]>
Commit | Line | Data |
---|---|---|
1 | /*- | |
2 | * Copyright (c) 1990, 1993, 1994 | |
3 | * The Regents of the University of California. All rights reserved. | |
4 | * | |
5 | * This code is derived from software contributed to Berkeley by | |
6 | * Margo Seltzer. | |
7 | * | |
8 | * Redistribution and use in source and binary forms, with or without | |
9 | * modification, are permitted provided that the following conditions | |
10 | * are met: | |
11 | * 1. Redistributions of source code must retain the above copyright | |
12 | * notice, this list of conditions and the following disclaimer. | |
13 | * 2. Redistributions in binary form must reproduce the above copyright | |
14 | * notice, this list of conditions and the following disclaimer in the | |
15 | * documentation and/or other materials provided with the distribution. | |
16 | * 4. Neither the name of the University nor the names of its contributors | |
17 | * may be used to endorse or promote products derived from this software | |
18 | * without specific prior written permission. | |
19 | * | |
20 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | |
21 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
22 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
23 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | |
24 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
25 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
26 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
27 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
28 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
29 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
30 | * SUCH DAMAGE. | |
31 | */ | |
32 | ||
33 | #if defined(LIBC_SCCS) && !defined(lint) | |
34 | static char sccsid[] = "@(#)hash_bigkey.c 8.3 (Berkeley) 5/31/94"; | |
35 | #endif /* LIBC_SCCS and not lint */ | |
36 | #include <sys/cdefs.h> | |
37 | __FBSDID("$FreeBSD: src/lib/libc/db/hash/hash_bigkey.c,v 1.10 2009/03/28 06:47:05 delphij Exp $"); | |
38 | ||
39 | /* | |
40 | * PACKAGE: hash | |
41 | * DESCRIPTION: | |
42 | * Big key/data handling for the hashing package. | |
43 | * | |
44 | * ROUTINES: | |
45 | * External | |
46 | * __big_keydata | |
47 | * __big_split | |
48 | * __big_insert | |
49 | * __big_return | |
50 | * __big_delete | |
51 | * __find_last_page | |
52 | * Internal | |
53 | * collect_key | |
54 | * collect_data | |
55 | */ | |
56 | ||
57 | #include <sys/param.h> | |
58 | ||
59 | #include <errno.h> | |
60 | #include <stdio.h> | |
61 | #include <stdlib.h> | |
62 | #include <string.h> | |
63 | ||
64 | #ifdef DEBUG | |
65 | #include <assert.h> | |
66 | #endif | |
67 | ||
68 | #include <db.h> | |
69 | #include "hash.h" | |
70 | #include "page.h" | |
71 | #include "hash_extern.h" | |
72 | ||
73 | static int collect_key(HTAB *, BUFHEAD *, int, DBT *, int); | |
74 | static int collect_data(HTAB *, BUFHEAD *, int, int); | |
75 | ||
76 | /* | |
77 | * Big_insert | |
78 | * | |
79 | * You need to do an insert and the key/data pair is too big | |
80 | * | |
81 | * Returns: | |
82 | * 0 ==> OK | |
83 | *-1 ==> ERROR | |
84 | */ | |
85 | int | |
86 | __big_insert(HTAB *hashp, BUFHEAD *bufp, const DBT *key, const DBT *val) | |
87 | { | |
88 | u_int16_t *p; | |
89 | int key_size, n; | |
90 | unsigned int val_size; | |
91 | u_int16_t space, move_bytes, off; | |
92 | char *cp, *key_data, *val_data; | |
93 | ||
94 | cp = bufp->page; /* Character pointer of p. */ | |
95 | p = (u_int16_t *)cp; | |
96 | ||
97 | key_data = (char *)key->data; | |
