]> git.saurik.com Git - apple/libc.git/blob - gen/crypt.c
33ef553b77847a7c3fd1086e331ca3e339d706be
[apple/libc.git] / gen / crypt.c
1 /*
2 * Copyright (c) 1999 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. Please obtain a copy of the License at
10 * http://www.opensource.apple.com/apsl/ and read it before using this
11 * file.
12 *
13 * The Original Code and all software distributed under the License are
14 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
15 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
16 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
18 * Please see the License for the specific language governing rights and
19 * limitations under the License.
20 *
21 * @APPLE_LICENSE_HEADER_END@
22 */
23 /*
24 * Copyright (c) 1989, 1993
25 * The Regents of the University of California. All rights reserved.
26 *
27 * This code is derived from software contributed to Berkeley by
28 * Tom Truscott.
29 *
30 * Redistribution and use in source and binary forms, with or without
31 * modification, are permitted provided that the following conditions
32 * are met:
33 * 1. Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * 2. Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in the
37 * documentation and/or other materials provided with the distribution.
38 * 3. All advertising materials mentioning features or use of this software
39 * must display the following acknowledgement:
40 * This product includes software developed by the University of
41 * California, Berkeley and its contributors.
42 * 4. Neither the name of the University nor the names of its contributors
43 * may be used to endorse or promote products derived from this software
44 * without specific prior written permission.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 */
58
59
60 #include <unistd.h>
61 #include <limits.h>
62 #include <pwd.h>
63 #include <stdlib.h>
64
65 /*
66 * UNIX password, and DES, encryption.
67 * By Tom Truscott, trt@rti.rti.org,
68 * from algorithms by Robert W. Baldwin and James Gillogly.
69 *
70 * References:
71 * "Mathematical Cryptology for Computer Scientists and Mathematicians,"
72 * by Wayne Patterson, 1987, ISBN 0-8476-7438-X.
73 *
74 * "Password Security: A Case History," R. Morris and Ken Thompson,
75 * Communications of the ACM, vol. 22, pp. 594-597, Nov. 1979.
76 *
77 * "DES will be Totally Insecure within Ten Years," M.E. Hellman,
78 * IEEE Spectrum, vol. 16, pp. 32-39, July 1979.
79 */
80
81 /* ===== Configuration ==================== */
82
83 /*
84 * define "MUST_ALIGN" if your compiler cannot load/store
85 * long integers at arbitrary (e.g. odd) memory locations.
86 * (Either that or never pass unaligned addresses to des_cipher!)
87 */
88 #if !defined(vax)
89 #define MUST_ALIGN
90 #endif
91
92 #ifdef CHAR_BITS
93 #if CHAR_BITS != 8
94 #error C_block structure assumes 8 bit characters
95 #endif
96 #endif
97
98 /*
99 * define "LONG_IS_32_BITS" only if sizeof(long)==4.
100 * This avoids use of bit fields (your compiler may be sloppy with them).
101 */
102 #if !defined(cray)
103 #define LONG_IS_32_BITS
104 #endif
105
106 /*
107 * define "B64" to be the declaration for a 64 bit integer.
108 * XXX this feature is currently unused, see "endian" comment below.
109 */
110 #if defined(cray)
111 #define B64 long
112 #endif
113 #if defined(convex)
114 #define B64 long long
115 #endif
116
117 /*
118 * define "LARGEDATA" to get faster permutations, by using about 72 kilobytes
119 * of lookup tables. This speeds up des_setkey() and des_cipher(), but has
120 * little effect on crypt().
121 */
122 #if defined(notdef)
123 #define LARGEDATA
124 #endif
125
126 /* compile with "-DSTATIC=int" when profiling */
127 #ifndef STATIC
128 #define STATIC static
129 #endif
130 STATIC void init_des(), init_perm(), permute();
131 STATIC int des_cipher(), des_setkey();
132 #ifdef DEBUG
133 STATIC prtab();
134 #endif
135
136 /* ==================================== */
137
138 /*
139 * Cipher-block representation (Bob Baldwin):
140 *
141 * DES operates on groups of 64 bits, numbered 1..64 (sigh). One
142 * representation is to store one bit per byte in an array of bytes. Bit N of
143 * the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array.
144 * Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the
145 * first byte, 9..16 in the second, and so on. The DES spec apparently has
146 * bit 1 in the MSB of the first byte, but that is particularly noxious so we
147 * bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is
148 * the MSB of the first byte. Specifically, the 64-bit input data and key are
149 * converted to LSB format, and the output 64-bit block is converted back into
150 * MSB format.
