]> git.saurik.com Git - apple/libc.git/blob - db/btree/FreeBSD/bt_split.c
2f34975018cbca9fd517588934c51f3dc9f2a4f6
[apple/libc.git] / db / btree / FreeBSD / bt_split.c
1 /*-
2 * Copyright (c) 1990, 1993, 1994
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Mike Olson.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 #if defined(LIBC_SCCS) && !defined(lint)
34 static char sccsid[] = "@(#)bt_split.c 8.9 (Berkeley) 7/26/94";
35 #endif /* LIBC_SCCS and not lint */
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD: src/lib/libc/db/btree/bt_split.c,v 1.12 2009/03/28 05:45:29 delphij Exp $");
38
39 #include <sys/types.h>
40
41 #include <limits.h>
42 #include <stdio.h>
43 #include <stdlib.h>
44 #include <string.h>
45
46 #include <db.h>
47 #include "btree.h"
48
49 static int bt_broot(BTREE *, PAGE *, PAGE *, PAGE *);
50 static PAGE *bt_page(BTREE *, PAGE *, PAGE **, PAGE **, indx_t *, size_t);
51 static int bt_preserve(BTREE *, pgno_t);
52 static PAGE *bt_psplit(BTREE *, PAGE *, PAGE *, PAGE *, indx_t *, size_t);
53 static PAGE *bt_root(BTREE *, PAGE *, PAGE **, PAGE **, indx_t *, size_t);
54 static int bt_rroot(BTREE *, PAGE *, PAGE *, PAGE *);
55 static recno_t rec_total(PAGE *);
56
57 #ifdef STATISTICS
58 u_long bt_rootsplit, bt_split, bt_sortsplit, bt_pfxsaved;
59 #endif
60
61 /*
62 * __BT_SPLIT -- Split the tree.
63 *
64 * Parameters:
65 * t: tree
66 * sp: page to split
67 * key: key to insert
68 * data: data to insert
69 * flags: BIGKEY/BIGDATA flags
70 * ilen: insert length
71 * skip: index to leave open
72 *
73 * Returns:
74 * RET_ERROR, RET_SUCCESS
75 */
76 int
77 __bt_split(BTREE *t, PAGE *sp, const DBT *key, const DBT *data, int flags,
78 size_t ilen, u_int32_t argskip)
79 {
80 BINTERNAL *bi;
81 BLEAF *bl, *tbl;
82 DBT a, b;
83 EPGNO *parent;
84 PAGE *h, *l, *r, *lchild, *rchild;
85 indx_t nxtindex;
86 u_int16_t skip;
87 u_int32_t n, nbytes, nksize;
88 int parentsplit;
89 char *dest;
90
91 /*
92 * Split the page into two pages, l and r. The split routines return
93 * a pointer to the page into which the key should be inserted and with
94 * skip set to the offset which should be used. Additionally, l and r
95 * are pinned.
96 */
97 skip = argskip;
98 h = sp->pgno == P_ROOT ?
99 bt_root(t, sp, &l, &r, &skip, ilen) :
100 bt_page(t, sp, &l, &r, &skip, ilen);
101 if (h == NULL)
102 return (RET_ERROR);
103
104 /*
105 * Insert the new key/data pair into the leaf page. (Key inserts
106 * always cause a leaf page to split first.)
107 */
108 h->linp[skip] = h->upper -= ilen;
109 dest = (char *)h + h->upper;
110 if (F_ISSET(t, R_RECNO))
111 WR_RLEAF(dest, data, flags)
112 else
113 WR_BLEAF(dest, key, data, flags)
114
115 /* If the root page was split, make it look right. */
116 if (sp->pgno == P_ROOT &&
117 (F_ISSET(t, R_RECNO) ?
118 bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR)
119 goto err2;
120
121 /*
122 * Now we walk the parent page stack -- a LIFO stack of the pages that
123 * were traversed when we searched for the page that split. Each stack
124 * entry is a page number and a page index offset. The offset is for
125 * the page traversed on the search. We've just split a page, so we
126 * have to insert a new key into the parent page.
