]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright 1996 1995 by Open Software Foundation, Inc. 1997 1996 1995 1994 1993 1992 1991 | |
3 | * All Rights Reserved | |
4 | * | |
5 | * Permission to use, copy, modify, and distribute this software and | |
6 | * its documentation for any purpose and without fee is hereby granted, | |
7 | * provided that the above copyright notice appears in all copies and | |
8 | * that both the copyright notice and this permission notice appear in | |
9 | * supporting documentation. | |
10 | * | |
11 | * OSF DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE | |
12 | * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS | |
13 | * FOR A PARTICULAR PURPOSE. | |
14 | * | |
15 | * IN NO EVENT SHALL OSF BE LIABLE FOR ANY SPECIAL, INDIRECT, OR | |
16 | * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM | |
17 | * LOSS OF USE, DATA OR PROFITS, WHETHER IN ACTION OF CONTRACT, | |
18 | * NEGLIGENCE, OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION | |
19 | * WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | |
20 | * | |
21 | */ | |
22 | /* | |
23 | * MkLinux | |
24 | */ | |
25 | ||
26 | /* | |
27 | * POSIX Pthread Library | |
28 | */ | |
29 | ||
30 | #define __POSIX_LIB__ | |
31 | #include <assert.h> | |
32 | #include <stdio.h> /* For printf(). */ | |
33 | #include <stdlib.h> | |
34 | #include <errno.h> /* For __mach_errno_addr() prototype. */ | |
35 | #include <sys/time.h> | |
36 | #include <sys/resource.h> | |
37 | #include <sys/sysctl.h> | |
38 | #include <machine/vmparam.h> | |
39 | #include <mach/vm_statistics.h> | |
40 | ||
41 | #include "pthread_internals.h" | |
42 | ||
43 | /* Per-thread kernel support */ | |
44 | extern void _pthread_set_self(pthread_t); | |
45 | extern void mig_init(int); | |
46 | ||
47 | /* Needed to tell the malloc subsystem we're going multithreaded */ | |
48 | extern void set_malloc_singlethreaded(int); | |
49 | ||
50 | /* Used when we need to call into the kernel with no reply port */ | |
51 | extern pthread_lock_t reply_port_lock; | |
52 | ||
53 | /* | |
54 | * [Internal] stack support | |
55 | */ | |
56 | ||
57 | size_t _pthread_stack_size = 0; | |
58 | int _spin_tries = 0; | |
59 | #if !defined(__ppc__) | |
60 | int _cpu_has_altivec = 0; | |
61 | #endif | |
62 | ||
63 | /* This global should be used (carefully) by anyone needing to know if a pthread has been | |
64 | ** created. | |
65 | */ | |
66 | int __is_threaded = 0; | |
67 | ||
68 | /* These are used to keep track of a semaphore pool shared by mutexes and condition | |
69 | ** variables. | |
70 | */ | |
71 | ||
72 | static semaphore_t *sem_pool = NULL; | |
73 | static int sem_pool_count = 0; | |
74 | static int sem_pool_current = 0; | |
75 | static pthread_lock_t sem_pool_lock = LOCK_INITIALIZER; | |
76 | ||
77 | static int default_priority; | |
78 | static int max_priority; | |
79 | static int min_priority; | |
80 | ||
81 | extern mach_port_t thread_recycle_port; | |
82 | ||
83 | #define STACK_LOWEST(sp) ((sp) & ~__pthread_stack_mask) | |
84 | #define STACK_RESERVED (sizeof (struct _pthread)) | |
85 | ||
86 | #ifdef STACK_GROWS_UP | |
87 | ||
88 | /* The stack grows towards higher addresses: | |
89 | |struct _pthread|user stack---------------->| | |
90 | ^STACK_BASE ^STACK_START | |
91 | ^STACK_SELF | |
92 | ^STACK_LOWEST */ | |
93 | #define STACK_BASE(sp) STACK_LOWEST(sp) | |
94 | #define STACK_START(stack_low) (STACK_BASE(stack_low) + STACK_RESERVED) | |
95 | #define STACK_SELF(sp) STACK_BASE(sp) | |
96 | ||
97 | #else | |
98 | ||
99 | /* The stack grows towards lower addresses: | |
100 | |<----------------user stack|struct _pthread| | |
101 | ^STACK_LOWEST ^STACK_START ^STACK_BASE | |
102 | ^STACK_SELF */ | |
103 | ||
104 | #define STACK_BASE(sp) (((sp) | __pthread_stack_mask) + 1) | |
105 | #define STACK_START(stack_low) (STACK_BASE(stack_low) - STACK_RESERVED) | |
106 | #define STACK_SELF(sp) STACK_START(sp) | |
107 | ||
108 | #endif | |
109 | ||
110 | /* Set the base address to use as the stack pointer, before adjusting due to the ABI */ | |
111 | ||
112 | static int | |
113 | _pthread_allocate_stack(pthread_attr_t *attrs, vm_address_t *stack) | |
114 | { | |
115 | kern_return_t kr; | |
116 | #if 1 | |
117 | assert(attrs->stacksize >= PTHREAD_STACK_MIN); | |
118 | if (attrs->stackaddr != NULL) { | |
119 | assert(((vm_offset_t)(attrs->stackaddr) & (vm_page_size - 1)) == 0); | |
120 | *stack = (vm_address_t)attrs->stackaddr; | |
121 | return 0; | |
122 | } | |
123 | kr = vm_allocate(mach_task_self(), stack, attrs->stacksize + vm_page_size, VM_MAKE_TAG(VM_MEMORY_STACK)| TRUE); | |
124 | if (kr != KERN_SUCCESS) { | |
125 | return EAGAIN; | |
126 | } | |
127 | #ifdef STACK_GROWS_UP | |
128 | /* The guard page is the page one higher than the stack */ | |
129 | /* The stack base is at the lowest address */ | |
130 | kr = vm_protect(mach_task_self(), *stack + attrs->stacksize, vm_page_size, FALSE, VM_PROT_NONE); | |
131 | #else | |
132 | /* The guard page is at the lowest address */ | |
133 | /* The stack base is the highest address */ | |
134 | kr = vm_protect(mach_task_self(), *stack, vm_page_size, FALSE, VM_PROT_NONE); | |
135 | *stack += attrs->stacksize + vm_page_size; | |
