
2782 | thread_block(THREAD_CONTINUE_NULL); | |
2783 | ||
2784 | workqueue_lock_spin(p); | |
2785 | } | |
2786 | ||
2787 | /* | |
2788 | * we have finished setting up the thread's context | |
2789 | * now we can return as if we got a normal wakeup | |
2790 | */ | |
2791 | workqueue_unlock(p); | |
2792 | } | |
2793 | ||
2794 | pthread_kern->thread_sched_call(th_to_unpark, workqueue_callback); | |
2795 | ||
2796 | // FIXME: What's this? | |
2797 | PTHREAD_TRACE(0xefffd018 | DBG_FUNC_END, tl->th_workq, 0, 0, 0, 0); | |
2798 | ||
2799 | done: | |
2800 | ||
2801 | // XXX should be using unix_syscall_return(EJUSTRETURN) | |
2802 | pthread_kern->thread_exception_return(); | |
2803 | } | |
2804 | ||
2805 | ||
2806 | ||
2807 | static void | |
2808 | wq_runreq(proc_t p, pthread_priority_t priority, thread_t th, struct threadlist *tl, | |
2809 | int flags, int wake_thread, int return_directly) | |
2810 | { | |
2811 | int ret = 0; | |
2812 | boolean_t need_resume = FALSE; | |
2813 | ||
2814 | PTHREAD_TRACE1(TRACE_wq_runitem | DBG_FUNC_START, tl->th_workq, flags, priority, thread_tid(current_thread()), thread_tid(th)); | |
2815 | ||
2816 | ret = _setup_wqthread(p, th, priority, flags, tl); | |
2817 | ||
2818 | if (ret != 0) | |
2819 | panic("setup_wqthread failed %x\n", ret); | |
2820 | ||
2821 | if (return_directly) { | |
2822 | PTHREAD_TRACE(TRACE_wq_run_nextitem|DBG_FUNC_END, tl->th_workq, 0, 0, 4, 0); | |
2823 | ||
2824 | // XXX should be using unix_syscall_return(EJUSTRETURN) | |
2825 | pthread_kern->thread_exception_return(); | |
2826 | panic("wq_runreq: thread_exception_return returned ...\n"); | |
2827 | } | |
2828 | if (wake_thread) { | |
2829 | workqueue_lock_spin(p); | |
2830 | ||
2831 | tl->th_flags &= ~TH_LIST_BUSY; | |
2832 | wakeup(tl); | |
2833 | ||
2834 | workqueue_unlock(p); | |
2835 | } else { | |
2836 | PTHREAD_TRACE1(TRACE_wq_thread_suspend | DBG_FUNC_END, tl->th_workq, 0, 0, thread_tid(current_thread()), thread_tid(th)); | |
2837 | ||
2838 | workqueue_lock_spin(p); | |
2839 | ||
2840 | if (tl->th_flags & TH_LIST_NEED_WAKEUP) { | |
2841 | wakeup(tl); | |
2842 | } else { | |
2843 | need_resume = TRUE; | |
2844 | } | |
2845 | ||
2846 | tl->th_flags &= ~(TH_LIST_BUSY | TH_LIST_NEED_WAKEUP); | |
2847 | ||
2848 | workqueue_unlock(p); | |
2849 | ||
2850 | if (need_resume) { | |
2851 | /* | |
2852 | * need to do this outside of the workqueue spin lock | |
2853 | * since thread_resume locks the thread via a full mutex | |
2854 | */ | |
2855 | pthread_kern->thread_resume(th); | |
2856 | } | |
2857 | } | |
2858 | } | |
2859 | ||
2860 | #define KEVENT_LIST_LEN 16 | |
2861 | #define KEVENT_DATA_SIZE (32 * 1024) | |
2862 | ||
2863 | /** | |
2864 | * configures initial thread stack/registers to jump into: | |
2865 | * _pthread_wqthread(pthread_t self, mach_port_t kport, void *stackaddr, void *keventlist, int flags, int nkevents); | |
2866 | * to get there we jump through assembily stubs in pthread_asm.s. Those | |
2867 | * routines setup a stack frame, using the current stack pointer, and marshall | |
2868 | * arguments from registers to the stack as required by the ABI. | |
