]>
Commit | Line | Data |
---|---|---|
224c7076 A |
1 | /*- |
2 | * Copyright (c) 1990, 1993, 1994 | |
3 | * The Regents of the University of California. All rights reserved. | |
4 | * | |
5 | * This code is derived from software contributed to Berkeley by | |
6 | * Margo Seltzer. | |
7 | * | |
8 | * Redistribution and use in source and binary forms, with or without | |
9 | * modification, are permitted provided that the following conditions | |
10 | * are met: | |
11 | * 1. Redistributions of source code must retain the above copyright | |
12 | * notice, this list of conditions and the following disclaimer. | |
13 | * 2. Redistributions in binary form must reproduce the above copyright | |
14 | * notice, this list of conditions and the following disclaimer in the | |
15 | * documentation and/or other materials provided with the distribution. | |
16 | * 3. All advertising materials mentioning features or use of this software | |
17 | * must display the following acknowledgement: | |
18 | * This product includes software developed by the University of | |
19 | * California, Berkeley and its contributors. | |
20 | * 4. Neither the name of the University nor the names of its contributors | |
21 | * may be used to endorse or promote products derived from this software | |
22 | * without specific prior written permission. | |
23 | * | |
24 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | |
25 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
26 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
27 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | |
28 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
29 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
30 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
31 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
32 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
33 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
34 | * SUCH DAMAGE. | |
35 | */ | |
36 | ||
37 | #if defined(LIBC_SCCS) && !defined(lint) | |
38 | static char sccsid[] = "@(#)hash_page.c 8.7 (Berkeley) 8/16/94"; | |
39 | #endif /* LIBC_SCCS and not lint */ | |
40 | #include <sys/cdefs.h> | |
41 | __FBSDID("$FreeBSD: src/lib/libc/db/hash/hash_page.c,v 1.8 2002/03/21 22:46:26 obrien Exp $"); | |
42 | ||
43 | /* | |
44 | * PACKAGE: hashing | |
45 | * | |
46 | * DESCRIPTION: | |
47 | * Page manipulation for hashing package. | |
48 | * | |
49 | * ROUTINES: | |
50 | * | |
51 | * External | |
52 | * __get_page | |
53 | * __add_ovflpage | |
54 | * Internal | |
55 | * overflow_page | |
56 | * open_temp | |
57 | */ | |
58 | ||
59 | #include "namespace.h" | |
60 | #include <sys/types.h> | |
61 | ||
62 | #include <errno.h> | |
63 | #include <fcntl.h> | |
64 | #include <signal.h> | |
65 | #include <stdio.h> | |
66 | #include <stdlib.h> | |
67 | #include <string.h> | |
68 | #include <unistd.h> | |
69 | #ifdef DEBUG | |
70 | #include <assert.h> | |
71 | #endif | |
72 | #include "un-namespace.h" | |
73 | ||
74 | #include <db.h> | |
75 | #include "hash.h" | |
76 | #include "page.h" | |
77 | #include "hash_extern.h" | |
78 | ||
79 | static u_int32_t *fetch_bitmap(HTAB *, int); | |
80 | static u_int32_t first_free(u_int32_t); | |
81 | static int open_temp(HTAB *); | |
82 | static u_int16_t overflow_page(HTAB *); | |
83 | static void putpair(char *, const DBT *, const DBT *); | |
84 | static void squeeze_key(u_int16_t *, const DBT *, const DBT *); | |
85 | static int ugly_split | |
86 | (HTAB *, u_int32_t, BUFHEAD *, BUFHEAD *, int, int); | |
87 | ||
88 | #define PAGE_INIT(P) { \ | |
89 | ((u_int16_t *)(P))[0] = 0; \ | |
90 | ((u_int16_t *)(P))[1] = hashp->BSIZE - 3 * sizeof(u_int16_t); \ | |
91 | ((u_int16_t *)(P))[2] = hashp->BSIZE; \ | |
92 | } | |
93 | ||
94 | /* | |
95 | * This is called AFTER we have verified that there is room on the page for | |
96 | * the pair (PAIRFITS has returned true) so we go right ahead and start moving | |