151 *
152 * DES operates internally on groups of 32 bits which are expanded to 48 bits
153 * by permutation E and shrunk back to 32 bits by the S boxes. To speed up
154 * the computation, the expansion is applied only once, the expanded
155 * representation is maintained during the encryption, and a compression
156 * permutation is applied only at the end. To speed up the S-box lookups,
157 * the 48 bits are maintained as eight 6 bit groups, one per byte, which
158 * directly feed the eight S-boxes. Within each byte, the 6 bits are the
159 * most significant ones. The low two bits of each byte are zero. (Thus,
160 * bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the
161 * first byte in the eight byte representation, bit 2 of the 48 bit value is
162 * the "8"-valued bit, and so on.) In fact, a combined "SPE"-box lookup is
163 * used, in which the output is the 64 bit result of an S-box lookup which
164 * has been permuted by P and expanded by E, and is ready for use in the next
165 * iteration. Two 32-bit wide tables, SPE[0] and SPE[1], are used for this
166 * lookup. Since each byte in the 48 bit path is a multiple of four, indexed
167 * lookup of SPE[0] and SPE[1] is simple and fast. The key schedule and
168 * "salt" are also converted to this 8*(6+2) format. The SPE table size is
169 * 8*64*8 = 4K bytes.
170 *
171 * To speed up bit-parallel operations (such as XOR), the 8 byte
172 * representation is "union"ed with 32 bit values "i0" and "i1", and, on
173 * machines which support it, a 64 bit value "b64". This data structure,
174 * "C_block", has two problems. First, alignment restrictions must be
175 * honored. Second, the byte-order (e.g. little-endian or big-endian) of
176 * the architecture becomes visible.
177 *
178 * The byte-order problem is unfortunate, since on the one hand it is good
179 * to have a machine-independent C_block representation (bits 1..8 in the
180 * first byte, etc.), and on the other hand it is good for the LSB of the
181 * first byte to be the LSB of i0. We cannot have both these things, so we
182 * currently use the "little-endian" representation and avoid any multi-byte
183 * operations that depend on byte order. This largely precludes use of the
184 * 64-bit datatype since the relative order of i0 and i1 are unknown. It
185 * also inhibits grouping the SPE table to look up 12 bits at a time. (The
186 * 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1
187 * high-order zero, providing fast indexing into a 64-bit wide SPE.) On the
188 * other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup
189 * requires a 128 kilobyte table, so perhaps this is not a big loss.
190 *
191 * Permutation representation (Jim Gillogly):
192 *
193 * A transformation is defined by its effect on each of the 8 bytes of the
194 * 64-bit input. For each byte we give a 64-bit output that has the bits in
195 * the input distributed appropriately. The transformation is then the OR
196 * of the 8 sets of 64-bits. This uses 8*256*8 = 16K bytes of storage for
197 * each transformation. Unless LARGEDATA is defined, however, a more compact
198 * table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks.
199 * The smaller table uses 16*16*8 = 2K bytes for each transformation. This
200 * is slower but tolerable, particularly for password encryption in which
201 * the SPE transformation is iterated many times. The small tables total 9K
202 * bytes, the large tables total 72K bytes.
203 *
204 * The transformations used are:
205 * IE3264: MSB->LSB conversion, initial permutation, and expansion.
206 * This is done by collecting the 32 even-numbered bits and applying
207 * a 32->64 bit transformation, and then collecting the 32 odd-numbered
208 * bits and applying the same transformation. Since there are only
209 * 32 input bits, the IE3264 transformation table is half the size of
210 * the usual table.
211 * CF6464: Compression, final permutation, and LSB->MSB conversion.
212 * This is done by two trivial 48->32 bit compressions to obtain
213 * a 64-bit block (the bit numbering is given in the "CIFP" table)
214 * followed by a 64->64 bit "cleanup" transformation. (It would
215 * be possible to group the bits in the 64-bit block so that 2
216 * identical 32->32 bit transformations could be used instead,
217 * saving a factor of 4 in space and possibly 2 in time, but
218 * byte-ordering and other complications rear their ugly head.
219 * Similar opportunities/problems arise in the key schedule
220 * transforms.)
221 * PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation.
222 * This admittedly baroque 64->64 bit transformation is used to
223 * produce the first code (in 8*(6+2) format) of the key schedule.
224 * PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation.
225 * It would be possible to define 15 more transformations, each
226 * with a different rotation, to generate the entire key schedule.
227 * To save space, however, we instead permute each code into the
228 * next by using a transformation that "undoes" the PC2 permutation,
229 * rotates the code, and then applies PC2. Unfortunately, PC2
230 * transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not
231 * invertible. We get around that problem by using a modified PC2
232 * which retains the 8 otherwise-lost bits in the unused low-order
233 * bits of each byte. The low-order bits are cleared when the
234 * codes are stored into the key schedule.
235 * PC2ROT[1]: Same as PC2ROT[0], but with two rotations.
