]> git.saurik.com Git - apple/libc.git/blobdiff - gdtoa/gdtoa-dtoa-fbsd.c
Libc-498.1.5.tar.gz
[apple/libc.git] / gdtoa / gdtoa-dtoa-fbsd.c
deleted file mode 100644 (file)
index e808cc1f4f32b8fb037c27d68f36f5628875157a..0000000000000000000000000000000000000000
+++ /dev/null
@@ -1,753 +0,0 @@
-/****************************************************************
-
-The author of this software is David M. Gay.
-
-Copyright (C) 1998, 1999 by Lucent Technologies
-All Rights Reserved
-
-Permission to use, copy, modify, and distribute this software and
-its documentation for any purpose and without fee is hereby
-granted, provided that the above copyright notice appear in all
-copies and that both that the copyright notice and this
-permission notice and warranty disclaimer appear in supporting
-documentation, and that the name of Lucent or any of its entities
-not be used in advertising or publicity pertaining to
-distribution of the software without specific, written prior
-permission.
-
-LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
-INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
-IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
-SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
-WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
-IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
-ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
-THIS SOFTWARE.
-
-****************************************************************/
-
-/* Please send bug reports to David M. Gay (dmg at acm dot org,
- * with " at " changed at "@" and " dot " changed to ".").     */
-
-#include "gdtoaimp.h"
-
-/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
- *
- * Inspired by "How to Print Floating-Point Numbers Accurately" by
- * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
- *
- * Modifications:
- *     1. Rather than iterating, we use a simple numeric overestimate
- *        to determine k = floor(log10(d)).  We scale relevant
- *        quantities using O(log2(k)) rather than O(k) multiplications.
- *     2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
- *        try to generate digits strictly left to right.  Instead, we
- *        compute with fewer bits and propagate the carry if necessary
- *        when rounding the final digit up.  This is often faster.
- *     3. Under the assumption that input will be rounded nearest,
- *        mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
- *        That is, we allow equality in stopping tests when the
- *        round-nearest rule will give the same floating-point value
- *        as would satisfaction of the stopping test with strict
- *        inequality.
- *     4. We remove common factors of powers of 2 from relevant
- *        quantities.
- *     5. When converting floating-point integers less than 1e16,
- *        we use floating-point arithmetic rather than resorting
- *        to multiple-precision integers.
- *     6. When asked to produce fewer than 15 digits, we first try
- *        to get by with floating-point arithmetic; we resort to
- *        multiple-precision integer arithmetic only if we cannot
- *        guarantee that the floating-point calculation has given
- *        the correctly rounded result.  For k requested digits and
- *        "uniformly" distributed input, the probability is
- *        something like 10^(k-15) that we must resort to the Long
- *        calculation.
- */
-
-#ifdef Honor_FLT_ROUNDS
-#define Rounding rounding
-#undef Check_FLT_ROUNDS
-#define Check_FLT_ROUNDS
-#else
-#define Rounding Flt_Rounds
-#endif
-
- char *
-dtoa
-#ifdef KR_headers
-       (d, mode, ndigits, decpt, sign, rve)
-       double d; int mode, ndigits, *decpt, *sign; char **rve;
-#else
-       (double d, int mode, int ndigits, int *decpt, int *sign, char **rve)
-#endif
-{
- /*    Arguments ndigits, decpt, sign are similar to those
-       of ecvt and fcvt; trailing zeros are suppressed from
-       the returned string.  If not null, *rve is set to point
-       to the end of the return value.  If d is +-Infinity or NaN,
-       then *decpt is set to 9999.
-
-       mode:
-               0 ==> shortest string that yields d when read in
-                       and rounded to nearest.
-               1 ==> like 0, but with Steele & White stopping rule;
-                       e.g. with IEEE P754 arithmetic , mode 0 gives
-                       1e23 whereas mode 1 gives 9.999999999999999e22.
-               2 ==> max(1,ndigits) significant digits.  This gives a
-                       return value similar to that of ecvt, except
-                       that trailing zeros are suppressed.
