]> git.saurik.com Git - apple/libc.git/blame_incremental - gen/crypt.c
Libc-391.2.10.tar.gz
[apple/libc.git] / gen / crypt.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 1999 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. Please obtain a copy of the License at
10 * http://www.opensource.apple.com/apsl/ and read it before using this
11 * file.
12 *
13 * The Original Code and all software distributed under the License are
14 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
15 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
16 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
18 * Please see the License for the specific language governing rights and
19 * limitations under the License.
20 *
21 * @APPLE_LICENSE_HEADER_END@
22 */
23/*
24 * Copyright (c) 1989, 1993
25 * The Regents of the University of California. All rights reserved.
26 *
27 * This code is derived from software contributed to Berkeley by
28 * Tom Truscott.
29 *
30 * Redistribution and use in source and binary forms, with or without
31 * modification, are permitted provided that the following conditions
32 * are met:
33 * 1. Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * 2. Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in the
37 * documentation and/or other materials provided with the distribution.
38 * 3. All advertising materials mentioning features or use of this software
39 * must display the following acknowledgement:
40 * This product includes software developed by the University of
41 * California, Berkeley and its contributors.
42 * 4. Neither the name of the University nor the names of its contributors
43 * may be used to endorse or promote products derived from this software
44 * without specific prior written permission.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 */
58
59
60#include <sys/cdefs.h>
61#include <unistd.h>
62#include <limits.h>
63#include <sys/types.h>
64#include <pwd.h>
65#include <stdlib.h>
66
67/*
68 * UNIX password, and DES, encryption.
69 * By Tom Truscott, trt@rti.rti.org,
70 * from algorithms by Robert W. Baldwin and James Gillogly.
71 *
72 * References:
73 * "Mathematical Cryptology for Computer Scientists and Mathematicians,"
74 * by Wayne Patterson, 1987, ISBN 0-8476-7438-X.
75 *
76 * "Password Security: A Case History," R. Morris and Ken Thompson,
77 * Communications of the ACM, vol. 22, pp. 594-597, Nov. 1979.
78 *
79 * "DES will be Totally Insecure within Ten Years," M.E. Hellman,
80 * IEEE Spectrum, vol. 16, pp. 32-39, July 1979.
81 */
82
83/* ===== Configuration ==================== */
84
85/*
86 * define "MUST_ALIGN" if your compiler cannot load/store
87 * long integers at arbitrary (e.g. odd) memory locations.
88 * (Either that or never pass unaligned addresses to __crypt_des_cipher!)
89 */
90#if !defined(vax)
91#define MUST_ALIGN
92#endif
93
94#ifdef CHAR_BITS
95#if CHAR_BITS != 8
96 #error C_block structure assumes 8 bit characters
97#endif
98#endif
99
100/*
101 * define "LONG_IS_32_BITS" only if sizeof(long)==4.
102 * This avoids use of bit fields (your compiler may be sloppy with them).
103 */
104#if !defined(cray) && (LONG_BIT == 32)
105#define LONG_IS_32_BITS
106#endif
107
108/*
109 * define "B64" to be the declaration for a 64 bit integer.
110 * XXX this feature is currently unused, see "endian" comment below.
111 */
112#if defined(cray)
113#define B64 long
114#endif
115#if defined(convex)
116#define B64 long long
117#endif
118
119/*
120 * define "LARGEDATA" to get faster permutations, by using about 72 kilobytes
121 * of lookup tables. This speeds up __crypt_des_setkey() and __crypt_des_cipher(), but has
122 * little effect on crypt().
123 */
124#if defined(notdef)
125#define LARGEDATA
126#endif
127
128/* compile with "-DSTATIC=int" when profiling */
129#ifndef STATIC
130#define STATIC static
131#endif
132#ifndef BUILDING_VARIANT
133STATIC void init_des(), init_perm(), permute();
134#endif /* BUILDING_VARIANT */
135__private_extern__ int __crypt_des_cipher(), __crypt_des_setkey();
136#ifdef DEBUG
137STATIC prtab();
138#endif
139
140/* ==================================== */
141
142/*
143 * Cipher-block representation (Bob Baldwin):
144 *
145 * DES operates on groups of 64 bits, numbered 1..64 (sigh). One
146 * representation is to store one bit per byte in an array of bytes. Bit N of
147 * the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array.
148 * Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the
149 * first byte, 9..16 in the second, and so on. The DES spec apparently has
150 * bit 1 in the MSB of the first byte, but that is particularly noxious so we
151 * bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is
152 * the MSB of the first byte. Specifically, the 64-bit input data and key are
153 * converted to LSB format, and the output 64-bit block is converted back into
154 * MSB format.