97 | * stuff on. | |
98 | */ | |
99 | static void | |
100 | putpair(p, key, val) | |
101 | char *p; | |
102 | const DBT *key, *val; | |
103 | { | |
104 | u_int16_t *bp, n, off; | |
105 | ||
106 | bp = (u_int16_t *)p; | |
107 | ||
108 | /* Enter the key first. */ | |
109 | n = bp[0]; | |
110 | ||
111 | off = OFFSET(bp) - key->size; | |
112 | memmove(p + off, key->data, key->size); | |
113 | bp[++n] = off; | |
114 | ||
115 | /* Now the data. */ | |
116 | off -= val->size; | |
117 | memmove(p + off, val->data, val->size); | |
118 | bp[++n] = off; | |
119 | ||
120 | /* Adjust page info. */ | |
121 | bp[0] = n; | |
122 | bp[n + 1] = off - ((n + 3) * sizeof(u_int16_t)); | |
123 | bp[n + 2] = off; | |
124 | } | |
125 | ||
126 | /* | |
127 | * Returns: | |
128 | * 0 OK | |
129 | * -1 error | |
130 | */ | |
131 | extern int | |
132 | __delpair(hashp, bufp, ndx) | |
133 | HTAB *hashp; | |
134 | BUFHEAD *bufp; | |
135 | int ndx; | |
136 | { | |
137 | u_int16_t *bp, newoff; | |
138 | int n; | |
139 | u_int16_t pairlen; | |
140 | ||
141 | bp = (u_int16_t *)bufp->page; | |
142 | n = bp[0]; | |
143 | ||
144 | if (bp[ndx + 1] < REAL_KEY) | |
145 | return (__big_delete(hashp, bufp)); | |
146 | if (ndx != 1) | |
147 | newoff = bp[ndx - 1]; | |
148 | else | |
149 | newoff = hashp->BSIZE; | |
150 | pairlen = newoff - bp[ndx + 1]; | |
151 | ||
152 | if (ndx != (n - 1)) { | |
153 | /* Hard Case -- need to shuffle keys */ | |
154 | int i; | |
155 | char *src = bufp->page + (int)OFFSET(bp); | |
156 | char *dst = src + (int)pairlen; | |
157 | memmove(dst, src, bp[ndx + 1] - OFFSET(bp)); | |
158 | ||
159 | /* Now adjust the pointers */ | |
160 | for (i = ndx + 2; i <= n; i += 2) { | |
161 | if (bp[i + 1] == OVFLPAGE) { | |
162 | bp[i - 2] = bp[i]; | |
163 | bp[i - 1] = bp[i + 1]; | |
164 | } else { | |
165 | bp[i - 2] = bp[i] + pairlen; | |
166 | bp[i - 1] = bp[i + 1] + pairlen; | |
167 | } | |
168 | } | |
169 | } | |
170 | /* Finally adjust the page data */ | |
171 | bp[n] = OFFSET(bp) + pairlen; | |
172 | bp[n - 1] = bp[n + 1] + pairlen + 2 * sizeof(u_int16_t); | |
173 | bp[0] = n - 2; | |
174 | hashp->NKEYS--; | |
175 | ||
176 | bufp->flags |= BUF_MOD; | |
177 | return (0); | |
178 | } | |
179 | /* | |
180 | * Returns: | |
181 | * 0 ==> OK | |
182 | * -1 ==> Error | |
183 | */ | |
184 | extern int | |
185 | __split_page(hashp, obucket, nbucket) | |
186 | HTAB *hashp; | |
187 | u_int32_t obucket, nbucket; | |
188 | { | |
189 | BUFHEAD *new_bufp, *old_bufp; | |
190 | u_int16_t *ino; | |
191 | char *np; | |
192 | DBT key, val; | |
193 | int n, ndx, retval; | |
194 | u_int16_t copyto, diff, off, moved; | |
195 | char *op; | |
196 | ||
197 | copyto = (u_int16_t)hashp->BSIZE; | |
198 | off = (u_int16_t)hashp->BSIZE; | |
199 | old_bufp = __get_buf(hashp, obucket, NULL, 0); | |
200 | if (old_bufp == NULL) | |
201 | return (-1); | |
202 | new_bufp = __get_buf(hashp, nbucket, NULL, 0); | |
203 | if (new_bufp == NULL) | |
204 | return (-1); | |
205 | ||
206 | old_bufp->flags |= (BUF_MOD | BUF_PIN); | |
207 | new_bufp->flags |= (BUF_MOD | BUF_PIN); | |
208 | ||
209 | ino = (u_int16_t *)(op = old_bufp->page); | |
210 | np = new_bufp->page; | |
211 | ||
212 | moved = 0; | |
213 | ||
214 | for (n = 1, ndx = 1; n < ino[0]; n += 2) { | |
215 | if (ino[n + 1] < REAL_KEY) { | |
216 | retval = ugly_split(hashp, obucket, old_bufp, new_bufp, | |
217 | (int)copyto, (int)moved); | |
218 | old_bufp->flags &= ~BUF_PIN; | |
219 | new_bufp->flags &= ~BUF_PIN; | |
220 | return (retval); | |
221 | ||
222 | } | |
223 | key.data = (u_char *)op + ino[n]; | |
224 | key.size = off - ino[n]; | |
225 | ||
226 | if (__call_hash(hashp, key.data, key.size) == obucket) { | |
227 | /* Don't switch page */ | |
228 | diff = copyto - off; | |
229 | if (diff) { | |
230 | copyto = ino[n + 1] + diff; | |
231 | memmove(op + copyto, op + ino[n + 1], | |
232 | off - ino[n + 1]); | |