127 *
128 * If the insert into the parent page causes it to split, may have to
129 * continue splitting all the way up the tree. We stop if the root
130 * splits or the page inserted into didn't have to split to hold the
131 * new key. Some algorithms replace the key for the old page as well
132 * as the new page. We don't, as there's no reason to believe that the
133 * first key on the old page is any better than the key we have, and,
134 * in the case of a key being placed at index 0 causing the split, the
135 * key is unavailable.
136 *
137 * There are a maximum of 5 pages pinned at any time. We keep the left
138 * and right pages pinned while working on the parent. The 5 are the
139 * two children, left parent and right parent (when the parent splits)
140 * and the root page or the overflow key page when calling bt_preserve.
141 * This code must make sure that all pins are released other than the
142 * root page or overflow page which is unlocked elsewhere.
143 */
144 while ((parent = BT_POP(t)) != NULL) {
145 lchild = l;
146 rchild = r;
147
148 /* Get the parent page. */
149 if ((h = mpool_get(t->bt_mp, parent->pgno, 0)) == NULL)
150 goto err2;
151
152 /*
153 * The new key goes ONE AFTER the index, because the split
154 * was to the right.
155 */
156 skip = parent->index + 1;
157
158 /*
159 * Calculate the space needed on the parent page.
160 *
161 * Prefix trees: space hack when inserting into BINTERNAL
162 * pages. Retain only what's needed to distinguish between
163 * the new entry and the LAST entry on the page to its left.
164 * If the keys compare equal, retain the entire key. Note,
165 * we don't touch overflow keys, and the entire key must be
166 * retained for the next-to-left most key on the leftmost
167 * page of each level, or the search will fail. Applicable
168 * ONLY to internal pages that have leaf pages as children.
169 * Further reduction of the key between pairs of internal
170 * pages loses too much information.
171 */
172 switch (rchild->flags & P_TYPE) {
173 case P_BINTERNAL:
174 bi = GETBINTERNAL(rchild, 0);
175 nbytes = NBINTERNAL(bi->ksize);
176 break;
177 case P_BLEAF:
178 bl = GETBLEAF(rchild, 0);
179 nbytes = NBINTERNAL(bl->ksize);
180 if (t->bt_pfx && !(bl->flags & P_BIGKEY) &&
181 (h->prevpg != P_INVALID || skip > 1)) {
182 tbl = GETBLEAF(lchild, NEXTINDEX(lchild) - 1);
183 a.size = tbl->ksize;
184 a.data = tbl->bytes;
185 b.size = bl->ksize;
186 b.data = bl->bytes;
187 nksize = t->bt_pfx(&a, &b);
188 n = NBINTERNAL(nksize);
189 if (n < nbytes) {
190 #ifdef STATISTICS
191 bt_pfxsaved += nbytes - n;
192 #endif
193 nbytes = n;
194 } else
195 nksize = 0;
196 } else
197 nksize = 0;
198 break;
199 case P_RINTERNAL:
200 case P_RLEAF:
201 nbytes = NRINTERNAL;
202 break;
203 default:
204 abort();
205 }
206
207 /* Split the parent page if necessary or shift the indices. */
208 if ((u_int32_t)(h->upper - h->lower) < nbytes + sizeof(indx_t)) {
209 sp = h;
210 h = h->pgno == P_ROOT ?