155 *
156 * DES operates internally on groups of 32 bits which are expanded to 48 bits
157 * by permutation E and shrunk back to 32 bits by the S boxes. To speed up
158 * the computation, the expansion is applied only once, the expanded
159 * representation is maintained during the encryption, and a compression
160 * permutation is applied only at the end. To speed up the S-box lookups,
161 * the 48 bits are maintained as eight 6 bit groups, one per byte, which
162 * directly feed the eight S-boxes. Within each byte, the 6 bits are the
163 * most significant ones. The low two bits of each byte are zero. (Thus,
164 * bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the
165 * first byte in the eight byte representation, bit 2 of the 48 bit value is
166 * the "8"-valued bit, and so on.) In fact, a combined "SPE"-box lookup is
167 * used, in which the output is the 64 bit result of an S-box lookup which
168 * has been permuted by P and expanded by E, and is ready for use in the next
169 * iteration. Two 32-bit wide tables, SPE[0] and SPE[1], are used for this
170 * lookup. Since each byte in the 48 bit path is a multiple of four, indexed
171 * lookup of SPE[0] and SPE[1] is simple and fast. The key schedule and
172 * "salt" are also converted to this 8*(6+2) format. The SPE table size is
173 * 8*64*8 = 4K bytes.
174 *
175 * To speed up bit-parallel operations (such as XOR), the 8 byte
176 * representation is "union"ed with 32 bit values "i0" and "i1", and, on
177 * machines which support it, a 64 bit value "b64". This data structure,
178 * "C_block", has two problems. First, alignment restrictions must be
179 * honored. Second, the byte-order (e.g. little-endian or big-endian) of
180 * the architecture becomes visible.
181 *
182 * The byte-order problem is unfortunate, since on the one hand it is good
183 * to have a machine-independent C_block representation (bits 1..8 in the
184 * first byte, etc.), and on the other hand it is good for the LSB of the
185 * first byte to be the LSB of i0. We cannot have both these things, so we
186 * currently use the "little-endian" representation and avoid any multi-byte
187 * operations that depend on byte order. This largely precludes use of the
188 * 64-bit datatype since the relative order of i0 and i1 are unknown. It
189 * also inhibits grouping the SPE table to look up 12 bits at a time. (The
190 * 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1
191 * high-order zero, providing fast indexing into a 64-bit wide SPE.) On the
192 * other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup
193 * requires a 128 kilobyte table, so perhaps this is not a big loss.
194 *
195 * Permutation representation (Jim Gillogly):
196 *
197 * A transformation is defined by its effect on each of the 8 bytes of the
198 * 64-bit input. For each byte we give a 64-bit output that has the bits in
199 * the input distributed appropriately. The transformation is then the OR
200 * of the 8 sets of 64-bits. This uses 8*256*8 = 16K bytes of storage for
201 * each transformation. Unless LARGEDATA is defined, however, a more compact
202 * table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks.
203 * The smaller table uses 16*16*8 = 2K bytes for each transformation. This
204 * is slower but tolerable, particularly for password encryption in which
205 * the SPE transformation is iterated many times. The small tables total 9K
206 * bytes, the large tables total 72K bytes.
207 *
208 * The transformations used are:
209 * IE3264: MSB->LSB conversion, initial permutation, and expansion.
210 * This is done by collecting the 32 even-numbered bits and applying
211 * a 32->64 bit transformation, and then collecting the 32 odd-numbered
212 * bits and applying the same transformation. Since there are only
213 * 32 input bits, the IE3264 transformation table is half the size of
214 * the usual table.
215 * CF6464: Compression, final permutation, and LSB->MSB conversion.
216 * This is done by two trivial 48->32 bit compressions to obtain
217 * a 64-bit block (the bit numbering is given in the "CIFP" table)
218 * followed by a 64->64 bit "cleanup" transformation. (It would
219 * be possible to group the bits in the 64-bit block so that 2
220 * identical 32->32 bit transformations could be used instead,
221 * saving a factor of 4 in space and possibly 2 in time, but
222 * byte-ordering and other complications rear their ugly head.
223 * Similar opportunities/problems arise in the key schedule
224 * transforms.)
225 * PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation.
226 * This admittedly baroque 64->64 bit transformation is used to
227 * produce the first code (in 8*(6+2) format) of the key schedule.
228 * PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation.
229 * It would be possible to define 15 more transformations, each
230 * with a different rotation, to generate the entire key schedule.
231 * To save space, however, we instead permute each code into the
232 * next by using a transformation that "undoes" the PC2 permutation,
233 * rotates the code, and then applies PC2. Unfortunately, PC2
234 * transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not
235 * invertible. We get around that problem by using a modified PC2
236 * which retains the 8 otherwise-lost bits in the unused low-order
237 * bits of each byte. The low-order bits are cleared when the
238 * codes are stored into the key schedule.
239 * PC2ROT[1]: Same as PC2ROT[0], but with two rotations.
240 * This is faster than applying PC2ROT[0] twice,
241 *
242 * The Bell Labs "salt" (Bob Baldwin):
243 *
244 * The salting is a simple permutation applied to the 48-bit result of E.