136 | #endif | |
137 | ||
138 | #else | |
139 | vm_address_t cur_stack = (vm_address_t)0; | |
140 | if (free_stacks == 0) | |
141 | { | |
142 | /* Allocating guard pages is done by doubling | |
143 | * the actual stack size, since STACK_BASE() needs | |
144 | * to have stacks aligned on stack_size. Allocating just | |
145 | * one page takes as much memory as allocating more pages | |
146 | * since it will remain one entry in the vm map. | |
147 | * Besides, allocating more than one page allows tracking the | |
148 | * overflow pattern when the overflow is bigger than one page. | |
149 | */ | |
150 | #ifndef NO_GUARD_PAGES | |
151 | # define GUARD_SIZE(a) (2*(a)) | |
152 | # define GUARD_MASK(a) (((a)<<1) | 1) | |
153 | #else | |
154 | # define GUARD_SIZE(a) (a) | |
155 | # define GUARD_MASK(a) (a) | |
156 | #endif | |
157 | while (lowest_stack > GUARD_SIZE(__pthread_stack_size)) | |
158 | { | |
159 | lowest_stack -= GUARD_SIZE(__pthread_stack_size); | |
160 | /* Ensure stack is there */ | |
161 | kr = vm_allocate(mach_task_self(), | |
162 | &lowest_stack, | |
163 | GUARD_SIZE(__pthread_stack_size), | |
164 | FALSE); | |
165 | #ifndef NO_GUARD_PAGES | |
166 | if (kr == KERN_SUCCESS) { | |
167 | # ifdef STACK_GROWS_UP | |
168 | kr = vm_protect(mach_task_self(), | |
169 | lowest_stack+__pthread_stack_size, | |
170 | __pthread_stack_size, | |
171 | FALSE, VM_PROT_NONE); | |
172 | # else /* STACK_GROWS_UP */ | |
173 | kr = vm_protect(mach_task_self(), | |
174 | lowest_stack, | |
175 | __pthread_stack_size, | |
176 | FALSE, VM_PROT_NONE); | |
177 | lowest_stack += __pthread_stack_size; | |
178 | # endif /* STACK_GROWS_UP */ | |
179 | if (kr == KERN_SUCCESS) | |
180 | break; | |
181 | } | |
182 | #else | |
183 | if (kr == KERN_SUCCESS) | |
184 | break; | |
185 | #endif | |
186 | } | |
187 | if (lowest_stack > 0) | |
188 | free_stacks = (vm_address_t *)lowest_stack; | |
189 | else | |
190 | { | |
191 | /* Too bad. We'll just have to take what comes. | |
192 | Use vm_map instead of vm_allocate so we can | |
193 | specify alignment. */ | |
194 | kr = vm_map(mach_task_self(), &lowest_stack, | |
195 | GUARD_SIZE(__pthread_stack_size), | |
196 | GUARD_MASK(__pthread_stack_mask), | |
197 | TRUE /* anywhere */, MEMORY_OBJECT_NULL, | |
198 | 0, FALSE, VM_PROT_DEFAULT, VM_PROT_ALL, | |
199 | VM_INHERIT_DEFAULT); | |
200 | /* This really shouldn't fail and if it does I don't | |
201 | know what to do. */ | |
202 | #ifndef NO_GUARD_PAGES | |
203 | if (kr == KERN_SUCCESS) { | |
204 | # ifdef STACK_GROWS_UP | |
205 | kr = vm_protect(mach_task_self(), | |
206 | lowest_stack+__pthread_stack_size, | |
207 | __pthread_stack_size, | |
208 | FALSE, VM_PROT_NONE); | |
209 | # else /* STACK_GROWS_UP */ | |
210 | kr = vm_protect(mach_task_self(), | |
211 | lowest_stack, | |
212 | __pthread_stack_size, | |
213 | FALSE, VM_PROT_NONE); | |
214 | lowest_stack += __pthread_stack_size; | |
215 | # endif /* STACK_GROWS_UP */ | |
216 | } | |
217 | #endif | |
218 | free_stacks = (vm_address_t *)lowest_stack; | |
219 | lowest_stack = 0; | |
220 | } | |
221 | *free_stacks = 0; /* No other free stacks */ | |
222 | } | |
223 | cur_stack = STACK_START((vm_address_t) free_stacks); | |
224 | free_stacks = (vm_address_t *)*free_stacks; | |
225 | cur_stack = _adjust_sp(cur_stack); /* Machine dependent stack fudging */ | |
226 | #endif | |
227 | return 0; | |
228 | } | |
229 | ||
230 | /* | |
231 | * Destroy a thread attribute structure | |
232 | */ | |
233 | int | |
234 | pthread_attr_destroy(pthread_attr_t *attr) | |
235 | { | |
236 | if (attr->sig == _PTHREAD_ATTR_SIG) | |
237 | { | |
238 | return (ESUCCESS); | |
239 | } else | |
240 | { | |
241 | return (EINVAL); /* Not an attribute structure! */ | |
242 | } | |
243 | } | |
244 | ||
245 | /* | |
246 | * Get the 'detach' state from a thread attribute structure. | |
247 | * Note: written as a helper function for info hiding | |
248 | */ | |
249 | int | |
250 | pthread_attr_getdetachstate(const pthread_attr_t *attr, | |
251 | int *detachstate) | |
252 | { | |
253 | if (attr->sig == _PTHREAD_ATTR_SIG) | |
254 | { | |
255 | *detachstate = attr->detached; | |
256 | return (ESUCCESS); | |
257 | } else | |
258 | { | |
259 | return (EINVAL); /* Not an attribute structure! */ | |
260 | } | |
261 | } | |
262 | ||
263 | /* | |
264 | * Get the 'inherit scheduling' info from a thread attribute structure. | |
265 | * Note: written as a helper function for info hiding | |
266 | */ | |
267 | int | |
268 | pthread_attr_getinheritsched(const pthread_attr_t *attr, | |
269 | int *inheritsched) | |
270 | { | |
271 | if (attr->sig == _PTHREAD_ATTR_SIG) | |
272 | { | |
273 | *inheritsched = attr->inherit; | |
274 | return (ESUCCESS); | |
275 | } else | |
276 | { | |
277 | return (EINVAL); /* Not an attribute structure! */ | |
278 | } | |
279 | } | |
280 | ||
281 | /* | |
282 | * Get the scheduling parameters from a thread attribute structure. | |
283 | * Note: written as a helper function for info hiding | |
284 | */ | |
285 | int | |
286 | pthread_attr_getschedparam(const pthread_attr_t *attr, | |
287 | struct sched_param *param) | |
288 | { | |
289 | if (attr->sig == _PTHREAD_ATTR_SIG) | |
