/*-
- * Copyright (c) 2004 David Schultz <das@FreeBSD.ORG>
+ * Copyright (c) 2004, 2005 David Schultz <das@FreeBSD.ORG>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
*/
#include <sys/cdefs.h>
-__FBSDID("$FreeBSD: src/lib/libc/gdtoa/_hdtoa.c,v 1.2 2004/01/21 04:51:50 grehan Exp $");
+__FBSDID("$FreeBSD: src/lib/libc/gdtoa/_hdtoa.c,v 1.5 2007/05/08 02:59:37 das Exp $");
#include <float.h>
-#include <inttypes.h>
#include <limits.h>
#include <math.h>
-#include <stdlib.h>
#include "fpmath.h"
#include "gdtoaimp.h"
#define INFSTR "Infinity"
#define NANSTR "NaN"
-#define DBL_BIAS (DBL_MAX_EXP - 1)
-#define LDBL_BIAS (LDBL_MAX_EXP - 1)
-
-#ifdef LDBL_IMPLICIT_NBIT
-#define LDBL_NBIT_ADJ 0
-#else
-#define LDBL_NBIT_ADJ 1
-#endif
-
-/*
- * Efficiently compute the log2 of an integer. Uses a combination of
- * arcane tricks found in fortune and arcane tricks not (yet) in
- * fortune. This routine behaves similarly to fls(9).
- */
-static int
-log2_32(uint32_t n)
-{
-
- n |= (n >> 1);
- n |= (n >> 2);
- n |= (n >> 4);
- n |= (n >> 8);
- n |= (n >> 16);
-
- n = (n & 0x55555555) + ((n & 0xaaaaaaaa) >> 1);
- n = (n & 0x33333333) + ((n & 0xcccccccc) >> 2);
- n = (n & 0x0f0f0f0f) + ((n & 0xf0f0f0f0) >> 4);
- n = (n & 0x00ff00ff) + ((n & 0xff00ff00) >> 8);
- n = (n & 0x0000ffff) + ((n & 0xffff0000) >> 16);
- return (n - 1);
-}
-
-#if (LDBL_MANH_SIZE > 32 || LDBL_MANL_SIZE > 32)
-
-static int
-log2_64(uint64_t n)
-{
-
- if (n >> 32 != 0)
- return (log2_32((uint32_t)(n >> 32)) + 32);
- else
- return (log2_32((uint32_t)n));
-}
-
-#endif /* (LDBL_MANH_SIZE > 32 || LDBL_MANL_SIZE > 32) */
+#define DBL_ADJ (DBL_MAX_EXP - 2 + ((DBL_MANT_DIG - 1) % 4))
+#define LDBL_ADJ (LDBL_MAX_EXP - 2 + ((LDBL_MANT_DIG - 1) % 4))
/*
* Round up the given digit string. If the digit string is fff...f,
*s = 1;
return (1);
}
- ++*s;
+ *s = 0;
}
++*s;
return (0);
break;
case 1: /* to nearest, halfway rounds to even */
if ((s0[ndigits] > 8) ||
- (s0[ndigits] == 8 && s0[ndigits - 1] & 1))
+ (s0[ndigits] == 8 && s0[ndigits + 1] & 1))
adjust = roundup(s0, ndigits);
break;
case 2: /* toward +inf */
__hdtoa(double d, const char *xdigs, int ndigits, int *decpt, int *sign,
char **rve)
{
+ static const int sigfigs = (DBL_MANT_DIG + 3) / 4;
union IEEEd2bits u;
char *s, *s0;
- int bufsize;
- int impnbit; /* implicit normalization bit */
- int pos;
- int shift; /* for subnormals, # of shifts required to normalize */
- int sigfigs; /* number of significant hex figures in result */
+ int bufsize, f;
u.d = d;
*sign = u.bits.sign;
- switch (fpclassify(d)) {
+ switch (f = fpclassify(d)) {
case FP_NORMAL:
- sigfigs = (DBL_MANT_DIG + 3) / 4;
- impnbit = 1 << ((DBL_MANT_DIG - 1) % 4);
- *decpt = u.bits.exp - DBL_BIAS + 1 -
- ((DBL_MANT_DIG - 1) % 4);
+ *decpt = u.bits.exp - DBL_ADJ;
break;
case FP_ZERO:
+return_zero:
*decpt = 1;
return (nrv_alloc("0", rve, 1));
case FP_SUBNORMAL:
/*
- * The position of the highest-order bit tells us by
- * how much to adjust the exponent (decpt). The
- * adjustment is raised to the next nibble boundary
- * since we will later choose the leftmost hexadecimal
- * digit so that all subsequent digits align on nibble
- * boundaries.
+ * For processors that treat subnormals as zero, comparison
+ * with zero will be equal, so we jump to the FP_ZERO case.