245 * Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and
246 * i+24 of the result are swapped. The salt is thus a 24 bit number, with
247 * 16777216 possible values. (The original salt was 12 bits and could not
248 * swap bits 13..24 with 36..48.)
249 *
250 * It is possible, but ugly, to warp the SPE table to account for the salt
251 * permutation. Fortunately, the conditional bit swapping requires only
252 * about four machine instructions and can be done on-the-fly with about an
253 * 8% performance penalty.
254 */
255
256typedef union {
257 unsigned char b[8];
258 struct {
259#if defined(LONG_IS_32_BITS)
260 /* long is often faster than a 32-bit bit field */
261 long i0;
262 long i1;
263#else
264 long i0: 32;
265 long i1: 32;
266#endif
267 } b32;
268#if defined(B64)
269 B64 b64;
270#endif
271} C_block;
272
273/*
274 * Convert twenty-four-bit long in host-order
275 * to six bits (and 2 low-order zeroes) per char little-endian format.
276 */
277#define TO_SIX_BIT(rslt, src) { \
278 C_block cvt; \
279 cvt.b[0] = src; src >>= 6; \
280 cvt.b[1] = src; src >>= 6; \
281 cvt.b[2] = src; src >>= 6; \
282 cvt.b[3] = src; \
283 rslt = (cvt.b32.i0 & 0x3f3f3f3fL) << 2; \
284 }
285
286/*
287 * These macros may someday permit efficient use of 64-bit integers.
288 */
289#define ZERO(d,d0,d1) d0 = 0, d1 = 0
290#define LOAD(d,d0,d1,bl) d0 = (bl).b32.i0, d1 = (bl).b32.i1
291#define LOADREG(d,d0,d1,s,s0,s1) d0 = s0, d1 = s1
292#define OR(d,d0,d1,bl) d0 |= (bl).b32.i0, d1 |= (bl).b32.i1
293#define STORE(s,s0,s1,bl) (bl).b32.i0 = s0, (bl).b32.i1 = s1
294#define DCL_BLOCK(d,d0,d1) long d0, d1
295
296#if defined(LARGEDATA)
297 /* Waste memory like crazy. Also, do permutations in line */
298#define LGCHUNKBITS 3
299#define CHUNKBITS (1<<LGCHUNKBITS)
300#define PERM6464(d,d0,d1,cpp,p) \
301 LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \
302 OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \
303 OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \
304 OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]); \
305 OR (d,d0,d1,(p)[(4<<CHUNKBITS)+(cpp)[4]]); \
306 OR (d,d0,d1,(p)[(5<<CHUNKBITS)+(cpp)[5]]); \
307 OR (d,d0,d1,(p)[(6<<CHUNKBITS)+(cpp)[6]]); \
308 OR (d,d0,d1,(p)[(7<<CHUNKBITS)+(cpp)[7]]);
309#define PERM3264(d,d0,d1,cpp,p) \
310 LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \
311 OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \
312 OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \
313 OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);
314#else
315 /* "small data" */
316#define LGCHUNKBITS 2
317#define CHUNKBITS (1<<LGCHUNKBITS)
318#define PERM6464(d,d0,d1,cpp,p) \
319 { C_block tblk; permute(cpp,&tblk,p,8); LOAD (d,d0,d1,tblk); }
320#define PERM3264(d,d0,d1,cpp,p) \
321 { C_block tblk; permute(cpp,&tblk,p,4); LOAD (d,d0,d1,tblk); }
322
323#ifndef BUILDING_VARIANT
324STATIC void permute(cp, out, p, chars_in)
325 unsigned char *cp;
326 C_block *out;
327 register C_block *p;
328 int chars_in;
329{
330 register DCL_BLOCK(D,D0,D1);
331 register C_block *tp;
332 register int t;
333
334 ZERO(D,D0,D1);
335 do {
336 t = *cp++;
337 tp = &p[t&0xf]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
338 tp = &p[t>>4]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
339 } while (--chars_in > 0);
340 STORE(D,D0,D1,*out);
341}
342#endif /* BUILDING_VARIANT */
343#endif /* LARGEDATA */
344
345
346/* ===== (mostly) Standard DES Tables ==================== */
347
348#ifndef BUILDING_VARIANT
349static unsigned char IP[] = { /* initial permutation */
350 58, 50, 42, 34, 26, 18, 10, 2,
351 60, 52, 44, 36, 28, 20, 12, 4,
352 62, 54, 46, 38, 30, 22, 14, 6,
353 64, 56, 48, 40, 32, 24, 16, 8,
354 57, 49, 41, 33, 25, 17, 9, 1,
355 59, 51, 43, 35, 27, 19, 11, 3,
356 61, 53, 45, 37, 29, 21, 13, 5,
357 63, 55, 47, 39, 31, 23, 15, 7,
358};
359
360/* The final permutation is the inverse of IP - no table is necessary */
361
362static unsigned char ExpandTr[] = { /* expansion operation */
363 32, 1, 2, 3, 4, 5,
364 4, 5, 6, 7, 8, 9,
365 8, 9, 10, 11, 12, 13,
366 12, 13, 14, 15, 16, 17,
367 16, 17, 18, 19, 20, 21,
368 20, 21, 22, 23, 24, 25,
369 24, 25, 26, 27, 28, 29,
370 28, 29, 30, 31, 32, 1,
371};
372
373static unsigned char PC1[] = { /* permuted choice table 1 */
374 57, 49, 41, 33, 25, 17, 9,
375 1, 58, 50, 42, 34, 26, 18,
376 10, 2, 59, 51, 43, 35, 27,
377 19, 11, 3, 60, 52, 44, 36,
378
379 63, 55, 47, 39, 31, 23, 15,
380 7, 62, 54, 46, 38, 30, 22,
381 14, 6, 61, 53, 45, 37, 29,
382 21, 13, 5, 28, 20, 12, 4,
383};
384
385static unsigned char Rotates[] = { /* PC1 rotation schedule */
