]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 1999 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. Please obtain a copy of the License at | |
10 | * http://www.opensource.apple.com/apsl/ and read it before using this | |
11 | * file. | |
12 | * | |
13 | * The Original Code and all software distributed under the License are | |
14 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
15 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
16 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
17 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
18 | * Please see the License for the specific language governing rights and | |
19 | * limitations under the License. | |
20 | * | |
21 | * @APPLE_LICENSE_HEADER_END@ | |
22 | */ | |
23 | /* | |
24 | * Copyright (c) 1989, 1993 | |
25 | * The Regents of the University of California. All rights reserved. | |
26 | * | |
27 | * This code is derived from software contributed to Berkeley by | |
28 | * Tom Truscott. | |
29 | * | |
30 | * Redistribution and use in source and binary forms, with or without | |
31 | * modification, are permitted provided that the following conditions | |
32 | * are met: | |
33 | * 1. Redistributions of source code must retain the above copyright | |
34 | * notice, this list of conditions and the following disclaimer. | |
35 | * 2. Redistributions in binary form must reproduce the above copyright | |
36 | * notice, this list of conditions and the following disclaimer in the | |
37 | * documentation and/or other materials provided with the distribution. | |
38 | * 3. All advertising materials mentioning features or use of this software | |
39 | * must display the following acknowledgement: | |
40 | * This product includes software developed by the University of | |
41 | * California, Berkeley and its contributors. | |
42 | * 4. Neither the name of the University nor the names of its contributors | |
43 | * may be used to endorse or promote products derived from this software | |
44 | * without specific prior written permission. | |
45 | * | |
46 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | |
47 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
48 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
49 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | |
50 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
51 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
52 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
53 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
54 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
55 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
56 | * SUCH DAMAGE. | |
57 | */ | |
58 | ||
59 | ||
60 | #include <sys/cdefs.h> | |
61 | #include <unistd.h> | |
62 | #include <limits.h> | |
63 | #include <sys/types.h> | |
64 | #include <pwd.h> | |
65 | #include <stdlib.h> | |
66 | ||
67 | /* | |
68 | * UNIX password, and DES, encryption. | |
69 | * By Tom Truscott, trt@rti.rti.org, | |
70 | * from algorithms by Robert W. Baldwin and James Gillogly. | |
71 | * | |
72 | * References: | |
73 | * "Mathematical Cryptology for Computer Scientists and Mathematicians," | |
74 | * by Wayne Patterson, 1987, ISBN 0-8476-7438-X. | |
75 | * | |
76 | * "Password Security: A Case History," R. Morris and Ken Thompson, | |
77 | * Communications of the ACM, vol. 22, pp. 594-597, Nov. 1979. | |
78 | * | |
79 | * "DES will be Totally Insecure within Ten Years," M.E. Hellman, | |
80 | * IEEE Spectrum, vol. 16, pp. 32-39, July 1979. | |
81 | */ | |
82 | ||
83 | /* ===== Configuration ==================== */ | |
84 | ||
85 | /* | |
86 | * define "MUST_ALIGN" if your compiler cannot load/store | |
87 | * long integers at arbitrary (e.g. odd) memory locations. | |
88 | * (Either that or never pass unaligned addresses to __crypt_des_cipher!) | |
89 | */ | |
90 | #if !defined(vax) | |
91 | #define MUST_ALIGN | |
92 | #endif | |
93 | ||
94 | #ifdef CHAR_BITS | |
95 | #if CHAR_BITS != 8 | |
96 | #error C_block structure assumes 8 bit characters | |
97 | #endif | |
98 | #endif | |
99 | ||
100 | /* | |
101 | * define "LONG_IS_32_BITS" only if sizeof(long)==4. | |
102 | * This avoids use of bit fields (your compiler may be sloppy with them). | |
103 | */ | |
104 | #if !defined(cray) && (LONG_BIT == 32) | |
105 | #define LONG_IS_32_BITS | |
106 | #endif | |
107 | ||
108 | /* | |
109 | * define "B64" to be the declaration for a 64 bit integer. | |
110 | * XXX this feature is currently unused, see "endian" comment below. | |
111 | */ | |
112 | #if defined(cray) | |
113 | #define B64 long | |
114 | #endif | |
115 | #if defined(convex) | |
116 | #define B64 long long | |
117 | #endif | |
118 | ||
119 | /* | |
120 | * define "LARGEDATA" to get faster permutations, by using about 72 kilobytes | |
121 | * of lookup tables. This speeds up __crypt_des_setkey() and __crypt_des_cipher(), but has | |
122 | * little effect on crypt(). | |
123 | */ | |
124 | #if defined(notdef) | |
125 | #define LARGEDATA | |