211 bt_root(t, h, &l, &r, &skip, nbytes) :
212 bt_page(t, h, &l, &r, &skip, nbytes);
213 if (h == NULL)
214 goto err1;
215 parentsplit = 1;
216 } else {
217 if (skip < (nxtindex = NEXTINDEX(h)))
218 memmove(h->linp + skip + 1, h->linp + skip,
219 (nxtindex - skip) * sizeof(indx_t));
220 h->lower += sizeof(indx_t);
221 parentsplit = 0;
222 }
223
224 /* Insert the key into the parent page. */
225 switch (rchild->flags & P_TYPE) {
226 case P_BINTERNAL:
227 h->linp[skip] = h->upper -= nbytes;
228 dest = (char *)h + h->linp[skip];
229 memmove(dest, bi, nbytes);
230 ((BINTERNAL *)dest)->pgno = rchild->pgno;
231 break;
232 case P_BLEAF:
233 h->linp[skip] = h->upper -= nbytes;
234 dest = (char *)h + h->linp[skip];
235 WR_BINTERNAL(dest, nksize ? nksize : bl->ksize,
236 rchild->pgno, bl->flags & P_BIGKEY);
237 memmove(dest, bl->bytes, nksize ? nksize : bl->ksize);
238 if (bl->flags & P_BIGKEY &&
239 bt_preserve(t, *(pgno_t *)bl->bytes) == RET_ERROR)
240 goto err1;
241 break;
242 case P_RINTERNAL:
243 /*
244 * Update the left page count. If split
245 * added at index 0, fix the correct page.
246 */
247 if (skip > 0)
248 dest = (char *)h + h->linp[skip - 1];
249 else
250 dest = (char *)l + l->linp[NEXTINDEX(l) - 1];
251 ((RINTERNAL *)dest)->nrecs = rec_total(lchild);
252 ((RINTERNAL *)dest)->pgno = lchild->pgno;
253
254 /* Update the right page count. */
255 h->linp[skip] = h->upper -= nbytes;
256 dest = (char *)h + h->linp[skip];
257 ((RINTERNAL *)dest)->nrecs = rec_total(rchild);
258 ((RINTERNAL *)dest)->pgno = rchild->pgno;
259 break;
260 case P_RLEAF:
261 /*
262 * Update the left page count. If split
263 * added at index 0, fix the correct page.
264 */
265 if (skip > 0)
266 dest = (char *)h + h->linp[skip - 1];
267 else
268 dest = (char *)l + l->linp[NEXTINDEX(l) - 1];
269 ((RINTERNAL *)dest)->nrecs = NEXTINDEX(lchild);
270 ((RINTERNAL *)dest)->pgno = lchild->pgno;
271
272 /* Update the right page count. */
273 h->linp[skip] = h->upper -= nbytes;
274 dest = (char *)h + h->linp[skip];
275 ((RINTERNAL *)dest)->nrecs = NEXTINDEX(rchild);
276 ((RINTERNAL *)dest)->pgno = rchild->pgno;
277 break;
278 default:
279 abort();
280 }
281
282 /* Unpin the held pages. */
283 if (!parentsplit) {
284 mpool_put(t->bt_mp, h, MPOOL_DIRTY);
285 break;
286 }
287
288 /* If the root page was split, make it look right. */
289 if (sp->pgno == P_ROOT &&
290 (F_ISSET(t, R_RECNO) ?
291 bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR)
292 goto err1;
293
294 mpool_put(t->bt_mp, lchild, MPOOL_DIRTY);
295 mpool_put(t->bt_mp, rchild, MPOOL_DIRTY);
296 }
297
298 /* Unpin the held pages. */
299 mpool_put(t->bt_mp, l, MPOOL_DIRTY);
300 mpool_put(t->bt_mp, r, MPOOL_DIRTY);
301
302 /* Clear any pages left on the stack. */
303 return (RET_SUCCESS);
304
305 /*
306 * If something fails in the above loop we were already walking back
307 * up the tree and the tree is now inconsistent. Nothing much we can
308 * do about it but release any memory we're holding.
309 */
310 err1: mpool_put(t->bt_mp, lchild, MPOOL_DIRTY);
311 mpool_put(t->bt_mp, rchild, MPOOL_DIRTY);
312
313 err2: mpool_put(t->bt_mp, l, 0);
314 mpool_put(t->bt_mp, r, 0);
315 __dbpanic(t->bt_dbp);
316 return (RET_ERROR);
317 }
318
319 /*
320 * BT_PAGE -- Split a non-root page of a btree.
321 *
322 * Parameters:
323 * t: tree
324 * h: root page
325 * lp: pointer to left page pointer
326 * rp: pointer to right page pointer
327 * skip: pointer to index to leave open
328 * ilen: insert length
329 *
330 * Returns:
331 * Pointer to page in which to insert or NULL on error.