386 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,
387};
388
389/* note: each "row" of PC2 is left-padded with bits that make it invertible */
390static unsigned char PC2[] = { /* permuted choice table 2 */
391 9, 18, 14, 17, 11, 24, 1, 5,
392 22, 25, 3, 28, 15, 6, 21, 10,
393 35, 38, 23, 19, 12, 4, 26, 8,
394 43, 54, 16, 7, 27, 20, 13, 2,
395
396 0, 0, 41, 52, 31, 37, 47, 55,
397 0, 0, 30, 40, 51, 45, 33, 48,
398 0, 0, 44, 49, 39, 56, 34, 53,
399 0, 0, 46, 42, 50, 36, 29, 32,
400};
401
402static const unsigned char S[8][64] = { /* 48->32 bit substitution tables */
403 { /* S[1] */
404 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
405 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
406 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
407 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13,
408 },
409 { /* S[2] */
410 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
411 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
412 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
413 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9,
414 },
415 { /* S[3] */
416 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
417 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
418 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
419 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12,
420 },
421 { /* S[4] */
422 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
423 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
424 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
425 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14,
426 },
427 { /* S[5] */
428 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
429 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
430 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
431 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3,
432 },
433 { /* S[6] */
434 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
435 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
436 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
437 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13,
438 },
439 { /* S[7] */
440 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
441 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
442 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
443 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12,
444 },
445 { /* S[8] */
446 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
447 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
448 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
449 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11,
450 },
451};
452
453static unsigned char P32Tr[] = { /* 32-bit permutation function */
454 16, 7, 20, 21,
455 29, 12, 28, 17,
456 1, 15, 23, 26,
457 5, 18, 31, 10,
458 2, 8, 24, 14,
459 32, 27, 3, 9,
460 19, 13, 30, 6,
461 22, 11, 4, 25,
462};
463
464static unsigned char CIFP[] = { /* compressed/interleaved permutation */
465 1, 2, 3, 4, 17, 18, 19, 20,
466 5, 6, 7, 8, 21, 22, 23, 24,
467 9, 10, 11, 12, 25, 26, 27, 28,
468 13, 14, 15, 16, 29, 30, 31, 32,
469
470 33, 34, 35, 36, 49, 50, 51, 52,
471 37, 38, 39, 40, 53, 54, 55, 56,
472 41, 42, 43, 44, 57, 58, 59, 60,
473 45, 46, 47, 48, 61, 62, 63, 64,
474};
475
476static unsigned char itoa64[] = /* 0..63 => ascii-64 */
477 "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
478
479
480/* ===== Tables that are initialized at run time ==================== */
481
482
483static unsigned char a64toi[128]; /* ascii-64 => 0..63 */
484
485/* Initial key schedule permutation */
486// static C_block PC1ROT[64/CHUNKBITS][1<<CHUNKBITS];
487static C_block *PC1ROT;
488
489/* Subsequent key schedule rotation permutations */
490// static C_block PC2ROT[2][64/CHUNKBITS][1<<CHUNKBITS];
491static C_block *PC2ROT[2];
492
493/* Initial permutation/expansion table */
494// static C_block IE3264[32/CHUNKBITS][1<<CHUNKBITS];
495static C_block *IE3264;
496
497/* Table that combines the S, P, and E operations. */
498// static long SPE[2][8][64];
499static long *SPE;
500
501/* compressed/interleaved => final permutation table */
502// static C_block CF6464[64/CHUNKBITS][1<<CHUNKBITS];
503static C_block *CF6464;
504
505
506/* ==================================== */
507
508
509static C_block constdatablock; /* encryption constant */
510static char cryptresult[1+4+4+11+1]; /* encrypted result */
511
512/*
513 * Return a pointer to static data consisting of the "setting"
514 * followed by an encryption produced by the "key" and "setting".