126 | #endif | |
127 | ||
128 | /* compile with "-DSTATIC=int" when profiling */ | |
129 | #ifndef STATIC | |
130 | #define STATIC static | |
131 | #endif | |
132 | #ifndef BUILDING_VARIANT | |
133 | STATIC void init_des(), init_perm(), permute(); | |
134 | #endif /* BUILDING_VARIANT */ | |
135 | __private_extern__ int __crypt_des_cipher(), __crypt_des_setkey(); | |
136 | #ifdef DEBUG | |
137 | STATIC prtab(); | |
138 | #endif | |
139 | ||
140 | /* ==================================== */ | |
141 | ||
142 | /* | |
143 | * Cipher-block representation (Bob Baldwin): | |
144 | * | |
145 | * DES operates on groups of 64 bits, numbered 1..64 (sigh). One | |
146 | * representation is to store one bit per byte in an array of bytes. Bit N of | |
147 | * the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array. | |
148 | * Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the | |
149 | * first byte, 9..16 in the second, and so on. The DES spec apparently has | |
150 | * bit 1 in the MSB of the first byte, but that is particularly noxious so we | |
151 | * bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is | |
152 | * the MSB of the first byte. Specifically, the 64-bit input data and key are | |
153 | * converted to LSB format, and the output 64-bit block is converted back into | |
154 | * MSB format. | |
155 | * | |
156 | * DES operates internally on groups of 32 bits which are expanded to 48 bits | |
157 | * by permutation E and shrunk back to 32 bits by the S boxes. To speed up | |
158 | * the computation, the expansion is applied only once, the expanded | |
159 | * representation is maintained during the encryption, and a compression | |
160 | * permutation is applied only at the end. To speed up the S-box lookups, | |
161 | * the 48 bits are maintained as eight 6 bit groups, one per byte, which | |
162 | * directly feed the eight S-boxes. Within each byte, the 6 bits are the | |
163 | * most significant ones. The low two bits of each byte are zero. (Thus, | |
164 | * bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the | |
165 | * first byte in the eight byte representation, bit 2 of the 48 bit value is | |
166 | * the "8"-valued bit, and so on.) In fact, a combined "SPE"-box lookup is | |
167 | * used, in which the output is the 64 bit result of an S-box lookup which | |
168 | * has been permuted by P and expanded by E, and is ready for use in the next | |
169 | * iteration. Two 32-bit wide tables, SPE[0] and SPE[1], are used for this | |
170 | * lookup. Since each byte in the 48 bit path is a multiple of four, indexed | |
171 | * lookup of SPE[0] and SPE[1] is simple and fast. The key schedule and | |
172 | * "salt" are also converted to this 8*(6+2) format. The SPE table size is | |
173 | * 8*64*8 = 4K bytes. | |
174 | * | |
175 | * To speed up bit-parallel operations (such as XOR), the 8 byte | |
176 | * representation is "union"ed with 32 bit values "i0" and "i1", and, on | |
177 | * machines which support it, a 64 bit value "b64". This data structure, | |
178 | * "C_block", has two problems. First, alignment restrictions must be | |
179 | * honored. Second, the byte-order (e.g. little-endian or big-endian) of | |
180 | * the architecture becomes visible. | |
181 | * | |
182 | * The byte-order problem is unfortunate, since on the one hand it is good | |
183 | * to have a machine-independent C_block representation (bits 1..8 in the | |
184 | * first byte, etc.), and on the other hand it is good for the LSB of the | |
185 | * first byte to be the LSB of i0. We cannot have both these things, so we | |
186 | * currently use the "little-endian" representation and avoid any multi-byte | |
187 | * operations that depend on byte order. This largely precludes use of the | |
188 | * 64-bit datatype since the relative order of i0 and i1 are unknown. It | |
189 | * also inhibits grouping the SPE table to look up 12 bits at a time. (The | |
190 | * 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1 | |
191 | * high-order zero, providing fast indexing into a 64-bit wide SPE.) On the | |
192 | * other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup | |
193 | * requires a 128 kilobyte table, so perhaps this is not a big loss. | |
194 | * | |
195 | * Permutation representation (Jim Gillogly): | |
196 | * | |
197 | * A transformation is defined by its effect on each of the 8 bytes of the | |
198 | * 64-bit input. For each byte we give a 64-bit output that has the bits in | |
199 | * the input distributed appropriately. The transformation is then the OR | |
200 | * of the 8 sets of 64-bits. This uses 8*256*8 = 16K bytes of storage for | |
201 | * each transformation. Unless LARGEDATA is defined, however, a more compact | |
202 | * table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks. | |
203 | * The smaller table uses 16*16*8 = 2K bytes for each transformation. This | |
204 | * is slower but tolerable, particularly for password encryption in which | |
