]>
Commit | Line | Data |
---|---|---|
964d3577 A |
1 | #include <assert.h> |
2 | #include <pthread.h> | |
3 | #include <stdio.h> | |
4 | #include <stdlib.h> | |
5 | #include <string.h> | |
6 | #include <unistd.h> | |
7 | #include <stdbool.h> | |
8 | #include <errno.h> | |
9 | #include <sys/time.h> | |
10 | #include <libkern/OSAtomic.h> | |
11 | #include <dispatch/dispatch.h> | |
12 | ||
a0619f9c | 13 | #include "darwintest_defaults.h" |
2546420a A |
14 | |
15 | #define NUM_THREADS 8 | |
16 | ||
964d3577 A |
17 | struct context { |
18 | pthread_cond_t cond; | |
19 | pthread_mutex_t mutex; | |
20 | long udelay; | |
21 | long count; | |
22 | }; | |
23 | ||
2546420a | 24 | static void *wait_thread(void *ptr) { |
964d3577 A |
25 | int res; |
26 | struct context *context = ptr; | |
27 | ||
964d3577 A |
28 | bool loop = true; |
29 | while (loop) { | |
30 | struct timespec ts; | |
31 | struct timeval tv; | |
32 | gettimeofday(&tv, NULL); | |
2546420a A |
33 | tv.tv_sec += (tv.tv_usec + context->udelay) / (__typeof(tv.tv_sec)) USEC_PER_SEC; |
34 | tv.tv_usec = (tv.tv_usec + context->udelay) % (__typeof(tv.tv_usec)) USEC_PER_SEC; | |
35 | TIMEVAL_TO_TIMESPEC(&tv, &ts); | |
964d3577 A |
36 | |
37 | res = pthread_mutex_lock(&context->mutex); | |
38 | if (res) { | |
39 | fprintf(stderr, "[%ld] pthread_mutex_lock: %s\n", context->count, strerror(res)); | |
40 | abort(); | |
41 | } | |
42 | ||
43 | if (context->count > 0) { | |
44 | res = pthread_cond_timedwait(&context->cond, &context->mutex, &ts); | |
45 | if (res != ETIMEDOUT) { | |
46 | fprintf(stderr, "[%ld] pthread_cond_timedwait: %s\n", context->count, strerror(res)); | |
47 | abort(); | |
48 | } | |
49 | --context->count; | |
50 | } else { | |
51 | loop = false; | |
52 | } | |
53 | ||
54 | res = pthread_mutex_unlock(&context->mutex); | |
55 | if (res) { | |
56 | fprintf(stderr, "[%ld] pthread_mutex_unlock: %s\n", context->count, strerror(res)); | |
57 | abort(); | |
58 | } | |
59 | } | |
60 | ||
61 | return NULL; | |
62 | } | |
63 | ||
2546420a | 64 | T_DECL(cond_timedwait_timeout, "pthread_cond_timedwait() timeout") |
964d3577 | 65 | { |
2546420a A |
66 | // This testcase launches 8 threads that all perform timed wait on the same |
67 | // conditional variable that is not being signaled in a loop. Ater the total | |
68 | // of 8000 timeouts all threads finish and the testcase prints out the | |
69 | // expected time (5[ms]*8000[timeouts]/8[threads]=5s) vs elapsed time. | |
964d3577 A |
70 | struct context context = { |
71 | .cond = PTHREAD_COND_INITIALIZER, | |
72 | .mutex = PTHREAD_MUTEX_INITIALIZER, | |
73 | .udelay = 5000, | |
74 | .count = 8000, | |
75 | }; | |
964d3577 | 76 | |
2546420a A |
77 | long uexpected = (context.udelay * context.count) / NUM_THREADS; |
78 | T_LOG("waittime expected: %ld us", uexpected); | |
964d3577 A |
79 | struct timeval start, end; |
80 | gettimeofday(&start, NULL); | |
81 | ||
2546420a A |
82 | pthread_t p[NUM_THREADS]; |
83 | for (int i = 0; i < NUM_THREADS; ++i) { | |
84 | T_ASSERT_POSIX_ZERO(pthread_create(&p[i], NULL, wait_thread, &context), | |
85 | "pthread_create"); | |
964d3577 A |
86 | } |
87 | ||
2546420a | 88 | usleep((useconds_t) uexpected); |
964d3577 A |
89 | bool loop = true; |
90 | while (loop) { | |
a0619f9c | 91 | T_QUIET; T_ASSERT_POSIX_ZERO(pthread_mutex_lock(&context.mutex), |
2546420a | 92 | "pthread_mutex_lock"); |
964d3577 A |
93 | if (context.count <= 0) { |
94 | loop = false; | |
95 | } | |
a0619f9c | 96 | T_QUIET; T_ASSERT_POSIX_ZERO(pthread_mutex_unlock(&context.mutex), |
2546420a | 97 | "pthread_mutex_unlock"); |
964d3577 A |
98 | } |
99 | ||
2546420a A |
100 | for (int i = 0; i < NUM_THREADS; ++i) { |
101 | T_ASSERT_POSIX_ZERO(pthread_join(p[i], NULL), "pthread_join"); | |