290 | { | |
291 | *param = attr->param; | |
292 | return (ESUCCESS); | |
293 | } else | |
294 | { | |
295 | return (EINVAL); /* Not an attribute structure! */ | |
296 | } | |
297 | } | |
298 | ||
299 | /* | |
300 | * Get the scheduling policy from a thread attribute structure. | |
301 | * Note: written as a helper function for info hiding | |
302 | */ | |
303 | int | |
304 | pthread_attr_getschedpolicy(const pthread_attr_t *attr, | |
305 | int *policy) | |
306 | { | |
307 | if (attr->sig == _PTHREAD_ATTR_SIG) | |
308 | { | |
309 | *policy = attr->policy; | |
310 | return (ESUCCESS); | |
311 | } else | |
312 | { | |
313 | return (EINVAL); /* Not an attribute structure! */ | |
314 | } | |
315 | } | |
316 | ||
317 | static const size_t DEFAULT_STACK_SIZE = DFLSSIZ; | |
318 | /* | |
319 | * Initialize a thread attribute structure to default values. | |
320 | */ | |
321 | int | |
322 | pthread_attr_init(pthread_attr_t *attr) | |
323 | { | |
324 | attr->stacksize = DEFAULT_STACK_SIZE; | |
325 | attr->stackaddr = NULL; | |
326 | attr->sig = _PTHREAD_ATTR_SIG; | |
327 | attr->policy = _PTHREAD_DEFAULT_POLICY; | |
328 | attr->param.sched_priority = default_priority; | |
329 | attr->param.quantum = 10; /* quantum isn't public yet */ | |
330 | attr->inherit = _PTHREAD_DEFAULT_INHERITSCHED; | |
331 | attr->detached = PTHREAD_CREATE_JOINABLE; | |
332 | attr->freeStackOnExit = TRUE; | |
333 | return (ESUCCESS); | |
334 | } | |
335 | ||
336 | /* | |
337 | * Set the 'detach' state in a thread attribute structure. | |
338 | * Note: written as a helper function for info hiding | |
339 | */ | |
340 | int | |
341 | pthread_attr_setdetachstate(pthread_attr_t *attr, | |
342 | int detachstate) | |
343 | { | |
344 | if (attr->sig == _PTHREAD_ATTR_SIG) | |
345 | { | |
346 | if ((detachstate == PTHREAD_CREATE_JOINABLE) || | |
347 | (detachstate == PTHREAD_CREATE_DETACHED)) | |
348 | { | |
349 | attr->detached = detachstate; | |
350 | return (ESUCCESS); | |
351 | } else | |
352 | { | |
353 | return (EINVAL); | |
354 | } | |
355 | } else | |
356 | { | |
357 | return (EINVAL); /* Not an attribute structure! */ | |
358 | } | |
359 | } | |
360 | ||
361 | /* | |
362 | * Set the 'inherit scheduling' state in a thread attribute structure. | |
363 | * Note: written as a helper function for info hiding | |
364 | */ | |
365 | int | |
366 | pthread_attr_setinheritsched(pthread_attr_t *attr, | |
367 | int inheritsched) | |
368 | { | |
369 | if (attr->sig == _PTHREAD_ATTR_SIG) | |
370 | { | |
371 | if ((inheritsched == PTHREAD_INHERIT_SCHED) || | |
372 | (inheritsched == PTHREAD_EXPLICIT_SCHED)) | |
373 | { | |
374 | attr->inherit = inheritsched; | |
375 | return (ESUCCESS); | |
376 | } else | |
377 | { | |
378 | return (EINVAL); | |
379 | } | |
380 | } else | |
381 | { | |
382 | return (EINVAL); /* Not an attribute structure! */ | |
383 | } | |
384 | } | |
385 | ||
386 | /* | |
387 | * Set the scheduling paramters in a thread attribute structure. | |
388 | * Note: written as a helper function for info hiding | |
389 | */ | |
390 | int | |
391 | pthread_attr_setschedparam(pthread_attr_t *attr, | |
392 | const struct sched_param *param) | |
393 | { | |
394 | if (attr->sig == _PTHREAD_ATTR_SIG) | |
395 | { | |
396 | /* TODO: Validate sched_param fields */ | |
397 | attr->param = *param; | |
398 | return (ESUCCESS); | |
399 | } else | |
400 | { | |
401 | return (EINVAL); /* Not an attribute structure! */ | |
402 | } | |
403 | } | |
404 | ||
405 | /* | |
406 | * Set the scheduling policy in a thread attribute structure. | |
407 | * Note: written as a helper function for info hiding | |
408 | */ | |
409 | int | |
410 | pthread_attr_setschedpolicy(pthread_attr_t *attr, | |
411 | int policy) | |
412 | { | |
413 | if (attr->sig == _PTHREAD_ATTR_SIG) | |
414 | { | |
415 | if ((policy == SCHED_OTHER) || | |
416 | (policy == SCHED_RR) || | |
417 | (policy == SCHED_FIFO)) | |
418 | { | |
419 | attr->policy = policy; | |
420 | return (ESUCCESS); | |
421 | } else | |
422 | { | |
423 | return (EINVAL); | |
424 | } | |
425 | } else | |
426 | { | |
427 | return (EINVAL); /* Not an attribute structure! */ | |
428 | } | |
429 | } | |
430 | ||
431 | /* | |
432 | * Set the scope for the thread. | |
433 | * We currently only provide PTHREAD_SCOPE_SYSTEM | |
434 | */ | |
435 | int | |
436 | pthread_attr_setscope(pthread_attr_t *attr, | |
437 | int scope) | |
438 | { | |
439 | if (attr->sig == _PTHREAD_ATTR_SIG) { | |
440 | if (scope == PTHREAD_SCOPE_SYSTEM) { | |
441 | /* No attribute yet for the scope */ | |
442 | return (ESUCCESS); | |
443 | } else if (scope == PTHREAD_SCOPE_PROCESS) { | |
444 | return (ENOTSUP); | |
445 | } | |
446 | } | |
447 | return (EINVAL); /* Not an attribute structure! */ | |
448 | } | |
449 | ||
450 | /* | |
451 | * Get the scope for the thread. | |
452 | * We currently only provide PTHREAD_SCOPE_SYSTEM | |
453 | */ | |
454 | int | |
455 | pthread_attr_getscope(pthread_attr_t *attr, | |
456 | int *scope) | |
457 | { | |
458 | if (attr->sig == _PTHREAD_ATTR_SIG) { | |
459 | *scope = PTHREAD_SCOPE_SYSTEM; | |
460 | return (ESUCCESS); | |
461 | } | |
462 | return (EINVAL); /* Not an attribute structure! */ | |
463 | } | |
464 | ||