2869 | * | |
2870 | * One odd thing we do here is to start the pthread_t 4k below what would be the | |
2871 | * top of the stack otherwise. This is because usually only the first 4k of the | |
2872 | * pthread_t will be used and so we want to put it on the same 16k page as the | |
2873 | * top of the stack to save memory. | |
2874 | * | |
2875 | * When we are done the stack will look like: | |
2876 | * |-----------| th_stackaddr + th_allocsize | |
2877 | * |pthread_t | th_stackaddr + DEFAULT_STACKSIZE + guardsize + PTHREAD_STACK_OFFSET | |
2878 | * |kevent list| optionally - at most KEVENT_LIST_LEN events | |
2879 | * |kevent data| optionally - at most KEVENT_DATA_SIZE bytes | |
2880 | * |stack gap | bottom aligned to 16 bytes, and at least as big as stack_gap_min | |
2881 | * | STACK | | |
2882 | * | ⇓ | | |
2883 | * | | | |
2884 | * |guard page | guardsize | |
2885 | * |-----------| th_stackaddr | |
2886 | */ | |
2887 | int | |
2888 | _setup_wqthread(proc_t p, thread_t th, pthread_priority_t priority, int flags, struct threadlist *tl) | |
2889 | { | |
2890 | int error = 0; | |
2891 | ||
2892 | const vm_size_t guardsize = vm_map_page_size(tl->th_workq->wq_map); | |
2893 | const vm_size_t stack_gap_min = (proc_is64bit(p) == 0) ? C_32_STK_ALIGN : C_64_REDZONE_LEN; | |
2894 | const vm_size_t stack_align_min = (proc_is64bit(p) == 0) ? C_32_STK_ALIGN : C_64_STK_ALIGN; | |
2895 | ||
2896 | user_addr_t pthread_self_addr = (user_addr_t)(tl->th_stackaddr + PTH_DEFAULT_STACKSIZE + guardsize + PTHREAD_T_OFFSET); | |
2897 | user_addr_t stack_top_addr = (user_addr_t)((pthread_self_addr - stack_gap_min) & -stack_align_min); | |
2898 | user_addr_t stack_bottom_addr = (user_addr_t)(tl->th_stackaddr + guardsize); | |
2899 | ||
2900 | /* Put the QoS class value into the lower bits of the reuse_thread register, this is where | |
2901 | * the thread priority used to be stored anyway. | |
2902 | */ | |
2903 | flags |= (_pthread_priority_get_qos_newest(priority) & WQ_FLAG_THREAD_PRIOMASK); | |
2904 | ||
2905 | flags |= WQ_FLAG_THREAD_NEWSPI; | |
2906 | ||
2907 | user_addr_t kevent_list = NULL; | |
2908 | int kevent_count = 0; | |
2909 | if (flags & WQ_FLAG_THREAD_KEVENT){ | |
2910 | kevent_list = pthread_self_addr - KEVENT_LIST_LEN * sizeof(struct kevent_qos_s); | |
2911 | kevent_count = KEVENT_LIST_LEN; | |
2912 | ||
2913 | user_addr_t kevent_data_buf = kevent_list - KEVENT_DATA_SIZE; | |
2914 | user_size_t kevent_data_available = KEVENT_DATA_SIZE; | |
2915 | ||
2916 | int32_t events_out = 0; | |
2917 | ||
2918 | int ret = kevent_qos_internal(p, -1, NULL, 0, kevent_list, kevent_count, | |
2919 | kevent_data_buf, &kevent_data_available, | |
2920 | KEVENT_FLAG_WORKQ | KEVENT_FLAG_STACK_DATA | KEVENT_FLAG_STACK_EVENTS | KEVENT_FLAG_IMMEDIATE, | |
2921 | &events_out); | |
2922 | ||
2923 | // squash any errors into just empty output on non-debug builds | |
2924 | assert(ret == KERN_SUCCESS && events_out != -1); | |
2925 | if (ret != KERN_SUCCESS || events_out == -1){ | |
2926 | events_out = 0; | |
2927 | kevent_data_available = KEVENT_DATA_SIZE; | |
2928 | } | |