98 | key_size = key->size; | |
99 | val_data = (char *)val->data; | |
100 | val_size = val->size; | |
101 | ||
102 | /* First move the Key */ | |
103 | for (space = FREESPACE(p) - BIGOVERHEAD; key_size; | |
104 | space = FREESPACE(p) - BIGOVERHEAD) { | |
105 | move_bytes = MIN(space, key_size); | |
106 | off = OFFSET(p) - move_bytes; | |
107 | memmove(cp + off, key_data, move_bytes); | |
108 | key_size -= move_bytes; | |
109 | key_data += move_bytes; | |
110 | n = p[0]; | |
111 | p[++n] = off; | |
112 | p[0] = ++n; | |
113 | FREESPACE(p) = off - PAGE_META(n); | |
114 | OFFSET(p) = off; | |
115 | p[n] = PARTIAL_KEY; | |
116 | bufp = __add_ovflpage(hashp, bufp); | |
117 | if (!bufp) | |
118 | return (-1); | |
119 | n = p[0]; | |
120 | if (!key_size) { | |
121 | space = FREESPACE(p); | |
122 | if (space) { | |
123 | move_bytes = MIN(space, val_size); | |
124 | /* | |
125 | * If the data would fit exactly in the | |
126 | * remaining space, we must overflow it to the | |
127 | * next page; otherwise the invariant that the | |
128 | * data must end on a page with FREESPACE | |
129 | * non-zero would fail. | |
130 | */ | |
131 | if (space == val_size && val_size == val->size) | |
132 | goto toolarge; | |
133 | off = OFFSET(p) - move_bytes; | |
134 | memmove(cp + off, val_data, move_bytes); | |
135 | val_data += move_bytes; | |
136 | val_size -= move_bytes; | |
137 | p[n] = off; | |
138 | p[n - 2] = FULL_KEY_DATA; | |
139 | FREESPACE(p) = FREESPACE(p) - move_bytes; | |
140 | OFFSET(p) = off; | |
141 | } else { | |
142 | toolarge: | |
143 | p[n - 2] = FULL_KEY; | |
144 | } | |
145 | } | |
146 | p = (u_int16_t *)bufp->page; | |
147 | cp = bufp->page; | |
148 | bufp->flags |= BUF_MOD; | |
149 | } | |
150 | ||
151 | /* Now move the data */ | |
152 | for (space = FREESPACE(p) - BIGOVERHEAD; val_size; | |
153 | space = FREESPACE(p) - BIGOVERHEAD) { | |
154 | move_bytes = MIN(space, val_size); | |
155 | /* | |
156 | * Here's the hack to make sure that if the data ends on the | |
157 | * same page as the key ends, FREESPACE is at least one. | |
158 | */ | |
159 | if (space == val_size && val_size == val->size) | |
160 | move_bytes--; | |
161 | off = OFFSET(p) - move_bytes; | |
162 | memmove(cp + off, val_data, move_bytes); | |
163 | val_size -= move_bytes; | |
164 | val_data += move_bytes; | |
165 | n = p[0]; | |
166 | p[++n] = off; | |
167 | p[0] = ++n; | |
168 | FREESPACE(p) = off - PAGE_META(n); | |
169 | OFFSET(p) = off; | |
170 | if (val_size) { | |
171 | p[n] = FULL_KEY; | |
172 | bufp = __add_ovflpage(hashp, bufp); | |
173 | if (!bufp) | |
174 | return (-1); | |
175 | cp = bufp->page; | |
176 | p = (u_int16_t *)cp; | |
177 | } else | |
178 | p[n] = FULL_KEY_DATA; | |
179 | bufp->flags |= BUF_MOD; | |
180 | } | |
181 | return (0); | |
182 | } | |
183 | ||
184 | /* | |
185 | * Called when bufp's page contains a partial key (index should be 1) | |
186 | * | |
187 | * All pages in the big key/data pair except bufp are freed. We cannot | |
188 | * free bufp because the page pointing to it is lost and we can't get rid | |
189 | * of its pointer. | |
190 | * | |
191 | * Returns: | |
192 | * 0 => OK | |
193 | *-1 => ERROR | |
194 | */ | |
195 | int | |
196 | __big_delete(HTAB *hashp, BUFHEAD *bufp) | |
197 | { | |
198 | BUFHEAD *last_bfp, *rbufp; | |
199 | u_int16_t *bp, pageno; | |
200 | int key_done, n; | |
201 | ||
202 | rbufp = bufp; | |
203 | last_bfp = NULL; | |
204 | bp = (u_int16_t *)bufp->page; | |
205 | pageno = 0; | |
206 | key_done = 0; | |
207 | ||
208 | while (!key_done || (bp[2] != FULL_KEY_DATA)) { | |