465 | /* Get the base stack address of the given thread */ | |
466 | int | |
467 | pthread_attr_getstackaddr(const pthread_attr_t *attr, void **stackaddr) | |
468 | { | |
469 | if (attr->sig == _PTHREAD_ATTR_SIG) { | |
470 | *stackaddr = attr->stackaddr; | |
471 | return (ESUCCESS); | |
472 | } else { | |
473 | return (EINVAL); /* Not an attribute structure! */ | |
474 | } | |
475 | } | |
476 | ||
477 | int | |
478 | pthread_attr_setstackaddr(pthread_attr_t *attr, void *stackaddr) | |
479 | { | |
480 | if ((attr->sig == _PTHREAD_ATTR_SIG) && (((vm_offset_t)stackaddr & (vm_page_size - 1)) == 0)) { | |
481 | attr->stackaddr = stackaddr; | |
482 | attr->freeStackOnExit = FALSE; | |
483 | return (ESUCCESS); | |
484 | } else { | |
485 | return (EINVAL); /* Not an attribute structure! */ | |
486 | } | |
487 | } | |
488 | ||
489 | int | |
490 | pthread_attr_getstacksize(const pthread_attr_t *attr, size_t *stacksize) | |
491 | { | |
492 | if (attr->sig == _PTHREAD_ATTR_SIG) { | |
493 | *stacksize = attr->stacksize; | |
494 | return (ESUCCESS); | |
495 | } else { | |
496 | return (EINVAL); /* Not an attribute structure! */ | |
497 | } | |
498 | } | |
499 | ||
500 | int | |
501 | pthread_attr_setstacksize(pthread_attr_t *attr, size_t stacksize) | |
502 | { | |
503 | if ((attr->sig == _PTHREAD_ATTR_SIG) && ((stacksize % vm_page_size) == 0) && (stacksize >= PTHREAD_STACK_MIN)) { | |
504 | attr->stacksize = stacksize; | |
505 | return (ESUCCESS); | |
506 | } else { | |
507 | return (EINVAL); /* Not an attribute structure! */ | |
508 | } | |
509 | } | |
510 | ||
511 | /* | |
512 | * Create and start execution of a new thread. | |
513 | */ | |
514 | ||
515 | static void | |
516 | _pthread_body(pthread_t self) | |
517 | { | |
518 | _pthread_set_self(self); | |
519 | pthread_exit((self->fun)(self->arg)); | |
520 | } | |
521 | ||
522 | int | |
523 | _pthread_create(pthread_t t, | |
524 | const pthread_attr_t *attrs, | |
525 | vm_address_t stack, | |
526 | const mach_port_t kernel_thread) | |
527 | { | |
528 | int res; | |
529 | kern_return_t kern_res; | |
530 | res = ESUCCESS; | |
531 | do | |
532 | { | |
533 | memset(t, 0, sizeof(*t)); | |
534 | t->stacksize = attrs->stacksize; | |
535 | t->stackaddr = (void *)stack; | |
536 | t->kernel_thread = kernel_thread; | |
537 | t->detached = attrs->detached; | |
538 | t->inherit = attrs->inherit; | |
539 | t->policy = attrs->policy; | |
540 | t->param = attrs->param; | |
541 | t->freeStackOnExit = attrs->freeStackOnExit; | |
542 | t->mutexes = (struct _pthread_mutex *)NULL; | |
543 | t->sig = _PTHREAD_SIG; | |
544 | t->reply_port = MACH_PORT_NULL; | |
545 | t->cthread_self = NULL; | |
546 | LOCK_INIT(t->lock); | |
547 | t->cancel_state = PTHREAD_CANCEL_ENABLE | PTHREAD_CANCEL_DEFERRED; | |
548 | t->cleanup_stack = (struct _pthread_handler_rec *)NULL; | |
549 | pthread_setschedparam(t, t->policy, &t->param); | |
550 | /* Create control semaphores */ | |
551 | if (t->detached == PTHREAD_CREATE_JOINABLE) | |
552 | { | |
553 | PTHREAD_MACH_CALL(semaphore_create(mach_task_self(), | |
554 | &t->death, | |
555 | SYNC_POLICY_FIFO, | |
556 | 0), kern_res); | |
557 | if (kern_res != KERN_SUCCESS) | |
558 | { | |
559 | printf("Can't create 'death' semaphore: %d\n", kern_res); | |
560 | res = EINVAL; /* Need better error here? */ | |
561 | break; | |
562 | } | |
563 | PTHREAD_MACH_CALL(semaphore_create(mach_task_self(), | |
564 | &t->joiners, | |
565 | SYNC_POLICY_FIFO, | |
566 | 0), kern_res); | |
567 | if (kern_res != KERN_SUCCESS) | |
568 | { | |
569 | printf("Can't create 'joiners' semaphore: %d\n", kern_res); | |
570 | res = EINVAL; /* Need better error here? */ | |
571 | break; | |
572 | } | |
573 | t->num_joiners = 0; | |
574 | } else | |
575 | { | |
576 | t->death = MACH_PORT_NULL; | |
577 | } | |
578 | } while (0); | |
579 | return (res); | |
580 | } | |
581 | ||
582 | int | |
583 | _pthread_is_threaded(void) | |
584 | { | |
585 | return __is_threaded; | |
586 | } | |
587 | ||
588 | mach_port_t | |
589 | pthread_mach_thread_np(pthread_t t) | |
590 | { | |
591 | return t->kernel_thread; | |
592 | } | |
593 | ||
594 | size_t | |
595 | pthread_get_stacksize_np(pthread_t t) | |
596 | { | |
597 | return t->stacksize; | |
598 | } | |
599 | ||
600 | void * | |
601 | pthread_get_stackaddr_np(pthread_t t) | |
602 | { | |
603 | return t->stackaddr; | |
604 | } | |
605 | ||
606 | mach_port_t | |
607 | _pthread_reply_port(pthread_t t) | |
608 | { | |
609 | return t->reply_port; | |
610 | } | |
611 | ||
612 | static int | |
613 | _pthread_create_suspended(pthread_t *thread, | |
614 | const pthread_attr_t *attr, | |
615 | void *(*start_routine)(void *), | |
616 | void *arg, | |
617 | int suspended) | |
618 | { | |
619 | pthread_attr_t _attr, *attrs; | |
620 | vm_address_t stack; | |
621 | int res; | |
622 | pthread_t t; | |
623 | kern_return_t kern_res; | |
624 | mach_port_t kernel_thread; | |
625 | if ((attrs = (pthread_attr_t *)attr) == (pthread_attr_t *)NULL) | |
626 | { /* Set up default paramters */ | |
627 | attrs = &_attr; | |
628 | pthread_attr_init(attrs); | |
629 | } else if (attrs->sig != _PTHREAD_ATTR_SIG) { | |
630 | return EINVAL; | |
631 | } | |
632 | res = ESUCCESS; | |
633 | do | |
