]> git.saurik.com Git - apple/libc.git/blame_incremental - db/btree/btree.h
Libc-583.tar.gz
[apple/libc.git] / db / btree / btree.h
... / ...
CommitLineData
1/*-
2 * Copyright (c) 1991, 1993, 1994
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Mike Olson.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)btree.h 8.11 (Berkeley) 8/17/94
37 * $FreeBSD: src/lib/libc/db/btree/btree.h,v 1.3 2002/03/22 23:41:40 obrien Exp $
38 */
39
40/* Macros to set/clear/test flags. */
41#define F_SET(p, f) (p)->flags |= (f)
42#define F_CLR(p, f) (p)->flags &= ~(f)
43#define F_ISSET(p, f) ((p)->flags & (f))
44
45#include <mpool.h>
46
47#define DEFMINKEYPAGE (2) /* Minimum keys per page */
48#define MINCACHE (5) /* Minimum cached pages */
49#define MINPSIZE (512) /* Minimum page size */
50
51/*
52 * Page 0 of a btree file contains a copy of the meta-data. This page is also
53 * used as an out-of-band page, i.e. page pointers that point to nowhere point
54 * to page 0. Page 1 is the root of the btree.
55 */
56#define P_INVALID 0 /* Invalid tree page number. */
57#define P_META 0 /* Tree metadata page number. */
58#define P_ROOT 1 /* Tree root page number. */
59
60/*
61 * There are five page layouts in the btree: btree internal pages (BINTERNAL),
62 * btree leaf pages (BLEAF), recno internal pages (RINTERNAL), recno leaf pages
63 * (RLEAF) and overflow pages. All five page types have a page header (PAGE).
64 * This implementation requires that values within structures NOT be padded.
65 * (ANSI C permits random padding.) If your compiler pads randomly you'll have
66 * to do some work to get this package to run.
67 */
68typedef struct _page {
69 pgno_t pgno; /* this page's page number */
70 pgno_t prevpg; /* left sibling */
71 pgno_t nextpg; /* right sibling */
72
73#define P_BINTERNAL 0x01 /* btree internal page */
74#define P_BLEAF 0x02 /* leaf page */
75#define P_OVERFLOW 0x04 /* overflow page */
76#define P_RINTERNAL 0x08 /* recno internal page */
77#define P_RLEAF 0x10 /* leaf page */
78#define P_TYPE 0x1f /* type mask */
79#define P_PRESERVE 0x20 /* never delete this chain of pages */
80 u_int32_t flags;
81
82 indx_t lower; /* lower bound of free space on page */
83 indx_t upper; /* upper bound of free space on page */
84 indx_t linp[1]; /* indx_t-aligned VAR. LENGTH DATA */
85} PAGE;
86
87/* First and next index. */
88#define BTDATAOFF \
89 (sizeof(pgno_t) + sizeof(pgno_t) + sizeof(pgno_t) + \
90 sizeof(u_int32_t) + sizeof(indx_t) + sizeof(indx_t))
91#define NEXTINDEX(p) (((p)->lower - BTDATAOFF) / sizeof(indx_t))
92
93/*
94 * For pages other than overflow pages, there is an array of offsets into the
95 * rest of the page immediately following the page header. Each offset is to
96 * an item which is unique to the type of page. The h_lower offset is just
97 * past the last filled-in index. The h_upper offset is the first item on the
98 * page. Offsets are from the beginning of the page.
99 *
100 * If an item is too big to store on a single page, a flag is set and the item
101 * is a { page, size } pair such that the page is the first page of an overflow
102 * chain with size bytes of item. Overflow pages are simply bytes without any
103 * external structure.
104 *
105 * The page number and size fields in the items are pgno_t-aligned so they can
106 * be manipulated without copying. (This presumes that 32 bit items can be
107 * manipulated on this system.)