515 */
516char *
517crypt(key, setting)
518 register const char *key;
519 register const char *setting;
520{
521 register char *encp;
522 register long i;
523 register int t;
524 long salt;
525 int num_iter, salt_size;
526 C_block keyblock, rsltblock;
527
528 for (i = 0; i < 8; i++) {
529 if ((t = 2*(unsigned char)(*key)) != 0)
530 key++;
531 keyblock.b[i] = t;
532 }
533 if (__crypt_des_setkey((char *)keyblock.b)) /* also initializes "a64toi" */
534 return (NULL);
535
536 encp = &cryptresult[0];
537 switch (*setting) {
538 case _PASSWORD_EFMT1:
539 /*
540 * Involve the rest of the password 8 characters at a time.
541 */
542 while (*key) {
543 if (__crypt_des_cipher((char *)&keyblock,
544 (char *)&keyblock, 0L, 1))
545 return (NULL);
546 for (i = 0; i < 8; i++) {
547 if ((t = 2*(unsigned char)(*key)) != 0)
548 key++;
549 keyblock.b[i] ^= t;
550 }
551 if (__crypt_des_setkey((char *)keyblock.b))
552 return (NULL);
553 }
554
555 *encp++ = *setting++;
556
557 /* get iteration count */
558 num_iter = 0;
559 for (i = 4; --i >= 0; ) {
560 if ((t = (unsigned char)setting[i]) == '\0')
561 t = '.';
562 encp[i] = t;
563 num_iter = (num_iter<<6) | a64toi[t];
564 }
565 setting += 4;
566 encp += 4;
567 salt_size = 4;
568 break;
569 default:
570 num_iter = 25;
571 salt_size = 2;
572 }
573
574 salt = 0;
575 for (i = salt_size; --i >= 0; ) {
576 if ((t = (unsigned char)setting[i]) == '\0')
577 t = '.';
578 encp[i] = t;
579 salt = (salt<<6) | a64toi[t];
580 }
581 encp += salt_size;
582 if (__crypt_des_cipher((char *)&constdatablock, (char *)&rsltblock,
583 salt, num_iter))
584 return (NULL);
585
586 /*
587 * Encode the 64 cipher bits as 11 ascii characters.
588 */
589 i = ((long)((rsltblock.b[0]<<8) | rsltblock.b[1])<<8) | rsltblock.b[2];
590 encp[3] = itoa64[i&0x3f]; i >>= 6;
591 encp[2] = itoa64[i&0x3f]; i >>= 6;
592 encp[1] = itoa64[i&0x3f]; i >>= 6;
593 encp[0] = itoa64[i]; encp += 4;
594 i = ((long)((rsltblock.b[3]<<8) | rsltblock.b[4])<<8) | rsltblock.b[5];
595 encp[3] = itoa64[i&0x3f]; i >>= 6;
596 encp[2] = itoa64[i&0x3f]; i >>= 6;
597 encp[1] = itoa64[i&0x3f]; i >>= 6;
598 encp[0] = itoa64[i]; encp += 4;
599 i = ((long)((rsltblock.b[6])<<8) | rsltblock.b[7])<<2;
600 encp[2] = itoa64[i&0x3f]; i >>= 6;
601 encp[1] = itoa64[i&0x3f]; i >>= 6;
602 encp[0] = itoa64[i];
603
604 encp[3] = 0;
605
606 return (cryptresult);
607}
608
609
610/*
611 * The Key Schedule, filled in by __crypt_des_setkey() or setkey().
612 */
613#define KS_SIZE 16
614static C_block KS[KS_SIZE];
615
616/*
617 * Set up the key schedule from the key.
618 */
619__private_extern__ int __crypt_des_setkey(key)
620 register const char *key;
621{
622 register DCL_BLOCK(K, K0, K1);
623 register C_block *ptabp;
624 register int i;
625 static int des_ready = 0;
626
627 if (!des_ready) {
628 init_des();
629 des_ready = 1;
630 }
631
632 PERM6464(K,K0,K1,(unsigned char *)key,PC1ROT);
633 key = (char *)&KS[0];
634 STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
635 for (i = 1; i < 16; i++) {
636 key += sizeof(C_block);
637 STORE(K,K0,K1,*(C_block *)key);
638 ptabp = PC2ROT[Rotates[i]-1];
639 PERM6464(K,K0,K1,(unsigned char *)key,ptabp);
640 STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
641 }
642 return (0);
643}
644
645/*
646 * Encrypt (or decrypt if num_iter < 0) the 8 chars at "in" with abs(num_iter)
647 * iterations of DES, using the the given 24-bit salt and the pre-computed key
648 * schedule, and store the resulting 8 chars at "out" (in == out is permitted).
649 *
650 * NOTE: the performance of this routine is critically dependent on your
651 * compiler and machine architecture.