233 | ino[ndx] = copyto + ino[n] - ino[n + 1]; | |
234 | ino[ndx + 1] = copyto; | |
235 | } else | |
236 | copyto = ino[n + 1]; | |
237 | ndx += 2; | |
238 | } else { | |
239 | /* Switch page */ | |
240 | val.data = (u_char *)op + ino[n + 1]; | |
241 | val.size = ino[n] - ino[n + 1]; | |
242 | putpair(np, &key, &val); | |
243 | moved += 2; | |
244 | } | |
245 | ||
246 | off = ino[n + 1]; | |
247 | } | |
248 | ||
249 | /* Now clean up the page */ | |
250 | ino[0] -= moved; | |
251 | FREESPACE(ino) = copyto - sizeof(u_int16_t) * (ino[0] + 3); | |
252 | OFFSET(ino) = copyto; | |
253 | ||
254 | #ifdef DEBUG3 | |
255 | (void)fprintf(stderr, "split %d/%d\n", | |
256 | ((u_int16_t *)np)[0] / 2, | |
257 | ((u_int16_t *)op)[0] / 2); | |
258 | #endif | |
259 | /* unpin both pages */ | |
260 | old_bufp->flags &= ~BUF_PIN; | |
261 | new_bufp->flags &= ~BUF_PIN; | |
262 | return (0); | |
263 | } | |
264 | ||
265 | /* | |
266 | * Called when we encounter an overflow or big key/data page during split | |
267 | * handling. This is special cased since we have to begin checking whether | |
268 | * the key/data pairs fit on their respective pages and because we may need | |
269 | * overflow pages for both the old and new pages. | |
270 | * | |
271 | * The first page might be a page with regular key/data pairs in which case | |
272 | * we have a regular overflow condition and just need to go on to the next | |
273 | * page or it might be a big key/data pair in which case we need to fix the | |
274 | * big key/data pair. | |
275 | * | |
276 | * Returns: | |
277 | * 0 ==> success | |
278 | * -1 ==> failure | |
279 | */ | |
280 | static int | |
281 | ugly_split(hashp, obucket, old_bufp, new_bufp, copyto, moved) | |
282 | HTAB *hashp; | |
283 | u_int32_t obucket; /* Same as __split_page. */ | |
284 | BUFHEAD *old_bufp, *new_bufp; | |
285 | int copyto; /* First byte on page which contains key/data values. */ | |
286 | int moved; /* Number of pairs moved to new page. */ | |
287 | { | |
288 | BUFHEAD *bufp; /* Buffer header for ino */ | |
289 | u_int16_t *ino; /* Page keys come off of */ | |
290 | u_int16_t *np; /* New page */ | |
291 | u_int16_t *op; /* Page keys go on to if they aren't moving */ | |
292 | ||
293 | BUFHEAD *last_bfp; /* Last buf header OVFL needing to be freed */ | |
294 | DBT key, val; | |
295 | SPLIT_RETURN ret; | |
296 | u_int16_t n, off, ov_addr, scopyto; | |
297 | char *cino; /* Character value of ino */ | |
298 | ||
299 | bufp = old_bufp; | |
300 | ino = (u_int16_t *)old_bufp->page; | |
301 | np = (u_int16_t *)new_bufp->page; | |
302 | op = (u_int16_t *)old_bufp->page; | |
303 | last_bfp = NULL; | |
304 | scopyto = (u_int16_t)copyto; /* ANSI */ | |
305 | ||
306 | n = ino[0] - 1; | |
307 | while (n < ino[0]) { | |
308 | if (ino[2] < REAL_KEY && ino[2] != OVFLPAGE) { | |
309 | if (__big_split(hashp, old_bufp, | |
310 | new_bufp, bufp, bufp->addr, obucket, &ret)) | |
311 | return (-1); | |
312 | old_bufp = ret.oldp; | |
313 | if (!old_bufp) | |
314 | return (-1); | |
315 | op = (u_int16_t *)old_bufp->page; | |
316 | new_bufp = ret.newp; | |
317 | if (!new_bufp) | |
318 | return (-1); | |
319 | np = (u_int16_t *)new_bufp->page; | |
320 | bufp = ret.nextp; | |
321 | if (!bufp) | |
322 | return (0); | |
323 | cino = (char *)bufp->page; | |
324 | ino = (u_int16_t *)cino; | |
325 | last_bfp = ret.nextp; | |
326 | } else if (ino[n + 1] == OVFLPAGE) { | |
327 | ov_addr = ino[n]; | |
328 | /* | |
329 | * Fix up the old page -- the extra 2 are the fields | |
330 | * which contained the overflow information. | |
331 | */ | |
332 | ino[0] -= (moved + 2); | |
333 | FREESPACE(ino) = | |
334 | scopyto - sizeof(u_int16_t) * (ino[0] + 3); | |
335 | OFFSET(ino) = scopyto; | |
336 | ||
337 | bufp = __get_buf(hashp, ov_addr, bufp, 0); | |
338 | if (!bufp) | |
339 | return (-1); | |
340 | ||
341 | ino = (u_int16_t *)bufp->page; | |
342 | n = 1; | |