108 */
109#define LALIGN(n) (((n) + sizeof(pgno_t) - 1) & ~(sizeof(pgno_t) - 1))
110#define NOVFLSIZE (sizeof(pgno_t) + sizeof(u_int32_t))
111
112/*
113 * For the btree internal pages, the item is a key. BINTERNALs are {key, pgno}
114 * pairs, such that the key compares less than or equal to all of the records
115 * on that page. For a tree without duplicate keys, an internal page with two
116 * consecutive keys, a and b, will have all records greater than or equal to a
117 * and less than b stored on the page associated with a. Duplicate keys are
118 * somewhat special and can cause duplicate internal and leaf page records and
119 * some minor modifications of the above rule.
120 */
121typedef struct _binternal {
122 u_int32_t ksize; /* key size */
123 pgno_t pgno; /* page number stored on */
124#define P_BIGDATA 0x01 /* overflow data */
125#define P_BIGKEY 0x02 /* overflow key */
126 u_char flags;
127 char bytes[1]; /* data */
128} BINTERNAL;
129
130/* Get the page's BINTERNAL structure at index indx. */
131#define GETBINTERNAL(pg, indx) \
132 ((BINTERNAL *)((char *)(pg) + (pg)->linp[indx]))
133
134/* Get the number of bytes in the entry. */
135#define NBINTERNAL(len) \
136 LALIGN(sizeof(u_int32_t) + sizeof(pgno_t) + sizeof(u_char) + (len))
137
138/* Copy a BINTERNAL entry to the page. */
139#define WR_BINTERNAL(p, size, pgno, flags) { \
140 *(u_int32_t *)p = size; \
141 p += sizeof(u_int32_t); \
142 *(pgno_t *)p = pgno; \
143 p += sizeof(pgno_t); \
144 *(u_char *)p = flags; \
145 p += sizeof(u_char); \
146}
147
148/*
149 * For the recno internal pages, the item is a page number with the number of
150 * keys found on that page and below.
151 */
152typedef struct _rinternal {
153 recno_t nrecs; /* number of records */
154 pgno_t pgno; /* page number stored below */
155} RINTERNAL;
156
157/* Get the page's RINTERNAL structure at index indx. */
158#define GETRINTERNAL(pg, indx) \
159 ((RINTERNAL *)((char *)(pg) + (pg)->linp[indx]))
160
161/* Get the number of bytes in the entry. */
162#define NRINTERNAL \
163 LALIGN(sizeof(recno_t) + sizeof(pgno_t))
164
165/* Copy a RINTERAL entry to the page. */
166#define WR_RINTERNAL(p, nrecs, pgno) { \
167 *(recno_t *)p = nrecs; \
168 p += sizeof(recno_t); \
169 *(pgno_t *)p = pgno; \
170}
171
172/* For the btree leaf pages, the item is a key and data pair. */
173typedef struct _bleaf {
174 u_int32_t ksize; /* size of key */
175 u_int32_t dsize; /* size of data */
176 u_char flags; /* P_BIGDATA, P_BIGKEY */
177 char bytes[1]; /* data */
178} BLEAF;
179
180/* Get the page's BLEAF structure at index indx. */
181#define GETBLEAF(pg, indx) \
182 ((BLEAF *)((char *)(pg) + (pg)->linp[indx]))
183
184/* Get the number of bytes in the entry. */
185#define NBLEAF(p) NBLEAFDBT((p)->ksize, (p)->dsize)
186
187/* Get the number of bytes in the user's key/data pair. */
188#define NBLEAFDBT(ksize, dsize) \
189 LALIGN(sizeof(u_int32_t) + sizeof(u_int32_t) + sizeof(u_char) + \
190 (ksize) + (dsize))
191
192/* Copy a BLEAF entry to the page. */
193#define WR_BLEAF(p, key, data, flags) { \
194 *(u_int32_t *)p = key->size; \
195 p += sizeof(u_int32_t); \
196 *(u_int32_t *)p = data->size; \
197 p += sizeof(u_int32_t); \
198 *(u_char *)p = flags; \
199 p += sizeof(u_char); \
200 memmove(p, key->data, key->size); \
201 p += key->size; \
202 memmove(p, data->data, data->size); \
203}
204
205/* For the recno leaf pages, the item is a data entry. */
206typedef struct _rleaf {
207 u_int32_t dsize; /* size of data */