964d3577 A |
102 | } |
103 | ||
104 | gettimeofday(&end, NULL); | |
2546420a A |
105 | uint64_t uelapsed = |
106 | ((uint64_t) end.tv_sec * USEC_PER_SEC + (uint64_t) end.tv_usec) - | |
107 | ((uint64_t) start.tv_sec * USEC_PER_SEC + (uint64_t) start.tv_usec); | |
108 | T_LOG("waittime actual: %llu us", uelapsed); | |
964d3577 | 109 | } |
a0619f9c A |
110 | |
111 | struct prodcons_context { | |
112 | pthread_cond_t cond; | |
113 | pthread_mutex_t mutex; | |
114 | bool consumer_ready; | |
115 | bool workitem_available; | |
116 | bool padding[6]; | |
117 | }; | |
118 | ||
119 | static void *consumer_thread(void *ptr) { | |
120 | struct prodcons_context *context = ptr; | |
121 | ||
122 | // tell producer thread that we are ready | |
123 | T_ASSERT_POSIX_ZERO(pthread_mutex_lock(&context->mutex), "pthread_mutex_lock"); | |
124 | ||
125 | context->consumer_ready = true; | |
126 | T_ASSERT_POSIX_ZERO(pthread_cond_signal(&context->cond), "pthread_cond_signal"); | |
127 | ||
128 | // wait for a work item to become available | |
129 | do { | |
130 | // mutex will be dropped and allow producer thread to acquire | |
131 | T_ASSERT_POSIX_ZERO(pthread_cond_wait(&context->cond, &context->mutex), "pthread_cond_wait"); | |
132 | ||
133 | // loop in case of spurious wakeups | |
134 | } while (context->workitem_available == false); | |
135 | ||
136 | // work item has been sent, so dequeue it and tell producer | |
137 | context->workitem_available = false; | |
138 | T_ASSERT_POSIX_ZERO(pthread_cond_signal(&context->cond), "pthread_cond_signal"); | |
139 | ||
140 | // unlock mutex, we are done here | |
141 | T_ASSERT_POSIX_ZERO(pthread_mutex_unlock(&context->mutex), "pthread_mutex_unlock"); | |
142 | ||
143 | T_PASS("Consumer thread exiting"); | |
144 | ||
145 | return NULL; | |
146 | } | |
147 | ||
148 | #define TESTCASE_TIMEOUT (10) /* seconds */ | |
149 | typedef enum { | |
150 | eNullTimeout, | |
151 | eZeroTimeout, | |
152 | eBeforeEpochTimeout, | |
153 | eRecentPastTimeout | |
154 | } TimeOutType; | |
155 | ||
156 | static DT_TEST_RETURN cond_timedwait_timeouts_internal(TimeOutType timeout, bool relative); | |
157 | ||
158 | T_DECL(cond_timedwait_nulltimeout, "pthread_cond_timedwait() with NULL timeout, ensure mutex is unlocked") | |
159 | { | |
160 | cond_timedwait_timeouts_internal(eNullTimeout, false); | |
161 | } | |
162 | ||
163 | T_DECL(cond_timedwait_zerotimeout, "pthread_cond_timedwait() with zero timeout, ensure mutex is unlocked") | |
164 | { | |
165 | cond_timedwait_timeouts_internal(eZeroTimeout, false); | |
166 | } | |
167 | ||
168 | T_DECL(cond_timedwait_beforeepochtimeout, "pthread_cond_timedwait() with timeout before the epoch, ensure mutex is unlocked") | |
169 | { | |
170 | cond_timedwait_timeouts_internal(eBeforeEpochTimeout, false); | |
171 | } | |
172 | ||
173 | T_DECL(cond_timedwait_pasttimeout, "pthread_cond_timedwait() with timeout in the past, ensure mutex is unlocked") | |
174 | { | |
175 | cond_timedwait_timeouts_internal(eRecentPastTimeout, false); | |
176 | } | |
177 | ||
178 | T_DECL(cond_timedwait_relative_nulltimeout, "pthread_cond_timedwait_relative_np() with relative NULL timeout, ensure mutex is unlocked") | |
179 | { | |
180 | cond_timedwait_timeouts_internal(eNullTimeout, true); | |
181 | } | |
182 | ||
183 | T_DECL(cond_timedwait_relative_pasttimeout, "pthread_cond_timedwait_relative_np() with relative timeout in the past, ensure mutex is unlocked") | |
184 | { | |
185 | cond_timedwait_timeouts_internal(eRecentPastTimeout, true); | |
186 | } | |
187 | ||
188 | static DT_TEST_RETURN cond_timedwait_timeouts_internal(TimeOutType timeout, bool relative) | |
189 | { | |
190 | // This testcase mimics a producer-consumer model where the consumer checks | |
