]> git.saurik.com Git - apple/libc.git/blame_incremental - ppc/gen/abs.s
Libc-763.13.tar.gz
[apple/libc.git] / ppc / gen / abs.s
... / ...
CommitLineData
1/*
2 * Copyright (c) 1999 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. Please obtain a copy of the License at
10 * http://www.opensource.apple.com/apsl/ and read it before using this
11 * file.
12 *
13 * The Original Code and all software distributed under the License are
14 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
15 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
16 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
18 * Please see the License for the specific language governing rights and
19 * limitations under the License.
20 *
21 * @APPLE_LICENSE_HEADER_END@
22 */
23/* Copyright (c) 1992,1997 NeXT Software, Inc. All rights reserved.
24 *
25 * File: libc/gen/ppc/abs.s
26 * Author: Derek B Clegg, NeXT Software, Inc.
27 *
28 * HISTORY
29 * 24-Jan-1997 Umesh Vaishampayan (umeshv@NeXT.com)
30 * Ported to PPC.
31 * 10-Nov-92 Derek B Clegg (dclegg@next.com)
32 * Created.
33 * 13-Jan-93 Derek B Clegg (dclegg@next.com)
34 * Optimized.
35 *
36 * ANSI X3.159-1989:
37 * int abs(int j);
38 *
39 * Description:
40 * The `abs' function computes the absolute value of an integer `j'.
41 * If the result cannot be represented, the behavior is undefined.
42 * Returns:
43 * The `abs' function returns the absolute value.
44 */
45#include <architecture/ppc/asm_help.h>
46#include <architecture/ppc/pseudo_inst.h>
47
48/* We calculate abs(x) as
49 * s = x >> 31;
50 * y = x + s;
51 * return y ^ s;
52 *
53 * If x >= 0, then s = 0, so clearly we return x. On the other hand, if
54 * x < 0, then we may write x as ~z + 1, where z = -x. In this case,
55 * s = -1, so y = x - 1 = ~z, and hence we return -1 ^ (x - 1) = -1 ^ ~z
56 * = z = -x.
57 */
58LEAF(_abs)
59 srawi a1,a0,31
60 add a2,a1,a0
61 xor a0,a2,a1
62 blr
63END(_abs)