236 * This is faster than applying PC2ROT[0] twice,
237 *
238 * The Bell Labs "salt" (Bob Baldwin):
239 *
240 * The salting is a simple permutation applied to the 48-bit result of E.
241 * Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and
242 * i+24 of the result are swapped. The salt is thus a 24 bit number, with
243 * 16777216 possible values. (The original salt was 12 bits and could not
244 * swap bits 13..24 with 36..48.)
245 *
246 * It is possible, but ugly, to warp the SPE table to account for the salt
247 * permutation. Fortunately, the conditional bit swapping requires only
248 * about four machine instructions and can be done on-the-fly with about an
249 * 8% performance penalty.
250 */
251
252 typedef union {
253 unsigned char b[8];
254 struct {
255 #if defined(LONG_IS_32_BITS)
256 /* long is often faster than a 32-bit bit field */
257 long i0;
258 long i1;
259 #else
260 long i0: 32;
261 long i1: 32;
262 #endif
263 } b32;
264 #if defined(B64)
265 B64 b64;
266 #endif
267 } C_block;
268
269 /*
270 * Convert twenty-four-bit long in host-order
271 * to six bits (and 2 low-order zeroes) per char little-endian format.
272 */
273 #define TO_SIX_BIT(rslt, src) { \
274 C_block cvt; \
275 cvt.b[0] = src; src >>= 6; \
276 cvt.b[1] = src; src >>= 6; \
277 cvt.b[2] = src; src >>= 6; \
278 cvt.b[3] = src; \
279 rslt = (cvt.b32.i0 & 0x3f3f3f3fL) << 2; \
280 }
281
282 /*
283 * These macros may someday permit efficient use of 64-bit integers.
284 */
285 #define ZERO(d,d0,d1) d0 = 0, d1 = 0
286 #define LOAD(d,d0,d1,bl) d0 = (bl).b32.i0, d1 = (bl).b32.i1
287 #define LOADREG(d,d0,d1,s,s0,s1) d0 = s0, d1 = s1
288 #define OR(d,d0,d1,bl) d0 |= (bl).b32.i0, d1 |= (bl).b32.i1
289 #define STORE(s,s0,s1,bl) (bl).b32.i0 = s0, (bl).b32.i1 = s1
290 #define DCL_BLOCK(d,d0,d1) long d0, d1
291
292 #if defined(LARGEDATA)
293 /* Waste memory like crazy. Also, do permutations in line */
294 #define LGCHUNKBITS 3
295 #define CHUNKBITS (1<<LGCHUNKBITS)
296 #define PERM6464(d,d0,d1,cpp,p) \
297 LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \
298 OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \
299 OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \
300 OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]); \
301 OR (d,d0,d1,(p)[(4<<CHUNKBITS)+(cpp)[4]]); \
302 OR (d,d0,d1,(p)[(5<<CHUNKBITS)+(cpp)[5]]); \
303 OR (d,d0,d1,(p)[(6<<CHUNKBITS)+(cpp)[6]]); \
304 OR (d,d0,d1,(p)[(7<<CHUNKBITS)+(cpp)[7]]);
305 #define PERM3264(d,d0,d1,cpp,p) \
306 LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \
307 OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \
308 OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \
309 OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);
310 #else
311 /* "small data" */
312 #define LGCHUNKBITS 2
313 #define CHUNKBITS (1<<LGCHUNKBITS)
314 #define PERM6464(d,d0,d1,cpp,p) \
315 { C_block tblk; permute(cpp,&tblk,p,8); LOAD (d,d0,d1,tblk); }
316 #define PERM3264(d,d0,d1,cpp,p) \
317 { C_block tblk; permute(cpp,&tblk,p,4); LOAD (d,d0,d1,tblk); }
318
319 STATIC void permute(cp, out, p, chars_in)
320 unsigned char *cp;
321 C_block *out;
322 register C_block *p;
323 int chars_in;
324 {
325 register DCL_BLOCK(D,D0,D1);
326 register C_block *tp;
327 register int t;
328
329 ZERO(D,D0,D1);
330 do {
331 t = *cp++;
332 tp = &p[t&0xf]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
333 tp = &p[t>>4]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
334 } while (--chars_in > 0);
335 STORE(D,D0,D1,*out);
336 }
337 #endif /* LARGEDATA */
338
339
340 /* ===== (mostly) Standard DES Tables ==================== */
341
342 static unsigned char IP[] = { /* initial permutation */
343 58, 50, 42, 34, 26, 18, 10, 2,
344 60, 52, 44, 36, 28, 20, 12, 4,
345 62, 54, 46, 38, 30, 22, 14, 6,
346 64, 56, 48, 40, 32, 24, 16, 8,
347 57, 49, 41, 33, 25, 17, 9, 1,
348 59, 51, 43, 35, 27, 19, 11, 3,
349 61, 53, 45, 37, 29, 21, 13, 5,
350 63, 55, 47, 39, 31, 23, 15, 7,
351 };
352
353 /* The final permutation is the inverse of IP - no table is necessary */
354
355 static unsigned char ExpandTr[] = { /* expansion operation */
356 32, 1, 2, 3, 4, 5,
357 4, 5, 6, 7, 8, 9,
358 8, 9, 10, 11, 12, 13,
359 12, 13, 14, 15, 16, 17,
360 16, 17, 18, 19, 20, 21,
361 20, 21, 22, 23, 24, 25,
362 24, 25, 26, 27, 28, 29,
363 28, 29, 30, 31, 32, 1,
364 };
365
366 static unsigned char PC1[] = { /* permuted choice table 1 */
367 57, 49, 41, 33, 25, 17, 9,
368 1, 58, 50, 42, 34, 26, 18,
369 10, 2, 59, 51, 43, 35, 27,
370 19, 11, 3, 60, 52, 44, 36,
371
372 63, 55, 47, 39, 31, 23, 15,
373 7, 62, 54, 46, 38, 30, 22,
374 14, 6, 61, 53, 45, 37, 29,
375 21, 13, 5, 28, 20, 12, 4,