-               3 ==> through ndigits past the decimal point.  This
-                       gives a return value similar to that from fcvt,
-                       except that trailing zeros are suppressed, and
-                       ndigits can be negative.
-               4,5 ==> similar to 2 and 3, respectively, but (in
-                       round-nearest mode) with the tests of mode 0 to
-                       possibly return a shorter string that rounds to d.
-                       With IEEE arithmetic and compilation with
-                       -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
-                       as modes 2 and 3 when FLT_ROUNDS != 1.
-               6-9 ==> Debugging modes similar to mode - 4:  don't try
-                       fast floating-point estimate (if applicable).
-
-               Values of mode other than 0-9 are treated as mode 0.
-
-               Sufficient space is allocated to the return value
-               to hold the suppressed trailing zeros.
-       */
-
-       int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
-               j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
-               spec_case, try_quick;
-       Long L;
-#ifndef Sudden_Underflow
-       int denorm;
-       ULong x;
-#endif
-       Bigint *b, *b1, *delta, *mlo, *mhi, *S;
-       double d2, ds, eps;
-       char *s, *s0;
-#ifdef Honor_FLT_ROUNDS
-       int rounding;
-#endif
-#ifdef SET_INEXACT
-       int inexact, oldinexact;
-#endif
-
-#ifndef MULTIPLE_THREADS
-       if (dtoa_result) {
-               freedtoa(dtoa_result);
-               dtoa_result = 0;
-               }
-#endif
-
-       if (word0(d) & Sign_bit) {
-               /* set sign for everything, including 0's and NaNs */
-               *sign = 1;
-               word0(d) &= ~Sign_bit;  /* clear sign bit */
-               }
-       else
-               *sign = 0;
-
-#if defined(IEEE_Arith) + defined(VAX)
-#ifdef IEEE_Arith
-       if ((word0(d) & Exp_mask) == Exp_mask)
-#else
-       if (word0(d)  == 0x8000)
-#endif
-               {
-               /* Infinity or NaN */
-               *decpt = 9999;
-#ifdef IEEE_Arith
-               if (!word1(d) && !(word0(d) & 0xfffff))
-                       return nrv_alloc("Infinity", rve, 8);
-#endif
-               return nrv_alloc("NaN", rve, 3);
-               }
-#endif
-#ifdef IBM
-       dval(d) += 0; /* normalize */
-#endif
-       if (!dval(d)) {
-               *decpt = 1;
-               return nrv_alloc("0", rve, 1);
-               }
-
-#ifdef SET_INEXACT
-       try_quick = oldinexact = get_inexact();
-       inexact = 1;
-#endif
-#ifdef Honor_FLT_ROUNDS
-       if ((rounding = Flt_Rounds) >= 2) {
-               if (*sign)
-                       rounding = rounding == 2 ? 0 : 2;
-               else
-                       if (rounding != 2)
-                               rounding = 0;
-               }
-#endif
-
-       b = d2b(dval(d), &be, &bbits);
-#ifdef Sudden_Underflow
-       i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
-#else
-       if (( i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1)) )!=0) {
-#endif
-               dval(d2) = dval(d);
-               word0(d2) &= Frac_mask1;
-               word0(d2) |= Exp_11;
-#ifdef IBM
-               if (( j = 11 - hi0bits(word0(d2) & Frac_mask) )!=0)
-                       dval(d2) /= 1 << j;
-#endif
-
-               /* log(x)       ~=~ log(1.5) + (x-1.5)/1.5
-                * log10(x)      =  log(x) / log(10)
-                *              ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
-                * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
-                *
-                * This suggests computing an approximation k to log10(d) by
-                *
-                * k = (i - Bias)*0.301029995663981
-                *      + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
-                *
-                * We want k to be too large rather than too small.
-                * The error in the first-order Taylor series approximation
-                * is in our favor, so we just round up the constant enough
-                * to compensate for any error in the multiplication of
-                * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
-                * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
-                * adding 1e-13 to the constant term more than suffices.
-                * Hence we adjust the constant term to 0.1760912590558.