209 | if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA) | |
210 | key_done = 1; | |
211 | ||
212 | /* | |
213 | * If there is freespace left on a FULL_KEY_DATA page, then | |
214 | * the data is short and fits entirely on this page, and this | |
215 | * is the last page. | |
216 | */ | |
217 | if (bp[2] == FULL_KEY_DATA && FREESPACE(bp)) | |
218 | break; | |
219 | pageno = bp[bp[0] - 1]; | |
220 | rbufp->flags |= BUF_MOD; | |
221 | rbufp = __get_buf(hashp, pageno, rbufp, 0); | |
222 | if (last_bfp) | |
223 | __free_ovflpage(hashp, last_bfp); | |
224 | last_bfp = rbufp; | |
225 | if (!rbufp) | |
226 | return (-1); /* Error. */ | |
227 | bp = (u_int16_t *)rbufp->page; | |
228 | } | |
229 | ||
230 | /* | |
231 | * If we get here then rbufp points to the last page of the big | |
232 | * key/data pair. Bufp points to the first one -- it should now be | |
233 | * empty pointing to the next page after this pair. Can't free it | |
234 | * because we don't have the page pointing to it. | |
235 | */ | |
236 | ||
237 | /* This is information from the last page of the pair. */ | |
238 | n = bp[0]; | |
239 | pageno = bp[n - 1]; | |
240 | ||
241 | /* Now, bp is the first page of the pair. */ | |
242 | bp = (u_int16_t *)bufp->page; | |
243 | if (n > 2) { | |
244 | /* There is an overflow page. */ | |
245 | bp[1] = pageno; | |
246 | bp[2] = OVFLPAGE; | |
247 | bufp->ovfl = rbufp->ovfl; | |
248 | } else | |
249 | /* This is the last page. */ | |
250 | bufp->ovfl = NULL; | |
251 | n -= 2; | |
252 | bp[0] = n; | |
253 | FREESPACE(bp) = hashp->BSIZE - PAGE_META(n); | |
254 | OFFSET(bp) = hashp->BSIZE; | |
255 | ||
256 | bufp->flags |= BUF_MOD; | |
257 | if (rbufp) | |
258 | __free_ovflpage(hashp, rbufp); | |
259 | if (last_bfp && last_bfp != rbufp) | |
260 | __free_ovflpage(hashp, last_bfp); | |
261 | ||
262 | hashp->NKEYS--; | |
263 | return (0); | |
264 | } | |
265 | /* | |
266 | * Returns: | |
267 | * 0 = key not found | |
268 | * -1 = get next overflow page | |
269 | * -2 means key not found and this is big key/data | |
270 | * -3 error | |
271 | */ | |
272 | int | |
273 | __find_bigpair(HTAB *hashp, BUFHEAD *bufp, int ndx, char *key, int size) | |
274 | { | |
275 | u_int16_t *bp; | |
276 | char *p; | |
277 | int ksize; | |
278 | u_int16_t bytes; | |
279 | char *kkey; | |
280 | ||
281 | bp = (u_int16_t *)bufp->page; | |
282 | p = bufp->page; | |
283 | ksize = size; | |
284 | kkey = key; | |
285 | ||
286 | for (bytes = hashp->BSIZE - bp[ndx]; | |
287 | bytes <= size && bp[ndx + 1] == PARTIAL_KEY; | |
288 | bytes = hashp->BSIZE - bp[ndx]) { | |
289 | if (memcmp(p + bp[ndx], kkey, bytes)) | |
290 | return (-2); | |
291 | kkey += bytes; | |
292 | ksize -= bytes; | |
293 | bufp = __get_buf(hashp, bp[ndx + 2], bufp, 0); | |
294 | if (!bufp) | |
295 | return (-3); | |
296 | p = bufp->page; | |
297 | bp = (u_int16_t *)p; | |
298 | ndx = 1; | |
299 | } | |
300 | ||
301 | if (bytes != ksize || memcmp(p + bp[ndx], kkey, bytes)) { | |
302 | #ifdef HASH_STATISTICS | |
303 | ++hash_collisions; | |
304 | #endif | |
305 | return (-2); | |
306 | } else | |
307 | return (ndx); | |
308 | } | |
309 | ||
310 | /* | |
311 | * Given the buffer pointer of the first overflow page of a big pair, | |
312 | * find the end of the big pair | |
313 | * | |
314 | * This will set bpp to the buffer header of the last page of the big pair. | |
315 | * It will return the pageno of the overflow page following the last page | |
316 | * of the pair; 0 if there isn't any (i.e. big pair is the last key in the | |