652 */
653__private_extern__ int __crypt_des_cipher(in, out, salt, num_iter)
654 const char *in;
655 char *out;
656 long salt;
657 int num_iter;
658{
659 /* variables that we want in registers, most important first */
660#if defined(pdp11)
661 register int j;
662#endif
663 register long L0, L1, R0, R1, k;
664 register C_block *kp;
665 register int loop_count;
666 ssize_t ks_inc;
667 C_block B;
668
669 L0 = salt;
670 TO_SIX_BIT(salt, L0); /* convert to 4*(6+2) format */
671
672#if defined(vax) || defined(pdp11)
673 salt = ~salt; /* "x &~ y" is faster than "x & y". */
674#define SALT (~salt)
675#else
676#define SALT salt
677#endif
678
679#if defined(MUST_ALIGN)
680 B.b[0] = in[0]; B.b[1] = in[1]; B.b[2] = in[2]; B.b[3] = in[3];
681 B.b[4] = in[4]; B.b[5] = in[5]; B.b[6] = in[6]; B.b[7] = in[7];
682 LOAD(L,L0,L1,B);
683#else
684 LOAD(L,L0,L1,*(C_block *)in);
685#endif
686 LOADREG(R,R0,R1,L,L0,L1);
687 L0 &= 0x55555555L;
688 L1 &= 0x55555555L;
689 L0 = (L0 << 1) | L1; /* L0 is the even-numbered input bits */
690 R0 &= 0xaaaaaaaaL;
691 R1 = (R1 >> 1) & 0x55555555L;
692 L1 = R0 | R1; /* L1 is the odd-numbered input bits */
693 STORE(L,L0,L1,B);
694 PERM3264(L,L0,L1,B.b,IE3264); /* even bits */
695 PERM3264(R,R0,R1,B.b+4,IE3264); /* odd bits */
696
697 if (num_iter >= 0)
698 { /* encryption */
699 kp = &KS[0];
700 ks_inc = sizeof(*kp);
701 }
702 else
703 { /* decryption */
704 num_iter = -num_iter;
705 kp = &KS[KS_SIZE-1];
706 ks_inc = -sizeof(*kp);
707 }
708
709 while (--num_iter >= 0) {
710 loop_count = 8;
711 do {
712
713#define SPTAB(t, i) (*(long *)((unsigned char *)t + i*(sizeof(long)/4)))
714#if defined(gould)
715 /* use this if B.b[i] is evaluated just once ... */
716#define DOXOR(x,y,i) x^=SPTAB(&SPE[i * 64],B.b[i]); y^=SPTAB(&SPE[(8 * 64) + (i * 64)],B.b[i]);
717#else
718#if defined(pdp11)
719 /* use this if your "long" int indexing is slow */
720#define DOXOR(x,y,i) j=B.b[i]; x^=SPTAB(&SPE[i * 64],j); y^=SPTAB(&SPE[(8 * 64) + (i * 64)],j);
721#else
722 /* use this if "k" is allocated to a register ... */
723#define DOXOR(x,y,i) k=B.b[i]; x^=SPTAB(&SPE[i * 64],k); y^=SPTAB(&SPE[(8 * 64) + (i * 64)],k);
724#endif
725#endif
726
727#define CRUNCH(p0, p1, q0, q1) \
728 k = (q0 ^ q1) & SALT; \
729 B.b32.i0 = k ^ q0 ^ kp->b32.i0; \
730 B.b32.i1 = k ^ q1 ^ kp->b32.i1; \
731 kp = (C_block *)((char *)kp+ks_inc); \
732 \
733 DOXOR(p0, p1, 0); \
734 DOXOR(p0, p1, 1); \
735 DOXOR(p0, p1, 2); \
736 DOXOR(p0, p1, 3); \
737 DOXOR(p0, p1, 4); \
738 DOXOR(p0, p1, 5); \
739 DOXOR(p0, p1, 6); \
740 DOXOR(p0, p1, 7);
741
742 CRUNCH(L0, L1, R0, R1);
743 CRUNCH(R0, R1, L0, L1);
744 } while (--loop_count != 0);
745 kp = (C_block *)((char *)kp-(ks_inc*KS_SIZE));
746
747
748 /* swap L and R */
749 L0 ^= R0; L1 ^= R1;
750 R0 ^= L0; R1 ^= L1;
751 L0 ^= R0; L1 ^= R1;
752 }
753
754 /* store the encrypted (or decrypted) result */
755 L0 = ((L0 >> 3) & 0x0f0f0f0fL) | ((L1 << 1) & 0xf0f0f0f0L);
756 L1 = ((R0 >> 3) & 0x0f0f0f0fL) | ((R1 << 1) & 0xf0f0f0f0L);
757 STORE(L,L0,L1,B);
758 PERM6464(L,L0,L1,B.b,CF6464);
759#if defined(MUST_ALIGN)
760 STORE(L,L0,L1,B);
761 out[0] = B.b[0]; out[1] = B.b[1]; out[2] = B.b[2]; out[3] = B.b[3];
762 out[4] = B.b[4]; out[5] = B.b[5]; out[6] = B.b[6]; out[7] = B.b[7];
763#else
764 STORE(L,L0,L1,*(C_block *)out);
765#endif
766 return (0);
767}
768
769
770/*
771 * Initialize various tables. This need only be done once. It could even be
772 * done at compile time, if the compiler were capable of that sort of thing.