376 };
377
378 static unsigned char Rotates[] = { /* PC1 rotation schedule */
379 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,
380 };
381
382 /* note: each "row" of PC2 is left-padded with bits that make it invertible */
383 static unsigned char PC2[] = { /* permuted choice table 2 */
384 9, 18, 14, 17, 11, 24, 1, 5,
385 22, 25, 3, 28, 15, 6, 21, 10,
386 35, 38, 23, 19, 12, 4, 26, 8,
387 43, 54, 16, 7, 27, 20, 13, 2,
388
389 0, 0, 41, 52, 31, 37, 47, 55,
390 0, 0, 30, 40, 51, 45, 33, 48,
391 0, 0, 44, 49, 39, 56, 34, 53,
392 0, 0, 46, 42, 50, 36, 29, 32,
393 };
394
395 static const unsigned char S[8][64] = { /* 48->32 bit substitution tables */
396 { /* S[1] */
397 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
398 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
399 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
400 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13,
401 },
402 { /* S[2] */
403 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
404 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
405 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
406 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9,
407 },
408 { /* S[3] */
409 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
410 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
411 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
412 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12,
413 },
414 { /* S[4] */
415 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
416 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
417 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
418 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14,
419 },
420 { /* S[5] */
421 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
422 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
423 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
424 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3,
425 },
426 { /* S[6] */
427 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
428 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
429 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
430 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13,
431 },
432 { /* S[7] */
433 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
434 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
435 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
436 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12,
437 },
438 { /* S[8] */
439 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
440 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
441 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
442 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11,
443 },
444 };
445
446 static unsigned char P32Tr[] = { /* 32-bit permutation function */
447 16, 7, 20, 21,
448 29, 12, 28, 17,
449 1, 15, 23, 26,
450 5, 18, 31, 10,
451 2, 8, 24, 14,
452 32, 27, 3, 9,
453 19, 13, 30, 6,
454 22, 11, 4, 25,
455 };
456
457 static unsigned char CIFP[] = { /* compressed/interleaved permutation */
458 1, 2, 3, 4, 17, 18, 19, 20,
459 5, 6, 7, 8, 21, 22, 23, 24,
460 9, 10, 11, 12, 25, 26, 27, 28,
461 13, 14, 15, 16, 29, 30, 31, 32,
462
463 33, 34, 35, 36, 49, 50, 51, 52,
464 37, 38, 39, 40, 53, 54, 55, 56,
465 41, 42, 43, 44, 57, 58, 59, 60,
466 45, 46, 47, 48, 61, 62, 63, 64,
467 };
468
469 static unsigned char itoa64[] = /* 0..63 => ascii-64 */
470 "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
471
472
473 /* ===== Tables that are initialized at run time ==================== */
474
475
476 static unsigned char a64toi[128]; /* ascii-64 => 0..63 */
477
478 /* Initial key schedule permutation */
479 // static C_block PC1ROT[64/CHUNKBITS][1<<CHUNKBITS];
480 static C_block *PC1ROT;
481
482 /* Subsequent key schedule rotation permutations */
483 // static C_block PC2ROT[2][64/CHUNKBITS][1<<CHUNKBITS];
484 static C_block *PC2ROT[2];
485
486 /* Initial permutation/expansion table */
487 // static C_block IE3264[32/CHUNKBITS][1<<CHUNKBITS];
488 static C_block *IE3264;
489
490 /* Table that combines the S, P, and E operations. */
491 // static long SPE[2][8][64];
492 static long *SPE;
493
494 /* compressed/interleaved => final permutation table */
495 // static C_block CF6464[64/CHUNKBITS][1<<CHUNKBITS];
496 static C_block *CF6464;
497
498
499 /* ==================================== */
500
501
502 static C_block constdatablock; /* encryption constant */
503 static char cryptresult[1+4+4+11+1]; /* encrypted result */
504
505 /*
506 * Return a pointer to static data consisting of the "setting"
507 * followed by an encryption produced by the "key" and "setting".