634 | { | |
635 | /* Allocate a stack for the thread */ | |
636 | if ((res = _pthread_allocate_stack(attrs, &stack)) != 0) { | |
637 | break; | |
638 | } | |
639 | t = (pthread_t)malloc(sizeof(struct _pthread)); | |
640 | *thread = t; | |
641 | /* Create the Mach thread for this thread */ | |
642 | PTHREAD_MACH_CALL(thread_create(mach_task_self(), &kernel_thread), kern_res); | |
643 | if (kern_res != KERN_SUCCESS) | |
644 | { | |
645 | printf("Can't create thread: %d\n", kern_res); | |
646 | res = EINVAL; /* Need better error here? */ | |
647 | break; | |
648 | } | |
649 | if ((res = _pthread_create(t, attrs, stack, kernel_thread)) != 0) | |
650 | { | |
651 | break; | |
652 | } | |
653 | t->arg = arg; | |
654 | t->fun = start_routine; | |
655 | /* Now set it up to execute */ | |
656 | _pthread_setup(t, _pthread_body, stack); | |
657 | /* Send it on it's way */ | |
658 | set_malloc_singlethreaded(0); | |
659 | __is_threaded = 1; | |
660 | if (suspended == 0) { | |
661 | PTHREAD_MACH_CALL(thread_resume(kernel_thread), kern_res); | |
662 | } | |
663 | if (kern_res != KERN_SUCCESS) | |
664 | { | |
665 | printf("Can't resume thread: %d\n", kern_res); | |
666 | res = EINVAL; /* Need better error here? */ | |
667 | break; | |
668 | } | |
669 | } while (0); | |
670 | return (res); | |
671 | } | |
672 | ||
673 | int | |
674 | pthread_create(pthread_t *thread, | |
675 | const pthread_attr_t *attr, | |
676 | void *(*start_routine)(void *), | |
677 | void *arg) | |
678 | { | |
679 | return _pthread_create_suspended(thread, attr, start_routine, arg, 0); | |
680 | } | |
681 | ||
682 | int | |
683 | pthread_create_suspended_np(pthread_t *thread, | |
684 | const pthread_attr_t *attr, | |
685 | void *(*start_routine)(void *), | |
686 | void *arg) | |
687 | { | |
688 | return _pthread_create_suspended(thread, attr, start_routine, arg, 1); | |
689 | } | |
690 | ||
691 | /* | |
692 | * Make a thread 'undetached' - no longer 'joinable' with other threads. | |
693 | */ | |
694 | int | |
695 | pthread_detach(pthread_t thread) | |
696 | { | |
697 | kern_return_t kern_res; | |
698 | int num_joiners; | |
699 | mach_port_t death; | |
700 | if (thread->sig == _PTHREAD_SIG) | |
701 | { | |
702 | LOCK(thread->lock); | |
703 | if (thread->detached == PTHREAD_CREATE_JOINABLE) | |
704 | { | |
705 | thread->detached = PTHREAD_CREATE_DETACHED; | |
706 | num_joiners = thread->num_joiners; | |
707 | death = thread->death; | |
708 | thread->death = MACH_PORT_NULL; | |
709 | UNLOCK(thread->lock); | |
710 | if (num_joiners > 0) | |
711 | { | |
712 | /* Wake up a joiner */ | |
713 | PTHREAD_MACH_CALL(semaphore_signal(thread->joiners), kern_res); | |
714 | } | |
715 | /* Destroy 'control' semaphores */ | |
716 | PTHREAD_MACH_CALL(semaphore_destroy(mach_task_self(), | |
717 | thread->joiners), kern_res); | |
718 | PTHREAD_MACH_CALL(semaphore_destroy(mach_task_self(), | |
719 | death), kern_res); | |
720 | return (ESUCCESS); | |
721 | } else if (thread->detached == _PTHREAD_EXITED) { | |
722 | UNLOCK(thread->lock); | |
723 | pthread_join(thread, NULL); | |
724 | return ESUCCESS; | |
725 | } else | |
726 | { | |
727 | UNLOCK(thread->lock); | |
728 | return (EINVAL); | |
729 | } | |
730 | } else | |
731 | { | |
732 | return (ESRCH); /* Not a valid thread */ | |
733 | } | |
734 | } | |
735 | ||
736 | /* Announce that there is a thread ready to be reclaimed for pthread_create */ | |
737 | /* or terminated by pthread_exit. If the thread is reused, it will have its */ | |
738 | /* thread state set and will continue in the thread body function. If it is */ | |
739 | /* terminated, it will be yanked out from under the mach_msg() call. */ | |
740 | ||
741 | static void _pthread_become_available(pthread_t thread) { | |
742 | mach_msg_empty_rcv_t msg = { { 0 } }; | |
743 | kern_return_t ret; | |
744 | ||
745 | if (thread->reply_port == MACH_PORT_NULL) { | |
746 | thread->reply_port = mach_reply_port(); | |
747 | } | |
748 | msg.header.msgh_size = sizeof msg - sizeof msg.trailer; | |
749 | msg.header.msgh_remote_port = thread_recycle_port; | |
750 | msg.header.msgh_local_port = MACH_PORT_NULL; | |
751 | msg.header.msgh_id = (int)thread; | |
752 | msg.header.msgh_bits = MACH_MSGH_BITS(MACH_MSG_TYPE_COPY_SEND, 0); | |
753 | ret = mach_msg(&msg.header, MACH_SEND_MSG | MACH_RCV_MSG, | |
754 | msg.header.msgh_size, sizeof msg, | |
755 | thread->reply_port, MACH_MSG_TIMEOUT_NONE, | |
756 | MACH_PORT_NULL); | |
757 | while (1) { | |
758 | ret = thread_suspend(thread->kernel_thread); | |
759 | } | |
760 | /* We should never get here */ | |
761 | } | |
762 | ||
763 | /* Check to see if any threads are available. Return immediately */ | |
764 | ||
765 | static kern_return_t _pthread_check_for_available_threads(mach_msg_empty_rcv_t *msg) { | |
766 | return mach_msg(&msg->header, MACH_RCV_MSG|MACH_RCV_TIMEOUT, 0, | |
767 | sizeof(mach_msg_empty_rcv_t), thread_recycle_port, 0, | |
768 | MACH_PORT_NULL); | |
769 | } | |
770 | ||
771 | /* Terminate all available threads and deallocate their stacks */ | |
772 | static void _pthread_reap_threads(void) { | |
773 | kern_return_t ret; | |
774 | mach_msg_empty_rcv_t msg = { { 0 } }; | |