343 | scopyto = hashp->BSIZE; | |
344 | moved = 0; | |
345 | ||
346 | if (last_bfp) | |
347 | __free_ovflpage(hashp, last_bfp); | |
348 | last_bfp = bufp; | |
349 | } | |
350 | /* Move regular sized pairs of there are any */ | |
351 | off = hashp->BSIZE; | |
352 | for (n = 1; (n < ino[0]) && (ino[n + 1] >= REAL_KEY); n += 2) { | |
353 | cino = (char *)ino; | |
354 | key.data = (u_char *)cino + ino[n]; | |
355 | key.size = off - ino[n]; | |
356 | val.data = (u_char *)cino + ino[n + 1]; | |
357 | val.size = ino[n] - ino[n + 1]; | |
358 | off = ino[n + 1]; | |
359 | ||
360 | if (__call_hash(hashp, key.data, key.size) == obucket) { | |
361 | /* Keep on old page */ | |
362 | if (PAIRFITS(op, (&key), (&val))) | |
363 | putpair((char *)op, &key, &val); | |
364 | else { | |
365 | old_bufp = | |
366 | __add_ovflpage(hashp, old_bufp); | |
367 | if (!old_bufp) | |
368 | return (-1); | |
369 | op = (u_int16_t *)old_bufp->page; | |
370 | putpair((char *)op, &key, &val); | |
371 | } | |
372 | old_bufp->flags |= BUF_MOD; | |
373 | } else { | |
374 | /* Move to new page */ | |
375 | if (PAIRFITS(np, (&key), (&val))) | |
376 | putpair((char *)np, &key, &val); | |
377 | else { | |
378 | new_bufp = | |
379 | __add_ovflpage(hashp, new_bufp); | |
380 | if (!new_bufp) | |
381 | return (-1); | |
382 | np = (u_int16_t *)new_bufp->page; | |
383 | putpair((char *)np, &key, &val); | |
384 | } | |
385 | new_bufp->flags |= BUF_MOD; | |
386 | } | |
387 | } | |
388 | } | |
389 | if (last_bfp) | |
390 | __free_ovflpage(hashp, last_bfp); | |
391 | return (0); | |
392 | } | |
393 | ||
394 | /* | |
395 | * Add the given pair to the page | |
396 | * | |
397 | * Returns: | |
398 | * 0 ==> OK | |
399 | * 1 ==> failure | |
400 | */ | |
401 | extern int | |
402 | __addel(hashp, bufp, key, val) | |
403 | HTAB *hashp; | |
404 | BUFHEAD *bufp; | |
405 | const DBT *key, *val; | |
406 | { | |
407 | u_int16_t *bp, *sop; | |
408 | int do_expand; | |
409 | ||
410 | bp = (u_int16_t *)bufp->page; | |
411 | do_expand = 0; | |
412 | while (bp[0] && (bp[2] < REAL_KEY || bp[bp[0]] < REAL_KEY)) | |
413 | /* Exception case */ | |
414 | if (bp[2] == FULL_KEY_DATA && bp[0] == 2) | |
415 | /* This is the last page of a big key/data pair | |
416 | and we need to add another page */ | |
417 | break; | |
418 | else if (bp[2] < REAL_KEY && bp[bp[0]] != OVFLPAGE) { | |
419 | bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0); | |
420 | if (!bufp) | |
421 | return (-1); | |
422 | bp = (u_int16_t *)bufp->page; | |
423 | } else | |
424 | /* Try to squeeze key on this page */ | |
425 | if (FREESPACE(bp) > PAIRSIZE(key, val)) { | |
426 | squeeze_key(bp, key, val); | |
427 | return (0); | |
428 | } else { | |
429 | bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0); | |
430 | if (!bufp) | |
431 | return (-1); | |
432 | bp = (u_int16_t *)bufp->page; | |
433 | } | |
434 | ||
435 | if (PAIRFITS(bp, key, val)) | |
436 | putpair(bufp->page, key, val); | |
437 | else { | |
438 | do_expand = 1; | |
439 | bufp = __add_ovflpage(hashp, bufp); | |
440 | if (!bufp) | |
441 | return (-1); | |
442 | sop = (u_int16_t *)bufp->page; | |
443 | ||
444 | if (PAIRFITS(sop, key, val)) | |
445 | putpair((char *)sop, key, val); | |
446 | else | |
447 | if (__big_insert(hashp, bufp, key, val)) | |
448 | return (-1); | |
449 | } | |
450 | bufp->flags |= BUF_MOD; | |
451 | /* | |
452 | * If the average number of keys per bucket exceeds the fill factor, | |
453 | * expand the table. | |
454 | */ | |
455 | hashp->NKEYS++; | |
456 | if (do_expand || | |
457 | (hashp->NKEYS / (hashp->MAX_BUCKET + 1) > hashp->FFACTOR)) | |
458 | return (__expand_table(hashp)); | |
459 | return (0); | |
460 | } | |
461 | ||
462 | /* | |
463 | * | |
464 | * Returns: | |
465 | * pointer on success | |
466 | * NULL on error | |
467 | */ | |
468 | extern BUFHEAD * | |
469 | __add_ovflpage(hashp, bufp) | |
470 | HTAB *hashp; | |
471 | BUFHEAD *bufp; | |
472 | { | |