-                * (We could get a more accurate k by invoking log10,
-                *  but this is probably not worthwhile.)
-                */
-
-               i -= Bias;
-#ifdef IBM
-               i <<= 2;
-               i += j;
-#endif
-#ifndef Sudden_Underflow
-               denorm = 0;
-               }
-       else {
-               /* d is denormalized */
-
-               i = bbits + be + (Bias + (P-1) - 1);
-               x = i > 32  ? word0(d) << 64 - i | word1(d) >> i - 32
-                           : word1(d) << 32 - i;
-               dval(d2) = x;
-               word0(d2) -= 31*Exp_msk1; /* adjust exponent */
-               i -= (Bias + (P-1) - 1) + 1;
-               denorm = 1;
-               }
-#endif
-       ds = (dval(d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
-       k = (int)ds;
-       if (ds < 0. && ds != k)
-               k--;    /* want k = floor(ds) */
-       k_check = 1;
-       if (k >= 0 && k <= Ten_pmax) {
-               if (dval(d) < tens[k])
-                       k--;
-               k_check = 0;
-               }
-       j = bbits - i - 1;
-       if (j >= 0) {
-               b2 = 0;
-               s2 = j;
-               }
-       else {
-               b2 = -j;
-               s2 = 0;
-               }
-       if (k >= 0) {
-               b5 = 0;
-               s5 = k;
-               s2 += k;
-               }
-       else {
-               b2 -= k;
-               b5 = -k;
-               s5 = 0;
-               }
-       if (mode < 0 || mode > 9)
-               mode = 0;
-
-#ifndef SET_INEXACT
-#ifdef Check_FLT_ROUNDS
-       try_quick = Rounding == 1;
-#else
-       try_quick = 1;
-#endif
-#endif /*SET_INEXACT*/
-
-       if (mode > 5) {
-               mode -= 4;
-               try_quick = 0;
-               }
-       leftright = 1;
-       switch(mode) {
-               case 0:
-               case 1:
-                       ilim = ilim1 = -1;
-                       i = 18;
-                       ndigits = 0;
-                       break;
-               case 2:
-                       leftright = 0;
-                       /* no break */
-               case 4:
-                       if (ndigits <= 0)
-                               ndigits = 1;
-                       ilim = ilim1 = i = ndigits;
-                       break;
-               case 3:
-                       leftright = 0;
-                       /* no break */
-               case 5:
-                       i = ndigits + k + 1;
-                       ilim = i;
-                       ilim1 = i - 1;
-                       if (i <= 0)
-                               i = 1;
-               }
-       s = s0 = rv_alloc(i);
-
-#ifdef Honor_FLT_ROUNDS
-       if (mode > 1 && rounding != 1)
-               leftright = 0;
-#endif
-
-       if (ilim >= 0 && ilim <= Quick_max && try_quick) {
-
-               /* Try to get by with floating-point arithmetic. */
-
-               i = 0;
-               dval(d2) = dval(d);
-               k0 = k;
-               ilim0 = ilim;
-               ieps = 2; /* conservative */
-               if (k > 0) {
-                       ds = tens[k&0xf];
-                       j = k >> 4;
-                       if (j & Bletch) {
-                               /* prevent overflows */
-                               j &= Bletch - 1;
-                               dval(d) /= bigtens[n_bigtens-1];
-                               ieps++;
-                               }
-                       for(; j; j >>= 1, i++)
-                               if (j & 1) {
-                                       ieps++;
-                                       ds *= bigtens[i];
-                                       }
-                       dval(d) /= ds;
-                       }
-               else if (( j1 = -k )!=0) {
-                       dval(d) *= tens[j1 & 0xf];
-                       for(j = j1 >> 4; j; j >>= 1, i++)
-                               if (j & 1) {
-                                       ieps++;
-                                       dval(d) *= bigtens[i];
-                                       }
-                       }
-               if (k_check && dval(d) < 1. && ilim > 0) {
-                       if (ilim1 <= 0)
-                               goto fast_failed;
-                       ilim = ilim1;
-                       k--;
-                       dval(d) *= 10.;
-                       ieps++;
-                       }
-               dval(eps) = ieps*dval(d) + 7.;
-               word0(eps) -= (P-1)*Exp_msk1;
-               if (ilim == 0) {
-                       S = mhi = 0;
-                       dval(d) -= 5.;
-                       if (dval(d) > dval(eps))
-                               goto one_digit;
-                       if (dval(d) < -dval(eps))
-                               goto no_digits;
-                       goto fast_failed;
-                       }
-#ifndef No_leftright
-               if (leftright) {
-                       /* Use Steele & White method of only
-                        * generating digits needed.