205 | * the SPE transformation is iterated many times. The small tables total 9K | |
206 | * bytes, the large tables total 72K bytes. | |
207 | * | |
208 | * The transformations used are: | |
209 | * IE3264: MSB->LSB conversion, initial permutation, and expansion. | |
210 | * This is done by collecting the 32 even-numbered bits and applying | |
211 | * a 32->64 bit transformation, and then collecting the 32 odd-numbered | |
212 | * bits and applying the same transformation. Since there are only | |
213 | * 32 input bits, the IE3264 transformation table is half the size of | |
214 | * the usual table. | |
215 | * CF6464: Compression, final permutation, and LSB->MSB conversion. | |
216 | * This is done by two trivial 48->32 bit compressions to obtain | |
217 | * a 64-bit block (the bit numbering is given in the "CIFP" table) | |
218 | * followed by a 64->64 bit "cleanup" transformation. (It would | |
219 | * be possible to group the bits in the 64-bit block so that 2 | |
220 | * identical 32->32 bit transformations could be used instead, | |
221 | * saving a factor of 4 in space and possibly 2 in time, but | |
222 | * byte-ordering and other complications rear their ugly head. | |
223 | * Similar opportunities/problems arise in the key schedule | |
224 | * transforms.) | |
225 | * PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation. | |
226 | * This admittedly baroque 64->64 bit transformation is used to | |
227 | * produce the first code (in 8*(6+2) format) of the key schedule. | |
228 | * PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation. | |
229 | * It would be possible to define 15 more transformations, each | |
230 | * with a different rotation, to generate the entire key schedule. | |
231 | * To save space, however, we instead permute each code into the | |
232 | * next by using a transformation that "undoes" the PC2 permutation, | |
233 | * rotates the code, and then applies PC2. Unfortunately, PC2 | |
234 | * transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not | |
235 | * invertible. We get around that problem by using a modified PC2 | |
236 | * which retains the 8 otherwise-lost bits in the unused low-order | |
237 | * bits of each byte. The low-order bits are cleared when the | |
238 | * codes are stored into the key schedule. | |
239 | * PC2ROT[1]: Same as PC2ROT[0], but with two rotations. | |
240 | * This is faster than applying PC2ROT[0] twice, | |
241 | * | |
242 | * The Bell Labs "salt" (Bob Baldwin): | |
243 | * | |
244 | * The salting is a simple permutation applied to the 48-bit result of E. | |
245 | * Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and | |
246 | * i+24 of the result are swapped. The salt is thus a 24 bit number, with | |
247 | * 16777216 possible values. (The original salt was 12 bits and could not | |
248 | * swap bits 13..24 with 36..48.) | |
249 | * | |
250 | * It is possible, but ugly, to warp the SPE table to account for the salt | |
251 | * permutation. Fortunately, the conditional bit swapping requires only | |
252 | * about four machine instructions and can be done on-the-fly with about an | |
253 | * 8% performance penalty. | |
254 | */ | |
255 | ||
256 | typedef union { | |
257 | unsigned char b[8]; | |
258 | struct { | |
259 | #if defined(LONG_IS_32_BITS) | |
260 | /* long is often faster than a 32-bit bit field */ | |
261 | long i0; | |
262 | long i1; | |
263 | #else | |
264 | long i0: 32; | |
265 | long i1: 32; | |
266 | #endif | |
267 | } b32; | |
268 | #if defined(B64) | |
269 | B64 b64; | |
270 | #endif | |
271 | } C_block; | |
272 | ||
273 | /* | |
274 | * Convert twenty-four-bit long in host-order | |
275 | * to six bits (and 2 low-order zeroes) per char little-endian format. | |
276 | */ | |
277 | #define TO_SIX_BIT(rslt, src) { \ | |
278 | C_block cvt; \ | |
279 | cvt.b[0] = src; src >>= 6; \ | |
280 | cvt.b[1] = src; src >>= 6; \ | |
281 | cvt.b[2] = src; src >>= 6; \ | |
282 | cvt.b[3] = src; \ | |
283 | rslt = (cvt.b32.i0 & 0x3f3f3f3fL) << 2; \ | |
284 | } | |
285 | ||
286 | /* | |
287 | * These macros may someday permit efficient use of 64-bit integers. | |
288 | */ | |
289 | #define ZERO(d,d0,d1) d0 = 0, d1 = 0 | |
290 | #define LOAD(d,d0,d1,bl) d0 = (bl).b32.i0, d1 = (bl).b32.i1 | |
291 | #define LOADREG(d,d0,d1,s,s0,s1) d0 = s0, d1 = s1 | |
292 | #define OR(d,d0,d1,bl) d0 |= (bl).b32.i0, d1 |= (bl).b32.i1 | |
293 | #define STORE(s,s0,s1,bl) (bl).b32.i0 = s0, (bl).b32.i1 = s1 | |
294 | #define DCL_BLOCK(d,d0,d1) long d0, d1 | |
295 | ||
296 | #if defined(LARGEDATA) | |
297 | /* Waste memory like crazy. Also, do permutations in line */ | |
298 | #define LGCHUNKBITS 3 | |
299 | #define CHUNKBITS (1<<LGCHUNKBITS) | |
300 | #define PERM6464(d,d0,d1,cpp,p) \ | |
301 | LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \ | |
302 | OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \ | |
303 | OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \ | |
304 | OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]); \ | |