473 | u_int16_t *sp; | |
474 | u_int16_t ndx, ovfl_num; | |
475 | #ifdef DEBUG1 | |
476 | int tmp1, tmp2; | |
477 | #endif | |
478 | sp = (u_int16_t *)bufp->page; | |
479 | ||
480 | /* Check if we are dynamically determining the fill factor */ | |
481 | if (hashp->FFACTOR == DEF_FFACTOR) { | |
482 | hashp->FFACTOR = sp[0] >> 1; | |
483 | if (hashp->FFACTOR < MIN_FFACTOR) | |
484 | hashp->FFACTOR = MIN_FFACTOR; | |
485 | } | |
486 | bufp->flags |= BUF_MOD; | |
487 | ovfl_num = overflow_page(hashp); | |
488 | #ifdef DEBUG1 | |
489 | tmp1 = bufp->addr; | |
490 | tmp2 = bufp->ovfl ? bufp->ovfl->addr : 0; | |
491 | #endif | |
492 | if (!ovfl_num || !(bufp->ovfl = __get_buf(hashp, ovfl_num, bufp, 1))) | |
493 | return (NULL); | |
494 | bufp->ovfl->flags |= BUF_MOD; | |
495 | #ifdef DEBUG1 | |
496 | (void)fprintf(stderr, "ADDOVFLPAGE: %d->ovfl was %d is now %d\n", | |
497 | tmp1, tmp2, bufp->ovfl->addr); | |
498 | #endif | |
499 | ndx = sp[0]; | |
500 | /* | |
501 | * Since a pair is allocated on a page only if there's room to add | |
502 | * an overflow page, we know that the OVFL information will fit on | |
503 | * the page. | |
504 | */ | |
505 | sp[ndx + 4] = OFFSET(sp); | |
506 | sp[ndx + 3] = FREESPACE(sp) - OVFLSIZE; | |
507 | sp[ndx + 1] = ovfl_num; | |
508 | sp[ndx + 2] = OVFLPAGE; | |
509 | sp[0] = ndx + 2; | |
510 | #ifdef HASH_STATISTICS | |
511 | hash_overflows++; | |
512 | #endif | |
513 | return (bufp->ovfl); | |
514 | } | |
515 | ||
516 | /* | |
517 | * Returns: | |
518 | * 0 indicates SUCCESS | |
519 | * -1 indicates FAILURE | |
520 | */ | |
521 | extern int | |
522 | __get_page(hashp, p, bucket, is_bucket, is_disk, is_bitmap) | |
523 | HTAB *hashp; | |
524 | char *p; | |
525 | u_int32_t bucket; | |
526 | int is_bucket, is_disk, is_bitmap; | |
527 | { | |
528 | int fd, page, size; | |
529 | int rsize; | |
530 | u_int16_t *bp; | |
531 | ||
532 | fd = hashp->fp; | |
533 | size = hashp->BSIZE; | |
534 | ||
535 | if ((fd == -1) || !is_disk) { | |
536 | PAGE_INIT(p); | |
537 | return (0); | |
538 | } | |
539 | if (is_bucket) | |
540 | page = BUCKET_TO_PAGE(bucket); | |
541 | else | |
542 | page = OADDR_TO_PAGE(bucket); | |
543 | if ((lseek(fd, (off_t)page << hashp->BSHIFT, SEEK_SET) == -1) || | |
544 | ((rsize = _read(fd, p, size)) == -1)) | |
545 | return (-1); | |
546 | bp = (u_int16_t *)p; | |
547 | if (!rsize) | |
548 | bp[0] = 0; /* We hit the EOF, so initialize a new page */ | |
549 | else | |
550 | if (rsize != size) { | |
551 | errno = EFTYPE; | |
552 | return (-1); | |
553 | } | |
554 | if (!is_bitmap && !bp[0]) { | |
555 | PAGE_INIT(p); | |
556 | } else | |
557 | if (hashp->LORDER != BYTE_ORDER) { | |
558 | int i, max; | |
559 | ||
560 | if (is_bitmap) { | |
561 | max = hashp->BSIZE >> 2; /* divide by 4 */ | |
562 | for (i = 0; i < max; i++) | |
563 | M_32_SWAP(((int *)p)[i]); | |
564 | } else { | |
565 | M_16_SWAP(bp[0]); | |
566 | max = bp[0] + 2; | |
567 | for (i = 1; i <= max; i++) | |
568 | M_16_SWAP(bp[i]); | |
569 | } | |
570 | } | |
571 | return (0); | |
572 | } | |
573 | ||
574 | /* | |
575 | * Write page p to disk | |
576 | * | |
577 | * Returns: | |
578 | * 0 ==> OK | |
579 | * -1 ==>failure | |
580 | */ | |
581 | extern int | |
582 | __put_page(hashp, p, bucket, is_bucket, is_bitmap) | |
583 | HTAB *hashp; | |
584 | char *p; | |
585 | u_int32_t bucket; | |
586 | int is_bucket, is_bitmap; | |
587 | { | |
588 | int fd, page, size; | |
589 | int wsize, max; | |
590 | ||
591 | size = hashp->BSIZE; | |
592 | if ((hashp->fp == -1) && open_temp(hashp)) | |
593 | return (-1); | |
594 | fd = hashp->fp; | |
595 | ||
596 | if (hashp->LORDER != BYTE_ORDER) { | |
597 | int i; | |
598 | ||
599 | if (is_bitmap) { | |
600 | max = hashp->BSIZE >> 2; /* divide by 4 */ | |
601 | for (i = 0; i < max; i++) | |
602 | M_32_SWAP(((int *)p)[i]); | |
603 | } else { | |
604 | max = ((u_int16_t *)p)[0] + 2; | |
605 | for (i = 0; i <= max; i++) | |