508 */
509 char *
510 crypt(key, setting)
511 register const char *key;
512 register const char *setting;
513 {
514 register char *encp;
515 register long i;
516 register int t;
517 long salt;
518 int num_iter, salt_size;
519 C_block keyblock, rsltblock;
520
521 for (i = 0; i < 8; i++) {
522 if ((t = 2*(unsigned char)(*key)) != 0)
523 key++;
524 keyblock.b[i] = t;
525 }
526 if (des_setkey((char *)keyblock.b)) /* also initializes "a64toi" */
527 return (NULL);
528
529 encp = &cryptresult[0];
530 switch (*setting) {
531 case _PASSWORD_EFMT1:
532 /*
533 * Involve the rest of the password 8 characters at a time.
534 */
535 while (*key) {
536 if (des_cipher((char *)&keyblock,
537 (char *)&keyblock, 0L, 1))
538 return (NULL);
539 for (i = 0; i < 8; i++) {
540 if ((t = 2*(unsigned char)(*key)) != 0)
541 key++;
542 keyblock.b[i] ^= t;
543 }
544 if (des_setkey((char *)keyblock.b))
545 return (NULL);
546 }
547
548 *encp++ = *setting++;
549
550 /* get iteration count */
551 num_iter = 0;
552 for (i = 4; --i >= 0; ) {
553 if ((t = (unsigned char)setting[i]) == '\0')
554 t = '.';
555 encp[i] = t;
556 num_iter = (num_iter<<6) | a64toi[t];
557 }
558 setting += 4;
559 encp += 4;
560 salt_size = 4;
561 break;
562 default:
563 num_iter = 25;
564 salt_size = 2;
565 }
566
567 salt = 0;
568 for (i = salt_size; --i >= 0; ) {
569 if ((t = (unsigned char)setting[i]) == '\0')
570 t = '.';
571 encp[i] = t;
572 salt = (salt<<6) | a64toi[t];
573 }
574 encp += salt_size;
575 if (des_cipher((char *)&constdatablock, (char *)&rsltblock,
576 salt, num_iter))
577 return (NULL);
578
579 /*
580 * Encode the 64 cipher bits as 11 ascii characters.
581 */
582 i = ((long)((rsltblock.b[0]<<8) | rsltblock.b[1])<<8) | rsltblock.b[2];
583 encp[3] = itoa64[i&0x3f]; i >>= 6;
584 encp[2] = itoa64[i&0x3f]; i >>= 6;
585 encp[1] = itoa64[i&0x3f]; i >>= 6;
586 encp[0] = itoa64[i]; encp += 4;
587 i = ((long)((rsltblock.b[3]<<8) | rsltblock.b[4])<<8) | rsltblock.b[5];
588 encp[3] = itoa64[i&0x3f]; i >>= 6;
589 encp[2] = itoa64[i&0x3f]; i >>= 6;
590 encp[1] = itoa64[i&0x3f]; i >>= 6;
591 encp[0] = itoa64[i]; encp += 4;
592 i = ((long)((rsltblock.b[6])<<8) | rsltblock.b[7])<<2;
593 encp[2] = itoa64[i&0x3f]; i >>= 6;
594 encp[1] = itoa64[i&0x3f]; i >>= 6;
595 encp[0] = itoa64[i];
596
597 encp[3] = 0;
598
599 return (cryptresult);
600 }
601
602
603 /*
604 * The Key Schedule, filled in by des_setkey() or setkey().
605 */
606 #define KS_SIZE 16
607 static C_block KS[KS_SIZE];
608
609 /*
610 * Set up the key schedule from the key.
611 */
612 STATIC int des_setkey(key)
613 register const char *key;
614 {
615 register DCL_BLOCK(K, K0, K1);
616 register C_block *ptabp;
617 register int i;
618 static int des_ready = 0;
619
620 if (!des_ready) {
621 init_des();
622 des_ready = 1;
623 }
624
625 PERM6464(K,K0,K1,(unsigned char *)key,PC1ROT);
626 key = (char *)&KS[0];
627 STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
628 for (i = 1; i < 16; i++) {
629 key += sizeof(C_block);
630 STORE(K,K0,K1,*(C_block *)key);
631 ptabp = PC2ROT[Rotates[i]-1];
632 PERM6464(K,K0,K1,(unsigned char *)key,ptabp);
633 STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
634 }
635 return (0);
636 }
637
638 /*
639 * Encrypt (or decrypt if num_iter < 0) the 8 chars at "in" with abs(num_iter)
640 * iterations of DES, using the the given 24-bit salt and the pre-computed key
641 * schedule, and store the resulting 8 chars at "out" (in == out is permitted).