*/
- if (u.bits.manh != 0) {
- pos = log2_32(u.bits.manh);
- shift = DBL_MANH_SIZE - pos;
- } else {
- pos = log2_32(u.bits.manl);
- shift = DBL_MANH_SIZE + DBL_MANL_SIZE - pos;
- }
- sigfigs = (3 + DBL_MANT_DIG - shift) / 4;
- impnbit = 0;
- *decpt = DBL_MIN_EXP - ((shift + 3) & ~(4 - 1));
+ if(u.d == 0.0) goto return_zero;
+ u.d *= 0x1p514;
+ *decpt = u.bits.exp - (514 + DBL_ADJ);
break;
case FP_INFINITE:
*decpt = INT_MAX;
*decpt = INT_MAX;
return (nrv_alloc(NANSTR, rve, sizeof(NANSTR) - 1));
default:
- abort();
+ LIBC_ABORT("fpclassify returned %d", f);
}
/* FP_NORMAL or FP_SUBNORMAL */
* At this point, we have snarfed all the bits in the
* mantissa, with the possible exception of the highest-order
* (partial) nibble, which is dealt with by the next
- * statement. That nibble is usually in manh, but it could be
- * in manl instead for small subnormals. We also tack on the
- * implicit normalization bit if appropriate.
+ * statement. We also tack on the implicit normalization bit.
*/
- *s = u.bits.manh | u.bits.manl | impnbit;
+ *s = u.bits.manh | (1U << ((DBL_MANT_DIG - 1) % 4));
/* If ndigits < 0, we are expected to auto-size the precision. */
if (ndigits < 0) {
/*
* This is the long double version of __hdtoa().
- *
- * On architectures that have an explicit integer bit, unnormals and
- * pseudo-denormals cause problems in the conversion routine, so they
- * are ``fixed'' by effectively toggling the integer bit. Although
- * this is not correct behavior, the hardware will not produce these
- * formats externally.
*/
char *
__hldtoa(long double e, const char *xdigs, int ndigits, int *decpt, int *sign,
char **rve)
{
+ static const int sigfigs = (LDBL_MANT_DIG + 3) / 4;
union IEEEl2bits u;
char *s, *s0;
- int bufsize;
- int impnbit; /* implicit normalization bit */
- int pos;
- int shift; /* for subnormals, # of shifts required to normalize */
- int sigfigs; /* number of significant hex figures in result */
+ int bufsize, f;
u.e = e;
*sign = u.bits.sign;
- switch (fpclassify(e)) {
+ switch (f = fpclassify(e)) {
case FP_NORMAL:
- sigfigs = (LDBL_MANT_DIG + 3) / 4;
- impnbit = 1 << ((LDBL_MANT_DIG - 1) % 4);
- *decpt = u.bits.exp - LDBL_BIAS + 1 -
- ((LDBL_MANT_DIG - 1) % 4);
+ case FP_SUPERNORMAL:
+ *decpt = u.bits.exp - LDBL_ADJ;
break;
case FP_ZERO:
*decpt = 1;
return (nrv_alloc("0", rve, 1));
case FP_SUBNORMAL:
- /*
- * The position of the highest-order bit tells us by
- * how much to adjust the exponent (decpt). The
- * adjustment is raised to the next nibble boundary
- * since we will later choose the leftmost hexadecimal
- * digit so that all subsequent digits align on nibble
- * boundaries.
- */
-#ifdef LDBL_IMPLICIT_NBIT
- /* Don't trust the normalization bit to be off. */
- u.bits.manh &= ~(~0ULL << (LDBL_MANH_SIZE - 1));
-#endif
- if (u.bits.manh != 0) {
-#if LDBL_MANH_SIZE > 32
- pos = log2_64(u.bits.manh);
-#else
- pos = log2_32(u.bits.manh);
-#endif
- shift = LDBL_MANH_SIZE - LDBL_NBIT_ADJ - pos;
- } else {
-#if LDBL_MANL_SIZE > 32
- pos = log2_64(u.bits.manl);
-#else
- pos = log2_32(u.bits.manl);
-#endif
- shift = LDBL_MANH_SIZE + LDBL_MANL_SIZE -
- LDBL_NBIT_ADJ - pos;
- }
- sigfigs = (3 + LDBL_MANT_DIG - LDBL_NBIT_ADJ - shift) / 4;
- *decpt = LDBL_MIN_EXP + LDBL_NBIT_ADJ -
- ((shift + 3) & ~(4 - 1));
- impnbit = 0;
+ u.e *= 0x1p514L;
+ *decpt = u.bits.exp - (514 + LDBL_ADJ);
break;
case FP_INFINITE:
*decpt = INT_MAX;
*decpt = INT_MAX;
return (nrv_alloc(NANSTR, rve, sizeof(NANSTR) - 1));
default:
- abort();
+ LIBC_ABORT("fpclassify returned %d", f);
}
/* FP_NORMAL or FP_SUBNORMAL */
* At this point, we have snarfed all the bits in the
* mantissa, with the possible exception of the highest-order
* (partial) nibble, which is dealt with by the next
- * statement. That nibble is usually in manh, but it could be
- * in manl instead for small subnormals. We also tack on the
- * implicit normalization bit if appropriate.
+ * statement. We also tack on the implicit normalization bit.
*/
- *s = u.bits.manh | u.bits.manl | impnbit;
+ *s = u.bits.manh | (1U << ((LDBL_MANT_DIG - 1) % 4));
/* If ndigits < 0, we are expected to auto-size the precision. */
if (ndigits < 0) {