305 | OR (d,d0,d1,(p)[(4<<CHUNKBITS)+(cpp)[4]]); \ | |
306 | OR (d,d0,d1,(p)[(5<<CHUNKBITS)+(cpp)[5]]); \ | |
307 | OR (d,d0,d1,(p)[(6<<CHUNKBITS)+(cpp)[6]]); \ | |
308 | OR (d,d0,d1,(p)[(7<<CHUNKBITS)+(cpp)[7]]); | |
309 | #define PERM3264(d,d0,d1,cpp,p) \ | |
310 | LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \ | |
311 | OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \ | |
312 | OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \ | |
313 | OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]); | |
314 | #else | |
315 | /* "small data" */ | |
316 | #define LGCHUNKBITS 2 | |
317 | #define CHUNKBITS (1<<LGCHUNKBITS) | |
318 | #define PERM6464(d,d0,d1,cpp,p) \ | |
319 | { C_block tblk; permute(cpp,&tblk,p,8); LOAD (d,d0,d1,tblk); } | |
320 | #define PERM3264(d,d0,d1,cpp,p) \ | |
321 | { C_block tblk; permute(cpp,&tblk,p,4); LOAD (d,d0,d1,tblk); } | |
322 | ||
323 | #ifndef BUILDING_VARIANT | |
324 | STATIC void permute(cp, out, p, chars_in) | |
325 | unsigned char *cp; | |
326 | C_block *out; | |
327 | register C_block *p; | |
328 | int chars_in; | |
329 | { | |
330 | register DCL_BLOCK(D,D0,D1); | |
331 | register C_block *tp; | |
332 | register int t; | |
333 | ||
334 | ZERO(D,D0,D1); | |
335 | do { | |
336 | t = *cp++; | |
337 | tp = &p[t&0xf]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS); | |
338 | tp = &p[t>>4]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS); | |
339 | } while (--chars_in > 0); | |
340 | STORE(D,D0,D1,*out); | |
341 | } | |
342 | #endif /* BUILDING_VARIANT */ | |
343 | #endif /* LARGEDATA */ | |
344 | ||
345 | ||
346 | /* ===== (mostly) Standard DES Tables ==================== */ | |
347 | ||
348 | #ifndef BUILDING_VARIANT | |
349 | static unsigned char IP[] = { /* initial permutation */ | |
350 | 58, 50, 42, 34, 26, 18, 10, 2, | |
351 | 60, 52, 44, 36, 28, 20, 12, 4, | |
352 | 62, 54, 46, 38, 30, 22, 14, 6, | |
353 | 64, 56, 48, 40, 32, 24, 16, 8, | |
354 | 57, 49, 41, 33, 25, 17, 9, 1, | |
355 | 59, 51, 43, 35, 27, 19, 11, 3, | |
356 | 61, 53, 45, 37, 29, 21, 13, 5, | |
357 | 63, 55, 47, 39, 31, 23, 15, 7, | |
358 | }; | |
359 | ||
360 | /* The final permutation is the inverse of IP - no table is necessary */ | |
361 | ||
362 | static unsigned char ExpandTr[] = { /* expansion operation */ | |
363 | 32, 1, 2, 3, 4, 5, | |
364 | 4, 5, 6, 7, 8, 9, | |
365 | 8, 9, 10, 11, 12, 13, | |
366 | 12, 13, 14, 15, 16, 17, | |
367 | 16, 17, 18, 19, 20, 21, | |
368 | 20, 21, 22, 23, 24, 25, | |
369 | 24, 25, 26, 27, 28, 29, | |
370 | 28, 29, 30, 31, 32, 1, | |
371 | }; | |
372 | ||
373 | static unsigned char PC1[] = { /* permuted choice table 1 */ | |
374 | 57, 49, 41, 33, 25, 17, 9, | |
375 | 1, 58, 50, 42, 34, 26, 18, | |
376 | 10, 2, 59, 51, 43, 35, 27, | |
377 | 19, 11, 3, 60, 52, 44, 36, | |
378 | ||
379 | 63, 55, 47, 39, 31, 23, 15, | |
380 | 7, 62, 54, 46, 38, 30, 22, | |
381 | 14, 6, 61, 53, 45, 37, 29, | |
382 | 21, 13, 5, 28, 20, 12, 4, | |
383 | }; | |
384 | ||
385 | static unsigned char Rotates[] = { /* PC1 rotation schedule */ | |
386 | 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, | |
387 | }; | |
388 | ||
389 | /* note: each "row" of PC2 is left-padded with bits that make it invertible */ | |
390 | static unsigned char PC2[] = { /* permuted choice table 2 */ | |
391 | 9, 18, 14, 17, 11, 24, 1, 5, | |
392 | 22, 25, 3, 28, 15, 6, 21, 10, | |
393 | 35, 38, 23, 19, 12, 4, 26, 8, | |
394 | 43, 54, 16, 7, 27, 20, 13, 2, | |
395 | ||
396 | 0, 0, 41, 52, 31, 37, 47, 55, | |
397 | 0, 0, 30, 40, 51, 45, 33, 48, | |
398 | 0, 0, 44, 49, 39, 56, 34, 53, | |
399 | 0, 0, 46, 42, 50, 36, 29, 32, | |
400 | }; | |
401 | ||
402 | static const unsigned char S[8][64] = { /* 48->32 bit substitution tables */ | |
403 | { /* S[1] */ | |
404 | 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7, | |
405 | 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8, | |
406 | 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0, | |
407 | 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13, | |
408 | }, | |
409 | { /* S[2] */ | |
410 | 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10, | |
411 | 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5, | |
412 | 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15, | |
413 | 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9, | |
414 | }, | |
415 | { /* S[3] */ | |
416 | 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8, | |
417 | 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1, | |
418 | 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7, | |
419 | 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12, | |
420 | }, | |
421 | { /* S[4] */ | |
422 | 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15, | |
423 | 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9, | |
424 | 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4, | |
425 | 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14, | |
426 | }, | |
427 | { /* S[5] */ | |