2929 | ||
2930 | // We shouldn't get data out if there aren't events available | |
2931 | assert(events_out != 0 || kevent_data_available == KEVENT_DATA_SIZE); | |
2932 | ||
2933 | if (events_out >= 0){ | |
2934 | kevent_count = events_out; | |
2935 | kevent_list = pthread_self_addr - kevent_count * sizeof(struct kevent_qos_s); | |
2936 | ||
2937 | if (kevent_data_available == KEVENT_DATA_SIZE){ | |
2938 | stack_top_addr = (kevent_list - stack_gap_min) & -stack_align_min; | |
2939 | } else { | |
2940 | stack_top_addr = (kevent_data_buf + kevent_data_available - stack_gap_min) & -stack_align_min; | |
2941 | } | |
2942 | } else { | |
2943 | kevent_list = NULL; | |
2944 | kevent_count = 0; | |
2945 | } | |
2946 | } | |
2947 | ||
2948 | #if defined(__i386__) || defined(__x86_64__) | |
2949 | int isLP64 = proc_is64bit(p); | |
2950 | ||
2951 | if (isLP64 == 0) { | |
2952 | x86_thread_state32_t state = { | |
2953 | .eip = (unsigned int)pthread_kern->proc_get_wqthread(p), | |
2954 | .eax = /* arg0 */ (unsigned int)pthread_self_addr, | |
2955 | .ebx = /* arg1 */ (unsigned int)tl->th_thport, | |
2956 | .ecx = /* arg2 */ (unsigned int)stack_bottom_addr, | |
2957 | .edx = /* arg3 */ (unsigned int)kevent_list, | |
2958 | .edi = /* arg4 */ (unsigned int)flags, | |
2959 | .esi = /* arg5 */ (unsigned int)kevent_count, | |
2960 | ||
2961 | .esp = (int)((vm_offset_t)stack_top_addr), | |
2962 | }; | |
2963 | ||
2964 | (void)pthread_kern->thread_set_wq_state32(th, (thread_state_t)&state); | |
2965 | } else { | |
2966 | x86_thread_state64_t state64 = { | |
2967 | // x86-64 already passes all the arguments in registers, so we just put them in their final place here | |
2968 | .rip = (uint64_t)pthread_kern->proc_get_wqthread(p), | |
2969 | .rdi = (uint64_t)pthread_self_addr, | |
2970 | .rsi = (uint64_t)tl->th_thport, | |
2971 | .rdx = (uint64_t)stack_bottom_addr, | |
2972 | .rcx = (uint64_t)kevent_list, | |
2973 | .r8 = (uint64_t)flags, | |
2974 | .r9 = (uint64_t)kevent_count, | |
2975 | ||
2976 | .rsp = (uint64_t)(stack_top_addr) | |
2977 | }; | |
2978 | ||
2979 | error = pthread_kern->thread_set_wq_state64(th, (thread_state_t)&state64); | |
2980 | if (error != KERN_SUCCESS) { | |
2981 | error = EINVAL; | |
2982 | } | |
2983 | } | |
2984 | #else | |
2985 | #error setup_wqthread not defined for this architecture | |
2986 | #endif | |
2987 | ||
2988 | return error; | |
2989 | } | |
2990 | ||
2991 | #if DEBUG | |
2992 | static int wq_kevent_test SYSCTL_HANDLER_ARGS { | |
2993 | //(struct sysctl_oid *oidp, void *arg1, int arg2, struct sysctl_req *req) | |
2994 | #pragma unused(oidp, arg1, arg2) | |
2995 | int error; | |
2996 | struct workq_reqthreads_req_s requests[64] = {}; | |
2997 | ||
2998 | if (req->newlen > sizeof(requests) || req->newlen < sizeof(struct workq_reqthreads_req_s)) | |
2999 | return EINVAL; | |
3000 | ||
3001 | error = copyin(req->newptr, requests, req->newlen); | |
3002 | if (error) return error; | |
3003 | ||
3004 | _workq_reqthreads(req->p, (int)(req->newlen / sizeof(struct workq_reqthreads_req_s)), requests); | |
3005 | ||
3006 | return 0; | |
3007 | } | |