-                        */
-                       dval(eps) = 0.5/tens[ilim-1] - dval(eps);
-                       for(i = 0;;) {
-                               L = dval(d);
-                               dval(d) -= L;
-                               *s++ = '0' + (int)L;
-                               if (dval(d) < dval(eps))
-                                       goto ret1;
-                               if (1. - dval(d) < dval(eps))
-                                       goto bump_up;
-                               if (++i >= ilim)
-                                       break;
-                               dval(eps) *= 10.;
-                               dval(d) *= 10.;
-                               }
-                       }
-               else {
-#endif
-                       /* Generate ilim digits, then fix them up. */
-                       dval(eps) *= tens[ilim-1];
-                       for(i = 1;; i++, dval(d) *= 10.) {
-                               L = (Long)(dval(d));
-                               if (!(dval(d) -= L))
-                                       ilim = i;
-                               *s++ = '0' + (int)L;
-                               if (i == ilim) {
-                                       if (dval(d) > 0.5 + dval(eps))
-                                               goto bump_up;
-                                       else if (dval(d) < 0.5 - dval(eps)) {
-                                               while(*--s == '0');
-                                               s++;
-                                               goto ret1;
-                                               }
-                                       break;
-                                       }
-                               }
-#ifndef No_leftright
-                       }
-#endif
- fast_failed:
-               s = s0;
-               dval(d) = dval(d2);
-               k = k0;
-               ilim = ilim0;
-               }
-
-       /* Do we have a "small" integer? */
-
-       if (be >= 0 && k <= Int_max) {
-               /* Yes. */
-               ds = tens[k];
-               if (ndigits < 0 && ilim <= 0) {
-                       S = mhi = 0;
-                       if (ilim < 0 || dval(d) <= 5*ds)
-                               goto no_digits;
-                       goto one_digit;
-                       }
-               for(i = 1;; i++, dval(d) *= 10.) {
-                       L = (Long)(dval(d) / ds);
-                       dval(d) -= L*ds;
-#ifdef Check_FLT_ROUNDS
-                       /* If FLT_ROUNDS == 2, L will usually be high by 1 */
-                       if (dval(d) < 0) {
-                               L--;
-                               dval(d) += ds;
-                               }
-#endif
-                       *s++ = '0' + (int)L;
-                       if (!dval(d)) {
-#ifdef SET_INEXACT
-                               inexact = 0;
-#endif
-                               break;
-                               }
-                       if (i == ilim) {
-#ifdef Honor_FLT_ROUNDS
-                               if (mode > 1)
-                               switch(rounding) {
-                                 case 0: goto ret1;
-                                 case 2: goto bump_up;
-                                 }
-#endif
-                               dval(d) += dval(d);
-                               if (dval(d) > ds || dval(d) == ds && L & 1) {
- bump_up:
-                                       while(*--s == '9')
-                                               if (s == s0) {
-                                                       k++;
-                                                       *s = '0';
-                                                       break;
-                                                       }
-                                       ++*s++;
-                                       }
-                               break;
-                               }
-                       }
-               goto ret1;
-               }
-
-       m2 = b2;
-       m5 = b5;
-       mhi = mlo = 0;