332 */
333 static PAGE *
334 bt_page(BTREE *t, PAGE *h, PAGE **lp, PAGE **rp, indx_t *skip, size_t ilen)
335 {
336 PAGE *l, *r, *tp;
337 pgno_t npg;
338
339 #ifdef STATISTICS
340 ++bt_split;
341 #endif
342 /* Put the new right page for the split into place. */
343 if ((r = __bt_new(t, &npg)) == NULL)
344 return (NULL);
345 r->pgno = npg;
346 r->lower = BTDATAOFF;
347 r->upper = t->bt_psize;
348 r->nextpg = h->nextpg;
349 r->prevpg = h->pgno;
350 r->flags = h->flags & P_TYPE;
351
352 /*
353 * If we're splitting the last page on a level because we're appending
354 * a key to it (skip is NEXTINDEX()), it's likely that the data is
355 * sorted. Adding an empty page on the side of the level is less work
356 * and can push the fill factor much higher than normal. If we're
357 * wrong it's no big deal, we'll just do the split the right way next
358 * time. It may look like it's equally easy to do a similar hack for
359 * reverse sorted data, that is, split the tree left, but it's not.
360 * Don't even try.
361 */
362 if (h->nextpg == P_INVALID && *skip == NEXTINDEX(h)) {
363 #ifdef STATISTICS
364 ++bt_sortsplit;
365 #endif
366 h->nextpg = r->pgno;
367 r->lower = BTDATAOFF + sizeof(indx_t);
368 *skip = 0;
369 *lp = h;
370 *rp = r;
371 return (r);
372 }
373
374 /* Put the new left page for the split into place. */
375 if ((l = (PAGE *)calloc(1, t->bt_psize)) == NULL) {
376 mpool_put(t->bt_mp, r, 0);
377 return (NULL);
378 }
379 l->pgno = h->pgno;
380 l->nextpg = r->pgno;
381 l->prevpg = h->prevpg;
382 l->lower = BTDATAOFF;
383 l->upper = t->bt_psize;
384 l->flags = h->flags & P_TYPE;
385
386 /* Fix up the previous pointer of the page after the split page. */
387 if (h->nextpg != P_INVALID) {
388 if ((tp = mpool_get(t->bt_mp, h->nextpg, 0)) == NULL) {
389 free(l);
390 /* XXX mpool_free(t->bt_mp, r->pgno); */
391 return (NULL);
392 }
393 tp->prevpg = r->pgno;
394 mpool_put(t->bt_mp, tp, MPOOL_DIRTY);
395 }
396
397 /*
398 * Split right. The key/data pairs aren't sorted in the btree page so
399 * it's simpler to copy the data from the split page onto two new pages
400 * instead of copying half the data to the right page and compacting
401 * the left page in place. Since the left page can't change, we have
402 * to swap the original and the allocated left page after the split.
403 */
404 tp = bt_psplit(t, h, l, r, skip, ilen);
405
406 /* Move the new left page onto the old left page. */
407 memmove(h, l, t->bt_psize);
408 if (tp == l)
409 tp = h;
410 free(l);
411
412 *lp = h;
413 *rp = r;
414 return (tp);
415 }
416
417 /*
418 * BT_ROOT -- Split the root page of a btree.
419 *
420 * Parameters:
421 * t: tree
422 * h: root page
423 * lp: pointer to left page pointer
424 * rp: pointer to right page pointer
425 * skip: pointer to index to leave open
426 * ilen: insert length
427 *
428 * Returns:
429 * Pointer to page in which to insert or NULL on error.