208 u_char flags; /* P_BIGDATA */
209 char bytes[1];
210} RLEAF;
211
212/* Get the page's RLEAF structure at index indx. */
213#define GETRLEAF(pg, indx) \
214 ((RLEAF *)((char *)(pg) + (pg)->linp[indx]))
215
216/* Get the number of bytes in the entry. */
217#define NRLEAF(p) NRLEAFDBT((p)->dsize)
218
219/* Get the number of bytes from the user's data. */
220#define NRLEAFDBT(dsize) \
221 LALIGN(sizeof(u_int32_t) + sizeof(u_char) + (dsize))
222
223/* Copy a RLEAF entry to the page. */
224#define WR_RLEAF(p, data, flags) { \
225 *(u_int32_t *)p = data->size; \
226 p += sizeof(u_int32_t); \
227 *(u_char *)p = flags; \
228 p += sizeof(u_char); \
229 memmove(p, data->data, data->size); \
230}
231
232/*
233 * A record in the tree is either a pointer to a page and an index in the page
234 * or a page number and an index. These structures are used as a cursor, stack
235 * entry and search returns as well as to pass records to other routines.
236 *
237 * One comment about searches. Internal page searches must find the largest
238 * record less than key in the tree so that descents work. Leaf page searches
239 * must find the smallest record greater than key so that the returned index
240 * is the record's correct position for insertion.
241 */
242typedef struct _epgno {
243 pgno_t pgno; /* the page number */
244 indx_t index; /* the index on the page */
245} EPGNO;
246
247typedef struct _epg {
248 PAGE *page; /* the (pinned) page */
249 indx_t index; /* the index on the page */
250} EPG;
251
252/*
253 * About cursors. The cursor (and the page that contained the key/data pair
254 * that it referenced) can be deleted, which makes things a bit tricky. If
255 * there are no duplicates of the cursor key in the tree (i.e. B_NODUPS is set
256 * or there simply aren't any duplicates of the key) we copy the key that it
257 * referenced when it's deleted, and reacquire a new cursor key if the cursor
258 * is used again. If there are duplicates keys, we move to the next/previous
259 * key, and set a flag so that we know what happened. NOTE: if duplicate (to
260 * the cursor) keys are added to the tree during this process, it is undefined
261 * if they will be returned or not in a cursor scan.
262 *
263 * The flags determine the possible states of the cursor:
264 *
265 * CURS_INIT The cursor references *something*.
266 * CURS_ACQUIRE The cursor was deleted, and a key has been saved so that
267 * we can reacquire the right position in the tree.
268 * CURS_AFTER, CURS_BEFORE
269 * The cursor was deleted, and now references a key/data pair
270 * that has not yet been returned, either before or after the
271 * deleted key/data pair.
272 * XXX
273 * This structure is broken out so that we can eventually offer multiple
274 * cursors as part of the DB interface.
275 */
276typedef struct _cursor {
277 EPGNO pg; /* B: Saved tree reference. */
278 DBT key; /* B: Saved key, or key.data == NULL. */
279 recno_t rcursor; /* R: recno cursor (1-based) */
280
281#define CURS_ACQUIRE 0x01 /* B: Cursor needs to be reacquired. */
282#define CURS_AFTER 0x02 /* B: Unreturned cursor after key. */
283#define CURS_BEFORE 0x04 /* B: Unreturned cursor before key. */
284#define CURS_INIT 0x08 /* RB: Cursor initialized. */
285 u_int8_t flags;
286} CURSOR;
287
288/*
289 * The metadata of the tree. The nrecs field is used only by the RECNO code.
290 * This is because the btree doesn't really need it and it requires that every
291 * put or delete call modify the metadata.