317 | * bucket) | |
318 | */ | |
319 | u_int16_t | |
320 | __find_last_page(HTAB *hashp, BUFHEAD **bpp) | |
321 | { | |
322 | BUFHEAD *bufp; | |
323 | u_int16_t *bp, pageno; | |
324 | int n; | |
325 | ||
326 | bufp = *bpp; | |
327 | bp = (u_int16_t *)bufp->page; | |
328 | for (;;) { | |
329 | n = bp[0]; | |
330 | ||
331 | /* | |
332 | * This is the last page if: the tag is FULL_KEY_DATA and | |
333 | * either only 2 entries OVFLPAGE marker is explicit there | |
334 | * is freespace on the page. | |
335 | */ | |
336 | if (bp[2] == FULL_KEY_DATA && | |
337 | ((n == 2) || (bp[n] == OVFLPAGE) || (FREESPACE(bp)))) | |
338 | break; | |
339 | ||
340 | pageno = bp[n - 1]; | |
341 | bufp = __get_buf(hashp, pageno, bufp, 0); | |
342 | if (!bufp) | |
343 | return (0); /* Need to indicate an error! */ | |
344 | bp = (u_int16_t *)bufp->page; | |
345 | } | |
346 | ||
347 | *bpp = bufp; | |
348 | if (bp[0] > 2) | |
349 | return (bp[3]); | |
350 | else | |
351 | return (0); | |
352 | } | |
353 | ||
354 | /* | |
355 | * Return the data for the key/data pair that begins on this page at this | |
356 | * index (index should always be 1). | |
357 | */ | |
358 | int | |
359 | __big_return(HTAB *hashp, BUFHEAD *bufp, int ndx, DBT *val, int set_current) | |
360 | { | |
361 | BUFHEAD *save_p; | |
362 | u_int16_t *bp, len, off, save_addr; | |
363 | char *tp; | |
364 | ||
365 | bp = (u_int16_t *)bufp->page; | |
366 | while (bp[ndx + 1] == PARTIAL_KEY) { | |
367 | bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0); | |
368 | if (!bufp) | |
369 | return (-1); | |
370 | bp = (u_int16_t *)bufp->page; | |
371 | ndx = 1; | |
372 | } | |
373 | ||
374 | if (bp[ndx + 1] == FULL_KEY) { | |
375 | bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0); | |
376 | if (!bufp) | |
377 | return (-1); | |
378 | bp = (u_int16_t *)bufp->page; | |
379 | save_p = bufp; | |
380 | save_addr = save_p->addr; | |
381 | off = bp[1]; | |
382 | len = 0; | |
383 | } else | |
384 | if (!FREESPACE(bp)) { | |
385 | /* | |
386 | * This is a hack. We can't distinguish between | |
387 | * FULL_KEY_DATA that contains complete data or | |
388 | * incomplete data, so we require that if the data | |
389 | * is complete, there is at least 1 byte of free | |
390 | * space left. | |
391 | */ | |
392 | off = bp[bp[0]]; | |
393 | len = bp[1] - off; | |
394 | save_p = bufp; | |
395 | save_addr = bufp->addr; | |
396 | bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0); | |
397 | if (!bufp) | |
398 | return (-1); | |
399 | bp = (u_int16_t *)bufp->page; | |
400 | } else { | |
401 | /* The data is all on one page. */ | |
402 | tp = (char *)bp; | |
403 | off = bp[bp[0]]; | |
404 | val->data = (u_char *)tp + off; | |
405 | val->size = bp[1] - off; | |
406 | if (set_current) { | |
407 | if (bp[0] == 2) { /* No more buckets in | |
408 | * chain */ | |
409 | hashp->cpage = NULL; | |
410 | hashp->cbucket++; | |
411 | hashp->cndx = 1; | |
412 | } else { | |
413 | hashp->cpage = __get_buf(hashp, | |
414 | bp[bp[0] - 1], bufp, 0); | |
415 | if (!hashp->cpage) | |
416 | return (-1); | |
417 | hashp->cndx = 1; | |
418 | if (!((u_int16_t *) | |
419 | hashp->cpage->page)[0]) { | |
420 | hashp->cbucket++; | |
421 | hashp->cpage = NULL; | |
422 | } | |
423 | } | |
424 | } | |
425 | return (0); | |
426 | } | |
427 | ||
428 | val->size = (size_t)collect_data(hashp, bufp, (int)len, set_current); | |
429 | if (val->size == (size_t)-1) | |
430 | return (-1); | |
431 | if (save_p->addr != save_addr) { | |
432 | /* We are pretty short on buffers. */ | |