430 */
431 static PAGE *
432 bt_root(BTREE *t, PAGE *h, PAGE **lp, PAGE **rp, indx_t *skip, size_t ilen)
433 {
434 PAGE *l, *r, *tp;
435 pgno_t lnpg, rnpg;
436
437 #ifdef STATISTICS
438 ++bt_split;
439 ++bt_rootsplit;
440 #endif
441 /* Put the new left and right pages for the split into place. */
442 if ((l = __bt_new(t, &lnpg)) == NULL ||
443 (r = __bt_new(t, &rnpg)) == NULL)
444 return (NULL);
445 l->pgno = lnpg;
446 r->pgno = rnpg;
447 l->nextpg = r->pgno;
448 r->prevpg = l->pgno;
449 l->prevpg = r->nextpg = P_INVALID;
450 l->lower = r->lower = BTDATAOFF;
451 l->upper = r->upper = t->bt_psize;
452 l->flags = r->flags = h->flags & P_TYPE;
453
454 /* Split the root page. */
455 tp = bt_psplit(t, h, l, r, skip, ilen);
456
457 *lp = l;
458 *rp = r;
459 return (tp);
460 }
461
462 /*
463 * BT_RROOT -- Fix up the recno root page after it has been split.
464 *
465 * Parameters:
466 * t: tree
467 * h: root page
468 * l: left page
469 * r: right page
470 *
471 * Returns:
472 * RET_ERROR, RET_SUCCESS
473 */
474 static int
475 bt_rroot(BTREE *t, PAGE *h, PAGE *l, PAGE *r)
476 {
477 char *dest;
478
479 /* Insert the left and right keys, set the header information. */
480 h->linp[0] = h->upper = t->bt_psize - NRINTERNAL;
481 dest = (char *)h + h->upper;
482 WR_RINTERNAL(dest,
483 l->flags & P_RLEAF ? NEXTINDEX(l) : rec_total(l), l->pgno);
484
485 h->linp[1] = h->upper -= NRINTERNAL;
486 dest = (char *)h + h->upper;
487 WR_RINTERNAL(dest,
488 r->flags & P_RLEAF ? NEXTINDEX(r) : rec_total(r), r->pgno);
489
490 h->lower = BTDATAOFF + 2 * sizeof(indx_t);
491
492 /* Unpin the root page, set to recno internal page. */
493 h->flags &= ~P_TYPE;
494 h->flags |= P_RINTERNAL;
495 mpool_put(t->bt_mp, h, MPOOL_DIRTY);
496
497 return (RET_SUCCESS);
498 }
499
500 /*
501 * BT_BROOT -- Fix up the btree root page after it has been split.
502 *
503 * Parameters:
504 * t: tree
505 * h: root page
506 * l: left page
507 * r: right page
508 *
509 * Returns:
510 * RET_ERROR, RET_SUCCESS
511 */
512 static int
513 bt_broot(BTREE *t, PAGE *h, PAGE *l, PAGE *r)
514 {
515 BINTERNAL *bi;
516 BLEAF *bl;
517 u_int32_t nbytes;
518 char *dest;
519
520 /*
521 * If the root page was a leaf page, change it into an internal page.
522 * We copy the key we split on (but not the key's data, in the case of
523 * a leaf page) to the new root page.
524 *
525 * The btree comparison code guarantees that the left-most key on any
526 * level of the tree is never used, so it doesn't need to be filled in.
527 */
528 nbytes = NBINTERNAL(0);
529 h->linp[0] = h->upper = t->bt_psize - nbytes;
530 dest = (char *)h + h->upper;
531 WR_BINTERNAL(dest, 0, l->pgno, 0);
532
533 switch (h->flags & P_TYPE) {
534 case P_BLEAF:
535 bl = GETBLEAF(r, 0);
536 nbytes = NBINTERNAL(bl->ksize);
537 h->linp[1] = h->upper -= nbytes;
538 dest = (char *)h + h->upper;
539 WR_BINTERNAL(dest, bl->ksize, r->pgno, 0);
540 memmove(dest, bl->bytes, bl->ksize);
541
542 /*
543 * If the key is on an overflow page, mark the overflow chain
544 * so it isn't deleted when the leaf copy of the key is deleted.