191 | // in and waits until work becomes available. The producer then waits until | |
192 | // the work has been consumed and the consumer quiesces. Since condition | |
193 | // variables may have spurious wakeups, the timeout should not matter, | |
194 | // but there have been functional issues where the mutex would not be unlocked | |
195 | // for a timeout in the past. | |
196 | struct prodcons_context context = { | |
197 | .cond = PTHREAD_COND_INITIALIZER, | |
198 | .mutex = PTHREAD_MUTEX_INITIALIZER, | |
199 | .consumer_ready = false, | |
200 | .workitem_available = false | |
201 | }; | |
202 | ||
203 | struct timeval test_timeout; | |
204 | gettimeofday(&test_timeout, NULL); | |
205 | test_timeout.tv_sec += TESTCASE_TIMEOUT; | |
206 | ||
207 | T_ASSERT_POSIX_ZERO(pthread_mutex_lock(&context.mutex), "pthread_mutex_lock"); | |
208 | ||
209 | pthread_t p; | |
210 | T_ASSERT_POSIX_ZERO(pthread_create(&p, NULL, consumer_thread, &context), | |
211 | "pthread_create"); | |
212 | ||
213 | // Wait until consumer thread is able to acquire the mutex, check in, and block | |
214 | // in its own condition variable. We do not want to start generating work before | |
215 | // the consumer thread is available | |
216 | do { | |
217 | // mutex will be dropped and allow consumer thread to acquire | |
218 | T_ASSERT_POSIX_ZERO(pthread_cond_wait(&context.cond, &context.mutex), "pthread_cond_wait"); | |
219 | ||
220 | // loop in case of spurious wakeups | |
221 | } while (context.consumer_ready == false); | |
222 | ||
223 | // consumer is ready and blocked in its own condition variable, and | |
224 | // producer has mutex acquired. Send a work item and wait for it | |
225 | // to be dequeued | |
226 | ||
227 | context.workitem_available = true; | |
228 | T_ASSERT_POSIX_ZERO(pthread_cond_signal(&context.cond), "pthread_cond_signal"); | |
229 | ||
230 | do { | |
231 | struct timeval now; | |
232 | ||
233 | gettimeofday(&now, NULL); | |
234 | T_QUIET; T_ASSERT_TRUE(timercmp(&now, &test_timeout, <), "timeout reached waiting for consumer thread to consume"); | |
235 | ||
236 | struct timespec ts; | |
237 | ||
238 | if (relative) { | |
239 | switch (timeout) { | |
240 | case eNullTimeout: | |
241 | break; | |
242 | case eRecentPastTimeout: | |
243 | ts.tv_sec = -1; | |
244 | ts.tv_nsec = 0; | |
245 | break; | |
246 | case eZeroTimeout: | |
247 | case eBeforeEpochTimeout: | |
248 | break; | |
249 | } | |
250 | } else { | |
251 | switch (timeout) { | |
252 | case eNullTimeout: | |
253 | break; | |
254 | case eZeroTimeout: | |
255 | ts.tv_sec = 0; | |
256 | ts.tv_nsec = 0; | |
257 | break; | |
258 | case eBeforeEpochTimeout: | |
259 | ts.tv_sec = -1; | |
260 | ts.tv_nsec = 0; | |
261 | break; | |
262 | case eRecentPastTimeout: | |
263 | ts.tv_sec = now.tv_sec - 1; | |
264 | ts.tv_nsec = now.tv_usec / 1000; | |
265 | break; | |
266 | } | |
267 | } | |
268 | ||
269 | int ret; | |
270 | if (relative) { | |
271 | ret = pthread_cond_timedwait_relative_np(&context.cond, &context.mutex, timeout == eNullTimeout ? NULL : &ts); | |
272 | } else { | |
273 | ret = pthread_cond_timedwait(&context.cond, &context.mutex, timeout == eNullTimeout ? NULL : &ts); | |
274 | } | |
275 | if (ret != 0 && ret != EINTR && ret != ETIMEDOUT) T_ASSERT_POSIX_ZERO(ret, "timedwait returned error"); | |
276 | ||
277 | usleep(10*1000); // avoid spinning in a CPU-bound loop | |
278 | ||
279 | // loop in case of spurious wakeups | |
280 | } while (context.workitem_available == true); | |
281 | ||
282 | T_ASSERT_POSIX_ZERO(pthread_mutex_unlock(&context.mutex), "pthread_mutex_unlock"); | |
283 | ||
284 | T_ASSERT_POSIX_ZERO(pthread_join(p, NULL), "pthread_join"); | |
285 | ||
286 | T_PASS("Consumer completed work"); | |
287 | } |