606 | M_16_SWAP(((u_int16_t *)p)[i]); | |
607 | } | |
608 | } | |
609 | if (is_bucket) | |
610 | page = BUCKET_TO_PAGE(bucket); | |
611 | else | |
612 | page = OADDR_TO_PAGE(bucket); | |
613 | if ((lseek(fd, (off_t)page << hashp->BSHIFT, SEEK_SET) == -1) || | |
614 | ((wsize = _write(fd, p, size)) == -1)) | |
615 | /* Errno is set */ | |
616 | return (-1); | |
617 | if (wsize != size) { | |
618 | errno = EFTYPE; | |
619 | return (-1); | |
620 | } | |
621 | /* 4485533 - reswap the in-memory copy */ | |
622 | if (hashp->LORDER != BYTE_ORDER) { | |
623 | int i; | |
624 | ||
625 | if (is_bitmap) { | |
626 | for (i = 0; i < max; i++) | |
627 | M_32_SWAP(((int *)p)[i]); | |
628 | } else { | |
629 | for (i = 0; i <= max; i++) | |
630 | M_16_SWAP(((u_int16_t *)p)[i]); | |
631 | } | |
632 | } | |
633 | return (0); | |
634 | } | |
635 | ||
636 | #define BYTE_MASK ((1 << INT_BYTE_SHIFT) -1) | |
637 | /* | |
638 | * Initialize a new bitmap page. Bitmap pages are left in memory | |
639 | * once they are read in. | |
640 | */ | |
641 | extern int | |
642 | __ibitmap(hashp, pnum, nbits, ndx) | |
643 | HTAB *hashp; | |
644 | int pnum, nbits, ndx; | |
645 | { | |
646 | u_int32_t *ip; | |
647 | int clearbytes, clearints; | |
648 | ||
649 | if ((ip = (u_int32_t *)malloc(hashp->BSIZE)) == NULL) | |
650 | return (1); | |
651 | hashp->nmaps++; | |
652 | clearints = ((nbits - 1) >> INT_BYTE_SHIFT) + 1; | |
653 | clearbytes = clearints << INT_TO_BYTE; | |
654 | (void)memset((char *)ip, 0, clearbytes); | |
655 | (void)memset(((char *)ip) + clearbytes, 0xFF, | |
656 | hashp->BSIZE - clearbytes); | |
657 | ip[clearints - 1] = ALL_SET << (nbits & BYTE_MASK); | |
658 | SETBIT(ip, 0); | |
659 | hashp->BITMAPS[ndx] = (u_int16_t)pnum; | |
660 | hashp->mapp[ndx] = ip; | |
661 | return (0); | |
662 | } | |
663 | ||
664 | static u_int32_t | |
665 | first_free(map) | |
666 | u_int32_t map; | |
667 | { | |
668 | u_int32_t i, mask; | |
669 | ||
670 | mask = 0x1; | |
671 | for (i = 0; i < BITS_PER_MAP; i++) { | |
672 | if (!(mask & map)) | |
673 | return (i); | |
674 | mask = mask << 1; | |
675 | } | |
676 | return (i); | |
677 | } | |
678 | ||
679 | static u_int16_t | |
680 | overflow_page(hashp) | |
681 | HTAB *hashp; | |
682 | { | |
683 | u_int32_t *freep; | |
684 | int max_free, offset, splitnum; | |
685 | u_int16_t addr; | |
686 | int bit, first_page, free_bit, free_page, i, in_use_bits, j; | |
687 | #ifdef DEBUG2 | |
688 | int tmp1, tmp2; | |
689 | #endif | |
690 | splitnum = hashp->OVFL_POINT; | |
691 | max_free = hashp->SPARES[splitnum]; | |
692 | ||
693 | free_page = (max_free - 1) >> (hashp->BSHIFT + BYTE_SHIFT); | |
694 | free_bit = (max_free - 1) & ((hashp->BSIZE << BYTE_SHIFT) - 1); | |
695 | ||
696 | /* Look through all the free maps to find the first free block */ | |
697 | first_page = hashp->LAST_FREED >>(hashp->BSHIFT + BYTE_SHIFT); | |
698 | for ( i = first_page; i <= free_page; i++ ) { | |
699 | if (!(freep = (u_int32_t *)hashp->mapp[i]) && | |
700 | !(freep = fetch_bitmap(hashp, i))) | |
701 | return (0); | |
702 | if (i == free_page) | |
703 | in_use_bits = free_bit; | |
704 | else | |
705 | in_use_bits = (hashp->BSIZE << BYTE_SHIFT) - 1; | |
706 | ||
707 | if (i == first_page) { | |
708 | bit = hashp->LAST_FREED & | |
709 | ((hashp->BSIZE << BYTE_SHIFT) - 1); | |
710 | j = bit / BITS_PER_MAP; | |
711 | bit = bit & ~(BITS_PER_MAP - 1); | |
712 | } else { | |
713 | bit = 0; | |
714 | j = 0; | |
715 | } | |
716 | for (; bit <= in_use_bits; j++, bit += BITS_PER_MAP) | |
717 | if (freep[j] != ALL_SET) | |
718 | goto found; | |
719 | } | |
720 | ||
721 | /* No Free Page Found */ | |
722 | hashp->LAST_FREED = hashp->SPARES[splitnum]; | |
723 | hashp->SPARES[splitnum]++; | |
724 | offset = hashp->SPARES[splitnum] - | |
725 | (splitnum ? hashp->SPARES[splitnum - 1] : 0); | |
726 | ||
727 | #define OVMSG "HASH: Out of overflow pages. Increase page size\n" | |