428 | 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9, | |
429 | 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6, | |
430 | 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14, | |
431 | 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3, | |
432 | }, | |
433 | { /* S[6] */ | |
434 | 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11, | |
435 | 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8, | |
436 | 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6, | |
437 | 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13, | |
438 | }, | |
439 | { /* S[7] */ | |
440 | 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1, | |
441 | 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6, | |
442 | 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2, | |
443 | 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12, | |
444 | }, | |
445 | { /* S[8] */ | |
446 | 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7, | |
447 | 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2, | |
448 | 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8, | |
449 | 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11, | |
450 | }, | |
451 | }; | |
452 | ||
453 | static unsigned char P32Tr[] = { /* 32-bit permutation function */ | |
454 | 16, 7, 20, 21, | |
455 | 29, 12, 28, 17, | |
456 | 1, 15, 23, 26, | |
457 | 5, 18, 31, 10, | |
458 | 2, 8, 24, 14, | |
459 | 32, 27, 3, 9, | |
460 | 19, 13, 30, 6, | |
461 | 22, 11, 4, 25, | |
462 | }; | |
463 | ||
464 | static unsigned char CIFP[] = { /* compressed/interleaved permutation */ | |
465 | 1, 2, 3, 4, 17, 18, 19, 20, | |
466 | 5, 6, 7, 8, 21, 22, 23, 24, | |
467 | 9, 10, 11, 12, 25, 26, 27, 28, | |
468 | 13, 14, 15, 16, 29, 30, 31, 32, | |
469 | ||
470 | 33, 34, 35, 36, 49, 50, 51, 52, | |
471 | 37, 38, 39, 40, 53, 54, 55, 56, | |
472 | 41, 42, 43, 44, 57, 58, 59, 60, | |
473 | 45, 46, 47, 48, 61, 62, 63, 64, | |
474 | }; | |
475 | ||
476 | static unsigned char itoa64[] = /* 0..63 => ascii-64 */ | |
477 | "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; | |
478 | ||
479 | ||
480 | /* ===== Tables that are initialized at run time ==================== */ | |
481 | ||
482 | ||
483 | static unsigned char a64toi[128]; /* ascii-64 => 0..63 */ | |
484 | ||
485 | /* Initial key schedule permutation */ | |
486 | // static C_block PC1ROT[64/CHUNKBITS][1<<CHUNKBITS]; | |
487 | static C_block *PC1ROT; | |
488 | ||
489 | /* Subsequent key schedule rotation permutations */ | |
490 | // static C_block PC2ROT[2][64/CHUNKBITS][1<<CHUNKBITS]; | |
491 | static C_block *PC2ROT[2]; | |
492 | ||
493 | /* Initial permutation/expansion table */ | |
494 | // static C_block IE3264[32/CHUNKBITS][1<<CHUNKBITS]; | |
495 | static C_block *IE3264; | |
496 | ||
497 | /* Table that combines the S, P, and E operations. */ | |
498 | // static long SPE[2][8][64]; | |
499 | static long *SPE; | |
500 | ||
501 | /* compressed/interleaved => final permutation table */ | |
502 | // static C_block CF6464[64/CHUNKBITS][1<<CHUNKBITS]; | |
503 | static C_block *CF6464; | |
504 | ||
505 | ||
506 | /* ==================================== */ | |
507 | ||
508 | ||
509 | static C_block constdatablock; /* encryption constant */ | |
510 | static char cryptresult[1+4+4+11+1]; /* encrypted result */ | |
511 | ||
512 | /* | |
513 | * Return a pointer to static data consisting of the "setting" | |
514 | * followed by an encryption produced by the "key" and "setting". | |
515 | */ | |
516 | char * | |
517 | crypt(key, setting) | |
518 | register const char *key; | |
519 | register const char *setting; | |
520 | { | |
521 | register char *encp; | |
522 | register long i; | |
523 | register int t; | |
524 | long salt; | |
525 | int num_iter, salt_size; | |
526 | C_block keyblock, rsltblock; | |
527 | ||
528 | for (i = 0; i < 8; i++) { | |
529 | if ((t = 2*(unsigned char)(*key)) != 0) | |
530 | key++; | |
531 | keyblock.b[i] = t; | |
532 | } | |
533 | if (__crypt_des_setkey((char *)keyblock.b)) /* also initializes "a64toi" */ | |
534 | return (NULL); | |
535 | ||
536 | encp = &cryptresult[0]; | |
537 | switch (*setting) { | |
538 | case _PASSWORD_EFMT1: | |
539 | /* | |
540 | * Involve the rest of the password 8 characters at a time. | |
541 | */ | |
542 | while (*key) { | |
543 | if (__crypt_des_cipher((char *)&keyblock, | |
544 | (char *)&keyblock, 0L, 1)) | |
545 | return (NULL); | |
546 | for (i = 0; i < 8; i++) { | |
547 | if ((t = 2*(unsigned char)(*key)) != 0) | |
548 | key++; | |
549 | keyblock.b[i] ^= t; | |
550 | } | |
551 | if (__crypt_des_setkey((char *)keyblock.b)) | |
552 | return (NULL); | |
553 | } | |
554 | ||
555 | *encp++ = *setting++; | |
556 | ||
557 | /* get iteration count */ | |
558 | num_iter = 0; | |
559 | for (i = 4; --i >= 0; ) { | |
560 | if ((t = (unsigned char)setting[i]) == '\0') | |
561 | t = '.'; | |
562 | encp[i] = t; | |
563 | num_iter = (num_iter<<6) | a64toi[t]; | |
564 | } | |
565 | setting += 4; | |
566 | encp += 4; | |
567 | salt_size = 4; | |