775 | while((ret = _pthread_check_for_available_threads(&msg)) == KERN_SUCCESS) { | |
776 | pthread_t th = (pthread_t)msg.header.msgh_id; | |
777 | mach_port_t kernel_thread = th->kernel_thread; | |
778 | mach_port_t reply_port = th->reply_port; | |
779 | vm_size_t size = (vm_size_t)th->stacksize + vm_page_size; | |
780 | vm_address_t addr = (vm_address_t)th->stackaddr; | |
781 | #if !defined(STACK_GROWS_UP) | |
782 | addr -= size; | |
783 | #endif | |
784 | ret = thread_terminate(kernel_thread); | |
785 | if (ret != KERN_SUCCESS) { | |
786 | fprintf(stderr, "thread_terminate() failed: %s\n", | |
787 | mach_error_string(ret)); | |
788 | } | |
789 | ret = mach_port_destroy(mach_task_self(), reply_port); | |
790 | if (ret != KERN_SUCCESS) { | |
791 | fprintf(stderr, | |
792 | "mach_port_destroy(thread_reply) failed: %s\n", | |
793 | mach_error_string(ret)); | |
794 | } | |
795 | if (th->freeStackOnExit) { | |
796 | ret = vm_deallocate(mach_task_self(), addr, size); | |
797 | if (ret != KERN_SUCCESS) { | |
798 | fprintf(stderr, | |
799 | "vm_deallocate(stack) failed: %s\n", | |
800 | mach_error_string(ret)); | |
801 | } | |
802 | } | |
803 | free(th); | |
804 | } | |
805 | assert(ret == MACH_RCV_TIMED_OUT); | |
806 | } | |
807 | ||
808 | /* For compatibility... */ | |
809 | ||
810 | pthread_t | |
811 | _pthread_self() { | |
812 | return pthread_self(); | |
813 | } | |
814 | ||
815 | /* | |
816 | * Terminate a thread. | |
817 | */ | |
818 | void | |
819 | pthread_exit(void *value_ptr) | |
820 | { | |
821 | pthread_t self = pthread_self(); | |
822 | struct _pthread_handler_rec *handler; | |
823 | kern_return_t kern_res; | |
824 | int num_joiners; | |
825 | while ((handler = self->cleanup_stack) != 0) | |
826 | { | |
827 | (handler->routine)(handler->arg); | |
828 | self->cleanup_stack = handler->next; | |
829 | } | |
830 | _pthread_tsd_cleanup(self); | |
831 | LOCK(self->lock); | |
832 | if (self->detached == PTHREAD_CREATE_JOINABLE) | |
833 | { | |
834 | self->detached = _PTHREAD_EXITED; | |
835 | self->exit_value = value_ptr; | |
836 | num_joiners = self->num_joiners; | |
837 | UNLOCK(self->lock); | |
838 | if (num_joiners > 0) | |
839 | { | |
840 | /* POSIX says that multiple pthread_join() calls on */ | |
841 | /* the same thread are undefined so we just wake up */ | |
842 | /* the first one to join */ | |
843 | PTHREAD_MACH_CALL(semaphore_signal(self->joiners), kern_res); | |
844 | } | |
845 | do { | |
846 | PTHREAD_MACH_CALL(semaphore_wait(self->death), kern_res); | |
847 | } while (kern_res == KERN_ABORTED); | |
848 | } else | |
849 | UNLOCK(self->lock); | |
850 | /* Destroy thread & reclaim resources */ | |
851 | if (self->death) | |
852 | { | |
853 | PTHREAD_MACH_CALL(semaphore_destroy(mach_task_self(), self->joiners), kern_res); | |
854 | PTHREAD_MACH_CALL(semaphore_destroy(mach_task_self(), self->death), kern_res); | |
855 | } | |
856 | if (self->detached == _PTHREAD_CREATE_PARENT) { | |
857 | exit((int)(self->exit_value)); | |
858 | } | |
859 | ||
860 | _pthread_reap_threads(); | |
861 | ||
862 | _pthread_become_available(self); | |
863 | } | |
864 | ||
865 | /* | |
866 | * Wait for a thread to terminate and obtain its exit value. | |
867 | */ | |
868 | int | |
869 | pthread_join(pthread_t thread, | |
870 | void **value_ptr) | |
871 | { | |
872 | kern_return_t kern_res; | |
873 | if (thread->sig == _PTHREAD_SIG) | |
874 | { | |
875 | LOCK(thread->lock); | |
876 | if (thread->detached == PTHREAD_CREATE_JOINABLE) | |
877 | { | |
878 | thread->num_joiners++; | |
879 | UNLOCK(thread->lock); | |
880 | do { | |
881 | PTHREAD_MACH_CALL(semaphore_wait(thread->joiners), kern_res); | |
882 | } while (kern_res == KERN_ABORTED); | |
883 | LOCK(thread->lock); | |
884 | thread->num_joiners--; | |
885 | } | |
886 | if (thread->detached == _PTHREAD_EXITED) | |
887 | { | |
888 | if (thread->num_joiners == 0) | |
889 | { /* Give the result to this thread */ | |
890 | if (value_ptr) | |
891 | { | |
892 | *value_ptr = thread->exit_value; | |
893 | } | |
894 | UNLOCK(thread->lock); | |
895 | PTHREAD_MACH_CALL(semaphore_signal(thread->death), kern_res); | |
896 | return (ESUCCESS); | |
897 | } else | |
898 | { /* This 'joiner' missed the catch! */ | |
899 | UNLOCK(thread->lock); | |
900 | return (ESRCH); | |
901 | } | |
902 | } else | |
903 | { /* The thread has become anti-social! */ | |
904 | UNLOCK(thread->lock); | |
905 | return (EINVAL); | |
906 | } | |
907 | } else | |
908 | { | |
909 | return (ESRCH); /* Not a valid thread */ | |
910 | } | |
911 | } | |
912 | ||
913 | /* | |
914 | * Get the scheduling policy and scheduling paramters for a thread. | |
915 | */ | |
916 | int | |
917 | pthread_getschedparam(pthread_t thread, | |
918 | int *policy, | |
919 | struct sched_param *param) | |
920 | { | |
921 | if (thread->sig == _PTHREAD_SIG) | |
922 | { | |
923 | *policy = thread->policy; | |
924 | *param = thread->param; | |
925 | return (ESUCCESS); | |
926 | } else | |
927 | { | |
928 | return (ESRCH); /* Not a valid thread structure */ | |
929 | } | |
930 | } | |
931 | ||
932 | /* | |
933 | * Set the scheduling policy and scheduling paramters for a thread. | |
934 | */ | |
935 | int | |
936 | pthread_setschedparam(pthread_t thread, | |