642 *
643 * NOTE: the performance of this routine is critically dependent on your
644 * compiler and machine architecture.
645 */
646 STATIC int des_cipher(in, out, salt, num_iter)
647 const char *in;
648 char *out;
649 long salt;
650 int num_iter;
651 {
652 /* variables that we want in registers, most important first */
653 #if defined(pdp11)
654 register int j;
655 #endif
656 register long L0, L1, R0, R1, k;
657 register C_block *kp;
658 register int ks_inc, loop_count;
659 C_block B;
660
661 L0 = salt;
662 TO_SIX_BIT(salt, L0); /* convert to 4*(6+2) format */
663
664 #if defined(vax) || defined(pdp11)
665 salt = ~salt; /* "x &~ y" is faster than "x & y". */
666 #define SALT (~salt)
667 #else
668 #define SALT salt
669 #endif
670
671 #if defined(MUST_ALIGN)
672 B.b[0] = in[0]; B.b[1] = in[1]; B.b[2] = in[2]; B.b[3] = in[3];
673 B.b[4] = in[4]; B.b[5] = in[5]; B.b[6] = in[6]; B.b[7] = in[7];
674 LOAD(L,L0,L1,B);
675 #else
676 LOAD(L,L0,L1,*(C_block *)in);
677 #endif
678 LOADREG(R,R0,R1,L,L0,L1);
679 L0 &= 0x55555555L;
680 L1 &= 0x55555555L;
681 L0 = (L0 << 1) | L1; /* L0 is the even-numbered input bits */
682 R0 &= 0xaaaaaaaaL;
683 R1 = (R1 >> 1) & 0x55555555L;
684 L1 = R0 | R1; /* L1 is the odd-numbered input bits */
685 STORE(L,L0,L1,B);
686 PERM3264(L,L0,L1,B.b,IE3264); /* even bits */
687 PERM3264(R,R0,R1,B.b+4,IE3264); /* odd bits */
688
689 if (num_iter >= 0)
690 { /* encryption */
691 kp = &KS[0];
692 ks_inc = sizeof(*kp);
693 }
694 else
695 { /* decryption */
696 num_iter = -num_iter;
697 kp = &KS[KS_SIZE-1];
698 ks_inc = -sizeof(*kp);
699 }
700
701 while (--num_iter >= 0) {
702 loop_count = 8;
703 do {
704
705 #define SPTAB(t, i) (*(long *)((unsigned char *)t + i*(sizeof(long)/4)))
706 #if defined(gould)
707 /* use this if B.b[i] is evaluated just once ... */
708 #define DOXOR(x,y,i) x^=SPTAB(&SPE[i * 64],B.b[i]); y^=SPTAB(&SPE[(8 * 64) + (i * 64)],B.b[i]);
709 #else
710 #if defined(pdp11)
711 /* use this if your "long" int indexing is slow */
712 #define DOXOR(x,y,i) j=B.b[i]; x^=SPTAB(&SPE[i * 64],j); y^=SPTAB(&SPE[(8 * 64) + (i * 64)],j);
713 #else
714 /* use this if "k" is allocated to a register ... */
715 #define DOXOR(x,y,i) k=B.b[i]; x^=SPTAB(&SPE[i * 64],k); y^=SPTAB(&SPE[(8 * 64) + (i * 64)],k);
716 #endif
717 #endif
718
719 #define CRUNCH(p0, p1, q0, q1) \
720 k = (q0 ^ q1) & SALT; \
721 B.b32.i0 = k ^ q0 ^ kp->b32.i0; \
722 B.b32.i1 = k ^ q1 ^ kp->b32.i1; \
723 kp = (C_block *)((char *)kp+ks_inc); \
724 \
725 DOXOR(p0, p1, 0); \
726 DOXOR(p0, p1, 1); \
727 DOXOR(p0, p1, 2); \
728 DOXOR(p0, p1, 3); \
729 DOXOR(p0, p1, 4); \
730 DOXOR(p0, p1, 5); \
731 DOXOR(p0, p1, 6); \
732 DOXOR(p0, p1, 7);
733
734 CRUNCH(L0, L1, R0, R1);
735 CRUNCH(R0, R1, L0, L1);
736 } while (--loop_count != 0);
737 kp = (C_block *)((char *)kp-(ks_inc*KS_SIZE));
738
739
740 /* swap L and R */
741 L0 ^= R0; L1 ^= R1;
742 R0 ^= L0; R1 ^= L1;
743 L0 ^= R0; L1 ^= R1;
744 }
745
746 /* store the encrypted (or decrypted) result */
747 L0 = ((L0 >> 3) & 0x0f0f0f0fL) | ((L1 << 1) & 0xf0f0f0f0L);
748 L1 = ((R0 >> 3) & 0x0f0f0f0fL) | ((R1 << 1) & 0xf0f0f0f0L);
749 STORE(L,L0,L1,B);
750 PERM6464(L,L0,L1,B.b,CF6464);
751 #if defined(MUST_ALIGN)
752 STORE(L,L0,L1,B);
753 out[0] = B.b[0]; out[1] = B.b[1]; out[2] = B.b[2]; out[3] = B.b[3];
754 out[4] = B.b[4]; out[5] = B.b[5]; out[6] = B.b[6]; out[7] = B.b[7];
755 #else
756 STORE(L,L0,L1,*(C_block *)out);
757 #endif
758 return (0);
759 }
760
761
762 /*
763 * Initialize various tables. This need only be done once. It could even be
764 * done at compile time, if the compiler were capable of that sort of thing.