568 | break; | |
569 | default: | |
570 | num_iter = 25; | |
571 | salt_size = 2; | |
572 | } | |
573 | ||
574 | salt = 0; | |
575 | for (i = salt_size; --i >= 0; ) { | |
576 | if ((t = (unsigned char)setting[i]) == '\0') | |
577 | t = '.'; | |
578 | encp[i] = t; | |
579 | salt = (salt<<6) | a64toi[t]; | |
580 | } | |
581 | encp += salt_size; | |
582 | if (__crypt_des_cipher((char *)&constdatablock, (char *)&rsltblock, | |
583 | salt, num_iter)) | |
584 | return (NULL); | |
585 | ||
586 | /* | |
587 | * Encode the 64 cipher bits as 11 ascii characters. | |
588 | */ | |
589 | i = ((long)((rsltblock.b[0]<<8) | rsltblock.b[1])<<8) | rsltblock.b[2]; | |
590 | encp[3] = itoa64[i&0x3f]; i >>= 6; | |
591 | encp[2] = itoa64[i&0x3f]; i >>= 6; | |
592 | encp[1] = itoa64[i&0x3f]; i >>= 6; | |
593 | encp[0] = itoa64[i]; encp += 4; | |
594 | i = ((long)((rsltblock.b[3]<<8) | rsltblock.b[4])<<8) | rsltblock.b[5]; | |
595 | encp[3] = itoa64[i&0x3f]; i >>= 6; | |
596 | encp[2] = itoa64[i&0x3f]; i >>= 6; | |
597 | encp[1] = itoa64[i&0x3f]; i >>= 6; | |
598 | encp[0] = itoa64[i]; encp += 4; | |
599 | i = ((long)((rsltblock.b[6])<<8) | rsltblock.b[7])<<2; | |
600 | encp[2] = itoa64[i&0x3f]; i >>= 6; | |
601 | encp[1] = itoa64[i&0x3f]; i >>= 6; | |
602 | encp[0] = itoa64[i]; | |
603 | ||
604 | encp[3] = 0; | |
605 | ||
606 | return (cryptresult); | |
607 | } | |
608 | ||
609 | ||
610 | /* | |
611 | * The Key Schedule, filled in by __crypt_des_setkey() or setkey(). | |
612 | */ | |
613 | #define KS_SIZE 16 | |
614 | static C_block KS[KS_SIZE]; | |
615 | ||
616 | /* | |
617 | * Set up the key schedule from the key. | |
618 | */ | |
619 | __private_extern__ int __crypt_des_setkey(key) | |
620 | register const char *key; | |
621 | { | |
622 | register DCL_BLOCK(K, K0, K1); | |
623 | register C_block *ptabp; | |
624 | register int i; | |
625 | static int des_ready = 0; | |
626 | ||
627 | if (!des_ready) { | |
628 | init_des(); | |
629 | des_ready = 1; | |
630 | } | |
631 | ||
632 | PERM6464(K,K0,K1,(unsigned char *)key,PC1ROT); | |
633 | key = (char *)&KS[0]; | |
634 | STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key); | |
635 | for (i = 1; i < 16; i++) { | |
636 | key += sizeof(C_block); | |
637 | STORE(K,K0,K1,*(C_block *)key); | |
638 | ptabp = PC2ROT[Rotates[i]-1]; | |
639 | PERM6464(K,K0,K1,(unsigned char *)key,ptabp); | |
640 | STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key); | |
641 | } | |
642 | return (0); | |
643 | } | |
644 | ||
645 | /* | |
646 | * Encrypt (or decrypt if num_iter < 0) the 8 chars at "in" with abs(num_iter) | |
647 | * iterations of DES, using the the given 24-bit salt and the pre-computed key | |
648 | * schedule, and store the resulting 8 chars at "out" (in == out is permitted). | |
649 | * | |
650 | * NOTE: the performance of this routine is critically dependent on your | |
651 | * compiler and machine architecture. | |
652 | */ | |
653 | __private_extern__ int __crypt_des_cipher(in, out, salt, num_iter) | |
654 | const char *in; | |
655 | char *out; | |
656 | long salt; | |
657 | int num_iter; | |
658 | { | |
659 | /* variables that we want in registers, most important first */ | |
660 | #if defined(pdp11) | |
661 | register int j; | |
662 | #endif | |
663 | register long L0, L1, R0, R1, k; | |
664 | register C_block *kp; | |
665 | register int loop_count; | |
666 | ssize_t ks_inc; | |
667 | C_block B; | |
668 | ||
669 | L0 = salt; | |
670 | TO_SIX_BIT(salt, L0); /* convert to 4*(6+2) format */ | |
671 | ||
672 | #if defined(vax) || defined(pdp11) | |
673 | salt = ~salt; /* "x &~ y" is faster than "x & y". */ | |
674 | #define SALT (~salt) | |
675 | #else | |
676 | #define SALT salt | |
677 | #endif | |
678 | ||
679 | #if defined(MUST_ALIGN) | |
680 | B.b[0] = in[0]; B.b[1] = in[1]; B.b[2] = in[2]; B.b[3] = in[3]; | |
681 | B.b[4] = in[4]; B.b[5] = in[5]; B.b[6] = in[6]; B.b[7] = in[7]; | |
682 | LOAD(L,L0,L1,B); | |
683 | #else | |
684 | LOAD(L,L0,L1,*(C_block *)in); | |
685 | #endif | |
686 | LOADREG(R,R0,R1,L,L0,L1); | |
687 | L0 &= 0x55555555L; | |
688 | L1 &= 0x55555555L; | |
689 | L0 = (L0 << 1) | L1; /* L0 is the even-numbered input bits */ | |
690 | R0 &= 0xaaaaaaaaL; | |
691 | R1 = (R1 >> 1) & 0x55555555L; | |
692 | L1 = R0 | R1; /* L1 is the odd-numbered input bits */ | |
693 | STORE(L,L0,L1,B); | |
694 | PERM3264(L,L0,L1,B.b,IE3264); /* even bits */ | |
695 | PERM3264(R,R0,R1,B.b+4,IE3264); /* odd bits */ | |
696 | ||
697 | if (num_iter >= 0) | |
698 | { /* encryption */ | |
699 | kp = &KS[0]; | |
700 | ks_inc = sizeof(*kp); | |
701 | } | |
702 | else | |
703 | { /* decryption */ | |
704 | num_iter = -num_iter; | |
705 | kp = &KS[KS_SIZE-1]; | |
706 | ks_inc = -sizeof(*kp); | |
707 | } | |
708 | ||
709 | while (--num_iter >= 0) { | |
710 | loop_count = 8; | |
711 | do { | |
712 | ||
713 | #define SPTAB(t, i) (*(long *)((unsigned char *)t + i*(sizeof(long)/4))) | |
714 | #if defined(gould) | |
715 | /* use this if B.b[i] is evaluated just once ... */ | |