433 | errno = EINVAL; /* OUT OF BUFFERS */ | |
434 | return (-1); | |
435 | } | |
436 | memmove(hashp->tmp_buf, (save_p->page) + off, len); | |
437 | val->data = (u_char *)hashp->tmp_buf; | |
438 | return (0); | |
439 | } | |
440 | /* | |
441 | * Count how big the total datasize is by recursing through the pages. Then | |
442 | * allocate a buffer and copy the data as you recurse up. | |
443 | */ | |
444 | static int | |
445 | collect_data(HTAB *hashp, BUFHEAD *bufp, int len, int set) | |
446 | { | |
447 | u_int16_t *bp; | |
448 | char *p; | |
449 | BUFHEAD *xbp; | |
450 | u_int16_t save_addr; | |
451 | int mylen, totlen; | |
452 | ||
453 | p = bufp->page; | |
454 | bp = (u_int16_t *)p; | |
455 | mylen = hashp->BSIZE - bp[1]; | |
456 | save_addr = bufp->addr; | |
457 | ||
458 | if (bp[2] == FULL_KEY_DATA) { /* End of Data */ | |
459 | totlen = len + mylen; | |
460 | if (hashp->tmp_buf) | |
461 | free(hashp->tmp_buf); | |
462 | if ((hashp->tmp_buf = (char *)malloc(totlen)) == NULL) | |
463 | return (-1); | |
464 | if (set) { | |
465 | hashp->cndx = 1; | |
466 | if (bp[0] == 2) { /* No more buckets in chain */ | |
467 | hashp->cpage = NULL; | |
468 | hashp->cbucket++; | |
469 | } else { | |
470 | hashp->cpage = | |
471 | __get_buf(hashp, bp[bp[0] - 1], bufp, 0); | |
472 | if (!hashp->cpage) | |
473 | return (-1); | |
474 | else if (!((u_int16_t *)hashp->cpage->page)[0]) { | |
475 | hashp->cbucket++; | |
476 | hashp->cpage = NULL; | |
477 | } | |
478 | } | |
479 | } | |
480 | } else { | |
481 | xbp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0); | |
482 | if (!xbp || ((totlen = | |
483 | collect_data(hashp, xbp, len + mylen, set)) < 1)) | |
484 | return (-1); | |
485 | } | |
486 | if (bufp->addr != save_addr) { | |
487 | errno = EINVAL; /* Out of buffers. */ | |
488 | return (-1); | |
489 | } | |
490 | memmove(&hashp->tmp_buf[len], (bufp->page) + bp[1], mylen); | |
491 | return (totlen); | |
492 | } | |
493 | ||
494 | /* | |
495 | * Fill in the key and data for this big pair. | |
496 | */ | |
497 | int | |
498 | __big_keydata(HTAB *hashp, BUFHEAD *bufp, DBT *key, DBT *val, int set) | |
499 | { | |
500 | key->size = (size_t)collect_key(hashp, bufp, 0, val, set); | |
501 | if (key->size == (size_t)-1) | |
502 | return (-1); | |
503 | key->data = (u_char *)hashp->tmp_key; | |
504 | return (0); | |
505 | } | |
506 | ||
507 | /* | |
508 | * Count how big the total key size is by recursing through the pages. Then | |
509 | * collect the data, allocate a buffer and copy the key as you recurse up. | |
510 | */ | |
511 | static int | |
512 | collect_key(HTAB *hashp, BUFHEAD *bufp, int len, DBT *val, int set) | |
513 | { | |
514 | BUFHEAD *xbp; | |
515 | char *p; | |
516 | int mylen, totlen; | |
517 | u_int16_t *bp, save_addr; | |
518 | ||
519 | p = bufp->page; | |
520 | bp = (u_int16_t *)p; | |
521 | mylen = hashp->BSIZE - bp[1]; | |
522 | ||
523 | save_addr = bufp->addr; | |
524 | totlen = len + mylen; | |
525 | if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA) { /* End of Key. */ | |
526 | if (hashp->tmp_key != NULL) | |
527 | free(hashp->tmp_key); | |
528 | if ((hashp->tmp_key = (char *)malloc(totlen)) == NULL) | |
529 | return (-1); | |
530 | if (__big_return(hashp, bufp, 1, val, set)) | |
531 | return (-1); | |
532 | } else { | |
533 | xbp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0); | |
534 | if (!xbp || ((totlen = | |
535 | collect_key(hashp, xbp, totlen, val, set)) < 1)) | |
536 | return (-1); | |
537 | } | |
538 | if (bufp->addr != save_addr) { | |