773 */
774STATIC void init_des()
775{
776 register int i, j;
777 register long k;
778 register int tableno;
779 static unsigned char perm[64], tmp32[32]; /* "static" for speed */
780
781 /*
782 * table that converts chars "./0-9A-Za-z"to integers 0-63.
783 */
784 for (i = 0; i < 64; i++)
785 a64toi[itoa64[i]] = i;
786
787 /*
788 * PC1ROT - bit reverse, then PC1, then Rotate, then PC2.
789 */
790 for (i = 0; i < 64; i++)
791 perm[i] = 0;
792 for (i = 0; i < 64; i++) {
793 if ((k = PC2[i]) == 0)
794 continue;
795 k += Rotates[0]-1;
796 if ((k%28) < Rotates[0]) k -= 28;
797 k = PC1[k];
798 if (k > 0) {
799 k--;
800 k = (k|07) - (k&07);
801 k++;
802 }
803 perm[i] = k;
804 }
805#ifdef DEBUG
806 prtab("pc1tab", perm, 8);
807#endif
808 PC1ROT = (C_block *)calloc(sizeof(C_block), (64/CHUNKBITS) * (1<<CHUNKBITS));
809 for (i = 0; i < 2; i++)
810 PC2ROT[i] = (C_block *)calloc(sizeof(C_block), (64/CHUNKBITS) * (1<<CHUNKBITS));
811 init_perm(PC1ROT, perm, 8, 8);
812
813 /*
814 * PC2ROT - PC2 inverse, then Rotate (once or twice), then PC2.
815 */
816 for (j = 0; j < 2; j++) {
817 unsigned char pc2inv[64];
818 for (i = 0; i < 64; i++)
819 perm[i] = pc2inv[i] = 0;
820 for (i = 0; i < 64; i++) {
821 if ((k = PC2[i]) == 0)
822 continue;
823 pc2inv[k-1] = i+1;
824 }
825 for (i = 0; i < 64; i++) {
826 if ((k = PC2[i]) == 0)
827 continue;
828 k += j;
829 if ((k%28) <= j) k -= 28;
830 perm[i] = pc2inv[k];
831 }
832#ifdef DEBUG
833 prtab("pc2tab", perm, 8);
834#endif
835 init_perm(PC2ROT[j], perm, 8, 8);
836 }
837
838 /*
839 * Bit reverse, then initial permutation, then expansion.
840 */
841 for (i = 0; i < 8; i++) {
842 for (j = 0; j < 8; j++) {
843 k = (j < 2)? 0: IP[ExpandTr[i*6+j-2]-1];
844 if (k > 32)
845 k -= 32;
846 else if (k > 0)
847 k--;
848 if (k > 0) {
849 k--;
850 k = (k|07) - (k&07);
851 k++;
852 }
853 perm[i*8+j] = k;
854 }
855 }
856#ifdef DEBUG
857 prtab("ietab", perm, 8);
858#endif
859 IE3264 = (C_block *)calloc(sizeof(C_block), (32/CHUNKBITS) * (1<<CHUNKBITS));
860 init_perm(IE3264, perm, 4, 8);
861
862 /*
863 * Compression, then final permutation, then bit reverse.
864 */
865 for (i = 0; i < 64; i++) {
866 k = IP[CIFP[i]-1];
867 if (k > 0) {
868 k--;
869 k = (k|07) - (k&07);
870 k++;
871 }
872 perm[k-1] = i+1;
873 }
874#ifdef DEBUG
875 prtab("cftab", perm, 8);
876#endif
877 CF6464 = (C_block *)calloc(sizeof(C_block), (64/CHUNKBITS) * (1<<CHUNKBITS));
878 SPE = (long *)calloc(sizeof(long), 2 * 8 * 64);
879 init_perm(CF6464, perm, 8, 8);
880
881 /*
882 * SPE table
883 */
884 for (i = 0; i < 48; i++)
885 perm[i] = P32Tr[ExpandTr[i]-1];
886 for (tableno = 0; tableno < 8; tableno++) {
887 for (j = 0; j < 64; j++) {
888 k = (((j >> 0) &01) << 5)|
889 (((j >> 1) &01) << 3)|
890 (((j >> 2) &01) << 2)|
891 (((j >> 3) &01) << 1)|
892 (((j >> 4) &01) << 0)|
893 (((j >> 5) &01) << 4);
894 k = S[tableno][k];
895 k = (((k >> 3)&01) << 0)|
896 (((k >> 2)&01) << 1)|
897 (((k >> 1)&01) << 2)|
898 (((k >> 0)&01) << 3);
899 for (i = 0; i < 32; i++)
900 tmp32[i] = 0;
901 for (i = 0; i < 4; i++)
902 tmp32[4 * tableno + i] = (k >> i) & 01;
903 k = 0;
904 for (i = 24; --i >= 0; )
905 k = (k<<1) | tmp32[perm[i]-1];
906 TO_SIX_BIT(SPE[(tableno * 64) + j], k);
907 k = 0;
908 for (i = 24; --i >= 0; )
909 k = (k<<1) | tmp32[perm[i+24]-1];
910 TO_SIX_BIT(SPE[(8 * 64) + (tableno * 64) + j], k);
911 }
912 }
913}
914
915/*
916 * Initialize "perm" to represent transformation "p", which rearranges
917 * (perhaps with expansion and/or contraction) one packed array of bits
918 * (of size "chars_in" characters) into another array (of size "chars_out"
919 * characters).