-       if (leftright) {
-               i =
-#ifndef Sudden_Underflow
-                       denorm ? be + (Bias + (P-1) - 1 + 1) :
-#endif
-#ifdef IBM
-                       1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);
-#else
-                       1 + P - bbits;
-#endif
-               b2 += i;
-               s2 += i;
-               mhi = i2b(1);
-               }
-       if (m2 > 0 && s2 > 0) {
-               i = m2 < s2 ? m2 : s2;
-               b2 -= i;
-               m2 -= i;
-               s2 -= i;
-               }
-       if (b5 > 0) {
-               if (leftright) {
-                       if (m5 > 0) {
-                               mhi = pow5mult(mhi, m5);
-                               b1 = mult(mhi, b);
-                               Bfree(b);
-                               b = b1;
-                               }
-                       if (( j = b5 - m5 )!=0)
-                               b = pow5mult(b, j);
-                       }
-               else
-                       b = pow5mult(b, b5);
-               }
-       S = i2b(1);
-       if (s5 > 0)
-               S = pow5mult(S, s5);
-
-       /* Check for special case that d is a normalized power of 2. */
-
-       spec_case = 0;
-       if ((mode < 2 || leftright)
-#ifdef Honor_FLT_ROUNDS
-                       && rounding == 1
-#endif
-                               ) {
-               if (!word1(d) && !(word0(d) & Bndry_mask)
-#ifndef Sudden_Underflow
-                && word0(d) & (Exp_mask & ~Exp_msk1)
-#endif
-                               ) {
-                       /* The special case */
-                       b2 += Log2P;
-                       s2 += Log2P;
-                       spec_case = 1;
-                       }
-               }
-
-       /* Arrange for convenient computation of quotients:
-        * shift left if necessary so divisor has 4 leading 0 bits.
-        *
-        * Perhaps we should just compute leading 28 bits of S once
-        * and for all and pass them and a shift to quorem, so it
-        * can do shifts and ors to compute the numerator for q.
-        */
-#ifdef Pack_32
-       if (( i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f )!=0)
-               i = 32 - i;
-#else
-       if (( i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf )!=0)
-               i = 16 - i;
-#endif
-       if (i > 4) {
-               i -= 4;
-               b2 += i;
-               m2 += i;
-               s2 += i;
-               }
-       else if (i < 4) {
-               i += 28;
-               b2 += i;
-               m2 += i;
-               s2 += i;
-               }
-       if (b2 > 0)
-               b = lshift(b, b2);
-       if (s2 > 0)
-               S = lshift(S, s2);
-       if (k_check) {
-               if (cmp(b,S) < 0) {
-                       k--;
-                       b = multadd(b, 10, 0);  /* we botched the k estimate */
-                       if (leftright)
-                               mhi = multadd(mhi, 10, 0);
-                       ilim = ilim1;
-                       }
-               }
-       if (ilim <= 0 && (mode == 3 || mode == 5)) {
-               if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
-                       /* no digits, fcvt style */
- no_digits:
-                       k = -1 - ndigits;
-                       goto ret;
-                       }
- one_digit:
-               *s++ = '1';
-               k++;
-               goto ret;
-               }
-       if (leftright) {
-               if (m2 > 0)
-                       mhi = lshift(mhi, m2);
-
-               /* Compute mlo -- check for special case
-                * that d is a normalized power of 2.
-                */
-
-               mlo = mhi;
-               if (spec_case) {
-                       mhi = Balloc(mhi->k);
-                       Bcopy(mhi, mlo);
-                       mhi = lshift(mhi, Log2P);
-                       }
-
-               for(i = 1;;i++) {
-                       dig = quorem(b,S) + '0';
-                       /* Do we yet have the shortest decimal string
-                        * that will round to d?