728 | if (offset > SPLITMASK) { | |
729 | if (++splitnum >= NCACHED) { | |
730 | (void)_write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1); | |
731 | return (0); | |
732 | } | |
733 | hashp->OVFL_POINT = splitnum; | |
734 | hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1]; | |
735 | hashp->SPARES[splitnum-1]--; | |
736 | offset = 1; | |
737 | } | |
738 | ||
739 | /* Check if we need to allocate a new bitmap page */ | |
740 | if (free_bit == (hashp->BSIZE << BYTE_SHIFT) - 1) { | |
741 | free_page++; | |
742 | if (free_page >= NCACHED) { | |
743 | (void)_write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1); | |
744 | return (0); | |
745 | } | |
746 | /* | |
747 | * This is tricky. The 1 indicates that you want the new page | |
748 | * allocated with 1 clear bit. Actually, you are going to | |
749 | * allocate 2 pages from this map. The first is going to be | |
750 | * the map page, the second is the overflow page we were | |
751 | * looking for. The init_bitmap routine automatically, sets | |
752 | * the first bit of itself to indicate that the bitmap itself | |
753 | * is in use. We would explicitly set the second bit, but | |
754 | * don't have to if we tell init_bitmap not to leave it clear | |
755 | * in the first place. | |
756 | */ | |
757 | if (__ibitmap(hashp, | |
758 | (int)OADDR_OF(splitnum, offset), 1, free_page)) | |
759 | return (0); | |
760 | hashp->SPARES[splitnum]++; | |
761 | #ifdef DEBUG2 | |
762 | free_bit = 2; | |
763 | #endif | |
764 | offset++; | |
765 | if (offset > SPLITMASK) { | |
766 | if (++splitnum >= NCACHED) { | |
767 | (void)_write(STDERR_FILENO, OVMSG, | |
768 | sizeof(OVMSG) - 1); | |
769 | return (0); | |
770 | } | |
771 | hashp->OVFL_POINT = splitnum; | |
772 | hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1]; | |
773 | hashp->SPARES[splitnum-1]--; | |
774 | offset = 0; | |
775 | } | |
776 | } else { | |
777 | /* | |
778 | * Free_bit addresses the last used bit. Bump it to address | |
779 | * the first available bit. | |
780 | */ | |
781 | free_bit++; | |
782 | SETBIT(freep, free_bit); | |
783 | } | |
784 | ||
785 | /* Calculate address of the new overflow page */ | |
786 | addr = OADDR_OF(splitnum, offset); | |
787 | #ifdef DEBUG2 | |
788 | (void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n", | |
789 | addr, free_bit, free_page); | |
790 | #endif | |
791 | return (addr); | |
792 | ||
793 | found: | |
794 | bit = bit + first_free(freep[j]); | |
795 | SETBIT(freep, bit); | |
796 | #ifdef DEBUG2 | |
797 | tmp1 = bit; | |
798 | tmp2 = i; | |
799 | #endif | |
800 | /* | |
801 | * Bits are addressed starting with 0, but overflow pages are addressed | |
802 | * beginning at 1. Bit is a bit addressnumber, so we need to increment | |
803 | * it to convert it to a page number. | |
804 | */ | |
805 | bit = 1 + bit + (i * (hashp->BSIZE << BYTE_SHIFT)); | |
806 | if (bit >= hashp->LAST_FREED) | |
807 | hashp->LAST_FREED = bit - 1; | |
808 | ||
809 | /* Calculate the split number for this page */ | |
810 | for (i = 0; (i < splitnum) && (bit > hashp->SPARES[i]); i++); | |
811 | offset = (i ? bit - hashp->SPARES[i - 1] : bit); | |
812 | if (offset >= SPLITMASK) | |
813 | return (0); /* Out of overflow pages */ | |
814 | addr = OADDR_OF(i, offset); | |
815 | #ifdef DEBUG2 | |
816 | (void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n", | |
817 | addr, tmp1, tmp2); | |
818 | #endif | |
819 | ||
820 | /* Allocate and return the overflow page */ | |
821 | return (addr); | |
822 | } | |
823 | ||
824 | /* | |
825 | * Mark this overflow page as free. | |
826 | */ | |
827 | extern void | |
828 | __free_ovflpage(hashp, obufp) | |
829 | HTAB *hashp; | |
830 | BUFHEAD *obufp; | |
831 | { | |
832 | u_int16_t addr; | |
833 | u_int32_t *freep; | |
834 | int bit_address, free_page, free_bit; | |
835 | u_int16_t ndx; | |
836 | ||
837 | addr = obufp->addr; | |
838 | #ifdef DEBUG1 | |