716 | #define DOXOR(x,y,i) x^=SPTAB(&SPE[i * 64],B.b[i]); y^=SPTAB(&SPE[(8 * 64) + (i * 64)],B.b[i]); | |
717 | #else | |
718 | #if defined(pdp11) | |
719 | /* use this if your "long" int indexing is slow */ | |
720 | #define DOXOR(x,y,i) j=B.b[i]; x^=SPTAB(&SPE[i * 64],j); y^=SPTAB(&SPE[(8 * 64) + (i * 64)],j); | |
721 | #else | |
722 | /* use this if "k" is allocated to a register ... */ | |
723 | #define DOXOR(x,y,i) k=B.b[i]; x^=SPTAB(&SPE[i * 64],k); y^=SPTAB(&SPE[(8 * 64) + (i * 64)],k); | |
724 | #endif | |
725 | #endif | |
726 | ||
727 | #define CRUNCH(p0, p1, q0, q1) \ | |
728 | k = (q0 ^ q1) & SALT; \ | |
729 | B.b32.i0 = k ^ q0 ^ kp->b32.i0; \ | |
730 | B.b32.i1 = k ^ q1 ^ kp->b32.i1; \ | |
731 | kp = (C_block *)((char *)kp+ks_inc); \ | |
732 | \ | |
733 | DOXOR(p0, p1, 0); \ | |
734 | DOXOR(p0, p1, 1); \ | |
735 | DOXOR(p0, p1, 2); \ | |
736 | DOXOR(p0, p1, 3); \ | |
737 | DOXOR(p0, p1, 4); \ | |
738 | DOXOR(p0, p1, 5); \ | |
739 | DOXOR(p0, p1, 6); \ | |
740 | DOXOR(p0, p1, 7); | |
741 | ||
742 | CRUNCH(L0, L1, R0, R1); | |
743 | CRUNCH(R0, R1, L0, L1); | |
744 | } while (--loop_count != 0); | |
745 | kp = (C_block *)((char *)kp-(ks_inc*KS_SIZE)); | |
746 | ||
747 | ||
748 | /* swap L and R */ | |
749 | L0 ^= R0; L1 ^= R1; | |
750 | R0 ^= L0; R1 ^= L1; | |
751 | L0 ^= R0; L1 ^= R1; | |
752 | } | |
753 | ||
754 | /* store the encrypted (or decrypted) result */ | |
755 | L0 = ((L0 >> 3) & 0x0f0f0f0fL) | ((L1 << 1) & 0xf0f0f0f0L); | |
756 | L1 = ((R0 >> 3) & 0x0f0f0f0fL) | ((R1 << 1) & 0xf0f0f0f0L); | |
757 | STORE(L,L0,L1,B); | |
758 | PERM6464(L,L0,L1,B.b,CF6464); | |
759 | #if defined(MUST_ALIGN) | |
760 | STORE(L,L0,L1,B); | |
761 | out[0] = B.b[0]; out[1] = B.b[1]; out[2] = B.b[2]; out[3] = B.b[3]; | |
762 | out[4] = B.b[4]; out[5] = B.b[5]; out[6] = B.b[6]; out[7] = B.b[7]; | |
763 | #else | |
764 | STORE(L,L0,L1,*(C_block *)out); | |
765 | #endif | |
766 | return (0); | |
767 | } | |
768 | ||
769 | ||
770 | /* | |
771 | * Initialize various tables. This need only be done once. It could even be | |
772 | * done at compile time, if the compiler were capable of that sort of thing. | |
773 | */ | |
774 | STATIC void init_des() | |
775 | { | |
776 | register int i, j; | |
777 | register long k; | |
778 | register int tableno; | |
779 | static unsigned char perm[64], tmp32[32]; /* "static" for speed */ | |
780 | ||
781 | /* | |
782 | * table that converts chars "./0-9A-Za-z"to integers 0-63. | |
783 | */ | |
784 | for (i = 0; i < 64; i++) | |
785 | a64toi[itoa64[i]] = i; | |
786 | ||
787 | /* | |
788 | * PC1ROT - bit reverse, then PC1, then Rotate, then PC2. | |
789 | */ | |
790 | for (i = 0; i < 64; i++) | |
791 | perm[i] = 0; | |
792 | for (i = 0; i < 64; i++) { | |
793 | if ((k = PC2[i]) == 0) | |
794 | continue; | |
795 | k += Rotates[0]-1; | |
796 | if ((k%28) < Rotates[0]) k -= 28; | |
797 | k = PC1[k]; | |
798 | if (k > 0) { | |
799 | k--; | |
800 | k = (k|07) - (k&07); | |
801 | k++; | |
802 | } | |
803 | perm[i] = k; | |
804 | } | |
805 | #ifdef DEBUG | |
806 | prtab("pc1tab", perm, 8); | |
807 | #endif | |
808 | PC1ROT = (C_block *)calloc(sizeof(C_block), (64/CHUNKBITS) * (1<<CHUNKBITS)); | |
809 | for (i = 0; i < 2; i++) | |
810 | PC2ROT[i] = (C_block *)calloc(sizeof(C_block), (64/CHUNKBITS) * (1<<CHUNKBITS)); | |
811 | init_perm(PC1ROT, perm, 8, 8); | |
812 | ||
813 | /* | |
814 | * PC2ROT - PC2 inverse, then Rotate (once or twice), then PC2. | |
815 | */ | |
816 | for (j = 0; j < 2; j++) { | |
817 | unsigned char pc2inv[64]; | |
818 | for (i = 0; i < 64; i++) | |
819 | perm[i] = pc2inv[i] = 0; | |
820 | for (i = 0; i < 64; i++) { | |
821 | if ((k = PC2[i]) == 0) | |
822 | continue; | |
823 | pc2inv[k-1] = i+1; | |
824 | } | |
825 | for (i = 0; i < 64; i++) { | |
826 | if ((k = PC2[i]) == 0) | |
827 | continue; | |
828 | k += j; | |
829 | if ((k%28) <= j) k -= 28; | |
830 | perm[i] = pc2inv[k]; | |
831 | } | |
832 | #ifdef DEBUG | |
833 | prtab("pc2tab", perm, 8); | |
834 | #endif | |
835 | init_perm(PC2ROT[j], perm, 8, 8); | |
836 | } | |
837 | ||
838 | /* | |
839 | * Bit reverse, then initial permutation, then expansion. | |
840 | */ | |
841 | for (i = 0; i < 8; i++) { | |
842 | for (j = 0; j < 8; j++) { | |
843 | k = (j < 2)? 0: IP[ExpandTr[i*6+j-2]-1]; | |
844 | if (k > 32) | |
845 | k -= 32; | |
846 | else if (k > 0) | |
847 | k--; | |
848 | if (k > 0) { | |
849 | k--; | |
850 | k = (k|07) - (k&07); | |
851 | k++; | |
852 | } | |
853 | perm[i*8+j] = k; | |
854 | } | |
855 | } | |
856 | #ifdef DEBUG | |
857 | prtab("ietab", perm, 8); | |
858 | #endif | |
859 | IE3264 = (C_block *)calloc(sizeof(C_block), (32/CHUNKBITS) * (1<<CHUNKBITS)); | |
860 | init_perm(IE3264, perm, 4, 8); | |
861 | ||
862 | /* | |
863 | * Compression, then final permutation, then bit reverse. | |
864 | */ | |
865 | for (i = 0; i < 64; i++) { | |
866 | k = IP[CIFP[i]-1]; | |
867 | if (k > 0) { | |
868 | k--; | |
869 | k = (k|07) - (k&07); | |
870 | k++; | |
871 | } | |
872 | perm[k-1] = i+1; | |
873 | } | |