920 *
921 * "perm" must be all-zeroes on entry to this routine.
922 */
923STATIC void init_perm(perm, p, chars_in, chars_out)
924 C_block *perm;
925 unsigned char p[64];
926 int chars_in, chars_out;
927{
928 register int i, j, k, l;
929
930 for (k = 0; k < chars_out*8; k++) { /* each output bit position */
931 l = p[k] - 1; /* where this bit comes from */
932 if (l < 0)
933 continue; /* output bit is always 0 */
934 i = l>>LGCHUNKBITS; /* which chunk this bit comes from */
935 l = 1<<(l&(CHUNKBITS-1)); /* mask for this bit */
936 for (j = 0; j < (1<<CHUNKBITS); j++) { /* each chunk value */
937 if ((j & l) != 0)
938 perm[(i * (1<<CHUNKBITS)) + j].b[k>>3] |= 1<<(k&07);
939 }
940 }
941}
942#endif /* BUILDING_VARIANT */
943
944/*
945 * "setkey" routine (for backwards compatibility)
946 */
947#if __DARWIN_UNIX03
948void setkey(key)
949#else /* !__DARWIN_UNIX03 */
950int setkey(key)
951#endif /* __DARWIN_UNIX03 */
952 register const char *key;
953{
954 register int i, j, k;
955 C_block keyblock;
956
957 for (i = 0; i < 8; i++) {
958 k = 0;
959 for (j = 0; j < 8; j++) {
960 k <<= 1;
961 k |= (unsigned char)*key++;
962 }
963 keyblock.b[i] = k;
964 }
965#if __DARWIN_UNIX03
966 __crypt_des_setkey((char *)keyblock.b);
967#else /* !__DARWIN_UNIX03 */
968 return (__crypt_des_setkey((char *)keyblock.b));
969#endif /* __DARWIN_UNIX03 */
970}
971
972/*
973 * "encrypt" routine (for backwards compatibility)
974 */
975#if __DARWIN_UNIX03
976void encrypt(block, flag)
977#else /* !__DARWIN_UNIX03 */
978int encrypt(block, flag)
979#endif /* __DARWIN_UNIX03 */
980 register char *block;
981 int flag;
982{
983 register int i, j, k;
984 C_block cblock;
985
986 for (i = 0; i < 8; i++) {
987 k = 0;
988 for (j = 0; j < 8; j++) {
989 k <<= 1;
990 k |= (unsigned char)*block++;
991 }
992 cblock.b[i] = k;
993 }
994 if (__crypt_des_cipher((char *)&cblock, (char *)&cblock, 0L, (flag ? -1: 1)))
995#if __DARWIN_UNIX03
996 return;
997#else /* !__DARWIN_UNIX03 */
998 return (1);
999#endif /* __DARWIN_UNIX03 */
1000 for (i = 7; i >= 0; i--) {
1001 k = cblock.b[i];
1002 for (j = 7; j >= 0; j--) {
1003 *--block = k&01;
1004 k >>= 1;
1005 }
1006 }
1007#if !__DARWIN_UNIX03
1008 return (0);
1009#endif /* !__DARWIN_UNIX03 */
1010}
1011
1012#ifndef BUILDING_VARIANT
1013#ifdef DEBUG
1014STATIC
1015prtab(s, t, num_rows)
1016 char *s;
1017 unsigned char *t;
1018 int num_rows;
1019{
1020 register int i, j;
1021
1022 (void)printf("%s:\n", s);
1023 for (i = 0; i < num_rows; i++) {
1024 for (j = 0; j < 8; j++) {
1025 (void)printf("%3d", t[i*8+j]);
1026 }
1027 (void)printf("\n");
1028 }
1029 (void)printf("\n");
1030}
1031#endif
1032#endif /* BUILDING_VARIANT */