765 */
766 STATIC void init_des()
767 {
768 register int i, j;
769 register long k;
770 register int tableno;
771 static unsigned char perm[64], tmp32[32]; /* "static" for speed */
772
773 /*
774 * table that converts chars "./0-9A-Za-z"to integers 0-63.
775 */
776 for (i = 0; i < 64; i++)
777 a64toi[itoa64[i]] = i;
778
779 /*
780 * PC1ROT - bit reverse, then PC1, then Rotate, then PC2.
781 */
782 for (i = 0; i < 64; i++)
783 perm[i] = 0;
784 for (i = 0; i < 64; i++) {
785 if ((k = PC2[i]) == 0)
786 continue;
787 k += Rotates[0]-1;
788 if ((k%28) < Rotates[0]) k -= 28;
789 k = PC1[k];
790 if (k > 0) {
791 k--;
792 k = (k|07) - (k&07);
793 k++;
794 }
795 perm[i] = k;
796 }
797 #ifdef DEBUG
798 prtab("pc1tab", perm, 8);
799 #endif
800 PC1ROT = (C_block *)calloc(sizeof(C_block), (64/CHUNKBITS) * (1<<CHUNKBITS));
801 for (i = 0; i < 2; i++)
802 PC2ROT[i] = (C_block *)calloc(sizeof(C_block), (64/CHUNKBITS) * (1<<CHUNKBITS));
803 init_perm(PC1ROT, perm, 8, 8);
804
805 /*
806 * PC2ROT - PC2 inverse, then Rotate (once or twice), then PC2.
807 */
808 for (j = 0; j < 2; j++) {
809 unsigned char pc2inv[64];
810 for (i = 0; i < 64; i++)
811 perm[i] = pc2inv[i] = 0;
812 for (i = 0; i < 64; i++) {
813 if ((k = PC2[i]) == 0)
814 continue;
815 pc2inv[k-1] = i+1;
816 }
817 for (i = 0; i < 64; i++) {
818 if ((k = PC2[i]) == 0)
819 continue;
820 k += j;
821 if ((k%28) <= j) k -= 28;
822 perm[i] = pc2inv[k];
823 }
824 #ifdef DEBUG
825 prtab("pc2tab", perm, 8);
826 #endif
827 init_perm(PC2ROT[j], perm, 8, 8);
828 }
829
830 /*
831 * Bit reverse, then initial permutation, then expansion.
832 */
833 for (i = 0; i < 8; i++) {
834 for (j = 0; j < 8; j++) {
835 k = (j < 2)? 0: IP[ExpandTr[i*6+j-2]-1];
836 if (k > 32)
837 k -= 32;
838 else if (k > 0)
839 k--;
840 if (k > 0) {
841 k--;
842 k = (k|07) - (k&07);
843 k++;
844 }
845 perm[i*8+j] = k;
846 }
847 }
848 #ifdef DEBUG
849 prtab("ietab", perm, 8);
850 #endif
851 IE3264 = (C_block *)calloc(sizeof(C_block), (32/CHUNKBITS) * (1<<CHUNKBITS));
852 init_perm(IE3264, perm, 4, 8);
853
854 /*
855 * Compression, then final permutation, then bit reverse.