539 | errno = EINVAL; /* MIS -- OUT OF BUFFERS */ | |
540 | return (-1); | |
541 | } | |
542 | memmove(&hashp->tmp_key[len], (bufp->page) + bp[1], mylen); | |
543 | return (totlen); | |
544 | } | |
545 | ||
546 | /* | |
547 | * Returns: | |
548 | * 0 => OK | |
549 | * -1 => error | |
550 | */ | |
551 | int | |
552 | __big_split(HTAB *hashp, | |
553 | BUFHEAD *op, /* Pointer to where to put keys that go in old bucket */ | |
554 | BUFHEAD *np, /* Pointer to new bucket page */ | |
555 | BUFHEAD *big_keyp, /* Pointer to first page containing the big key/data */ | |
556 | int addr, /* Address of big_keyp */ | |
557 | u_int32_t obucket, /* Old Bucket */ | |
558 | SPLIT_RETURN *ret) | |
559 | { | |
560 | BUFHEAD *bp, *tmpp; | |
561 | DBT key, val; | |
562 | u_int32_t change; | |
563 | u_int16_t free_space, n, off, *tp; | |
564 | ||
565 | bp = big_keyp; | |
566 | ||
567 | /* Now figure out where the big key/data goes */ | |
568 | if (__big_keydata(hashp, big_keyp, &key, &val, 0)) | |
569 | return (-1); | |
570 | change = (__call_hash(hashp, key.data, key.size) != obucket); | |
571 | ||
572 | if ( (ret->next_addr = __find_last_page(hashp, &big_keyp)) ) { | |
573 | if (!(ret->nextp = | |
574 | __get_buf(hashp, ret->next_addr, big_keyp, 0))) | |
575 | return (-1); | |
576 | } else | |
577 | ret->nextp = NULL; | |
578 | ||
579 | /* Now make one of np/op point to the big key/data pair */ | |
580 | #ifdef DEBUG | |
581 | assert(np->ovfl == NULL); | |
582 | #endif | |
583 | if (change) | |
584 | tmpp = np; | |
585 | else | |
586 | tmpp = op; | |
587 | ||
588 | tmpp->flags |= BUF_MOD; | |
589 | #ifdef DEBUG1 | |
590 | (void)fprintf(stderr, | |
591 | "BIG_SPLIT: %d->ovfl was %d is now %d\n", tmpp->addr, | |
592 | (tmpp->ovfl ? tmpp->ovfl->addr : 0), (bp ? bp->addr : 0)); | |
593 | #endif | |
594 | tmpp->ovfl = bp; /* one of op/np point to big_keyp */ | |
595 | tp = (u_int16_t *)tmpp->page; | |
596 | #ifdef DEBUG | |
597 | assert(FREESPACE(tp) >= OVFLSIZE); | |
598 | #endif | |
599 | n = tp[0]; | |
600 | off = OFFSET(tp); | |
601 | free_space = FREESPACE(tp); | |
602 | tp[++n] = (u_int16_t)addr; | |
603 | tp[++n] = OVFLPAGE; | |
604 | tp[0] = n; | |
605 | OFFSET(tp) = off; | |
606 | FREESPACE(tp) = free_space - OVFLSIZE; | |
607 | ||
608 | /* | |
609 | * Finally, set the new and old return values. BIG_KEYP contains a | |
610 | * pointer to the last page of the big key_data pair. Make sure that | |
611 | * big_keyp has no following page (2 elements) or create an empty | |
612 | * following page. | |
613 | */ | |
614 | ||
615 | ret->newp = np; | |
616 | ret->oldp = op; | |
617 | ||
618 | tp = (u_int16_t *)big_keyp->page; | |
619 | big_keyp->flags |= BUF_MOD; | |
620 | if (tp[0] > 2) { | |
621 | /* | |
622 | * There may be either one or two offsets on this page. If | |
623 | * there is one, then the overflow page is linked on normally | |
624 | * and tp[4] is OVFLPAGE. If there are two, tp[4] contains | |
625 | * the second offset and needs to get stuffed in after the | |
626 | * next overflow page is added. | |
627 | */ | |
628 | n = tp[4]; | |
629 | free_space = FREESPACE(tp); | |
630 | off = OFFSET(tp); | |
631 | tp[0] -= 2; | |
632 | FREESPACE(tp) = free_space + OVFLSIZE; | |
633 | OFFSET(tp) = off; | |
634 | tmpp = __add_ovflpage(hashp, big_keyp); | |
635 | if (!tmpp) | |
636 | return (-1); | |
637 | tp[4] = n; | |
638 | } else | |
639 | tmpp = big_keyp; | |
640 | ||
641 | if (change) | |
642 | ret->newp = tmpp; | |
643 | else | |
644 | ret->oldp = tmpp; | |
645 | return (0); | |
646 | } |