292 */
293typedef struct _btmeta {
294 u_int32_t magic; /* magic number */
295 u_int32_t version; /* version */
296 u_int32_t psize; /* page size */
297 u_int32_t free; /* page number of first free page */
298 u_int32_t nrecs; /* R: number of records */
299
300#define SAVEMETA (B_NODUPS | R_RECNO)
301 u_int32_t flags; /* bt_flags & SAVEMETA */
302} BTMETA;
303
304/* The in-memory btree/recno data structure. */
305typedef struct _btree {
306 MPOOL *bt_mp; /* memory pool cookie */
307
308 DB *bt_dbp; /* pointer to enclosing DB */
309
310 EPG bt_cur; /* current (pinned) page */
311 PAGE *bt_pinned; /* page pinned across calls */
312
313 CURSOR bt_cursor; /* cursor */
314
315#define BT_PUSH(t, p, i) { \
316 t->bt_sp->pgno = p; \
317 t->bt_sp->index = i; \
318 ++t->bt_sp; \
319}
320#define BT_POP(t) (t->bt_sp == t->bt_stack ? NULL : --t->bt_sp)
321#define BT_CLR(t) (t->bt_sp = t->bt_stack)
322 EPGNO bt_stack[50]; /* stack of parent pages */
323 EPGNO *bt_sp; /* current stack pointer */
324
325 DBT bt_rkey; /* returned key */
326 DBT bt_rdata; /* returned data */
327
328 int bt_fd; /* tree file descriptor */
329
330 pgno_t bt_free; /* next free page */
331 u_int32_t bt_psize; /* page size */
332 indx_t bt_ovflsize; /* cut-off for key/data overflow */
333 int bt_lorder; /* byte order */
334 /* sorted order */
335 enum { NOT, BACK, FORWARD } bt_order;
336 EPGNO bt_last; /* last insert */
337
338 /* B: key comparison function */
339 int (*bt_cmp)(const DBT *, const DBT *);
340 /* B: prefix comparison function */
341 size_t (*bt_pfx)(const DBT *, const DBT *);
342 /* R: recno input function */
343 int (*bt_irec)(struct _btree *, recno_t);
344
345 FILE *bt_rfp; /* R: record FILE pointer */
346 int bt_rfd; /* R: record file descriptor */
347
348 caddr_t bt_cmap; /* R: current point in mapped space */
349 caddr_t bt_smap; /* R: start of mapped space */
350 caddr_t bt_emap; /* R: end of mapped space */
351 size_t bt_msize; /* R: size of mapped region. */
352
353 recno_t bt_nrecs; /* R: number of records */
354 size_t bt_reclen; /* R: fixed record length */
355 u_char bt_bval; /* R: delimiting byte/pad character */
356
357/*
358 * NB:
359 * B_NODUPS and R_RECNO are stored on disk, and may not be changed.
360 */
361#define B_INMEM 0x00001 /* in-memory tree */
362#define B_METADIRTY 0x00002 /* need to write metadata */
363#define B_MODIFIED 0x00004 /* tree modified */
364#define B_NEEDSWAP 0x00008 /* if byte order requires swapping */
365#define B_RDONLY 0x00010 /* read-only tree */
366
367#define B_NODUPS 0x00020 /* no duplicate keys permitted */
368#define R_RECNO 0x00080 /* record oriented tree */
369
370#define R_CLOSEFP 0x00040 /* opened a file pointer */
371#define R_EOF 0x00100 /* end of input file reached. */
372#define R_FIXLEN 0x00200 /* fixed length records */
373#define R_MEMMAPPED 0x00400 /* memory mapped file. */
374#define R_INMEM 0x00800 /* in-memory file */
375#define R_MODIFIED 0x01000 /* modified file */
376#define R_RDONLY 0x02000 /* read-only file */
377
378#define B_DB_LOCK 0x04000 /* DB_LOCK specified. */
379#define B_DB_SHMEM 0x08000 /* DB_SHMEM specified. */
380#define B_DB_TXN 0x10000 /* DB_TXN specified. */
381 u_int32_t flags;
382} BTREE;
383
384#include "bt_extern.h"