545 */
546 if (bl->flags & P_BIGKEY &&
547 bt_preserve(t, *(pgno_t *)bl->bytes) == RET_ERROR)
548 return (RET_ERROR);
549 break;
550 case P_BINTERNAL:
551 bi = GETBINTERNAL(r, 0);
552 nbytes = NBINTERNAL(bi->ksize);
553 h->linp[1] = h->upper -= nbytes;
554 dest = (char *)h + h->upper;
555 memmove(dest, bi, nbytes);
556 ((BINTERNAL *)dest)->pgno = r->pgno;
557 break;
558 default:
559 abort();
560 }
561
562 /* There are two keys on the page. */
563 h->lower = BTDATAOFF + 2 * sizeof(indx_t);
564
565 /* Unpin the root page, set to btree internal page. */
566 h->flags &= ~P_TYPE;
567 h->flags |= P_BINTERNAL;
568 mpool_put(t->bt_mp, h, MPOOL_DIRTY);
569
570 return (RET_SUCCESS);
571 }
572
573 /*
574 * BT_PSPLIT -- Do the real work of splitting the page.
575 *
576 * Parameters:
577 * t: tree
578 * h: page to be split
579 * l: page to put lower half of data
580 * r: page to put upper half of data
581 * pskip: pointer to index to leave open
582 * ilen: insert length
583 *
584 * Returns:
585 * Pointer to page in which to insert.
586 */
587 static PAGE *
588 bt_psplit(BTREE *t, PAGE *h, PAGE *l, PAGE *r, indx_t *pskip, size_t ilen)
589 {
590 BINTERNAL *bi;
591 BLEAF *bl;
592 CURSOR *c;
593 RLEAF *rl;
594 PAGE *rval;
595 void *src;
596 indx_t full, half, nxt, off, skip, top, used;
597 u_int32_t nbytes;
598 int bigkeycnt, isbigkey;
599
600 /*
601 * Split the data to the left and right pages. Leave the skip index
602 * open. Additionally, make some effort not to split on an overflow
603 * key. This makes internal page processing faster and can save
604 * space as overflow keys used by internal pages are never deleted.
605 */
606 bigkeycnt = 0;
607 skip = *pskip;
608 full = t->bt_psize - BTDATAOFF;
609 half = full / 2;
610 used = 0;
611 for (nxt = off = 0, top = NEXTINDEX(h); nxt < top; ++off) {
612 if (skip == off) {
613 nbytes = ilen;
614 isbigkey = 0; /* XXX: not really known. */
615 } else
616 switch (h->flags & P_TYPE) {
617 case P_BINTERNAL:
618 src = bi = GETBINTERNAL(h, nxt);
619 nbytes = NBINTERNAL(bi->ksize);
620 isbigkey = bi->flags & P_BIGKEY;
621 break;
622 case P_BLEAF:
623 src = bl = GETBLEAF(h, nxt);
624 nbytes = NBLEAF(bl);
625 isbigkey = bl->flags & P_BIGKEY;
626 break;
627 case P_RINTERNAL:
628 src = GETRINTERNAL(h, nxt);
629 nbytes = NRINTERNAL;
630 isbigkey = 0;
631 break;
632 case P_RLEAF:
633 src = rl = GETRLEAF(h, nxt);
634 nbytes = NRLEAF(rl);
635 isbigkey = 0;
636 break;
637 default:
638 abort();
639 }
640
641 /*
642 * If the key/data pairs are substantial fractions of the max
643 * possible size for the page, it's possible to get situations
644 * where we decide to try and copy too much onto the left page.
645 * Make sure that doesn't happen.
646 */
647 if ((skip <= off && used + nbytes + sizeof(indx_t) >= full)
648 || nxt == top - 1) {
649 --off;
650 break;
651 }
652
653 /* Copy the key/data pair, if not the skipped index. */
654 if (skip != off) {
655 ++nxt;
656
657 l->linp[off] = l->upper -= nbytes;
658 memmove((char *)l + l->upper, src, nbytes);
659 }
660
661 used += nbytes + sizeof(indx_t);
662 if (used >= half) {
663 if (!isbigkey || bigkeycnt == 3)
664 break;
665 else
666 ++bigkeycnt;
667 }
668 }
669
670 /*
671 * Off is the last offset that's valid for the left page.
672 * Nxt is the first offset to be placed on the right page.