856 */
857 for (i = 0; i < 64; i++) {
858 k = IP[CIFP[i]-1];
859 if (k > 0) {
860 k--;
861 k = (k|07) - (k&07);
862 k++;
863 }
864 perm[k-1] = i+1;
865 }
866 #ifdef DEBUG
867 prtab("cftab", perm, 8);
868 #endif
869 CF6464 = (C_block *)calloc(sizeof(C_block), (64/CHUNKBITS) * (1<<CHUNKBITS));
870 SPE = (long *)calloc(sizeof(long), 2 * 8 * 64);
871 init_perm(CF6464, perm, 8, 8);
872
873 /*
874 * SPE table
875 */
876 for (i = 0; i < 48; i++)
877 perm[i] = P32Tr[ExpandTr[i]-1];
878 for (tableno = 0; tableno < 8; tableno++) {
879 for (j = 0; j < 64; j++) {
880 k = (((j >> 0) &01) << 5)|
881 (((j >> 1) &01) << 3)|
882 (((j >> 2) &01) << 2)|
883 (((j >> 3) &01) << 1)|
884 (((j >> 4) &01) << 0)|
885 (((j >> 5) &01) << 4);
886 k = S[tableno][k];
887 k = (((k >> 3)&01) << 0)|
888 (((k >> 2)&01) << 1)|
889 (((k >> 1)&01) << 2)|
890 (((k >> 0)&01) << 3);
891 for (i = 0; i < 32; i++)
892 tmp32[i] = 0;
893 for (i = 0; i < 4; i++)
894 tmp32[4 * tableno + i] = (k >> i) & 01;
895 k = 0;
896 for (i = 24; --i >= 0; )
897 k = (k<<1) | tmp32[perm[i]-1];
898 TO_SIX_BIT(SPE[(tableno * 64) + j], k);
899 k = 0;
900 for (i = 24; --i >= 0; )
901 k = (k<<1) | tmp32[perm[i+24]-1];
902 TO_SIX_BIT(SPE[(8 * 64) + (tableno * 64) + j], k);
903 }
904 }
905 }
906
907 /*
908 * Initialize "perm" to represent transformation "p", which rearranges
909 * (perhaps with expansion and/or contraction) one packed array of bits
910 * (of size "chars_in" characters) into another array (of size "chars_out"
911 * characters).
912 *
913 * "perm" must be all-zeroes on entry to this routine.
914 */
915 STATIC void init_perm(perm, p, chars_in, chars_out)
916 C_block *perm;
917 unsigned char p[64];
918 int chars_in, chars_out;
919 {
920 register int i, j, k, l;
921
922 for (k = 0; k < chars_out*8; k++) { /* each output bit position */
923 l = p[k] - 1; /* where this bit comes from */
924 if (l < 0)
925 continue; /* output bit is always 0 */
926 i = l>>LGCHUNKBITS; /* which chunk this bit comes from */
927 l = 1<<(l&(CHUNKBITS-1)); /* mask for this bit */
928 for (j = 0; j < (1<<CHUNKBITS); j++) { /* each chunk value */
929 if ((j & l) != 0)
930 perm[(i * (1<<CHUNKBITS)) + j].b[k>>3] |= 1<<(k&07);
931 }
932 }
933 }
934
935 /*
936 * "setkey" routine (for backwards compatibility)
937 */
938 int setkey(key)
939 register const char *key;
940 {
941 register int i, j, k;
942 C_block keyblock;
943
944 for (i = 0; i < 8; i++) {
945 k = 0;
946 for (j = 0; j < 8; j++) {
947 k <<= 1;
948 k |= (unsigned char)*key++;
949 }
950 keyblock.b[i] = k;
951 }
952 return (des_setkey((char *)keyblock.b));
953 }
954
955 /*
956 * "encrypt" routine (for backwards compatibility)
957 */
958 int encrypt(block, flag)
959 register char *block;
960 int flag;
961 {
962 register int i, j, k;
963 C_block cblock;
964
965 for (i = 0; i < 8; i++) {
966 k = 0;
967 for (j = 0; j < 8; j++) {
968 k <<= 1;
969 k |= (unsigned char)*block++;
970 }
971 cblock.b[i] = k;
972 }
973 if (des_cipher((char *)&cblock, (char *)&cblock, 0L, (flag ? -1: 1)))
974 return (1);
975 for (i = 7; i >= 0; i--) {
976 k = cblock.b[i];
977 for (j = 7; j >= 0; j--) {
978 *--block = k&01;
979 k >>= 1;
980 }
981 }
982 return (0);
983 }
984
985 #ifdef DEBUG
986 STATIC
987 prtab(s, t, num_rows)
988 char *s;
989 unsigned char *t;
990 int num_rows;
991 {
992 register int i, j;
993
994 (void)printf("%s:\n", s);
995 for (i = 0; i < num_rows; i++) {
996 for (j = 0; j < 8; j++) {
997 (void)printf("%3d", t[i*8+j]);
998 }
999 (void)printf("\n");
1000 }
1001 (void)printf("\n");
1002 }
1003 #endif