937 | int policy, | |
938 | const struct sched_param *param) | |
939 | { | |
940 | policy_base_data_t bases; | |
941 | policy_base_t base; | |
942 | mach_msg_type_number_t count; | |
943 | kern_return_t ret; | |
944 | ||
945 | if (thread->sig == _PTHREAD_SIG) | |
946 | { | |
947 | switch (policy) | |
948 | { | |
949 | case SCHED_OTHER: | |
950 | bases.ts.base_priority = param->sched_priority; | |
951 | base = (policy_base_t)&bases.ts; | |
952 | count = POLICY_TIMESHARE_BASE_COUNT; | |
953 | break; | |
954 | case SCHED_FIFO: | |
955 | bases.fifo.base_priority = param->sched_priority; | |
956 | base = (policy_base_t)&bases.fifo; | |
957 | count = POLICY_FIFO_BASE_COUNT; | |
958 | break; | |
959 | case SCHED_RR: | |
960 | bases.rr.base_priority = param->sched_priority; | |
961 | /* quantum isn't public yet */ | |
962 | bases.rr.quantum = param->quantum; | |
963 | base = (policy_base_t)&bases.rr; | |
964 | count = POLICY_RR_BASE_COUNT; | |
965 | break; | |
966 | default: | |
967 | return (EINVAL); | |
968 | } | |
969 | thread->policy = policy; | |
970 | thread->param = *param; | |
971 | ret = thread_policy(thread->kernel_thread, policy, base, count, TRUE); | |
972 | if (ret != KERN_SUCCESS) | |
973 | { | |
974 | return (EINVAL); | |
975 | } | |
976 | return (ESUCCESS); | |
977 | } else | |
978 | { | |
979 | return (ESRCH); /* Not a valid thread structure */ | |
980 | } | |
981 | } | |
982 | ||
983 | /* | |
984 | * Get the minimum priority for the given policy | |
985 | */ | |
986 | int | |
987 | sched_get_priority_min(int policy) | |
988 | { | |
989 | return default_priority - 16; | |
990 | } | |
991 | ||
992 | /* | |
993 | * Get the maximum priority for the given policy | |
994 | */ | |
995 | int | |
996 | sched_get_priority_max(int policy) | |
997 | { | |
998 | return default_priority + 16; | |
999 | } | |
1000 | ||
1001 | /* | |
1002 | * Determine if two thread identifiers represent the same thread. | |
1003 | */ | |
1004 | int | |
1005 | pthread_equal(pthread_t t1, | |
1006 | pthread_t t2) | |
1007 | { | |
1008 | return (t1 == t2); | |
1009 | } | |
1010 | ||
1011 | void | |
1012 | cthread_set_self(void *cself) | |
1013 | { | |
1014 | pthread_t self = pthread_self(); | |
1015 | if ((self == (pthread_t)NULL) || (self->sig != _PTHREAD_SIG)) { | |
1016 | _pthread_set_self(cself); | |
1017 | return; | |
1018 | } | |
1019 | self->cthread_self = cself; | |
1020 | } | |
1021 | ||
1022 | void * | |
1023 | ur_cthread_self(void) { | |
1024 | pthread_t self = pthread_self(); | |
1025 | if ((self == (pthread_t)NULL) || (self->sig != _PTHREAD_SIG)) { | |
1026 | return (void *)self; | |
1027 | } | |
1028 | return self->cthread_self; | |
1029 | } | |
1030 | ||
1031 | /* | |
1032 | * Execute a function exactly one time in a thread-safe fashion. | |
1033 | */ | |
1034 | int | |
1035 | pthread_once(pthread_once_t *once_control, | |
1036 | void (*init_routine)(void)) | |
1037 | { | |
1038 | LOCK(once_control->lock); | |
1039 | if (once_control->sig == _PTHREAD_ONCE_SIG_init) | |
1040 | { | |
1041 | (*init_routine)(); | |
1042 | once_control->sig = _PTHREAD_ONCE_SIG; | |
1043 | } | |
1044 | UNLOCK(once_control->lock); | |
1045 | return (ESUCCESS); /* Spec defines no possible errors! */ | |
1046 | } | |
1047 | ||
1048 | /* | |
1049 | * Cancel a thread | |
1050 | */ | |
1051 | int | |
1052 | pthread_cancel(pthread_t thread) | |
1053 | { | |
1054 | if (thread->sig == _PTHREAD_SIG) | |
1055 | { | |
1056 | thread->cancel_state |= _PTHREAD_CANCEL_PENDING; | |
1057 | return (ESUCCESS); | |
1058 | } else | |
1059 | { | |
1060 | return (ESRCH); | |
1061 | } | |
1062 | } | |
1063 | ||
1064 | /* | |
1065 | * Insert a cancellation point in a thread. | |
1066 | */ | |
1067 | static void | |
1068 | _pthread_testcancel(pthread_t thread) | |
1069 | { | |
1070 | LOCK(thread->lock); | |
1071 | if ((thread->cancel_state & (PTHREAD_CANCEL_ENABLE|_PTHREAD_CANCEL_PENDING)) == | |
1072 | (PTHREAD_CANCEL_ENABLE|_PTHREAD_CANCEL_PENDING)) | |
1073 | { | |
1074 | UNLOCK(thread->lock); | |
1075 | pthread_exit(0); | |
1076 | } | |
1077 | UNLOCK(thread->lock); | |
1078 | } | |
1079 | ||
1080 | void | |
1081 | pthread_testcancel(void) | |
1082 | { | |
1083 | pthread_t self = pthread_self(); | |
1084 | _pthread_testcancel(self); | |
1085 | } | |
1086 | ||
1087 | /* | |
1088 | * Query/update the cancelability 'state' of a thread | |
1089 | */ | |
1090 | int | |
1091 | pthread_setcancelstate(int state, int *oldstate) | |
1092 | { | |
1093 | pthread_t self = pthread_self(); | |
1094 | int err = ESUCCESS; | |
1095 | LOCK(self->lock); | |
1096 | *oldstate = self->cancel_state & _PTHREAD_CANCEL_STATE_MASK; | |
1097 | if ((state == PTHREAD_CANCEL_ENABLE) || (state == PTHREAD_CANCEL_DISABLE)) | |
1098 | { | |
1099 | self->cancel_state = (self->cancel_state & _PTHREAD_CANCEL_STATE_MASK) | state; | |
1100 | } else | |
1101 | { | |
1102 | err = EINVAL; | |
1103 | } | |
1104 | UNLOCK(self->lock); | |
1105 | _pthread_testcancel(self); /* See if we need to 'die' now... */ | |
1106 | return (err); | |
1107 | } | |
1108 | ||
1109 | /* | |
1110 | * Query/update the cancelability 'type' of a thread | |
1111 | */ | |
1112 | int | |
1113 | pthread_setcanceltype(int type, int *oldtype) | |