874 | #ifdef DEBUG | |
875 | prtab("cftab", perm, 8); | |
876 | #endif | |
877 | CF6464 = (C_block *)calloc(sizeof(C_block), (64/CHUNKBITS) * (1<<CHUNKBITS)); | |
878 | SPE = (long *)calloc(sizeof(long), 2 * 8 * 64); | |
879 | init_perm(CF6464, perm, 8, 8); | |
880 | ||
881 | /* | |
882 | * SPE table | |
883 | */ | |
884 | for (i = 0; i < 48; i++) | |
885 | perm[i] = P32Tr[ExpandTr[i]-1]; | |
886 | for (tableno = 0; tableno < 8; tableno++) { | |
887 | for (j = 0; j < 64; j++) { | |
888 | k = (((j >> 0) &01) << 5)| | |
889 | (((j >> 1) &01) << 3)| | |
890 | (((j >> 2) &01) << 2)| | |
891 | (((j >> 3) &01) << 1)| | |
892 | (((j >> 4) &01) << 0)| | |
893 | (((j >> 5) &01) << 4); | |
894 | k = S[tableno][k]; | |
895 | k = (((k >> 3)&01) << 0)| | |
896 | (((k >> 2)&01) << 1)| | |
897 | (((k >> 1)&01) << 2)| | |
898 | (((k >> 0)&01) << 3); | |
899 | for (i = 0; i < 32; i++) | |
900 | tmp32[i] = 0; | |
901 | for (i = 0; i < 4; i++) | |
902 | tmp32[4 * tableno + i] = (k >> i) & 01; | |
903 | k = 0; | |
904 | for (i = 24; --i >= 0; ) | |
905 | k = (k<<1) | tmp32[perm[i]-1]; | |
906 | TO_SIX_BIT(SPE[(tableno * 64) + j], k); | |
907 | k = 0; | |
908 | for (i = 24; --i >= 0; ) | |
909 | k = (k<<1) | tmp32[perm[i+24]-1]; | |
910 | TO_SIX_BIT(SPE[(8 * 64) + (tableno * 64) + j], k); | |
911 | } | |
912 | } | |
913 | } | |
914 | ||
915 | /* | |
916 | * Initialize "perm" to represent transformation "p", which rearranges | |
917 | * (perhaps with expansion and/or contraction) one packed array of bits | |
918 | * (of size "chars_in" characters) into another array (of size "chars_out" | |
919 | * characters). | |
920 | * | |
921 | * "perm" must be all-zeroes on entry to this routine. | |
922 | */ | |
923 | STATIC void init_perm(perm, p, chars_in, chars_out) | |
924 | C_block *perm; | |
925 | unsigned char p[64]; | |
926 | int chars_in, chars_out; | |
927 | { | |
928 | register int i, j, k, l; | |
929 | ||
930 | for (k = 0; k < chars_out*8; k++) { /* each output bit position */ | |
931 | l = p[k] - 1; /* where this bit comes from */ | |
932 | if (l < 0) | |
933 | continue; /* output bit is always 0 */ | |
934 | i = l>>LGCHUNKBITS; /* which chunk this bit comes from */ | |
935 | l = 1<<(l&(CHUNKBITS-1)); /* mask for this bit */ | |
936 | for (j = 0; j < (1<<CHUNKBITS); j++) { /* each chunk value */ | |
937 | if ((j & l) != 0) | |
938 | perm[(i * (1<<CHUNKBITS)) + j].b[k>>3] |= 1<<(k&07); | |
939 | } | |
940 | } | |
941 | } | |
942 | #endif /* BUILDING_VARIANT */ | |
943 | ||
944 | /* | |
945 | * "setkey" routine (for backwards compatibility) | |
946 | */ | |
947 | #if __DARWIN_UNIX03 | |
948 | void setkey(key) | |
949 | #else /* !__DARWIN_UNIX03 */ | |
950 | int setkey(key) | |
951 | #endif /* __DARWIN_UNIX03 */ | |
952 | register const char *key; | |
953 | { | |
954 | register int i, j, k; | |
955 | C_block keyblock; | |
956 | ||
957 | for (i = 0; i < 8; i++) { | |
958 | k = 0; | |
959 | for (j = 0; j < 8; j++) { | |
960 | k <<= 1; | |
961 | k |= (unsigned char)*key++; | |
962 | } | |
963 | keyblock.b[i] = k; | |
964 | } | |
965 | #if __DARWIN_UNIX03 | |
966 | __crypt_des_setkey((char *)keyblock.b); | |
967 | #else /* !__DARWIN_UNIX03 */ | |
968 | return (__crypt_des_setkey((char *)keyblock.b)); | |
969 | #endif /* __DARWIN_UNIX03 */ | |
970 | } | |
971 | ||
972 | /* | |
973 | * "encrypt" routine (for backwards compatibility) | |
974 | */ | |
975 | #if __DARWIN_UNIX03 | |
976 | void encrypt(block, flag) | |
977 | #else /* !__DARWIN_UNIX03 */ | |
978 | int encrypt(block, flag) | |
979 | #endif /* __DARWIN_UNIX03 */ | |
980 | register char *block; | |
981 | int flag; | |
982 | { | |
983 | register int i, j, k; | |
984 | C_block cblock; | |
985 | ||
986 | for (i = 0; i < 8; i++) { | |
987 | k = 0; | |
988 | for (j = 0; j < 8; j++) { | |
989 | k <<= 1; | |
990 | k |= (unsigned char)*block++; | |
991 | } | |
992 | cblock.b[i] = k; | |
993 | } | |
994 | if (__crypt_des_cipher((char *)&cblock, (char *)&cblock, 0L, (flag ? -1: 1))) | |
995 | #if __DARWIN_UNIX03 | |
996 | return; | |
997 | #else /* !__DARWIN_UNIX03 */ | |
998 | return (1); | |
999 | #endif /* __DARWIN_UNIX03 */ | |
1000 | for (i = 7; i >= 0; i--) { | |
1001 | k = cblock.b[i]; | |
1002 | for (j = 7; j >= 0; j--) { | |
1003 | *--block = k&01; | |
1004 | k >>= 1; | |
1005 | } | |
1006 | } | |
1007 | #if !__DARWIN_UNIX03 | |
1008 | return (0); | |
1009 | #endif /* !__DARWIN_UNIX03 */ | |
1010 | } | |
1011 | ||
1012 | #ifndef BUILDING_VARIANT | |
1013 | #ifdef DEBUG | |
1014 | STATIC | |
1015 | prtab(s, t, num_rows) | |
1016 | char *s; | |
1017 | unsigned char *t; | |
1018 | int num_rows; | |
1019 | { | |
1020 | register int i, j; | |
1021 | ||
1022 | (void)printf("%s:\n", s); | |
1023 | for (i = 0; i < num_rows; i++) { | |
1024 | for (j = 0; j < 8; j++) { | |
1025 | (void)printf("%3d", t[i*8+j]); | |
1026 | } | |
1027 | (void)printf("\n"); | |
1028 | } | |
1029 | (void)printf("\n"); | |
1030 | } | |
1031 | #endif | |
1032 | #endif /* BUILDING_VARIANT */ |