839 | (void)fprintf(stderr, "Freeing %d\n", addr); | |
840 | #endif | |
841 | ndx = (((u_int16_t)addr) >> SPLITSHIFT); | |
842 | bit_address = | |
843 | (ndx ? hashp->SPARES[ndx - 1] : 0) + (addr & SPLITMASK) - 1; | |
844 | if (bit_address < hashp->LAST_FREED) | |
845 | hashp->LAST_FREED = bit_address; | |
846 | free_page = (bit_address >> (hashp->BSHIFT + BYTE_SHIFT)); | |
847 | free_bit = bit_address & ((hashp->BSIZE << BYTE_SHIFT) - 1); | |
848 | ||
849 | if (!(freep = hashp->mapp[free_page])) | |
850 | freep = fetch_bitmap(hashp, free_page); | |
851 | #ifdef DEBUG | |
852 | /* | |
853 | * This had better never happen. It means we tried to read a bitmap | |
854 | * that has already had overflow pages allocated off it, and we | |
855 | * failed to read it from the file. | |
856 | */ | |
857 | if (!freep) | |
858 | assert(0); | |
859 | #endif | |
860 | CLRBIT(freep, free_bit); | |
861 | #ifdef DEBUG2 | |
862 | (void)fprintf(stderr, "FREE_OVFLPAGE: ADDR: %d BIT: %d PAGE %d\n", | |
863 | obufp->addr, free_bit, free_page); | |
864 | #endif | |
865 | __reclaim_buf(hashp, obufp); | |
866 | } | |
867 | ||
868 | /* | |
869 | * Returns: | |
870 | * 0 success | |
871 | * -1 failure | |
872 | */ | |
873 | static int | |
874 | open_temp(hashp) | |
875 | HTAB *hashp; | |
876 | { | |
877 | sigset_t set, oset; | |
878 | static char namestr[] = "_hashXXXXXX"; | |
879 | ||
880 | /* Block signals; make sure file goes away at process exit. */ | |
881 | (void)sigfillset(&set); | |
882 | (void)_sigprocmask(SIG_BLOCK, &set, &oset); | |
883 | if ((hashp->fp = mkstemp(namestr)) != -1) { | |
884 | (void)unlink(namestr); | |
885 | (void)_fcntl(hashp->fp, F_SETFD, 1); | |
886 | } | |
887 | (void)_sigprocmask(SIG_SETMASK, &oset, (sigset_t *)NULL); | |
888 | return (hashp->fp != -1 ? 0 : -1); | |
889 | } | |
890 | ||
891 | /* | |
892 | * We have to know that the key will fit, but the last entry on the page is | |
893 | * an overflow pair, so we need to shift things. | |
894 | */ | |
895 | static void | |
896 | squeeze_key(sp, key, val) | |
897 | u_int16_t *sp; | |
898 | const DBT *key, *val; | |
899 | { | |
900 | char *p; | |
901 | u_int16_t free_space, n, off, pageno; | |
902 | ||
903 | p = (char *)sp; | |
904 | n = sp[0]; | |
905 | free_space = FREESPACE(sp); | |
906 | off = OFFSET(sp); | |
907 | ||
908 | pageno = sp[n - 1]; | |
909 | off -= key->size; | |
910 | sp[n - 1] = off; | |
911 | memmove(p + off, key->data, key->size); | |
912 | off -= val->size; | |
913 | sp[n] = off; | |
914 | memmove(p + off, val->data, val->size); | |
915 | sp[0] = n + 2; | |
916 | sp[n + 1] = pageno; | |
917 | sp[n + 2] = OVFLPAGE; | |
918 | FREESPACE(sp) = free_space - PAIRSIZE(key, val); | |
919 | OFFSET(sp) = off; | |
920 | } | |
921 | ||
922 | static u_int32_t * | |
923 | fetch_bitmap(hashp, ndx) | |
924 | HTAB *hashp; | |
925 | int ndx; | |
926 | { | |
927 | if (ndx >= hashp->nmaps) | |
928 | return (NULL); | |
929 | if ((hashp->mapp[ndx] = (u_int32_t *)malloc(hashp->BSIZE)) == NULL) | |
930 | return (NULL); | |
931 | if (__get_page(hashp, | |
932 | (char *)hashp->mapp[ndx], hashp->BITMAPS[ndx], 0, 1, 1)) { | |
933 | free(hashp->mapp[ndx]); | |
934 | return (NULL); | |
935 | } | |
936 | return (hashp->mapp[ndx]); | |
937 | } | |
938 | ||
939 | #ifdef DEBUG4 | |
940 | int | |
941 | print_chain(addr) | |
942 | int addr; | |
943 | { | |
944 | BUFHEAD *bufp; | |
945 | short *bp, oaddr; | |
946 | ||
947 | (void)fprintf(stderr, "%d ", addr); | |
948 | bufp = __get_buf(hashp, addr, NULL, 0); | |
949 | bp = (short *)bufp->page; | |
950 | while (bp[0] && ((bp[bp[0]] == OVFLPAGE) || | |
951 | ((bp[0] > 2) && bp[2] < REAL_KEY))) { | |
952 | oaddr = bp[bp[0] - 1]; | |
953 | (void)fprintf(stderr, "%d ", (int)oaddr); | |
954 | bufp = __get_buf(hashp, (int)oaddr, bufp, 0); | |
955 | bp = (short *)bufp->page; | |
956 | } | |
957 | (void)fprintf(stderr, "\n"); | |
958 | } | |
959 | #endif |