1114 | { | |
1115 | pthread_t self = pthread_self(); | |
1116 | int err = ESUCCESS; | |
1117 | LOCK(self->lock); | |
1118 | *oldtype = self->cancel_state & _PTHREAD_CANCEL_TYPE_MASK; | |
1119 | if ((type == PTHREAD_CANCEL_DEFERRED) || (type == PTHREAD_CANCEL_ASYNCHRONOUS)) | |
1120 | { | |
1121 | self->cancel_state = (self->cancel_state & _PTHREAD_CANCEL_TYPE_MASK) | type; | |
1122 | } else | |
1123 | { | |
1124 | err = EINVAL; | |
1125 | } | |
1126 | UNLOCK(self->lock); | |
1127 | _pthread_testcancel(self); /* See if we need to 'die' now... */ | |
1128 | return (err); | |
1129 | } | |
1130 | ||
1131 | /* | |
1132 | * Perform package initialization - called automatically when application starts | |
1133 | */ | |
1134 | ||
1135 | /* We'll implement this when the main thread is a pthread */ | |
1136 | /* Use the local _pthread struct to avoid malloc before our MiG reply port is set */ | |
1137 | ||
1138 | static struct _pthread _thread = {0}; | |
1139 | ||
1140 | static int | |
1141 | pthread_init(void) | |
1142 | { | |
1143 | pthread_attr_t _attr, *attrs; | |
1144 | pthread_t thread; | |
1145 | kern_return_t kr; | |
1146 | host_basic_info_data_t basic_info; | |
1147 | host_priority_info_data_t priority_info; | |
1148 | host_info_t info; | |
1149 | host_flavor_t flavor; | |
1150 | mach_msg_type_number_t count; | |
1151 | int mib[2]; | |
1152 | size_t len; | |
1153 | int hasvectorunit, numcpus; | |
1154 | ||
1155 | count = HOST_PRIORITY_INFO_COUNT; | |
1156 | info = (host_info_t)&priority_info; | |
1157 | flavor = HOST_PRIORITY_INFO; | |
1158 | kr = host_info(mach_host_self(), flavor, info, &count); | |
1159 | if (kr != KERN_SUCCESS) | |
1160 | printf("host_info failed (%d); probably need privilege.\n", kr); | |
1161 | else { | |
1162 | default_priority = priority_info.user_priority; | |
1163 | min_priority = priority_info.minimum_priority; | |
1164 | max_priority = priority_info.maximum_priority; | |
1165 | } | |
1166 | attrs = &_attr; | |
1167 | pthread_attr_init(attrs); | |
1168 | _pthread_set_self(&_thread); | |
1169 | ||
1170 | _pthread_create(&_thread, attrs, USRSTACK, mach_thread_self()); | |
1171 | thread = &_thread; | |
1172 | thread->detached = _PTHREAD_CREATE_PARENT; | |
1173 | ||
1174 | /* See if we're on a multiprocessor and set _spin_tries if so. */ | |
1175 | mib[0] = CTL_HW; | |
1176 | mib[1] = HW_NCPU; | |
1177 | len = sizeof(numcpus); | |
1178 | if (sysctl(mib, 2, &numcpus, &len, NULL, 0) == 0) { | |
1179 | if (numcpus > 1) { | |
1180 | _spin_tries = MP_SPIN_TRIES; | |
1181 | } | |
1182 | } else { | |
1183 | count = HOST_BASIC_INFO_COUNT; | |
1184 | info = (host_info_t)&basic_info; | |
1185 | flavor = HOST_BASIC_INFO; | |
1186 | kr = host_info(mach_host_self(), flavor, info, &count); | |
1187 | if (kr != KERN_SUCCESS) | |
1188 | printf("host_info failed (%d)\n", kr); | |
1189 | else { | |
1190 | if (basic_info.avail_cpus > 1) | |
1191 | _spin_tries = MP_SPIN_TRIES; | |
1192 | /* This is a crude test */ | |
1193 | if (basic_info.cpu_subtype >= CPU_SUBTYPE_POWERPC_7400) | |
1194 | _cpu_has_altivec = 1; | |
1195 | } | |
1196 | } | |
1197 | mib[0] = CTL_HW; | |
1198 | mib[1] = HW_VECTORUNIT; | |
1199 | len = sizeof(hasvectorunit); | |
1200 | if (sysctl(mib, 2, &hasvectorunit, &len, NULL, 0) == 0) { | |
1201 | _cpu_has_altivec = hasvectorunit; | |
1202 | } | |
1203 | mig_init(1); /* enable multi-threaded mig interfaces */ | |
1204 | return 0; | |
1205 | } | |
1206 | ||
1207 | int sched_yield(void) | |
1208 | { | |
1209 | swtch_pri(0); | |
1210 | return 0; | |
1211 | } | |
1212 | ||
1213 | /* This is the "magic" that gets the initialization routine called when the application starts */ | |
1214 | int (*_cthread_init_routine)(void) = pthread_init; | |
1215 | ||
1216 | /* Get a semaphore from the pool, growing it if necessary */ | |
1217 | ||
1218 | __private_extern__ semaphore_t new_sem_from_pool(void) { | |
1219 | kern_return_t res; | |
1220 | semaphore_t sem; | |
1221 | int i; | |
1222 | ||
1223 | LOCK(sem_pool_lock); | |
1224 | if (sem_pool_current == sem_pool_count) { | |
1225 | sem_pool_count += 16; | |
1226 | sem_pool = realloc(sem_pool, sem_pool_count * sizeof(semaphore_t)); | |
1227 | for (i = sem_pool_current; i < sem_pool_count; i++) { | |
1228 | PTHREAD_MACH_CALL(semaphore_create(mach_task_self(), &sem_pool[i], SYNC_POLICY_FIFO, 0), res); | |
1229 | } | |
1230 | } | |
1231 | sem = sem_pool[sem_pool_current++]; | |
1232 | UNLOCK(sem_pool_lock); | |
1233 | return sem; | |
1234 | } | |
1235 | ||
1236 | /* Put a semaphore back into the pool */ | |
1237 | __private_extern__ void restore_sem_to_pool(semaphore_t sem) { | |
1238 | LOCK(sem_pool_lock); | |
1239 | sem_pool[--sem_pool_current] = sem; | |
1240 | UNLOCK(sem_pool_lock); | |
1241 | } | |
1242 | ||
1243 | static void sem_pool_reset(void) { | |
1244 | LOCK(sem_pool_lock); | |
1245 | sem_pool_count = 0; | |
1246 | sem_pool_current = 0; | |
1247 | sem_pool = NULL; | |
1248 | UNLOCK(sem_pool_lock); | |
1249 | } | |
1250 | ||
1251 | __private_extern__ void _pthread_fork_child(void) { | |
1252 | /* Just in case somebody had it locked... */ | |
1253 | UNLOCK(sem_pool_lock); | |
1254 | sem_pool_reset(); | |
1255 | } | |
1256 |