3008 | #endif // DEBUG | |
3009 | ||
3010 | #pragma mark - Misc | |
3011 | ||
3012 | int | |
3013 | _fill_procworkqueue(proc_t p, struct proc_workqueueinfo * pwqinfo) | |
3014 | { | |
3015 | struct workqueue * wq; | |
3016 | int error = 0; | |
3017 | int activecount; | |
3018 | uint32_t pri; | |
3019 | ||
3020 | workqueue_lock_spin(p); | |
3021 | if ((wq = pthread_kern->proc_get_wqptr(p)) == NULL) { | |
3022 | error = EINVAL; | |
3023 | goto out; | |
3024 | } | |
3025 | activecount = 0; | |
3026 | ||
3027 | for (pri = 0; pri < WORKQUEUE_NUM_BUCKETS; pri++) { | |
3028 | activecount += wq->wq_thactive_count[pri]; | |
3029 | } | |
3030 | pwqinfo->pwq_nthreads = wq->wq_nthreads; | |
3031 | pwqinfo->pwq_runthreads = activecount; | |
3032 | pwqinfo->pwq_blockedthreads = wq->wq_threads_scheduled - activecount; | |
3033 | pwqinfo->pwq_state = 0; | |
3034 | ||
3035 | if (wq->wq_lflags & WQL_EXCEEDED_CONSTRAINED_THREAD_LIMIT) { | |
3036 | pwqinfo->pwq_state |= WQ_EXCEEDED_CONSTRAINED_THREAD_LIMIT; | |
3037 | } | |
3038 | ||
3039 | if (wq->wq_lflags & WQL_EXCEEDED_TOTAL_THREAD_LIMIT) { | |
3040 | pwqinfo->pwq_state |= WQ_EXCEEDED_TOTAL_THREAD_LIMIT; | |
3041 | } | |
3042 | ||
3043 | out: | |
3044 | workqueue_unlock(p); | |
3045 | return(error); | |
3046 | } | |
3047 | ||
3048 | int | |
3049 | _thread_selfid(__unused struct proc *p, uint64_t *retval) | |
3050 | { | |
3051 | thread_t thread = current_thread(); | |
3052 | *retval = thread_tid(thread); | |
3053 | return KERN_SUCCESS; | |
3054 | } | |
3055 | ||
3056 | void | |
3057 | _pthread_init(void) | |
3058 | { | |
3059 | pthread_lck_grp_attr = lck_grp_attr_alloc_init(); | |
3060 | pthread_lck_grp = lck_grp_alloc_init("pthread", pthread_lck_grp_attr); | |
3061 | ||
3062 | /* | |
3063 | * allocate the lock attribute for pthread synchronizers | |
3064 | */ | |
3065 | pthread_lck_attr = lck_attr_alloc_init(); | |
3066 | ||
3067 | _workqueue_init_lock((proc_t)get_bsdtask_info(kernel_task)); | |
3068 | pthread_list_mlock = lck_mtx_alloc_init(pthread_lck_grp, pthread_lck_attr); | |
3069 | ||
3070 | pth_global_hashinit(); | |
3071 | psynch_thcall = thread_call_allocate(psynch_wq_cleanup, NULL); | |
3072 | psynch_zoneinit(); | |
3073 | ||
3074 | /* | |
3075 | * register sysctls | |
3076 | */ | |
3077 | sysctl_register_oid(&sysctl__kern_wq_yielded_threshold); | |
3078 | sysctl_register_oid(&sysctl__kern_wq_yielded_window_usecs); | |
3079 | sysctl_register_oid(&sysctl__kern_wq_stalled_window_usecs); | |
3080 | sysctl_register_oid(&sysctl__kern_wq_reduce_pool_window_usecs); | |
3081 | sysctl_register_oid(&sysctl__kern_wq_max_timer_interval_usecs); | |
3082 | sysctl_register_oid(&sysctl__kern_wq_max_threads); | |
3083 | sysctl_register_oid(&sysctl__kern_wq_max_constrained_threads); | |
3084 | sysctl_register_oid(&sysctl__kern_pthread_debug_tracing); | |
3085 | ||
3086 | #if DEBUG | |
3087 | sysctl_register_oid(&sysctl__kern_wq_max_concurrency); | |
3088 | sysctl_register_oid(&sysctl__debug_wq_kevent_test); | |
3089 | #endif | |
3090 | ||
3091 | wq_max_concurrency = pthread_kern->ml_get_max_cpus(); | |
3092 | ||
3093 | } |