673 */
674 l->lower += (off + 1) * sizeof(indx_t);
675
676 /*
677 * If splitting the page that the cursor was on, the cursor has to be
678 * adjusted to point to the same record as before the split. If the
679 * cursor is at or past the skipped slot, the cursor is incremented by
680 * one. If the cursor is on the right page, it is decremented by the
681 * number of records split to the left page.
682 */
683 c = &t->bt_cursor;
684 if (F_ISSET(c, CURS_INIT) && c->pg.pgno == h->pgno) {
685 if (c->pg.index >= skip)
686 ++c->pg.index;
687 if (c->pg.index < nxt) /* Left page. */
688 c->pg.pgno = l->pgno;
689 else { /* Right page. */
690 c->pg.pgno = r->pgno;
691 c->pg.index -= nxt;
692 }
693 }
694
695 /*
696 * If the skipped index was on the left page, just return that page.
697 * Otherwise, adjust the skip index to reflect the new position on
698 * the right page.
699 */
700 if (skip <= off) {
701 skip = MAX_PAGE_OFFSET;
702 rval = l;
703 } else {
704 rval = r;
705 *pskip -= nxt;
706 }
707
708 for (off = 0; nxt < top; ++off) {
709 if (skip == nxt) {
710 ++off;
711 skip = MAX_PAGE_OFFSET;
712 }
713 switch (h->flags & P_TYPE) {
714 case P_BINTERNAL:
715 src = bi = GETBINTERNAL(h, nxt);
716 nbytes = NBINTERNAL(bi->ksize);
717 break;
718 case P_BLEAF:
719 src = bl = GETBLEAF(h, nxt);
720 nbytes = NBLEAF(bl);
721 break;
722 case P_RINTERNAL:
723 src = GETRINTERNAL(h, nxt);
724 nbytes = NRINTERNAL;
725 break;
726 case P_RLEAF:
727 src = rl = GETRLEAF(h, nxt);
728 nbytes = NRLEAF(rl);
729 break;
730 default:
731 abort();
732 }
733 ++nxt;
734 r->linp[off] = r->upper -= nbytes;
735 memmove((char *)r + r->upper, src, nbytes);
736 }
737 r->lower += off * sizeof(indx_t);
738
739 /* If the key is being appended to the page, adjust the index. */
740 if (skip == top)
741 r->lower += sizeof(indx_t);
742
743 return (rval);
744 }
745
746 /*
747 * BT_PRESERVE -- Mark a chain of pages as used by an internal node.
748 *
749 * Chains of indirect blocks pointed to by leaf nodes get reclaimed when the
750 * record that references them gets deleted. Chains pointed to by internal
751 * pages never get deleted. This routine marks a chain as pointed to by an
752 * internal page.
753 *
754 * Parameters:
755 * t: tree
756 * pg: page number of first page in the chain.
757 *
758 * Returns:
759 * RET_SUCCESS, RET_ERROR.
760 */
761 static int
762 bt_preserve(BTREE *t, pgno_t pg)
763 {
764 PAGE *h;
765
766 if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
767 return (RET_ERROR);
768 h->flags |= P_PRESERVE;
769 mpool_put(t->bt_mp, h, MPOOL_DIRTY);
770 return (RET_SUCCESS);
771 }
772
773 /*
774 * REC_TOTAL -- Return the number of recno entries below a page.
775 *
776 * Parameters:
777 * h: page
778 *
779 * Returns:
780 * The number of recno entries below a page.
781 *
782 * XXX
783 * These values could be set by the bt_psplit routine. The problem is that the
784 * entry has to be popped off of the stack etc. or the values have to be passed
785 * all the way back to bt_split/bt_rroot and it's not very clean.
786 */
787 static recno_t
788 rec_total(PAGE *h)
789 {
790 recno_t recs;
791 indx_t nxt, top;
792
793 for (recs = 0, nxt = 0, top = NEXTINDEX(h); nxt < top; ++nxt)
794 recs += GETRINTERNAL(h, nxt)->nrecs;
795 return (recs);
796 }