-                        */
-                       j = cmp(b, mlo);
-                       delta = diff(S, mhi);
-                       j1 = delta->sign ? 1 : cmp(b, delta);
-                       Bfree(delta);
-#ifndef ROUND_BIASED
-                       if (j1 == 0 && mode != 1 && !(word1(d) & 1)
-#ifdef Honor_FLT_ROUNDS
-                               && rounding >= 1
-#endif
-                                                                  ) {
-                               if (dig == '9')
-                                       goto round_9_up;
-                               if (j > 0)
-                                       dig++;
-#ifdef SET_INEXACT
-                               else if (!b->x[0] && b->wds <= 1)
-                                       inexact = 0;
-#endif
-                               *s++ = dig;
-                               goto ret;
-                               }
-#endif
-                       if (j < 0 || j == 0 && mode != 1
-#ifndef ROUND_BIASED
-                                                       && !(word1(d) & 1)
-#endif
-                                       ) {
-                               if (!b->x[0] && b->wds <= 1) {
-#ifdef SET_INEXACT
-                                       inexact = 0;
-#endif
-                                       goto accept_dig;
-                                       }
-#ifdef Honor_FLT_ROUNDS
-                               if (mode > 1)
-                                switch(rounding) {
-                                 case 0: goto accept_dig;
-                                 case 2: goto keep_dig;
-                                 }
-#endif /*Honor_FLT_ROUNDS*/
-                               if (j1 > 0) {
-                                       b = lshift(b, 1);
-                                       j1 = cmp(b, S);
-                                       if ((j1 > 0 || j1 == 0 && dig & 1)
-                                       && dig++ == '9')
-                                               goto round_9_up;
-                                       }
- accept_dig:
-                               *s++ = dig;
-                               goto ret;
-                               }
-                       if (j1 > 0) {
-#ifdef Honor_FLT_ROUNDS
-                               if (!rounding)
-                                       goto accept_dig;
-#endif
-                               if (dig == '9') { /* possible if i == 1 */
- round_9_up:
-                                       *s++ = '9';
-                                       goto roundoff;
-                                       }
-                               *s++ = dig + 1;
-                               goto ret;
-                               }
-#ifdef Honor_FLT_ROUNDS
- keep_dig:
-#endif
-                       *s++ = dig;
-                       if (i == ilim)
-                               break;
-                       b = multadd(b, 10, 0);
-                       if (mlo == mhi)
-                               mlo = mhi = multadd(mhi, 10, 0);
-                       else {
-                               mlo = multadd(mlo, 10, 0);
-                               mhi = multadd(mhi, 10, 0);
-                               }
-                       }
-               }
-       else
-               for(i = 1;; i++) {
-                       *s++ = dig = quorem(b,S) + '0';
-                       if (!b->x[0] && b->wds <= 1) {
-#ifdef SET_INEXACT
-                               inexact = 0;
-#endif
-                               goto ret;
-                               }
-                       if (i >= ilim)
-                               break;
-                       b = multadd(b, 10, 0);
-                       }
-
-       /* Round off last digit */
-
-#ifdef Honor_FLT_ROUNDS
-       switch(rounding) {
-         case 0: goto trimzeros;
-         case 2: goto roundoff;
-         }
-#endif
-       b = lshift(b, 1);
-       j = cmp(b, S);
-       if (j > 0 || j == 0 && dig & 1) {
- roundoff:
-               while(*--s == '9')
-                       if (s == s0) {
-                               k++;
-                               *s++ = '1';
-                               goto ret;
-                               }
-               ++*s++;
-               }
-       else {
- trimzeros:
-               while(*--s == '0');
-               s++;
-               }
- ret:
-       Bfree(S);
-       if (mhi) {
-               if (mlo && mlo != mhi)
-                       Bfree(mlo);
-               Bfree(mhi);
-               }
- ret1:
-#ifdef SET_INEXACT
-       if (inexact) {
-               if (!oldinexact) {
-                       word0(d) = Exp_1 + (70 << Exp_shift);
-                       word1(d) = 0;
-                       dval(d) += 1.;
-                       }
-               }
-       else if (!oldinexact)
-               clear_inexact();
-#endif
-       Bfree(b);
-       *s = 0;
-       *decpt = k + 1;
-       if (rve)
-               *rve = s;
-       return s0;
-       }
new file mode 120000 (symlink)
index 0000000000000000000000000000000000000000..82ff421df2954adf34f4c6c202735359645c128d
--- /dev/null
@@ -0,0 +1 @@
+./gdtoa-dtoa.c
\ No newline at end of file